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ABSTRACT OF THE DISSERTATION

Progression and Edge Intelligence Framework for IoT Systems

By

Zhenqiu Huang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Kwei-Jay Lin, Chair

This thesis studies the issues of building and managing future Internet of Things (IoT)

systems. IoT systems consist of distributed components with services for sensing, processing,

and controlling through devices deployed in our living environment as part of the global

cyber-physical ecosystem.

Systems with perpetually running IoT devices may use a lot of energy. One challenge is

implementing good management policies for energy saving. In addition, a large scale of

devices may be deployed in wide geographical areas through low bandwidth wireless com-

munication networks. This brings the challenge of configuring a large number of duplicated

applications with low latency in a scalable manner. Finally, intelligent IoT applications,

such as occupancy prediction and activity recognition, depend on analyzing user and event

patterns from historical data. In order to achieve real-time interaction between humans and

things, reliable yet real-time analytic support should be included to leverage the interplay

and complementary roles of edge and cloud computing.

In this dissertation, I address the above issues from the service oriented point of view. Service

oriented architecture (SOA) provides the integration and management flexibility using the

abstraction of services deployed on devices. We have designed the WuKong IoT middleware

to facilitate connectivity, deployment, and run-time management of IoT applications.
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For energy efficient mapping, this thesis presents an energy saving methodology for co-

locating several services on the same physical device in order to reduce the computing and

communication energy. In a multi-hop network, the service co-location problem is formulated

as a quadratic programming problem. I propose a reduction method that reduces it to the

integer programming problem. In a single hop network, the service co-location problem can

be modeled as the Maximum Weighted Independent Set (MWIS) problem. I design algorithm

to transform a service flow to a co-location graph. Then, known heuristic algorithms to find

the maximum independent set, which is the basis for making service co-location decisions,

are applied to the co-location graph.

For low latency scalable deployment, I propose a region-based hierarchical management struc-

ture. A congestion zone that covers multiple regions is identified. The problem of deploying

a large number of copies of a flow-based program (FBP) in a congestion zone is modeled as

a network traffic congestion problem. Then, the problem of mapping in a congestion zone

is modeled as an Integer Quadratic Constrained Programming (IQCP) problem, which is

proved to be a NP-hard problem. Given that, an approximation algorithm based on LP

relaxation and an efficient service relocating heuristic algorithm are designed for reducing

the computation complexity. For each congestion zone, the algorithm will perform global

optimized mapping for multiple regions, and then request multiple deployment delegators

for reprogramming individual devices.

Finally, with the growing adoption of IoT applications, dedicated and single-purpose de-

vices are giving way to smart, adaptive devices with rich capabilities using a platform or

API, collecting and analyzing data, and making their own decisions. To facilitate building

intelligent applications in IoT, I have implemented the edge framework for supporting reli-

able streaming analytics on edge devices. In addition, a progression framework is built to

achieve the self-management capability of applications in IoT. A progressive architecture and

a programming paradigm for bridging the service oriented application with the power of big

xiv



data on the cloud are defined in the framework. In this thesis, I present the detailed design

of the progression framework, which incorporates the above features for building scalable

management of IoT systems through a flexible middleware.
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Chapter 1

Introduction

1.1 Background and Motivation

An emerging wave of Internet deployments, most notably the Internet of Things (IoT) sys-

tems, require management flexibility in addition to location awareness and low latency.

Compared to original Wireless Sensor Networks (WSN), which are designed to operate at

extremely low power, sensing the environment, simple processing, and forwarding data to the

static sink in a uni-direction fashion, Internet of things systems deploy sensors in the envi-

ronment for data collection and device control purposes in order to build smart applications

such as smart homes, smart cares, and smart industries.

1.1.1 Service Oriented IoT

Internet of Things (IoT) systems deploy sensors in the environment for data collection and

device control. Built on the foundation of wireless sensor networks (WSN), each IoT device

can facilitate a set of sensors and actuators to connect with physical environments. Emerging
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IoT systems often have heterogeneous sensors and can run multi-purpose applications, so

that different applications may use a different subset of sensing devices according to their

locations, capabilities and availability. As predicted by Gartner market research [3], there

will be 50 billion IoT devices connected globally in 2020. The scalability of IoT system

presents new challenges for device management with regard to energy efficiency, scalable

application deployment for emergency situation and intelligence in application.

Firstly, heterogeneous devices are deployed in geologically distributed areas. This brings

challenges for managing QoS of applications built on top of these devices. Secondly, with a

changing environment, there comes the need for devices that are deployed with different pur-

poses and capabilities. To collaborate with one another and to be sharable among different

applications, devices will have tradeoffs between energy, run-time latency, reprogramming

latency, and various kinds of quality of service (QoS) such as accuracy, latency in system

deployment. These bring challenges to configuration of IoT applications and IoT devices.

1.1.2 Edge Computing

The rise of three important technologies: the cloud, smart devices, and mobile applications

heralds a new age of remote intelligent nodes that not only communicate with each other

but also analyze high volumes of local real-time data to make collaborative autonomous

decisions. Dedicated, single-purpose devices are giving way to smart, adaptive devices that

virtualize capabilities using a platform or API, collect and analyze data, and make their own

decisions.

Forcasted by Cisco Global Cloud Index [1], the data created by IoT devices will reach

507.5 ZB per year by 2019. Such a large amount of data and requirement of time-sensitive

applications will put massive pressure on the scalability of centralized data management

systems on the cloud. To provide realtime processing of these data, the centralized data
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center solution will not only have one-time investment cost but also the cost on energy

and natural resources, such as water for cooling. Advances in low-power computing and

networking are pulling intelligence from the cloud to the edge of the network in the form

of smart, connected devices. In the new edge computation model, smart devices, cloud

services, and smart applications herald a new age of remote intelligent nodes that not only

communicate with each other but also analyze high volumes of local real-time data to make

collaborative autonomous decisions. Thus, an edge based IoT framework should devised to

build intelligence in service oriented IoT systems.

1.1.3 Autonomic Computing

Autonomic computing is a concept that brings together many fields of computing with the

purpose of creating computing systems that are able to be self-managing. Nevertheless, a

centralized solution that manages geologically distributed large scale heterogeneous devices

in the global IoT ecosystem is not effective and efficient. In order to achieve failure-resilience

and self-management on Quality of Service (QoS) of heterogeneous devices, an evolving yet

lightweight progression mechanism should be designed on the edge, so that these devices can

reliably and progressively make autonomous decisions, and share resources and information

with each other. At the same time, an edge intelligent application may be self-optimized

by interplay with big data on cloud. To progressively manage system QoS and support

intelligence, an extendable software framework is needed to manage runtime dynamics, such

as the energy cost on device, end-to-end latency of application, and users’ pattern and

preference, etc. With such an extendable design, software module for single purpose may

plug and play in the progressive framework.

3



Edge and 
Progression 
Framework 

Autonomic 
Computing 

Edge 
Computing 

Service 
Computing 

Intelligence 

Scalability Interoperability 

Figure 1.1: Foundation and Goal of Research

1.2 Contributions

The WuKong system [80, 81] is already built as a service oriented middleware of IoT systems.

As shown in Figure 1.1, research in this disseration is to imrpove progressive and intelligence

capability of WuKong by providing an scalable and extendable runtime management layer.

I now summarize the contribution of the research reported in this dissertation.

1.2.1 Energy Aware Mapping

Ubiquitous sensing and actuating devices are now everywhere in our living environment

as part of the global cyber-physical ecosystem. Sensing and actuating capabilities can be

modeled as services to compose intelligent Internet of Things (IoT) applications. An issue

for perpetually running and managing these IoT devices is the energy cost.One energy saving

strategy is to co-locate several services on one device in order to reduce the computing and

communication energy. I propose a service merging strategy for mapping and co-locating
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multiple services on devices. In a multi-hop network, the service co-location problem is

formulated as a quadratic programming problem. I show a reduction method that reduces it

to the integer programming problem. In a single hop network, the service co-location problem

can be modeled as the Maximum Weighted Independent Set (MWIS) problem. I design

an algorithm to transform a service flow to a co-location graph, then use known heuristic

algorithms to find the maximum independent set which is the basis for making service co-

location decisions. The performance of different co-location algorithms are evaluated by

simulation in this thesis. Our simulation study shows that the MWIS algorithms can save

10% more communication energy than our previous solution, which is more than 30% energy

than mapping result without any optimization.

1.2.2 Scalable Deployment of IoT Applications

Service Oriented Internet of Things (IoT) has been recently proposed for building smart

environments as an integrated and scalable platform, where applications can be rapidly

developed and deployed to adapt to context change. For some emergent situations, such

as earthquake, an emergency handling application need to be proactively deployed to a

large scale of regions with minimum latency. At the same time, the application instance

in each region need to meet its end-to-end delay constraint. I study the sensor mapping

design, which aims to minimize the reprogramming latency for large scale IoT systems while

satisfying the run-time latency requirement at the application layer. I formally define it as the

Integer Linear Programming (ILP) problem, and prove that it is NP-hard. An approximation

algorithm based on LP relaxation and an efficient service relocating heuristic algorithm are

designed for reducing time complexity. The performance of different mapping algorithms

are evaluated by simulation in this study. Given a system with n congestion zones, our

simulation study shows that our proposed solution can use only 1/n * 0.7 reprogramming

time than a centralized solution to reprogram.
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1.2.3 Edge Intelligence Support

As the era of Internet of things arrives, sensing devices are being used in many of our daily

applications. Some desirable but not yet generally available capabilities include collaborative

intelligence among heterogeneous devices, leveraging data analytics with low latency in a

local environment, and adaptively controlling things according to a user’s actual needs. I

present the design of an edge framework which provides streaming capability in edge to

make IoT smarter. I design an architecture of the edge framework that provides useful

high-level primitives so that users can easily implement local data analytics on sensor and

actuator streamings. My design simplifies the development of intelligent IoT devices. The

edge framework has been built in the WuKong ecosystem. Moreover, I study the system

performance for edge applications in a smart home environment. A Rasperberry Pi 2 device

may parallel host more than 30 realtime EdgeObjects. Each the request to these EdgeObject

may generates response within 1.5 seconds. Thus, these edge framework on edge device is fit

for the intelligent applications in smart home and smart office in terms of throughput and

parallelism.

1.2.4 Progression Framework

In the era of edge intelligence enabled IoT, large scale of devices are spread on the edges of

network. This bring the challenge of efficient and effective management of such a widely geo-

graphically distributed system. The progression framework provides an scalable architecture

and system support for building self-management, self-configuration and self-optimization

capabilities for IoT application on the edge. I have built the system incorporated with the

design of the edge framework, and studied the system performance in terms of monitoring,

system reconfiguration and recovery time, and model self-tuning latency. In the design,

the runtime management components, which are called PrClasses, are selected before FBP
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deployment and initialized through reprogramming. Such a software architecture provides

great flexibility in supporting more policy driven runtime management capabilties for diver-

sified system QoS requirement and users’ preferences.
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Figure 1.2: Organization of the Disseration

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 surveys the related work, and Chapter 3

introduces energy aware mapping in IoT. Chapter 4 presents the mapping strategy for ap-

plication deployment in large scale regions, considering of both the reprogramming latency

and run-time cost. Chapter 5 discuss the edge intelligence support that interplay of edge

intelligence and big data on cloud in our edge framework. Chapter 6 shows the progressive

system design and implementation that achieve diversified policy driven runtime manage-

ment capability by using plug and play software architecture, followed by the conclusion

remarks of my dissertation.
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Chapter 2

Related Work

2.1 Service Oriented Architecture

Service oriented architecture (SOA) provides a powerful and flexible middleware paradigm

for integrating distributed services into flow as an application. It promotes the idea of

assembling services into a network of services that are loosely coupled to create fexible and

dynamic service processes and agile applications that span organizations and computing

platforms.

2.1.1 Service Composition and Selection

In service oriented systems, Quality of Service [65] (QoS) refers to various non-functional

characteristics, such as response time, throughput, availability, and reliability. Services with

a simliar and compatible functionality may be offered at different QoS levels. Thus, there

may exist more than one way to build a composite service. QoS aware Service composi-

tion [12, 23, 78, 43, 51] and service selection [102, 99] have been the two most significant
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research problems and well studied in the service computing community. This research has

investegated optimization methods that find the optimal service structure according to the

user’s multiple objected requirement.

More recently, the service composition problem has been specifically considered in applica-

tions, such as multimedia [33] and real-time systems [68, 50]. To tackle the issue of online

rapid service composition, Alrifai [13] proposes the two phase selection method to reduce

computation time while achieving close to optimal results. In the method, a coarse global

optimization can be performed to decompose global QoS constraints into local constraints

before using distributed local selection. To adapt to runtime dynamism of service, He et

al [40] presents an approach to the adaptation of Web service composition based on work

flow patterns. This approach measures the value of changed information (VOC) and the

cost that updated services may potentially introduce in the business process. When the

adaptation is expected to pay off, it will be performed within a certain scope defined by

work flow patterns.

Instead of considering cloud or web service as computation resource in these above research,

we treat sensor and actuator services in the context of the Internet of Things. In our research,

sensor services run in embedded systems and are connected by low bandwith communication

protocol, such Zwave, Xbee, etc. In such a communication resource limited environment, we

mainly consider QoS, such as communication cost and communication latency, on the com-

munication channel between services rather than the QoS of the service itself. In chapter 3,

we study the service selection problem to minimize the communication energy cost in IoT.

In chapter 4, we propose the hierchical service selection strategy to efficiently deploy large

numbers of copies of an IoT application into a large IoT area through the communication

resource constrainted network.
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2.1.2 Service Oriented Middleware

Middleware as a software design concept combines common programming tasks into a reusable

software layer. These tasks are usually related to distributed communication, for example to

bring the familiarity of standalone programming to distributed programming and save appli-

cation developers from the tedious and error-prone task of socket programming. Technologies

that emerged for this purpose include DCE [66], SOAP [19], and REST [30]. Middleware

continued to evolve to offer an abstraction layer over other types of heterogeneity such as

programming language and operating system.

Service Oriented Middleware has leveraged the concept with the advent of the enterprise

service bus (ESB), which has become valuable because it allows easy deployment of services

via decoupling business logic with communication logic. Since service oriented architecture

resolves the problem of scalability of internet based applications, it is used as the foundation

of cloud computing, including paradigms such as Software as a service (SaaS), Infrastructure

as a Service (IaaS) and Platform as a Service(PaaS). The scope of SOA adoption has not

been limited to large IT enterprises, but also small and medium businesses, government

sectors and health care providers, and cyber-physical systems. Aside from large computer

servers, the technology has also been used in small and embedded devices such as sensor

networks and mobile devices [87, 34, 64].

2.2 WuKong Middleware Overview

The WuKong project has built an intelligent middle-ware for IoT systems. The goal of the

WuKong project is to help user design and develop hardware-independent IoT applications,

so that they can be easily configured and dynamically deployed on vendor-independent IoT

platforms.
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Figure 2.1: WuKong System Architecture

The WuKong system is implemented as a distributed computing run-time to accomplish

requests from users and applications. Figure 2.1 shows the system architecture of WuKong

middle-ware. WuKong system consist of the components on the cloud and that in deployment

environment. In the deployment environment, WuKong deploys one WuKong master, several

WuKong gateways, and number of WuKong devices. The functionality of each kind of devices

are described below:

• WuMaster: WuMaster is short for WuKong Master. It is responsible for discovering,

configuring, optimizing, and re-configuring sensors. To achieve this, it communicate

with sensors through a layer of abstraction, hiding hardware and network details of the

underlying sensor platform. During the discovery and identification phase, WuKong

Master uses the profile framework to discover the capabilities of connected sensors,

and configure sensors’ parameters. It is also responsible for managing the user defined

services in the system, including deployment FBP to devices, making in-situ decision
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for software upgrade and service remapping. In practice, the Master will be deployed

on a computational powerful and robust server which is capable of reliably receiving

user request and managing the services.

• WuGateway: WuGateway has two major responsibilities: communication gateway and

backup master. As a communication gateway, it has the capability of discovering de-

vices, forwarding messages, and dispatching message in heterogeneous networks. Com-

munication gateway is named Multiple Protocol Transport Network (MPTN) gateway.

• WuDevice: WuKong devices. shorted as WuDevices, represent the networked physical

devices in the system. One WuDevice can be a combination of sensors, actuators, and

computation services. To be part of the WuKong systems, a WuDevice should register

itself to WuKong master directly or via WuGateway, identify its own capability via its

profiles, and join the system. WuKong VM is the virtual environment to execute the

application logic. It consists of Darjeeling VM, networking module, and native profiles.

Among these components, native profiles are architecture and platform dependent

C WuClass library that interacts with physical sensors and actuators. The services

including sensing, control, and computation carried out on WuDevices are deployed by

master through remote programming.

The WuKong IoT middleware has the following major features:

• Virtualized IoT Devices: Virtualizing IoT devices allows hardware-independent appli-

cation design and simplifies IoT services migration among devices without redefining

applications. Consequently, one can deploy an IoT application on different hardware

platforms without using hardware-and/or network-dependent application codes.

• Flow-Based Programming environment: WuKong provides a graphical flow-based pro-

gramming (FBP) tool. In each FBP, a user can define the data and control flow to
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build an IoT application. All the user has to do is to select the type of services from a

predefined WuKong component library, drag and drop them on the programming can-

vas, and then connect them with directed links. The application flow diagram will then

be used to map logical services onto appropriate physical devices during application

deployment.
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Figure 2.2: Flow Based Program Example

• Heterogeneous and Virtual services: The WuKong middle-ware provides virtual ma-

chines on heterogeneous platforms to simplify IoT application deployment and migra-

tion. Virtual IoT services can also be implemented (in Python) to support Web-based

data services or UI running on servers, computers and smart phones. In addition,

Darjeeling-based Java Virtual Machine is included in the WuKong middle-ware so

that a system can dynamically add byte-code on each device.

• Deployment-time Service Mapping: To support heterogeneous and constant-evolving

hardware platforms, WuKong delays the binding between logical IoT services and

physical IoT devices until deployment. Consequently, during application development,

platform-dependent properties and configurations such as port assignment and pin as-

signment minimized. The platform-dependent properties are collected by the WuKong
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Master when a device registers itself in a WuKong system. The Master will use these

properties to produce a proper configuration and generate required executable code for

each IoT application.

One exmaple of a simple FBP is shown in Figure 2.2. It defines a simple indoor detection

application which turns on light and air condition when system find there is a someone in

the environment. In the FBP, the whole application is divided into 4 components, a PIR

sensor, one sound sensor, a threshold, a light actuator, and an air condition actuator. Once

detecting a signal from a moving object or people, the PIR sensor will send its signal to

AND operator, which also receive signal from sound sensor if the sound value large than a

threshold. If both of these two events happen, the light and air condition actuator will be

triggered.

