
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Improving TCP Using Working Memory Capacity and Network Coding

Permalink
https://escholarship.org/uc/item/1x25m97s

Author
Srinivasan, Ramesh

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1x25m97s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

IMPROVING TCP USING WORKING MEMORY CAPACITY
AND NETWORK CODING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Ramesh Srinivasan

December 2022

The Dissertation of Ramesh Srinivasan
is approved:

Prof. J.J. Garcia-Luna-Aceves, Chair

Prof. Martine Schlag

Prof. Brad R. Smith

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Ramesh Srinivasan

2022

Table of Contents

List of Figures v

Abstract vii

Dedication ix

Acknowledgments x

1 Introduction 1
1.1 5G Technology Use Cases . 4
1.2 5G Technology Data Transport Requirements 9
1.3 Research Contributions . 10
1.4 Thesis Outline . 12

2 Related Work 16
2.1 Survey of TCP Variants . 16
2.2 Limitations of TCP Prior Variants . 20
2.3 TCP Enhancements for Hybrid Networks 21
2.4 TCP Enhancements with Network Coding 28
2.5 TCP Enhancements for Dynamic Topology Changes 30

3 TCP-EWSC:
TCP Enhanced-Wireless-Santa-Cruz 32
3.1 Basic Operation . 34
3.2 TCP-EWSC Description . 36

3.2.1 Enhanced BEST-START Window Size 36
3.2.2 Enhanced RTT Correction: Link-Layer Retransmissions 44
3.2.3 Enhanced Fast-Retransmission: Link-Layer Reordering 45
3.2.4 RSSI Enhancement: Receiver Zero-Window Buffer Spoof 47
3.2.5 Enhanced Cluster Analysis . 47

3.3 Performance Results . 48
3.4 Performance Comparison . 51

iii

3.5 Summary . 52

4 TCP-NEWT:
TCP Network-Coding Enhanced Window Transformation 53
4.1 Basic Operation . 55
4.2 Protocol Description . 59
4.3 Performance Results . 81
4.4 Performance Comparison . 84
4.5 Summary . 85

5 TCP-PNC:
TCP Predictive Network Coding 86
5.1 Basic Operation . 86
5.2 Protocol Description . 92
5.3 Performance Results . 100
5.4 Performance Comparison . 101
5.5 Summary . 104

6 TCP-RTA:
TCP Real-Time Topology Adaptiveness for Congestion Control 105
6.1 Basic Operation . 107
6.2 Protocol Description . 108
6.3 Performance Results . 115
6.4 Performance Comparison . 117
6.5 Summary . 118

7 Conclusion 120

Bibliography 123

iv

List of Figures

1.1 5G Network Deployment Scenarios. [69] 4
1.2 Mobile Cars with Multiple Cell Towers. [70] 5
1.3 Multiple Communication Satellites in Space [85] 5
1.4 Customer Physical Location Direct Drone Delivery [8] 6
1.5 Military Communications with Ad-hoc Wireless Networks [71] 7
1.6 Disaster Zone Emergency Rescue Crew’s Communication Needs [22] . . 7
1.7 IoT 5G Deployments [93] . 8
1.8 5G Military Deployment Scenario - Anglova [30] 9

3.1 TCP-Cubic with No-Loss . 48
3.2 TCP-Cubic with 10% Loss . 49
3.3 TCP-Cubic with 20% Loss . 49
3.4 TCP-NewReno with No-Loss . 50
3.5 TCP-NewReno with 10% Loss . 50
3.6 TCP-NewReno with 20% Loss . 51

4.1 TCP-NEWT header . 55
4.2 Network Coding . 59
4.3 Group Size 1 . 60
4.4 Original Sample Data Seg 1 - Hex Dump 61
4.5 Group Size 1: Coded Datagram 8.1’s TCP Header 61
4.6 Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting 62
4.7 Group Size 1: CE1-2 Coded Datagram 8.1’s TCP Data 62
4.8 Group Size 1: Coded Datagram 8.2’s Relevant TCP Header fields 62
4.9 Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting 63
4.10 Group Size 1: CE1-4 Coded Datagram 8.1’s TCP Header 63
4.11 Group Size 1: Coded Datagram 8.3’s Relevant TCP Header fields 63
4.12 Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting 64
4.13 Group Size 1: CE1-8 Coded Datagram 8.3’s TCP Header 64
4.14 Group Size 1: Coded Datagram 8.4’s Relevant TCP Header fields 64
4.15 Group Size 2: CE1-16 Coded Datagram 8.1’s Computation by bit shifting 65

v

4.16 Group Size 1: CE-16 Coded Datagram 8.1’s TCP Header 65
4.17 Group Size 1 RX . 65
4.18 Group Size 1:RTTVAR and SRTT parameters mapping 67
4.19 Group Size 2 . 68
4.20 Original Data Segment 2- Hex Dump . 69
4.21 Group Size 2: Coded Datagram 8.1’s TCP Header 69
4.22 Group Size 2: CE1-2 Coded Datagram 8.1’s TCP Data 70
4.23 Group Size 2: Coded Datagram 8.2’s TCP Header 70
4.24 Group Size 2: CE1-2 Coded Datagram 8.1’s TCP Data 70
4.25 Group Size 2 RX . 71
4.26 Group Size 2: CE1-2 Coded Datagram 8.1’s TCP Data 71
4.27 Group Size 2: D1 obtained by RLC2 - RLC1 is divided by 2 72
4.28 Group Size 2: . 72
4.29 Distributed Object Storage with Network Coding 75
4.30 Distributed Object Storage with Selective Network Coding 76
4.31 Distributed Object Storage with Compressed Network Coding 77
4.32 TCP Network Coding with No-Loss . 81
4.33 TCP Network Coding with 10% Loss . 82
4.34 TCP Network Coding with 20%Loss . 82
4.35 TCP Network Coding with 30%Loss . 83
4.36 TCP Network Coding with 40%Loss . 83
4.37 TCP Network Coding with 50%Loss . 84

5.1 Native TCP based Selective Network Coding 89
5.2 TCP-NEWT with Selective Network Coding 90
5.3 TCP-NEWT congestion window comprises only coded segments 91
5.4 LL Goodput Computation . 95
5.5 An Example of Dynamic Goodput (1 - Loss-Ratio) Prediction 97
5.6 Cubic vs New Reno vs NC . 102
5.7 NC - Throughput . 103
5.8 Cubic vs New Reno vs NC - 20% loss 103

6.1 CWND: Adaptive vs Hybla vs NewReno 116
6.2 TX: Adaptive vs Hybla vs NewReno . 116
6.3 CWND before transition to satellite: Adaptive vs Hybla vs NewReno . . 116
6.4 TX before transition to satellite: Adaptive vs Hybla vs NewReno 116
6.5 CWND after transition to Satellite link: Adaptive vs Hybla vs NewReno 117
6.6 TX after transition to Satellite link: Adaptive vs Hybla vs NewReno . . 117
6.7 CWND after transition from Satellite link: Adaptive vs Hybla vs NewReno117
6.8 TX after transition from Satellite link: Adaptive vs Hybla vs NewReno 117

vi

Abstract

IMPROVING TCP USING WORKING MEMORY CAPACITY

AND NETWORK CODING

by

Ramesh Srinivasan

This thesis introduces a number of modifications and enhancements to the

Transmission Control Protocol (TCP) aimed at addressing some of the known limita-

tions of TCP taking advantage of larger amounts of working memory capacity at the

nodes participating in TCP sessions, and network coding. These TCP variants are TCP-

EWSC (TCP Enhanced Wireless Santa Cruz), TCP-NEWT (TCP Network-Coding

Enabled Window Transformation), TCP-PNC (TCP Predictive Network Coding) and

TCP-RTA (TCP Real-time Topology Adaptiveness). TCP-EWSC brings several capa-

bilities to better adapt traditional TCP for hybrid networks including the capability to

respond to sporadic temporary wireless signal outages in a resilient manner with proac-

tive spoofing of receiver zero-window. TCP-NEWT introduces a mechanism for network

coding to proactively address packet loss without retransmissions while accurately re-

porting all the observed TCP flow metrics back to the host. TCP-PNC augments

TCP-NEWT with real-time prediction of the expected goodput (packets delivered/-

total packets sent) and proactive compensation for the same. TCP-RTA dynamically

detects a topology change and adapts with an appropriate congestion-control strategy

to maximize the effective use of the total available bandwidth. TCP-RTA also factors

vii

in the relative impact of the degree of change in topology versus that of the underlying

transmission medium to identify the best congestion control strategy to ensure optimal

usage of the end-to-end network infrastructure. TCP-EWSC performance results show

that end-end throughput is sustained close to the prior levels even after the introduction

of link-layer errors, when compared to other TCP variants which show a drop of about

8%. Performance results with TCP-PNC with network coding, show an overall increase

of end-to-end TCP throughput in the range of 30-35% depending upon the number of

wireless-link-layer losses, without changing the underlying ”network congestion”. Per-

formance results with TCP-RTA indicate a throughput increase of more than 35% in

scenarios involving dynamic topology changes during a TCP session.

viii

Dedication

To my wife Srividya Ramesh for her ongoing support through this endeavor

and keeping me focused on making progress and bringing a constant refreshing sense of

humor and cheer along this journey.

