
UNIVERSITY OF CALIFORNIA

Los Angeles

Subgraph Matching on Attributed Multiplex Networks

with Applications to Knowledge Graphs

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Thomas K. Tu

2021

© Copyright by

Thomas K. Tu

2021

ABSTRACT OF THE DISSERTATION

Subgraph Matching on Attributed Multiplex Networks

with Applications to Knowledge Graphs

by

Thomas K. Tu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Andrea L. Bertozzi, Chair

Abstract: For applications involving graph-structured data, a natural problem is to identify

subgraphs that match a given template. In this thesis, we present several approaches for

solving this subgraph matching problem, including approaches for both exact and inexact

subgraph matching. Additionally, we define several problems related to subgraph matching

in order to obtain a better understanding of the entire solution space for the subgraph

matching problem. We analyze a variety of synthetic and real-world multiplex datasets,

including Sudoku, transportation networks, Twitter, the DBPedia knowledge graph, and

several datasets from the DARPA-MAA program for modeling adversarial activity. We

then show how our exact subgraph matching approach can be extended to handle errors

in network alignment, the process of merging multiple networks together to form a single

multiplex network. Finally, we address the closely related problem of matching variable length

path-based graph templates, and apply our method to identify potential activation pathways

within a biological knowledge graph extracted from scientific publications on COVID-19.

ii

The dissertation of Thomas K. Tu is approved.

Luminita Aura Vese

Mason Alexander Porter

Deanna Needell

Andrea L. Bertozzi, Committee Chair

University of California, Los Angeles

2021

iii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Applications and Problem Definitions . 1

1.2 Definitions . 2

1.2.1 Problem Statements . 4

1.3 Prior Work . 8

1.3.1 Ullmann’s Algorithm . 10

1.3.2 VF2 . 10

1.3.3 Constraint-Propagation Approaches 11

1.3.4 Graph-Indexing Approaches . 11

1.3.5 Multiplex Approaches . 12

1.3.6 Review . 13

2 Subgraph Matching on Multiplex Networks 14

2.1 Filtering . 15

2.1.1 Node Label Filter . 16

2.1.2 Node-level Statistics Filter . 17

2.1.3 Topology Filter . 19

2.1.4 Repeated-Sets Filter . 20

2.1.5 Neighborhood Filter . 23

2.1.6 Elimination Filter . 25

2.2 Solving the Problems . 27

2.2.1 Isomorphism Counting . 27

iv

2.2.2 Validation . 30

2.3 Experiments . 31

2.3.1 Sudoku . 32

2.3.2 Multiplex Erdős–Rényi Networks . 35

2.3.3 Real-World Examples . 37

2.3.4 Adversarial Activity . 44

3 Inexact Attributed Subgraph Matching . 55

3.1 Introduction . 55

3.1.1 Related Work . 56

3.1.2 Our Contributions . 56

3.2 Algorithm . 56

3.2.1 Graph Edit Distance Based Cost Function 57

3.2.2 Cost Bounds . 58

3.2.3 Constrained Cost Bounds . 60

3.2.4 Searching for Optimal Solutions . 61

3.3 Experiments . 62

3.3.1 AIDA Version 2.1.2 . 63

3.3.2 DBPedia . 69

3.A Varying Edgewise Cost Bound Weights . 74

3.B Restricting Candidates During Minimization 75

4 Fault-tolerant Subgraph Matching on Aligned Networks 76

4.1 Fault-tolerant Subgraph Matching on Aligned Networks 76

4.2 Filtering . 80

v

4.2.1 Fault-tolerant Node-level Statistics Filter 80

4.2.2 Fault-tolerant Topology Filter . 81

4.2.3 Handling Nodes With Known Alignments 82

4.3 Recursive Merging . 83

4.4 Experiments . 83

4.4.1 AIDA Version 2.0.2 . 85

5 A Constraint Propagation Approach for Identifying Biological Pathways

in COVID-19 Knowledge Graphs . 89

5.1 Introduction . 89

5.2 Problem Statement . 90

5.3 Algorithm . 91

5.4 Results . 95

6 Conclusion . 101

References . 104

vi

LIST OF FIGURES

1.1 In the above multiplex networks, the shapes of the nodes corresponds to their

labels (circle or square) and the patterns of the edges correspond to their channel

(solid green or dashed blue). Given the template and world networks above, there

are four signals consisting of the subgraphs of the world induced by {1,2,6},

{1,6,8}, {4,5,7}, and {7,9,10}. 6

2.1 Flowchart of the algorithm for subgraph matching 15

2.2 In the networks shown, there is only one valid signal for the template: 1 for A, 2

for B, and 4 for C. 18

2.3 An example template and world for which the neighborhood filter plays a role in

eliminating candidates. 25

2.4 Subgraph matching problems consisting of graphs A, B and C. 26

2.5 Sudoku grid with initial clues. 32

2.6 Solving Sudoku puzzles as special case of a multiplex subgraph isomorphism

problem using the 9×9 and 9×9×3 representations. Scatter plot of solution times

(seconds) on the Sudoku puzzles from Peter Norvig’s GitHub [Nora], including

those from Project Euler problem 96 [Pro]. A black line is drawn where the

representations take an equal amount of time as a visual aid for comparing the

two representations. 35

2.7 Mean number of search iterations (recursive calls to IsoCount) taken by Algo-

rithm 7 to solve the SIP and SICP with one, two, and three channels as a function

of world size. Results are averaged over 500 trials. 36

vii

2.8 Results for the Great Britain Transportation template after applying the node-

level statistics, topology, repeated-sets and elimination filters, without node label

filtering. The number in each node is the number of remaining candidates for that

node after filters. 38

2.9 Results for the Great Britain Transportation template after applying the node

label filter with a 3 km radius in addition to the node-level statistics, topology,

repeated-sets, and elimination filters. The number in each node is the number of

remaining candidates for that node after filters. 39

2.10 All candidates for the Great Britain Transportation dataset: blue nodes represent

template nodes and red nodes represent candidates for the SIP. Image was

generated using the Mapbox API[Map] with data from Open Street Map.[Ope] . 40

2.11 Candidate count for each node in the Higgs Twitter template after applying the

node-level statistics, topology, and repeated-sets filters. 42

2.12 Candidate count for each node in the commercial airline template after applying

the node-level statistics, topology and repeated-sets filters. 43

2.13 (Top): The number of candidates for each template node after different filters

are applied to PNNL Version 6 B1-S1. (Bottom): The number of template nodes

for which each world node is a candidate. Note that the Validation histogram

perfectly overlaps the Elimination histogram and the Neighborhood histogram

perfectly overlaps the Topology histogram. 47

2.14 Candidate count for each node in the PNNL Version 6 B1-S1 template after

applying the node-level statistics, topology, and repeated-sets filters with and

without applying the elimination filter. 48

2.15 Candidate count for each node in the PNNL Real World template after solving

the MCSP using validation. Edge colors correspond to channels. 48

viii

2.16 (Top): The number of candidates for each template node after different filters

are applied to PNNL Real World. (Bottom): The number of template nodes for

which each world node is a candidate. Note that the Validation histogram almost

perfectly overlaps the Elimination histogram. 49

2.17 Candidate count for each node in the GORDIAN Version 7 Batch-1 template after

applying the node-level statistics, topology, repeated-sets, and elimination filters. 51

2.18 (Top): The number of candidates for each template node after different filters are

applied to IvySys Version 7. (Bottom): The number of template nodes for which

each world node is a candidate. 53

2.19 Candidate count for each node in the IvySys Version 11 template after applying

the node-level statistics, topology, repeated-sets, and elimination filters. The

colors of the edges correspond to their different channels. 54

3.1 Flowchart of the inexact subgraph matching procedure. 57

3.2 Structural Equivalence: Nodes C and D are structurally equivalent and F is

structurally equivalent to neither. C, D, and F have the same node label and same

set of neighbors. However, the edge connecting F to E has a different label than

the edges connecting C and D to E, so F is not structurally equivalent to C or D. 66

3.3 Template graph and world subgraph for Problem 1B. Colored sets of nodes in

the world graph are candidates for nodes of the same color in the template graph.

Two substructures of the template correspond to large sets of candidate world

nodes. 67

3.4 Modified version of the comprehensive query from [TRS13] used for the DBPedia

dataset. 71

ix

3.5 Template and results for the DBPedia dataset in graph format. Highlighted in

red for each match are the deviations from the template. (a) Attributed graph

template created from the comprehensive query from [TRS13]. (b) Best match for

the DBPedia template. The original query asked for a population greater than

1,000,000. (c) Second best match for the DBPedia template. The original query

asked for examples of nuclear power stations in the United States, not dams in

Massachusetts. 72

4.1 A picture of AIDA Version 2.0.2 template 2. Colors on edges represent different

edge types, and the number in each node is a unique ID number. The central

node, labeled 13, is the entity that represents Oleksandr Peklushenko. 85

4.2 A picture of a minimal alignable subgraph isomorphism for AIDA Version 2.0.2

template 2. Colors on edges represent different edge types, and the number in

each node is a unique ID number. The three nodes that can be merged together

to form node 13 are highlighted in red. 86

4.3 AIDA V2.0.2 template network (left) and subgraph of world network with nodes

participating in a minimal alignable subgraph isomorphism (right). The number

in each node is a unique ID number. Groups of nodes in the world network of one

color (that is not dark gray) are the candidates for template nodes of the same

color. The boxed group in the world network are the nodes that are involved in a

merging. 88

5.1 Template diagram for pathfinding with edge counts. Each cell represents a

possible template role that could appear in the path. The first number in each cell

represents the position in the path, with 0 being the start. The second number

represents the number of edges used that match the edge type filter. Arrows are

drawn where one state can lead to another through the addition of an edge to the

path. 95

x

5.2 Template 1 of the PNNL COVID V3.2.1 dataset. The template describes a path

from the SARS-COV-2 ACE2 receptor to cytokine storms via activation of ADAM17. 98

5.3 Candidate counts for the first path in template 1 of the COVID V3.2.1 dataset.

The first number in each cell represents the position, the second represents the

number of edges used that match the edge type filter, and the third is the number

of candidates for that template role. 99

5.4 Candidate counts for the second path in template 1 of the COVID V3.2.1 dataset.

The first number in each cell represents the position, the second represents the

number of edges used that match the edge type filter, and the third is the number

of candidates for that template role. 100

xi

LIST OF TABLES

1.1 A summary of the various problems defined in Subsection 1.2.1, in increasing

order of computation cost. 5

1.2 Solutions to SMP and MCSP corresponding to the template and world shown in

Figure 1.1. 7

2.1 In/out-degree for nodes in the template and world shown in Figure 2.2 18

2.2 Candidates per template node for the problem shown in Figure 2.2 after various

filters have been applied. 19

2.3 Candidates per template node for the problem shown in Figure 2.3 after various

filters have been applied. 26

2.4 Biadjacency matrix of B used in the matching problem between the neighborhoods

of template node C and world node 4. 27

2.5 Sizes and filtering results for the real-world examples in Sections 2.3.3.1, 2.3.3.2 and

2.3.3.3. The last column records the types of problems stated in Subsection 1.2.1

that we are able to solve. The names of the filters are abbreviated: L = Node Label;

S = Node-level Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood;

E = Elimination. 37

2.6 Overview of the sizes and filtering results of different DARPA datasets. For each

instance of the datasets, the table records its basic statistics, which filters have

been applied, and the number of isomorphisms. The last column states the types

of problems stated in Subsection 1.2.1 that we solve for each instance. The names

of the filters are abbreviated: L = Node Label; S = Node-level Statistics; T =

Topology; R = Repeated-Sets; N = Neighborhood; E = Elimination. 45

xii

3.1 Results for the AIDA Version 2.1.2 dataset, showing time taken and the cost of

the best match that was found. The algorithm was cut off if it failed to complete

within 46.5 hours, taking the best match that it had found so far. 64

3.2 The number of solutions, representative solutions, candidate world nodes, and

structural equivalence classes for each subgraph matching problem from the AIDA

Version 2.1.2 dataset. For templates 1D–F, the code was terminated due to

runtime constraints before all solutions could be found. 69

3.3 Structural equivalence classes when considering only part of the label and the full

label. 70

3.4 Results for the DBPedia dataset. Similarity score is calculated by subtracting

the cost from the maximum similarity of 7.4, and is shown as a percentage of the

maximum similarity. Variable names are prefixed with a question mark. 73

xiii

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Andrea Bertozzi, for her invaluable mentorship

and guidance throughout my Ph.D. career. I also want to thank Jacob Moorman, Qinyi

Chen, Xie He, Dominic Yang, Yurun Ge, and the rest of my collaborators on the UCLA

DARPA-MAA team for their dedication, hard work, and companionship over the past three

and a half years.

Additionally, I thank the students from the UCLA 2020 CAM knowledge graphs REU for

providing me with their annotated bibliography on knowledge graphs, and Jamie Atlas, Omri

Azencot, Zachary Boyd, Jeremy Budd, Yonatan Dukler, Matthew Jacobs, Blaine Keetch,

Hao Li, Kevin Miller, Mason A. Porter, Bao Wang, Yotam Yaniv, and Baichuan Yuan for

many helpful discussions.

I thank the teams at Pacific Northwest National Laboratories, Ivysys Technologies, and

the Graphing Observables from Realistic Distributions In Activity Networks (GORDIAN)

team for providing us with datasets through the DARPA-MAA program. I would also like to

thank my colleagues at HRL Laboratories, Systems and Technology Research, the University

of Maryland DARPA-MAA team, and all of our other fellow performers for their work on the

DARPA-MAA project, and the spirit of collaboration they have helped to create and foster.

Chapter 2 is adapted from [MTC21] and I acknowledge my coauthors Jacob Moorman,

Qinyi Chen, Xie He, and Andrea Bertozzi. Jacob, Qinyi, and I developed the main subgraph

matching algorithm and code. Qinyi and Xie conducted the experiments on real-world

datasets, and Qinyi, Xie, Jacob, and I analyzed the DARPA dataset experiments. I was

responsible for the Sudoku and Erdős–Rényi experiments. Andrea led the project and

supervised our work.

Chapter 3 is adapted from [TMY20] and I acknowledge my coauthors Jacob Moorman,

Dominic Yang, Qinyi Chen, and Andrea Bertozzi. Jacob, Qinyi, and I developed the

inexact subgraph matching algorithm and code. I was in charge of the AIDA V2.1.2

xiv

experiments and provided the resulting solution space to Dominic, who performed the analysis

in Subsection 3.3.1.1. Andrea led the project and supervised our work. Subsection 3.2.3 did

not appear in [TMY20] and was written by Jacob. It was published as a part of Jacob’s thesis

dissertation [Moo21]. Subsection 3.3.2 also did not appear in [TMY20], and was done by me.

I also thank the PNNL team for providing a definition and Python implementation of the

graph edit distance metric, without which much of the work would not have been possible.

Chapter 4 is adapted from [TY20] and I acknowledge my coauthor Dominic Yang, who

contributed the visualization and analysis of the solution space found in Section 4.4. I

was responsible for the rest of the work, including the code and algorithms as well as the

experiments on the AIDA V2.0.2 dataset.

Chapter 5 has not yet appeared in a publication and is my own work. I thank Jeremy

Zucker and Jeremy Teuton from PNNL for providing me (via email) a technical description

of the Indra-Blender COVID-19 knowledge graph dataset, which was used in the writing of

Section 5.1.

Finally, I wish to thank the Defense Advanced Research Projects Agency for providing

me with financial support during my Ph.D (agreement number FA8750-18-2-0066).

The material in this thesis is based on research sponsored by the Air Force Research

Laboratory and DARPA under agreement number FA8750-18-2-0066. The U.S. Government

is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the Air Force Research Laboratory and DARPA

or the U.S. Government.

xv

VITA

2015 Software Development Intern, Trillium Labs LLC.

2016 B.S. (Applied Mathematics and Computer Science), NJIT.

2017 Data Science Consultant, NovaSignal (formerly Neural Analytics).

2016–2018 Teaching Assistant, Mathematics Department, UCLA.

2018 M.A. (Mathematics), UCLA.

2019 Research Intern, HRL Laboratories LLC.

2018–Present Graduate Student Researcher, Mathematics Department, UCLA.

PUBLICATIONS

J. D. Moorman, Q. Chen, T. K. Tu, X. He, A. L. Bertozzi, “Subgraph Matching on Multiplex

Networks.” IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp.

1367–1384. IEEE, 2021.

J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, A. L. Bertozzi, “Filtering Methods for

Subgraph Matching on Multiplex Networks.” In 2018 IEEE International Conference on Big

Data, pp. 3980–3985. IEEE, 2018.

T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, A. L. Bertozzi, “Inexact Attributed Subgraph

xvi

Matching.” In 2020 IEEE International Conference on Big Data, pp. 2575–2582. IEEE,

2020.

T. K. Tu, D. Yang, “Fault-tolerant Subgraph Matching on Aligned Networks.” In 2020 IEEE

International Conference on Big Data, pp. 2569–2574. IEEE, 2020.

xvii

CHAPTER 1

Introduction

1.1 Applications and Problem Definitions

Multiplex networks [KAB14] are increasingly useful data structures for representing entities

and their interactions in disciplines such as bioinformatics [ZL17], social networks [Ver79],

ecological networks [PPP17], and neural networks [BBB16]. Within these, there often arises

the need to identify patterns in the data matching a user-defined graph query. This task

can be considered as subgraph matching, the process of determining whether a given pattern

called a template network occurs as a subgraph of a larger world network, and if so, exactly

where it occurs and how many times [CFS03].

Subgraph matching is commonly used in many applications involving graph-structured

data [CFS03]. For example, in bioinformatics [ZLY09], subgraph matching is used to

identify biological patterns in protein-protein interaction networks. In social network analysis

[Fan12, YG13], subgraph matching is used to identify social communities or groups. Subgraph

matching is also an important subroutine in frequent subgraph mining [YH02, HWP03] and

graph database search [ZMC11]. Despite the abundance of multiplex network data in these

applications, there are relatively few subgraph matching algorithms that expressly support

multiplex networks [IIP16, MBF20] compared to the number of algorithms that support

non-multiplex networks [Ull76, CFS04, CFS17, CFS18, Sol10, HLL13, BCL16].

1

1.2 Definitions

We begin by defining networks, subgraphs, and subgraph isomorphism. Within this thesis,

we will occasionally also refer to networks as graphs.

Definition 1.2.1 (Network). A network G = (V , E , Src,Dst) is a set of nodes (also known

as vertices) and edges. Each edge has a source node and a destination node. The function

Src : E → V maps each edge to its source, and the function Dst : E → V maps each edge to

its destination. The number of nodes is denoted n. The set of edges is disjoint from the set

of nodes.

Note that we do not define edges to be a subset of the Cartesian product of the node set

with itself, as this would not allow for repeated elements. In general, we allow that there

may be more than one edge between the same source and destination (i.e. the network may

be a multigraph). This necessitates the use of the Src and Dst functions, as edges are not

uniquely defined by their source and destination.

Definition 1.2.2 (Subgraph). Given two networks G1 = (V1, E1, Src1,Dst1) and G2 =

(V2, E2, Src2,Dst2), we say G1 is a subgraph of G2 if:

1. V1 ⊆ V2

2. E1 ⊆ E2

3. Src1(E) = Src2(E)∀E ∈ E1

4. Dst1(E) = Dst2(E)∀E ∈ E1

Definition 1.2.3 (Subgraph Isomorphism). Given two networks Gt and Gw (referred to as

template and world respectively), we define a subgraph isomorphism as a set of two injective

functions fnodes : Vt → Vw and fedges : Et → Ew if:

• fnodes(Srct(E)) = Srcw(fedges(E)))∀E ∈ Et

2

• fnodes(Dstt(E)) = Dstw(fedges(E)))∀E ∈ Et

We call the subgraph of Gw that is mapped to by the subgraph isomorphism a signal, Gs.

Though this injective mapping is not technically an isomorphism, it becomes one when you

restrict the range to the signal nodes and edges, and it is in this sense that we refer to it as

an isomorphism.

For sufficiently simple templates, there are efficient algorithms for counting and listing

all corresponding signals [SW05, RKR17, ANR15]. However, in general, there can be

a combinatorially large number of signals, particularly when the template has a large

automorphism group. In such cases, listing or even counting the signals can be computationally

intractable. In such situations, it is appealing to have methods that characterize the space of

all signals in some way. For example, one might identify the world nodes that participate in

at least one signal. Alternatively, one may seek the set of world nodes that correspond to a

particular template node in at least one signal. We find that these problems can be feasible,

even when it is prohibitive to list or count all of the signals.

Within the context of Chapter 2, we consider multiplex networks, which differ from the

networks defined in Definition 1.2.1 in that each edge belongs to a categorical channel. We

also include the possibility of labels on nodes. However, in this multiplex context, we consider

edges within the same channel and between the same two nodes to be indistinguishable.

Thus, we omit the functions Src and Dst from Definition 1.2.1, and instead represent edges

as a vector of counts in each channel.

Definition 1.2.4 (Multiplex Network). A multiplex network G = (V , E ,L, C) is a set of

nodes (frequently called vertices), directed edges between the nodes, labels on the nodes, and

channels on the edges. The number of nodes is denoted n. Each node v ∈ V has a label L(v)

belonging to some arbitrary set of labels. There can be any number of edges between each pair

of nodes (u,v) in either direction. Each edge belongs to one of the channels C. Edges between

the same pair of nodes in the same channel with the same direction are indistinguishable. The

function E : V ×V → N|C| describes the number of edges in each channel between each pair of

3

nodes. In particular, E(u,v) can be represented as a |C|-dimensional vector, the kth element

of which is the number of edges from node u to node v in the kth channel. The number of

distinguishable edges in G is denoted |E|0 .