Given an application defined as FBP, WuKong middle-ware provides a set of mapping policy

to optimize the deployment-time service mapping. In this dissertation, I mainly discuss

the energy efficient mapping policy in chapter 3, which followed by the policy for scale

mapping in chapter 3. The chapter 3 explores the problem of efficient mapping a large

number of copies of a FBP into a large area through reprogramming. The goal of it is to

minimize the deployment latency and meet the run-time execution deadline simultaneously.

After that, I will introduce how to build intelligent application in edge framework, which

is an extended capability in WuKong for streaming processing on edge. In the end, the

progression framework for autonomic management will be present in chapter 6.

2.3 Progressive System

Autonamic computing is comprised of four aspects: self-configuration, self-optimization, self-

healing, and self-protection. Among these four aspects, self-management and self-configuration
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are the essence of autonomic computing systems [53, 69]. We mainly consider the property

of self-configuration and self-optimization of WuKong middle-ware in this disseration.

2.3.1 Self Configuration

In the autonomic computing definition, a self configuration system configure itself according

to high-level goals, that is, by specifying what is desired, not nessesarily how to accomplish

it. This can mean being able to install and set itself up based on the needs of the platform

and the user. In WuKong middleware, we studied the mapping policies [44, 46, 61, 107] that

select the optimal configuration for a predefined goal during application deployment. In this

disseration, I mainly introduce the energy efficient policy and scalable deployment policy.

2.3.1.1 Energy Efficient Deployment

In the autonomic computing research community, power management is well studied in

both data centers and wireless sensors networks(WSN). It has bean estimated that power

equipment, cooling equipment, and electricity together are responsible for 63% of the total

cost of ownership of the physical IT infrastructure of data center. It motivates researchers to

optimize the power that a sevice or server will consume on a given infrastructure of a data

center. The earlier study is mainly about individual server nodes’ energy management[52] of

the processer’s power consumption, and then power models [55] that take memory, network,

and IO consumption into account. In [29], power allocation of server clusters is considered.

In WSN, a common technique [95, 63, 96] to achieve energy efficiency is to put as many

sensors in the sleep mode as possible, and keep only enough sensors in the active mode for

sensing, communicating and processing. Wang et al. [91] propose a cross-layer sleep schedul-

ing design in a service-oriented WSN while meeting the system requirement on the number
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of active service nodes for each service at any time interval. Another approach to prolong the

network lifetime is energy consumption balancing. [73] studies the uneven energy depletion

phenomenon in sink-based wireless sensor networks. [79] considers an energy efficient lay-

out with a good coverage by using a multi-objective particle swarm optimization algorithm.

[94, 24] propose two node deployment schemes, namely, distance-based and density-based,

to balance each sensor node’s energy consumption and to prolong network lifetime. In [45],

we show how to use a quadratic programming model to balance the energy usage. In wireless

sensor network research, earlier projects have focused on minimizing energy consumption on

individual sensor nodes, whereas more recent studies have suggested that the energy effi-

ciency for the whole system is actually more important for extending network lifetime [92].

Our research mainly consider the applications mainly on smart home and office, in which

sleep schedule will increase the delay of communication and degrade of service usability.

Therefore, we mainly consider two types of energy saving: one is changing mode of appli-

cation, the other is minimization communication energy cost. To minimize communication

energy, we focus on collocating services on devices, so that communication between two col-

located serviced may be removed. The saving is small for a single communication link, but

it is considerable in an environment with large scale deployment of IoT applications.

2.3.1.2 Efficient Reconfiguration

In wireless sensor networks, system reconfiguration is achieved by reprogramming devices.

The reprogramming efficiency is always a major concern and has been well studied. Ealier

research [86, 56] has focused on selectively choosing a set of sensors as code propagaters for re-

ducing message collision in multiple hop wireless sensor networks. The sprinkler project [71]

locally computes both a connected dominating set of devices to avoid redundant transmis-

sions and a tranmission schedule to avoid collisions.

In our model, service oriented IoT applictions are composed of the WuClasses and WuObjects
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in embedded VMs, which are implemented to across architecture and platform. Designed

specifically for WSN, UC Berkeley’s Mate [57] was the first prove VM that can be made to run

on sensor nodes. After that, serveral tiny JVM implementations comes out Darjeeling [22],

Nano VM [4], and TakaTuka [15], which by providing only a subset of java, manage to

shrink down to a size small enough to fit on sensor nodes. Wukong profiling framework

is implemented on both NaonVM and Darjeeling, and integrated these two JVMs with

communication support for Z-wave, Zigbee, and IP.

Compared to Ad-hoc networks in wireless sensor networks, the most recent IoT devices are

connected by local gateways. At the same time, edge devices are usually placed near the

source of data for real analytics and knowledge generation in the latest network architecture

of IoT systems. Our work adopts the edge based system architecture and devises a decen-

tralized reprogramming strategy that uses edge devices as reliable service selectors and code

propagators. Thus, devices in different management zones can be parallel reprogrammed by

different edge devices with low latency.

2.3.2 Self Optimization

Self-Optimization means a computing system that optimizes its use of resources. It may

decide to initiate a change to the system proactively in an attempt to improve performance

or quality of service. In the dissertation, we consider the self-optimization in both the

application intelligence layer and the system layer.

2.3.2.1 Self Adaption of Application

Self-adaption is one of most important attributes of intelligence. The Internet of Things

provides us with lots of sensor data. However, the data by themselves do not provide value
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unless turned into actionable, contextualized information. Big data and data visualization

techniques allow us to gain new insights by batching-processing and offline analysis. Data

centric self-adaption is widely used in search engine [20, 38, 39] and recommendation sys-

tems [10, 62], where both page rank score and utility matrix are continuously updated as

more and more web page and user behavior logs are collected. The power that drives the

adaptation is the distributed system for big data processing.

In open source communities, people have built a big data engineering ecosystem [74, 88]

surrounding Map Reduce [26], which is a parallel programming paradigm devised by Google

for processing big data. The life cycle of processing raw data to valuable knowledge in such a

batching data pipeline, such as revert index processing at Google and social network analysis

at Facebook, usually takes hours to days. To meet the real-time requirement of internet

service, such as Uber for real-time ride-sharing service, the latency of data pipeline for real-

time data dashboard and business decision making is reduced by Lambda architecture and

the streaming system. Spark streaming [100, 101] developed the RDD memory data model,

and a set of streaming transformation operator for batching processing with fault tolerant

mechanisms. Another industrial streaming platform Samza [5]on YARN [90] use change-log

stream to store the change log of internal nosql DB instances. Such a hybrid system may

delivery valuable knowledge within minutes.

However, distributed intelligence systems can process far greater volumes of data at the

edge than any centralized system. In fact, distributed systems scale horizontally: twice as

much data can be processed at twice the cost, rather than the exponential cost curve of

scaling a single system. In edge framework, we push the streaming processing capability

to the edge. Within the edge server, we provide a set of feature extraction operators as

a series of deterministic batch computations at small time intervals. At the same time,

the checkpoint stream stored in pub/sub systems is devised to providing resilient support

for the most valuable state in online learned models. By eliminating the need to get a
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response from a centralized management system, autonomous decision-making at the edge

greatly increases responsiveness in time-sensitive applications. Nevertheless, our design may

reduce the amount of data transmitted by individual devices and can lower network traffic,

thereby reducing overall network latency. This is especially beneficial in environments where

bandwidth is expensive or constrained, or where data must travel long distances.

2.3.2.2 Self Optimization of System

One of the earliest self-optimizing projects was initiated by DARPA for a military project

called Situation Awareness System [6](SAS), which is to built adaptive routing enabled

wireless network of mobile devices for soldiers to collect and transmit critical data on the

battlefield. Another project called DASADA [2] was also initialized by DARPA to build mis-

sion critical systems that meet high assurance, dependability and adaptability requirement.

After that, IBM proposed the concept of autonomic computing with self-X attributes in [42].

It defines a framework for how system will evolve to become more self-managing, and the

key role to support autonomic behavior in heterogeneous system environment.

After that QoS management of Service Oriented Architecture (SOA) rises lots of attention.

In the service oriented model, users and providers of services agree on a set of service level

agreements (SLA). Thus self optimization in such systems is mainly formalized as resource

allocation optimization problem [11, 70, 98, 97]. The Llama project [58, 60] resolve the

accountability of service oriented middle-ware through agent selection [106], proactive di-

agnosis [104, 105] and service recovery [59, 103]. After that real-time attribute of Llama

was also well studied [76, 77]. These studies focus on building adaptive management for

one or multiple QoS in middle-ware. Our contribution in progression framework is mainly

on defining a plug and play architecture on edge to support diverse QoS management for

application in IoT middle-ware.
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Figure 2.3: Distributed Progressive System Architecture

In IoT area, adaptive determinism of source providers of context and Ad-hoc Situation in

home environment was studied in [49, 9]. A general QoS optimization framework and multi-

agent based architecture was proposed for self-configuration and self-adaption in [16]. Our

study proposes an optimization framework for mapping policies for WuKong applications on

the edge. More recently, self-aware [72, 35] and self-healing [14] were studied in the context

of smart buildings and cities. While our framework is to build an open scalable architecture

that builds implementation foundation for these type of systems.

As shown in Figure 6.2, we propose a distributed progressive system architecture. In the ar-

chitecture, the system reconfiguration through reprogramming, edge intelligence component,

and local management are delegated by progression servers on edge. In such a progressive

system, data are congested and processed locally. Thus, responsiveness of both systems and

applications are improved by reducing the network traffic to remote master. The implemen-

tation of the distributed progressive system will be introduced in chapter6.
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Chapter 3

Mapping with Energy and Location

Consideration

One issue for perpetually running IoT services on distributed located devices is the energy

cost. Running 50 billion devices and communicating among them will use a lot of energy.

Researchers have proposed various device sleep scheduling algorithms [91] to keep some

devices power off or running at a low-power mode. Another approach is to reduce network

communication traffic to conserve energy. In this research, we investigate how to minimize

the communication among devices. We use a service mapping scheme [44] to co-locate as

many FBP services on the same device as possible to reduce distributed communication, in

order to minimize the total energy cost for an application.

In our previous study [44], we use a simple greedy algorithm that co-locates two neighboring

services with the largest communication cost first. In this paper, we present a comprehensive

study on the service co-location problem for both multi-hop and single-hop networks. For

devices in a multi-hop network, the service co-location problem is formulated as quadratic

programming problem. We show a reduction method that reduces it to an integer program-
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ming problem. For single-hop networks, we present methods to find better solutions by

transforming the service co-location problem to the Maximum Weighted Independent Set

(MWIS) problem [82], which is a well-known data clustering problem. Using the MWIS

model, we can find solutions that reduce about 10% communication energy from our previ-

ous solution in [44]. This paper is an extension of [47] by including theoretical complexity

analysis as well as the study on multi-hop networks.

Figure 3.1: Flow Based Program for A Smart Home

3.1 Energy Model and Constraints

In our study, IoT systems are modeled as distributed systems with a set of sensor/com-

puting/actuator devices that are placed on different locations in the target environment,

connected by RF communication channels. As shown in Figure 4.1, each physical device Di

may host multiple sensors or computing components, called WuObjects, that are used to

provide services. An application is composed by a network of virtual service components,

each belonging to a service class (called WuClasses in WuKong) , denoted as Ci in Figure 4.1.

Every WuObject can be used to fulfill a set of the WuClasses. For example, S11 and S21 on

device D1 can be used for C1 and C2 operations respectively.

In Wukong, an IoT application is defined by a network of virtual service components, each
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Figure 3.2: Distance Aware Mapping Example

of which belongs to a service class, called WuClasses in WuKong. Similar to the class def-

inition in object-oriented programming, a WuClass defines the abstraction of functionality

of sensing and actuating . WuKong supports the flow based programming (FBP) model

so that application developers only need to define the flow of information between compo-

nents. Each FBP is defined by a directed acyclic graph (DAG) G(C,L) where C is a set

of components Ci and L is the set of links Lij = (Ci, Cj) between components Ci and Cj.

Using a GUI editor, users can define service processes using flow-based programs that collect

readings from generic, or virtual sensors in a target environment, process data according to

the decision logic, and generate desirable responses and actions in real time.

The WuKong middle-ware is used to support automatic device discovery, capability iden-

tification, and system configuration for FBP services defined by developers. WuKong is

responsible for mapping FBP components to different physical devices with energy or loca-

tion constraints.

3.1.1 Energy Model

WuKong device communication has been implemented using Z-Wave so that devices are

directly reachable from each other by using one-hop communication. In [41], energy costs
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for transmitting and receiving k bits of data are formulated as follows:

ET (k, d) = Eelec × k + εamp × k × d2 (3.1)

ER(k, d) = Eelec × k (3.2)

where radio electronics parameter Eelec is about 50nJ/bit and transmit amplifier parameter

εamp is about 10pJ/bit/m2. For a link Lij between service components (Ci, Cj) that is

mapped to communication between devices (Dx, Dy), the energy consumption Uij of the link

will be decided by the transmission energy txy on Dx and the receiving energy rxy on Dy.

But if a device hosts both end components of a link, then the communication energy cost

Uij becomes zero. Moreover, if we can map a link to a pair of devices with a small distance

between them, the transmission energy txy will be reduced as well.

In Figure 3.2, we show two possible mapping decisions for FBP {C1, C2, C3}, i.e. {D1, D2}

and {D3, D4}. In our earlier study [44], we use a layout parameter δ for calculating the the

transmitting energy ET (k, d) as below:

ET (k, d) = Eelec × k × (1 + δ) (3.3)

The model only considers the data rate on links when make mapping decisions. Since the

data rate on link L12 is the highest, the algorithm will co-locate C1 and C2 on D1 to save

the communication cost of link L12. The energy cost of the whole FBP is 58 * (50 * 2 + 9)
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= 6322 nJ/sec. In fact, we can find a better mapping option by taking the communication

distance into consideration. Another option is to map component C1 on device D3 and co-

locate components {C2, C3} on device D4. The energy cost of the second option is 60 * (50

* 2+ 0.09) = 6005.4 nJ/sec, which is smaller than the first option.

3.1.2 Policy Defined Constraints

In Wukong, application developers can use the policy framework to specify location and

energy policies on mapping. We now show how we model policy definitions as constraints of

the mapping problem.

3.1.2.1 Device Energy Constraint

Although energy harvesting technologies can be used to prolong IoT system’s lifetime, only

limited energy may be collected and charged within a period of time. Therefore, a user may

specify a device energy consumption constraint ek. Device energy constraints for the set of

component SD can be defined as below.

µ(Dk) ≤ Ek,∀Dk ∈ SD (3.4)

3.1.2.2 Location Constraint

A user can specify a distance constraint Rij between component Ci (e.g. temperature sen-

sor) and landmark Lj (e.g. dining table). WuKong should check the locations of devices

before deciding if a link can be used in the sensor co-location algorithm. During sensor se-
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lection, distance constraints for the set of component SC should be imposed for the distance

constraint Rij as follows.

xik ∗ dist(k, j) ≤ Rij, ∀Ci ∈ SC (3.5)

For example, in Figure 3.2, assume a user defines the device energy constraint on device D2

as E2 = 1500 nJ/second, and the location policy constraint R34 = 25m for the maximum

distance from the device that hosts component C3 to landmark L4. Three constraints need

to be added in the problem formulation.

x21x32 ∗ 58 ∗ 30 + x24x32 ∗ 58 ∗ 20 < 1500 (3.6)

x32 ∗ dist(2, 4) < 25 (3.7)

x34 ∗ dist(4, 4) < 25 (3.8)

The energy constraint E2 implies the first item x21x32 * 58 * 30 can’t be realized. Therefore,

the constraint filters out the mapping decision that deploys component C2 on device D1. In

other words, by utilizing the ILP formulation on the device energy consumption and all the

constraints, Wukong is able to find a mapping solution that have the longest system life-time

as long as there is a feasible solution under these constraints.
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3.2 General Sensor Selection Problem in Multi-Hop

Network

In large IoT application scenarios like smart factory or smart building, an FBP will be

mapped to devices whose communication to other devices may go through multiple hops.

In this section, we present the energy model for multi-hop networks. We show how to

formulate the problem as a quadratic programming problem, and how to solve it by integer

programming.

3.2.1 Quadratic Programming Formulation

Given an FBP and an IoT system, we denote the data volume of an FBP link Lij to be tij

bits, the routing path between two devices Dn and Dm to be Anm in the static routing table.

During the mapping stage, the FBP link Lij is mapped to a device pair (Dn, Dm), which

are the start and end devices of the physical routing path Anm. We define H(Lij) to be the

set of paths between all devices Dn and Dm where Dn can host Ci and Dm can host Cj. Let

xik= 1 denote Ci has selected to use service Sik on device Dk. Then, we can formulate the

energy cost of µ(Lij) of link Lij as:

µ(Lij) = µT (Lij) + µR(Lij) (3.9)

µT (Lij) =
∑

Anm∈H(Lij)

xin ∗ xjm ∗ ET (tij, Dn, Dm) (3.10)
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µR(Lij) =
∑

Anm∈H(Lij)

xin ∗ xjm ∗ ER(tij, Dn, Dm) (3.11)

i.e. the energy cost of Lij is the cost to transmit and receive tij bits between devices Dn and

Dm.

The energy cost µ(Ci) of a component Ci can be defined by:

µ(Ci) =
∑
p

µT (Lip) +
∑
q

µR(Lqi) (3.12)

i.e. the energy cost of Ci is the sum of transmitting energy cost µT (Lip) of all its remote

out-links Lip in the FBP and receiving energy cost µR(Lqi) of all its remote in-links Lqi in

the FBP. The total energy consumption on device Dk can be defined by:

µ(Dk) =
∑
i

xik ∗ µ(Ci) (3.13)

i.e. the summation parameter i represents the ith Wuclass on the device Dk.

The optimization objective function is to minimize the overall energy consumption among

all nodes:

min (
∑
k

µ(Dk)) (3.14)
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subject to:

∑
k

xik = 1,∀1 ≤ i ≤ N, 1 ≤ k ≤M (3.15)

where N is the number of components in an FBP, and M is the number of devices in an IoT

system.

To show the problem is a quadratic programming problem, let us define the energy cost of

component Ci on device Dk as µk(Ci) = xik ∗ µ(Ci). From Eq. 3.12, we have:

µk(Ci) = xik ∗ (
∑
p

µT (Lip) +
∑
q

µR(Lqi)) (3.16)

Let us first expand the transmission unit using Eq. 3.10:

µkT (Ci) = xik ∗
∑
p

∑
Anm∈H(Lip)

xinxpmET (tip, Dn, Dm) (3.17)

Since the constraints in Eq. 3.15 ensure that two devices Dk and Dn cannot be selected for

deploying a particular component Ci at the same time, we can see that:

xik ∗ xin = 0, k 6= n (3.18)
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Therefore, we can further simplify Eq. 3.17 as:

µkT (Ci) =
∑
p

x2ik
∑

Akm∈H(Lip)

xpmET (tip, Dk, Dm) (3.19)

=
∑
p

∑
Akm∈H(Lip)

xikxpmET (tip, Dk, Dm) (3.20)

In Eq. 3.19, since xik is a 0-1 integer variable, xik and x2ik have the same value. Similarly,

the receiving unit of Eq. 3.16 is:

µkR(Ci) =
∑
q

∑
Ank∈H(Lqi)

xqnxikER(tqi, Dn, Dk) (3.21)

Given the data volume of links and distances between devices are fixed in a problem instance,

we can also calculate ET (tip, Dk, Dm) and ER(tqi, Dn, Dk) as constants. In this way, we can

define the energy consumption equation for each device. Thus, the final optimization problem

is indeed a quadratic programming problem.