To my parents Dr. Rajalakshmi Srinivasan and K.S. Srinivasan for their un-

ceasing belief and faith in me through the ups and downs and always being there with

boundless encouragement and inspiration.

To my daughters Shreya Ramesh and Sathya Ramesh for adjusting with my

many hours of research and getting involved in technical discussions and getting an

understanding of the areas where I have been spending late nights and weekends. Shreya

also helped with detailed review of several chapters of this thesis as well as with the

presentation. Sathya was constantly egging me on to stay focused and helped with

finishing touches and edits with the presentation.

To my sister Dr. Jayanti Ravi excelling in many walks of her life and always

having a cheerful disposition and encouraging me during our conversations.

To my maternal grandfather late K. Subramanian for the countless hours, he

spent working closely with me decades ago when I was in high school getting introduced

to science and math. He instilled in me a passion and quest for knowledge and the belief

that one can make anything happen if our heart and soul is put into it.

To my maternal uncle late S. Viswanathan my local guardian through my

undergraduate years at IIT-Madras and a pillar of support in my formative years.

ix

Acknowledgments

Returning to graduate school as a doctoral student while also working in the indus-

try was not a trivial undertaking. This thesis could not have been completed without

the help, guidance, and support from my advisor Professor J. J. Garcia Luna-Aceves,

whose technical guidance coupled with his mild and calm demeanor and subtle sense

of humor, served as a tremendous source of motivation and inspiration. I would like

to thank Professor Martine Schlag and Professor Brad Smith, who found time to serve

as committee members and provided valuable feedback despite their busy schedules as

well as Professor Marco Rolandi, who was part of my advancement committee. I would

also like to thank Professor Brad Smith for working with me in a research proposal

submission to Cisco Systems few years ago as well as Professor Katia Obraczka and

Professor Cedric Westphal, who provided the intellectual stimulation during the many

discussions in the Networking Seminar class over the years. I also would like to thank

Professor Suresh K. Lodha for the warm welcome email I received, when applying for

the doctoral program. I would also like to place on record my deep gratitude to Pro-

fessor Pat Mantey, founding Dean of the Jack Baskin School of Engineering (SOE), for

encouraging me to join UCSC. I would like to acknowledge my colleagues at CCRG over

the years, James Mathewson, Nitish John, Dhananjay Sampath, Duy Nguyen, Turhan

Karadeniz, Spencer Sevilla, Ehsan Hemmati, Hari Potaraju, Yali (Celina) Wang, Ashok

Masilamani, Dylan Cirimelli-Low, among others, who have been incredibly supportive.

The primary inspiration for my foray into academia and networking area has been my

x

experience in networking industry and I would like to hereby acknowledge the tremen-

dous inspiration from my ongoing networking industry experience. Starting in 1993,

worked initially on development of power series communication controller card for Sil-

icon Graphics’ (SGI) Crimson machine. Thereafter, worked at networking giant Cisco

Systems on every low-end access router, starting from Lan-Extender Cisco-1001 up to

and including the ISR (Integrated Services Router) Cisco-1841 and Cisco-2801. I was

also involved in incorporating wireless interface support on Access routers and was the

architect of TCP-Receiver Zero window Spoofing, a Cisco Internetworking Operating

System (IOS) feature, developed originally for the MAR (Mobile Access Router) Cisco-

3200 Series Platform. I would like to thank several of my colleagues at Cisco Systems,

where I worked for 14 years, including Steve Canby, Somnath Mitra, Mick Henniger,

David Coli (all from erstwhile Access Business Unit) and Anantha Ramaiah (IOS Net-

working Group) for several engaging inspiring technical discussions. Special thanks to

my team members at my startup company, Mayosys Solutions for their understanding

and support of my commitment to the doctoral program.

I would like to thank Carol Mullane, Emily Gregg, Lisa Stipanovich, Thomas

Cahoon and Theo-Alyce Gordon in the Graduate Student Advising office, who have

been so amazing in coordinating everything.

xi

Chapter 1

Introduction

The Internet is a global system of interconnected computer-networks that uses

the standard Transmission Control Protocol/Internet Protocol (TCP/IP) suite to link

billions of devices worldwide. It is a network of networks that consists of millions of

private, public, academic, business, and government networks of local to global scope,

linked by a broad array of electronic, wireless, and optical-networking technologies. The

Internet carries an extensive range of informational resources and services, such as the

inter-linked hypertext-documents and applications of the World WideWeb (WWW), the

infrastructure to support email and peer-to-peer networks for file sharing and telephony.

In today’s evolving technological world, with its ongoing continuous evolution

comprising miniaturization of computer technology and increasing processor speeds,

the rapid adoption and maturing of various wireless technologies, including the 802.11

a/b/c/n technologies and subsequently 60 GHz Wi-Fi 802.11ad and 802.11ay, 802.11ac,

802.11ax (IEEE 802.11 Wi-Fi standards for Wireless LANs, WLANs) for high speed

1

local-wireless LAN communication over a Gigabit/sec speed coupled with the 5G tech-

nology coming of age and its accelerated adoption and global roll-out, has made wireless

technology ubiquitous. There are innumerable numbers of wireless laptops, notebooks,

tablets, smart-phones, notepads as well as a plethora of IoT (Internet of Things) devices

and several mobile end-to-end devices, including but not limited to mobile cars, drones,

satellites, and smart-phones carried by ”mobile” people. Their numbers are growing at

a rate never seen in the IT (Information Technology) industry and they are all connect-

ing to the Internet through the last-mile wireless interface. Thus, the Internet today is

a hybrid network with a substantial proliferation of the number of the last-mile-wireless

links coexisting with the core of the internet using predominantly wired technologies.

Additionally, certain back-haul networks are wireless and some of them use geostation-

ary satellites for connectivity using wireless Wide Area Network (WAN) technologies.

These trends make it even more important for us to consider the Internet as a hybrid

network. Therefore, there is a need to take a fresh look into the design of underlying

protocols and propose appropriate new, modified and/or enhanced protocols to meet

the requirements and challenges of the new evolving Internet based off 5G technologies

and beyond.

For convenience, Table 1.1 lists the abbreviations and definitions used in this

thesis.

2

Table 1.1: Abbreviations and Definitions
Abbreviations Definitions

802.11 a/b/c/n/ad/ay/ac/ax IEEE 802.11 Wi-Fi standards for Wireless LANs (WLANs)

ACK Acknowledgment of receipt of TCP segment

BER Bit Error Rate

CCN Content Centric Network

CDi Coded Datagrami in TCP-NEWT window

CE1, CE2..CE16 Random Linear Coefficient RLC1 RLC2... RLC16

Coded-Grp-size Number of coded segments generated from the group in Original TCP Window

CWD/Cwnd TCP Congestion Window

CWR Congestion Window Reduced, acknowledgment congestion-indication echo received.

Di Datagrami in Original TCP window

DUP-ACKS Duplicate Acknowledgments, ACKs with same sequence number

ECE ECN Echo

ECN Explicit Congestion Notification - a TCP packet extension defined in RFC 3168

FEC Forward Error Correction

Goodput Packets Delivered/Total Packets Sent

grp sz Number of segments in a group in Original TCP Window

ICN Information Centric Network

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

IoT Internet of Things

LL payLoad deLivery ratio: (packets-delivered/packets-sent)

Loss-Ratio Packets Dropped/Total Packets Sent: (1 - goodput)

LR Loss Ratio

M2M Machine to Machine

NC Network Coding

Orig-Grp-size Number of segments in a group in Original TCP Window

OSI Open Systems Interconnection model with TCP in layer 4

PDA Personal Digital Assistant (hand-held PC)

R Initial Round Trip Time Measurement

R’ Next Round Trip Time Measurement

RLC Random Linear Coded

RLC (Coefficients) Random Linear Coefficients

RLC grp packets Random Linear Coded packets of a group

RSSI Wireless Received Signal Strength Indicator

RTO Retransmission Timeout

RTT Round Trip Time (implies end-end)

RTTVAR Round Trip Time Variation

RTTVAR8 Round Trip Time Variation for Group 8 in original TCP window

RTTVAR8.1 Round Trip Time Variation for CD81 in TCP-NEWT

SLA Service Level Agreement

SMSS SENDER MAXIMUM SEGMENT SIZE

SRTT Smoothed Round Trip Time

SRTT8 Smoothed Round Trip Time for Group 8 in original TCP window

SRTT8.1 Smoothed Round Trip Time for CD81 in TCP-NEWT

SSCA-Multiplicative Factor Multiplicative factor of SSCA-Window-size, default 0.5, permitted range [0.3 to 0.7]

SSCA-window-size Window size at time of change from Slow Start to Congestion Avoidance phase

TCP/IP Transmission Control Protocol/Internet Protocol

TcpWin-Start-sz-default Default TCP Window Size at the start of a TCP session

WAN Wide Area Network

Wi-Fi Wireless Fidelity (as defined by IEEE)

Wi-Fi WLAN products based on the IEEE 802.11 standards (as defined by WiFi Alliance)

WLAN wireless local area network

WLR Worst-case Loss Ratio

3

1.1 5G Technology Use Cases

With the advent and adoption of 5G technology and the proliferation of mobile

end-nodes, secure, reliable, and real-time data delivery has become a critical require-

ment. 5G technologies are maturing and deployments are currently underway, with

several carriers having announced and initiated their roll-out plans and offering related

services to customers. The need for an enhanced transport mechanism, incorporated

during the 5G roll-out phase itself, is compelling.

