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Abstract
In spatio-temporal plant monitoring, optical sensing (including hyperspectral imaging), is being deployed to, non-
invasively, detect and diagnose plant responses to abiotic and biotic stressors. Early and accurate detection and 
diagnosis of stressors are key objectives. Level of radiometric repeatability of optical sensing data and ability to 
accurately detect and diagnose biotic stress are inversely correlated. Accordingly, it may be argued that one of the 
most significant frontiers and challenges regarding widespread adoption of optical sensing in plant research and 
crop production hinges on methods to maximize radiometric repeatability. In this study, we acquired hyperspectral 
optical sensing data at noon and midnight from soybean (Glycine max) and coleus wizard velvet red (Solenostemon 
scutellarioides) plants with/without experimentally infestation of two-spotted spider mites (Tetranychus urticae). 
We addressed three questions related to optimization of radiometric repeatability: (1) are reflectance-based plant 
responses affected by time of optical sensing? (2) if so, are plant responses to two-spotted spider mite infestations 
(biotic stressor) more pronounced at midnight versus at noon? (3) Is detection of biotic stress enhanced by spatial 
binning (smoothing) of hyperspectral imaging data? Results from this study provide insight into calculations of 
radiometric repeatability. Results strongly support claims that acquisition of optical sensing data to detect and 
characterize stress responses by plants to detect biotic stressors should be performed at night. Moreover, the 
combination of midnight imaging and spatial binning increased classification accuracies with 29% and 31% for 
soybean and coleus, respectively. Practical implications of these findings are discussed. Study results are relevant to 
virtually all applications of optical sensing to detect and diagnose abiotic and biotic stress responses by plants in 
both controlled environments and in outdoor crop production systems.

Keywords Hyperspectral imaging, Stress detection, Radiometric repeatability, Reflectance profiling, Circadian rhythm 
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Introduction
Optical sensing is being deployed across a wide range 
of spatio-temporal scales and types of optical sensors to 
detect and classify reflectance-based plant responses to 
abiotic and/or biotic stressors. In these applications, it is 
assumed that [1]: (1) stressors elicit a change in biochem-
ical composition and/or physical structure of plant cano-
pies, and (2) plant canopy changes induced by stressors 
are linked to detectable and unique leaf reflectance fea-
tures. A large and growing body of literature supports 
these coupled assumptions and therefore justify further 
research and development of systems, in which optical 
sensing is deployed to detect and diagnose abiotic and 
biotic stressors of plants [2–5]. However, it is important 
to highlight that accurate and reliable detection and diag-
nosis of plant stress hinge on acquisition of strong and 
consistent optical leaf reflectance features over space 
and time. In other words, we assume that it is possible 
to acquire (or perform different types of correction and 
calibration to obtain) optical sensing data with high level 
of radiometric repeatability. When the same object is 
imaged at multiple time points, radiometric repeatabil-
ity may be calculated as the maximum-minimum range 
as percentage of average reflectance in a given spectral 
band, Rx [6]:

 

Radiometric repeatability
= 100− (((Rxmax − Rxmin) × 100)
/ Rxaverage)

 (1)

In optical sensing, radiometric repeatability may be con-
sidered an indicator of minimum detection level. Thus, 
a radiometric repeatability < 95% would suggest that 
plant stress can only be detected accurately and reli-
ably if causing > 5% change in leaf reflectance. Meaning, 

level of radiometric repeatability of optical sensing data 
and ability to accurately detect and diagnose biotic stress 
are inversely correlated [6–11]. A simple analogy is to 
consider standard errors on average bars in an ANOVA 
of two or more treatments. If error bars are large (low 
repeatability), average treatment responses must be very 
different to demonstrate statistical significance. On the 
other hand, small error bars (high repeatability) enable 
detection of statistically significant treatment effects, 
even if averages are only marginally different.

Factors contributing to low radiometric repeatabil-
ity of optical sensing data acquired from plants can be 
broadly divided into four categories: lighting and envi-
ronment [6, 12–15], imaging systems and optical sens-
ing data sets [16–18], plant agronomics and stressors 
[19–22], and plant physiology and photoperiods [23–30]. 
In a few studies, radiometric repeatability was experi-
mentally manipulated by adding known levels of noise to 
data sets to assess its relative effect on accuracy of clas-
sification functions [31, 32]. Radiometric repeatability 
over time was the focus in a study of optical sensing data 
acquired from carefully selected target objects (spectrally 
homogeneous, Lambertian, horizontally placed, and at 
least 12 × 12  m) [33]. Using ground truthing data from 
these target objects over a period of nine days, authors 
showed that radiometric repeatability ranged from 79 
to 94% (coefficient of variation ranging from 6 to 21%). 
A second study involved hyperspectral optical sensing 
data acquired from colored boards during 52 flight mis-
sions on three separate days [6]. As colored boards were 
assumed not to change in composition and structure dur-
ing the study, optical sensing data from individual boards 
were assumed to only vary as a function of lighting and 
environment. To illustrate and highlight the issue of 
radiometric repeatability, Fig. 1a shows the drone-based 

Fig. 1 Octocopter drone system (a) and color boards (b) used to quantify radiometric repeatability. Average reflectance and radiometric repeatability 
based on three flights within 24 min (c)
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hyperspectral imaging system and the objects being 
imaged (Fig. 1b)  [6]. From this study, Fig. 1c shows the 
radiometric repeatability of hyperspectral imaging sys-
tem acquired from white Teflon during three flight mis-
sions, each lasting about 1 min: 11:48 am, 11:49 am, and 
12:12 pm on the same day.