3.2.2 Integer Programming Reduction

Optimizing the quadratic programming problem is an NP-hard problem for which no polyno-

mial algorithm is known. However, we can transform the problem to integer linear program-

ming by rewriting the problem using new variable yikpm and constraints to take the value

xik*xpm for every combination of xik and xpm, and yqnik for value xqn*xik also. The equiva-

lence of two formulations has been proved in [18]. We thus obtain the following equivalent
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0-1 linear programming definition:

min (
∑
k

∑
i

(µkT (Ci) + µkR(Ci))) (3.22)

In Eq. 3.22, the transmission unit µkT (Ci) and receiving unit µkR(Ci) are thus transformed as

follows:

µkT (Ci) =
∑
p

∑
Akm∈H(Lip)

yikpmET (tip, Dk, Dm) (3.23)

µkR(Ci) =
∑
q

∑
Ank∈H(Lqi)

yqnikER(tqi, Dn, Dk) (3.24)

In addition to the formal constraints defined, we need constraints for every yikpm and yqnik:

yikpm ≥ 0 (3.25)

xik − yikpm ≥ 0 (3.26)

xpm − yikpm ≥ 0 (3.27)
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1− xik − xpm + yikpm ≥ 0 (3.28)

yqnik ≥ 0 (3.29)

xqn − yqnik ≥ 0 (3.30)

xik − yqnik ≥ 0 (3.31)

1− xqn − xik + yqnik ≥ 0 (3.32)

These eight equations ensure the value of yikpm to be exactly the same as xik * xpm, and

value of yqnik to be the same same as xqn * xik in all cases. Therefore we can replace xik *

xpm with yikpm, and replace xqn * xik with yqnik. After we replace each xik * xpm and xqn *

xik by its corresponding yikpm and yqnik, the objective function is guaranteed to be optimal

under the same setting of xik in the original objective function.
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3.3 Communication Minimization Problem for Single-

Hop Network

In smaller scale IoT systems, devices are installed close to each other and communicate with

each other in a single hop network. In this section, we study the energy parameters for such

systems. We present the problem definition and the analysis on the computation complexity

of the problem.

3.3.1 Problem Definition

To study the problem complexity, we first formulate the mapping problem in a general

problem PA. We then study a special class PK of PA.

Given an FBP of n components to be edployed in a physical system of m sensing devices,

the data communication of link Lij between components Ci and Cj is known to be tij bits.

The problem PA is to find a mapping decision that maps each component in FBP to run

on one device, while minimizing the total communication energy cost on these devices. In

home environments, sensor devices may have a relatively uniform layout so that the distances

between them are similar and do not make much difference on energy consumption. If so,

we can simplify the second term of ET (t, d) in Eq. 3.1 to be independent of the distance

between devices, and instead use a layout parameter, δ, i.e.

ET (t, δ) = Eelec × t× (1 + δ) (3.33)

With this approximated transmission energy model, we can define the transmission energy
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and receiving engery cost of link Lij as below:

µT (Lij) =
∑

Anm∈H(Lij)

xin ∗ xjm ∗ ET (tij, δ) (3.34)

µR(Lij) =
∑

Anm∈H(Lij)

xin ∗ xjm ∗ ER(tij) (3.35)

Then, we can define the energy cost µ(Ci) of a component Ci by:

µ(Ci) =
∑
p

µT (Lip) +
∑
q

µR(Lqi) (3.36)

i.e. the energy cost of Ci is the sum of transmitting cost µT (Lip) of all its out-links Lip in

FBP and receiving cost µR(Lqi) of all its in-links Lqi in FBP. Again we use variable xik = 1

to denote Ci has selected to run on device Dk. Then, we can find the energy consumption

on a device as:

µ(Dk) =
∑
i

xik ∗ µ(Ci) (3.37)

The objective function to minimize the total energy consumption on all devices is defined

by:

min (
∑
k

µ(Dk)) (3.38)
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Figure 3.3: Co-location Mapping Example

subject to:

∑
k

xik = 1,∀1 ≤ i ≤ N, 1 ≤ k ≤M (3.39)

3.3.2 Co-Location Graph

We define problem PK to be the K-sized co-location selection problem, if the total number

of components that can be co-located on a device is no more than K in PA. The parameter

K is determined by how many components exist on each device.

If we use the exhaustive search algorithm to solve the PK problem, the time complexity

is O(mK ∗ Kn), where n is the number of components in an FBP, m is the number of

devices.However, some of them cannot be selected at the same time. For example, in Fig. 3.3,

service component C4 has 4 co-location options: {C2, C4} on device D2, {C3, C4} on D2,

{C4, C5} on device D3, and {C2, C3, C4} together on D2. These options are mutual exclusive

since we can select only one device to deploy C4.

We define a co-location graph as a vertex-weighted undirected graph G(V,E,W ), where

V is a set of vertices that give all co-location options, E is a set of edges that represents

the mutual exclusive relationship among co-location options, and W is a set of weighted

labels that represent the gain when selecting a co-location option. Each vertex vi ∈ V

represents a valid co-location option and contains a set of merge-able links. s(vi) is the set
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of WuClasses that may be co-located, and the weight w(vi) is the energy saving. The edge

eij ∈ G represents a conflict between vi and vj. For example, in Fig. 3.3, co-location option

v4 ={C4, C5} and v5 ={C5, C6} are in conflict because they both have service C5 which can

reside on only one device, i.e. D3 or D4. The co-location node v7 is for the option of placing

C2, C3, C4 together. In fact, a co-location graph may include vertices with many components

co-located.

3.3.3 Complexity Analysis

We study the complexity of PK by a reduction from the Maximum Weighted Independent Set

(MWIS) problem to the co-location graph. MWIS is a well-studied graph problem [36, 82].

Let G = (V,E,W ) be a vertex-weighted undirected graph without loops and multiple edges,

where V is the set of vertices, E is the set of edges, and W is the vertex weighting function.

For any nonempty set S ⊆ V, W(S) is defined by
∑
u∈V

W (u). A subset I ⊆ V is an independent

subset of G if for any two vertices u,v ∈ I, (u, v) /∈ E. An independent subset I of G is the

maximum if there is no other independent subset I’ of G such that W (I) < W (I ′). MWIS

is to find the independent subset from G that has the maximum total weight among all

independent subsets.

If we find a MWIS solution for a co-location graph, the co-locations selected in those vertices

will have no conflict with each other since they are not connected in the co-location graph.

Moreover, the total weight is the maximum so that the energy saving is the largest.

Hastad [37] has shown that MWIS for a general graph is NP-hard in the strong sense. It is

hard to approximate within n1−ε, for any ε > 0. We now show the problem PK is NP-hard

even for K=2 by reducing it from the MWIS problem.

Theorem 1. Problem PK is NP-hard in the strong sense for K = 2.
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Proof. Given an instance of MWIS, we assume each vertex vi contains two numbers p, q that

represent component Cp and Cq, and no vertice has the same two numbers. Then, we can

construct an instance of problem PK with K = 2 as follows. We create a node v
′
for each pair

of p and q, an edge e
′
pq for node vi, and put the weight w(vi) on e

′
pq as the communication cost

between v
′
p and v

′
q. After that, we create a device Dpq with two components Cp and Cq for

edge e
′
pq. Then, we use the constructed graph G

′
(V

′
, E

′
,W ) as an FBP of |V ′| components

and a system with |E ′ | devices. Essentially, if we don’t consider the weight, G(V,E) is the

line graph of G
′
(V

′
, E

′
). Since every device only has 2 components, the problem constructed

is a 2-colocatable problem.

Next, we show the two problem’s optimal solutions are equivalent. Suppose that there is

a maximum weighted independent set for the MWIS problem. We can use it to find the

optimal co-location solution with K = 2. Using the optimal set for MWIS, if vi is chosen, we

co-locate two components Cp and Cq and place them on device Dpq. This decision saves the

most communication energy consumption, implying the optimal solution for the objective

function Eq. 3.38.

Similarly, if we have the optimal solution for a 2-colocatable problem, for the corresponding

MWIS problem we can choose node v
′

of number p, q, if Cp and Cq of the FBP are co-

located on device Dpq in the optimal solution for the 2-colocatable problem. The optimality

of the solution for the 2-colocatable problem also ensures the optimality of the solution in

the MWIS problem.

For PK where k ≥ 2, it can be transformed to an MWIS problem where some node contains

more than 2 numbers. The above reasoning between an MWIS instance and the optimal

solution for a K-colocatable problem still applies. Therefore PK is NP-Hard for any K.

For each instance of PA, we can find its upper bound on K by the maximum number of

components in FBP that can be co-located together. In this way, we can conclude that the
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PA problem is NP-Hard.

3.4 Co-Location Graph and Selection

We are interested in finding efficient algorithms to solve the co-location problem. From the

previous section, we can see that every mapping problem instance has a corresponding graph

from which a MWIS could be used to solve the original co-location problem.

In this section, we first show how to construct a co-location graph Gc = (Vc, Ec,Wc) from

an FBP to be deployed in a system of IoT devices to depict all co-location options. In Gc,

each vc ∈ Vc represents a co-location decision for a set of service components. An edge

(uc, vc) ∈ Ec represents a conflict between two neighboring co-location decisions.

After the co-location graph construction, we can solve the selection problem by using the

MWIS algorithm on the co-location graph. We show three different greedy strategies of

MWIS, define a greedy selection framework that could adopt these MWIS algorithms, and

then show how we select devices for the remaining service components that have not been

mapped yet.

3.4.1 Layer Based Graph Construction

We propose a general construction algorithm to include all co-locations in Algorithm 3.1.

Since not all components connected by links in FBP are co-locatable, we first remove those

non-candidate links and keep the list of co-locatable links in L. We also need the devices in

the system as input M . M will be used by the algorithm to determine if there is a feasible

co-location option by finding a device that can host those service components.
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Algorithm 3.1 Co-Location Graph Construction

Input: A list of co-locatable links L as a connected graph and a system M

Output: Co-location graph G(V,E,W )

1: Xk = ∅, 1 ≤ k ≤ |FBP |.

2: Set layer k = 1

3: Generate a vertex for each Lij in L and add it to G and X1.

4: while Xk 6= ∅ do

5: for all co-location vertex vi ∈ Xk do

6: for all vi’s generator vj ∈ g(vi) do

7: add edge eik = (vi, vk) to G, for every vk that is vj’s neighbor

8: end for

9: end for

10: for all pairs of co-location vertices (vi, vj) in Xk do

11: if s(vi) ∩ s(vj) 6= ∅ then

12: add distinct edge eij = (vi, vj) to G

13: if s(vi) ∪ s(vj) can run on the same device in M then

14: create new vertex vk from vi and vj

15: if vk exists in G then

16: retrieve existing vertex vk from G

17: else

18: add vk to set X|s(vk)|−1 and G

19: end if

20: add vi and vj to generator set g(vk)

21: end if

22: end if

23: end for

24: find the smallest i > k where Xi 6= ∅

25: if no such i exists, stop, else set k = i

26: end while

39



The algorithm checks the feasibility to deploy all service components of the union of s(vi)

and s(vj) on a single IoT device. If it’s feasible to select two co-location vertices at the same

time, it creates vertex vk as a new option to select all co-location options in its generator set

at the same time. vi and vj are added to the generator set of vk in order to keep track of

how vk is being created. The newly created vertex vk is pushed to G and its corresponding

layer according to its size of service components. Before the nested loop starts, for each

vertex in each layer, it will create edges between it and all neighboring vertices of each

generator vertex. In this way, the algorithm builds up a complex relationship of vertices

between different layers. Finally, the algorithm finishes the transformation when all layers

are settled, leaving the graph G as the co-location graph.

3.4.2 Selection Strategies

In our earlier study [44], we use a simple algorithm that treats every problem as a 2 co-

locatable problem, which means every time the algorithm only selects an edge to co-locate.

In this work, we take all possible co-location combinations into consideration, and use the

solution strategies for the MWIS problem in our selection framework. In [82], researchers

have studied three type of strategies and given their corresponding lower bounds. We briefly

review them below.

1. GWMAX: the strategy selects each vi that minimizes the functionW (vi)/dGi
(vi)(dGi

(vi)+

1). Once a node vi is selected, it and its corresponding edges will be eliminated. When

there is no edge left in G, the remaining nodes will form a maximum independent set.

2. GWMIN: this strategy selects each vi that maximizes the function W (vi)/(dGi
(vi)+1).

A node vi will be selected in every iteration, and it will then be eliminated with its

neighbors. The selected nodes during this process will return an independent set.
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3. GWMIN2 is an extension of GWMIN by using different vertex-selecting rule. It selects

each vi that maximizes the function W (vi)/
∑

w∈N+
Gi

(vi)
W (w).

In all strategies described above, vi represents the ith node chosen from G. Gi is the G after

i− 1 round of node selection and update. The function dGi
(vi) determine the degree of vi in

Gi. In GWMIN2, NGi
(vi) denotes the neighborhood of vi, and N+

Gi
(vi), vi ∪NGi

(vi).

3.4.3 Co-Location Selection Framework

We now present the general selection algorithms. It takes an FBP as input, splits the FBP

into several subgraphs, in which every edge is co-locatable, and then builds corresponding

co-location graphs. After that, for each graph, it uses the co-location selection strategy to

select the maximum weighted independent co-location node set. Then, it selects a device to

host all WuClasses in every co-location node in the maximum weighted independent set.

Since the graph construction algorithm has checked the feasibility of creating a vertex v for a

co-location graph and the order of selecting co-location nodes to deploy will not impact the

total energy saving, we just randomly pick a node to deploy at each round. (However, the

order of selecting nodes would affect the maximum energy consumption among all devices;

the problem will be investigated in our future work.) On Line 6 of Alg. 3.2, we could

use any selection strategy that is good for a particular FBP structure or system setting.

The flexibility provided by the framework allows a system to dynamically replace selection

strategy at run time, which is desirable during the reconfiguration of an intelligent IoT

system.
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Algorithm 3.2 Selection Framework

Input: FBP G(C,L) and device system M

Output: A pairing list P of Ci and its deployed device Dk

1: P = ∅

2: split G into a list of sub-graphs H

3: add all devices D of S to queue Qd in descending order of current energy cost

4: generate co-location graph G’ for every sub-graphs in H and add them to list L(G)

5: for all co-location graph Gi ∈ L(G) do

6: select MWIS Ii from Gi with a specific strategy

7: for all vertex v ∈ Ii do

8: if D = {Dk|Dk can host every Ci ∈ s(v)} 6= ∅ then

9: select Dk ∈ D that has the smallest energy

10: for all Cj ∈ s(v) do

11: add pair (Cj, Dk) to P

12: end for

13: update the current energy cost on Dk

14: end if

15: end for

16: end for

17: for all component Cj without a deployment target do

18: if D = {Dk|Dk can host Cj} then

19: select Dk ∈ D that has the smallest energy

20: add pair (Cj, Dk) to P

21: end if

22: end for
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Figure 3.4 shows two mapping decisions P1 and P2. P1 is selected by the the MWL algo-

rithm [44]. It merges links L67, L45 and L12 in order, and totally saves 30 + 20 + 10 = 60 units

of energy cost. P2 is selected by GWMIN2. To reproduce the selection scenarios of GWMIN2,

we use the function fk(vi) to represent the current value of W (vi)/
∑

w∈N+
Gi

(vi)
W (w) for node

vi in the updated co-location graph after selecting k - 1 nodes. For the co-location graph in

Figure 3.4, it is easy to see that v6 has maximum value f1(v6) = 30/ (30 + 20) = 0.6. After

that, the node v5 is removed due to the independence constraints. Then, the function value

of v4 is updated. After comparing the value all five nodes f2(v1) = 10/(10 + 15 + 33) =

0.172, f2(v2) = 15/(10 + 15 + 33 + 18 + 20) = 0.156, f2(v3) = 18/(15 + 18 + 33 + 20) =

0.209, f2(v3) = 20/(20 + 33 + 15 + 18) = 0.232, and f2(v7) = 33/(33 + 10 + 15 + 18 +

20) = 0.343, GWMIN2 strategy will find the optimal co-location decision which saves 30 +

33 = 63 units of energy cost.
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Figure 3.4: Co-location Solution Comparison

3.4.4 Mapping Remaining Services

Since not all components in a FBP may be selected for co-location, we need to select a

device for those components that have not been mapped in the co-location decisions. On
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lines 17 - 22, the algorithm selects a device with the lowest current energy load for each

single component Ci by using the same selection strategy for co-location nodes. In this way,

we could achieve a better energy balance on all devices.

For the example of Fig. 3.3, the mapping decision is to co-locate (C2, C3, C4) on devices D2

and (C6, C7) on device D5. After that, we still need to select devices for mapping components

C1 and C5. In this case, since D1 and D4 don’t have any load, we simply select them for C1

and C5 respectively.

3.5 Simulation Study

We have implemented the sensor selection framework in Algorithm 3.2, and used selection

strategies including MWL, GWMAX, GWMIN and GWMIN2. As an extended study of our

previous work [47], we compare six mapping algorithms shown in Figure 3.5. The maximum

weight scoring function algorithm (MAXIMUM) is to select the maximum weighted link

from the co-location graph, and the one layer maximum weight scoring (ONE LAYER) is to

select the maximum weighted link from the one layer co-location graph that only co-locates

two neighboring nodes. In this section, we show how we set up the simulation environment,

the consideration for determining system parameters and performance metrics, and present

the performance comparison for all six algorithms.

Figure 3.5: Mapping Algorithms
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3.5.1 Simulation Setup

We generate a simulation system with n components and m devices as follows. On each

device Dj, we randomly select K different WuObjects as available services on it. K is the

upper bound of co-locating size and is viewed as memory constraint for each device. We then

use JGraphT to generate different types of flow graphs, including 1000 instances of linear,

star or random structures as FBPs with the size half of the total WuClasses in the system.

Linear FBPs are common for data transmission applications. Star FBPs are often used for

system and environment monitoring application. We also use random FBPs as the topology

for general intelligent applications.