Figure 1.1: 5G Network Deployment Scenarios. [69]

A sizable number of use-cases are presented that mandate the need for an alternate

enhanced data transport mechanism, capable of addressing the newly identified require-

ments.

4

Figure 1.2: Mobile Cars with Multiple Cell Towers. [70]

As the cars and vehicles move, they would need to transition from one cell tower

to another. Today’s automated cars using 5G technology have a compelling requirement

for real-time guaranteed delivery of data within a prescribed upper-bound time limit.

Figure 1.3: Multiple Communication Satellites in Space [85]

5

In many remote areas with no direct cell-tower coverage, communication via

satellites is the only option. Fortunately, every nook and corner of the planet is con-

nected with some satellite or the other at any given moment in time. This becomes

relevant for mobile vehicles travelling through remote areas, which need sustained opti-

mal network connection right through the hand-off phase, from a cell-tower with direct

5G access to satellite based network connectivity.

Figure 1.4: Customer Physical Location Direct Drone Delivery [8]

Amazon has already filed several patents [57], for direct consumer orders deliv-

ery by drones [47, 62, 63, 8]. Maintaining the SLA (Service Level Agreement) constraints

during hand-off from cell-tower to cell-tower during the drones travel and transit is an-

other use-case mandating the need for real-time guaranteed delivery of data.

6

Figure 1.5: Military Communications with Ad-hoc Wireless Networks [71]

Military personnel in a warzone with no guaranteed cell-tower infrastructure

have a constant need to be able to continue to communicate immediately and reliably.

This is always necessary including transition phases, when there is a link change in the

ad-hoc network, due to the inherent ongoing mobility of all the nodes, comprising of

vehicles and personnel.

Figure 1.6: Disaster Zone Emergency Rescue Crew’s Communication Needs [22]

7

A similar need is seen with broken network infrastructure in disaster zones.

Figure 1.7: IoT 5G Deployments [93]

Deployment scenarios including Anglova [30] require continuous availability

of services. Service providers need to attain the most efficient use of the available

bandwidth over wired or wireless links with more end users being mobile. Hence, the

original approach used in TCP of interpreting increases in delay as a sign of congestion

must be revisited to account for the fact that a given TCP session may use diverse types

of transmission media as end users move.

8

Figure 1.8: 5G Military Deployment Scenario - Anglova [30]

1.2 5G Technology Data Transport Requirements

The current observed scale of development and deployment trends in the IoT

[58] and M2M (Machine to Machine) [73] communications brings an additional set of

requirements in the heterogeneous 5G hybrid networks [20].

The requirements include (1) continuous availability of wireless technology

for last-mile connectivity, (2) ability to transport data through the wired networks

without throughput degradation for non-congestion issues, (3) ability to transport data

through back-haul wireless and satellite networks to reach remote places with no wired

infrastructure, (4) capability to transport data securely in real-time, while ensuring the

most efficient use of the available bandwidth, by use of dynamic adjustment to the

transient vagaries of the network infrastructure, and (5) detection of dynamic topology

changes during an established TCP session and enabling suitable responses to ensure

efficient use of the network infrastructure.

9

All of the above mandate an urgent need for augmenting and/or replacing

the original Internet design by Cerf and Kahn [18], divided into the IP [86] and TCP

[68]. The new transport protocols must be capable of performing efficiently at scale in

evolving hybrid 5G networks and beyond, which support mobile nodes as well.

1.3 Research Contributions

This thesis provides novel mechanisms in the context of TCP aimed at ad-

dressing the new challenges and requirements in evolving 5G networks and beyond with

mobile end-nodes, requiring secure reliable data delivered in real-time. This is accom-

plished by allowing the network infrastructure to proactively identify potential topology

changes as well as link-errors and dynamically adapt to an appropriate congestion con-

trol mechanism. This can ensure better utilization of the network infrastructure. With

augmented proactive goodput (1 - loss-ratio) prediction, real-time data delivery is en-

abled through the use of optimal network coding. The performance results presented

in this thesis clearly establish that the innovative approaches being proposed help meet

all these objectives.

TCP-EWSC brings several capabilities to better adapt traditional TCP for

hybrid networks including the following novel contributions: the BEST-START window

size approach to arrive at the initial window size for a new TCP session, as proposed

in TCP-WSC [77], is enhanced by a more detailed learning mechanism specific to each

TCP session, arriving at ”Enhanced BEST-START” starting window size from the sta-

10

tistically computed expected ”steady state window size”. Compensation for link-layer

retransmission times, in the forward and the acknowledgment return path in the actual

end-end RTT (Round Trip Time) values communicated to the TCP congestion con-

trol layer so that TCP’s interpretation of RTT variations as network congestion works

correctly, is another new contribution. Fast retransmission enhancement by initiating

it once the ack (acknowledgment) is delayed more than twice the observed standard

deviation from the observed mean of the RTTs for the current session. Ensuring re-

ceipt of 3 DUP-ACKs (duplicate acknowledgments) does not inadvertently trigger TCP

segment retransmission, specifically when one of the packets encountered link-layer re-

transmissions resulting in subsequent re-ordering of the transmission of packets from

the link-layer. Another novel contribution in this work is constant monitoring of the

RSSI (Wireless Received Signal Strength Indicator) and initiation of proactive spoofing

of ’receiver zero window” acknowledgment by layer two, so that the TCP session is not

torn down just because of a sporadic transient wireless-link-layer issue. TCP-EWSC

enhances the cluster analysis, as proposed in TCP-WSC [77], to ignore any one-off RTTs

(outliers). They are not considered in the dynamic ongoing SRTT (Smoothed Round

Trip Time) and RTTVAR (Round Trip Time Variation) computations, which in turn

impact the RTO (Retransmission Timeout).

TCP-NEWT introduces a new mechanism for network coding to proactively

address any potential packet loss without retransmissions while still being able to ac-

curately report all the observed TCP flow metrics back to host and this is a novel con-

tribution. TCP-PNC’s [87] innovative contribution involves augmenting TCP-NEWT

11

with dynamic prediction of the expected goodput and initiating apt amount of proactive

compensation for the same.

TCP-RTA [88] dynamically detects a topology change and adapts with an

apt topology specific congestion-control strategy to maximize the effective use of the

total available bandwidth in real-time. This is a unique approach, and the protocol

also factors in the relative impact of the degree of change in topology versus that of

the underlying transmission medium to identify the best congestion control strategy, to

ensure optimal usage of the end-to-end network infrastructure for any TCP session.

1.4 Thesis Outline

This thesis presents a number of TCP variants that improve on the perfor-

mance of TCP taking advantage of network coding and the use of larger amounts of

working memory capacity available at communicating nodes.

Chapter 2 surveys prior TCP enhancements introduced to improve the perfor-

mance of TCP in different scenarios and discusses their inability to meet the previously

identified requirements.

Chapter 3 presents TCP-EWSC (TCP-Enhanced W ireless Santa C ruz).

This TCP variant includes several enhancements to TCP-WSC (TCP Wireless Santa

Cruz) [77] which address the following issues comprehensively: The transmission quality

of wireless channels is characterized by bursty errors with high varying BER (Bit Error

Rate). It is further degraded for those channels with wireless mobile end-nodes, due to

12

the node’s mobility-induced wireless signal strength fluctuations, which is compounded

during the hand-off from one access point to another [59]. It is well known that TCP does

not work efficiently with mobile end-devices connected by wireless links because wireless

links bring varying signal-strength and result in dynamically changing capacity. In some

cases, mobile end-devices experience scenarios with sporadic breakage of wireless-link-

layer last-mile communications. The initial design of TCP was designed to interpret

packet losses as a sign of network congestion, which is a good indicator in a network

with a static topology and reliable links but fails to account for the nature of the

physical-layer of wireless links. TCP-EWSC’s proposed enhancements to TCP address

this limitation by proactively detecting link-layer retransmissions and by factoring in

the delays due to unforeseen link-level outages. Additionally, using historical data of

TCP session parameters, TCP-EWSC predicts the parameters for optimal usage of the

network resources through analytics and rudimentary machine-learning.