Within 24 min, and near azimuth on a day with clear 
blue sky, values in most spectral bands between 380 
and 900  nm varied 3–6% (radiometric repeatabil-
ity = 94–97%), while much lower radiometric repeatabil-
ity was observed in spectral bands from 900 to 1,015 nm. 
It seems reasonable to assume that a radiometric repeat-
ability of 94–97% would markedly decrease, if optical 
sensing data were acquired: across a wider time span 
within a day, during multiple days, from growing plants, 
and/or from a large area with topography and scattering 
from adjacent objects/features. Sensitivity analyses and 
tests of classification function robustness to radiometric 
repeatability is a research area, which deserves further 
attention.

We wish to highlight low radiometric repeatability 
as a frequently ignored aspect of optical sensing stud-
ies. In 2005, K Peleg, GL Anderson and C Yang [34] 
highlighted the issue of low radiometric repeatability 
in markedly unambiguous terms: “Hyperspectral image 
cubes acquired in consecutive flights over the same target 
should ideally be identical. In practice, two consecutive 
flights over the same target usually yield significant differ-
ences between the image cubes. These differences are due 
to variations in target characteristics, solar illumination, 
atmospheric conditions and errors of the imaging system 
proper”. A likely consequence of low radiometric repeat-
ability is that a classification function developed based 

on a training data set will fail to generate accurate pre-
dictions when applied to new and independent optical 
sensing data. Thus, it may be argued that one of the most 
significant frontiers and challenges regarding widespread 
adoption of optical sensing in plant research and crop 
production hinges on methods to maximize radiometric 
repeatability.

To maximize radiometric repeatability, this study 
focused on two distinct but highly complementary meth-
ods: (1) acquisition of optical sensing data at night ver-
sus during the day, and (2) deployment of spatial binning 
(pixel binning) of hyperspectral imaging data. If plant 
stress responses are more pronounced at night, then 
active (artificial) lighting can be used to provide near-
constant lighting during data acquisitions (both over 
space and time) and therefore mitigate many of the chal-
lenges associated with low radiometric repeatability due 
to lighting and environment. There are several specific 
research articles and reviews of spatial binning of opti-
cal sensing data [35–38]. Spatial binning is the process-
ing step of averaging pixel values, typically in grids of 
3 × 3, 4 × 4, 5 × 5, etc., and perceived advantages include 
reduced effects of outlier pixels, improved signal-to-noise 
ratio, smaller data sets so that data transfer and classifi-
cations are faster, and smoothened optical features. Per-
ceived disadvantages are mainly related to loss of unique 
optical features due to spatial mixing and loss of spectral 
features due to spectral binning. In most cases, there will 
likely be trade-offs, so spatial binning is hypothesized to 
improve classification accuracies up until a certain point, 
where averaging of optical features adversely affects clas-
sification performance.

Fig. 2 Hyperspectral optical sensing with an active light source inside dark room (a). Soybean plants at 1 × 1 (b) and 9 × 9 (c) spatial binning. Coleus plants 
at 1 × 1 (d) and 9 × 9 (e) spatial binning. Radiometric repeatability (%) was calculated (Eq. 1) based on average reflectance of white Teflon on seven days 
and with data being collected at noon and midnight (f)
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In this study, we acquired hyperspectral optical sensing 
data at noon and midnight inside a dark room (Fig. 2a) 
from soybean (Glycine max L.) and coleus wizard vel-
vet red (Solenostemon scutellarioides L.) plants with/
without experimentally infestation of two-spotted spi-
der mites, (Tetranychus urticae Koch). Leaf reflectance 
from soybean is considered representative for most green 
plants, while coleus plants have comparatively high con-
centrations of carotenoids and flavonoids, which are 
responsible for reddish coloring of leaves [39–42]. Due 
to different leaf pigment profiles, these two plant species 
were considered suitable for a comparison, and they are 
both susceptible to infestations by two-spotted spider 
mites [43, 44]. Experimental biotic stress levels consisted 
of no two-spotted spider mite infestation (control), and 
low and high infestations. The same plants were subjected 
to optical sensing on seven days during a 16-day period. 
This enabled characterization of change in leaf reflec-
tance over time. On each of seven days, optical sensing 
data were acquired at noon and midnight to examine 
diurnal effects, calculate radiometric repeatability, and to 
determine whether biotic stress detection accuracy was 
affected by time of optical sensing. Finally, four levels of 
spatial binning were performed and their effects on clas-
sification accuracies were examined. Results presented 
here have important practical implications, as: (1) night 
time optical sensing enables markedly higher ability to 
control lighting and therefore increase levels of radio-
metric repeatability, (2) automation of optical sensing 
can be readily deployed at night time when workers are 
not present inside greenhouse production systems, and 
(3) spatial binning can markedly improve data transfer, 
data classification, and computational complexity needed 
in high throughput system development. With a focus on 
maximization of radiometric repeatability, we argue that 
results presented here are relevant to virtually all opti-
cal sensing applications in both controlled environments 
(with/without artificial lighting) and in outdoor crop pro-
duction systems.