In a WuKong system supporting Z-wave communication, a normal information exchange

message is about 10 bytes. Including the header of Z-wave protocol, the total size of Z-wave

packet is about 40 bytes. For system management messages, the payload is bigger but can’t

exceed the maximum size of Z-wave payload which is 64 bytes. Therefore, the size of a

WuKong message is about 40 - 100 bytes in normal cases. Before deployment, we assume

application developers are responsible for finding the data rate of each component. In the

simulation, we assume data rate of each component is one message per second. Based on

these considerations, we use uniform distribution d1 = U(40, 100) to generate the data volume

of each link Lij in an FBP. Even though there are only about 6 - 7 types of messages with

different sizes, the normal distribution would randomize the filter rate for components with

a threshold. After that, we calculate the corresponding transmitting cost tij and receiving

cost rij using Eq. 3.1 and Eq. 3.2.

Wukong ecosystem aims to provide flexible application deployment and runtime management

for large scale IoTs which involves hundreds or even thousands of devices connected. In this

paper, the data for 50 components in FBP and systems scales from 100 to 1000 physical

devices is reported. On each device, there are a set of K WuClasses with K from 4 to 6.
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(a) T Ratio Comparison for random FBP (n,m) =
(50, 100)

(b) T Ratio Comparison for random FBP K = 4

Figure 3.6: T-Ratios for different selection algorithms.

3.5.2 Performance Metrics

In this paper, we compare the total saved energy cost ratio (T-Ratio) and the largest energy

cost ratio (L-Ratio) defined as follows:

1. Total Saved Energy Cost Ratio (T-Ratio): is the percentage of saved energy cost

of the whole FBP with service co-location compared to the FBP original cost without

any co-location.

2. Largest Energy Cost Ratio (L-Ratio): is the percentage of energy cost in the device

with the highest energy cost by applying different algorithms.

Using T-ratios and L-ratios, the higher a ratio value is, the more energy is saved. The energy

saving reduces as the probability of service co-location reduces.

3.5.3 Performance Comparison

Figure 3.6 shows T-ratios in ramdom structure of FBP. It can be seen that the three methods

GWMIN, GWMIN2 and GWMAX perform better than the MWL algorithm and its variants

MAXIMUM and ONE LAYER. When K is small, the difference of performance between the
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three methods and MWL algorithm is not so obvious. As K grows to 6, we find that the

overall energy saving performance is growing since the likelihood of co-locating multiple

WuClasses on a device increases. Moreover, as K grows, the difference of performance

between the three methods and MWL algorithms becomes more obvious. The reason is that

the MWL greedy algorithm considers the selection as a 2-co-locating problem. It is natural

to expect that energy saving depends on the likelihood of service co-location in a system.

If an application is a small FBP, or the system has a large number of unique sensors, the

chance for sensor co-location, and thus energy saving, is small.
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Figure 3.7: Performance of different K sizes for linear FBP’s.

If we compare the result of using the same selection strategy of maximum weight link on two

different co-location graphs (fully built co-location graph and one layer co-location graph),

we may discover that a fully built co-location graph helps us find better solutions. It is

because such a fully built graph includes co-location decision that co-locates multiple services.

From Figure 3.6, we can see that GWMIN, GWMIN2 and GWMAX algorithms always

surpass MAXIMUM, MWL, and ONE LAYER. Therefore, we focus our performance study

on GWMIN, GWMIN2, GWMAX and MWL in Figure 3.7, which shows the T-ratio and

L-ratios on linear structure of FBP’s. A similar performance pattern for T-ratio can be seen.
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(c) GMAX algorithm
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Figure 3.8: T-Ratios for different FBP structures.

We have also studied how the FBP structure affects T-Ratios. We compare linear, star

and random FBP structures in Figure 3.8. We see that the three new algorithms and MWL

greedy algorithm perform worse in the star structure FBPs when the number of device grows

from 100 to 500. The intuition for this fact is that there can be only one choice for the central

component in star FBP to co-locate with. That means there only exists one co-location in

star shape FBP. Moreover, MWL has a relatively bad performance in all shapes of FBP

structure for all numbers of devices. This is because the MWL algorithm can only consider

a single edge of FBP in each round.
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(n, m) GWMIN GWMIN2 GWMAX MWL

(50, 100) 3.182ms 3.223ms 3.085ms 0.07ms

(50, 200) 9.126ms 9.172ms 8.852ms 0.104ms

(50, 300) 17.454ms 18.554ms 15.855ms 0.154ms

(50, 400) 32.254ms 27.347ms 22.643ms 0.136ms

(50, 500) 49.856ms 34.809ms 31.794ms 0.185ms

(50, 1000) 192.554ms 127.458ms 123.264ms 0.346ms

Table 3.1: Scalability with K = 4 and different (n, m)

K GWMIN GWMIN2 GWMAX MWL

4 21.73ms 18.525ms 13.923ms 0.303ms

5 31.631ms 24.571ms 18.776ms 0.213ms

6 44.669ms 32.212ms 28.955ms 0.196ms

Table 3.2: Scalability with (n, m) = (50, 100) and different K

Beside the metrics for energy saving, we have also studied the execution times for different

algorithms. It is an important factor if we want to deploy an application with many services.

In Table 3.1, we show the performance of algorithms in six size settings. Each row of (n,m)

shows the system with n components and m devices. For each case, we show the average

execution time for each algorithm. We can see that the execution time grows linearly for

the first three cases. But it grows to more than 192 milliseconds in the last case, which is

because the combination of selections grows exponentially. In Table 3.2, we study how K

affects the execution time. The greedy algorithms take longer to consider more co-location

decisions as K increases while the MWL uses about the same time.
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Protocol Input Power (dbm) Output Power (dbm)

Zwave -22.0dBm to -2.0dBm 10µW to 612µW

XBee 0dBm 1mW

Xbee Pro 18dBm 63mW

Low Power Wifi 10dBM to 0dBm 501µW to 10mW

Table 3.3: RF Energy Consumption per Bit

In summary, from the performance of energy saving and reasonably short computation time,

we believe the co-location consideration is good for many IoT systems that need to support

run-time application mapping, deployment and reconfiguration in a smart IoT environment.

3.6 Summary of Energy Mapping

This section presents an energy sentient methodology for selecting and deploying flow-based

IoT applications on sensor devices. Since energy is one of the most important resources

for running IoT devices, we propose a mapping strategy that tries to minimize the total

energy cost for communication by co-locating neighboring services on the same node. We

have modeled the co-location problem on multi-hop networks as a quadratic programming

problem, so that it can be solved by integer programming. For single-hop networks, we

identify co-locatable components of an FBP to construct a co-location graph, and develop

the selection framework using efficient MWIS algorithms to decide service co-locations. Our

simulation study shows that the MWIS algorithms can save 10% more communication energy

than our previous solution.
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Chapter 4

Mapping in Scalable Reconfiguration

One of the ways to proactively reconfigure IoT systems is through reprogramming. Re-

searchers have proposed various algorithms [93, 86] to improve the efficiency of reprogram-

ming in the Wireless Sensor Network (WSN). In IoT systems, the speed of reprogramming

to a device is limited by low bandwidth of last-hop IoT networks, such as Zwave and Xbee,

in which gateways are used as a relay to sequentially reprogram each target device. Carefully

choosing the set of devices to reprogram may relieve the overhead of gateways, thus reducing

the reprogramming latency.

Consider an earth quack protection application that uses gyroscope to detect emergent sit-

uations. Four components are used in the application: component C1 checks for shaking

by recording the deviation of three axes in gyroscope, component C2 accumulates sufficient

evidence within a period of time, component C3 is a threshold, and C4 responses to signals

from C3 by triggering emergent controller. In Figure 4.1, region A and B need to be repro-

grammed. Region A contains devices {D1, D2, D4} connected by gateways 1 and 2. Region B

contains devices {D3, D5, D6} connected by gateways 2 and 3. If we map the application to

(S11, S22, S35, S46) in region A and (S13, S24, S37, S48) in region B, each region has a balanced
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mapping, in which only two devices need to be reprogrammed under each gateway from a

local view. But in a global view, gateway 2 actually need to sequentially reprogram all four

devices. After observation, we may easily find a global optimal solution, which is to map

the application to (S11, S22, S32, S46) in region A and (S17, S24, S37, S48) in region B. In this

case, we only need to reprogram two devices under each gateway.

 

 

 

 

 

 

 

 

 

 

Gateway1 Gateway2 Gateway3 

S11 S32 S22 S13 S24  S35 S46 S37  S17  S48 

Region A Region B 

D1 D2 D3 D6 D7 D8 D4 D5 

C1 C2 C3 C4 

Figure 4.1: Reprogramming Latency Aware Mapping Example

We define the problem of minimizing the maximum number of reprogram devices under each

gateway as problem P1, and model it as an Integer Linear Programming (ILP) problem.

Given a building with 200 rooms (regions), assume there are a total of 10 gateways and 10

devices per region, our algorithm only needs to reprogram 60 devices compared to 80 and

100 by two other greedy algorithms.

In the mean time, each deployed application should meet its end to end latency constraint to

provide responsive and secure service for people. In this study, we further model the run time

deadline constrained low latency reprogramming problem P2 as an Integer Quadratically

Constrained Programming (IQCP) problem. However, there is no such thing as a free

lunch, for the computation time of mapping should also be included in the reprogramming
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latency. For a big region (problem space), resolving the IQCP problem takes even more

time than the latency of propagating code to each device. Thus, we devise two heuristic

algorithms to reduce the time complexity of mapping algorithm through linear relaxation

and service relocation. To the best of our knowledge, this is the first work to design a remote

programming method considering both the service availability and the need of guarantee

run-time latency.
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Figure 4.2: System Model

4.1 Deployment Cost Model

In this section, we first introduce application model, network architecture, then reprogram-

ming latency formulation.

4.1.1 Network Architecture

In our study, IoT systems in Smart Cities are modeled as distributed systems consisting of

a set of sensor/computing/actuator devices that are placed on different locations in target

regions, connected by RF communication channels. The whole system is composed of servers

and devices scattered in three sub-layers:
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• Cloud Layer. System Master and its supporting services are hosted in the Cloud

Layer. Master contains global information of Smart Cities. For the organizational in-

teroperability and management consideration, all of the organizations are organized as

a hierarchical region tree. As shown in Figure 4.2, UC Irvine contains two sub regions,

which are Electrical Engineering and Computer Science (EECS) department and Infor-

mation and Computer Science (ICS) department. In the leaf layer of the region tree,

there are Computer Engineering EE, Electrical Engineering (EE), and Statistic major

as regions. Each leaf region contains a set of devices, and each upper layer region has

the management authority on devices of its sub regions. Once an emergent event is

identified, the master will issue a request of mapping and reprogramming to target

regions.

• Edge Layer. Edge servers are arranged in this layer to enable data analytic and knowl-

edge generation to occur near physical devices. During remote programming, edge

servers are responsible for parallel performing mapping algorithms for each target re-

gion. After mapping, a edge server will start remote programming to each selected

device through talking with gateways.

• Multiple Protocol Transmission Network Layer. Multiple Protocol Transmission Net-

work (MPTN) Layer contains physical devices and gateways. In MPTN, devices paired

with different protocol are inter-connected by gateways. In Figure 4.2, devices that

belong to a particular region are covered by more than one gateway. For example,

devices in region CPE are connected with gateways 1 and 2. Thus, edge server A need

to connect with both gateways 1 and 2 for remote programming.

An IoT system has a set of physical devices Dk. On each device, there may be several services

available for sensing or computing. Service Sik belongs to WuClass Yi and is hosted on device

Dk. As shown in Figure 4.1, a physical device Dk may host multiple sensors or computing

services, called WuObjects, that can be used for fulfilling some WuClasses. For example, S22
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and S32 on device D2 can be used for C2 and C3 components, respectively. WuClass Yi can

be classified into two categories: virtual and physical. On one hand, a component Ci belongs

a physical WuClass Ci can only be mapped to devices Dk that physically deploy service Sik.

On the other hand, a virtual component can be mapped to any reachable device of a region.

The proposed work in this chapter is to derive the sensor mapping strategy in the edge given

the information of services on devices of a set of regions. The sensor mapping strategy aims

to minimize the reprogramming latency, while satisfying the service requirement of emergent

application in each target region.

4.1.2 Reprogramming Latency Formulation

As shown in Figure 4.2, the latency of reprogramming a target region Rm contains three

parts: 1) Time Tm1 of sending mapping request from master to edge server; 2) Time Tm2

of sensor mapping and code generation in an edge server; 3) Tm3 is the time that an edge

server reprograms each selected device through gateways.

If we assume Tm1 is ignoble, the reprogramming latency from master to region Rm can be

expressed as:

T (Rm) = Tm2 + Tm3 (4.1)

To have an exact estimation of reprogramming latency, we profile Tm2, Tm3 in Zwave network

of WuKong system. In the profiling setting, all devices are connected through Zwave gate-

ways. These devices are arduino compatible and run with Darjeeling java virtual machine.

Reprogramming is achieved by writing a Darjeeling Archive File (DJA) as an application into
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the EEPROM of each of device, then every device reboots and reloads the new application

into Darjeeling.

Given an application (FBP) as a mapping request, the DJA file contains the meta-data of

links of FBP, initial value of properties, mapping result for each component, and binary code

of each type of virtual Wuclass. No matter the mapping result, the code generation time

Tgen(Rm) and the size of DJA file that need to be sent to device are fixed. Therefore, the

part of latency that is optimizable only contains two parts: the mapping time Tmap(Rm) and

Tm3.

Assume the latency of sending one package from a gateway Dk to a device is t and the size

of package is p, the time of reprogramming a device Dk with a DJA file is:

T (Dk) = Size(DJA)/p ∗ t (4.2)

In WuKong system, the MPTN package size p is 36 bytes and the zwave transmission latency

is 110ms. In Figure 4.1, we can see that the linear FBP of (C1, C2, C3, C4) need be mapped

and reprogrammed to both region A and region B. Region A contains devices D1, D2, D4.

If a mapping solution maps the FBP onto a service combination of (S11, S22, S34, S44) in

region A, then the DJA file needs to firstly be forwarded to both gateway 1 and gateway 2.

After that, each gateway will sequentially reprogram each target device connected by itself.

In this case, gateway 1 needs to reprogram D1, D2 and gateway 2 need to reprogram device

D3. Assume the set S(Gn, Rm) is the set of devices that are connected with gateway Gn and

selected for mapping results in region Rm, the reprogramming time of gateway Gn for the
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region Rm is:

TGn(Rm) =
∑
k

(T (Dk))∀Dk ∈ S(Gn, Rm) (4.3)

Assume the set SG(Rm) contains all gateways that need to be used for package forwarding of

a reprogramming request in region Rm. Since the package forwarding concurrently happens

in each gateway, then the Tm3 can be expressed as:

Tm3 = max
n

(TGn(Rm))∀Gn ∈ SG(Rm) (4.4)

From the equation, we may derive that we need to minimize the maximum number of

reprogram devices under each target gateway. This idea inspires our work to find the optimal

sensor mapping strategy to minimize the overall programming latency.

4.2 Sensor Mapping Without Considering Run-time

Cost

In this section, we firstly introduce the concept of congestion zone, which is the minimum

sensor mapping problem, then present the problem definition of problem P1 and ILP formu-

lation, and analyze the problem complexity.
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4.2.1 Congestion Zone

Given a target mapping request, a gateway is congested if and only if it is shared by more than

one region and each region contains target devices connected by the gateway. A congestion

zone is a set of regions in which any region shares at least one congestion gateway with one

of the other regions in the zone. Beside this, any two congestion zones do not share any

congestion gateway.

In Figure 4.1, gateway 2 is congested for both region A and B having target devices under

it. Thus, region A and region B form a congestion zone. The reason behind defining the

congestion zone is that an optimal mapping strategy that applies to regions separately can’t

guarantee global optimality. Thus, a congestion zone is the minimum scope in which we

should apply sensor mapping strategy.

4.2.2 Problem Definition

Given a congestion zone Z, assume it has N gateways Gn(1 ≤ m ≤ N) and M regions

Rm(1 ≤ n ≤ M). Each device Dk(1 ≤ k ≤ K) connects one of gateways, and belong to one

of the regions. The problem studied in this chapter is to determine a mapping solution so

that there are a sufficient number of services in each region in Z. Let xik be a binary variable,

which xik = 1 indicates that service Sik is selected on device Dk. Let yk be another binary

variable, which yk = 1 indicates that device Dk needs to be reprogrammed. Then, we need

to guarantee that each component in the FBP has been mapped to a service in each region

Rm.

Under a mapping solution {xik}, the device Dk need to be reprogrammed if and only if at

least one of the service xik is selected. In this case, each gateway Gn has a reprogramming
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load

αn =
∑
k

(yk) (4.5)

i.e., the number of reprogram devices under it, which indicates the reprogramming latency

for gateway Gn. Essentially, we hope to reduce αn to save reprogramming latency. Thus,

our objective is to minimize the maximum load max(αn), for the purpose of load balancing

on each gateway in a congestion zone Z.

4.2.3 Computation Complexity

Before presenting our algorithms for the problem, we first show that the problem is compu-

tationally intractable. Given a congestion zone Z, assume there are M regions in it.

Theorem 2. The sensor mapping problem P1 is NP-hard in the strong sense even M = 1.

Proof. We prove the theorem by a reduction from the Not-All-Equal 3SAT (NAE3SAT)

problem, which is known as NP-complete in the strong sense.

NAE3SAT: For a given set U = u1, u2, u3 . . . un of n binary variables, and a collection

of clauses C1, C2, C3 . . . Cm defined over literals u1, u2, u3 . . . un, ū1, ū2 . . . ūn such that each

clause has three literals Ci = ui1 ∨ ui2 ∨ ui3, the question is whether there exists a true

assignment for C = C1 ∧ C2 ∧ C3 . . .∧Cm such that each clause Ci has at least one true

literal and at least one false literal.

Given an instance of NAE3SAT, we can construct an instance of the decision version of

problem P1 as follows: Let there be 2n Device each corresponding to a literal. With a bit of

abuse of notation, we also denote the Device as u1, u2, u3 . . . un, ū1, ū2 . . . ūn , all of them are

59



in the same region. There are n gateways, each gateway Gi connects two devices ui, ūi. Let

there be n + m components in a FBP.

1. Each component Si, i = 1, . . . , n, can be provided by device ui, ūi

2. Each component Sn+i, i = 1, . . . , m, can be provided by device ui1, ui2, ui3, where Ci

= ui1 ∧ ui2 ∧ ui3. Let each component need on instance at any time.

The question is whether there is a mapping within the region and max(αi) ≤ 1.

1. Suppose that there is a true assignment for NAE3SAT. Then we can have a mapping

with R = 1. In the assignment, if ui = 1 (imply ūi = 0), means device ui need

reprogramming. If ūi = 1 (imply ui = 0), means device i need reprogramming. In such

a mapping, for any service si, i = 1, . . . , n, map to device ui if ui is true, otherwise

map to i. For any service sn+i, i = 1, . . . , m, because one of literals ui1, ui2, ui3 is true,

At least one of Device ui1, ui2, ui3 is already be selected for hosting service, then we

simply map sn+i that particular device. Therefore, the mapping is feasible. Because

each gateway Gi needs to reprogram only one of ui, ūi, we have Gi = 1 for all gateways.