Chapter 4 describesTCP-NEWT (TCP - Network Coding Enabled Window

Transformation). This TCP variant incorporates the best of network coding and ensures

seamless throughput, despite any wireless layer signal strength fluctuations and channel

error issues, while ensuring that all the TCP session parameters are accurately relayed

back to the higher layers in the networking stack.

Chapter 5 introduces a new mechanism for dynamic prediction of expected

goodput apriori: TCP-PNC (TCP-Predictive Network Coding). This is to enable

computation of the apt amount of additional unique random linear coded segments to

be transported to ensure all the original segments are retrievable and available at the

13

destination in real-time without the need of retransmission. By design, original TCP [68]

has a reactive response to packet loss. With the ubiquitous advent of wireless interfaces,

packet loss does not necessarily imply a true congestion in the network. TCP-NEWT

along with TCP-PNC [87] enable native network coding and build on the prior work

[90] [79] [89] by predicting the impending goodput during an existing TCP session,

an enhancement of a prior research publication [95]. This ensures the apt number of

dynamically adjusted coded segments are sent. Additionally, the coding is done in a

simple manner and restricts the coding window sizes to 2, 4, 8, 16. This minimizes

computation time and reduces packet delay. Thus, TCP-NEWT and TCP-PNC [87]

enable proactive accurate response to impending packet loss, enabling real-time data

delivery with minimal additional computational overhead.

Chapter 6 introduces TCP-RTA [88], a two-part proposal to (1) detect underly-

ing topology changes dynamically during an ongoing TCP session, and (2) proactively

switch to an appropriate congestion control strategy to ensure optimal usage of the

available bandwidth. The original design goal of TCP was to transport packets reliably

on an end-to-end basis, and at the same time, utilize the bandwidth available in the

best possible manner. To this end, the bandwidth-delay-product is used to arrive at the

overall size of the end-to-end connected pipe and thus determine the size of the sliding

window of packets with outstanding ACKs. With this intent, the observed end-to-end

increase in RTT [83] and packet drops were used as a metric to serve as a measure of the

congestion in the network. This assumption is valid if the packet losses or delays are only

due to congestion. In hybrid networks with last-mile-wireless links, the original design

14

assumptions used for TCP are no longer accurate. Two approaches could be pursued to

correct the operation of TCP in hybrid networks. The first approach involves rewrite

of the TCP implementation from scratch and identify mechanisms to differentiate the

delays caused by the wireless-link-layer issues from those caused by the core-network

congestion. The second approach involves leveraging existing TCP implementations,

while ensuring the usage of the new corrected values for RTT, which account only for

those delays caused by the core-wired network and not those delays introduced by the

last-mile-wireless links.

15

Chapter 2

Related Work

2.1 Survey of TCP Variants

Congestion control for TCP, particularly in the context of wireless networks,

has been an area of active research. A concise comparative study of the approaches

used in the different TCP variants and their implementations can be found in a couple

of papers, “An Overview of Performance Comparison of Different TCP Variants in IP

and MPLS Networks” [45] and “A Comparative Analysis of TCP Tahoe, Reno, New-

Reno, SACK and Vegas” [23]. A survey of the various relevant variants of TCP and

the way they handle the addition of wireless links is outlined in this chapter. Any

issues, constraints and/or limitations with their respective implementations are also

highlighted.

There are several TCP implementations including Tahoe [38], Reno [37], New-

Reno [26], TCP-SACK [53], TCP-Vegas [12] [11], TCP-Jersey [97], TCP-DCR [9], TCP

16

Santa Cruz [65], TCP-WSC (TCP-Wireless Santa Cruz) [77] which address various

short-comings in the original TCP implementation [68].

For high-speed network requirements, several TCP variants have been pro-

posed including FAST [31], HSTCP [25], STCP [46], TCPNewReno [26], HTCP [43],

CUBIC [32], SQRT TCP [33], TCP-Westwood [17], BIC TCP (Binary Increase Conges-

tion control) [98], TCP-Illinois [39], TCP-Hybla [15], YeAH-TCP [4], Compound TCP

(CTCP) [91] and BBR [16] among others.

Some of the most salient features with these implementations are:

Tahoe [38]: Tahoe takes a complete-timeout interval to detect a packet loss

and, in most of its implementations, it takes longer because of the coarse-grain timeout,

and this is the main issue. Since it does not send immediate ACK, and instead sends

cumulative acknowledgments, it follows a go-back-n approach. Thus, whenever a packet

is lost, it waits for a timeout and the pipeline is emptied. This results in a major cost

in links with high band-width-delay product.

Reno [37]: Reno performs very well over TCP when the packet losses are

small. But when there are multiple packet losses in one window, then RENO does not

perform very well, and its performance is almost the same as Tahoe under conditions

of high packet loss. The reason is that it can only detect a single packet loss. If

there are multiple packets drops, then the first information about the packet loss comes

only when the duplicate ACKs are received. But the information about the second

packet which was lost will come only after the ACK for the re-transmitted first segment

reaches the sender after one RTT. Also, it is possible that the CWD (TCP Congestion

17

Window) is reduced twice for packet losses, which occurred in one window. Another

problem is that, if the window is exceedingly small when the loss occurs then enough

duplicate acknowledgments, for a fast-retransmit trigger, would not be received and a

retransmission trigger would have to wait for a coarse-grained timeout. Thus, it cannot

effectively detect multiple-packet losses.

NewReno [26]: NewReno suffers from the fact that it takes one RTT to

detect each packet loss. When the ACK for the first re-transmitted segment is received,

only then it can be deduced which other segment was lost. However, it addresses some

of the issues with the Reno approach and eliminates Reno’s wait for a retransmit timer

when multiple packets are lost within a window by responding to partial-acks, without

taking the sender out of fast-recovery.

TCP-SACK [53]: The biggest problem with SACK is that selective acknowl-

edgments are not provided by the receiver. If the TCP changes are localized to the

sender side alone, then it is easier to deploy and support and get the needed benefits.

TCP-CUBIC [32]: CUBIC, introduced in 2005 [32] [49], is an improved

version of the BIC (Binary Increase Congestion control) algorithm [98]. It belongs to

the first group of algorithms, and unlike the standard TCP approach, CUBIC does not

consider RTT to change window size. It is determined by a cubic function, depending

on the time since the last packet loss.

YeAH (Yet Another Highspeed) TCP [4]: Congestion control algorithm

called YeAH TCP was presented in 2006. In contrast to CUBIC, it uses a mixed

approach to resizing congestion window based on losses and delays. YeAH involves two

18

operation modes that can be called ”fast” and ”slow”. ”The “fast” mode uses the same

algorithm as STCP (Scalable TCP) [46]. The congestion window size is reduced by 1/8

with each packet loss. From the other side, it is increased by 1/100 with each successful

transfer. The “slow” mode is like the standard Reno TCP algorithm [38]. The size of the

congestion window is determined by three phases: the slow start phase, the congestion

avoidance phase and the fast recovery phase. Thresholds that are changed upon packet

loss detection determine the transition between phases. However, the choice between

“fast” and “slow” modes of the YeAH algorithm depends on RTT.

BBR (Bottleneck Bandwidth and RTT) TCP [16]: BBR is the TCP

with the youngest congestion control algorithm and was introduced in 2016. The idea

of BBR assumes that the maximum bandwidth of any TCP connection, formed by an

arbitrarily complex default route, could be determined by two main metrics: two-way

travel time (RTprop) and throughput of the bottleneck (Bottleneck Bandwidth, BtlBw).

Moreover, these two values do not depend on each other. RTprop is the RTT excluding

queue delays on the network devices. It can be effectively evaluated as the minimum

RTT time in the WR time window that ranges from tens of seconds to minutes.

TCP Santa Cruz [65]: In TCP Santa Cruz, the relative time interval delays

between receipt of the ACKs for individual transmitted segments as well as estimates

of delay along the forward path, is used as a measure of congestion, rather than the

RTT. Subsequently, an extension to TCP Santa Cruz [65] was proposed, which improves

TCP performance over lossy wireless links [64]. These are very effective enhancements

relevant to hybrid networks, however they are reactive approaches. The proposed ap-

19

proach in this thesis TCP-EWSC, is proactive and incorporates sensing and reporting

of the RSSI to facilitate proactive response to changes in the wireless signal strength

and channel health.