For multiplex networks, we can store the edges in a set of adjacency matrices, one for

each channel. The entry in the ith row and jth column of each adjacency matrix contains the

number of edges from node i to node j in the corresponding channel.

1.2.1 Problem Statements

In this section, we will define five types of problems that will be explored in Chapter 2. We

will define these within the multiplex network context using the definitions and notation from

Definition 1.2.4.

Given two multiplex networks, a template Gt = (Vt, Et, Lt, C) and a world Gw = (Vw,

Ew, Lw, C), we explore the space of all subgraphs of the world that match the template.

There are several closely related problems with different computational costs. Each of these

problems relies on the same concept of subgraph isomorphism (SI).

Definition 1.2.5 (SI: Subgraph Isomorphism (Multiplex)). Given two multiplex networks, a

template Gt = (Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), an injective function f : Vt →

Vw is called a subgraph isomorphism (SI) from Gt = (Vt, Et,Lt, C) to Gw = (Vw, Ew,Lw, C) if

Lt(v) = Lw(f(v)) ∀v ∈ Vt

Et(u,v) ≤ Ew (f(u), f(v)) ∀u,v ∈ Vt × Vt.

The set of all SIs from Gt to Gw is denoted F(Gt,Gw).

In short, an injective function f mapping template nodes to world nodes is an SI if each

node v in the template has the same label as the corresponding node f(v) in the world, and

for each pair of nodes (u,v) in the template, the corresponding pair of nodes (f(u), f(v))

in the world have at least as many edges in each channel and direction as u and v have

4

between them. This is sometimes referred to as a “subgraph monomorphism” in the literature

[BGP13]. We use the term induced SI when there are exactly the same number of edges in

each channel and direction. The problems introduced in the remainder of Subsection 1.2.1

are summarized in terms of SIs in Table 1.1.

Problem Description

SIP Check if there are any SIs.

SNSP Find all of the world nodes involved in SIs.

MCSP Find all pairs (u,v) where u = f(v) for some SI f .

SICP Count the number of SIs.

SMP Find all of the SIs.

Table 1.1: A summary of the various problems defined in Subsection 1.2.1, in increasing order

of computation cost.

Nodes in the image of an SI are called signal nodes, and the induced subgraph of the image

of an SI is called a signal. Figure 1.1 highlights several signals in an example problem. Note

that there may be more edges between signal nodes than there are between the corresponding

template nodes. As an example, in Figure 1.1 there are more edges between 5 and 7 than

there are between B and C.

A typical definition of SI includes a map from template edges to world edges. However, we

omit this consideration since for multiplex networks, we consider edges to be indistinguishable.

If edges were considered to be distinct, there would be four SIs in Figure 1.1, all corresponding

to signal 2. There are two dashed blue edges between world nodes 5 and 7 that could match

the dashed blue edge between template nodes B and C. Also, there are two ways to map the

two solid green edges between template nodes A and C to the two solid green edges between

world nodes 4 and 7, resulting in four possible combinations.

Definition 1.2.6 (SIP: Subgraph Isomorphism Problem). Given a template Gt = (Vt, Et,Lt, C)

and a world Gw = (Vw, Ew,Lw, C), check if there is at least one SI from the template Gt to the

5

Figure 1.1: In the above multiplex networks, the shapes of the nodes corresponds to their labels

(circle or square) and the patterns of the edges correspond to their channel (solid green or

dashed blue). Given the template and world networks above, there are four signals consisting

of the subgraphs of the world induced by {1,2,6}, {1,6,8}, {4,5,7}, and {7,9,10}.

world Gw. That is,

check if F(Gt,Gw) = Ø. (SIP)

Typically the SIP is solved by exhaustively searching for any SI f ∈ F(Gt,Gw). If none

can be found, then F(Gt,Gw) = Ø. Though the SIP is NP-complete [GJ79], it has been

solved in practice even for some networks with over a billion nodes [SWW12, RKR17]. The

challenge of finding all SIs, rather than simply checking whether there are any, is called the

subgraph matching problem (SMP).

Definition 1.2.7 (SMP: Subgraph Matching Problem). Given a template Gt = (Vt, Et,Lt, C)

and a world Gw = (Vw, Ew,Lw, C), find all SIs from the template Gt to the world Gw. That is,

find all f ∈ F(Gt,Gw). (SMP)

The solution to the SMP for Figure 1.1 is the set F(Gt,Gw) = {f1, f2, f3, f4} of SIs, where

the fi are described in Table 1.2. Notice that SIs can differ by as little as one node. For

example, f1(v) = f3(v) for every template node v except when v = B. Additionally, some

SIs are completely disjoint. For example, f2(Vt)
⋂
f3(Vt) = Ø.

6

Template

node v
f1(v) f2(v) f3(v) f4(v)

⋃
i{fi(v)}

A 1 4 1 7 {1,4,7}

B 2 5 8 9 {2,5,8,9}

C 6 7 6 10 {6,7,10}

Table 1.2: Solutions to SMP and MCSP corresponding to the template and world shown in

Figure 1.1.

Since any algorithm for solving the SMP must list all of the SIs F(Gt,Gw), the computation

time required, at minimum, must scale with the number |F(Gt,Gw)| of SIs. The number of

SIs can be as large as O(|Vw||Vt|), which is the number of injective maps from Vt to Vw. The

problems described in the remainder of this section can be used to explore the space of SIs,

especially when solving the SMP is computationally prohibitive.

In certain contexts, one may wish to only count the number of SIs from the template to

the world. Examples of such contexts include summary statistics of the world network, as in

triangle counting [SW05] or motif counting [ADH08]. This is called the SI counting problem

(SICP).

Definition 1.2.8 (SICP: Subgraph Isomorphism Counting Problem). Given a template

Gt = (Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), determine the number of SIs from the

template Gt to the world Gw. That is,

find |F(Gt,Gw)| . (SICP)

Another concise summary of the set of SIs is the set of all signal nodes. We define the

problem of finding this set of nodes to be the signal node set problem (SNSP). This can be

useful in application contexts where the goal is to identify unusual or suspicious nodes that

fit a pattern, rather than distinct instances of that pattern. The number of signal nodes

7

is bounded above by the total number |Vw| of world nodes. Though the SNSP lacks the

completeness of the full set of SIs, it is much cheaper to calculate.

Definition 1.2.9 (SNSP: Signal Node Set Problem). Given a template Gt = (Vt, Et,Lt, C)

and a world Gw = (Vw, Ew,Lw, C), find all world nodes that belong to at least one signal. That

is,

find
⋃

f∈F(Gt,Gw)

f(Vt). (SNSP)

We can also summarize the set of SIs using the minimal candidate sets. For each template

node, we define the minimal candidate set as the smallest set containing all world nodes

that correspond to that template node in any signal. This preserves the relation between

template nodes and world nodes, but loses some information about compatibility between

candidates for different template nodes. From an application perspective, this may be useful

when certain template nodes are more important to identify than others, such as the core

member of a social group or the leader of an adversarial organization.

Definition 1.2.10 (MCSP: Minimal Candidate Sets Problem). Given a template Gt =

(Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), for each template node v ∈ Vt find all world

nodes that correspond to v in at least one signal. That is,

find
⋃

f∈F(Gt,Gw)

{f(v)} for each v ∈ Vt. (MCSP)

A naive algorithm for solving the MCSP is to solve the SIP with the added constraint

u = f(v) for each (u,v) ∈ Vw × Vt. Thus, solving the MCSP is at most |Vt| |Vw| times as

computationally expensive as the most expensive among those SIPs.

1.3 Prior Work

Most state-of-the-art algorithms for subgraph matching follow one of three approaches

[CFS17, CFS18]: tree-search, constraint-propagation, and graph-indexing. The majority of

8

existing algorithms are specialized to the single-channel case and are not directly applicable

to multiplex networks without some adaptation. Also, existing algorithms focus mainly on

addressing the SIP, SMP, and SICP, and do not address the MCSP or SNSP directly.

Tree-search approaches keep track of a search state, and navigate the tree of possible

search states, backtracking when they reach the end of a branch. Due to the enormity of

this tree, to limit computational complexity as much as possible, these approaches refine

the search space at each step of the search to avoid unnecessary branches. Examples of

tree-search approaches include Ullmann’s algorithm [Ull76], VF2 [CFS04] and its variants

(VF2Plus [CFV15], VF3 [CFS17, CFS18], VF2++ [JM18]), and for specific graphs, RI/RI-DS

[BGP13].

Constraint-propagation approaches view SI as a constraint satisfaction problem, where

variables are assigned values while satisfying a given set of constraints. These approaches keep

track of a compatibility matrix that indicates which world nodes are possible matches for each

template node. By repeatedly applying local constraints, this matrix is reduced until only a

few possible matches remain. The matrix can then be used to restrict the scope of a tree

search for all solutions. Examples of constraint-propagation approaches include McGregor

[McG79], nRF+ [LV02], ILF [ZDS10], LAD [Sol10] (and its variants, IncompleteLAD and

PathLAD [KMS16]), Glasgow [MP15], and FocusSearch [Ull10].

Graph-indexing approaches seek to retrieve all graphs that match a given subgraph query

from a database of graphs. To accelerate searching, they construct indexes for the database,

so that future searches will be efficient. These indexes are often based on characteristic

substructures of the template, such as neighborhoods of nodes with distinctive features.

Upon receiving a new template query, it is broken up into smaller subqueries matching

these indexes. The results of these indexed queries are then typically joined together with a

Cartesian product, identifying a large set of possible matches. Next, there is a verification

step to check whether the joined results match the full pattern; this typically involves running

another SI algorithm, such as VF2. Examples of graph-indexing approaches include GraphQL

9

[HS08], SPath [ZH10], GADDI [ZLY09], QuickSI [SZL08], TurboISO [HLL13], BoostISO

[RW15], CFL-Match [BCL16], and CNI-Match [NS17]. Our problem does not involve graph

databases and we thus do not construct indices. However, several graph-indexing approaches

also involve filtering techniques, which can be used independently of the indices they construct

[SL19].

1.3.1 Ullmann’s Algorithm

Ullmann’s algorithm [Ull76] is a backtracking tree-search with refinement. For each template

node v, it creates a list of candidate nodes in the world that could correspond to v. Initially,

this is simply all nodes with degree greater than or equal to the degree of v. At each step in

the tree-search, a candidate node u is chosen as a match for template node v. To reduce

computation time, the remaining candidates are then refined as follows. For every pair of

template nodes joined by an edge, their candidates should also be joined by an edge in the

world. Any candidate for one of these connected nodes that does not have an edge to any

candidate for the other connected node can be removed from consideration. Our topology

filter, as detailed in Subsection 2.1.3, is an extension of this constraint to the multiplex

network case.

1.3.2 VF2

VF2 [CFS04] generalizes Ullmann’s algorithm to directed graphs and extends refinement with

additional semantic feasibility rules. It distinguishes matched nodes (i.e. nodes with only one

candidate) from other nodes, and ensures that candidates have more matched neighbors and

unmatched neighbors than their corresponding template node; in the directed case, these

neighbors must have edges with matching directions. It also enforces a matching order where

neighbors of previously matched nodes are matched before other nodes.

10

1.3.3 Constraint-Propagation Approaches

In [LV02], the authors classify existing constraints using two categorizations: binary versus non-

binary and forward checking (FC) versus really forward look ahead (RF). Binary constraints

map n variables to m values using an n×m matrix of binary-valued variables, while non-binary

constraints use a vector of length n, whose entries are restricted to m values. The authors

propose nRF+, a non-binary really forward lookahead algorithm, with specific lookahead for

subgraph isomorphism. They enforce the constraint that if vw is a candidate for template

node vt, then the number of vt’s neighbors must be less than or equal to the number of

candidates for those neighbors that are adjacent to vw.

The work [Sol10] classifies many constraints previously used in different subgraph isomor-

phism algorithms. The author proposes a new algorithm, LAD, using the constraint that

for a match to exist between nodes m and n, there must exist a matching between their

neighborhoods subject to the alldifferent constraint introduced in [Reg94], which can be

identified using the Hopcroft–Karp algorithm [HK73]. The alldifferent constraint requires

that the matchings between neighborhoods must be one-to-one.

1.3.4 Graph-Indexing Approaches

In GraphQL [HS08], the authors describe a graph query language and provide an algorithm

for resolving graph database queries. In particular, they iterate a constraint similar to that of

[Sol10], where there must exist a bipartite matching between the neighborhoods of a template

node and its candidate. This approach is further expanded upon in SPath [ZH10], which

considers matching k-distance neighborhoods of the template and candidate nodes.

In TurboISO [HLL13], the authors propose a method for handling permutable template

nodes, as well as addressing the order of matching when identifying isomorphisms. They

construct an NEC tree, whose vertices represent groups of permutable template nodes, and

perform matching using this tree. They then combine and permute the candidates for each

11

of these template nodes. For the matching order, they divide the graph into candidate

subregions, each of which contains a group of candidates that may take part in a signal.

They prioritize searching the smaller candidate subregions. We take a similar approach in

Subsection 2.2.1, prioritizing nodes with the fewest candidates.

In CFL-Match [BCL16], the template is first decomposed into three types of structures:

core, forest, and leaf. To do this, it first constructs a spanning tree of the template. Then,

it computes the minimal connected subgraph containing all nontree edges of the template.

It then iteratively removes all nodes with degree 1, updating the degree counts after each

removal. The remaining nodes form the core structure.

For each node in the core that is connected to a non-core node, a forest structure is

created, consisting of that node and all non-core nodes to which it is connected. Finally, the

leaf structure consists of chains of removed non-core nodes.

After decomposing the template in this way, each structure is queried independently. In

order to postpone the Cartesian product of the results as much as possible, the core is queried

first, and the results are then used to restrict queries for each forest structure. Similarly, the

leaf queries are restricted by the results of the forest queries.

1.3.5 Multiplex Approaches

Although most subgraph isomorphism algorithms in the literature focus on non-multiplex

networks, there are two algorithms that explicitly solve the multiplex SMP. SuMGrA [IIP16]

is a graph-indexing and backtracking tree-search approach and RI [BGP13] has been extended

to the multiplex case (MultiRI) [MBF20]. These existing multiplex approaches are designed

to solve the SMP. However, the SMP is infeasible when there are too many SIs, as in many of

the problem instances in Section 2.3. Additionally, the networks considered by SuMGrA and

MultiRI differ slightly from Definition 1.2.4. Although they allow multiple edges between

nodes, they do not allow multiple edges between a pair of nodes in the same channel. SuMGra

also does not allow directed edges.

12

To extend any existing non-multiplex algorithms to multiplex networks, one possibility

is to use a non-multiplex approach (e.g., VF2 or LAD) to solve the SMP in each channel

and take an intersection across all channels. However, this approach is infeasible when there

are too many SIs in any channel, even if there are few SIs overall. In Section 2.3, we show

examples where the number of SIs is too large to solve the multiplex SMP, let alone the

non-multiplex SMP.

1.3.6 Review

In Chapter 2, we first discuss our approach for exact subgraph matching via constraint

propagation, showing approaches for all five problems defined in Subsection 1.2.1. Next,

in Chapter 3, we show an analogous approach for inexact subgraph matching using graph

edit distance minimization with cost bounds. In Chapter 4, we address a separate inexact

matching problem on aligned networks, which handles potential errors introduced by the

network alignment. Lastly, in Chapter 5, we detail a similar constraint propagation approach

for identifying constrained path-based templates.

13

CHAPTER 2

Subgraph Matching on Multiplex Networks∗

In this chapter, we introduce a new algorithm for subgraph matching on multiplex networks

and discuss some simplifications of the subgraph matching problem. We extend existing

constraint satisfaction approaches to operate on multiplex networks. We demonstrate experi-

mentally that these approaches allow us to list or count all SIs for world graphs with up to

hundreds of thousands of nodes and templates with up to hundreds of nodes.

Due to the underconstrained nature of the templates in some datasets, there are often too

many SIs to reasonably list, or sometimes even count. In such situations, we propose that a

natural problem to solve in place of the SMP or SICP is the MCSP. On datasets where we

can solve the MCSP, we observe that the output of our filters can be a good approximation

to the solution of the MCSP.

In the remainder of this section, we define several problems related to subgraph matching

and discuss existing approaches to solve these problems. We expand on the details of our

approach in Section 2.1 and Subsections 2.2.1 and 2.2.2. In Section 2.3, we perform several

experiments to show that the methods we discuss are successful in solving the problems of

interest.

∗This chapter is adapted from [MTC21].

14

Figure 2.1: Flowchart of the algorithm for subgraph matching

2.1 Filtering

Our algorithms for solving the problems discussed in Subsection 1.2.1 revolve around the

use of filters to cheaply approximate the solution of the MCSP (Definition 1.2.10). For

each template node vt ∈ Vt, we keep track of its candidates D(vt) ⊆ Vw. Initially, we treat

every world node as a candidate for every template node. Each filter enforces a different

set of constraints to eliminate candidates that cannot be part of any signal. The filters are

applied repeatedly until no further candidates can be eliminated (Algorithm 1), applying the

cheaper filters before the more expensive ones. We then begin a depth-first tree search for

potential matches, rerunning filters at each stage of the tree. For a flowchart of this process,

see Figure 2.1

In this thesis, in general, we are not searching for induced subgraphs; we do not require

equal number of edges to exist between nodes in the template and nodes in the world graph.

Instead, we only require the edges between template nodes to be less than or equal to the

number of edges between their corresponding candidates in the world. However, modifying

our filters to find induced subgraphs is simple. In Algorithm 3, change ≥ to == on Lines 6

and 7, and in Algorithm 5, change ≥ to == each time it appears on Line 8. Additionally, all

nodes must be considered as “neighbors” of each other, even if they have no edges between

them; this affects Line 2 of Algorithm 3 and Lines 4 and 5 of Algorithm 5.

15

Algorithm 1 Filtering

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt, list of filters filters

2: converged ← False

3: while converged is False

4: converged ← True . Stop unless progress is made

5: for filter ∈ filters

6: D ← filter(Gt,Gw, D) . Apply the filter

7: if |D(vt)| decreased for some vt ∈ Vt

8: converged ← False . Progress was made

9: Break . Restart from the first filter

10: Output updated candidate set D(vt) for each vt ∈ Vt

2.1.1 Node Label Filter

For a world node vw to be a candidate for a template node vt, the label Lw(vw) must match

the label Lt(vt). For example, consider the template and world shown in Figure 1.1 in which

the node labels correspond to their shapes. By the label filter, the square world nodes 2, 5,

8, and 9 can be eliminated as candidates for the circular template nodes A and C, while

the circular world nodes 1, 3, 4, 6, 7, and 10 can be eliminated as candidates for the square

template node B. The label filter is run only once, immediately after receiving the template

and world.

In some examples, template node labels cannot be specified exactly. For example, in

geospatial applications, template node labels may represent geographic regions such as cities

or countries, whereas world node labels may represent exact coordinates. In such applications,

it does not make sense to require equality between template node labels and world node

labels. Rather, one should require the world node labels to be somehow “compatible” with

the template node labels. The notion of compatibility depends on the application. In

Subsection 2.3.3.1 we discuss an example application where a world node is compatible with

a template node if the coordinates of the world node lie within the region of the template

16

node.

2.1.2 Node-level Statistics Filter

The idea behind the node-level statistics filter (Algorithm 2) is intuitive: for a world node vw

to be a candidate for a template node vt, certain statistical properties of vw should not be

less than those of vt. The idea of the node-level statistics filter has been applied to simpler

settings in the related literature [Sol10, MBF20]. Any statistic that is non-decreasing as

nodes and/or edges are added to a graph can be used as part of the filter. The statistics

that are applied in our filter include in/out-degree, number of in/out-neighbors, number of

reciprocated edges, and number of self-edges. Each of these statistics is used in each channel

in the multiplex networks.

Algorithm 2 Node-level Statistics Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: for statistic ∈ [in-degree, out-degree, . . .]

3: for template or world node v ∈ Vt ∪ Vw

4: Compute statistic(v)

5: for template node vt ∈ Vt

6: for candidate vw ∈ D(vt)

7: if statistic(vw) < statistic(vt)

8: Remove vw from D(vt)

9: Output updated candidate set D(vt) for each vt ∈ Vt

Other more complex statistics can be used channel-wise, such as number of triangles,

number of nodes within k steps, and number of paths of length `. Statistics combining

information from multiple channels can also be used, such as the number of in-neighbors in

channel a that are also out-neighbors in channel b. To keep the computation time of our

algorithm low, we only use statistics for which the computational cost scales linearly in the

number of distinguishable edges (edges whose source, destination, direction, and channel are

17

distinct).

Figure 2.2: In the networks shown, there is only one valid signal for the template: 1 for A, 2

for B, and 4 for C.

Template World

A B C 1 2 3 4 5

in-degree 1 1 1 1 2 2 1 0

out-degree 1 0 2 1 0 1 2 2

Table 2.1: In/out-degree for nodes in the template and world shown in Figure 2.2

As an example, consider applying an in/out-degree filter to the problem in Figure 2.2.

The in-degree and out-degree of each template and world node are listed in Table 2.1. Node

A has one outgoing edge and one incoming edge. Thus, nodes 2 and 5 can be ruled out as

candidates since node 2 has no outgoing edges and node 5 has no incoming edges. Similarly,

node B has one incoming edge, so node 5 can be ruled out as a candidate since it does not

have any incoming edges. Finally, node C has two outgoing edges and one incoming edge, so

all world nodes except 4 are eliminated as candidates since 4 is the only world node with at

least two outgoing edges and at least one incoming edge. The candidates for each template

node after applying the node-level statistics filter are summarized in the “Statistics” column

of Table 2.2.

The node-level statistics filter is most effective when some template nodes have statistic

18

Filters applied

statistics
statistics,

topology

statistics,

topology,

repeated-sets

Candidates for A 1,3,4 1 1

Candidates for B 1,2,3,4 1,2 2

Candidates for C 4 4 4

Table 2.2: Candidates per template node for the problem shown in Figure 2.2 after various

filters have been applied.

values that are uncommon in the world. Narrowing down the candidates for even one template

node can help the other filters to refine the candidates for the remaining template nodes.