2. Suppose that there is a mapping R = 1 and max(αi) ≤ 1. So any gateway only need

to reprogram one device. In the corresponding NAE3SAT problem, we can let ui =

1, if device ui need to reprogram, ūi = 0, if device ūi need to reprogram. The above

analysis shows that this is a feasible solution to NAT3SAT.
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4.2.4 Integer Programming Formulation

Given a congestion zone in an IoT system, its internal network topology should be fixed.

We use vector An = {an1, an2, . . . , ank} to denote the connection status of gateway Gn

to each device Dk. If ank = 1, then device Dk connects to gateway Gn. We use vector

Bm = {bm1, bm2, . . . , bmk} to denote the relationship between region Rm and each device Dk.

If bmk = 1, then region Rm contains device Dk.

For the set of devices in the congestion zone we are considering, the services on each device

should be also predefined. We use vector Ci = {ci1, ci2, . . . , cik} to denote how instances of

service Si are installed. If cik = 1, it means one instance of Si is installed on device Dk.

For each mapping request, a FBP contains a set of component Ci. We use a Vector Q =

{q1, q2, q3, . . . , qi} to represent the resource requirement for each region.
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Figure 4.3: Run-time Latency Example

In ILP, the selection variable xik is defined as:

xik =


1, if service Si on device Dk is selected.

0, otherwise.

(4.6)
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we use another binary variable yk

yk = max{xik},∀1 ≤ i ≤ I (4.7)

to determine whether device Dk needs to be reprogrammed. Eq.4.7 guarantee a device Dk

is counted as long as one of the services on it is selected.

The sensor selection problem is formulated as follows:

min (α) (4.8)

subject to:

Bm ·XT = Q,∀1 ≤ m ≤M (4.9)

αn =
∑

Dk∈Rn

(yk) < α, ∀1 ≤ n ≤ N (4.10)

xik = {0, 1},∀1 ≤ i ≤ I, 1 ≤ k ≤ K (4.11)

In the formulation, Eq. 4.9 ensures that we meet the resource requirement of an application
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within each region, and Eq. 4.10 evaluates the maximum number of reprogramming devices

among all gateways.

4.3 Sensor Mapping Considering Run-time Cost

In emergency management applications, the end to end latency is the most significant quality

of service (QoS) for building responsive action to emergent event. In this section, we will

discuss how to model the run-time latency and apply the constraint in mapping model, and

heuristic algorithms that reduce computation complexity.
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Figure 4.4: Dominante Path Example

4.3.1 Run-time Latency Model and Constraint

In smart home, smart building, and factory automation, Z-Wave and ZigBee are the two of

most popular low power wireless communication technologies. They have different transmis-

sion ranges and data rates. We profile the Z-Wave transmission latency between two devices

as 110ms. Given a FBP, its end to end latency depends on the transmission time of each

link Lij, which is further determined by how it is mapped to physical services on devices. In

63



our study, we denote the latency coefficient β(Lij) as

β(Lij) =


0, if Ci, Cj on the same device.

1, if Ci, Cj in one sub-network.

2, if Ci, Cj in two sub-networks

(4.12)

As shown in Figure 4.3, a region contains four devices {D1, D2, D3, D4} covered by two

sub-networks. Assume there is a link L23 in an emergent application. It can be mapped

onto three places {(D2), (D3, D4), (D1, D4)}. If both of C2 and C3 are mapped to device D2,

the latency is ignoble. Thus, latency coefficient β(Lij) is 0 in this case. Otherwise, β(Lij)

denotes the number of hops of the transmission link for practical latency is linear to it.

Given an FBP as a DAG, it can be decomposed to be a set of paths P. A path Pu is a

linearly connected links. For example, the path (C1, C2, C3, C4) contains a set of sequentially

connected links {L12, L23, L34} in Figure 4.4. We denote transmission latency of path Pu as

β(Pu) =
∑
Lij∈Pu

β(Lij) (4.13)

Assume the end to end deadline of a FBP is specified as 500 milliseconds, then we may

estimate the maximum number of hops of the longest path is 500/110 = 5 hops in the Z-

wave network. In this way, we may find all of the dominant path PD that might miss deadline

and use contraints to prevent it happen in mapping result. Given the maximum hop H as the

upper bound, every path whose length is larger than H/2 is a dominant path. For example,

there are two dominant paths (C1, C2, C3, C4) and (C1, C5, C3, C4) in Figure 4.4, for their
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length are 3, which is larger than 5/2 = 2.5.

As we discussed, the second problem P2 is to find minimum reprogram latency mapping

solution with the consideration of both service availability and End to End run-time latency.

It can be resolved by adding communication latency of each dominate path in original prob-

lem P1. Given a congestion zone, we define Oij as a set of device pair Pnm(Dn, Dm) within a

gateway that may host link Lij, and define Rij as a set of device pair Pnm(Dn, Dm) cross gate-

ways that may host link Lij. In the physical network setting, the Eq. 4.12 can be rewritten

as

β(Lij) =
∑

Pnm∈Oij

xin ∗ xjm + 2 ∗
∑

Pnm∈Rij

xin ∗ xjm (4.14)

Thus, for each path Pu within PD, we need to add one contraint as

β(Pu) =
∑
Lij∈Pu

β(Lij) ≤ H (4.15)

The Eq. 4.14 means P2 becomes a Integer Quadratically Constrained Programming (IQCP)

problem. However, we could transform the problem to integer linear programming by rewrit-

ing the problem through introducing new variable yikpm and constraints to take the value

xikxpm for every combination of xin and xjm, and yikqn for value xikxqn also. The equivalency
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of two formals have been proven in [18]. Then Eq. 4.14 can be replaced by

β(Lij) =
∑

Pnm∈Oij

yinjm + 2 ∗
∑

Pnm∈Rij

yinjm (4.16)

Besides formal constraints defined, we need to have more constraints for each yikpm and yikqn

as below:

yikpm ≥ 0 (4.17)

xik − yikpm ≥ 0 (4.18)

xpm − yikpm ≥ 0 (4.19)

1− xik − xpm + yikpm ≥ 0 (4.20)

These four equations ensure the value of yikpm to be exactly the value of xik * xpm in any

case. Once replace every xik * xpm with its corresponding yikpm, the object function is

actually ensured to be optimized under the same setting of xik with original object function.

Therefore we could replace xik * xpm with yikpm.
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4.3.2 Round-Up Algorithm Based on Linear Programming Relax-

ation

Because of the NP-hardness of the problem P2, we design an approximation algorithm based

on linear programming (LP) relaxation. The algorithm contains two stages. In the first stage,

we resolve its LP relaxation by removing the integral constraints Eq. 4.11. It is replaced by

0 ≤ xik ≤ 1,∀1 ≤ i ≤ I, 1 ≤ k ≤ K (4.21)

Algorithm 4.1 Round-Up Algorithm for problem P2

1: Solve the LP relaxation Eq.(8)-(10), (15) and (16) to obtain a fractional solution {xLik}
2: set xHik = 1 for the d largest xLik
3: set other xHik = 0

In the second stage, a greedy round-up algorithm is designed to find a integral solution based

on the linear solution from first stage. We use xLik to represent the optimal solution to the

LP relaxation, where some xLik may not be integers, and use xHik to represent the solution

obtained based on rounding xLik. In the round-up algorithm 4.1, we consider the service

available of each component Ci. Given a zone with d regions, the first d service which can

provide Si and have the highest xLik will be selected.

4.3.3 Heuristic Algorithm for Relocating Services

The Round-Up algorithm not only breaks the optimality of latency minimization, but also

break the deadline constraints for dominant paths in Eq. 4.16. Given any xHik = 1, it means

we select the service Sik on device Dk for component Ci in the region, to which Dk belong.

If we choose another available device Dk′ in the same region to replace Dk for component
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Ci, we may set xH
ik′

= 1 and reset xHik. By relocating component Ci, it will not only keep the

availability constraint in the region, but also will affect the run-time latency of some paths

in the application. We thus aim to develop a heuristic algorithm that further improve the

performance by relocating services among devices.

Algorithm 4.2 Service Relocation Algorithm

Input: A list of path PD as the dominant paths of a FBP
Input: A set of variable xHik
Input: A empty set of component fixed Ci as Sc
Output: A set of variable xH

ik′
after relocation

1: sort the list of path Pi ∈ PD in decent order of execution hops
2: for all dominant path Pi ∈ sorted PD do
3: if Pi.length lg H then
4: for all adjacent components Ci, Ci+1, Ci+2 on path Pi do
5: if All of Ci, Ci+1, Ci+2 /∈ Sc then
6: Relocate Ci+1 to reduce run-time hops
7: Add three components into Sc
8: end if
9: i = i + 3

10: end for
11: end if
12: end for

After applying the result xHik from round-up algorithm back to components of FBP, we know

physical devices that host each component. With the known network architecture, we may

calculate communication hops of each dominant path Pi of the FBP. In the heuristic algo-

rithm 4.2, we firstly sort the dominant paths by the decent order of physical communication

hops. For each path whose physical communication hops are larger than H, we perform

relocate algorithm for each sub-path Ci, Ci+1, Ci+2 that contains three unvisited adjacent

components in path Pi.

Each time, we only consider relocating the middle component Ci+1. The basic idea is to

co-locate Ci+1 to the same device or gateway of Ci, Ci+2. When Ci, Ci+2 are under two

different gateways and both of them has available device to host Ci+1, we choose the the

gateway with smaller load to reduce overall reprogramming time.
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4.4 Simulation of Scalable Deployment

In this section, we introduce the effectiveness of our heuristic algorithms through simulation.

We firstly introduce the design of simulation, and the algorithms we want to compare.

4.4.1 Simulation Setup

Our study is performed for systems with 100 congestion zones, in each of which there are

10 gateways. All the performance number are averaged on all of 100 zones. Under each

gateway, there are 10 to 200 devices, which depends on the setting for each study group.

At the mean time, we fix the region size as 10 devices, which means the number of regions

grows linearly with the number of devices under each gateway. For each region, we need to

deploy an application instance.

In the simulation, we consider three types of application environment: smart home, smart

building, smart factory, in which the fault tolerant requirement grows. Given one type

environment, we define two parameters service density θ and replica number λ to generate

system settings, including sparse(2, 1), medium(3, 2) and dense(5, 3). For each setting, the

first number means the minimum number of services on each device, and the second number

means the minimum number of replica of each type of service in a region.

Since one congestion zone is an independent problem space, we generate a network archi-

tecture for it separately. Given a setting coefficient (θ, λ), we randomly choose θ number of

services on a device, and make sure there are at least λ replica for each type of WuClass.

Then, we generate a set of regions Rm according to the formula number(Dk) / 10, and each

devices are randomly assigned to a region. To construct a real MPTN network, we need

to determine how devices in region connect with gateways. In our study, we do consider

the network in a physical flat, in which devices belong to a region are possible connected to
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multiple gateways. Given a device Dk, it has probabilities of {p1, p2, p3} to be assigned to

gateways {G1, G2, G3}, each of which is randomly chosen from all 10 gateways in the zone.

In this study, we use {0.5, 0.3, 0.2} as the gateway assignment probability.

In this study, we compared our proposed mapping algorithms with two other greedy algo-

rithms without considering optimality (i.e., Static, Uniform). These algorithms include:

• Static: always greedily choose the first available device to host a component.

• Uniform: choose a gateway with a uniform distribution, then find a available device

under the selected gateway to host a component.

• Optimal: the ILP algorithm for problem P1 guarantee the optimality of reprogramming

latency but doesn’t consider run-time latency.

• Constrained: the IQCP algorithm for problem P2.

• Hueristic: the heuristic algorithm that relocates service after round-up algorithm

We have studied the performance of our algorithms in terms of optimality of reprogramming

time, which is represented by max number of reprogramming device under each gateway in

a congestion zone, and run-time end to end deadline miss ratio.
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Figure 4.5: Device Setting Impact for Optimality
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4.4.2 Performance of Problem P1

We compare the Optimal algorithm with Static and Uniform algorithms to show its per-

formance gain in terms of reprogramming latency. In Figure 4.5, every algorithm (static,

uniform and optimal) gets better result with less number of devices to reprogram, as device

setting changes from sparse to dense. In medium and dense setting, optimal much better

than uniform algorithm, for uniform algorithm always uniformly choose gateway to host

components, thus reducing the probability of collocate neighbor components. Static algo-

rithm is comparable to optimal algorithm in sparse setting(less than 10 % penalty), for static

algorithm increase the probability of collocation by choosing the first (sometimes the same)

device to host two adjacent component. In medium and dense setting, optimal algorithm

has 15% to 20% gain rather static algorithm, which means denser setting of device better

improvement the optimal algorithm may achieve.
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Figure 4.6: Gateway Scale Impact

In Figure 4.6, we report the impact of gateway to the improvement of optimal algorithm. In
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this study, we enlarge the number of devices under each gateway from 10 - 200, which means

the total number of both regions and reprogramming copies increase from 10 to 200. As the

scale of gateway increase, the improvement of optimal algorithm to static keeps larger than

18%. The reason behind this phenomenon is that more and more region are within only

one gateway as gateway increases its size. The optimization problem consider whole zone

is actually reduce to optimization problem on small regions within one gateway, thus the

improvement ratio doesn’t have obvious change.
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Figure 4.7: Replica Number Impact

In Figure 4.7, we demonstrate the impact of replica coefficient to improvement of optimal al-

gorithm. The improvement ratio to both algorithms grow as replica coefficient increase from

1 to 4, but they go down when replica number becomes 5. It means more replication doesn’t

guarantee better performance of reprogramming latency. We also find that the improvement

ratio grows every fast when replica number changes from 2 to 3, which means the best of

setting is 3 replica in terms of return/cost ratio for fault tolerant critical environment, such

as smart factory.
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4.4.3 Performance of Problem P2

In the second set of our experiments, we study the effectiveness of our heuristic solution

for problem P2. Our heuristic solution is obtained by the improved round-up algorithm for

problem P2 followed by a relocating procedure. We firstly show the penalty of heuristic

algorithm in the aspect of miss run-time execution deadline, then shows its performance of

achieving best trade-off between reprogramming latency and run-time cost. In this group of

study, we use DAG shaped FBP with 20 components, the maximum runtime hops H used is

10, and target system includes 100 zones. Each zone has 100 devices and 10 gateways. The

reason behind using relative small system scale is that constraint algorithm is intractable in

bigger zone set.

 

 

 

 

 

 

 

 

                                 

                                   

0 

5 

10 

15 

20 

25 

30 

Sparse Medium Dense 

D
ea

dl
in

e 
M

is
s 

Ra
ti

o 
(%

) 

Device Setting 

Deadline Miss Ratio Comparison 

Static 

Uniform 

Optimal 

Constrainted 

Hueristic 

Figure 4.8: Deadline Miss Ratio Comparison

To evaluate the performance of each algorithms in terms of guarantee run-time latency, we

firstly use the constrained algorithm to identify tractable problems (problem with solution

that meets run-time deadline constraint), then run other algorithms to collect their deadline

miss ratio. In Figure 4.8, our heuristic algorithm only has 1.5% deadline miss penalty, which
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is much better than static (6% - 8%), optimal without constraints (15%), and uniform (14%

- 28%).
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Figure 4.9: Reprogramming Latency Comparison

In Figure 4.9, we compare the reprogram latency optimality of each algorithm by setting

the optimal algorithm as baseline. Our heuristic algorithm has less than 3%, 8%, and 10%

reprogramming penalty in sparse, medium and dense setting, which is still better than static

and uniform. As we state in Section 3.1, the reprogramming latency is determined by two

major components. One is mapping execution time Tmap, the other is the code propagation

time Tm3. In Table 4.1, we list the Tmap, Tm3 of each algorithm. We may found the optimal

algorithm has the shortest time 40104 ms. Our heuristic algorithm is 43171 ms, which is

better than any other algorithm. Even though the heuristic algorithm use about 2 more

seconds to reprogram devices, but it is still the best solution for it small deadline miss ratio

(less than 1.5%).
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Algorithms Tmap (ms) Tm3 (ms) Sum (ms)
Static 32 45466 45498

Uniform 39 61871 61910
Optimal 1729 38375 40104

Constrainted 27293 38623 66016
Hueristic 2012 41159 43171

Table 4.1: Time Distribution

4.5 Summary of Scalable Deployment

This section presents an heuristic algorithm for selecting and deploying flow-based IoT ap-

plications on large scale IoT environment such as smart campus. To achieve the low repro-

gramming latency, we model things into hierarchical regions, and use distributed solution to

perform mapping decision and reprogram devices through gateway. Since low reprogramming

latency and run-time deadline are two most significant factors of success of IoT applications,

we have designed a mapping strategy from application to devices, that will trade-off both

reprogramming time and run-time latency. We present a heuristic algorithm that round-up

output of LP relaxation followed by a relocating strategy. Our simulation study shows that

our proposed solution can use only 1/n * 0.7 reprogramming time than a centralized solution

to reprogram a system with n congestion zones. If each zone is small, constrained algorithm

can be used for guarantee both programming time optimality within run-time deadline. If

each is large (more than 100 devices), we may use heuristic algorithm firstly for each zone.

If any result of a zone miss deadline, we can further use constrained algorithm to find the

better solution, for the deadline miss ratio of our heuristic algorithm is 1.5% which is relative

small. In this way, we can guarantee an efficient deployment for most of regions in a system,

at mean time erase the run-time deadline miss of applications.
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Chapter 5

Edge Intelligence Support

5.1 Overview

The Internet of Things (IoT) envisions a world where billions of devices at the network edge

gathering data and enacting commands to create innovative and intelligent systems. The

new business opportunity drives companies promote their IoT platform and devices for edge

computing. IBM announced the self-powered IoT starter kits based on popular Raspberry

Pi board for building smart hospitals, homes, airports, etc. More recently, Microsoft and

Amazon launched their own IoT platforms, which are Azure IoT Hub and AWS IoT. Both

of them treat edge devices as data ingestion systems that collect, filter, and process received

data before sending them to the cloud.

During this wave of evolution, dedicated, single purpose devices will give way to smart,

adaptive devices that virtualize capabilities using a platform or API, collect and analyze

data, and make their own decisions. Moreover, intelligent applications can be developed

using such IoT platforms, for sensing and collecting information about our needs, then

composing and deploying services to make our lives easier. In this chapter, we introduce
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the edge framework as part of WuKong middle-ware. This framework pushes the streaming

processing capability from cloud onto edge devices, and provides reliable streaming analytics

support to simplify the programming of intelligent IoT applications. We provide a simple and

annotation based programming API for developers to implement online learning capability

in the edge server. With such an extendable design, an intelligent component may be used

for composing a flow based program (FBP) as an intelligent application.
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Figure 5.1: Edge Server Design

5.2 Edge Server Implementation

We have implemented edge server using Java, which a popular language for building stream-

ing engines [5, 101]. In this section, we provide a high level view of the edge computing

support including, programming model, native buffer design and extendable data pipeline.