2.2 Limitations of TCP Prior Variants

Packet loss in networks with wireless links may be due to bit errors, hand-

offs, congestion, or reordering or due to a true congestion in the network. By the

nature of its design, original TCP [68] assumes packet loss is solely due to congestion

in the network. TCP’s congestion control responses are triggered for any wireless-link-

packet losses and for any delays (due to corresponding link-layer retransmission times),

caused by inherent transient issues for packet transmission through a wireless media

and not due to a congestion in the network. The corresponding adverse impact of the

inadvertent congestion control response of TCP, to the effective end-end throughput,

is significant. With the ongoing increase in the number of wireless clients, this is an

important issue and a robust solution which will be easy to implement, will have a

perceptible positive impact on a significant portion of the actual end-users of laptops,

PDA (Personal Digital Assistant) and other devices which use wireless connectivity for

access to the network/Internet, including mobile end-devices.

20

2.3 TCP Enhancements for Hybrid Networks

For completeness, it is pertinent to mention that RFC1185 [40] and RFC1123

[10] were among the initiatives to enable TCP extensions for high-speed networks pro-

viding for scaled windows and timestamps. The performance of TCP-IP for networks

with high Bandwidth-Delay product with random losses [48], highlights some of the

issues that need to be addressed for random loss networks, including networks with

wireless links. The approaches proposed to improve TCP performance over networks

with wireless links can be divided into two major categories:

i. Ones that work at the transport level, and

ii. Others that work at the link level.

Transport level proposals include Explicit Bad State Notification (EBSN) [6], Freeze-

TCP [29], Indirect-TCP (I- TCP) [5], Snoop [7] and fast-retransmission[14].

Like other approaches, EBSN [6] uses local retransmission from the base sta-

tion to shield wireless-link-errors and improve throughput. However, if the wireless link

is in an error state for an extended duration, the source may timeout causing unneces-

sary source retransmission. The EBSN [6] approach avoids source timeout by using an

explicit feedback mechanism. The EBSN [6] message causes the source to reinitialize

the timer.

Upon detecting a poor signal strength, Freeze-TCP [29] at the mobile host

throttles the sender by advertising a receive window size of zero. This causes the sender

to enter persist mode and freeze all the timers and window sizes. This way, the mobile

21

host can prevent the sender from taking any congestion control measures.

I-TCP splits the transport link at the wireline–wireless border. The base

station maintains two TCP connections, one over the fixed network, and another over

the wireless link. This way, the poor quality of the wireless link is hidden from the fixed

network. By splitting the transport link, I-TCP does not maintain end-to-end TCP

semantics. Instead, I-TCP relies on the application layer to ensure reliability.

The fast-retransmission approach does not address the issue of wireless link

reliability but reduces the effect of mobile host [67] hand-off. Immediately after com-

pleting the hand-off, the IP in the mobile host [67] triggers TCP to generate a certain

number of duplicate acknowledgments. This causes the source to retransmit the lost

segment without waiting for the timeout period to expire. This requires modification

to the TCP code at the mobile host [67].

Snoop [7] is a well-known link level proposal. In this scheme, the base station

sniffs the link interface for any TCP segments destined for the mobile host [67], and

buffers them if buffer space is available. Segments are forwarded to the mobile host [67]

only if the base station deems it necessary.

Source retransmitted segments that have already been acknowledged by the

mobile host [67], are not forwarded by the base station. The base station also sniffs

into the acknowledgments from the mobile host [67]. If the base station sees a duplicate

acknowledgment, it detects a segment loss and locally retransmits the lost segment

if it is buffered and starts a timer. If the retransmitted segment is not acknowledged

within twice the round-trip-time of the wireless link, the segment is again retransmitted.

22

Unlike I-TCP, Snoop [7] does not completely shield the wireless link losses from the

fixed network, and source timeout is still possible. If acknowledgments are lost on

the wireless link, a base station retransmission cannot occur as there are no duplicate

acknowledgments, and the source can timeout and source retransmission is initiated.

The transmission over the wireless link resumes only after the arrival of the source

retransmitted segment. Hence, in the presence of burst losses the throughput will be

poor compared to I-TCP.

In WTCP [75] [76], the base station is involved in the TCP connection. WTCP

[75] [76] requires no modification to the TCP code that runs in the mobile host [67] or

the fixed host. Based on duplicate acknowledgment or timeout, the base station locally

retransmits lost segments. In case of timeout, by quickly reducing the transmission

window, potentially wasteful wireless transmission is avoided and the interference with

other channels is reduced. Also WTCP [75] [76] hides the wireless-link-errors from

the source by effectively subtracting the residence time of the segment at the WTCP

buffer from the RTT value computed at the source, thus the RTT computation excludes

wireless-link-layer retransmission delays.

However, this approach requires the base station to know the clock granularity

of the source since the timestamp field in the TCP header contains a clock tick value,

not the real-time clock value and this is an issue because many of the wireless-end nodes

might not be in exact clock synchronization with the base station (particularly after a

reboot of the end-node) and thus this approach has a big limitation. Also, in IoT and

M2M domain, many wireless end-nodes might not have their clocks synchronized with

23

the network thus making this approach not applicable in several scenarios. Thus, the

WTCP approach has a number of limitations that prevent it being deployed effectively.

Additionally, it does not address some of the requirements of IoT and M2M devices,

which need high throughput for small bursty traffic. Leith et al [49] demonstrated

that CUBIC TCP [32] suffers from slow convergence which may impede its large-scale

deployment. YeAH (Yet Another Highspeed) [4] and BBR (Bottleneck Bandwidth and

RTT) TCP [16] do not have mechanism to differentiate delays, losses and retransmission

delays due to wireless link-layer issues, which are addressed in this thesis. Also, studies

reveal that BBR may result in a salient RTT-fairness problem [92].

In TCP-DCR [9], the response to the receipt of duplicate acknowledgments is

delayed by a short, bounded period τ , to improve its robustness to channel errors in

wireless networks. However, this is not an accurate way to address the delays introduced

due to potential link-layer retransmissions. In TCP-WSC [77], a perfectly accurate way

to precisely address this very issue was proposed.

TCP-WSC [77] incorporates improvement over existing TCP implementations

in four major areas, which contribute to sub-optimal TCP throughput at various points

during the lifetime of a TCP session in today’s hybrid 5G Networks, particularly with

mobile end nodes. These comprise (a) Starting TCP window size, (b) Increase in end-

end RTT, solely due to link-layer retransmissions, (c) 3 Duplicate-ACK receipt trigger-

ing fast retransmission, and (d) Transient RTT fluctuations.

In TCP-WSC [77], a communication handshake protocol between link-layer

and transport layer has been proposed for a more accurate identification of a true

24

congestion. The number of times a given segment undergoes link-layer retransmission,

is communicated by the link-layer back to the TCP layer. This helps to accurately

identify and isolate the delays caused due to link-layer issues as against delays caused

due to a true congestion in the network. Thus, it avoids inadvertent reduction of TCP

congestion window size due to perceived longer end-end RTT. Additionally, the exact

sequence numbers for the link-layer retransmitted segments, reflecting the actual order of

successful transmission across the link-layer, are saved in a per-TCP-Session parameter-

list, along with number of link-layer transmissions for each segment. By default, it is

one for every segment. Similarly, in most prevalent TCP implementations, the fast-

retransmit is triggered when three duplicate acknowledgments (Dup-Acks) are received.

This response assumes that network-congestion is the cause of the Dup-Acks. However,

a segment undergoing a link-layer retransmission could also result in the generation of

multiple Dup-Acks, until it reaches the destination, since subsequent segments (which

did not need any link-layer retransmission) would have reached the TCP session end-

point before this segment, which required link-layer retransmission(s) and TCP-WSC

[77] addresses this issue.

BEST-START Window Size

At the start of a TCP session, after the initial 3-way handshake, the current

slow-start mechanism results in a conservative slow increase of the throughput to the

steady state capacity of the TCP link. Thus, even though substantial network band-

width could be available, TCP starts with the ”slow start” mechanism for initiating the

25

sliding window size convergence with an initial ”window size of 1”. This is particularly

detrimental for short duration bursty traffic. In TCP-WSC [77], a mechanism to store

prior TCP sessions to destination is proposed, which maintains steady state parameters

of earlier sessions including steady-state congestion window size (BEST-START window

size for future sessions is derived from this value). For newer TCP sessions initiated to

any prior saved destinations, the knowledge of the prior session steady-state congestion

window size, is used to arrive at BEST-START initial window size, to help converge

very quickly to steady-state optimal use of the available bandwidth.

Network RTT Correction for Link-Layer Retransmissions

An increase in RTT, solely due to link-layer retransmissions, is misinterpreted

by TCP as a network congestion, resulting in the inappropriate response of a reduction of

TCP congestion window size. The findings of ”Effect of local retransmission at wireless

access points on the round-trip time estimation of TCP” [74] highlights this issue.