Materials and methods
Plant materials
To avoid unwanted infestations and to treat each plant 
as a separate experimental unit, individual plants 
were grown inside screen cages (BugDorm-2120  F 
insect-rearing tents: width = 60  cm, depth = 60  cm, and 
height = 60  cm; BioQuip Products). Plants were main-
tained at controlled greenhouse facilities [25–30  °C 
(average = 27.8  °C) and 40–50% relative humidity (RH; 
average = 46.2%)] under natural light conditions (no 
supplementary lighting). Coleus plugs were transplanted 
into and soybean seeds planted directly into 6.5-inch 
pots and continuously supplied fertilization (UC Davis 
modified Hoagland’s solution) through drip irrigation 

(ppm): N = 131.5, P = 40.5, K = 180.0, Ca = 101.0, Mg = 52.0, 
S = 68.5, Fe = 1.5, Cu = 0.1, Mn = 0.3, Mo = 0.1, and Zn = 0.1. 
Drip irrigation was delivered to individual pots as two 
separate irrigation events of 1  min each and 8  h apart 
(2 × 35 ml = 70 ml per day). For all combinations of crop 
and treatments, we included eight replicated plants.

Hyperspectral optical sensing
Optical sensing at noon and midnight was performed 
inside a dark room immediately adjacent to the green-
house used to maintain soybean and coleus plants. Each 
optical sensing event, noon or midnight, was completed 
within 60  min conditions, so plants were only momen-
tarily outside individual cages. Furthermore, with opti-
cal sensing performed inside a dark room with an active 
halogen light source (Fig.  2a), paired data acquired at 
noon and midnight were directly comparable, and varia-
tion in imaging environments among days was consid-
ered negligible. We used a push-broom hyperspectral 
camera (PIKA L, Resonon Inc., Bozeman, MT, USA) with 
the following specifications: digital output (12 bit), angu-
lar field of view of 7 degrees, objective lens had a 17 mm 
focal length (maximum aperture of F1.4), spectral range 
of 380-1,015  nm, and spectral resolution of 150 bands 
(4.2 nm). Optical sensing data were acquired with a spa-
tial resolution of about 9 pixels mm− 2. The hyperspec-
tral camera was mounted on a robotic rail system about 
1 m above plants placed on top of a table (Fig. 2a). White 
Teflon was imaged simultaneously with plants and used 
as radiometric calibration according to the empirical 
line method (ELM) [11, 13, 14, 33, 45–51]. Deployment 
of ELM calibration likely increases levels of radiometric 
repeatability [6]. Deployment of radiometric filtering [1, 
52] was used to only include pixels representing green 
leaves (exclusion of background).

Hyperspectral imaging was performed on seven days 
(seven paired combinations of noon and midnight): 
before infestations (baseline), 7–9 days after infesta-
tions (period 1) and 14–16 days (period 2) after infesta-
tions. For both plant species, we included three classes: 
non-infested control plants, low infestation (10 adult 
two-spotted spider mites per plant) and high infestation 
(30 adult two-spotted spider mites per plant). With data 
acquired on seven days × two time points (noon and mid-
night) × three classes (control, and low and high infesta-
tions) × eight plants per treatment, optical sensing data 
were acquired from 336 combinations of day, time of 
optical sensing, treatment, and replication for each plant 
species.

Data analyses
All data processing, analyses, and classifications were 
performed in R v3.6.1 (The R Foundation for Statistical 
Computing, Vienna, Austria).
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Diurnal variation of leaf reflectance
We examined paired average reflectance profiles from 
the seven time points at noon and midnight. This analy-
sis was based exclusively on optical sensing data from 
control plants, and data from each plant species were 
analyzed separately. A looped paired t-test was used to 
examine reflectance values in each of the 150 spectral 
bands. For each of the two plant species, the main pur-
pose was to identify spectral regions with high sensitiv-
ity to growth of plants over time. Average reflectance 
profiles from white Teflon and from control plants were 
also used to calculate radiometric repeatability (based on 
Eq. 1).

Diurnal variation of biotic stress response
We performed the same looped paired t-test, as 
described above, to compare control plants with those 
subjected to high infestation (low infestation plants were 
excluded from this analysis).

Importance of spatial binning
We performed SVM classification [using the 
library(e1071) with linear kernel function and no spe-
cific hyperparameters (i.e., cost or gamma)], and optical 
sensing data were divided into four classes: baseline, non-
infested control, and low and high infestations. Separate 
SVM classifications were performed for optical sensing 
data acquired at noon and at midnight. SVM classifica-
tions were performed based on grouped optical sensing 
data acquired 7–9 days after infestations (period 1) and 
14–16 days after infestations (period 2). Thus, one SVM 
classification included baseline data and data from period 
1, while a second SVM classification included baseline 
data and data from period 2. This allowed us to deter-
mine relative changes over time, as baseline data were 
predicted to be classified with higher accuracy, when 