2.1.3 Topology Filter

The topology filter enforces the constraint proposed by [Ull76], extended to multiplex networks.

The original constraint, denoted as AC(Edges) [Sol10], is that if vw is a candidate for template

node vt, then for every template node ut that neighbors vt, there must exist a candidate

uw for ut that neighbors vw. The natural extension to multiplex networks is that if vw is a

candidate for template node vt, then for every template node ut that neighbors vt, there must

exist a candidate uw for ut that has as many edges in each channel and direction between vw

and uw as there are between vt and ut.

To clarify the concept, consider applying the topology filter to the problem in Figure 2.2

after applying the node-level statistics filter. Since node 4 is the only candidate for node C,

nodes 3 and 4 are eliminated as candidates for both nodes A and B because they do not

have neighbors that are candidates for node C. These results are shown in Table 2.2.

19

Algorithm 3 Topology Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: for neighboring template nodes vt and ut

3: for candidate vw ∈ D(vt)

4: nbr cand found ← False

5: for candidate uw ∈ D(ut)

6: enough out ← Ew(vw,uw) ≥ Et(vt,ut)

7: enough in ← Ew(uw,vw) ≥ Et(ut,vt)

8: if enough out and enough in

9: nbr cand found ← True

10: break

11: if nbr cand found is not True

12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

In terms of computational complexity, the topology filter scales linearly with the number of

distinguishable template edges, and with the square of the number of world nodes. In practice,

by using a sparse matrix representation, the second factor can be reduced to the number of

distinguishable world edges, leading to a computational complexity of O(|Et|0 |Ew|0). The

topology filter is particularly useful when one or more template nodes have few candidates

remaining after applying other filters. In such situations, it can significantly reduce the

candidates for neighboring template nodes.

2.1.4 Repeated-Sets Filter

Here, we apply another constraint, GAC(AllDiff) [Hoe01, Sol10]: Generalized Arc Consistency

(also known as hyper-arc consistency) for the AllDifferent constraint, the constraint that all

nodes mapped to must be different (i.e. injectivity). The GAC(AllDiff) constraint requires

that for a world node vw to be a candidate for template node vt, there must exist some

20

injective mapping from the template nodes to their candidates under which vt is mapped to

vw. To enforce GAC(AllDiff), we identify sets of template nodes T ⊆ Vt where the union of

their candidates
⋃

vt∈T D(vt) has the same cardinality as T . These are known as tight sets

[Hoe01]. Candidates for template nodes in a tight set cannot be candidates for any nodes

outside of the tight set, since this would violate GAC(AllDiff).

Standard algorithms for enforcing GAC(AllDiff) run in O
(√
|Vt|+ |Vw|

∑
vt∈Vt |D(vt)|

)
time complexity [Reg94, GMN08]. Some improvements and modifications to the standard

algorithms have been explored [GMN08]. In the repeated-sets filter (Algorithm 4), we enforce

GAC(AllDiff) by directly considering unions of candidate sets to find tight sets. Although

the number of candidate set unions grows exponentially with the number of template nodes

[Hoe01], we restrict this growth by not considering unions with more nodes than there are

template nodes. We also keep track of template nodes that belong to tight sets and do not

use them in unions. In the context of the datasets we consider, templates are often hundreds

of nodes or smaller, and we do not observe the worst case exponential scaling. In terms of

the world graph, naive maximum cardinality matching-based algorithms scale as O(|Vw|3/2),

whereas Algorithm 4 scales linearly with |Vw|.

To illustrate the application of the repeated-sets filter, consider the example in Figure 2.2.

Using the node-level statistics and topology filters, the candidates for the template nodes are

narrowed down to those in Table 2.2. Since A has only one candidate, {A} is a tight set

and 1 can be removed as a candidate for the remaining template nodes. This leaves only one

candidate for each template node, exactly corresponding to the only signal in Figure 2.2.

The repeated-sets filter is most important when some template nodes have only one

candidate, since any template node with only one candidate forms a tight set. It is also useful

for templates such as those in Subsections 2.3.4.1 and 2.3.4.5 that contain nodes that are

indistinguishable.

21

Algorithm 4 Repeated-Sets Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: unions← EmptyMap()

. Map sets of world nodes Uw to sets of template nodes Ut for which Uw =
⋃

vt∈Ut D(vt).

Any Ut with |unions[Ut]| == |Ut| is a tight set.

3: T ← Ø . Nodes known to belong to tight sets.

4: todo← {vt ∈ Vt : |D(vt)| < |Vt|} . Template nodes with too many candidates

cannot belong to a tight set.
5: while |todo| > 0

6: vt ← element of todo with fewest candidates D(vt)

7: todo← todor {vt}

8: for (Uw,Ut) ∈ unions

9: Uw ← Uw ∪D(vt)

10: if |Uw| < |Vt|

11: Ut ← Ut ∪ {vt}

12: if |Ut| == |Uw| . Ut is a tight set.

13: T ← T ∪ Ut

14: D(ut)← D(ut) r Uw for ut ∈ Vt r Ut

15: else

16: unions[Uw]← Ut

17: if D(vt) 6∈ unions

18: if |D(vt)| == 1 . {vt} is a tight set.

19: T ← T ∪ {vt}

20: D(ut)← D(ut) rD(vt) for ut ∈ Vt r {vt}

21: else

22: unions[D(vt)]← {vt}

23: todo← {vt ∈ todo : |D(vt)| < |Vt r T |}

24: Output updated candidate set D(vt) for vt ∈ Vt

22

2.1.5 Neighborhood Filter

In this filter, we extend the local (LAD) constraint introduced in [Sol10] to the multiplex

network case. In the undirected non-multiplex graph context, the LAD constraint states that

for a world node vw to be a candidate for a template node vt, there must be some injective

mapping f` from the neighbors of vt to their candidates under which f`(ut) is a neighbor of

vw for each ut. We extend this constraint to the multiplex network context by requiring that

f`(ut) must have enough edges to vw in each channel and direction, i.e.

Ew(vw,uw) ≥ Et(vt,ut) and Ew(uw,vw) ≥ Et(ut,vt), (2.1)

where uw = f`(ut). In the neighborhood filter (Algorithm 5), we enforce the multiplex LAD

constraint by searching for such a mapping f`. If none exists, we eliminate vw as a candidate

for vt.

We now transform the search for a mapping f` into a matching problem on a bipartite

graph B. Let Nvt and Nvw denote the neighborhoods of vt and vw respectively. Define

the undirected bipartite graph B with parts Nvt and Nvw to have an edge between nodes

ut ∈ Nvt and uw ∈ Nvw whenever uw is a candidate for ut and Equation (2.1) holds. A

matching on B is a subset of its edges where no two edges share a node. A mapping f`

is equivalent to a matching on B of size |Nvt| when each edge (ut,uw) in the matching

corresponds to f`(ut) = uw. The Hopcroft–Karp algorithm [HK73] can be used to find the

maximum cardinality matching on B in O(
√
|Nvt|+ |Nvw | |EB|) time, where EB denotes the

set of edges of B.

In the example from Figure 2.2, the node-level statistics, topology, and repeated-sets filters

were sufficient to narrow down the candidates until they solve the MCSP (Definition 1.2.10). In

Figure 2.3, we give an example where those filters are not sufficient. The resulting candidates

before and after neighborhood filter are given in Table 2.3. Before the neighborhood filter

is applied, node 4 remains a candidate for node C because node 3 is a candidate for its

neighbors A and B. The biadjacency matrix (the nonzero upper right block of the bipartite

23

Algorithm 5 Neighborhood Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: for template node vt ∈ Vt

3: for candidate vw ∈ D(vt)

4: Nvt ← Neighborhood(vt)

5: Nvw ← Neighborhood(vw)

6: B ← EmptyBipartiteGraph(Nvt ,Nvw)

7: for (ut,uw) ∈ Nvt ×Nvw

8: if

uw ∈ D(ut)

and Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)

9: Add an edge between ut and uw in B

10: max match = MaxCardinalityMatching(B)

11: if |max match| < |Nvt |

12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

24

adjacency matrix) of B corresponding to vt = C and vw = 4 is shown in Table 2.4. Each row

of the biadjacency matrix corresponds to a neighbor of vt and each column corresponds to a

neighbor of vw. Entries correspond to the conditions on Line 8 of Algorithm 5. Since the

maximum cardinality matching on B has only two elements, the neighborhood filter is able

to eliminate node 4 from the candidates of node C.

Figure 2.3: An example template and world for which the neighborhood filter plays a role in

eliminating candidates.

2.1.6 Elimination Filter

The elimination filter (Algorithm 6) attempts to eliminate candidates by identifying any

contradictions that would result from them being assigned. For each template node-candidate

pair (vt,vw), we do a one step lookahead. We assign vw to vt and iterate over all other filters

until convergence. If this results in one or more template nodes having no candidates, then

vt cannot be mapped to vw and we eliminate vw as a candidate for vt.

As the elimination filter is a very expensive operation, scaling with the number of remaining

candidates, we restrict its use until all other filters have converged and no further candidates

can be removed by other means. In certain contexts, the elimination filter can be impractical

to use. However, in others, it can greatly reduce the number of candidates. A simple example

where elimination filter proves useful can be seen in Figure 2.4, where we have three cycle

25

Filters run

statistics,

topology,

repeated-sets

statistics,

topology,

repeated-sets,

neighborhood

Candidates for A 1, 3, 4 1, 4

Candidates for B 1, 3, 4 1, 4

Candidates for C 3, 4 3

Candidates for D 2, 5, 6 5

Table 2.3: Candidates per template node for the problem shown in Figure 2.3 after various

filters have been applied.

graphs consisting of 3, 4 and 5 nodes respectively.

Figure 2.4: Subgraph matching problems consisting of graphs A, B and C.

Consider Graph A in Figure 2.4 as the template graph and Graph B as the world graph.

After applying the node-level statistics, topology, and neighborhood filters, every node in

Graph B remains a candidate of every template node in Graph A. By including the elimination

filter, we observe that there is no valid signal for this problem. A more difficult problem

arises when we use Graph B as the template graph and Graph C as the world graph. In this

26

NC

N4
2 3 6

A 0 1 0

B 0 1 0

D 1 0 1

Table 2.4: Biadjacency matrix of B used in the matching problem between the neighborhoods

of template node C and world node 4.

case, the node-level statistics, topology, and neighborhood filters do not remove any invalid

candidates. Only after applying the elimination filter can we conclude that there is no valid

signal existing in Graph C. In practice, an elimination filter that iterates over node-level

statistics, topology, and repeated-sets filters is often sufficient; iterating over neighborhood

filters is expensive. However, in the example above, we may need to apply all of the filters to

determine the solution. In Subsection 2.3.4, we show some examples where the elimination

filter is useful in eliminating candidates.

2.2 Solving the Problems

We present the details of how to solve the SICP and MCSP using the filters from Section 2.1

as a subroutine. The SIP and SMP can be solved with similar methods to SICP, and the

SNSP can be solved with a similar method to MCSP.

2.2.1 Isomorphism Counting

After applying the filters described in Section 2.1, some template nodes may have exactly

one candidate. We refer to template nodes that still have multiple candidates as unspecified

nodes. When an edge exists between two unspecified nodes, we have to enforce that a

27

Algorithm 6 Elimination Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: S ← copy(D) . Save the candidate sets

3: for template node vt ∈ Vt

4: for candidate vw ∈ D(vt)

5: D(vt)← {vw} . Assign vw to vt

6: Iterate all filters to convergence

7: if D(ut) is empty for any ut ∈ Vt

8: Remove vw from D(vt) in S

9: Reset candidate sets to S

10: Output updated candidate set D(vt) for each vt ∈ Vt

corresponding edge exists between the two candidates we choose for them. As this makes

counting isomorphisms computationally complex, we start by finding a set of unspecified

nodes that, if specified, would cause the remaining unspecified nodes to have no edges between

them. This set is called a node cover, and the smallest such set is called the minimal node

cover.

For example, in Figure 2.2, if all three template nodes have multiple candidates, the

minimal node cover would be {C}. Since the minimal node cover is NP-hard to compute in

general, we settle for a small node cover [BE85]. Next, we iterate through all possible choices

of candidates for nodes in the node cover. For each choice, we reapply the topology and

repeated-sets filters so we can be sure that any remaining candidates belong to signals. Since

the remaining unspecified nodes have no edges between them, it is much simpler to count

the ways to choose their candidates. The only constraint is that the same candidate cannot

be chosen for more than one node, which is simply the alldifferent constraint satisfaction

problem [Reg94].

To solve the SIP and SMP, we can make the following modifications. For the SIP, the

algorithm exits and returns true once a solution is found, i.e. once CountAllDiff (Line 4

28

Algorithm 7 Isomorphism Counting

1: function IsoCount

2: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt, unspecified node

cover NC

3: if NC = Ø

4: Nisos ← CountAllDiff(D)

5: else

6: Nisos ← 0

7: vt ← NC.pop()

8: S ← copy(D) . Save the candidate sets

9: for world node vw ∈ D(vt)

10: D(vt)← {vw} . Assign vw to vt

11: Apply filters

12: Nisos ← Nisos + IsoCount(Gt,Gw, D,NC)

13: Reset candidate sets to S

14: Output number of isomorphisms Nisos

29

of Algorithm 7) returns a nonzero result. For the SMP, replace CountAllDiff with an

algorithm that returns a list of all solutions to the alldifferent problem, and combine the two

lists of solutions instead of adding the counts together.

2.2.2 Validation

A simpler problem than listing or counting all isomorphisms (SMP or SICP) is the minimal

candidate sets problem (MCSP) of Definition 1.2.10. Here, we refer to the procedure for

solving the MCSP as validation, in which we seek to identify all template node–candidate

pairs that participate in at least one signal. We call such pairs valid.

An algorithm for validation is as follows (Algorithm 8). First, pick an unvalidated pair of

a template node and its candidate. Next, make assignments until an isomorphism is found,

running filters after each step and backtracking as needed. If all possible assignments fail, then

the pair is invalid; remove the pair from the set of possible candidates. Otherwise, validate

every assignment made as part of the isomorphism, including the initial one; these pairs are

validated as taking part in at least one isomorphism. Repeat this process until all pairs are

validated or removed from the set of candidates. This ensures that every candidate-template

node pairing remaining after validation is valid. This is because to pass validation, it must

participate in at least one isomorphism that was found, and to fail, there must not exist an

isomorphism containing it.

When using the node cover approach from Subsection 2.2.1, we can make Algorithm 8

more efficient by stopping the search after the node cover has been assigned and validating

all remaining candidates. This is because at this point, with no edges between unassigned

nodes, the problem of finding signals has been reduced to an alldifferent problem. Because

the repeated-sets filter enforces GAC(AllDiff), we know that every remaining candidate must

participate in at least one solution to the alldifferent problem, and thus must participate in

at least one signal. Therefore, we can simultaneously validate all remaining candidate pairs.

This algorithm can also be modified to solve the SNSP. If, instead of adding {f(ut)} to

30

Algorithm 8 Validation

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: D′(vt)← Ø for each vt ∈ Vt . Valid candidates

3: for template node vt ∈ Vt

4: for candidate vw ∈ D(vt) rD′(vt)

5: S ← copy(D)

6: S(vt)← {vw} . Assign vw to vt

7: Attempt to find an SI f using S . Solve the SIP

8: if isomorphism found

9: D′(ut)← D′(ut) ∪ {f(ut)} for each ut ∈ Vt

10: else

11: Remove vw from D(vt)

12: Output minimal candidate set D′(vt) for each vt ∈ Vt

D′(ut) on Line 9, we instead add {f(vt)|vt ∈ Vt, f(vt) ∈ D(ut)}, then the algorithm will

validate only that world nodes participate in at least one signal without respect to which

template nodes they are candidates for.

2.3 Experiments

Unless otherwise specified, the experiments were run on an HP Z8 G4 Workstation with two 12-

core Intel® Xeon® Gold 6136 CPUs using version 0.2.0 of our open-source Python code avail-

able on GitHub (https://github.com/jdmoorman/uclasm/tree/v0.2.0) [MTC20]. The

node-level statistics, topology, and repeated-sets filters run in under a minute for all datasets

and under a second for most. The elimination filter takes between minutes and hours,

depending on the dataset. Validation, if used, typically takes multiple hours.

31

https://github.com/jdmoorman/uclasm/tree/v0.2.0

Figure 2.5: Sudoku grid with initial clues.

2.3.1 Sudoku

The puzzle game of Sudoku involves a 9× 9 grid that is partitioned into nine 3× 3 blocks.

Each cell of the grid must be filled with a digit 1–9 so that each row, column, and block

contains each digit 1–9 exactly once. A Sudoku puzzle begins with some of the cells pre-filled

with digits so that there is exactly one correct solution (Figure 2.5).

One algorithm for solving Sudoku is Donald Knuth’s dancing links algorithm [Knu00],

which models Sudoku as an exact cover problem. This is a backtracking tree search with

refinement on a sparse Boolean matrix, using doubly linked lists for efficiency. Sudoku can

also be modeled as a constraint satisfaction problem [Sim05] (e.g. Peter Norvig’s constraint-

propagation algorithm [Norb]). Here, the two constraints propagated are that cells in the

same row, column, or block must contain different digits and that every cell must have a digit.

After these constraints have been iterated, the algorithm uses a depth-first backtracking

search to find the solution.

The constraints of Sudoku are fairly similar to those of subgraph isomorphism. The row,

column, and block constraints involve pairwise constraints between two cells, which can be

considered analogous to edges. Additionally, the constraint that every cell must be filled by a

digit is analogous to injectivity. Here, we show that Sudoku can be written in two different

32

ways as a subgraph isomorphism problem. Though there is some significant computational

overhead in performing this conversion, our main goal here is to obtain an interesting example

of subgraph isomorphism to evaluate our code on, rather than trying to outperform the best

Sudoku solvers.

2.3.1.1 9× 9 Representation

Sudoku is equivalent to a subgraph isomorphism problem using the following correspondence.

Consider the cells as nodes of the template. Two cells in the template are linked if they are

in the same row, column, or 3× 3 block. We consider the world as a set of 81 nodes, each

corresponding to a digit. Each digit is locked to a particular 3× 3 block, leading to nine sets

of nine digits, each having values 1–9. In the world graph, two nodes are linked if they do

not have the same value. This world graph has the same number of nodes than the template,

but has more edges, so this is a subgraph isomorphism problem. To represent known digits

(to start the puzzle), we can restrict the initial candidates. If a cell is filled in with a value,

we identify which 3× 3 block the cell is in, find the digit in the world that corresponds to

that block and has the matching value, and enforce that the only candidate for the cell is

that digit.

2.3.1.2 9× 9× 3 Representation

One can also represent row, column or block correspondences as different channels with

different edge types, along with another edge type that identifies which cells are the same. In

this representation, the template has three nodes for each cell, a row-node, a column-node,

and a block-node. All three are linked by edges in a special “same-cell” channel. Otherwise,

the three channels are completely separate: row-nodes are only linked to other row-nodes in

the same row, column-nodes to column-nodes, etc.

The world graph consists of three sets of nine sets of nine digits, each of the three sets

corresponding to the row, column, or block channels. As before, there are the same number

33

of world nodes as template nodes. In each channel, sets of nine digits representing the same

row/column/block are connected by edges. In these channels, there are the same number of

edges as in the template. However, for the “same-cell” channel, we add an edge between any

two nodes that could represent the same cell. Since each 3× 3 block only intersects three

rows and three columns, digits corresponding to cells in that block will only have “same-cell”

edges to digits corresponding to cells in the rows or columns that intersect it. Additionally,

the digits must match (e.g. a 9 can only have “same-cell” edges to other 9’s.) Similar to

before, we add an additional initial restriction that a row-node in the template can only have

the nine row-digits in the world corresponding to its row as candidates, and the same for

columns and blocks.

2.3.1.3 Results

To test our filters, we use the sets of Sudoku puzzles obtained from Peter Norvig’s GitHub

[Nora], including those from Project Euler problem 96 [Pro]. This dataset is divided into 3

groups: “50easy”, which contains the 50 puzzles from Project Euler problem 96, “top95”,

which contains 95 puzzles from the magictour website[Ste05], and “hardest”, which contains

11 hard puzzles found by Peter Norvig via a search for “hardest Sudoku”.

Although our code is not specialized for the task, it still solves all Sudoku examples in

the dataset. The time taken to solve each Sudoku example is plotted in Figure 2.6. The

mean solution time for the 9× 9 representation is 8.33 seconds on the 50 easy puzzles, 116.7

seconds on the top 95 puzzles, and 43.4 seconds on the hardest puzzles. The mean solution

time for the 9× 9× 3 representation is 11.24 seconds on the 50 easy puzzles, 95.4 seconds on

the top 95 puzzles, and 179.4 seconds on the hardest puzzles.

Overall, it appears that the 9× 9 representation works best on the easier puzzles, while

the 9× 9× 3 representation is faster on harder puzzles. On the hardest puzzles, the 9× 9

representation is faster on average; this is primarily due to outliers for which the 9× 9× 3

representation takes much longer.

34

Figure 2.6: Solving Sudoku puzzles as special case of a multiplex subgraph isomorphism

problem using the 9× 9 and 9× 9× 3 representations. Scatter plot of solution times (seconds)

on the Sudoku puzzles from Peter Norvig’s GitHub [Nora], including those from Project Euler

problem 96 [Pro]. A black line is drawn where the representations take an equal amount of

time as a visual aid for comparing the two representations.