As shown in Figure 6.5, the edge server is designed as an streaming engine for processing IoT

events. In the design, we mainly focus on providing a plug and play capability for building

intelligent component.
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5.2.1 Programming Model

We adopt the programming model of Web [31, 75] to achieve a high throughput and paralism.

In the design, an intelligent component is called EdgeClass, which is a specialized WuClass.

Intelligent component developers need to define input and output properties of an EdgeClass

in the class definition. An EdgeClass will be loaded into edge server during application

deployment through remote programming. Within the server, streaming processing scenarios

are modeled as a soft pipeline, and implemented as event driven multi-stage data pipeline.

We also provide a bunch of stream-transformation operators to choose features from data

buffers within an edge server.

public class EEGEdge extends EdgeClass {

@WuProperty(name = ’raw’, id = 0, type = PropertyType.Input, dtype = DataType.Buffer,

capacity = 2000, interval = 1000, timeUnit = 30)

private short raw;

@WuProperty(name = ’output’, id = 1, type = PropertyType.Output)

private boolean signal;

public List<Extension> registerExtension() {

List<Extension> extensions = new ArrayList<Extension> ();

extensions.add(new EEGFeatureExtractionExtension(this));

extensions.add(new EEGExecutionExtension(this));

return extensions;

}

}

As shown in the code snippet above, the wuclass defines property raw as its input and

property signal as its output. These two properties may be used in FBP for connecting with

other WuClasses. When an edge server receives remote programming DJA file and identifies

that the target application wants to use the EEGEdge class, the edge class manager will

load the EEGEdge class into JVM. During class loading, the edge class manager will look
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up all of the annotations on each field through reflection. For example, the raw property

is declared as data type buffer. Thus, the edge class manager will create a buffer for the

EEGEdge object to hold the raw brain wave data sent from EEG device.

Besides declarative properties, the extension oriented interface is also an important feature

in the design of EdgeClass API. As shown in Figure 6.5, the core of edge server is the extend-

able pipeline. An EdgeClass may define what to do in each stage of the pipeline by using

the extension interface. For example, the EEGEdge class defines EEGFeatureExtractionEx-

tenion and EEGExecutionExtension. During remote reprogramming, these two funtional

programming components of an EEGEdge object will be binded to the extension point on

the data pipeline respectively. During runtime, the brain wave data will be kept in the buffer,

then flow into each stage of the data pipeline.

5.2.2 Networking

The edge server need to be discoverable by master, and be able to communicate with other

devices in a WuKong system. To support cross network communication, Multiple Protocol

Transport Network (MPTN) is designed to be distributed messaging gateways to enable

messaging among multiple networks in WuKong middleware. As shown in Figure 5.2, MPTN

is in the presentation and session layer, so that the routing capability in existing network

protocols, such as Zwave and ZigBee can be reserved. MPTN gateway converts an end-to-

end message request to multiple segment message based on network topology. The protocol

schedules periodic routing table update to pro-actively keep the routing table up to date.

The mechanism hides the complexity of heterogeous network environment in IoT systems,

and allows on-demand route update to shorten the delay of cross network communication.

From the perspective of networking, the edge server is implemented as a UDP device in

WuKong. When an edge server starts, it will firstly talk with a UDPGateway to ask for a
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MPTN ID. After that, it will receive and send MPTN message from and to other devices in

the network. In the application layer, the edge server also implements the WKPF interface,

so that its capabilities (in terms of edge object) may be discovered by WuKong master.

Once master deploys an application that uses an edge object in an edge server through

reprogramming, the selected edge object will start to run.

Figure 5.2: MPTN Architecture

During runtime, one single IO thread will receive MPTN messages from the gateway to which

it connects. The IO thread use the Java NIO select API to fetching the MPTN data from

channel buffer, and push the MPTN message into a ring buffer. A thread pool of workers

repeatively pick up a message from the ring buffer, parse the MPTN and WKPF headers,

and put the data in payload into the declared data structures in buffer manager. After that,

it is the threads in data pipeline that are responsible for processing data in buffer manager.

5.2.3 Analytics Support on Streaming Data

In offline learning, the tedious tasks of ETL(extract, transform, load) are mandotary work

before feeding into learning engine to train model. The main goal of edge framework is to

push the data preprocessing from offline data pipleline into edge, so that the both the pro-

cessing latency and network traffice may be reduced. Thus, edge framework aims to provide
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analytics support, and an efficient yet extensible data processing workflow for implementing

self-learning capability in edge.
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Figure 5.3: Double Ring Buffer and Feature Extraction

Compare to big data oriented distributed streaming systems [100, 101, 5], which are mainly to

achieve scalable counting and ratio calculation on large scale logging event. The streaming

analytics support of edge server is to process sensors and actuator datas in timely and

memory efficient way. Thus, we have designed three type of data structures to meet QoS

requirement of different application scenarios.

5.2.3.1 Memory Efficient Data Storage

For memory intensive applications, such as application of activity pattern discovery[25], the

memory efficient design is desired for increasing the number of concurrent edge objects that

a progression server can host. In the Oracle 64-bit HotSpot JVM, the header spaces for a

regular object and for an array take 8 and 12 bytes, respectively. In a typical intelligent

application, such as activity recognition, the heap often contains many small objects (such

as Integer representing device ID, and Long presenting time-stamp), in which the overhead

incurred by headers cannot be easily amortized by the actual sensor value. Therefore, we

merge and organizing related small data record into few large objects (byte buffer) instead of

representing them explicitly as one-object-per-data-point, and manipulating data by directly
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access buffers (Operators operate on byte chunk level as opposed to the object level). In this

way, we bound the number of objects application, instead of making it grow proportionally

with the carnality of the input data. Our double ring buffer and operators are built by

strictly following the design paradigm.

• Real-time Channel It is implemented as simple pub/sub model in progression sever.

When an edge object is initialized by master through reprogramming, edge server will

create a channel for each input property annotated as channel.

• Double Ring Buffer Ring buffer is widely used for buffering data streams. To help

efficiently query data within a period of time, we added a simple layer of index on the

data array. The time index is also implemented as a ring buffer. Therefore, the special

data structure for supporting operator based feature extraction is called Double Ring

Buffer (DRB). With this data structure, data can be quickly fetched in dimension of

both size and time interval from buffer.

• Time Series Operators A set of native operators have been implemented for quickly

compose a feature extractor in an EdgeClass. Single input operator, such as Avr, Sum

and Kalman-filter, accept data from one buffer. At the mean time, multiple input

operator is pretty useful for join and cross filtering data in multiple sources. Window-

able operators target mainly to the applications that similar to activity analysis, which

the processing is triggered when the number of events arrives hits a threshold.

public class EEGFeatureExtractionExtension extends FeatureExtractionExtension<

EEGEdgeClass> {

@Override

public List<Operator<?>> registerOperators() {

List<Operator<?>> operators = new ArrayList<Operator<?>> ();

RelativeIntensiveRatioOperator psi = new RelativeIntensiveRatioOperator();

psi.addDataSource(0, 5);
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operators.add(psi);

return operators;

}

}

In the code snippet above, the EEGFeatureExtractionExtension is defined. Once the EEGEdge-

Class is enabled in an edge server, the extension instance will be binded to feature extraction

extension point in data pipeline through exposing the operator for extracting features from

EEG brain wave raw data in a buffer. In this case, the relative intensive ratio operator is

used. The operator is applied for property 0, which is the raw property declared as buffer ev-

ery 5 seconds. Everything for binding data source and specify processing interval is achieved

by using the add source interface. If multiple operators are used, the features extracted will

be arrange according to the same order of operators returns, and be dispatched to other ex-

tensions of the edge class. We provide a library of time series operators for feature extraction.

EdgeClass Developers may also implement its own operator for special purpose.

5.2.3.2 Extendable Data Pipeline

Learning data pipeline is designed to create a highly extendable programming model for

learning life-cycle. The study of online learning algorithm [21] contributes a lot to the

pipeline abstraction. At the mean time, the famous map reduce [26] programming paradigm

in big data bring the idea of functional programming in extensions. It is designed to faith-

fully preserve the programming model of WuKong middle-ware. As a result, a streaming

processing module can be easily ingest data generated by diversified sensor and actuators.

As we discussed in Section 5.2.1, an Edge Classs IO is defined in itself as property, but its

real processing logic is defined seperatively in three types of extensions. which are shown

in Figure 5.4. Feature extraction extension is the place that can define how to extract
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mearningful features from time series data buffer through using operators. The learning

extension is useful for online learning algorithm to train model from flow of extracted features.

Execution extension can be used for update the online models and use learning result to make

configuration decision.

Within a learning pipeline, events are used to exchange information between extensions.

To achieve simplicity, we also adopt the functional programming style to design the api of

extension. During runtime, each event of learning pipeline will be dispatched to particular

extension of an Edge Object, then corresponding function will be triggered.
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Figure 5.4: Extendable Data Pipeline Structure

Since learning life-cycle is diverse for different algorithms and applications, the progression

pipeline is designed to be highly extendable. Pipeline is composed of multiple stages. Each

stage is an extension point to which a subclass extension instance of a component can

be registered. Within each stage, developer can define their own business logic, such as

feature extraction, periodically learning, online classification, etc. For a learning scenario

go beyond regular three stages, it is convenient to add new extension point at the right

position on the pipeline. For example, boosting method are widely used in machine learning

to improve accurary of prediction by binding output of multiple learning algorithms. To

support boosting, the data pipeline may be extended as one feature extension point connects

to multiple learning extension points, all of which connect to the execution extend point. In
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this way, the result of each model will finially forwarded to the execution extension for final

decision making.

5.3 Distributed Runtime of Edge Framework

As shown in Figure5.5, edge server, XMPP server, and data store are new building block of

edge framework compare to original Wukong middle-ware. To setup a Wukong cluster, all

of the Wudevices and edge devices need to be registered in Wukong master. The multiple

protocol transmission protocol (MPTN) [85] helps to register device with different kind of

wireless protocol on the fly. For each Wudevice, WuClasses (stateless component) are cre-

ated in Darjeeling JVM as driver for sensor and actuators plugged in WuDevices. At the

mean time, EdgeClasses (stateful component) is be loaded in edge server on edge device.

Before mapping and deploying any streaming DAG, master will discovery the capabilities of

each devices in terms of type and number of components through Wukong Profile Frame-

work (WKPF). During deployment, master map and deploy logic component in streaming

DAG onto physical objects through remote programming. During run-time, WuObjects and

EdgeObjects communicate with each other, following the streaming flow described in DAG.

5.3.1 Fault Tolerant Support

To ensure resilience to faults, the framework provides a mechanism to recover the state of

failed component. It is achieved by providing a general model check-pointing service. Within

the intelligent component, if a property is declared as backup, its content will periodically

publish to a pub/sub topic, and retained within pub/sub system. When a new component

is loaded, edge framework will search the legacy publications in the checkpoint topic, and

initialize the value of that property.
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Figure 5.5: Edge Framework Run-time Overview

The fault tolerant consideration of edge server can be categorized into three types. The goal

of its fault tolerant is to keep the correctness of control output, even when there are some

physical device failure, and achieve fast recovery when the server itself failure.

5.3.2 Online Model Retention

Factors are the sign of external world, if an edge server fails, the online model learnt in

memory will be gone. In a distributed edge instelligence architecture, which is of multiple

edge servers, if an edge device physically fails, EdgeObjects on that particular device can

migrate to another server in the system. In this case, we need have latest factor info stored

externally. To achieve the goal, the edge framework utilizes the retention policy of pub/sub

system. Therefore, latest 3 - 10 publications of a topic can be retained in pub/sub server,

and be replayed later.
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5.3.3 Model Checkpoint

The local model is the last but most significant data. Given an online algorithm, the local

model is learned from a period of time, which is of most valuable parameters to control local

environment. A checkpoint method is provided in edge framework to store the json format

model info into a topic of pub/sub system. If master migrates an EdgeClass from one server

to another, the new server can help to restore latest check pointed model back.

5.3.4 Context Engine Integration

In the edge intellignece framework, the integration between online learning and offline learn-

ing is achieved through global monitoring and pub/sub model update. If sensors and actu-

ators which are chosen to monitor, all state updates are firstly collected in edge server, and

is periodically bulk pushed to the data store. The offline engine periodically train the latest

model from latest data in data store, and publish it through topic of XMPP. If an EdgeClass

want to always fetch lastest model from that particular context engine, it just need to listen

to the topic related with that context engine.

5.4 Edge Intelligence Case Study

With all of these facilities above, an IoT developer can quickly built an intelligent application

on edge. In the case study, we show the development scenarios of an edge intelligence

component in edge framework from data collection, through offline model learning to online

classification in Edge Class. In the end, we continue the code snippets for EEGEdgeClass

by introducing the main logic in execution extension.

Real-time Channel and Time Series Buffer and Operator are two important facilities built in
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edge server for developer to quickly build edge application. We build several edge applications

to test evaluate our system performance. In this section, we introduce how to build brain

wave control application by integrating with EEG (Brain Control Interface) BCI, and how

to build indoor localization in detail. The first application demonstrate how to use our edge

API to use facilities in edge server. The second one mainly to build for performance study

in next section.

5.4.1 EEG Control

Over the past years, technology using electroencephalography (EEG) as a means of con-

trolling electronic devices have become more innovative. Today, people are able to measure

their own brain waves and patterns outside of medical laboratories. Furthermore, besides

analyzing brain signals, these brain signals can be used as a means of controlling everyday

electronic devices, which is also know as brain-computer interface. Brain-computer interface

along with the ”Internet of Things,” are growing increasingly popular; more and more peo-

ple have adapted to utilizing wearables and smart homes. In order to achieve this, we used

NeuroSky Mindwave Mobile EEG, Raspberry Pi 2 with WuKong edge framework to build

it from scratch.

5.4.1.1 EEG Background

From this active communication network of neurons, humans have derived distinguishable

brain signals. The human brain is dynamic; it changes based on physical and mental activity.

As a result, brain signals also change. These brain signals are categorized by different band-

widths and collaborate to describe human activity and function. We give a brief description

of the most prevalent brain signals and their functions in the following section.
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• DELTA WAVES

The slow and loud Delta waves primarily exist between 0.5Hz and 3Hz. There are also

known as deep sleep waves, since they are most prevalent when the human body is

in a state of deep meditation or relaxation as well as deep sleep. During this period,

the body is undergoing a process of healing and regeneration from the previous day’s

activities.

• THETA WAVES

Theta waves are mostly generated around 4Hz to 7.5Hz range. These waves are asso-

ciated with light meditation as well as sleep. When an increasingly number of theta

waves are generated, the brain is in ”dream-mode” state. In this state, humans expe-

rience the Rapid Eye Movement(REM) sleep.

• ALPHA WAVES

Just above Theta waves are Alpha waves at 7.5Hz to 14Hz. Known as the deep re-

laxation waves, Alpha waves depict the resting state of the brain. These waves are

dominant during a period of daydreaming or meditation. Alpha waves effect imagi-

nation, visualization, learning, memory, and concentration. They also aid in mental

coordination, and mind-body awareness.

• BETA WAVES (12 TO 38 HZ)

Beta waves exist mostly at 14Hz to 40Hz. These waves are associated with a person’s

consciousness and alertness. These waves are most prevalent when we are wide awake

or alert, engaged in some form of mental activity such as problem solving or decision

making.

• GAMMA WAVES

From 38Hz to 42Hz, Gamma waves are the fastest and along with beta waves, are

most prevalent when the person is alert and awake. These waves are associated with
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cognition, information processing, attention span, and memory. It is speculated the

gamma waves can also denote a person’s ’higher virtues’, altruism, love, and spiritual

emergence.

5.4.1.2 Offline Training Data Collection

We use an infinite while loop to continuously read data from EEG device. We define brainAr-

ray to be an empty list. This will act as a buffer to store all the data it receives from the EEG

headset and refresh every five seconds. While in this time period, data is read continuously

from the EEG headset and printed on to the console. We also use the sleep functionality

from our imported time library to prevent overflow of data.

We specify an eyetag variable and set it either to 0 or 1. This is for testing and training

purposes and to easily confirm whether the data we have on file is for eyes open or eyes

closed. If the user has defined eyesOpen to be false, the eyetag is set to ’0’ and vice versa.

Then we write the data to a single text file called brainArray-data.txt. We choosed three

volunteers to collect offline learning data. For each of them, we collect 80 data points for

each of eye-close and eye-opent status. Thus, we prepared in total 480 data points for our

offline study.

5.4.1.3 Offline Training Classification Model

Before studying how to classify the data by using machine learning method, we firstly ex-

tracting the features from raw data collected from last step. We use the function of bin

power in Pyeeg library [17] to extract the power spectral intensity of each type of waves.

The graphs below demonstrate how a band of Delta, Theta, Alpha and Beta waves may

distinguish eye-close and eye-open label.
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Figure 5.6: Delta Feature Figure 5.7: Theta Feature

Figure 5.8: Alpha Feature Figure 5.9: Beta Feature

The red points represent value of eye-close data points, and blue points represent value of eye-

open. Intuitively learn from the diagram, we find that Alpha and Beta may categorize status

of user very well. To gain best classification capability in run-time, we still study what’s the

accuracy of different classification algorithms under both of two features (Alpha and Beta),

and all four features. During each round of study, we apply 10 folds cross validation in each

validation.

As shown in Figure 5.10, we produced an accuracy of 61.8% and 56.8% using Ada boost and

Support Vector Machine with Radial Basis Function Kernel respectively with Alpha and

Beta. In Figure 5.11, it shows the result of applying all four features in classifiers. After
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Figure 5.10: Accuracy using Alpha and Beta Figure 5.11: Accuracy using All

using all features, we produce an accuracy of round 88% by using support vector machine

with Radial Based Function kernel. Because of the promising accuracy, we decided to use

SVM as our model for the online study in eeg edge class.

Figure 5.12: Parameter Gamma Impact Figure 5.13: Parameter C Impact

After choosing Support vector machine with Radial Basis Function(RPF), we tried to tune

two of the SVM RPF parameters, Gamma and C. Gamma is defined as how far the influence

of a single training example reaches, with low values meaning open and high values meaning

close. C is defined as trade-off mis-classification of training examples against simplicity of

the decision surface. A low C makes the decision surface smooth, while a high C aims
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at classifying all training examples correctly by giving the model freedom to select more

samples as support vectors. After tuning these parameter using a binary search algorithm,

we concluded the best Gamma = 106 and best c= 1. This will give us an accuracy of 90%.

After offline training and tuning model parameters through using data collected every 5

seconds. The last step is to use WuKong edge framework to connect EEG signal with the

SVM model and control the physical LED light. In the last section, we introduce how to

use WuKong application framework achieve inter-operation between EEGDevice, threshold

and LED through using the FBP. Now, we want to replace the threshold with an intelligent

component called EEG Edge Class to do the signal classification in real-time.