combined with data from period 2 than when combined 
with data from period 1. Furthermore, we conducted 
SVM classifications based on four spatial binning levels: 
no spatial binning (using individual pixels), 5 × 5 (25-
fold data reduction), 7 × 7 (49-fold data reduction), and 
9 × 9 (81-fold data reduction). Accordingly, a total of 32 
SVM classifications were performed [two plant species 
× two periods × two times of day (noon and midnight) 
× four levels of spatial binning]. In all SVM classifica-
tions, irrespectively of level of spatial binning, it was 
ensured that numbers of observations in classes were 
balanced. This is important, as classifications based on 
SVM and other functions are generally sensitive to data 
balance among classes [53, 54]. Representative photos 
of original data (no spatial binning) and 9 × 9 spatial bin-
ning are presented in Fig.  2b-e. As assessment of clas-
sification performances, we generated Kappa values 
[55] and also included 10-fold cross-validation [56–58]. 
Regarding interpretation of Kappa values, the following is 
generally accepted [55]: 0 = poor, 0.01– 0.20 = slight, 0.21–
0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = substantial, 
and 0.81–1.00 = almost perfect. In k-fold cross-valida-
tion, training data sets are divided into ‘k’ equal portions, 
which in this study was set at 10 (so 18 observations in 
each portion). Classification models were trained on ‘k-1’ 
of these portions, while a remaining portion is used for 
validation. This process was repeated ‘k’ times, with each 
fold serving as validation, and results from ‘k’ tests are 
averaged to produce a single estimation of model classi-
fication performance.

Results and discussion
Temporal trends of optical sensing data
Figure 3 shows average numbers of green pixels for each 
plant species over time, and it is seen that bean plants 
grew about 4-fold, while coleus plants grew about 3-fold. 
We highlight this temporal variation in size (average 
number of green pixels per plant), because it can lead to 
unbalanced data sets and therefore biased statistical out-
comes [59], if disproportionally more pixels are included 
from larger plants. To avoid concerns about unbalanced 
data, all statistical analyses were based on randomly 
selected but fixed numbers of pixels (also when spatial 
binning was deployed) from each combination of time 
points and treatment. This issue of unbalanced data sets 
due to growth of plants has broad relevance, especially if 
treatments (such as drought or fertilizer) directly impact 
plant growth, and/or if optical sensing data are acquired 
over time.

Diurnal variation of optical sensing data
Average effect of time of optical sensing was calculated as 
the relative difference (midnight/noon) in all 150 spectral 
bands (Fig. 4). Thus, horizontal blue dotted lines denote 

Fig. 3 Average number of green pixels per plant was calculated and used 
as indicator of plant growth during the course of the study
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a ratio = 1, which implies no difference between noon 
and midnight. A ratio > 1 suggests higher leaf reflec-
tance at midnight, while a ratio < 1 suggests that leaves 
were darker at night compared to at noon. Horizontal 
red dotted lines denote paired t-test p-values = 0.05, so 
that spectral bands below this threshold suggest statisti-
cal significance. Regarding soybean (Fig.  4a), midnight 
leaf reflectance was lower in all spectral bands, except 
for spectral bands from 730 to 900  nm. It is also seen 
that leaf reflectance at midnight was significantly lower 
in spectral bands from 380 to 500 nm, 600–700 nm, and 
960-1,015  nm. Accordingly, these spectral regions were 
considered spectral regions with strongest responses to 
time of optical sensing by soybean plants. These spectral 
ranges align partially with those identified as possible 
indicators of chlorophyll a and b [60–63]. Reflectance 
near 700 nm has been shown experimentally to be asso-
ciated with chlorophyll a content [60, 64, 65]. Based on 
readings in 15-min intervals on three separate days, the 
red portion of the radiometric spectrum (600–700 nm) of 
soybean plants has been shown to vary as much as 140% 
[66].

Regarding coleus (Fig.  4b), leaf reflectance was gener-
ally higher at midnight than at noon, except for spectral 
bands from 580 to 670 nm. There was a prominent leaf 
reflectance peak in spectral bands from 400 to 600  nm. 
Examination of Fig.  4b suggests negligible relative dif-
ference in spectral bands from 750 to 950  nm (close to 
value = 1). However, paired t-test results of reflectance 
values in these spectral bands suggested highly signifi-
cant responses to time of optical sensing. Furthermore, it 
highlights that visual interpretations of average responses 
may be slightly deceiving and should be accompanied by 
statistical analyses. In addition, leaf reflectance at mid-
night was significantly higher in spectral bands from 450 
to 580 nm, and significantly lower in spectral bands from 

600 to 630 nm. These spectral ranges align partially with 
those identified as possible indicators of carotenoids and 
anthocyanins [62, 67, 68]. As coleus species typically have 
high anthocyanin content [40], it is not surprising that 
these plants responded differently in terms of leaf reflec-
tance to time of optical sensing compared to soybean 
plants.