2.3.2 Multiplex Erdős–Rényi Networks

To test the scalability of our algorithm, we perform experiments on randomly generated

multiplex Erdős–Rényi networks, where each edge in each channel has the same probability p

of occurring. For the template graphs, pt = 0.5. For the world graphs, the probability pw is

scaled up as the number of channels increases. We do this to maintain a fixed probability of

1− pt + p2t that a randomly generated world edge vector has an edge in every channel that a

random template vector does. This gives us the condition

P(Et(ut,vt) ≤ Ew(uw,vw)) = 1− pt + p2t ,

for all template nodes ut, vt and world nodes uw, vw. With edge vectors of length |C|, this

leads us to the following formula for pw:

pw = 1− 1− |C|
√

1− pt + p2t
pt

.

Note that when |C| = 1, pw = pt; this was the motivation for the choice of 1− pt + p2t .

35

For each trial, we generate a template graph with 10 nodes and a world graph with size

ranging from 10 nodes to 300 nodes. We then solve both the SIP and SICP. To measure

the difficulty of these problems, we count the number of search iterations (recursive calls

to IsoCount) taken by Algorithm 7 to solve the SIP and SICP. For the SIP, the counting

is terminated after a single isomorphism is found, or once the entire search space has been

checked and no isomorphisms are found. We observe similar difficulty scaling for one, two,

and three channels (Figure 2.7). We cap the algorithm runtime at 10,000 seconds per trial

and average results over 100 trials.

25 50 75 100 125 150 175 200
Number of World Nodes

100

101

102

103

M
ea

n
Nu

m
be

r o
f I

te
ra

tio
ns

Mean Number of Iterations for SIP/SICP
SIP 1 channel
SICP 1 channel
SIP 2 channels
SICP 2 channels
SIP 3 channels
SICP 3 channels

Figure 2.7: Mean number of search iterations (recursive calls to IsoCount) taken by

Algorithm 7 to solve the SIP and SICP with one, two, and three channels as a function of

world size. Results are averaged over 500 trials.

For the SIP, there is an initial sharp rise in search iterations with a peak around 100

iterations, followed by a decline back to a constant level of 10 iterations. This pattern is

partially due to the SIP being easier when SIs are either extremely likely or extremely unlikely

[MPS18]. When SIs are unlikely, as when the world is near the size of the template, filtering

often rules out all SIs before reaching the bottom of the search tree. When SIs are common,

as when the world is large (e.g. over 100 nodes), every branch of the search tree is likely to

have one, so the number of search iterations converges to the number of template nodes, 10.

36

For the SICP, the mean number of search iterations scales monotonically with the number

of world nodes. This is to be expected, as the expected number of SIs to be counted also

scales monotonically with the number of world nodes, and the effort taken to count the SIs is

closely related to the number of SIs.

2.3.3 Real-World Examples

We apply the algorithms to three real-world examples. From each dataset, we extract a

small subgraph as our template and try to locate its matching subgraphs in the world graph.

Table 2.5 summarizes the sizes and filtering results.

Dataset
Template World

Channels
Number of

isomorphisms
Filters Problems solved

Nodes Edges Nodes Edges

Britain Transportation 53 56 262,377 475,502 5 N/A S, T, R, E SIP

Britain Transportation (3 km) 53 56 262,377 475,502 5 3.76× 107 L, S, T, R, E SIP, SNSP, MCSP, SICP

Higgs Twitter 115 2,668 456,626 15,367,315 4 1.03× 1014 S, T, R SIP, SNSP, MCSP, SICP

Commercial Airlines 37 210 450 7,177 37 3.65× 109 S, T, R SIP, SNSP, MCSP, SICP

Table 2.5: Sizes and filtering results for the real-world examples in Sections 2.3.3.1, 2.3.3.2

and 2.3.3.3. The last column records the types of problems stated in Subsection 1.2.1 that we

are able to solve. The names of the filters are abbreviated: L = Node Label; S = Node-level

Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood; E = Elimination.

2.3.3.1 Great Britain Transportation

The Great Britain Transportation Network [GB15] combines a public transportation dataset

available through the United Kingdom open-data program [Dep15] with timetables of domestic

flights in the UK to obtain a multiplex time-dependent network that reflects the transportation

network in the UK. There are six channels representing six different transportation methods:

air, ferry, railway, metro, coach, and bus. This dataset has 262,377 nodes and 475,502 edges.

The original dataset can be found at [GB15].

37

Figure 2.8: Results for the Great Britain Transportation template after applying the node-

level statistics, topology, repeated-sets and elimination filters, without node label filtering.

The number in each node is the number of remaining candidates for that node after filters.

38

Figure 2.9: Results for the Great Britain Transportation template after applying the node

label filter with a 3 km radius in addition to the node-level statistics, topology, repeated-sets,

and elimination filters. The number in each node is the number of remaining candidates for

that node after filters.

39

Figure 2.10: All candidates for the Great Britain Transportation dataset: blue nodes represent

template nodes and red nodes represent candidates for the SIP. Image was generated using

the Mapbox API[Map] with data from Open Street Map.[Ope]

40

To test our algorithm, we first create a template. We identify a small set of locations that

interact with each other through five out of six channels (we exclude air, since this channel is

very sparse). If a location involves all five non-air channels in the network, we assume that it

is important. There are only three nodes that interact in these five channels. We arbitrarily

chose one of them as our template center, which is Blackfriars Station in London. Starting

from this node, we use a random walk to create a template, which has 53 nodes and 56 edges.

We then repeatedly apply the node-level statistics, topology, and repeated-sets filters. The

resulting candidate counts are shown in Figure 2.8.

We can further reduce the number of candidates using the node label filter. The result

is shown in Figure 2.9. We observe that all nodes are reduced to fewer than 10 candidates,

with the majority having just a single candidate.

In Figure 2.10, we see that the remaining candidates after filtering are geographically

distributed across the UK. As previously mentioned in Subsection 2.1.1, these nodes represent

transportation stops with given latitude and longitudes. If we know a priori that a certain

node should be confined in a region, say a radius of 3 km, then we can apply the node label

filter. Node labels help reduce the size of the world graph before we apply filtering. Without

the node label filter, even after the elimination filter, there are still too many candidates to

count. However, if we use geographical information before we run other filtering algorithms

and restrict the candidates to be within 3 km from the coordinates of the template node,

then we reduce the size of remaining candidates to a tractable level.

2.3.3.2 Higgs Twitter

The Higgs Twitter dataset [DLM13] records Twitter activities from July 1–7, 2012, during

and after the discovery of the Higgs boson particle. It can be represented as a directed,

multiplex network with four channels, representing retweets, replies, mentions and follower

relationships. The world graph contains 456,626 nodes (Twitter accounts) and 15,367,315

edges (interactions), and the account identities are aligned across all channels. To demonstrate

41

how our filtering algorithm performs on detecting a small, relatively dense template, we

select a group of 115 Twitter accounts frequently involved in retweets or replies during the

week, and whose induced subgraph is connected and contains edges in all four channels. The

template has a total of 2,668 edges.

Figure 2.11: Candidate count for each node in the Higgs Twitter template after applying the

node-level statistics, topology, and repeated-sets filters.

We apply our filtering methods to the world graph and the template. Our methods narrow

down the candidates significantly and find exact matches for 102 out of the 115 template

nodes (Figure 2.11). For the remaining template nodes with multiple candidates, we find

that most of the candidates are valid (i.e. they belong to at least one subgraph isomorphism).

Using Algorithm 7, we compute that there are 1.03× 1014 subgraph isomorphisms.

2.3.3.3 Commercial Airlines

We also test our filtering methods on a commercial airlines dataset [CGZ13]. This dataset

contains a multiplex airline network in Europe that consists of 37 channels, each representing

42

a different airline. Compared with the other real world examples above, its world graph is

relatively small, only containing 450 nodes (airports) and 7,177 directed, unweighted edges

(flights).

Figure 2.12: Candidate count for each node in the commercial airline template after applying

the node-level statistics, topology and repeated-sets filters.

We construct a template that has 37 nodes and 210 edges by taking the induced subgraph

of 20 core nodes and introducing some additional peripheral nodes and edges. When creating

the template, we also ensure that it has nodes and edges across all channels to test the

multiplex capability of our algorithm. Due to the small size of the dataset, our filtering

algorithm is able to return the final candidate lists of all template nodes within a second, the

result of which can be seen in Figure 2.12. The node-level statistics filter alone manages to

find exact matches for 10 template nodes, and the topology filter increases the number of

exact matches to 28 nodes. Applying Algorithm 7, we find that there are around 3.6 million

subgraph isomorphisms in the world graph. By using just the topological properties of the

multiplex airline network, our algorithm is able to effectively identify the exact identities of

28 out of 37 template nodes, as well as the potential identities of the remaining 9 template

43

nodes.

2.3.4 Adversarial Activity

We apply our filtering methods to a series of datasets developed for the Defense Advanced

Research Projects Agency program on Modeling Adversarial Activity (DARPA–MAA)[XTL18,

DZK18a]. This program uses networks to represent activities (e.g. human trafficking, financial

transactions, email communication, phone calls, and distribution of narcotics) some of which

may be adversarial. Because these activities can be covert, they may not be detectable through

a single activity type. Multiplex networks provide a mathematical structure for identifying

related network modalities for such complex adversarial actions. Thus, an important area

of research is to match patterns from an activity template to part of a larger dataset of

multiplex actions. Here, we present results for datasets created by three different teams: (1)

Pacific Northwest National Laboratory (PNNL), (2) the Graphing Observables from Realistic

Distributions In Activity Networks (GORDIAN) team, and (3) IvySys Technologies. These

datasets consist of world graphs ranging between 1,000–200,000 nodes with one or more

roughly 100-node templates that simulate a scenario of activities by a specific group of agents.

Table 2.6 summarizes the sizes and filtering results for each dataset. In each instance,

there is one world graph with an embedded signal that is isomorphic to the template. We

identify the signal with our filtering methods, and when there are multiple signals, we solve

the SICP or MCSP. For all of the datasets, we have applied the node-level statistics and

topology filters to reduce the number of candidates. When the candidate counts remain high,

we apply the neighborhood and elimination filters to further narrow them down.

2.3.4.1 PNNL Version 6

PNNL Version 6 [CPM18] has 12 instances, each consisting of one world and two templates.

The worlds have around 23,000 nodes and over 12,000,000 edges each. The templates have

74–81 nodes and 1,200–1,650 edges.

44

Dataset Instance
Template World

Channels
Number of

Isomorphisms
Filters

Problems

SolvedNodes Edges Nodes Edges

B0-S0 74 1,620 22,996 12,318,861 7 1,152 S, T, R SIP, SNSP, MCSP, SICP, SMP

B5-S0 64 1,201 22,994 12,324,975 7 1,152 S, T, R SIP, SNSP, MCSP, SICP, SMP

B1-S1 75 1,335 22,982 12,324,340 7 1,152 S, T, R, E SIP, SNSP, MCSP, SICP, SMP

PNNL

Version 6

B7-S1 81 1,373 23,011 12,327,168 7 3.13× 108 S, T, R, E SIP, SNSP, MCSP, SICP

PNNL

Real World
35 158 6,407 74,862 3 2.12× 1012 S, T, R, N, E SIP, SNSP, MCSP, SICP

Batch-1 156 3,045 190,869 123,267,100 10 4.27× 1015 S, T, R, E SIP, SNSP, MCSP, SICPGORDIAN

Version 7 Batch-2 44 715 190,869 123,264,754 10 1.35× 1016 S, T, R, E SIP, SNSP, MCSP, SICP

IvySys

Version 7
92 195 2,488 5,470,970 3 N/A S, T, R, N, E SIP

IvySys

Version 11
103 387 1,404 5,719,030 5 N/A S, T, R, E SIP

Table 2.6: Overview of the sizes and filtering results of different DARPA datasets. For each

instance of the datasets, the table records its basic statistics, which filters have been applied,

and the number of isomorphisms. The last column states the types of problems stated in

Subsection 1.2.1 that we solve for each instance. The names of the filters are abbreviated: L =

Node Label; S = Node-level Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood;

E = Elimination.

45

By filtering based on node-level statistics, topology and repeated-sets, we identify the

signals for most of the given templates. However, there remain templates (e.g. instances

B1-S1, B7-S1 according to Table 2.6) where we cannot solve the MCSP by applying the

previous filters. Under such circumstances, we also apply the elimination filter, which narrows

down the candidate counts further as shown in Figure 2.13.

Figure 2.13 gives an overview of how different filters gradually reduce the number of

candidates for each template node in instance B1-S1. In the bottom histogram, we observe

that after node-level statistics and topology filters, around 5,000 world nodes still remain

candidates of at least one template node. However, the subsequent application of elimination

filter reduces the number of candidate world nodes to roughly 100. Figure 2.14 shows the

comparison of filtering results for instance B1-S1 before and after applying the elimination filter.

The sharp contrast in their candidate counts shows that the elimination filter sometimes

reduces the number of candidates significantly. After applying all filters, we observe in

Figure 2.14 that some of the template nodes are permutable and share the same candidates,

which lead to 1,152 SIs in this dataset.

The experiments on different instances of the PNNL Version 6 dataset demonstrate the

efficacy of node-level statistics and topology filters for solving subgraph matching problems.

The filtering results for the more difficult instances also display the potential of the elimination

filter, especially in tackling problems that initially appear resistant to the node-level statistics

and topology filters.

2.3.4.2 PNNL Real World

This dataset was created by PNNL from a social-media dataset collected by Matteo Magnani

and Luca Rossi [CDM10, MR11]. It involves friend/follower relationships on three social-media

platforms, each of which corresponds to a channel.

After applying all of the filters, we identify unique candidates for 20 template nodes.

Many of the remaining template nodes have hundreds of candidates. By applying validation

46

Figure 2.13: (Top): The number of candidates for each template node after different filters

are applied to PNNL Version 6 B1-S1. (Bottom): The number of template nodes for which

each world node is a candidate. Note that the Validation histogram perfectly overlaps the

Elimination histogram and the Neighborhood histogram perfectly overlaps the Topology

histogram.

47

(a) Without elimination filter. (b) With elimination filter.

Figure 2.14: Candidate count for each node in the PNNL Version 6 B1-S1 template after

applying the node-level statistics, topology, and repeated-sets filters with and without applying

the elimination filter.

Figure 2.15: Candidate count for each node in the PNNL Real World template after solving

the MCSP using validation. Edge colors correspond to channels.

48

Figure 2.16: (Top): The number of candidates for each template node after different filters

are applied to PNNL Real World. (Bottom): The number of template nodes for which each

world node is a candidate. Note that the Validation histogram almost perfectly overlaps the

Elimination histogram.

49

to solve the MCSP, we verify that all of the remaining candidates participate in at least one

signal. This suggests that the filters have the potential to reduce the candidates all the way

to the solution of the MCSP.

Both histograms in Figure 2.16 demonstrate how candidates get eliminated as different

filters are applied. All filters are able to reduce the number of candidates. In the top

histogram, the number of remaining candidates after the elimination filter entirely overlaps

with that after validation, confirming that the result after the elimination filter is nearly

identical to the solution to the MCSP, identifying all world nodes that correspond to each

template node in at least one signal. In the bottom histogram, we can clearly observe how

each filter eliminates the candidacy of world nodes in stages.

2.3.4.3 GORDIAN Version 7

GORDIAN Version 7 [KSG18] has two instances: Batch-1 and Batch-2. The Batch-1 template

has 156 nodes and 3,045 edges, while the Batch-2 template has 44 nodes and 715 edges.

Both instances have worlds with 190,869 nodes and about 123,265,000 edges. Despite the

distinction in sizes and structures of their respective templates, both instances can be solved

with node-level statistics, topology and repeated-sets filters. For example, in Batch-1, even

without applying the elimination and neighborhood filters, we manage to find the exact match

for 129 template nodes out of 156. In Figure 2.17, we plot the largest connected component

of instance Batch-1, in which we can clearly see that the majority of the template nodes are

matched with their single candidate. These filtering results again demonstrate the potential

of our basic filters (node-level statistics, topology, and repeated-sets) in narrowing down the

solution to subgraph matching problems. The small number of remaining candidates also

enables us to apply validation and verify that all remaining candidates participate in some

signal. We also compute the number of isomorphisms to be 1.51× 1012, and the enormous

number here is a direct result of the permutability of some template nodes.

50

Figure 2.17: Candidate count for each node in the GORDIAN Version 7 Batch-1 template

after applying the node-level statistics, topology, repeated-sets, and elimination filters.

51

2.3.4.4 IvySys Version 7

IvySys Version 7 [BJU18] has three channels corresponding to financial, communication and

logistics transactions. Due to the sparsity of the template relative to that of the world, we are

unable to identify any template nodes with unique candidates after applying filters, as seen in

Figure 2.18. However, after our filtering methods reduce the size of the search space, we find

that there are in fact many signals in the world graph, some of which are almost completely

disjoint from each other. It is their existence that leads to the abundance of candidates

for each template node. Our approach allows us to easily solve the subgraph isomorphism

problem (SIP) for IvySys Version 7. However, the complexity of the solution space makes it

unreasonable to proceed to solve the rest of the variants, like SICP, SNSP and MCSP.

2.3.4.5 IvySys Version 11

IvySys Version 11 consists of a single world graph and template, each with five channels. It

is somewhat similar to IvySys Version 7, as illustrated in Figure 2.19. The template has 103

nodes and 387 edges, while the world has 1,404 nodes and 5,719,030 edges. Even after the

application of all of our existing filters, we can only identify exact matches for 13 out of the

103 template nodes. The majority of the template nodes still have a considerable number

of candidates. A closer examination of Figure 2.19 shows the existence of permutable sets

of template nodes. This suggests the possibility that we might have already reduced the

candidates to the point where almost all of the remaining candidates are part of at least one

valid signal.

52

Figure 2.18: (Top): The number of candidates for each template node after different filters

are applied to IvySys Version 7. (Bottom): The number of template nodes for which each

world node is a candidate.

53

Figure 2.19: Candidate count for each node in the IvySys Version 11 template after applying

the node-level statistics, topology, repeated-sets, and elimination filters. The colors of the

edges correspond to their different channels.

54

CHAPTER 3

Inexact Attributed Subgraph Matching∗

3.1 Introduction

In applications where the graphs have attributes on the nodes and edges, it is common to

search for subgraphs of the world that only approximately match the template. This is

called inexact attributed subgraph matching (also known as approximate attributed subgraph

matching[PTT14]).

Definition 3.1.1 (Attributed Graph). An attributed graph G = (V , E ,L,A) consists of a

set V of nodes, a set E ⊆ V × V of edges, a set A of attributes, and a map L : V ∪ E → A

from nodes and edges to their attributes.

Given two attributed graphs, template Gt = (Vt, Et,Lt,A) and world Gw = (Vw, Ew,Lw,A),

we are interested in one-to-one maps f : Vt → Vw where the induced subgraph of the image

is similar to the template. Such a map f is called an inexact match of Gt. The cost function

used to measure similarity between the template and the image of f is denoted C(f ;Gt,Gw)

and is described in Subsection 3.2.1.

To parallel the definitions in Subsection 1.2.1, we call the process of finding the map f ?

that minimizes C(f ;Gt,Gw) inexact attributed subgraph isomorphism (ASI), and we call the

process of finding all maps f with distance at most ε inexact attributed subgraph matching

(ASM). We call the problem of finding the k most similar maps is called top-k inexact ASM.

∗This chapter is adapted from [TMY20].

55

In the remainder of this section, we discuss existing approaches to ASI/ASM and inexact

ASI/ASM, as well as our contributions. In Section 3.2, we describe our approach to solving

inexact ASI, inexact ASM, and top-k inexact ASM. In Section 3.3, we evaluate our methods

on the AIDA V2.1.2 dataset, which consists of knowledge graphs collected from news articles

about political events in the Ukraine.

3.1.1 Related Work

Section 1.3 discusses algorithms for exact subgraph matching. Algorithms for inexact subgraph

matching are more diverse than those for exact subgraph matching. Different applications

and research areas define the inexact subgraph matching problem in different ways. Some

algorithms take tree search, constraint propagation, or graph indexing approaches similar to

those in exact subgraph matching [PTT14, JHW19, KX19, LZ17], while other algorithms

relax the discrete optimization problem into a continuous one in order to apply traditional

continuous optimization techniques such as gradient descent [SPP20].

3.1.2 Our Contributions

We introduce algorithms for inexact attributed subgraph isomorphism and matching to find

optimal subgraphs as measured by graph edit distance. We show results for noisy queries on

the AIDA version 2.1.2 knowledge graph dataset collected from news articles about political

events in the Ukraine, as well as the DBPedia knowledge graph.

3.2 Algorithm

In Subsection 3.2.1, we define the cost function C(f ;Gt,Gw) that will be minimized in inexact

ASI/ASM. In Subsections 3.2.2 and 3.2.3, we explain how to compute lower bounds on

C(f ;Gt,Gw) under the constraint f(tc) = wc for each tc ∈ Vt and wc ∈ Vw. Using these

constrained lower bounds, in Subsection 3.2.4 we describe a tree search procedure for inexact

56

Figure 3.1: Flowchart of the inexact subgraph matching procedure.

ASI/ASM. See Figure 3.1 for a flowchart of this process.

3.2.1 Graph Edit Distance Based Cost Function

The graph edit distance [SF83, GXT10] is a measure of the distance between two graphs,

as defined by the total cost of the cheapest sequence of edits that transform one graph into

another. The six possible edits usually considered are node addition, node deletion, node

substitution, edge addition, edge deletion, and edge substitution. Here, we consider a cost

function using only the latter four edits.

The node substitution costs are measured by a user-defined function DV : (Vt×Vw)→ R+

that typically compares the labels of the nodes. A common node substitution function is

DV(vt, vw) = 1 [Lt(vt) 6= Lw(vw)] ,

so that
∑

t∈Vt DV(t, f(t)) counts the number of node assignments that do not preserve the

node label. If the node labels belong to a normed vector space, then the corresponding norm

can be used, i.e.