Certain segments encounter link-layer issues and hence require link-layer retransmission.

End-end RTT values for the link-layer retransmitted segments are bloated by multiples

of link-layer retransmission timeouts. These larger values are interpreted as network

congestion resulting in inadvertent decrease of the congestion window and corresponding

throughput degradation. In this thesis, a mechanism to accurately identifying and

compensating for the increase due to link-layer retransmissions in the end-end RTT is

proposed.

26

Fast-Retransmission Factoring Reordering in Link-layer

Three Duplicate Acknowledgments (DUPAcks) received by TCP is interpreted

as a segment lost and results in trigger of Fast Retransmit. However, this does not factor

potential link-layer retransmissions for some of them, resulting in their reordering, as

sent to the network. The resulting inadvertent FAST Retransmit initiation on receipt

of 3 DUPAcks causes needless additional traffic and potential network congestion. Dy-

namic DUPack mechanism, instead of a hard-coded number (3) of DUPAcks, is proposed

in TCP-WSC [77] to address this issue. In this thesis, this mechanism to account for

link-layer retransmissions, is augmented to do the same in the acknowledgment receive

path as well.

Detection Transient RTT fluctuations with Cluster Analysis

Another mechanism proposed in this thesis, to correctly identify RTT-increases

solely due to network congestion, is RTT cluster analysis. Sometimes, wireless end-

devices, due to their nature of being mobile devices [67], are being moved, during an

ongoing TCP session and hence there are transient issues in the RSSI. Though TCP

implementation does provide a weighted mechanism to minimize the impact of the tran-

sient RTT fluctuations, they affect the TCP window size and corresponding bandwidth

utilization. The RTT cluster analysis mechanism proposed in TCP-WSC [77] addresses

this issue. In this thesis, the cluster analysis is enhanced to incorporate removal of out-

liers. An observed RTT value that is more than twice the standard deviation outside

of the current session history, is designated as an outlier.

27

2.4 TCP Enhancements with Network Coding

Network Coding with TCP has been an area of active research. A concise

comparative study of the actual approaches used in the different Network Coding ap-

plications to Networking can be found in paper titled “Survey of Network Coding and

Its Applications” [55]. In this section, some of the most salient aspects and issues with

these implementations are summarized.

Network coding meets TCP [90] TCP/NC: At the heart of this scheme

is a new interpretation of ACKs. The sink acknowledges every degree of freedom (i.e.,

a linear combination that reveals one unit of new information) even if it does not reveal

an original packet immediately. Such ACKs enable a TCP-like sliding-window approach

to network coding. This scheme has the property that packet losses are masked from

the congestion control algorithm. Therefore, this algorithm reacts to packet drops in a

smooth manner, resulting in a novel and effective approach for congestion control over

networks involving lossy links such as wireless links. However true congestion bases

losses also get masked in this approach and therefore effective flow-control is inhibited.

This is addressed in this thesis.

Redundancy adaptation scheme for network coding with TCP [78]:TCP

Vegas uses a loss predictor to decide whether the network is congested based on rate es-

timators [13] [54] [94], estimating the backlogged packets in the buffer of the bottleneck

link and in this related work, the Vegas Loss Predictor is implemented at the Network

Coding layer to know when the network experiences congestion and to adjust RTT [13].

28

However, the RTT values used do not factor in the additional time incurred due to

potential link-layer retransmissions in last-mile wireless-links, which is incorporated in

this thesis.

Comparison of TCP Congestion Control Algorithms in Network

Coded Relaying Scheme [56]: The effectiveness of NC has been studied several

times [90] [34] [2]. Authors investigated that NC does not give a big advantage if it used

in conjunction with classic TCP, messages need to be delayed in a buffer to be able to

encode them and therefore the RTT rises with every additional hop (especially where in-

termediate node network coding is applied). Considering that the gain decreases because

TCP congestion control [3] algorithm refers to increasing RTT as congestion increases,

artificially reducing the transmission rate, preventing effective use of the transmission

medium. In this thesis, only end-end network coding is considered. Secondly to mini-

mize and even eliminate the delays at the source waiting for data (at times when just

a few segments are ready and waiting for transmission), the basic simplistic network

coding approach that requires at least two packets to be in the transfer buffer at the

same time to be able to XOR them and send them to minimize the delays, is adopted.

This is further extended, when there is only a single packet and a mechanism to send it

through network coding to minimize delays is also incorporated . A variant of the BBR

TCP algorithm approach wherein the transmission buffers are never empty, is leveraged.

However, when more buffers are full, a default fixed group size is used for choosing the

RLC (Random Linear Coefficients) to generate new coded segments for transportation

to the destinations.

29

In several of the network coding implementations, TCP layer has been aug-

mented with a modular network coding sublayer to facilitate quick and easy adoption.

However, that has resulted in many of the core intrinsic TCP session parameters and

metrics like RTT, packet throughput not being accurately captured to reflect the exact

status of the network. In this thesis, a mechanism for all the TCP session parameters

and metrics for flow-control to be accurately captured and relayed back between the

two sliding windows used in the proposed design (original packets-based TCP sliding

window and random linear coded packets-based sliding window) is outlined.

2.5 TCP Enhancements for Dynamic Topology Changes

Mobile end-devices may undergo underlying topology changes during an on-

going TCP session, simply due to their physical movement. The resultant changes ob-

served in end-end packet RTT would get misinterpreted as a congestion in the network

by existing TCP implementations. The paper ”Survey of HYBRID TCP Congestion

Control Algorithms” [1] has a survey of various Congestion Control algorithms pro-

posed for hybrid networks. None of the TCP variants in the survey address this issue of

adapting to dynamic topology change. The prominent prior published research related

to this specific issue includes D-TCP Dynamic TCP Congestion Control Algorithm for

Next Generation Mobile Networks [42], wherein Bandwidth-Delay product is dynami-

cally computed and a congestion metric derived off this computation, which is used to

determine the response of the congestion control algorithm as regards any changes to

30

the size of the CWND (TCP congestion window) during the RTT update and loss detec-

tion. Thus, only a single parameter is being dynamically modified and the underlying

congestion control algorithm is the same for all scenarios and through the life cycle of

the current session and thereafter till the TCP stack is changed.

In this thesis, TCP-RTA (TCP with Real-time Topology Adaptiveness) [88]

is proposed, which dynamically recognizes potential underlying topology change in the

end-end path of the current TCP session and instantaneously initiates transitions to the

apt congestion control algorithm applicable for the updated new topology, thus adapting

in real-time.

The goal of this thesis is to propose solutions for the above issues for through-

put bottlenecks in hybrid networks. These enhancements can be leveraged across several

existing TCP implementations including newer TCP versions like TCP Cubic and more

effective when deployed in tandem with ECN (Explicit Congestion Notification) [72].

31

Chapter 3

TCP-EWSC:

TCP Enhanced-Wireless-Santa-Cruz

TCP-EWSC provides five key enhancements over TCP-WSC (Wireless Santa

Cruz TCP [77]): (1) Starting TCP Window Size, (2) Compensation for increase in

RTT Time, solely due to Link-Layer Retransmissions, (3) 3 Duplicate Acknowledgment

(DUPAck) receipt triggering fast retransmission inadvertently, (4) RSSI monitoring to

proactively identify sporadic and transient wireless link issues, and (5) RTT cluster

analysis to better identify and respond to transient RTT fluctuations. The details

about each of the enhancements is elaborated below.

Starting TCP Window Size: The BEST-START window size approach

to arrive at the initial window size for a new TCP session, as proposed in TCP-WSC

[77], is enhanced by a more detailed learning mechanism specific to each TCP session.

TCP-EWSC arrives at the most apt steady state window size by factoring in a weighted

32

mechanism of past steady states. Additionally, a multiplicative factor in the range 0-1,

representing a measure of how much of legroom is required to be provided to this tcp

session to facilitate the most optimal convergence to its steady-state window size, is used

to arrive at the ”Enhanced BEST-START” starting window size from the statistically

computed expected ”steady state window size”. With each session, TCP-EWSC uses

the statistical model and choose an improved BEST-START window size; this minimizes

the time spent in the slow-start phase of a TCP session, ensuring optimal use of available

bandwidth while meeting fairness protocol requirements.

Compensation for Link-Layer Retransmissions: To accommodate po-

tential link-layer issues on the return path of the acknowledgments, TCP-EWSC ex-

tends the compensation for additional transmission time and re-ordering of receipt of

the acknowledgments (ACK). These additional incurred times are suitably subtracted

from the RTT based on the number of link-layer retransmissions, undergone by that

ACK. This correction ensures any variations in RTT that is reported, does not include

those caused by wireless-link-layer issues and thus gets accurately interpreted.

Fast retransmission trigger: TCP-EWSC augments the fast retransmission

trigger with initiation of a retransmission when the time elapsed waiting for an ACK

crosses the threshold of more than twice the observed standard deviation from the

observed mean of the RTTs in the existing TCP session.