Summarizing methods and results: we randomly 
selected 1,200 pixels for each combination of plant spe-
cies, day of imaging, and time of optical sensing. Average 
reflectance in 150 individual spectral bands were com-
pared using a paired t-test, based on seven pairs of val-
ues in each spectral band (noon versus midnight). From 
these analyses, we conclude that the two plant species 
responded differently to time of optical sensing, as coleus 
plants were generally brighter at midnight, while soybean 
plants became darker compared to at noon. In addition, 
the two plant species showed significant responses in dif-
ferent spectral regions. However, for both plant species 
we conclude that time of optical sensing has a profound 
influence on optical sensing data. Importantly, magnitude 
of average difference was not a reliable indicator of statis-
tical significance. Moreover, Fig. 4b shows only a modest 
increase in leaf reflectance in spectral bands from 740 to 
940  nm, but statistical comparisons were highly signifi-
cant. Thus, this spectral region is interpreted as possess-
ing a high level of radiometric repeatability. Conversely, 
Fig. 4a showed a considerable decrease in leaf reflectance 
in spectral bands from 500 to 600 nm, but differences in 
individual bands were not statistically significant. Thus, 
this spectral region was likely associated with low radio-
metric repeatability. This exercise highlights the impor-
tance of assessing relative responses based on statistical 
comparisons rather than qualitative/visual interpreta-
tions of treatment responses in individual spectral bands. 

Fig. 4 Average effect of time of optical sensing is illustrated as a ratio (midnight/noon) for soybean (a) and coleus (b). Horizontal blue dotted line = 1, 
which equals no effect of time of optical sensing. For all 150 spectral bands from 380-1,015, we performed paired t-tests, and p-values are presented as 
continuous red line. Horizontal red dotted denotes significance at the 0.05-level
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Furthermore, it provided valuable insight into spectral 
regions with strong response to photoperiod.

Actual impact of physiological dynamics on leaf reflec-
tance has, to the best of our knowledge, not been thor-
oughly examined, but such knowledge may provide 
insight into possible factors adversely affecting radio-
metric repeatability of optical sensing data from plants. 
Reviews of spectral indices show that spectral bands 
from 900 to 970 nm are frequently used [3, 69–73]. With 
spectral bands in this region showing a highly significant 
response to noon versus midnight in coleus, our results 
suggest that such spectral indices should be used with 
caution in optical sensing of plants with high concentra-
tions of anthocyanins.

Diurnal variation of radiometric repeatability
Application of Eq. 1 to average reflectance data acquired 
from white Teflon was used to calculate radiometric 
repeatability of imaging system and imaging condi-
tions (Fig.  2f ). We found that radiometric repeatability 
exceeded 99% in all spectral bands, and it was consis-
tently higher when hyperspectral imaging data were 
acquired at midnight. This analysis is rarely included 
in published optical sensing studies, but it markedly 
improves ability to interpret optical trends and plant 
responses to treatments. Moreover, with demonstration 
of < 1% stochastic noise in reflectance data, we are in 
position to make much stronger statements about plant 
responses to photoperiod and to a biotic stressor. Regard-
ing soybean (Fig. 5a), radiometric repeatability was below 
80% in spectral bands from 380 to 700  nm, and it was 
lowest when hyperspectral imaging data were acquired 
at noon. In spectral bands from about 740-1,015  nm, 
radiometric repeatability was near 100% at noon but 
considerably lower when hyperspectral imaging data 
were acquired at midnight. Regarding coleus (Fig.  5b), 

radiometric repeatability was generally low (< 80%) in 
spectral bands from 400 to 650  nm, while it was near 
100% in spectral bands from about 740-1,015  nm, irre-
spectively of whether hyperspectral imaging data were 
acquired at noon or midnight.

We wish to re-emphasize that hyperspectral imag-
ing data were acquired inside a dark room with artificial 
lighting, and that ELM calibration was performed for 
each time point. Consequently, low/reduction of radio-
metric repeatability is considered to be exclusively attrib-
uted to physiological changes in response to photoperiod. 
As part of interpreting results presented in Fig.  5, it is 
paramount to highlight that reflectance profiles used to 
calculate radiometric repeatability represented averages 
of thousands of pixels (see Fig. 3), as hundreds of pixels 
were selected from each of eight replicated plants. Thus, 
reductions of radiometric repeatability of 20% or more 
represented marked changes in leaf reflectance. Obvious 
consequences of results presented in Fig. 5 are: (1) stress 
signals representing < 40% change in leaf reflectance may 
not be detectable, if based on spectral bands from 380 to 
700 nm, (2) if using spectral bands from 380 to 700 nm, 
then acquisition of hyperspectral imaging data at mid-
night provide higher likelihood of accurate crop stress 
detection, 4) spectral bands from 730 to 1,015 nm were 
associated with very high radiometric repeatability in 
both crops, and irrespectively of whether hyperspectral 
imaging data were acquired at noon or midnight, and 4) 
radiometric repeatability of crops with different pigment 
profiles appear to show high degree of variability in terms 
of responses to time of day of hyperspectral imaging.