DV(vt, vw) = ‖Lt(vt)− Lw(vw)‖.

Likewise, the edge substitution, addition and deletion costs are measured by user-defined

functions D : (Et × Ew) → R+, D+ : Ew → R+ and D− : Et → R+. The edge related cost

57

functions are combined into a single function DE for brevity

DE(e, f(e)) =

D(e, f(e)), e ∈ Et, f(e) ∈ Ew,

D−(e), e ∈ Et, f(e) 6∈ Ew,

D+(f(e)), e 6∈ Et, f(e) ∈ Ew,

0, e 6∈ Et, f(e) 6∈ Ew.

(3.1)

For convenience, we use the shorthand f((t1, t2)) = (f(t1), f(t2)) so that f(e) is well-defined.

Given a template Gt, a world Gw, and a map f : Vt → Vw, the cost function C(f ;Gt,Gw) is

defined as

C(f ;Gt,Gw) =
∑
t∈Vt

DV(t, f(t)) +
∑

e∈Vt×Vt

DE(e, f(e)). (3.2)

3.2.2 Cost Bounds

We now discuss lower bounds on the cost function. The cost function C(f ;Gt,Gw) can be

decomposed as

C(f ;Gt,Gw) =
∑
t∈Vt

L(t, f(t);Gt,Gw, f), (3.3)

where L(t, f(t);Gt,Gw, f) are local costs related to each template node t and matching world

node f(t). We use decompositions where the local cost L has the form

L(t, w;Gt,Gw, f) = DV(t, w) +
1

2

∑
to∈Vt

[
DE
(
(t, to), (w, f(to))

)
+DE

(
(to, t), (f(to), w)

)]
.

(3.4)

This way, the local cost L(t, w;Gt,Gw, f) captures the cost incurred by assigning world node

w to template node t and half of the cost of assigning the edges incident to w to those incident

to t. Edge costs are halved† so that the local costs sum to the correct total cost C(f ;Gt,Gw);

†Here, for simplicity, we halve the cost, but any non-negative weights that sum to one will work. By

adjusting the weights for each edge, we can place more importance on certain nodes; we address this in

Section 3.A.

58

otherwise, edge costs would be counted twice (once for each endpoint). If the edge addition

cost were neglected (i.e. D+ ≡ 0), the summation
∑

to∈Vt reduces to
∑

to∈Nt
, where Nt is the

set of neighbors of t.

To lower bound the full cost defined in Equation (3.2), we start by bounding the local

cost L(t, w;Gt,Gw, f) from below by B(t, w;Gt,Gw) defined as follows

B(t, w;Gt,Gw) := DV(t, w) +
1

2

∑
to∈Vt

min
wo∈Vw

(
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

))
≤ L(t, w;Gt,Gw, f).

(3.5)

Note that the local bound B(t, w;Gt,Gw) has no dependence on the map f . In the context

of inexact ASI/ASM, the set Vw iterated over in the minimization can often be reduced for

practical purposes; see Section 3.B for the details. We can extend the bound on the local

cost to a naive bound on the full cost:

GNaive(Gt,Gw) :=
∑
t∈Vt

min
w∈Vw

B(t, w;Gt,Gw)

≤
∑
t∈Vt

B(t, f(t);Gt,Gw)

Eqn. (3.4)

≤
∑
t∈Vt

L(t, f(t);Gt,Gw, f) = C(f ;Gt,Gw).

(3.6)

By leveraging the fact that f must be one-to-one (1-1), we can compute a tighter lower

bound:

GLAP(Gt,Gw) := min
g:Vt→Vw
s.t. g is 1-1

∑
t∈Vt

B(t, g(t);Gt,Gw)

≤
∑
t∈Vt

B(t, f(t);Gt,Gw)

Eqn. (3.4)

≤
∑
t∈Vt

L(t, f(t);Gt,Gw, f) = C(f ;Gt,Gw).

(3.7)

We refer to GNaive and GLAP as “global cost bounds”.

Note that while GLAP is tighter than GNaive, it is more expensive to compute. Computing

the global cost bound GLAP is equivalent to solving a rectangular linear assignment problem

59

(LAP) of size |Vt| × |Vw|. Many algorithms exist to solve the LAP and its rectangular variant

[Bc99]. The most notable algorithms include the Hungarian algorithm [Kuh55], the Munkres

algorithm [Mun57], the Jonker–Volgenant (JV) algorithm [JV87], and the auction algorithm

[Ber88]. In our implementation, we apply a modified JV algorithm [Cro16] that is designed

to efficiently solve rectangular LAPs. The time complexity of the solver is O(|Vt| |Vw|2). For

contrast, the time required to compute the naive global cost bound GNaive is only O(|Vt| |Vw|).

3.2.3 Constrained Cost Bounds

To use the global cost bounds from Equations (3.6) and (3.7) in our algorithm, we must

compute the bounds under the constraint f(tc) = wc for each tc ∈ Vt and each wc ∈ Vw.

These constrained global cost bounds will be used as a heuristic for performing a tree search

described in Subsection 3.2.4. The corresponding constrained global cost bounds are

Gc
Naive(tc, wc;Gt,Gw) := B(tc, wc;Gt,Gw) +

∑
t∈Vt
t6=tc

min
w∈Vw
w 6=wc

B(t, w;Gt,Gw) (3.8)

for the naive global cost bound and

Gc
LAP(tc, wc;Gt,Gw) := min

g:Vt→Vw
s.t. g is 1-1
s.t. g(tc)=wc

∑
t∈Vt
t6=tc

B(t, f(t);Gt,Gw) (3.9)

for the LAP-based global cost bound.

To compute these constrained global cost bounds, the first step in either case is to compute

local bounds B(t, w;Gt,Gw) for each t ∈ Vt and w ∈ Vw. This takes O (|Vt| |Vw| avgtime(B))

time, where avgtime(B) denotes the mean time to compute the local bound for a fixed pair of

nodes t, w ∈ Vt × Vw. The remaining calculations to compute Equation (3.8) for each tc ∈ Vt

and wc ∈ Vw have time complexity O(|Vt| |Vw|).

To compute Equation (3.9), we must solve a LAP of size (|Vt| − 1) × (|Vw| − 1) for

each tc ∈ Vt and wc ∈ Vw. Solving each of these LAPs separately would require |Vt| |Vw|

applications of the O(|Vt| |Vw|2) LAP solver for a time complexity of O(|Vt|2 |Vw|3). However,

60

since each LAP is a constrained version of the same unconstrained LAP in Equation (3.7),

we can instead compute these as perturbations of the unconstrained solution.

To start, we solve the unconstrained LAP in Equation (3.7) to find the map

g? = arg min
g:Vt→Vw
s.t. g is 1-1

∑
t∈Vt

B(t, g(t);Gt,Gw)

in O(|Vt| |Vw|2) time. Next, we use the dynamic Hungarian algorithm [KSD07] to enforce the

constraint g(tc) = wc on the unconstrained map g? for each tc ∈ Vt and wc ∈ Vw. Enforcing

the constraint g(tc) = wc frees up g?(tc) to potentially be reassigned to some other template

node. When wc is not in the image of g?, reassigning g?(tc) costs O(|Vt|2) for each tc ∈ Vt,

independent of wc, for a total of O(|Vt|3). When wc is in the image of g?, the constraint

g(tc) = wc also frees up g−1? (wc) to be reassigned to some other world node.

3.2.4 Searching for Optimal Solutions

From Subsection 3.2.3, we have a procedure for computing lower bounds on C(f ;Gt,Gw)

under the constraint f(tc) = wc for each tc ∈ Vt and wc ∈ Vw. We treat these lower bounds

as a heuristic for performing a greedy depth-first search. For each template node t, we assign

f(t) = w for the candidate w with the lowest bound, then recompute the bounds under that

additional assignment. We assign candidates to template nodes with the fewest minimum

bound candidates first, as this indicates which template nodes have only a few “good” choices.

After assigning all template nodes in this way, we obtain a map f .

Although f is usually not the optimal map f ? that we seek, it can be used to drastically

cut down on the list of possible assignments we have to consider going forward. We compute

the cost of f to serve as an upper bound on the cost of the optimal map f ?. We keep track

of the cost threshold U and set it equal to the smallest cost Cmin we have seen so far, with

fmin the corresponding map. Using Cmin, the search space is refined by skipping assignments

f(t) = w that lead to lower bounds that are greater than or equal to Cmin, since in inexact

ASI we are only interested in the map f ? that minimizes the cost.

61

After identifying a new map or eliminating all remaining possibilities due to the cost

bounds, we backtrack and try assigning different world nodes to some template nodes. This

is done until there are no options left to explore, at which point we have found the optimal

map f ? = fmin.

To perform inexact ASM instead of inexact ASI, one can fix U ≡ ε and record all of the

maps f that are observed during the search. In this context, we only skip assignments when

their cost bound is strictly greater than ε, so that we do not accidentally skip matches whose

cost is exactly ε.

To perform top-k inexact ASM, keep track of f1, . . . , fk and C1, . . . , Ck that track the

k best maps seen so far and their costs. Use Ck instead of Cmin to prune the search space,

and only prune when the cost bound is greater than or equal to Ck. When the search is

completed, f1, . . . , fk are the k maps with the lowest costs.

One way to speed up the search in inexact ASI and top-k inexact ASM is to set an initial

value for U . However, this approach can lead to no solutions being found if the chosen value

is lower than the cost of the optimal solution C(f ?;Gt,Gw).

3.3 Experiments

We evaluate our algorithms on two knowledge graph datasets, AIDA V2.1.2 (Subsection 3.3.1)

and DBPedia (Subsection 3.3.2). Each dataset consists of a world graph, one or more

templates, and an associated graph edit distance. For each dataset and template, we use

our algorithms to identify the five cheapest matches (top-k inexact ASM). For AIDA V2.1.2,

we also use inexact ASM with thresholding to identify all matches whose cost equal to the

lowest possible cost. We run all experiments on an HP Z8 G4 Workstation with two 12-core

Intel® Xeon® Gold 6136 CPUs.

62

3.3.1 AIDA Version 2.1.2

The AIDA Version 2.1.2 dataset was created by Pacific Northwest National Laboratory

(PNNL) for the DARPA–MAA program. This dataset consists of a knowledge graph collected

from news articles about political events in the Ukraine. Provided also is a measure of distance

between attributes, which can be used to construct the corresponding graph edit distance.

The world graph has 98,817 nodes and 138,127 edges. Three templates are provided, each

with six different variations labeled A–F. These templates are much smaller than the world

graph, consisting of 11–33 nodes and 11–40 edges. These templates were created by taking a

known “ground truth” subgraph and adding increasing levels of noise. The A template has

no noise and is guaranteed to have at least one exact match. Provided also is the ground

truth mapping for the A version of each template.

We perform top-k inexact ASM on these templates, with k = 5. We use two approaches:

the first approach, labeled “Normal” in the table, simply runs the algorithm with no initial

cost threshold, while the second uses the ground truth cost bound (labeled “GTCB”) from the

A template to set an appropriate initial cost threshold for the other templates in each series

(1,2,3). To identify this threshold, we first impose the matching from the ground truth, then

set our algorithm to find optimal assignments for any remaining nodes that were not included

in the ground truth. Using only this initial cost threshold, we discard all other matching

information from the ground truth and proceed to optimize over the space of matches with

lower cost than the cost of the ground truth. The cost of the ground truth for each template is

listed in the “Ground Truth” column under “Cost”. In real world contexts, the ground truth

is unknown. However, it is not unreasonable that another, possibly suboptimal, approximate

match exists that we can use for the purpose of setting the initial cost threshold to restricting

the solution space.

The results of the two approaches on the AIDA Version 2.1.2 dataset are shown in

Table 3.1. The algorithm was cut off if it failed to complete within 46.5 hours, taking the

best match that it had found so far. Although we perform top-k matching, we list only one

63

Table 3.1: Results for the AIDA Version 2.1.2 dataset, showing time taken and the cost of

the best match that was found. The algorithm was cut off if it failed to complete within 46.5

hours, taking the best match that it had found so far.

Time Cost

Template Normal GTCB Normal Ground Truth GTCB

1A 27.8 min 1.5 sec 0.000 0.000 0.000

1B 24.5 min 0.2 sec 0.347 0.351 0.347

1C 46.5 hrs 5.48 hrs 8.783 3.610 2.254

1D 46.5 hrs 64.1 min 15.470 1.639 1.636

1E 46.5 hrs 35.9 hrs 16.194 2.642 2.638

1F 46.5 hrs 76.7 min 13.596 2.328 1.772

2A 2.25 min 0.06 sec 0.000 0.000 0.000

2B 3.07 min 0.15 sec 0.307 0.335 0.307

2C 6.35 min 10.6 sec 4.070 4.891 4.070

2D 12.4 min 32.9 sec 3.839 5.942 3.839

2E 4.58 min 22.4 sec 3.848 4.533 3.848

2F 18.5 min 42.3 sec 4.012 4.704 4.012

3A 2.33 min 0.08 sec 0.000 0.000 0.000

3B 2.27 sec 0.15 sec 0.145 0.191 0.145

3C 4.10 min 3.56 sec 2.452 2.452 2.452

3D 10.3 min 2.48 min 2.312 2.585 2.312

3E 20.8 min 10.9 min 2.472 3.471 2.472

3F 4.80 min 0.94 sec 1.314 1.348 1.314

64

cost for each template; this is because for all templates considered, all 5 matches found were

of the same cost. We observe that for all of the A templates, both the normal and GTCB

approaches converge to the expected result of an exact match with 0 graph edit distance. For

all templates other than 1C–F, both approaches were able to complete within the limit of 46.5

hours and arrive at the optimal solutions. For 1C–F, the normal version hit the runtime limit,

yielding the best solutions found within that time. For the GTCB version, only template 1E

was aborted early, after 35.9 hours. This was done because, when examining the branching

structure of the search algorithm, we deemed the approach unlikely to complete. The other

three templates completed and reached optimal solutions.

After identifying optimal solutions (for all templates except 1E), we then apply the

approach for inexact ASM discussed in Subsection 3.2.4 to find all optimal solutions by

setting the cost threshold to the cost of an optimal solution. The number of optimal solutions

found is listed in Table 3.2. In the case of 1E, we set this cost threshold to be the cost of the

best solution found; we observe that all found solutions had the same cost.

For templates 1D, 1E, and 1F, the optimal solution search was cut off after 209 hours

due to time and memory limitations. We believe that there exist more solutions than those

that were found, possibly orders of magnitude more. We have marked these templates with a

“>” in Table 3.2 to indicate this.

3.3.1.1 Analysis of the Solution Space

It is important to understand the solution space beyond simply finding one match, especially

in real-world applications. For example, in security applications, the match may point to

specific people or places, some of which could be imposters. Here, we show an example of a

map from the template to the full solution space. This visualization can be helpful in trying

to understand the connectivity of the template nodes in the full solution space. After using

the methods discussed in prior sections to discover subgraph matchings of minimal cost, we

can use symmetries in the template graph and world graph to compactly represent the entire

65

solution space.

Symmetry in graph structures has been studied in depth in the context of subgraph

matching [HLL13, RW15, BCL16, NYG19]. It is a confounding factor for subgraph discovery

that can lead to redundant work while exploring symmetric areas of the graph. The kind

of symmetry most often utilized is where nodes are considered structurally equivalent if

they have the same label and are connected to the same neighbors by edges with the same

attributes [Sai79]. For an example of this type of symmetry, see Figure 3.2.

Figure 3.2: Structural Equivalence: Nodes C and D are structurally equivalent and F is

structurally equivalent to neither. C, D, and F have the same node label and same set

of neighbors. However, the edge connecting F to E has a different label than the edges

connecting C and D to E, so F is not structurally equivalent to C or D.

In the matching problems on the AIDA dataset, symmetry in the graph accounts for

the combinatorial explosion in solutions for certain template graphs, especially in instances

where noise is present. Figure 3.3 demonstrates various forms of symmetry in the world

graph and how they affect the structure of the solution space for Template 1B. We present

the template graph and its matches to a subgraph of the world graph containing only those

nodes appearing in an optimal solution. We color each node in the template graph the same

as its candidates in the world graph. The blue and orange nodes in the world graph are two

groups of structurally equivalent nodes and can be swapped out arbitrarily in any solution

while maintaining a matching of the same cost. The red and lavender groups of world nodes

66

present a slightly more complex form of symmetry (automorphic equivalence). Exploiting it

to generate more solutions would require a more intelligent scheme that assigns the red and

lavender template nodes as a unit. We leave considering automorphic equivalence for future

work and only consider structural equivalence in this chapter. In this example, the problem

has 6,120 optimal cost solutions; applying structural equivalence, we can reduce it to 2,520

solutions, from which we can generate the rest.

Figure 3.3: Template graph and world subgraph for Problem 1B. Colored sets of nodes in

the world graph are candidates for nodes of the same color in the template graph. Two

substructures of the template correspond to large sets of candidate world nodes.

An a posteriori analysis of the solutions generated by our search enables us to compress

the solution space as well as to illustrate potential ways to significantly speed up the subgraph

search. We take the subgraph of world nodes that appear in a minimal cost solution and

compute sets of nodes that are structurally equivalent. Then to compress the solution space,

we eliminate any solution that can be generated by swapping structurally equivalent world

nodes in another mapping. We do this by examining the classes of solutions generated by

interchanging structurally equivalent nodes and identifying a representative from each.

Table 3.2 demonstrates the extent to which structural equivalence reduces the description

67

of the solution space to a smaller set. We also list the number of world nodes that appear in

a minimal cost solution as well as the number of structural equivalence classes to show the

level of equivalence in the solution space. If the number of structural equivalence classes is

significantly smaller than the number of world nodes, there is a great deal of equivalence.

We observe that in certain cases (e.g. templates 1E and 1F), the size of the representative

solution set is nearly ten times smaller than the original. If an algorithm were to efficiently

compute these symmetries and incorporate them in a subgraph search, then we might expect

speedups of an order of magnitude for these problems.

Analysis through a symmetry lens exposes how introducing noise into a subgraph matching

problem impacts the solution space. Broadly, if more information is known about the labels

and neighbors of vertices in both the template and world, there will be less symmetry

apparent in the matching problem. This can be seen in Table 3.2 with increased noise as we

go from A to F, which significantly expands the solution space. Intuitively, having more label

information allows nodes to distinguish themselves from each other and break symmetry. If

we introduce noise into a problem, say by removing a template node’s label, then the labels

of the world graph become irrelevant since the label cost will be the same.

The graphs provided in the AIDA datasets have three different labels: “rdf:type”, which

indicates the semantic type of a node (e.g. Person, Location, Vehicle, etc.), “hasName”, which

gives the names of entities, and “textValue”, which contains miscellaneous text information

associated with the node. Table 3.3 lists the number of structural equivalence classes for the

first set of templates when considering only the “rdf:type” label as compared to considering

all labels. As can be seen, when considering only the type label, we have significantly fewer

structural equivalence classes. This is especially apparent in template 1E and 1F, for which

the minimal cost solution requires two edge mismatches. This leaves an isolated template

node that may match any world graph node, as long as the label matches.

68

Table 3.2: The number of solutions, representative solutions, candidate world nodes, and

structural equivalence classes for each subgraph matching problem from the AIDA Version

2.1.2 dataset. For templates 1D–F, the code was terminated due to runtime constraints

before all solutions could be found.

Template

1A 1B 1C 1D 1E 1F

Solutions 6 6,120 324 >392k >382k >400k

Rep. Sols. 3 2,520 162 >315k >34k >58k

World Nodes 38 99 47 109 3,169 3,141

Eq. Classes 37 95 46 105 1,686 1,692

2A 2B 2C 2D 2E 2F

Solutions 78 1,400 39 13,780 1,248 17,368

Rep. Sols. 6 60 3 1,160 128 4,160

World Nodes 29 41 27 45 37 48

Eq. Classes 17 23 15 30 26 36

3A 3B 3C 3D 3E

Solutions 6 6 36 198 198

Rep. Sols. 4 4 16 92 92

World Nodes 16 16 21 26 23

Eq. Classes 15 15 18 23 23

3.3.2 DBPedia

DBPedia[LIJ15] is an open source knowledge graph extracted from Wikipedia entries. From

the dataset description: “The English version of the DBpedia knowledge base currently

describes 3.77 million things, out of which 2.35 million are classified in a consistent Ontology,

69

Table 3.3: Structural equivalence classes when considering only part of the label and the full

label.

Template 1A 1B 1C 1D 1E 1F

Type Eq. Classes 37 67 45 73 36 67

Full Eq. Classes 37 95 46 105 1,686 1,692

including 764,000 persons, 573,000 places (including 387,000 populated places), 333,000

creative works (including 112,000 music albums, 72,000 films and 18,000 video games),

192,000 organizations (including 45,000 companies and 42,000 educational institutions),

202,000 species and 5,500 diseases.”

RDF (Resource Descriptive Framework)[RDF14] is a common format for storing knowledge

graphs, which can then be queried using SPARQL (SPARQL Protocol and RDF Query

Language)[SPA08]. Previous work [TRS13] has applied inexact SPARQL query matching

to this knowledge graph using the TruST heuristic for inexact graph matching. Here, to

show that our inexact subgraph matching method can be generalized to different measures of

graph similarity, we replicate their inexact SPARQL query search using our framework.

The similarity score used in their work consists of three main parts. First, edges are defined

to have a similarity of 0.1 if their types match, and 0.0 otherwise; we replicate this using

our edgewise cost function, giving edges a cost of 0.1 when unmatched. Second, nodes are

defined to have a similarity of 0.1 if they are both properties or both not properties; again, we

replicate this using a nodewise cost of 0.1 for matching a property to a non-property. Finally,

the APPROXIMATE keyword specifies conditions on nodes to satisfy certain conditions,

such as Exact URI Match, Value String Contains, and Soft Greater Than. These each have

a similarity of 1.0 if all conditions are met exactly. We again replicate this with a nodewise

cost, taking the cost as 1.0 minus the similarity.