RSSI Monitoring: A novel contribution in this thesis is constant monitoring

of the RSSI and proactive initiation of spoofing ’receiver zero window” acknowledgment

by layer-2, so that the TCP session is not torn down just because of a sporadic transient

33

wireless-link-layer issue. Sustaining the TCP session through sporadic very brief wireless

connectivity outages has been found to be a necessary requirement in several mobile

nodes and devices in transit as the occurrences of these transient wireless outages are

observed quite often, including when the hand-offs happen in 5G networks from one

base-station to another. Additionally, constant RSSI monitoring enables identification of

transient wireless signal strength fluctuations especially compared to persistent wireless

link capability changes, which would need to be considered as a true congestion in the

wireless link.

Cluster Analysis: TCP-EWSC enhances the cluster analysis, as proposed in

TCP-WSC [77], with regards to the interpretation of the findings by identifying outliers

in observed RTT values and thereafter the new enhanced response of ignoring those

values.

3.1 Basic Operation

TCP-EWSC improves on BEST-START Window size as proposed in TCP-

WSC [77], by recording the congestion window size(SSCA-window-size) at which the

transition from slow-start(SS) to congestion-avoidance(CA) is effected during the initial

start of every TCP session. A new weighted algorithm that leverages saved values of this

attribute from prior sessions, to predict the apt Enhanced BEST-START window size is

introduced in this thesis. In addition, a mechanism for choice of an apt default starting

TCP window size (TcpWin-Start-sz-default) for each new TCP session is proposed,

34

which is used as the initial starting value input to TCP-EWSC’s weighted algorithm.

This would ensure good throughput and utilization of the network and improved latency,

particularly for short duration bursty TCP traffic.

The compensation for the link-layer retransmissions [77] is further enhanced as

follows: Current TCP implementation interpret all re-ordering of received packets and

their ACKs as solely due to network congestion. However, link-layer retransmissions

with no network congestion also can cause re-ordering of transmitted segments as well

as received ACKs. TCP-WSC [77] compensates for the link-layer retransmissions on

the segment transmission side. As part of the enhancement proposed in this thesis,

TCP-EWSC extends that to the ACK receive path as well.

TCP-EWSC accomplishes this by keeping track of (i) time and (ii) order of

receipt of ACKs and (iii) the number of retransmissions required for each ACK, on the

last-mile wireless access point to ensure that the original order of receipt is recovered.

Using the number of ack-retransmission on the link-layer, TCP-EWSC can compensate

for the RTT time to truly reflect only network transit time (and not the additional time

consumed due to link-layer errors and resulting re-transmissions).

TCP-EWSC augments the inadvertent fast-transmission as follows: It dynam-

ically adjusts the number of Dup-Acks required based on any pending segment(s) re-

quiring link-layer retransmission(s). This was done in In TCP-WSC [77]. TCP-EWSC

enhances it by triggering a retransmission if the time elapsed waiting for an ACK, goes

beyond twice the standard deviation of mean observed RTT for the session, instead of

waiting for timeout. The new retransmission strategy is motivated by such evidence

35

as the Internet trace reports by Lin and Kung, which show that 85 per cent of TCP

timeouts are due to “non-trigger” [51].

In addition to the ongoing wireless signal strength levels tracking, a novel con-

tribution regarding RSSI monitoring, is the incorporation of the zero-receiver window

spoofing mechanism, to ensure the TCP connection is not torn down due to brief com-

plete glitch in the wireless link-layer connectivity, namely the wireless signal strength

going to zero.

The primary enhancement of the cluster analysis approach is the removal of

outliers. TCP-EWSC earmarks outliers as an observed RTT value that is more than

twice the standard deviation outside of the current session history. In Chapter 6, more

details on how differentiation of outliers from those caused by legitimate changes in

underlying topology, is presented.

3.2 TCP-EWSC Description

3.2.1 Enhanced BEST-START Window Size

In this thesis, the mechanism to store prior TCP sessions’ parameters as pro-

posed in TCP-WSC [77] is enhanced with additional changes. The saved TCP session

parameters include steady-state congestion window size, which is leveraged for arriving

at BEST-START Window size for future sessions. Another significant session parameter

is the congestion window size(SSCA-window-size) at which the transition from

slow-start(SS) to congestion-avoidance(CA) is affected during the initial start of

36

the TCP session. The SSCA-window-size values of prior TCP sessions to a given des-

tination are leveraged to converge in the most optimal manner to new TCP session’s

steady-state throughput with best use of the available bandwidth for this TCP session

being initiated to same destination. The proposed learning algorithm below deter-

mines how prior session’s observed parameters facilitate quicker convergence to optimal

steady-state window size, namely Enhanced BEST-START Window Size for the

new TCP session being initiated. Outlined below are the fields captured for every TCP

session.

The prior history of TCP sessions is saved as a 10-tuple value, as stated below:

• Field 1: Destination Port

• Field 2: Destination IP Address

• Field 3: Date/Time of TCP Session Initiation Field 4: Duration of Session

• Field 5: SSCA-Window-size where initial Slow-Start to Congestion Avoidance

transition happens

• Field 6: Time taken from session start to completion of Slow-start phase

• Field 7: Steady State Congestion Window Size

• Field 8: SSCA-Multiplicative-Factor (Multiplicative factor of SSCA-Window-

size)

• Field 9: goodput at the start of the session

37

• Field 10: TcpWin-Start-sz-default, which is the default starting size of the TCP

window. (Result of the Enhanced BEST-START algorithm saved in this field)

For a given port-IP Address combination of a destination, only the three most

recent entries are retained according to the following steps:

(a) For a new destination IP address, if 3 matches are found, then TCP-EWSC uses

weighted averages as follows: 0.6 multiplication factor for (1st) most recent observa-

tions; 0.3 multiplication factor for 2nd most recent observations; 0.1 multiplication

factor for 3rd most recent observations.

(b) For a new destination IP address, if 2 matches are found, then TCP-EWSC uses

weighted averages as follows: 0.65 multiplication factor for most (1st) recent ob-

servations; 0.35 multiplication factor for 2nd most recent observations.

(c) if only 1 match is found, the corresponding values are directly used.

(d) in case no match was found, the traditional slow-start approach in TCP is followed,

namely starting from a window size of 1.

(e) After computing the Enhanced BEST-START size by the above algorithm in steps

(a), (b), (c) and (d), that value is saved as in field 10 namely as TcpWin-Start-sz-default.

TCP-EWSC’s main objective is to minimize the time taken in the slow-start

phase and quickly converge to optimal usage of the available bandwidth, while ensuring

fairness is fully maintained with regard to independent requests for resources from other

TCP sessions.

TCP-EWSC leverages learning from past sessions history to help achieve the

38

objective in the most efficient manner. There are two areas for potential enhancement,

namely: The initial starting window size, and the gradient of the step up in window

size each time when an ACK is received during the initial Slow-start phase of the TCP

session. In this thesis, the focus is on determining the apt initial starting window size.

The starting default value for the SSCA-MultiplicativeFactor is 0.5. TCP-

EWSC tries to keep this factor within the permitted range of [0.3 to 0.7]. It monitors

the time taken from session start to transition from Slow-start to congestion avoidance

and incrementally tries to fine tune the above factor till it gets close to minimizing Field

6 (Time taken from session start to completion of Slow-start phase).

39

Algorithm 1 procedure EWSC-TCP-BestStart-Basic WndSz(DestIPAddress, Dest-
PortAddress)

1: best start wndSz = 1;
2: cnt = 0;
3: mf 3Terms 1st = 0.6;
4: mf 3Terms 2nd = 0.3;
5: mf 3Terms 3rd = 0.1;
6: mf 2Terms 1st = 0.65;
7: mf 2Terms 2nd = 0.35;
8: mf 1Term 1st= 1;
9: SSCA Wnd MF = 0.5;

10: while not EOF do
m = find addr(DestIPAddress, savedSessions);

/* m returns the index of the first match & (-1) if there is no match till EOF*/
11: if (m = -1) then
12: m laddr[cnt].date time = savedSessions[m].date time;
13: m laddr[cnt].duration = savedSessions[m].duration;
14: m laddr[cnt].SSCA WndSz = savedSessions[m].SSCA WndSz;
15: m laddr[cnt].timeCompleteSS = savedSessions[m].timeCompleteSS;
16: m laddr[cnt].SS WndSz savedSessions[m].SS WndSz;
17: m laddr[cnt].beginLossRatio = savedSessions[m].beginLossRatio;
18: m laddr[cnt].SSCA MF = savedSessions[m].SSCA MF;
19: m laddr[cnt].destPort = savedSessions[m].destPort;
20: cnt++;
21: end if
22: end while

sort latestTop(m laddr, date time)
ASSERT((cnt ≥ 0) && (cnt ≤ 3));