The observed optical trends presented in Fig.  5 are 
likely due to complex physiological plants responses 
to photoperiod [30]. Concentration of chlorophyll has 
been shown to follow diurnal fluctuations in a number of 
plants, including tomato [24], petunia [27], tobacco [26], 

Fig. 5 Radiometric repeatability of average reflectance profiles from soybean (a) and coleus (b) control plants was calculated based on Eq. 1
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and wheat [23, 74]. Anthocyanins also show diurnal fluc-
tuations [40]. At a high spatial resolution, M Busheva, G 
Garab, E Liker, Z Tóth, M Szèll and F Nagy [23] showed 
that contents of chlorophyll pigments a and b in wheat 
leaves (basal, mid, and tip) changed markedly, both diur-
nally and seasonally. SJ Britz and WR Briggs [75] studied 
an Ulva species and showed that chloroplasts were near 
the outer leaf surface during the day, while at night, these 
pigments were mainly located along the leaf sides, and 
the absorbance of radiometric energy was low. This spa-
tio-temporal variability and mobility of chloroplasts and 
concentrations of pigments underscore that plants have 
mechanisms to regulate (and possibly optimize) their 
investment in photosynthesis. From experimental studies 
of green leaves, it has been demonstrated that concentra-
tions of plant pigments can be quantified non-destruc-
tively based on wavelength-specific leaf reflectance 
features (“R” denotes relative reflectance, “ρ” denotes 
reciprocal reflectance) [60–63, 67, 68], including: chloro-
phyll a (R700, R750/R550, and R750/R700, ρ710- ρ790), 
chlorophyll b (R672/R550, R860/R550), carotenoids 
(R510, R531, R550, R700), anthocyanins (ρ550- ρ710). 
Thus, under assumption of diurnal variations in pigment 
concentrations in plants, it would be expected that leaf 
reflectance acquired during the day and at night vary 
in some of these specific wavelengths. However, we are 
unaware of studies experimentally testing whether such 
diurnal dynamics of pigments and plant physiology may 
influence magnitude and types of reflectance responses 
to biotic stressors.

Diurnal variation of biotic stress response
In a first analysis of stress response, only control and 
high infestation plants (not low infestation) were com-
pared and subjected to the same analytical approach as 

used to examine leaf reflectance responses to time of 
optical sensing. Regarding soybean at noon (Fig. 6a), it is 
seen that two-spotted spider mite infestations elicited a 
significant increase in leaf reflectance in spectral bands 
from 380 to 510 nm and 570–700 nm, while infestations 
caused a significant decrease in leaf reflectance in spec-
tral bands from 700 to 800  nm. A similar, but stronger, 
stress response was observed in optical sensing data 
acquired from soybean at midnight with highly signifi-
cant increases in leaf reflectance in spectral bands from 
380 to 530 nm and 570–700 nm (Fig. 6b).

Regarding coleus at noon (Fig. 7a), it is seen that two-
spotted spider mite infestations elicited a significant 
increase in leaf reflectance in spectral bands from 450 
to 480 nm and 615–720 nm, while infestations caused a 
significant decrease in leaf reflectance in spectral bands 
near 780 nm and from 950 to 1,015 nm. Regarding optical 
sensing data acquired from coleus at midnight (Fig. 7b), 
two-spotted spider mite infestations elicited a signifi-
cant increase in spectral bands from 615 to 720 nm and 
a small but significant decrease in spectral bands from 
890 to 1,015 nm. Several studies have described increase 
in leaf reflectance in response to two-spotted spider mite 
infestation [1, 76–82].

In a second analysis, we conducted SVM classification 
of plants divided into four classes: baseline, control, and 
low and high infestations. Table 1 shows outcomes from 
classifications of soybean optical sensing data acquired 
at noon and midnight and in response to four levels of 
spatial binning. At progressively higher levels of spatial 
binning, available numbers of pixels became a limitation, 
so different fixed number of pixels were used for differ-
ent levels of spectral binning. For all four classes (base-
line, control, and low and high infestations), and also 
regarding overall accuracy, classification accuracies were 

Fig. 6 Average difference between plants subjected to high two-spotted spider mite infestations and control plants is illustrated as a ratio (high infesta-
tion/ control) for soybean when imaged at noon (a) or at midnight (b). Horizontal blue dotted line = 1, which equals no effect of time of optical sensing. 
For all 150 spectral bands from 380-1,015, we performed paired t-tests, and p-values are presented as continuous red line. Horizontal red dotted denotes 
significance at the 0.05-level
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numerically highest at midnight compared to noon, but 
only control plants showed significantly higher accuracy 
(P < 0.05). The class, baseline, was classified with high-
est level of accuracy, especially for period 2. As baseline 
data were acquired about two weeks prior to period 2, 
this result was expected. Furthermore, it highlights the 
important fact that leaf reflectance changes during time 
periods of a few days. Low infestations were associated 
with lowest classification accuracies.

This was to be expected, as optical data from these 
plants would likely be misclassified as either control or 

high infestation. For all four combinations of time of opti-
cal sensing (noon and midnight) and time period (1 and 
2), there was an increase in Kappa values as a function of 
spatial binning. Regarding interpretation of Kappa values 
from soybean classifications, most values were within the 
0.61–0.80 range, which is considered “substantial” [55]. 
Table  2 shows outcomes from classifications of coleus 
optical sensing data acquired at noon and midnight and 
in response to four levels of spatial binning. Two classes 
(control, and high infestations) as well as overall accuracy 
(K-1) and average Kappa values were numerically highest 