We examine the results of the comprehensive query from Section III of [TRS13] on

70

@prefix category: <http://dbpedia.org/resource/Category:> .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix dbpprop: <http://dbpedia.org/property/> .

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

?PowerStation dcterms:subject

category:Nuclear_power_stations_in_the_United_States .

?PowerStation dcterms:subject ?River .

?PowerStation dbpprop:locale ?City .

?City dbpedia-owl:isPartOf ?County .

?County rdfs:label ?CountyLabel .

?County dbpedia-owl:populationTotal ?Population .

?River rdfs:label ?RiverLabel .

?River skos:broader

category:Wikipedia_categories_named_after_rivers .

?Dam dcterms:subject ?River .

?Dam rdfs:label ?DamLabel .

SIMILARITY category:Nuclear_power_stations_in_the_United_States

Exact_URI_Match .

SIMILARITY category:Wikipedia_categories_named_after_rivers

Exact_URI_Match .

SIMILARITY ?Population Soft_Greater_Than(1000000,800000) .

SIMILARITY ?CountyLabel Value_String_Contains("County") .

SIMILARITY ?RiverLabel Value_String_Contains("River") .

SIMILARITY ?DamLabel Value_String_Contains("Dam") .

Figure 3.4: Modified version of the comprehensive query from [TRS13] used for the DBPedia

dataset.

71

(a)

(b) (c)

Figure 3.5: Template and results for the DBPedia dataset in graph format. Highlighted in red

for each match are the deviations from the template. (a) Attributed graph template created

from the comprehensive query from [TRS13]. (b) Best match for the DBPedia template. The

original query asked for a population greater than 1,000,000. (c) Second best match for the

DBPedia template. The original query asked for examples of nuclear power stations in the

United States, not dams in Massachusetts.

72

DBPedia version 3.8, which we convert to an attributed graph template with a few minor

changes. The original query compares each label to “County”; we believe this to be a

typographical error, and instead compare to “Dam”, “River”, or “County” as appropriate.

“dbpedia-owl:part of” was replaced by “dbpedia-owl:isPartOf”, and “dbpprop:totalPop” was

replaced by “dbpedia-owl:populationTotal”. We also changed the edge to the river category to

“skos:broader” as we were unable to find any edges corresponding to “dcterms:subject”; this

could be due to a typographical error, or simply a change in the DBPedia dataset between

versions. We show the query used, including the aforementioned changes, in Figure 3.4.

Template Result 1 Result 2 Result 3 Result 4 Result 5

?PowerStation
Indian Point

Energy Center
Watertown Dam Watertown Dam

Indian Point

Energy Center

Indian Point

Energy Center

Nuclear power

stations in the

United States

Nuclear power

stations in the

United States

Dams in

Massachusetts

Buildings and

structures in

Watertown, MA

Nuclear power

stations in the

United States

Nuclear power

stations in the

United States

?River Hudson River Charles River Charles River Hudson River Hudson River

?Dam
Federal Dam

(Troy)

Charles River

Dam

Charles River

Dam
Eureka Shipyard

West Shore

Railroad

?County
Westchester

County, NY

Middlesex

County, MA

Middlesex

County, MA

Westchester

County, NY

Westchester

County, NY

?Population 949113 1518171 1518171 949113 949113

Similarity 96% 86% 86% 83% 83%

Table 3.4: Results for the DBPedia dataset. Similarity score is calculated by subtracting

the cost from the maximum similarity of 7.4, and is shown as a percentage of the maximum

similarity. Variable names are prefixed with a question mark.

We show these results in Table 3.4, taking the top 5 best matches to the provided template.

The first match, with the highest similarity score to the query, matches the one found in

[TRS13]; due to the population being below the required 1 million, it incurs a cost of 0.254.

The second and third results are distinct from the first and almost identical to each other.

They both replace the power station with Watertown Dam and ignoring the constraint that

it must be a “nuclear power station in the United States”, incurring a cost of 1. Similarly,

the fourth and fifth matches are identical to the first, but replace the dam with a shipyard

73

and a railroad, incurring a cost of 1 for ignoring the constraint that the dam’s label must

contain the word “Dam”.

3.A Varying Edgewise Cost Bound Weights

In some situations, the costs of certain nodes are more important than other nodes. For

example, when a node has a known assignment, it is less important to know the cost associated

with that node, and more important to know the costs of its surrounding nodes, so that they

may be assigned candidates using the best possible heuristic.

We repeat the cost bound formulation from Equation (3.4), but replace 1
2

by a parameter

function α(t, to):

Lα(t, w;Gt,Gw, f) = DV(t, w) +
∑
to∈Vt

α(t, to)
(
DE
(
(t, to), (w, f(to))

)
+DE

(
(to, t), (f(to), w)

))
.

(3.10)

The new parameter function α(t, to) has the property that α(t, to) + α(to, t) = 1 under the

constraint 0 ≤ α(t, to) ≤ 1∀t, to. If we wish to assign t more importance than to, we use

α(t, to) = 1, α(to, t) = 0.

Similarly, we extend B(t, w;Gt,Gw) to Bα(t, w;Gt,Gw):

Bα(t, w;Gt,Gw) := DV(t, w) +
∑
to∈Vt

α(t, to) min
wo∈Vw

(
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

))
.

In practice, the modified local cost bound in Equation (3.10) is used during the search

algorithm to put less weight on assigned nodes. When a node is given an assignment, it is

also given a relative weight of α = 0, while its neighbors are given a weight of α = 1 with

respect to that node. For an edge between two assigned nodes, we default to α = 1
2
.

74

3.B Restricting Candidates During Minimization

In the context of the search approach detailed in Subsection 3.2.4, at certain points in the

algorithm, we have an upper bound U on the cost. At this point in the algorithm, the exact

value of the cost bound is not needed if it is greater than or equal to U (or strictly greater in

the context of inexact ASM).

Thus, we can instead define the local cost bound as

B(t, w;Gt,Gw) :=

min
(
U,DV(t, w) +

∑
to∈Vt

α(t, to) min
wo∈C(to)

[
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

)])
,

where C(to) is defined to be the set wo of world nodes for which the known constrained cost

bound G(to, w;Gt,Gw) is strictly less than U (less than or equal to for inexact ASM). Doing

so drastically improves computational performance and provides a tighter bound on costs

that lie below U . This also refines cost bounds analogously to constraint propagation; as

tighter global cost bounds G are found, this leads to tighter local cost bounds, which are

then used to compute even tighter global cost bounds until we reach a final set of bounds.

75

CHAPTER 4

Fault-tolerant Subgraph Matching on Aligned

Networks∗

4.1 Fault-tolerant Subgraph Matching on Aligned Networks

Often, we wish to combine multiple networks together to better express the relationships

between their nodes. For example, different datasets representing multiple modes of commu-

nication between the same set of entities can be combined into a single multilayer network.

To combine these networks, we first need to identify which nodes correspond to the same

real world entity and align them by combining them into a single node. The problem of

identifying this correspondence is the graph alignment problem (also known as the graph

matching problem or network alignment problem) and has been well studied in the literature

[EKG13, LFF16, ZBV09].

However, in the context of aligned networks, existing subgraph matching methods will

often fail if there are errors in the alignment. Though it is desirable to have an aligned network

without errors to perform subgraph matching on, this is often impractical or impossible to

obtain in a real-world context. Thus, we seek to develop a method for subgraph matching

that takes into account the possibility of errors in the alignment.

Now, we consider the subgraph matching problem on aligned networks. We refer to

Definition 1.2.1 for the definition of network, and Definition 1.2.3 for the definition of

subgraph isomorphism.

∗This chapter is adapted from [TY20].

76

Definition 4.1.1 (Alignment). We define an alignment A on a set of networks G1,G2, ... as

a set of disjoint sets of nodes contained within those networks. Each of these sets is referred

to as an individual alignment, or sometimes just alignment when the context is clear.

Definition 4.1.2 (Aligned Network). Given a set of networks G1,G2, ... and an alignment

A, construct the aligned network Galigned by replacing each set of nodes in the alignment with

a single new node whose edges are the edges of the nodes in the set.

In this chapter, we focus on subgraph matching, and not graph alignment; thus, we do

not provide a method for finding alignments. Instead, we assume that one exists and that we

have its output, A, as well as the corresponding aligned network, Galigned.

Importantly, however, we do not assume that this method is perfect, but that it is

somewhat prone to errors. Thus, in addition to A, we define the ground truth alignment

AGT that represents the true alignment of entities within the real world, and a corresponding

ground truth aligned network resulting from this alignment. In practice, no method exists

that can reliably guarantee one hundred percent accuracy, and in many cases finding the

ground truth alignment can be impossible.

Now, we can extend the concept of subgraph isomorphism to aligned networks.

Definition 4.1.3 (Alignable Subgraph Isomorphism). Given two networks Gt and Gw (referred

to as template and world respectively), we define an alignable subgraph isomorphism as a

set of two multivalued functions fnodes : Vt → P (Vw) and fedges : Et → P (Ew), where P (S)

denotes the power set of S, if:

• ∀ut ∈ Vt, fnodes(ut) 6= Ø

• ∀Et ∈ Et, fedges(Et) 6= Ø

• ∀Et ∈ Et, ∀Ew ∈ fedges(Et), Srcw(Ew) ∈ fnodes(Srct(Et))

• ∀Et ∈ Et, ∀Ew ∈ fedges(Et), Dstw(Ew) ∈ fnodes(Dstt(Et))

77

A large issue with this definition is that, given any alignable subgraph isomorphism,

any candidate can be added to it without violating the conditions. Therefore, every single

candidate participates in at least one alignable subgraph isomorphism. To deal with this

issue of spurious “unnecessary” candidates, we introduce the concept of minimality.

Definition 4.1.4 (Minimal Alignable Subgraph Isomorphism). A minimal alignable subgraph

isomorphism is a alignable subgraph isomorphism where no candidate can be removed without

invalidating the conditions for alignable subgraph isomorphism. That is, ∀ut ∈ Vt, @vw ∈

fnodes(ut) such that

f snodes(xt) =

fnodes(ut)− {vw} , xt = ut,

fnodes(xt) elsewhere

f sedges(Et) = fedges(Et)−

{Ew ∈ fedges(Et)|Srcw(Ew) = vworDstw(Ew) = vw}

is an alignable subgraph isomorphism.

It is important to recall our original problem context at this point. Within the alignment

problem, there is presumed to be a ground truth alignment. Without access to this ground

truth, we are performing subgraph matching on an aligned network resulting from a graph

alignment algorithm, which often differs from the ground truth. A natural question arises:

what is the connection between our results on the (potentially errorful) aligned network and

actual subgraphs of the ground truth aligned network?

Although not all (minimal) alignable subgraph isomorphisms correspond to valid subgraph

matches for the ground truth, the reverse is true under certain conditions: all subgraph

matches on the ground truth are represented by (possibly more than one) alignable subgraph

isomorphism.

Theorem 4.1.1. Given multiple networks {G1,G2, ...}, their ground truth alignment AGT , and

any other alignment with no incorrect individual alignments A, every subgraph isomorphism

78

on the ground truth corresponds to at least one minimal alignable subgraph isomorphism on

the aligned network.

Proof. Denote the subgraph isomorphism on the ground truth as (fGTnodes, f
GT
edges), mapping

from nodes and edges of the template Gt to the ground truth aligned world network GGTw . We

then construct a minimal alignable subgraph isomorphism by considering the mapping from

each template node ut to the component nodes of the world node that it was matched to in

the ground truth subgraph isomorphism, fGTnodes(ut). Then, we merge those component nodes

according to the given non-ground truth alignment A.

This mapping is clearly an alignable subgraph isomorphism, as completing the remaining

merges from AGT that were not included in A will result in the ground truth world network

and the ground truth subgraph isomorphism that we were given.

To identify a minimal alignable subgraph isomorphism from this alignable subgraph

isomorphism, remove candidates in any order until no further candidates can be removed

without violating the conditions of alignable subgraph isomorphism. The end result is then a

minimal alignable subgraph isomorphism by definition.

Note that there are two possible kinds of errors in network alignment [DZK18b]: individual

alignments that are incorrect but present in the given alignment, and individual alignments

that are correct but are missing from the given alignment. Here, we consider only errors

of the second kind, and assume that our given alignment contains no incorrect individual

alignments. At first, it may seem difficult or impossible for an alignment algorithm to satisfy

this property. However, technically, a trivial alignment algorithm that makes no alignments

would be guaranteed to make no incorrect ones.

Note also that the converse of Theorem 4.1.1 is not true: there may exist minimal alignable

subgraph isomorphisms that do not correspond to any subgraph isomorphism on the ground

truth aligned network. For example, a minimal alignable subgraph isomorphism could exist

that uses two different world nodes for two different roles in the template, but those world

79

nodes are then merged in the ground truth.

4.2 Filtering

For our method, we build upon the filtering approach described in [MCT18]. For each

template node, a list of possible candidates is tracked. We then filter the candidates for each

template node based on logical rules. For example, the node-level statistics filter eliminates

candidates that do not have as many incoming or outgoing edges as the corresponding

template node. The topology filter acts along edges, disqualifying candidates when an edge

in the template has no possible match in the corresponding neighborhood of the candidate.

After the list of candidates has been filtered down, we then perform a branching tree search,

trying candidates and eliminating possibilities until a match is found.

We extend the existing system of filters to the case of minimal alignable subgraph

isomorphism. Instead of filtering out candidates that do not participate in any subgraph

isomorphisms, we instead filter out candidates that do not participate in any minimal

alignable subgraph isomorphisms. This is done by modifying the existing node-level statistics

(Algorithm 9) and topology (Algorithm 10) filters.

4.2.1 Fault-tolerant Node-level Statistics Filter

In Chapter 2, the node-level statistics filter enforced that all candidates must have statistic

values greater than or equal to those of their corresponding template node. However, in the

context of fault-tolerant subgraph matching, this is not always the case. For example, if a

template node is represented by multiple world nodes, its edges will be split between them.

Thus, each of its candidates may have a lower degree than the original template node, due to

only having a portion of the edges.

However, there are still candidates that we can filter out. For example, a node with

degree 0 has no edges, and thus will never be a candidate in a minimal alignable subgraph

80

isomorphism, as it will always be removable.

More generally, a candidate must have at least one edge that could correspond to a

template edge connected to its corresponding template node. Thus, given the set of nonzero

node statistics of the corresponding template node (in/out degree in each channel), at least

one of these statistics must be nonzero for the world node to be considered a candidate. The

details of this filter can be seen in Algorithm 9.

Algorithm 9 Fault-tolerant Node-level Statistics Filter

1: Input template Gt, world Gw, candidate sets D(vt)

2: for template node vt ∈ Vt

3: for candidate vw ∈ D(vt)

4: any nonzero ← False

5: for statistic ∈ statistics

6: if statistic(vt) > 0

7: if statistic(vw) > 0

8: any nonzero ← True

9: if any nonzero is not True

10: Remove vw from D(vt)

11: Output updated candidate set D(vt) for each vt ∈ Vt

4.2.2 Fault-tolerant Topology Filter

We can also similarly modify the topology filter to obtain a version that lets us find minimal

alignable subgraph isomorphisms. As in the topology filter, we check the neighbors of each

template node, and look at their candidates. For regular subgraph isomorphism, we would

enforce that all edges must have a corresponding matching edge to a neighboring candidate.

However, in this case, we enforce only that at least one neighbor must have a candidate with

at least one matching edge. The details of this filter can be seen in Algorithm 10.

81

Algorithm 10 Fault-tolerant Topology Filter

1: Input template Gt, world Gw, candidate sets D(vt)

2: for template node vt ∈ Vt

3: for candidate vw ∈ D(vt)

4: nbr cand found ← False

5: for template node ut in neighbors of vt

6: for candidate uw ∈ D(ut)

7: if Ew(vw,uw) > 0 and Et(vt,ut) > 0

8: nbr cand found ← True

9: if Ew(uw,vw) > 0 and Et(ut,vt) > 0

10: nbr cand found ← True

11: if nbr cand found is not True

12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

4.2.3 Handling Nodes With Known Alignments

In some contexts, we know a priori that certain template nodes are aligned correctly. For

example, in a communications network, nodes representing entities like people could have

alignment errors, but nodes representing individual phone numbers, strings of text, or other

non-entity based information may not. Similarly, in certain contexts, nodes that represent

well-known entities that are easily aligned can also be treated as having a known alignment.

When some of the alignments are known, we can apply filters separately to different parts

of the template. This is trivial for the node-level statistics filter, as we simply apply the

regular node-level statistics filter to the nodes that have known alignments.

The topology filter can also be modified for known alignment in the following way. For

template nodes with known alignments, but which connect to nodes with possible alignment

errors, we first total the number of edges over all the candidates for the neighbor before

82

checking against the template. In the other direction, for template nodes with possible errors

connecting to those with known alignment, the existing version of the fault-tolerant topology

filter still applies. The details of this modified topology filter to handle known alignments

can be seen in Algorithm 11.

4.3 Recursive Merging

Once enough candidates have been removed via filtering, we begin a branching tree search,

much as we would when not dealing with alignment errors. However, at each branch of the

tree, in addition to performing an assignment, we also perform a single alignment, merging a

subset of the candidates for that template node.

This branching can be done for every single possible subset of candidates. However, we

can branch more efficiently by eliminating possibilities in order of increasing merge size.

If a set has a valid match, then every superset of that set will have an equivalent match

and will be non-minimal, and thus we can skip trying that merge. This helps to limit the

computational complexity of the algorithm. When branching for every subset, for a node with

n candidates, there are 2n − n− 1 possible subsets to consider. With the subset restriction,

this decreases to
(
n
2

)
in the best case where only 2-node merges need to be considered, with

the rest eliminated. In practice, the computational complexity can also be heavily limited by

restricting the maximum size of the merge, decreasing from O(2n) to O(2M), where M is the

maximum merge size. This may also be useful in application contexts where large merges

carry little intrinsic meaning and can be safely ignored.

4.4 Experiments

All experiments were run on an HP Z8 G4 Workstation with two 12-core Intel® Xeon® Gold

6136 CPUs.

83

Algorithm 11 Topology Filter For Known Alignments

1: Input template Gt, world Gw, candidate sets D(vt)

2: for template node vt ∈ Vt

3: for candidate vw ∈ D(vt)

4: nbr cand found ← False

5: for template node ut in neighbors of vt

6: if vt has known alignment

7: if ut has known alignment

8: for candidate uw ∈ D(ut)

9: if Ew(vw,uw) ≥ Et(vt,ut) and Ew(uw,vw) ≥ Et(ut,vt)

10: nbr cand found ← True

11: else

12: in tot ← 0, out tot ← 0

13: for candidate uw ∈ D(ut)

14: in tot ← in tot + Ew(vw,uw)

15: out tot ← out tot + Ew(uw,vw)

16: if in tot ≥ Et(vt,ut) and out tot ≥ Et(ut,vt)

17: nbr cand found ← True

18: else

19: for candidate uw ∈ D(ut)

20: if Ew(vw,uw) > 0 and Et(vt,ut) > 0

21: nbr cand found ← True

22: if Ew(uw,vw) > 0 and Et(ut,vt) > 0

23: nbr cand found ← True

24: if nbr cand found is not True

25: Remove vw from D(vt)

26: Output updated candidate set D(vt) for each vt ∈ Vt

84

4.4.1 AIDA Version 2.0.2

We perform minimal alignable subgraph isomorphism on the AIDA Version 2.0.2 dataset

provided to us by Pacific Northwest National Laboratory (PNNL) [CPM18, Hov20] as part

of the DARPA–MAA program [Sch18]. This dataset consists of a knowledge graph in RDF

format describing political events in the Ukraine. Templates also provided by PNNL describe

the assassination of politician Oleksandr Peklushenko, sometimes under various aliases such

as “Aleksandr Peklushenko” or “Pelushenko”.

Figure 4.1: A picture of AIDA Version 2.0.2 template 2. Colors on edges represent different

edge types, and the number in each node is a unique ID number. The central node, labeled

13, is the entity that represents Oleksandr Peklushenko.

To simulate a specific alignment error, we consider the case where these aliases are

identified as separate entities in the world graph, and as a single entity in the template.

This would be the result of a missed alignment. Since the remaining nodes in the template

correspond to specific terms within the ontology (e.g. “PER.Politician”), which we assume

have no possibility of incorrect alignment, we focus our efforts on the “Oleksandr Peklushenko”

entity and assume all other nodes have known alignments.

To cut down on the number of required merges, we impose that entities to be merged

must have names relatively close to “Oleksandr Peklushenko” or to its component tokens

“Oleksandr” and “Peklushenko”. To compare strings, we use the Levenshtein distance [Lev66],

85

Figure 4.2: A picture of a minimal alignable subgraph isomorphism for AIDA Version 2.0.2

template 2. Colors on edges represent different edge types, and the number in each node

is a unique ID number. The three nodes that can be merged together to form node 13 are

highlighted in red.

which is the minimum number of string edits (additions, deletions, and substitutions) required

to turn one string into another. We tested maximum Levenshtein distances between 3 and

6, with no observable differences in the results. However, at a distance of 7 or higher, the

number of results increases greatly. In this context, a distance of 7 is extremely large, as the

component tokens have length 9 and 11.

A dataset specific restriction that we can apply is that all entities to be merged must have

died (i.e. they must be the target of an edge with the type Life.Die Victim). In the context

of a real-world situation, this may be a reasonable step to take, if the entity in question

is known to have died. Even without this restriction, we can find all minimal alignable

subgraph isomorphisms; however, the runtime increases significantly, and the number of

possible matches also increases.