5.4.1.4 EGG Control

In the EdgeClass, the input property is declare as a buffer (DoubleRingBuffer), whose data

ring capacity is 2000 data points, index ring capacity is 30 units, and index is built every

1000 milliseconds. Therefore, the buffer will hold data in a time window of 30 seconds, it

will at most keep 2000 data points. The buffer will store raw signal from EEGDevice from

which time series operators will fetch data and generate features.

public class EEGExecutionExtension extends AbstractExecutionExtension<EEGEdgeClass>

implements Executable<Number>, Initiable {

private static Configuration configuration = Configuration.getInstance();

private static Logger logger = LoggerFactory.getLogger(EEGExecutionExtension.class);

private svm_model model = null;

private double[] labelProbabilities = new double[2];

public void execute(List<Number> data, ExecutionContext context) {

if (data.size() == 4) {

StringBuilder builder = new StringBuilder();

svm_node[] nodes = new svm_node[4];
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for (int i = 0; i < data.size(); i++) {

builder.append(data.get(i).toString());

nodes[i] = new svm_node();

nodes[i].index = i;

nodes[i].value = (double)data.get(i);

}

double probability = svm.svm_predict_probability(model, nodes, labelProbabilities)

;

// 0.0 represents close

if (labelProbabilities[0] >= 0.88) {

logger.info("Set output to true, when eye close");

this.edgeClass.setOutput(true);

} else {

this.edgeClass.setOutput(false);

}

}

}

public boolean init() {

try {

model = svm.svm_load_model(MODEL_PATH);

} catch (Exception e) {

logger.error(e.toString());

logger.error("Fail to initialize svm model");

return false;

}

return true;

}

}
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Since model are offline trained in the EEG study, we ignore the online learning extension,

and only focus on how to use model to do online classification on the features extracted.

Below is the implementation of the major business of logic of intelligence. Firstly the capa-

bility of execution extension can be expanded by implementing more interfaces. Here, the

EEGExecutionExtension implements both Executable¡Number¿ and Initiable. Within init

function, we firstly load the model from local file system. The model is generated by libsvm

on the trainning data and tuned SVM parameters (C and Gamma). The execute function

accept features in a list as the first parameters, and execution context as second parameter.

Within the function, we use the model to classify whether should label the features as eye

close or eye open. We set 0.88 as the probability threshold to trigger eye close action by

setting the output value. We tested the application on real physical devices. Its demo can

be found in the https://www.youtube.com/watch?v=E0U9MoJzxoo.

5.5 Performance Study

5.5.1 Scalability

We study system scalability in three dimensions: scale in QPS, scale in number of Edgeob-

jects, and scale in memory efficiency. Since activity recognition is aperiodically triggered

and occupancy prediction is periodically triggered, we use the localization application to

evaluate the scalability of edge server. In the localization EdgeClass, the predefined map

has 100 * 100 siganl areas. Initially, we create 1000 filters uniformly distributed on the map.

The normal execution time of the localization algorithm in Raspberry Pi is about 37ms.

Figure 5.15 shows how single localization component performs in a edge server, when we

increase the rate of localization request. As we increase the qps (query per second) from 2

to 24, the response time is almost linearly increase from 80 ms to 240 ms. After 24 QPS, the
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Figure 5.14: Monitoring and Checkpoint Overhead

response time start to exponentially increase to more than 1500 ms at the rate 32 qps. If we

assume the reason response time of indoor localization is about 1 second, we may conclude

that the maximal throughput of localization on Raspberry Pi 2 is about 30 per second.

Beside the single edge object throughput, we also evaluate how average execution time and

response time changes, as we exponentially increase the size of edge objects hosted in a

single edge server. In Figure 5.16, we may find that there is some acceptable extra cost (less

than 30 ms) for both localization and activity recognition’s execution time. The overhead is

introduced by extension management in the software pipeline, and event dispatch for each

edge Object.

Beside the setting of single server on board, we also investegate the potential performance

gain of multi-core in Respberry Pi 2. In orange line shows the execution time of edge objects

evenly split into two edge servers, which are binded to two different set cores by using Linux

taskset tool. We find two JVMs competing with I/O and CPU resource, and increase the

overhead of process level context switch in the setting. As shown in Figure5.16, single server

setting always surpass the setting of two servers.
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Figure 5.15: Localization Throughput

 

Figure 5.16: Scalability in Execution Time
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Figure 5.17: Scalability in Response Time

Figure 5.17 gives the same hint of Figure 5.15. As we increase the number of localization

edge object to 32, the response time rapidly increase to around 1300ms, which means 28 -

30 localization edge objects is the maximal load a progression server can handle with.

For memory efficiency, we mainly study how our ByteBuffer oriented design can save memory,

comparing with Java object oriented design, in the activity pattern discovery [25] scenarios.

We use the CASAS [7] Kyoto Daily life (Spring 2009) dataset. The raw data contains 1299775

data points. We gradually feed all sensor values into two Probjets, and keep monitoring the

memory usage of each of them. Excluding the initial 12MB memory usage when the server

starts, the Java Object array list based edge object use about 6MB to keep all of data in

memory. Since the limit memory in edge device, save memory usage for stateful components

will increase the number of PrObjects that can be hosted, thus increase the scalability of

whole system.
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Figure 5.18: Scalability in Memory Efficiency

5.5.2 Fault Tolerant

As we discussed in Section 5.3.1, we provide the fast recovery of internal states EdgeObject

through check-pointing the model as Pub/Sub messages. Once we find a failure of edge object

caused by an edge server, the master will detect the failure and migrate the edge object to

another server nearby. Figure 5.14 shows the overhead of monitoring and checkpoint for fully

loaded edge server, in which we run 28 localization edge object and one activity recgonition

edge object. In the experiment, all of the wifi signal to 28 edge objects are monitored, and

only the activity recognition edge object checkpoint its SVM parameters. You may find

that as we decrease the interval, the average response time increase accordingly. Since it is

almost a fully loaded situation, it means the overhead is acceptable in normal setting. The

recovery time of a stateful component includes fault detection, link update in link table and

checkpoint replay. The svm model in activity recognition is used for evaluation, and the

heartbeat internal is set to 2 seconds. It takes around 3.5 seconds to recover the execution.

Given any smart home application scenarios, it is adoptable.
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EdgeClass Source Code Lines Size of Byte-code
Localization 879 5.3KB

Activity Recognition 378 2.3KB
Occupancy Prediction 302 1.8KB

Table 5.1: EdgeClass Code Size

5.5.3 Reconfiguration Overhead

To ensure the correctness of reconfiguration, the two phase commit protocol is implemented

for updating both the transceiver and receiver of a streaming link. In low bandwidth wireless

network such as Zwave, the round trip time is about 100 ms in light traffic, and 400ms

in heavy traffic. Since management component update links one by one, thus the overall

reconfiguration time for a partial DAG is linear to the number of links N need to be updated,

which is about 100N ms to 400N ms.

5.5.4 Programming Simplicity

To evaluate the gain of programming simplicity, we have implemented three types of common

applications in smart home environment. Their code size is listed in Table5.1. For activity

recognition Edgeclass, we use the libsvm library for SVM classification, so its source code

base is not that big. Nevertheless, we implement our particle filter algorithm in indoor

localization EdgeClass, so its code size is biggest. The merit of Java helps us to dynamically

loading new EdgeClass, which means new functionality can be added during run-time. At

the mean time, with the streaming support of edge framework, an intelligent application can

be quick build up without considering the problem of accessibility to sensor and actuator

on different hardware platform, connectivity to diversified network protocol, and failure

recovery. With the support of Wukong middle-ware, A streaming DAG can be easily deploy

to target edge environment. These benefits will magically increase the productivity of edge

application development.
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5.6 Summary of Edge Intelligence Support

We are witnessing the emergence of a new class of embedded IoT applications that involve

continuous local analysis and also utilize the model from learned from big data for intelli-

gence. This chapter presents a system architecture, the edge intelligence framework, that

takes on the challenge of building a distributed system infrastructure for reliable low la-

tency intelligent application in IoT. As the most significant component of edge intelligence

framework, edge server is devised for the purpose of build intelligent EdgeClass with sim-

plified programming paradigm. We also discuss how to build EEG Control from scratch as

an use case of edge framework. We believe this new type of IoT application programming

methodology will drive the design of next-generation distributed IoT systems and intelligent

applications.
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Chapter 6

Progressive System Design and

Implementation

6.1 Overview

Progression framework defines an open layer for policy driven runtime management in the

WuKong middleware. For the system level progression, a Policy and PrClass developer needs

to define a mapping algorithm and a PrClass to manage the runtime of applications. By

this way, progression framework may extend the capability of WuKong to manage its hosted

applications.

The concept of progression is defined as the process of improvement over a period of time

through a continuous and connected series of actions, event, etc in Merriam-Webster dic-

tionary. In the definition, it emphasizes the continuous improvement through a process. In

this section, the progression model will be presented. After that the progression in both the

system layer and the application layer will be discussed.
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Figure 6.1: Progression Model

6.1.1 Attributes of Progression Model

The concept of Autonomic Computing [42] was proposed by IBM in 2001. The MAPE-K

(Monitoring, Analyze, Plan, Execute, Knowledge) model is proposed to define the fundamen-

tal characteristics of autonomic computing systems, and a practical framework for supporting

self-management and autonomic behavior in heterogeneous system environment. The vision

of autonomic computing further was discussed in [54, 32]. Another model called 3D (Detect,

Diagnosis, Defuse) was proposed for building accountability [104, 105] in SOA.

Both of MAPE-K and 3D model are based on offline learning, and passive reaction. More

recent, IoT applications require online learning capability, such as occupancy aware preheat-

ing in smart home [83], activity sensitive energy management in smart office [67], HAVC

control in smart building [28]. In these intelligent IoT applications, system are proactively

adjusted based on online learnt patterns. To meet the requirement of gap between emergent

needs and autonomic computing in IoT, the progression framework is designed mainly for

providing a capability of proactive management for IoT applications in middle-ware layer.

103



Figure 6.1 demonstrates the progression model in WuKong system. There are two control

loops in the model, which are reactive loop and proactive loop. Both of them need to

take monitored information from execution of applications and environment as input. In

summary, the progression model has the following major features:

• Self-learning: Progression model extracts useful control principle from online stream-

ing data, additional to accumulating knowledge from historical data. It brings freshness

and responsiveness of control into the IoT systems.

• Policy Driven: The proactive control is coupled with mapper through policy, which

means the proactive control is to online tune resource parameters and optimize systems,

according to the initial mapping decision. Beside this, it is an extendable framework

for providing more autonomic management policy in IoT systems.

• Context Aware: Similar with knowledge in MAPE-K model, the context learned

from historical data is applied to every aspect of progression. Thus, the context input

may be applied to monitoring, learning, reactive/proactive control and mapping.

The idea of progression can be adopted in two different layers. One is the progression in

system that supports an application to progressively maintain its healthy and performance;

the other is the progression in application that keeps on tuning the serving model by mining

latest pattern from user’s behavior.

6.1.2 Progression in System

An IoT application in progression framework should be self-optimized. Given a FBP with

N components and a WuKong system with M devices, we use variable xik to represent the

decision whether to map component Ci to service Sik on device Dk. Given a link Lij of the
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FBP, we use the set P(i, j) to denote the set of devices pair (Dp, Dq) tha can host link Lij.

If use parameter πi denote the cost on component Ci, and parameter ωipjq to represent the

cost of link Lij (if map to device pair (Dp, Dq)), the generalized mapping problem can be

defined as:

min (ϕ(
∑
k

(πixik)) + ϕ(
∑

(Dp,Dq)∈P (i,j)

(ωipjqxipxjq))) (6.1)

Inside the formula, the first part is the cost on devices, the second part is the cost on links.

In some cases, one of them can be ignored, according the requirement of policy (we usually

don’t consider cost on link for fault tolerant mapping). The function ϕ is replaceable for

different policy. For example, if the goal is to minimize total cost, ϕ is the sum on all of

possible objects, but if the goal is to maximize the system life time, ϕ should be the function

of max. During run-time, these parameters will be updated because of run-time dynamics.

Through the steps of auto-detection, intelligent diagnosis and efficient recovery, progression

framework aims to make the IoT system self-optimized during run-time according to original

optimization goal.

On the other hand, the goal of fault tolerance computing is to enable systems to continually

operate properly. Major technologies to achieve fault tolerance, including replications, check-

pointing and recovery lines, and transactions [89, 27], focus on recovery from failures. In our

framework, fault tolerance in IoT is enhanced through automatic detecting failure of devices,

and recovering the IoT application through reconfiguring the link table in Darjeeling JVM.
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Figure 6.2: Progressive Data Flow of Edge Intelligence

6.1.3 Progression in Application

As shown in Figure 6.2, the streaming hub functions as a gateway between devices in edge

and system on cloud. In the design, we put the functionality of data pre-processing such as

grouping, ordering and feature extraction in the hub, and leave high computation cost task,

such as model training on the cloud. The models are propagate from cloud to hub through

pub/sub channels and the classification task can be processed near to the data, thus reduce

the latency for triggering actions for users.

Beside interplay of edge and cloud, the progression model also emphasize the continuous

development of intelligence on edge, which means the interplay is not only a collaborative

work, but also a mutual improvement. For example, the activity recognition as a classification

problem usually need to perform feature extraction from sensor events that are buffered in a

window. The classification model is trained on predefined labels on collected data, but on the

edge the self-learning module may be used for discovering patterns in the data that does not

belong to a predefined class. At the mean time, new generated label aids in understanding

the latest data and segmenting it into learn-able classes in cloud. Thus, the run-time model

in edge server can be always fresh in terms of reflecting latest pattern of users.

106



6.2 Progressive System Architecture

6.2.1 System Architecture

The system architecture of the framework is shown in Figure 6.3. To meet the scalabil-

ity requirement of IoT systems, the architecture is divided into a subsystem in cloud and

a subsystem in edge. Within an edge environment, the edge subsystems forms an local

management zone. Thus, low level autonomic management tasks, i.e fault tolerant reconfig-

uration, online context driven system adjustment, may take place on edge without interfering

the centralized master in cloud.

6.2.1.1 Subsystem in Cloud

In section 2.2, the original WuKong architecture has been introduced without inclduing edge

and progression framework related components. Here, we elaberate the new components

added for supporting progression in the new hierarchical management architecture.

• Master: Addition to original functionality of service repository, mapping, it is ex-

panded to handle with progressive remapping by receiving feedbacks from managed

progression server located in different management zone on edge.

• Data Storage: A centralized data storage that keeps historical user’s behavior, sensor

and actuator changes in database. It is implemented on top of MongoDB.

• Context Engines: Each of context engines periodically processes historical data,

perform offline learning on the data set, and publish the context and knownledge to

progression server or master. For example, virtual wuclass engine [107], and user

preference engine [48] have been implemented in our framework.
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Figure 6.3: Progression Framework Architecture
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• XMPP: For intelligent component with learning capability, XMPP retains the check-

pointing messages for online models. For progression framwork, it function as a brige

between engines and edge devices for exchanging knowledge and context.

6.2.1.2 Subsystem on Edge

As shown in Figure 6.3, the progression is achieved through cooperation among master,

progression server, Wudevices. Within a management region, all devices are managed by

a progression server during runtime. At the mean time, region delegator is responsible for

scalable reconfiguration through reprogramming.

• Progression Server: It inherits from edge server introduced in section 5. Thus,

it contains streaming pipleline for self-learning. Within the server, developer may

develop progression class (PrClass) to processing the monitoring stream. The server

provides native capabilities to reconfigure applications through extended WKPF, and

send report to notify master to remapping and deploy an application. A PrClass may

inspect the application status by looking into the environment status stream, and

online adjust configuration of a running application into an optimal status according

to specific mapping policy.

• Region Delegator: As introduced in section 4, scalable reconfiguration is achieved

by using master delegators for making mapping decision and code generation. Region

delegator is a service that is colocated in progression server on the same device. It is

responsible for reprogramming devices in a management region.

• Gateway: It not only routes MPTN message cross different network, but also lookup

monitoring messages and forward them to progression server.

• WuDevice: It runs WuKong darjeeling for controlling end sensor and actuators, and
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it connects to Zwave gateway.

In the framework, each application deployed in WuKong is customized by the probe selector

in master. The framework supports two types of probes, which are property probe and status

probe. Property probes are specified by FBP developer during draw the FBP, and status

probe are automatically added for the mapping policy selected by users. For each property

probe, link append-er will add an additionally link in FBP, so that value update of property

will be pushed to progression server automatically.

The probe selection strategy is customizable for status probe. Given a mapping policy, for

example energy efficiency, the probe selector will add probe info into the DJA file before

reprogramming. During run-time, each status probe functions as interceptor in WuKong

profiling framework. During the execution of a WuKong application, WuKong Darjeeling

and edge servers collect run-time statistics in memory, for example darjeeling collects number

of messages sent out in each link for energy efficiency policy. These run-time statistics can

be polled by programs running in progression server. Progression server, constraint resolver

and probe selector in master, progression agents (interceptors in Darjeeling and Edge server)

are the focuses in my dissertation.

6.2.2 Progression Lifecycle

The system lifecyle is shown in Figure 6.4. Progression frameowork has three work-flow loops,

a big loop, a medium loop, and a small loop. The big loop includes eight steps: mapping

policy choosing, service mapping, probe selection, append monitoring links, reprogramming,

run-time monitoring, optimality deviation detection, remapping request. The medium loop

includes four steps: optimality deviation detection, application reconfiguration, update link

table, and run-time monitoring. If the optimality deviation needs a global adjustment the

big loop reconfiguration will be applied; otherwise, the small loop reconfiguration will be ap-
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Figure 6.4: Lifecyle of Progression Framework

plied. The small loop only contains three steps: monitoring, offline learnt model tuning, and

optimality deviation detection. These are most important four operations that progression

framework provides for autonomically manage an application in WuKong middle-ware.

• Online Optimality Test: determine whether system or application is in an optimal

status by looking into data stored internal in-memory data storage

• Remapping: The long term progression operation helps to rearch a global optimal

status, but it will have a big delay or interruption of service in the system. It should

be used predictively.

• Reconfiguration: The short term progression operation helps to reach a quick so-

lution to recovery to a healthy system status. Even through it can’t always achieve

global optimal, but it incur much less service interruption than remapping.

• Model Tuning: The model for runtime decision makeing is updated through pub/sub.

No service interruption are needed. Thus, system may smoothly evolve according to

the environment fluctuation and context change.
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6.3 Progression Framework Implementation

The progression framework consists of a set of monitoring interceptors in Wukong darjeeling

JVM [8], progression server as host of progression component, and a set of services for

reconfiguring the wukong ecosystem.

6.3.1 Intercepter in Darjeeling

As we discussed in section 6.2, there are two types of probes in the system. The property

probe is monitored through appending monitoring link directly in FBP. Once the propety is

updated, its value will be sent to progression server through property propagation routine

in WKPF. The status probe is implemented as interceptor in WKPF. Once there is an

operation happens in WKPF, the counters for the operation will be recorded in memory.

These status can be pulled by PrClass through WKPF polling message.