Table 1 SVM classifications of optical sensing data from soybean
Binning Pixels Diurnal Period Base Control Low High K-1 Kappa
1 by 1 1200 Noon 1 0.87 0.65 0.62 0.62 63.04 0.59
5 by 5 1200 Noon 1 0.97 0.77 0.68 0.70 75.58 0.71
7 by 7 600 Noon 1 0.98 0.79 0.70 0.70 75.96 0.72
9 by 9 375 Noon 1 0.98 0.79 0.71 0.78 76.93 0.76
1 by 1 1200 Noon 2 0.99 0.69 0.52 0.65 65.79 0.62
5 by 5 1200 Noon 2 1.00 0.71 0.61 0.75 73.52 0.69
7 by 7 600 Noon 2 1.00 0.76 0.58 0.78 74.58 0.71
9 by 9 375 Noon 2 1.00 0.73 0.69 0.78 75.80 0.73
1 by 1 1200 Midnight 1 0.97 0.71 0.65 0.62 68.56 0.65
5 by 5 1200 Midnight 1 0.99 0.86 0.76 0.77 82.67 0.79
7 by 7 600 Midnight 1 0.99 0.85 0.75 0.79 83.46 0.80
9 by 9 375 Midnight 1 0.99 0.88 0.78 0.77 83.60 0.81
1 by 1 1200 Midnight 2 0.99 0.75 0.58 0.64 68.67 0.66
5 by 5 1200 Midnight 2 1.00 0.84 0.60 0.74 77.17 0.73
7 by 7 600 Midnight 2 1.00 0.86 0.63 0.78 78.58 0.76
9 by 9 375 Midnight 2 1.00 0.85 0.57 0.81 77.27 0.74

Noon 0.97a 0.74a 0.64a 0.72a 72.65a 0.69a
Midnight 0.99a 0.82b 0.67a 0.74a 77.50a 0.74a

“Binning” denotes level of spatial binning (averaging of pixels). “Pixels” denotes numbers of pixels randomly selected for each of the four categories. This number 
of pixels from each category was fixed for each analysis to ensure balance of data. “Period”: 1 = 7–9 days after infestations (Period 1) and 14–16 days (Period 2) 
after infestations with two-spotted spider mites. Optical sensing data in four categories (Base = baseline, Control = non-infested plants, Low = low infestation, and 
High = high infestation). K-1 denotes k-fold cross-validation and Kappa = Kappa value. Average values for noon and midnight were compared based on one-way 
anova and letters denote statistical difference at the 0.05-level

Fig. 7 Average difference between plants subjected to high two-spotted spider mite infestations and control plants is illustrated as a ratio (high infesta-
tion/ control) for coleus when imaged at noon (a) or at midnight (b). Horizontal blue dotted line = 1, which equals no effect of time of optical sensing. 
For all 150 spectral bands from 380-1,015, we performed paired t-tests, and p-values are presented as continuous red line. Horizontal red dotted denotes 
significance at the 0.05-level
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at midnight compared to noon, but none of them showed 
significantly higher accuracy (P > 0.05). Regarding inter-
pretation of Kappa values from coleus classifications, 
most values were within the 0.41–0.60 range, which is 
considered “moderate” [55]. As it was seen in analyses 
of soybean: (1) There was a positive correlation between 
level of spatial binning and accuracy of classifications of 
optical sensing data acquired from coleus. (2) Baseline 
was classified with a high level of accuracy, especially for 
period 2. (3) Low infestations were associated with lowest 
classification accuracies.

In summary, classification results based on optical 
sensing data from both soybean and coleus showed that: 
(1) accuracies were numerically higher when plants were 
imaged at midnight, (2) spatial binning increased accu-
racies, and (3) temporal comparison (comparing baseline 
data with data from periods 1 and 2, respectively) showed 
clear trends of leaf reflectance changing as a function 
of plant growth over time. These trends were observed 
based on balanced data (fixed numbers of pixels included 
from all plant categories), so they cannot be interpreted 
as possible artefacts and/or flaws in data structures.

Final perspectives
Optical sensing, with hyperspectral imagers and other 
sensors, is a crucially important method to monitor and 
manage crops in agriculture and plants in non-agricul-
tural environments [11, 13, 83, 84]. Thus, it is paramount 
that research addresses and finds solutions to the most 
challenging bottlenecks restricting further adoption of 

optical sensing. We argue that methods to maximize 
radiometric repeatability of optical sensing data should 
be regarded as a primary research priority and frontier. 
Based on average reflectance profiles acquired from 
control plants on seven separate days under controlled/
artificial lighting and with ELM calibration, we dem-
onstrated radiometric repeatability varies considerably 
among spectral bands: low radiometric repeatability in 
range from 380 to 700 nm, and high radiometric repeat-
ability in range from 720 to 1,015 nm. With radiometric 
repeatability falling below 80% in some spectral regions, 
results from this study corroborate concerns raised and 
results presented almost 25 years ago [34]. Facing chal-
lenges with low radiometric repeatability, we tested rela-
tive effects of time of optical sensing of hyperspectral 
imaging and of spatial binning on classification accu-
racies. As seen in Table  1, classification of optical sens-
ing from soybean plants at noon with no spatial binning 
was associated with Kappa values of 0.59 (period 1) and 
0.62 (period 2), while midnight Kappa values were 0.81 
(period 1) and 0.74 (period 2). Thus, the combination 
of midnight imaging and spatial binning increased clas-
sification accuracies by about 29% (from 0.60 to 0.77). 
Classification of optical sensing from coleus plants at 
noon with no spatial binning was associated with Kappa 
values of 0.44 (period 1) and 0.52 (period 2), while mid-
night Kappa values were 0.63 (period 1) and 0.64 (period 
2) (Table 2). Thus, the combination of midnight imaging 
and spatial binning increased classification accuracies by 
about 31% (from 0.48 to 0.63).