Running our algorithm, we find 228 minimal alignable subgraph isomorphisms. Although

we know from the ground truth alignment (provided to us by PNNL as part of the dataset)

that a 3-node merge should have been performed, we do not impose this condition on the

algorithm. Thus, the algorithm produces results corresponding to four possible 3-node

86

alignments, six possible 4-node alignments, and four possible 5-node alignments. Restricting

only to 3-node alignments, we have just 36 minimal alignable subgraph isomorphisms. These

are split between the four possible 3-node alignments: two of them have 12 each, and the

other two have 6 each.

These solutions are visualized in Fig. 4.3. We depict the template network and a subgraph

of all world nodes that participate in a solution. We color-code each template node with

its associated group of candidate nodes in the world network to illustrate how to map the

template network onto the world network [NYG19]. The boxed nodes in the world network are

those nodes that participate in 3-node, 4-node, or 5-node merges in order for an isomorphism

to possible. Observe how without such a merge, we could not guarantee connections to each

of the pink, lavender, light green, and dark green sets of nodes that are necessary, as seen in

the template network.

We also note that the world network in this example demonstrates possible alignment

errors that do not preclude the possibility for a solution. Note that template nodes 15 and 20

(in purple and pink, respectively) can be mapped to either nodes 30 and 14 or nodes 41 and

32 and still maintain an isomorphism. Similar cases can be seen with the blue and lavender

groups and the red and orange groups. Our algorithm does not merge these groups, as it is not

strictly needed, but more sophisticated algorithms that detect automorphic similarity could

possibly be used to merge these other groups, which would lead to a simplified description of

the solution space.

87

Figure 4.3: AIDA V2.0.2 template network (left) and subgraph of world network with nodes

participating in a minimal alignable subgraph isomorphism (right). The number in each node

is a unique ID number. Groups of nodes in the world network of one color (that is not dark

gray) are the candidates for template nodes of the same color. The boxed group in the world

network are the nodes that are involved in a merging.

88

CHAPTER 5

A Constraint Propagation Approach for Identifying

Biological Pathways in COVID-19 Knowledge Graphs

5.1 Introduction

Due to the ever-increasing pace of scientific advancement and discovery, there have been

several proposed approaches [SR21, WTD19, NMG10] for automated extraction of facts and

knowledge from the scientific literature. Using natural language processing, logical statements

and causal relationships can be extracted from a source text. These can then be assembled

into a structured knowledge base, which can assist domain experts in answering important

questions.

In this chapter, we examine one such knowledge base, a knowledge graph dataset on

Coronavirus Disease 2019 (COVID-19) created by PNNL as part of the DARPA–MAA

program. Per PNNL’s technical description, this dataset represents causal knowledge about

biological entities which was automatically extracted from the COVID-19 Open Research

Dataset [WLC20] using the INDRA knowledge assembler [GBS17], the Blender knowledge

graph [WLW20], and the Comparative Toxicogenomics Database [DWW21].

Within this context, we seek to identify biological activation pathways that answer

questions about COVID-19, such as how Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-COV-2) induces a cytokine storm in severely ill COVID-19 patients [ZPM21]. To

identify such pathways, we first model our biological query as a path-based graph template with

constraints. We then construct a constraint propagation scheme similar to that in Chapter 2,

89

taking into account the variable length of the path as well as the specified constraints. Finally,

we perform a depth-first search for candidate paths that match the template.

5.2 Problem Statement

We define the problem context as follows: given an attributed graph G, a set of possible start

nodes S and a set of possible end nodes E, identify all directed paths leading from a node in

S to a node in E. To prevent a enormous number of paths from arising, we also specify that

the paths must obey some of the following constraints.

First, we constrain the length of the path to contain at least lmin edges and at most lmax

edges, inclusive. This constraint is extremely important, as setting an upper bound on the

path length ensures the number of paths is bounded.

Second, we constrain each path to only contain nodes or edges of certain allowed types

(Av for nodes and Ae for edges). This constraint is simple to implement, as it is equivalent to

querying a subgraph taken over all nodes/edges belonging to the allowed types. However,

it can be very important in applications, as it allows researchers to specify which types of

nodes or edges should and should not occur in paths of interest.

Finally, we impose a constraint on the number of edges of certain types that may occur

in paths. For example, one could say that a path may only contain two, three, or five edges

of type A, eliminating paths containing exactly zero, one, or four edges of type A (and six or

more).

In our application, this constraint is used by the provided template to enforce parity in

the number of inhibitive edges. These edges represent inhibition relationships, where the

activation of one node causes the inhibition of another (inhibition being the opposite of

activation). In the context of our application, we consider a biological activation pathway

to be a chain of causal relationships (represented by directed edges in the causal knowledge

graph) where the activation of the start of the pathway leads to a corresponding activation

90

at the end. This pathway may, however, contain inhibition relationships. Here, we assume

that inhibiting a node that inhibits another node gives a net result of activation. Thus, we

seek to identify paths that contain an even number of inhibitive edges.

Putting these conditions together, we have the following definition of a path-based graph

template.

Definition 5.2.1 (Path-based Graph Template). A path-based graph template (S, E, lmin,

lmax, Av, Ae, Ce, Nc) consists of the following constraints on a path:

• A set of allowed start nodes S and a set of allowed end nodes E

• A minimum length lmin and maximum length lmax

• A set of allowed node labels Av and a set of allowed edge labels Ae

• Optionally, a restriction on the count of edges in the path whose labels belong to the set

Ce. This count must belong to the set Nc for the constraint to be met.

5.3 Algorithm

To identify these paths, we implement a constraint propagation approach similar to Chapter 2.

As before, we seek to identify candidates for our given template nodes. However, these

template nodes no longer represent a fixed graph, but instead represent roles within the path

that may or may not be needed, as the path has variable length.

To demonstrate this approach, let us ignore for now the third constraint on edge type

counts, and instead focus on just the path length and allowed type constraints. We construct

the template as a series of nodes, with the first representing the source, the second representing

the second node in the path, the third representing a possible third node in the path, and so

on, up to the maximum path length.

The candidate refinement process is then as follows. Given a candidate for a template

role, if it is not the source, first check that it has an edge leading to it from a candidate for

91

the previous node. If there is no such node, then this candidate cannot participate in a path,

and so is eliminated. If the role is the source, instead check that it is one of the specified

possible sources.

Similarly, for the outgoing edge, we check one of two conditions: either the candidate

must be one of the possible end nodes, or it must have an outgoing edge to a candidate for

the next node in the path. If neither of these conditions are met, the candidate is eliminated.

Note that if the template role in question is at the maximum possible length, there is no

outgoing edge, so its only candidates are the possible end nodes. Pseudocode for checking

these conditions can be found in Algorithm 12.

We repeat these checks until no more candidates can be eliminated. At that point,

we perform a depth-first tree search on the remaining candidates to identify all possible

paths, starting from the source and going until an endpoint is found. At each step in the

tree search, we choose a candidate for the current template role, then rerun the constraint

propagation repeatedly until the remaining candidates are unchanged. Once an endpoint has

been identified or all candidates are eliminated, we backtrack up the tree and choose another

candidate, until all possible choices are exhausted. The details of this algorithm can be seen

in Algorithm 13.

To extend this approach to edge counts, we introduce an augmented set of template roles.

Now, instead of each template role representing a possible position in the path, each role

represents both a position and the number of edges used to reach that position that match

the edge type filter.

Now, instead of checking constraints only on the previous and next roles in the path, each

role must check constraints on up to four roles: if the template role (p, n) has position p and

edge count n, it must check both roles (p− 1, n− 1) and (p− 1, n) for edges leading to (p, n),

and it must check (p+ 1, n) and (p+ 1, n+ 1) for edges going from (p, n) (or (p, n) must be a

valid endpoint). Additionally, edges between roles with different edge counts must match

the edge type filter, since this implies that the edge in question has changed the edge count.

92

Algorithm 12 Constraint Enforcement (Without Edge Counts)

1: function Filter

2: Input start nodes S, end nodes E, minimum path length lmin, maximum path length

lmax, allowed node labels Av, allowed edge labels Ae, world Gw, candidate set D(ti) for

each ti, 0 ≤ i ≤ lmax

3: for i = 0; i ≤ lmax; i++

4: D(ti)← {w|w ∈ D(ti),L(w) ∈ Av} . Filter on node labels

5: Dold ← null

6: while D 6= Dold

7: Dold ← D

8: for i = 0; i ≤ lmax; i++

9: if i == lmax

10: D(ti)← D(ti) ∩ E

11: else

12: D(ti)← {w|w ∈ D(ti), ∃e = (w,wo) ∈ Ew,wo ∈ D(ti+1),L(e) ∈ Ae}

13: if i ≥ lmin

14: D(ti)← D(ti) ∪ E

15: if i == 0

16: D(ti)← D(ti) ∩ S

17: else

18: D(ti)← {w|w ∈ D(ti), ∃e = (wo,w) ∈ Ew,wo ∈ D(ti−1),L(e) ∈ Ae}

19: Output updated candidate set D(ti) for each ti, 0 ≤ i ≤ lmax

93

Algorithm 13 Pathfinding (Without Edge Counts)

1: function PathSearch

2: Input start nodes S, end nodes E, minimum path length lmin, maximum path length

lmax, allowed node labels Av, allowed edge labels Ae, world Gw, candidate set D(ti) for

each ti, 0 ≤ i ≤ lmax, current path position i, current path pcurr, list of completed paths

P

3: Dorig ← D . Save original candidates

4: for world node vw ∈ D(ti), vw /∈ pcurr

5: D(ti)← {vw} . Assign vw to ti

6: D ← Filter(S, E, lmin, lmax, Av, Ae, Gw, D) . Check constraints

7: if vw ∈ E and i ≥ lmin

8: Append pcurr to P . Append the finished path to the pathlist

9: if i < lmax

10: PathSearch(S, E, lmin, lmax, Av, Ae, Gw, D, i+ 1, pcurr + vw, P)

11: D ← Dorig . Reset candidate set to original values

12: Output List of completed paths P

94

Figure 5.1: Template diagram for pathfinding with edge counts. Each cell represents a

possible template role that could appear in the path. The first number in each cell represents

the position in the path, with 0 being the start. The second number represents the number

of edges used that match the edge type filter. Arrows are drawn where one state can lead to

another through the addition of an edge to the path.

Similarly, edges between roles of the same edge count must not match the edge type filter.

The details of the extended constraint enforcement are shown in Algorithm 14.

Similarly, we extend the path search algorithm to accommodate branching along possible

paths, as shown in Algorithm 15.

5.4 Results

We evaluate our results on version 3.2.1 of the COVID Indra–Blender dataset created by

PNNL. This dataset has 85,938 nodes and 3,138,683 edges. There are four types of nodes:

13,377 nodes of type “Chemical”, 2634 “Disease”, 46445 “Gene”, and 23,482 “Protein”. The

edges are more varied, being broken down into 184 types. All code was run on an HP Z8 G4

Workstation with two 12-core Intel® Xeon® Gold 6136 CPUs.

We examine the provided template 1 (see Figure 5.2), which is a structural template

describing IL-6 amplification, a proposed mechanism for how COVID-19 induces cytokine

95

Algorithm 14 Constraint Enforcement (With Edge Counts)
1: function Filter

2: Input start nodes S, end nodes E, minimum path length lmin, maximum path length lmax, allowed

node labels Av, allowed edge labels Ae, edge labels to count Ce, valid edge counts Nc, world Gw, candidate

set D(ti,j) for each ti,j , 0 ≤ j ≤ i ≤ lmax

3: for i = 0; i ≤ lmax; i++

4: for j = 0; j ≤ i; j++

5: D(ti,j)← {w|w ∈ D(ti,j),L(w) ∈ Av} . Filter on node labels

6: Dold ← null

7: while D 6= Dold

8: Dold ← D

9: for i = 0; i ≤ lmax; i++

10: for j = 0; j ≤ i; j++

11: if i == lmax

12: if j ∈ Nc

13: D(ti,j)← D(ti,j) ∩ E

14: else

15: D(ti,j)← Ø

16: else

17: D1 ← {w|w ∈ D(ti,j),∃e = (w,wo) ∈ Ew,wo ∈ D(ti+1,j),L(e) ∈ Ae,L(e) /∈ Ce}

18: D2 ← {w|w ∈ D(ti,j),∃e = (w,wo) ∈ Ew,wo ∈ D(ti+1,j+1),L(e) ∈ Ae,L(e) ∈ Ce}

19: D(ti,j)← D1 ∪D2

20: if i ≥ lmin and j ∈ Nc

21: D(ti,j)← D(ti,j) ∪ E

22: if i == 0

23: D(ti,j)← D(ti,j) ∩ S

24: else

25: D1 ← {w|w ∈ D(ti,j),∃e = (wo,w) ∈ Ew,wo ∈ D(ti−1,j),L(e) ∈ Ae,L(e) /∈ Ce}

26: D2 ← {w|w ∈ D(ti,j),∃e = (wo,w) ∈ Ew,wo ∈ D(ti−1,j−1),L(e) ∈ Ae,L(e) ∈ Ce}

27: D(ti,j)← D1 ∪D2

28: Output updated candidate set D(ti,j) for each ti, 0 ≤ j ≤ i ≤ lmax

96

Algorithm 15 Pathfinding (With Edge Counts)

1: function PathSearch

2: Input start nodes S, end nodes E, minimum path length lmin, maximum path length

lmax, allowed node labels Av, allowed edge labels Ae, edge labels to count Ce, valid edge

counts Nc, world Gw, candidate set D(ti) for each ti, 0 ≤ i ≤ lmax, current path position

i, current edge count j, current path pcurr, list of completed paths P

3: Dorig ← D . Save original candidates

4: for world node vw ∈ D(ti,j), vw /∈ pcurr

5: D(ti,j)← {vw} . Assign vw to ti,j

6: D ← Filter(S, E, lmin, lmax, Av, Ae, Ce, Nc, Gw, D) . Check constraints

7: if vw ∈ E and i ≥ lmin and j ∈ Nc

8: Append pcurr to P . Append the finished path to the pathlist

9: if i < lmax

10: PathSearch(S, E, lmin, lmax, Av, Ae, Ce, Nc, Gw, D, i+ 1, j, pcurr + vw, P)

11: PathSearch(S, E, lmin, lmax, Av, Ae, Ce, Nc, Gw, D, i+ 1, j + 1, pcurr + vw, P)

12: D ← Dorig . Reset candidate set to original values

13: Output List of completed paths P

97

Figure 5.2: Template 1 of the PNNL COVID V3.2.1 dataset. The template describes a path

from the SARS-COV-2 ACE2 receptor to cytokine storms via activation of ADAM17.

storms[HUT20]. This template takes the form of two paths. The first path is an activation

pathway from two possible nodes representing the SARS-CoV-2 ACE2 complex to ADAM met-

allopeptidase domain 17/10 (ADAM17), and is constrained to have between one and five edges

(inclusive), with either two or four edges being of type “Inhibition” or “DecreaseAmount”.

The nodes in the first path are constrained to be of type “Gene” or “Protein”. The second

path is another activation pathway from ADAM17 to various representations of cytokine

storm in the dataset; it is also constrained to have between one and five edges, with two or

four inhibitive edges. However, the nodes in the second path, in addition to “Gene” and

“Protein”, are also allowed to be of type “Chemical”. Note that the template does not allow a

count of zero inhibitive edges, despite being a valid option for an activation pathway; this

was later found by PNNL to be an issue with the provided template, but was not fixed for

this version of the dataset.

To cut down on the number of possible paths, as well as to ensure that only activation

relationships are represented in the path, we imposed an additional constraint that did

not appear in the template, namely that activating edges must be of type “Activation” or

“IncreaseAmount” to parallel the inhibiting edge types of “Inhibition” and “DecreaseAmount”.

The original template did not place any constraint on which types could be considered activat-

ing, except that they not be “Inhibition” or “DecreaseAmount”. Thus, initial attempts often

98

Figure 5.3: Candidate counts for the first path in template 1 of the COVID V3.2.1 dataset.

The first number in each cell represents the position, the second represents the number of

edges used that match the edge type filter, and the third is the number of candidates for

that template role.

included paths with non-activation edge types treated as activation, such as “affectsˆbinding”,

“affectsˆcotreatment”, or “decreasesˆreaction”.

We find 5,591,288 matches for the first path constraint in the template and 13,529,145

matches for the second path constraint. Although this solution space is very large, it results

from a surprisingly small number of candidates: the largest number of candidates for a given

template role is only on the order of a few thousand. The huge number of solutions is thus not

due to a large number of disjoint matches, but rather a large number of overlapping matches.

In figures Figures 5.3 and 5.4, we show the candidate spaces for each path constraint by

counting the number of candidates for each template role. We also observe that the largest

number of candidates appear in the middle of the path, in positions 2 and 3. This makes

sense, as the ends of the path are more constrained, being fixed to one of only a few possible

values.

Due to the enormity of the solution space, it is unlikely that all results for this template

provide reasonable alternatives for explaining the link between SARS-COV-2 and cytokine

storm formation. However, the relatively small size of the candidate set gives hope that, with

some additional constraints on the path, a concise representation of the solution space can

be identified and presented to a domain expert for further investigation.

99

Figure 5.4: Candidate counts for the second path in template 1 of the COVID V3.2.1 dataset.

The first number in each cell represents the position, the second represents the number of

edges used that match the edge type filter, and the third is the number of candidates for

that template role.

100

CHAPTER 6

Conclusion

In this thesis, we detail various subgraph matching algorithms and approaches, and apply

them to various problems in adversarial activity detection, network analysis, knowledge graph

querying, and other applications.

In Chapter 2, we introduce a series of filtering methods that can be used to solve subgraph

isomorphism problems in large-scale multiplex networks consisting of hundreds of thousands

of nodes. Our filtering approaches reduce the search space using the node attributes, node-

level statistics, topology, repeated-set, neighborhood, and elimination filters. When applied

iteratively until convergence, our filtering methods can significantly narrow down the search

space. We also implement a more computationally expensive isomorphism counting approach,

which can be applied after filtering to solve the Subgraph Isomorphism Counting Problem

(Definition 1.2.8). We can also validate whether each world node participates in at least one

subgraph isomorphism, hence solving the Signal Node Set Problem (Definition 1.2.9).

We applied our methods to multiple types of networks: Sudoku puzzles, three real-world

datasets, and synthetic datasets created by PNNL, GORDIAN and IvySys as part of the

DARPA–MAA program. In all of these experiments, our methods have greatly narrowed

down the candidates of the template nodes and provided us with an understanding of the size

of the solution space. When applied to the Higgs Twitter network, the commercial airline

network, PNNL Version 6, PNNL Real World and GORDIAN Version 7, our methods are

capable of solving most of the proposed subgraph isomorphism problems. However, even

in settings where we cannot solve the problems, such as the Great Britain Transportation

and IvySys Versions 7 and 11, our methods reduced the size of the search space. Our results

101

show that further narrowing down the candidates of template nodes is often hindered by

an abundance of subgraph isomorphisms. Under such circumstances, leveraging more node

attributes such as geospatial coordinates or timestamps can assist in making further progress,

as shown in the Great Britain Transportation example.

Chapter 3 presents an analogous approach for the inexact attributed subgraph matching

problem by defining the problem in terms of the graph edit distance. To search for optimal

solutions, we first identify lower bounds on the cost of assigning individual template nodes

to their candidates in order to restrict the search space. Using an approach analogous to

constraint propagation, we first identify lower bounds on the cost of individual assignments.

We then combine the cost bounds using linear sum assignment to obtain global cost bounds,

which we use to guide a complete depth-first search for optimal solutions. We apply this

approach to two attributed knowledge graph datasets, the PNNL AIDA V2.1.2 dataset

describing political events in the Ukraine and the DBPedia knowledge graph database.

Chapter 4 extends the approach in Chapter 2 to handle potential errors in network

alignment. We define the concepts of alignable subgraph isomorphism and minimal alignable

subgraph isomorphism as they apply to aligned graphs. We modify the existing filtering

system to tolerate candidates that fulfill the conditions of alignable subgraph isomorphism

and alter the branching search to perform recursive alignments. Finally, we evaluate our

algorithm on the AIDA Version 2.0.2 dataset.

One further research direction would be to extend the other filters from Chapter 2 to the

aligned case, including the permutation, neighborhood, elimination, and validation filters.

Another possibility is an extension of the inexact matching scheme described in Chapter 3 to

the aligned graph context, defining alignment errors as part of the overall graph edit distance.

Finally, in Chapter 5, we describe a constraint propagation approach for path-based graph

queries involving various constraints. To handle the variability in potential template size, we

introduce the concept of template roles and detail the logical rules for performing constraint

propagation among them. We show results on the PNNL COVID V3.2.1 dataset, identifying

102

potential pathways connecting the SARS-COV-2 ACE2 receptor with cytokine storms.

This approach can be applied as a subroutine within a more general subgraph matching

routine, where a single edge of the graph may instead be specified to be a constrained

path. This is extremely important in the context of adversarial activity detection, as several

activities, such as money transfers, material shipments, and communication chains, may be

more generally represented as paths rather than fixed length chains of individual nodes or

actors. One could also extend our approach to more general structures, such as connected

groups or communities of nodes, which would allow us to more generally represent the role(s)

of a group without having to specify the number of nodes.

103

REFERENCES

[ADH08] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. “Biomolec-
ular network motif counting and discovery by color coding.” Bioinformatics,
24(13):i241–i249, 2008.

[ANR15] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. “Efficient graphlet counting
for large networks.” In 2015 IEEE International Conference on Data Mining, pp.
1–10. IEEE, 2015.

[BBB16] B. Bentley, R. Branicky, C. L. Barnes, Y. Chew, E. Yemini, E. T. Bullmore,
P. E. Vértes, and W. R. Schafer. “The multilayer connectome of Caenorhabditis
elegans.” PLoS Computational Biology, 12(12):e1005283, 2016.