6.3.2 Progression Server

As shown in Figure 6.3, the progression server is the driver of whole progression framework.

It collects information from devices, perform online analyze on the status data, and notify

master to remapping the application or reconfigure devices once an optimality deviation is

detected. Since the progression server is similar as an edge server that needs to do streaming

process, it inherits the merits of edge server with full advanced support in its implementa-

tion. Given one type of mapping policy, developer may devise a progression class (PrClass)

according our programming API. As an application is deployed according to a specific policy,

the corresponding PrClass is loaded into the progression server, and start to monitor and

predicatively maintain the status of the application.
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Figure 6.5: Progression Server Design

6.3.3 Optimality Test Support

Both of the progression server and the edge server are implemented as a streaming server,

but the data they process is greatly different from each other. An edge class functions as an

component in a FBP. It receives output streaming of precedent components and generate

write property message to change status of subsequent components. However, a progression

class need to collect information of whole FBP, or a category of information of whole system,

for example collecting info of all of PIR sensors in a home to predict user’s absent. According

to this requirement, two new types of data structures are designed.

• Global Channel: It is a specialize channel. It may receive all of monitored message

from the system. Each message in the channel is identified by network Id, port Id,

and property Id (NPP) and WuClass type. It is the responsibility of channel user

(extensions of PrClass) to distinguish whether to process a message or not.

• System Buffer: It is a specialized time series buffer. It keep historical time-series
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data that belongs to one particular category of sensors or actuators. For example, a

PIR system buffer stores data of all the PIR sensors in the running system.

6.3.4 Progression Services

Within the progression server, there are a set of services for PrClass to adjust the system

setting and configuration after optimality test.

6.3.4.1 Remapping Support

The master reconfiguration manager plays important role in generating report to master to

trigger remapping. Once a PrObject detects an optimality deviation, it needs to generate a

set of constraints, such as component A can’t be in device B, so that the constraint resolver

can apply these constraints before start the mapping computation. In this way, a PrObject

may assist master to generate better deployment decision.

To achieve this goal, a set of predict API is implemented in the master reconfiguration

manager. A PrClass may access the manager and construct a set of predictions, such as

{componentId = 1, type=’replica’, operator = ’EQ’, value = ’2’}, to send to master to

trigger remapping.

6.3.4.2 Reconfiguration Support

As shown in Figure 6.6, the flow based program is encoded into a compact binary format,

which is called Darjeeling Archive (DJA), so that Darjeeling VM may dynamically load it

with minumum transmission time through reprogramming. A DJA file contains component

map, link table, initial value table, and binary WuClasses (if Java virtual wuclasses need to
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Figure 6.6: Flow Based Program Reprogramming Data

be deployed to the target device). Each component inside the component map records which

physical sensors or actuaators are selected for it. A selected sensor or actuator is represented

by an endpoint which includes the network address of the device and the port that the sensor

or actuator is plugined. If a component has replica for the fault tolerant purpose, there will

be multiple endpoints for that particular component. At the mean time, the link in DJA is

represented by two component indexs in the link table.

During run-time, if a PrObject want to reconfig a small part of application, the most effective

way is to change senders and receivers of existing links. Since each of them is distributedly

deployed in a WuKong system, a reconfiguration algorithm needs be designed to make sure

there is no abnormal things happen during transitional state, and the changing is consistent

on both side. In order to maintain robust of the process, an endpoint changing mecha-

nism [107] is designed to resolve the issue of replica replacement.

In the mechanism, locks are generated and passed to downstream mapped services to indicate

upstream data is not reliable for now. The use of locks grant more global knowledge of the

component endpoint changing states. Once a lock is seen in a WuDevice, services in the

WuDevice will treat upstream property data change as unreliable. A lock is composed with

parts: lock ID, component ID.
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To facilitate PrClass reconfigure a part of application, a set of API is implemented in ap-

plication reconfiguration manager. Given an application with three components Ci, Cj, Ck,

service Sj is on device Db and its backup service is on Sj′ device Db′ . A link Lij is the

upstream link to Sj, and another link Ljk is its downstream link. If we want to replace Si

with Si′ , we need to use to protocol to sequentially notify devices. To provide programming

simplicity, we provide three component changing primitives:

• Set Lock: Send a WKPF set lock message (Cj) to target device Da, and notify the

device Da to stop sending and receiving messages to and from all of the endpoints of

the component (Cj).

• Change Component: Send a WKPF change component message (Cj, Sj, Sj′) to

target device Da to ask the device to update its component map item (Sj) to (Sj′)

• Release Lock: Send a WKPF release lock message (Cj) to target device Da to clear

the lock. Thus, the messages processing can be recovered.
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Algorithm 6.1 Replica Replacement Protocol

Input: The faulty device Df and a set of in use component F (Df ) whose primary endpoint

is on the device

1: for all faulty component Cj ∈ F (Df ) do

2: for all component Ci that (Ci, Cj) is a link in link table do

3: Send set lock to device DCi
for link (Ci, Cj)

4: Send change component (Cj, Sj, Sj′) to DCi

5: end for

6: for all component Ck that (Cj, Ck) is a link in link table do

7: Send set lock to device DCk
for link (Cj, Ck)

8: Send change component (Cj, Sj, Sj′) to DCk

9: end for

10: for all component Ci that (Ci, Cj) is a link in link table do

11: Send release lock to device DCi
for link (Ci, Cj)

12: end for

13: for all component Ck that (Cj, Ck) is a link in link table do

14: Send release lock to device DCk
for link (Cj, Ck)

15: end for

16: end for

In the protocol, the DCi
denotes the device that currently hosts the primary endpoint of

component Ci. With these three primitives, the fault recovery algorithm is implemented in

progression server to handle with failure of devices. In section 6.4.1, we will discuss the fault

tolerant policy as a use case in detail.
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6.4 Progressive System Case Study

In this section, we will elaberate how to use progression framework to implement proactive

autonomic management of application and systems. Section 6.4.1 discusses how to use

reconfiguration API to implement fault tolerant policy. After that, the implementation of

occupancy aware policy with the remapping support is discussed in section 6.4.2.

6.4.1 Reconfiguration for Fault Tolerant

To achieve application reliability in WuKong middle-ware, fault tolerant policy is an impor-

tant progressive capability to support. The fault tolerant policy aims to support dynamic

reconfiguration of applications at run-time, in response to device failure through resilient

substitution that can be applied to any component or sub DAG of the FBP. To eliminate

the single failure of master and release master from heavily monitoring overhead of a large

number of applications, the fault tolerant policy PrClass is designed for fault recovery of an

application. If a fault tolerant policy is chosen, the component is added by master before

deployment.

In the fault tolerant mapping policy, a component of an application may have 1 - 2 replica,

which is specificed by user through Master UI. During mapping, master will select a wuobject

for each replica. Each replica of a component is chosen on different device for the purpose of

fault tolerant. After remote programming, every component will initially run on the primary

wuobject, and other wuobjects chosen for replicas will be in standby status.

During run-time, the fault tolerant policy PrObject in progression server will periodically

send heartbeat request to the each devices that host at least one endpoint of a replicated com-

ponent. If a device can’t reply to the heartbeat request for three times, PrObject will treat

it as faulty device. Then, the PrObject is responsible for initializing a component change
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process to replace the failed primary instance with the replica and resume the execution.

6.4.2 User Occupancy Aware Remapping

In smart home environment, an intelligent application needs to be smart enough to function

differently for different user context. For example, the nest device may detect whether user

is at home or not. If no user exists or user is going to leave, it will close the air condition.

It may also find users’ existence pattern from historical data, and predict the coming time

of user and restart air condition. In this section, we provide an implementation of the user

occupancy aware application policy. So that application may easily change mode when user

switch between present and absent.

Algorithm 6.2 Occupancy Prediction Algorithm

Input: Vc and a set of vector Vi as S(Vi)

Input: current time slot k

Output: probability of occupancy in time slot length(Vc) + 1

1: Init a maximum heap H, in which items are sorted by distance

2: for all vector Vi in the set S(Vi) do

3: calculate hamming distance di between Vc and Vi until slot i

4: put the pair (i, di) into heap H

5: end for

6: pop top K items in the H

7: find and put such K vectors by its index into a set Stop

8: calculate the mean M of vector Vk(i+ 1), Vk ∈ Stop

9: return M

To study how we may switch mode of applications through prediction from historical users’s
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pattern, we use the occupancy prediction algorithm defined by the research of PreHeat [84]

in Microsoft. The sensing of occupancy is achieved by adding motion sensors in rooms.

All motion sensors in the system keep on reporting its value to progression server, so that

the PrClass need to use a system buffer to hold it. Given historical occupancy vectors and

occupancy vector until time slot k, the detailed algorithm to predict occupancy in time slot

k + 1 is presented below.

In the Algorithm 6.2, space occupancy is represented by a binary vector for each day, where

each element represents occupancy in a 15 minute interval. The vector element is 1 if there

is any occupancy during a partial during the interval or 0 otherwise. As a day progresses,

system maintain a partial vector from midnight up to the current time. To predict future

occupancy, we use the partial occupancy vector to find similar days in the past. Specifically,

we compute the Hamming distance between the current partial day and the corresponding

parts of all the past occupancy vectors. (The Hamming distance simply counts the number

of unequal corresponding binary vector elements.) We then pick the K nearest past days for

making the prediction. Based on initial experiments, we found K=5 proved to be a good

choice for high prediction accuracy. The predicted occupancy probability for a future time

is simply the mean of the corresponding occupancy values in the K nearest past days.

6.5 System Performance Study

In this section, we study performance of progression framework in terms of remapping la-

tency, reconfiguration latency, model update latency and reprogramming efficiency in a man-

agement zone.
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6.5.1 System Setup

We setup a management zone for performance study in our lab. As shown in Figure 6.7,

the management zone contains a progression server, two reprogramming delegator and three

gateways. Each of them are standone software component on separate devices. WuKong

Master, XMPP and MongoDB are run in a Mini-Mac.

 

Raspberry Pi B Raspberry Pi C Raspberry Pi D 

Wifi Gateway(192.168.1.100)  Zwave Gateway(192.168.1.101)  Wifi Gateway(192.168.1.102)  

Mac Mini 

UDPDevices 
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UDPDevices 

Master, XMPP, MongoDB 

Raspberry Pi A Intel Edison Intel Edison 

  Progression Server Delegator 1 Delegator 2 

WuDevice

sss 

Hardware Software 

WuDevice

sss 

Region 2 

Figure 6.7: System Setup for Performance Study

Within the management zone, there are two regions connected by three gateways. Two sep-

arate delegaters on intel edison are responsible for reprograming these two regions. Each of

gateways are run on a Rapsberry Pi. We include two types of devices in the study, which are

UDPDevices connected with UDPGateway and WuDevice connected with ZwaveGateway.
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For those UDPDevices, they are actually python programs that implement the WKPF, so

that they may provide service for computation. Each of them are collocated with the gate-

way its belongs to on Raspberry Pi. Each of Wudevice is actually a physical device that

runs WuKong Darjeeling to control sensors and actuators. Under each UDPGateway, there

are 8 UDPDevices. The ZwaveGateway connects with 16 wudevices. Each Wudevice has

ATMega 2560 micro-controller, 32KB EPROM, 3 digital I/O and 3 analog I/O, and nested

zwave communication module. Our Wukong darjeeling JVM is ported onto each Wudevice.

The Raspberry Pi 2 has 900MHz quad-core ARM Cortex-A7 CPU and 1 GB RAM, and

progression server is deployed on it as a streaming hub.

6.5.2 Remapping Latency

In this round of study, we deploy FBPs with different size with user aware policy PrClass in

the first region. If a status (absent/occupancy) is predicted different with current status, the

remapping request will be sent to master. Since remapping is to trigger reprogramming the

same FBP with different deployment decision, their efficiency is impacted by the intensity

of network traffic. Thus, we use a backgroud FBP to generate network traffice from a

UDPDevice to a ZwaveDevice. The UDPDevice generates network traffic in 60, 80, 120, 240

packets per minute.

Figure 6.8 shows the remapping latency linearly grows with the size of FBP under normal

network traffic (120 packets per minute). But under high traffic (240 packet per minute),

the latency increased obviously because of the network congestion on the Zwave Dongle.

Althrough high traffice brings extra delay in remapping, we may achieve a remapping of a

FBP with 16 components within 2 minites. The latency is acceptable for context update of

IoT systems.
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Figure 6.8: Remapping Latency

6.5.3 Reconfiguration Latency

To study the efficiency of reconfiguration, the fault tolerant scenarios is used for evaluate

how long it takes to recover a faulty component. As shown in 6.4.1, the recover time

is determined by three factors: the fault detection time (how long to treat heartbeat as

timeout), the degree of the faulty component in FBP, and the network traffic. Since the

timeout parameter depends on the setting of algorithm for different application scenarios,

we mainly study how the degree of component and network traffic will impact the recover

time. As what we did for remapping latency study, latency for network traffic in 60, 80, 120,

240 packets per minute are compared.

In Figure 6.9, re component with different degree (2, 4, 6, 8) are compared. For each setting,

the latency of replacement for each type of setting is the average of 10 times physical latency

minus the fault detection time parameter (3 * 2 seconds). The replica replacement protocol

includes three steps: lock, change map, release lock. Since request messages of each type

are parallel send to each device, the total time is actually three round trip time in WuKong

MPTN. When the traffic is relative low, the average round trip time is about 200ms. Thus,
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Figure 6.9: Component Replacement Latency

the latency is about 200ms to 800ms in the network traffic of (0 to 80 packets per minutes).

As traffic grows to 120 packets per minute, a tranmission lag in data forarding queue of zwave

gateway is observed. It is because of the limited bandwidth of Zwave network. Therefore,

the latency is also most doubled in 120 packets per minute setting, and tripled in 240 packets

per minute. But even in high network traffic, the component replacement procotol may still

be executed within 1.5 seconds, which is acceptable in most of home and office application

scenarios.

6.5.4 Model Update Latency

In this group of study, I measure the edge model update latency when the size of model

content grows. The user preference control PrClass is used to perform the study. This

PrClass listens to a topic called preference from XMPP. The size of json file which is records

the preference table is updated in each round of study, to see how long can it be applied to

PrClass for control. Since XMPP is also used as a storage for checkpointing of Edge Classes.

To simulate these kind of system overhead, an extra XMPP client is used to periodically
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write to a group of topics in differrent rate.

Figure 6.10: Model Update Latency

Figure 6.10 shows that the model update is pretty fast (less than 3 seconds) when the model

size is less than 100KB. But when the size grows to 1MB, the latency grows to 8 seconds. It

is because of 1MB needs multiple round of communication between edge server and XMPP

to delivery big model. Since parameters size of most of machie learning alogorithm that can

applied in edge directly is less than 1MB, we believe it is an acceptable latency for edge

application.

6.5.5 Scalable Reprogramming Performance

In Chapter 4, we have introdiced the scalable deployment algorithms static mapping algo-

rithm, uniform mapping algorithm, and optimal mapping algorithm. We also study how our

optimal algorithm outperform other algorithms in a real system. In this study, we need to

reprogramming both two regions. The zwave gateway connects Wudevices belongs to both

two regions, so that it is a congest gateway and these two regions form a congestion zone.
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In this study, three types of reprogramming strategies, sequential reprogramming, distributed

static reprogramming, and distributed optimal reprogramming are compared. In sequential

reprogramming strategy, the master sequentially to reprogram both two regions, so the

reprogramming time is the sum of deploy time on region 1 and region 2. In the distributed

static reprogramming, region 1 and region 2 are parallel reprogramed by delegator 1 and

delegator 2, and the static algorithm is applied in the mapping decision. In distributed

optimal reprogramming, we not only use parallel reprogramming, but also balance the traffic

of each of gateway with the optimal mapping algorithm proposed in Section 4.2.

Figure 6.11: Reprogramming Algorithm Comparison

In the study, we perform 3 rounds of reprogramming for each size of FBP (4, 8, 12, 16)

with each type of strategies. As shown in Figure 6.11, distributed static reprogramming

algorithm may reduce the latency to less than 1/n (n is the number of region in a congestion

zone), due to the gain of paralle reprogramming. Distributed optimal algorithm may further

reduce 15% to 45% of reprogramming time, which is better than 15% to 30% in simulation.

The reason behind it is that there are more extra delay in each round of reprogramming
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packet passing in the congested gateway. Our optimal algorithm reduce the traffic in the

congested gateway, so also reduce the packet transmission time. We can conclude that the

optimal algorithm may have even more improvement in a bigger congestion zone in which

more devices are involved.

6.6 Summary of Progressive System

In this chapter, we investegate the emergent requirment of proactive management of IoT

systems on the edges of network. In our research, the progression model is identified as

self-learning, policy-driven and context aware. This chapter presents a system architecture,

progression framework, that is built for self learning based self management of IoT appli-

cations during runtime. This design release the master from heavy workload of runtime

management of applications deployed on the system.

Beside supporting streaming analytics and simple programming paradigm, progression server

builds efficient addons for system monitoring and programming primitives for remapping,

reconfiguring systems. Our evaluation has demonstrated that progression framework pro-

vides an efficient, yet open autonomic management framework for IoTs in edge. With our

self-learning support and reconfiguration support in the framework, diversified policies for

IoT application may be designed and managed within the progression framework during

runtime.

127



Chapter 7

Conclusions and Future Work

The large scale and heterogeous attributes of IoT system bring issues, including energy

saving, efficient and low latency deployment and management. At the mean time, the large

amount of data generated by devices generate extra load on current centralized big data

system, and calls for edge computing support for building intelligence near the data.

In this dissertation, I studied the scalability of service oriented IoT system, and proposed

an edge and progression framework for building edge instelligence and predictive maintained

applications in service oriented IoT systems. The contribution of this dissertation is as

follow:

• Energy aware mapping algorithms are designed to save communication cost for IoT ap-

plication. If an application to be deployed in multi-hop network, the optimal mapping

can be efficiently resolved by quadratic programming algorithm. If it is in a single-

hop network, the optimization complexity can be further reduced by applying greedy

algorithm of MWIS in collocation graph.

• Large scale low latency application deployment is usually needed for emergency man-
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agement in public administration. The mapping of thousands of copies of single ap-

plication is studied. In the study, target area is divided into zone that doesn’t have

overlapped network congestion. Within each zone, mapping algorithm that considering

both repogramming latency and runtime deadline is devised.

• To support edge intelligence, the edge framework is designed for building online learning

on streaming data. Within the edge server, native data structure and time series

operators provides programming simpilicity for IoT application developer. Moreover,

the edge class level fault tolerant is achieved through check pointing and recovery.

• As the intelligent management solution, the progression framework is built for online

optimality of mapping decision. It is built as a plug-and-play streaming server that

is capable of cooperating with devices and master to achieve self-management and

self-configuration.

The increasing number of large scale IoT application makes demanding requirements on

scalable management solution in middleware layer. We believe that our edge and progression

framework design is a practical and efficient solution in meeting this challenge
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