Table 2 SVM classifications of optical sensing data from coleus
Binning Pixels Diurnal Period Base Control Low High K-1 Kappa
1 by 1 1200 Noon 1 0.80 0.60 0.42 0.50 51.83 0.44
5 by 5 1200 Noon 1 0.90 0.60 0.47 0.68 62.38 0.55
7 by 7 600 Noon 1 0.91 0.64 0.54 0.69 65.13 0.59
9 by 9 375 Noon 1 0.93 0.59 0.55 0.66 63.20 0.58
1 by 1 1200 Noon 2 0.89 0.63 0.47 0.59 57.81 0.52
5 by 5 1200 Noon 2 0.96 0.62 0.51 0.68 65.98 0.59
7 by 7 600 Noon 2 0.96 0.63 0.54 0.66 64.83 0.59
9 by 9 375 Noon 2 0.96 0.66 0.52 0.69 65.73 0.61
1 by 1 1200 Midnight 1 0.77 0.60 0.36 0.58 51.67 0.44
5 by 5 1200 Midnight 1 0.90 0.67 0.49 0.69 64.83 0.58
7 by 7 600 Midnight 1 0.91 0.71 0.48 0.73 65.33 0.61
9 by 9 375 Midnight 1 0.89 0.71 0.54 0.75 67.13 0.63
1 by 1 1200 Midnight 2 0.88 0.62 0.40 0.58 55.60 0.49
5 by 5 1200 Midnight 2 0.95 0.66 0.51 0.71 67.90 0.62
7 by 7 600 Midnight 2 0.95 0.67 0.52 0.74 66.29 0.63
9 by 9 375 Midnight 2 0.97 0.69 0.52 0.72 67.13 0.64

Noon 0.91 0.62 0.50 0.64 62.11 0.56
Midnight 0.90 0.67 0.47 0.69 63.24 0.58

“Binning” denotes level of spatial binning (averaging of pixels). “Pixels” denotes numbers of pixels randomly selected for each of the four categories. This number 
of pixels from each category was fixed for each analysis to ensure balance of data. “Period”: 1 = 7–9 days after infestations (Period 1) and 14–16 days (Period 2) 
after infestations with two-spotted spider mites. Optical sensing data in four categories (Base = baseline, Control = non-infested plants, Low = low infestation, and 
High = high infestation). K-1 denotes k-fold cross-validation and Kappa = Kappa value
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Optical sensing at midnight with active light source 
would mitigate a number of challenges, including radio-
metric calibration. ELM calibration is probably the most 
commonly used method of radiometric calibration of 
(airborne) optical sensing data [14], and it has been 
thoroughly reviewed [11, 47, 51]. Other radiometric 
calibration methods are based on quantification of “true 
reflectance” as a reference [7, 14, 34, 66]. ELM calibra-
tion requires placement and retrieval of reference boards, 
which must be placed sufficiently frequent to account 
for temporal variations in atmospheric conditions and 
sun parameters. Placement and retrieval of calibration 
boards are time and labor consuming, and they must 
be placed in ways that minimize radiometric noise due 
to projection angle issues and/or shadows being cast by 
adjacent objects. Furthermore, calibration boards must 
be kept clean, stored properly, and high-quality calibra-
tion boards are often costly. Additionally, continuous use 
of commercially available calibration boards (based on 
supplier and material) under field conditions may lead 
to change in their optical characteristics over time [84]. 
These challenges associated with ELM-based radiomet-
ric calibration are highlighted, because they contribute 
significantly to risks of low radiometric repeatability. 
And most of concerns with ELM-based radiometric cali-
bration may be mitigated by opting for midnight opti-
cal sensing with an active and constant light source. In 
open field cropping systems, midnight optical sensing 
may represent some logistical challenges. However, auto-
mated rovers or pivot irrigation could be outfitted with 
active light sources and optical sensor, and if rovers are 
deployed swarms, then data from large crop areas could 
be acquired in a timely fashion. Costs of optical sensing 
equipment could be a significant constraint, but it may 
be justified if radiometric repeatability of optical sensing 
data can be markedly improved. In controlled environ-
ments, optical sensing at midnight would likely be asso-
ciated with less (negligible) concerns about fluctuating 
lighting conditions and/or concerns about beams and 
other structural features casting shadows and scattering. 
Furthermore, optical sensing would be performed when 
workers are not present, so there would be no down-time 
(loss of productivity). Optical sensing at night would also 
benefit from another critically important aspect, which 
is that chloroplasts tend to be more stable in the dark. 
Moreover in darkness, chloroplasts are not subjected to 
photooxidative stress, which is a major cause of chloro-
plast damage induced by light conditions [30]. Results 
from this study provided strong support for claims that 
acquisition of optical sensing data to detect and char-
acterize biotic stress responses by plants should be per-
formed at night. Additionally, we demonstrated marked 
benefits of deploying spatial binning.
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