[Bc99] R. E. Burkard and E. Çela. “Linear assignment problems and extensions.” In
Handbook of Combinatorial Optimization, pp. 75–149. Springer, 1999.

[BCL16] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. “Efficient subgraph matching
by postponing Cartesian products.” In Proceedings of the 2016 International
Conference on Management of Data, pp. 1199–1214. ACM, 2016.

[BE85] R. Bar-Yehuda and S. Even. “A local-ratio theorem for approximating the weighted
vertex cover problem.” In Analysis and Design of Algorithms for Combinatorial
Problems, volume 109 of North-Holland Mathematics Studies, pp. 27–45. Elsevier,
1985.

[Ber88] D. P. Bertsekas. “The auction algorithm: A distributed relaxation method for the
assignment problem.” Annals of Operations Research, 14:105–123, 1988.

[BGP13] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. “A subgraph
isomorphism algorithm and its application to biochemical data.” BMC Bioinfor-
matics, 14(7):S13, 2013.

[BJU18] K. O. Babalola, O. B. Jennings, E. Urdiales, and J. A. DeBardelaben. “Statistical
methods for generating synthetic email data sets.” In 2018 IEEE International
Conference on Big Data, pp. 3986–3990. IEEE, 2018.

[CDM10] F. Celli, F. M. L. Di Lascio, M. Magnani, B. Pacelli, and L. Rossi. “Social network
data and practices: the case of FriendFeed.” In Advances in Social Computing,
pp. 346–353. Springer, 2010.

[CFS03] D. Conte, P. Foggia, C. Sansone, and M. Vento. “Graph matching applications in
pattern recognition and image processing.” In International Conference on Image
Processing, volume 2, pp. II–24. IEEE, 2003.

104

[CFS04] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (sub)graph isomorphism
algorithm for matching large graphs.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(10):1367–1372, 2004.

[CFS17] V. Carletti, P. Foggia, A. Saggese, and M. Vento. “Introducing VF3: A new
algorithm for subgraph isomorphism.” In Graph-Based Representations in Pattern
Recognition, pp. 128–139. Springer, 2017.

[CFS18] V. Carletti, P. Foggia, A. Saggese, and M. Vento. “Challenging the time complexity
of exact subgraph isomorphism for huge and dense graphs with VF3.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(4):804–818, 2018.

[CFV15] V. Carletti, P. Foggia, and M. Vento. “VF2 plus: An improved version of VF2 for
biological graphs.” In Graph-Based Representations in Pattern Recognition, pp.
168–177. Springer, 2015.

[CGZ13] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo,
and S. Boccaletti. “Emergence of network features from multiplexity.” Scientific
Reports, 3, 2013. Art. no. 1344.

[CPM18] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin. “Multi-channel large network
simulation including adversarial activity.” In 2018 IEEE International Conference
on Big Data, pp. 3947–3950. IEEE, 2018.

[Cro16] D. F. Crouse. “On implementing 2D rectangular assignment algorithms.” IEEE
Transactions on Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[Dep15] Department for Transport. “National public transport data repository.”
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/

national-public-transport-data-repository-nptdr, 2015. Accessed:
2021-05-30.

[DLM13] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. “The anatomy of a
scientific rumor.” Scientific Reports, 3, 2013. Art. no. 2980.

[DWW21] A. P. Davis, T. C. Wiegers, J. Wiegers, C. J. Grondin, R. J. Johnson, D. Sciaky,
and C. J. Mattingly. “CTD anatomy: Analyzing chemical-induced phenotypes and
exposures from an anatomical perspective, with implications for environmental
health studies.” Current Research in Toxicology, 2:128–139, 2021.

[DZK18a] J. Douglas, B. Zimmerman, A. Kopylov, J. Xu, D. Sussman, and V. Lyzinski.
“Metrics for evaluating network alignment.” In 11th ACM International Conference
on Web Search and Data Mining, Workshop on Graph Techniques for Adversarial
Activity Analytics. ACM, 2018a.

[DZK18b] J. Douglas, B. Zimmerman, A. Kopylov, J. Xu, D. Sussman, and V. Lyzinski.
“Metrics for evaluating network alignment.” In GTA3 at WSDM, 2018b.

105

https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr

[EKG13] A. Egozi, Y. Keller, and H. Guterman. “A probabilistic approach to spectral
graph matching.” IEEE Trans. Pattern Anal. Mach. Intell., 35(1):18–27, 2013.

[Fan12] W. Fan. “Graph pattern matching revised for social network analysis.” In
Proceedings of the 15th International Conference on Database Theory, pp. 8–21.
ACM, 2012.

[GB15] R. Gallotti and M. Barthelemy. “The multilayer temporal network of public
transport in Great Britain.” Scientific Data, 2, 2015. Art. no. 140056.

[GBS17] B. M. Gyori, J. A. Bachman, K. Subramanian, J. L. Muhlich, L. Galescu, and
P. K. Sorger. “From word models to executable models of signaling networks
using automated assembly.” Molecular Systems Biology, 13(11):954, 2017.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co, 1979.

[GMN08] I. P. Gent, I. Miguel, and P. Nightingale. “Generalised arc consistency for the
AllDifferent constraint: An empirical survey.” Artificial Intelligence, 172(18):1973–
2000, 2008.

[GXT10] X. Gao, B. Xiao, D. Tao, and X. Li. “A survey of graph edit distance.” Pattern
Analysis and Applications, 13:113–129, 2010.

[HK73] J. E. Hopcroft and R. M. Karp. “An n5/2 algorithm for maximum matchings in
bipartite graphs.” SIAM Journal on Computing, 2(4):225–231, 1973.

[HLL13] W. Han, J. Lee, and J. Lee. “Turboiso: Towards ultrafast and robust subgraph
isomorphism search in large graph databases.” In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 337–348. ACM,
2013.

[Hoe01] W.-J. van Hoeve. “The AllDifferent constraint: A survey.”
http://www.andrew.cmu.edu/user/vanhoeve/papers/alldiff.pdf, 2001. Ac-
cessed: 2021-05-30.

[Hov20] E. Hovy. “Active interpretation of disparate alternatives (AIDA).”
https://www.darpa.mil/program/active-interpretation-of-disparate-alternatives,
2020. Accessed: 2020-10-6.

[HS08] H. He and A. Singh. “Graphs-at-a-time: query language and access methods
for graph databases.” In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of data, pp. 405–418. ACM, 2008.

[HUT20] S. Hojyo, M. Uchida, K. Tanaka, R. Hasebe, Y. Tanaka, M. Murakami, and T. Hi-
rano. “How covid-19 induces cytokine storm with high mortality.” Inflammation
and regeneration, 40(1):1–7, 2020.

106

[HWP03] J. Huan, W. Wang, and J. Prins. “Efficient mining of frequent subgraphs in
the presence of isomorphism.” In Third IEEE International Conference on Data
Mining, pp. 549–552. IEEE, 2003.

[IIP16] V. Ingalalli, D. Ienco, and P. Poncelet. “SuMGra: Querying multigraphs via
efficient indexing.” In Database and Expert Systems Applications, pp. 387–401.
Springer, 2016.

[JHW19] H. Jin, X. He, Y. Wang, H. Li, and A. L. Bertozzi. “Noisy subgraph isomorphisms
on multiplex networks.” In 2019 IEEE International Conference on Big Data, pp.
4899–4905. IEEE, 2019.

[JM18] A. Jüttner and P. Madarasi. “VF2++— an improved subgraph isomorphism
algorithm.” Discrete Applied Mathematics, 242:69–81, 2018.

[JV87] R. Jonker and A. Volgenant. “A shortest augmenting path algorithm for dense
and sparse linear assignment problems.” Computing, 38:325–340, 1987.

[KAB14] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter.
“Multilayer networks.” Journal of Complex Networks, 2(3):203–271, 2014.

[KMS16] L. Kotthoff, C. McCreesh, and C. Solnon. “Portfolios of subgraph isomorphism
algorithms.” In Learning and Intelligent Optimization, pp. 107–122. Springer,
2016.

[Knu00] D. E. Knuth. “Dancing links.” Millennial Perspectives in Computer Science, pp.
187–214, 2000.

[KSD07] G. A. Korsah, A. Stentz, and M. B. Dias. “The dynamic Hungarian algorithm for
the assignment problem with changing costs.” Technical Report CMU-RI-TR-07-
27, Carnegie Mellon University, 2007.

[KSG18] K. Karra, S. Swarup, and J. Graham. “An empirical assessment of the complexity
and realism of synthetic social contact networks.” In 2018 IEEE International
Conference on Big Data, pp. 3959–3967. IEEE, 2018.

[Kuh55] H. W. Kuhn. “The Hungarian method for the assignment problem.” Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[KX19] A. Kopylov and J. Xu. “Filtering strategies for inexact subgraph matching on
noisy multiplex networks.” In 2019 IEEE International Conference on Big Data,
pp. 4906–4912. IEEE, 2019.

[Lev66] V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions, and
reversals.” 10(8):707–710, 1966.

107

[LFF16] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G. Sapiro.
“Graph matching: Relax at your own risk.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(1):60–73, 2016.

[LIJ15] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. “DBpedia - A
large-scale, multilingual knowledge base extracted from Wikipedia.” Semantic
Web, 6:167–195, 2015.

[LV02] J. Larrosa and G. Valiente. “Constraint satisfaction algorithms for graph pattern
matching.” Mathematical Structures in Computer Science, 12(4):403–422, 2002.

[LZ17] Y. Liang and P. Zhao. “Similarity search in graph databases: A multi-layered
indexing approach.” In 2017 IEEE 33rd International Conference on Data Engi-
neering, pp. 783–794. IEEE, 2017.

[Map] Mapbox. “Mapbox.” https://www.mapbox.com/.

[MBF20] G. Micale, V. Bonnici, A. Ferro, D. Shasha, R. Giugno, and A. Pulvirenti.
“MultiRI: Fast subgraph matching in labeled multigraphs.” arXiv preprint
arXiv:2003.11546, 2020.

[McG79] J. J. McGregor. “Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms.” Information Sciences, 19(3):229–250, 1979.

[MCT18] J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, and A. L. Bertozzi. “Fil-
tering methods for subgraph matching on multiplex networks.” In 2018 IEEE
International Conference on Big Data (Big Data), pp. 3980–3985, 2018.

[Moo21] J. Moorman. Stochastic Optimization and Subgraph Search. PhD thesis, UCLA,
2021.

[MP15] C. McCreesh and P. Prosser. “A parallel, backjumping subgraph isomorphism
algorithm using supplemental graphs.” In Principles and Practice of Constraint
Programming, pp. 295–312. Springer, 2015.

[MPS18] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. “When subgraph isomorphism
is really hard, and why this matters for graph databases.” Journal of Artificial
Intelligence Research, 61(1):723–759, 2018.

[MR11] M. Magnani and L. Rossi. “The ML-model for multi-layer social networks.” In
2011 International Conference on Advances in Social Networks Analysis and
Mining, pp. 5–12. IEEE, 2011.

[MTC20] J. D. Moorman, T. K. Tu, Q. Chen, D. Yang, and X. He. “jdmoorman/uclasm:
v0.2.0.” Zenodo. https://doi.org/10.5281/zenodo.4052353, 2020.

108

https://www.mapbox.com/
https://doi.org/10.5281/zenodo.4052353

[MTC21] J. D. Moorman, T. Tu, Q. Chen, X. He, and A. L. Bertozzi. “Subgraph matching
on multiplex networks.” IEEE Transactions on Network Science and Engineering,
8(2):1367–1384, 2021.

[Mun57] J. Munkres. “Algorithms for the assignment and transportation problems.” Jour-
nal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[NMG10] A. Nuzzo, F. Mulas, M. Gabetta, E. Arbustini, B. Zupan, C. Larizza, and R. Bel-
lazzi. “Text mining approaches for automated literature knowledge extraction
and representation.” In MEDINFO 2010, pp. 954–958. IOS Press, 2010.

[Nora] P. Norvig. “pytudes GitHub repository.” https://github.com/norvig/pytudes,
a. Accessed: 2021-05-30.

[Norb] P. Norvig. “Solving every Sudoku puzzle.” http://www.norvig.com/sudoku.

html, b. Accessed: 2021-05-30.

[NS17] C. Nabti and H. Seba. “Compact neighborhood index for subgraph queries in
massive graphs.” arXiv preprint arXiv:1703.05547, 2017.

[NYG19] T. Nguyen, D. Yang, Y. Ge, H. Li, and A. L. Bertozzi. “Applications of structural
equivalence to subgraph isomorphism on multichannel multigraphs.” In 2019
IEEE International Conference on Big Data, pp. 4913–4920. IEEE, 2019.

[Ope] OpenStreetMap. “Openstreetmap.” https://www.openstreetmap.org/.

[PPP17] S. Pilosof, M. A. Porter, M. Pascual, and S. Kéfi. “The multilayer nature of
ecological networks.” Nature Ecology & Evolution, 1, 2017. Art. no. 0101.

[Pro] “Project Euler problem 96: Su Doku.” https://projecteuler.net/problem=96.
Accessed: 2021-05-30.

[PTT14] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau. “MAGE: Matching approximate
patterns in richly-attributed graphs.” In 2014 IEEE International Conference on
Big Data, pp. 585–590. IEEE, 2014.

[RDF14] “RDF 1.1 Concepts and Abstract Syntax.” https://www.w3.org/TR/

rdf11-concepts/, 2014. Accessed: 2021-8-17.

[Reg94] J. Régin. “A filtering algorithm for constraints of difference in CSPs.” In
Proceedings of the 12th National Conference on Artificial Intelligence, volume 1,
pp. 362–367. AAAI, 1994.

[RKR17] T. Reza, C. Klymko, M. Ripeanu, G. Sanders, and R. Pearce. “Towards practical
and robust labeled pattern matching in trillion-edge graphs.” In 2017 IEEE
International Conference on Cluster Computing, pp. 1–12. IEEE, 2017.

109

https://github.com/norvig/pytudes
http://www.norvig.com/sudoku.html
http://www.norvig.com/sudoku.html
https://www.openstreetmap.org/
https://projecteuler.net/problem=96
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

[RW15] X. Ren and J. Wang. “Exploiting vertex relationships in speeding up subgraph
isomorphism over large graphs.” Proceedings of the VLDB Endowment, 8(5):617–
628, 2015.

[Sai79] L. D. Sailer. “Structural equivalence: Meaning and definition, computation and
application.” Social Networks, 1(1):73–90, 1978–1979.

[Sch18] C. Schwartz. “Modeling Adversarial Activity (MAA).”
https://www.darpa.mil/program/modeling-adversarial-activity, 2018. Ac-
cessed: 2018-10-2.

[SF83] A. Sanfeliu and K. Fu. “A distance measure between attributed relational graphs
for pattern recognition.” IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(3):353–362, 1983.

[Sim05] H. Simonis. “Sudoku as a constraint problem.” In Proceedings of the 4th In-
ternational Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, pp. 13–27, 2005.

[SL19] S. Sun and X. Luo. “Scaling up subgraph query processing with efficient subgraph
matching.” In 2019 IEEE 35th International Conference on Data Engineering,
pp. 220–231. IEEE, 2019.

[Sol10] C. Solnon. “AllDifferent-based filtering for subgraph isomorphism.” Artificial
Intelligence, 174(12–13):850–864, 2010.

[SPA08] “SPARQL Query Language for RDF.” https://www.w3.org/TR/

rdf-sparql-query/, 2008. Accessed: 2021-8-17.

[SPP20] D. Sussman, Y. Park, C. E. Priebe, and V. Lyzinski. “Matched filters for noisy in-
duced subgraph detection.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(11):2887–2900, 2020.

[SR21] P. Shetty and R. Ramprasad. “Automated knowledge extraction from polymer
literature using natural language processing.” iScience, 24(1):101922, 2021.

[Ste05] G. Stertenbrink. “top95.” http://magictour.free.fr/top95, 2005. Accessed:
2021-09-06.

[SW05] T. Schank and D. Wagner. “Finding, counting and listing all triangles in large
graphs, an experimental study.” In Experimental and Efficient Algorithms, pp.
606–609. Springer, 2005.

[SWW12] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. “Efficient subgraph matching on
billion node graphs.” Proceedings of the VLDB Endowment, 5(9):788––799, 2012.

110

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://magictour.free.fr/top95

[SZL08] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. “Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism.” Proceedings of the VLDB
Endowment, 1(1):364–375, 2008.

[TMY20] T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, and A. L. Bertozzi. “Inexact
attributed subgraph matching.” In 2020 IEEE International Conference on Big
Data, pp. 2575–2582. IEEE, 2020.

[TRS13] G. Tauer, R. Rudnicki, and M. Sudit. “Approximate SPARQL for error tolerant
queries on the DBpedia knowledge base.” In Proceedings of the 16th International
Conference on Information Fusion, pp. 850–856. IEEE, 2013.

[TY20] T. K. Tu and D. Yang. “Fault-tolerant subgraph matching on aligned networks.”
In 2020 IEEE International Conference on Big Data, pp. 2569–2574. IEEE, 2020.

[Ull76] J. R. Ullmann. “An algorithm for subgraph isomorphism.” Journal of the ACM,
23(1):31–42, 1976.

[Ull10] J. R. Ullmann. “Bit-vector algorithms for binary constraint satisfaction and
subgraph isomorphism.” Journal of Experimental Algorithmics, 15, 2010. Art. no.
1.6.

[Ver79] L. M. Verbrugge. “Multiplexity in adult friendships.” Social Forces, 57(4):1286–
1309, 1979.

[WLC20] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk,
R. Kinney, Z. Liu, W. Merrill, et al. “CORD-19: The COVID-19 Open Research
Dataset.” ArXiv, 2020.

[WLW20] Q. Wang, M. Li, X. Wang, N. Parulian, G. Han, J. Ma, J. Tu, Y. Lin, H. Zhang,
W. Liu, et al. “COVID-19 literature knowledge graph construction and drug
repurposing report generation.” arXiv preprint arXiv:2007.00576, 2020.

[WTD19] L. Weston, V. Tshitoyan, J. Dagdelen, O. Kononova, A. Trewartha, K. A. Persson,
G. Ceder, and A. Jain. “Named entity recognition and normalization applied to
large-scale information extraction from the materials science literature.” Journal
of Chemical Information and Modeling, 59(9):3692–3702, 2019. PMID: 31361962.

[XTL18] J. Xu, H. Tong, T. Lu, J. He, and N. Bliss. “GTA3 2018: Workshop on graph
techniques for adversarial activity analytics.” In Proceedings of the 11th ACM
International Conference on Web Search and Data Mining, p. 803. ACM, 2018.

[YG13] L. Yartseva and M. Grossglauser. “On the performance of percolation graph
matching.” In Proceedings of the First ACM Conference on Online Social Networks,
pp. 119–130. ACM, 2013.

111

[YH02] X. Yan and J. Han. “gspan: Graph-based substructure pattern mining.” In 2002
IEEE International Conference on Data Mining, pp. 721–724. IEEE, 2002.

[ZBV09] M. Zaslavskiy, F. Bach, and J. Vert. “A path following algorithm for the graph
matching problem.” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(12):2227–2242, 2009.

[ZDS10] S. Zampelli, Y. Deville, and C. Solnon. “Solving subgraph isomorphism problems
with constraint programming.” Constraints, 15:327–353, 2010.

[ZH10] P. Zhao and J. Han. “On graph query optimization in large networks.” Proceedings
of the VLDB Endowment, 3(1–2):340–351, 2010.

[ZL17] M. Zitnik and J. Leskovec. “Predicting multicellular function through multi-layer
tissue networks.” Bioinformatics, 33(14):190–198, 2017.

[ZLY09] S. Zhang, S. Li, and J. Yang. “GADDI: distance index based subgraph matching
in biological networks.” In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, pp. 192–203.
ACM, 2009.

[ZMC11] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. “gStore: answering SPARQL
queries via subgraph matching.” Proceedings of the VLDB Endowment, 4(8):482–
493, 2011.

[ZPM21] J. Zucker, K. Paneri, S. Mohammad-Taheri, S. Bhargava, P. Kolambkar, C. Bakker,
J. Teuton, C. T. Hoyt, K. Oxford, R. Ness, et al. “Leveraging structured biological
knowledge for counterfactual inference: A case study of viral pathogenesis.” IEEE
Transactions on Big Data, 7(1):25–37, 2021.

112

	Introduction
	Applications and Problem Definitions
	Definitions
	Problem Statements

	Prior Work
	Ullmann's Algorithm
	VF2
	Constraint-Propagation Approaches
	Graph-Indexing Approaches
	Multiplex Approaches
	Review

	Subgraph Matching on Multiplex Networks
	Filtering
	Node Label Filter
	Node-level Statistics Filter
	Topology Filter
	Repeated-Sets Filter
	Neighborhood Filter
	Elimination Filter

	Solving the Problems
	Isomorphism Counting
	Validation

	Experiments
	Sudoku
	Multiplex Erdos–Rényi Networks
	Real-World Examples
	Adversarial Activity

	Inexact Attributed Subgraph Matching
	Introduction
	Related Work
	Our Contributions

	Algorithm
	Graph Edit Distance Based Cost Function
	Cost Bounds
	Constrained Cost Bounds
	Searching for Optimal Solutions

	Experiments
	AIDA Version 2.1.2
	DBPedia

	Varying Edgewise Cost Bound Weights
	Restricting Candidates During Minimization

	Fault-tolerant Subgraph Matching on Aligned Networks
	Fault-tolerant Subgraph Matching on Aligned Networks
	Filtering
	Fault-tolerant Node-level Statistics Filter
	Fault-tolerant Topology Filter
	Handling Nodes With Known Alignments

	Recursive Merging
	Experiments
	AIDA Version 2.0.2

	A Constraint Propagation Approach for Identifying Biological Pathways in COVID-19 Knowledge Graphs
	Introduction
	Problem Statement
	Algorithm
	Results

	Conclusion
	References