23: if (cnt = 3) then
24: return(SCA Wnd MF ×
25: (m laddr[cnt].SSCA WndSz×mf 3Terms 1st+
26: m laddr[cnt+1].SSCA WndSz×mf 3Terms 2nd+
27: m laddr[cnt+2].SSCA WndSz×mf 3Terms 3rd));
28: else if (cnt = 2) then
29: return(SSCA Wnd MF×
30: (m laddr[cnt].SSCA WndSz× mf 2Terms 1st +
31: m laddr[cnt+1].SSCA WndSz× mf 2Terms 2nd));
32: else if (cnt == 1) then
33: return (SSCA Wnd MF×
34: m laddr[cnt].SSCA WndSz×mf 1Term 1st);
35: else
36: return(best start wndSz);
37: end if

40

Algorithm 2 procedure EWSC-TCP-BestStart-WndSz factorLR(DestIPAddress,
DestPortAddress, CurLossRatio)

1: best start wndSz = 1;
2: cnt = 0;
3: mf 3Terms 1st = 0.6;
4: mf 3Terms 2nd = 0.3;
5: mf 3Terms 3rd = 0.1;
6: mf 2Terms 1st = 0.65;
7: mf 2Terms 2nd = 0.35;
8: mf 1Term 1st= 1;
9: SSCA Wnd MF = 0.5;

10: while (not EOF) do
11: m = find addr(DestIPAddress, savedSessions);

/* m returns the index of the first match & (-1) if there is no match till EOF*/
12: if (m = -1) then
13: m laddr[cnt].date time = savedSessions[m].date time;
14: m laddr[cnt].duration = savedSessions[m].duration;
15: m laddr[cnt].SSCA WndSz = savedSessions[m].SSCA WndSz;
16: m laddr[cnt].timeCompleteSS = savedSessions[m].timeCompleteSS;
17: m laddr[cnt].SS WndSz = savedSessions[m].SS WndSz;
18: m laddr[cnt].beginLossRatio = savedSessions[m].beginLossRatio;
19: m laddr[cnt].SSCA MF = savedTCP SessiSSons[m].SSCA MF;
20: m laddr[cnt].destPort = savedSessions[m].destPort;
21: cnt++;
22: end if
23: end while
24: sort latestTop(m laddr, date time); ASSERT((cnt ≥ 0) && (cnt ≤ 3));
25: if (m laddr[cnt].beginLossRatio) then
26: if (cnt == 3) then
27: if (m laddr[cnt].beginLossRatio > CurLossRatio) then
28: tmp bestStart WndSz
29: = SSCA Wnd MF× 1.2×m laddr[cnt].SSCA WndSz×mf 3Terms 1st;
30: else if (m laddr[cnt].beginLossRatio < CurLossRatio) then
31: tmp bestStart WndSz
32: = SSCA Wnd MF× 0.8×m laddr[cnt].SSCA WndSz×mf 3Terms 1st;
33: else
34: tmp bestStar WndSz = SSCA Wnd MF ×
35: m laddr[cnt].SSCA WndSz×mf 3Terms 1st;
36: end if
37: if (m laddr[cnt-1].beginLossRatio > CurLossRatio) then
38: tmp bestStart WndSz = SSCA Wnd MF × 1.2 ×
39: m laddr[cnt-1].SSCA WndSz×mf 3Terms 2nd;
40: else if m laddr[cnt].beginLossRatio < CurLossRatio) then
41: tmp bestStart WndSz = SSCA Wnd MF × 0.8 ×
42: m laddr[cnt-1].SSCA WndSz×mf 3Terms 2nd;
43: else
44: tmp bestStart WndSz = SSCA Wnd MF × m laddr[cnt-1].
45: SSCA WndSz×mf 3Terms 2nd;
46: end if

41

47: if (m laddr[cnt-2].beginLossRatio > CurLossRatio) then
48: tmp bestStart WndSz = SSCA Wnd MF × 1.2 × m laddr[cnt-2].
49: SSCA WndSz×mf 3Terms 3rd;
50: else if m laddr[cnt].beginLossRatio < CurLossRatio) then
51: tmp bestStart WndSz = SSCA Wnd MF × 0.8 × m laddr[cnt-2].
52: SSCA WndSz×mf 3Terms 3rd;
53: else
54: tmp bestStart WndSz = SSCA Wnd MF × m laddr[cnt-2].
55: SSCA WndSz×mf 3Terms 3rd;
56: end if
57: end if
58: return tmp bestStart WndSz;
59: else if (cnt = 2) then
60: if (m laddr[cnt].beginLossRatio > CurLossRatio) then
61: tmp bestStart WndSz
62: = SSCA Wnd MF × 1.2 × m laddr[cnt].
63: SSCA WndSz×mf 2Terms 1st;
64: else if m laddr[cnt].beginLossRatio < CurLossRatio) then
65: tmp bestStart WndSz
66: = SSCA Wnd MF × 0.8 × m laddr[cnt].
67: SSCA WndSz×mf 2Terms 1st;
68: else
69: tmp bestStart WndSz
70: = SSCA Wnd MF × m laddr[cnt].
71: SSCA WndSz×mf 2Terms 1st;
72: end if
73: if (m laddr[cnt-1].beginLossRatio > CurLossRatio) then
74: tmp bestStart WndSz
75: = SSCA Wnd MF × 1.2 × m laddr[cnt-1].
76: SSCA WndSz×mf 2Terms 2nd;
77: else if m laddr[cnt].beginLossRatio < CurLossRatio) then
78: tmp bestStart WndSz
79: = SSCA Wnd MF × 0.8 × m laddr[cnt-1].
80: SSCA WndSz×mf 2Terms 2nd;
81: else
82: tmp bestStart WndSz
83: = SSCA Wnd MF × m laddr[cnt-1].
84: SSCA WndSz×mf 2Terms 2nd;
85: end if
86: return tmp bestStart WndSz;

42

87: else if (cnt == 1) then
88: if (m laddr[cnt].beginLossRatio > CurLossRatio) then
89: tmp bestStart WndSz
90: = SSCA Wnd MF × 1.2 × m laddr[cnt].
91: SSCA WndSz×mf 1Term 1st;
92: else if m laddr[cnt].beginLossRatio < CurLossRatio) then
93: tmp bestStart WndSz
94: = SSCA Wnd MF × 0.8 × m laddr[cnt].
95: SSCA WndSz×mf 1Term 1st;
96: else
97: tmp bestStart WndSz
98: = SSCA Wnd MF × m laddr[cnt].
99: SSCA WndSz×mf 1Term 1st;
100: return tmp bestStart WndSz;
101: end if
102: else
103: return (best start wndSz);
104: end if

43

3.2.2 Enhanced RTT Correction: Link-Layer Retransmissions

Increased RTT, solely due to link-layer retransmissions, is misinterpreted by

TCP as network congestion, resulting in an inappropriate response of a reduction of

TCP congestion window size. WSC-TCP [77] had proposed a mechanism to accurately

remove the increase due to link-layer retransmission on the TCP source transmission

side only. TCP-EWSC factors in link-layer retransmissions of acknowledgment on the

TCP source receive side as well, and this is a new contribution. Enumerated below is

the additional required change on the link-layer at the wireless access router to which

the end device, which is the origination of the TCP session of interest, is connected:

(1) For every datagram sent by the Wireless Access node, TCP-EWSC includes

a count of number of retransmissions done for each datagram. The default value of this

count will be 0, corresponding to the best case wherein no retransmissions are required.

(2) The link-layer will send this acknowledgment retransmission count to the

transport layer along with the sequence number.

(3) The transport layer will then add the original packet retransmission count

along with the acknowledgment retransmission count and

(4) multiply it by the Link-Layer-Retransmission-Timeout and

(5) subtract it from the end-end measured RTT to get the Actual-RTT.

(6) The above computed ”Actual-RTT” is then used in TCP congestion control

algorithms instead of the ”End-End measured RTT”.

Enhancement steps depicting the End-End measured RTT correction, factoring

44

link-layer retransmissions in TCP-WSC [77] is enumerated below:

• Communicate the fixed link-layer retransmission timeout (Wireless-

Route LL RTO) value to the TCP layer (onetime per TCP session)

• For every Acknowledgment received:

• Keep track of the exact number (NRA - NumberRetransmissionsRe-

quired) of link-layer retransmissions required for each acknowledgment

and this is included in the ACK itself.

• Sends the sequence number of successful link-layer (re)transmitted ACK,

back to the TCP layer.

• TCP Layer uses the above information and computes (NRA)× Wire-

lessRouter LL RTO

• Corrected RTT (from NW Congestion perspective) for each segment =

Actual end-to-end observed RTT time for that segment - (n)×LL RTO

- (NRA)×WirelessRouter LL RTO

• TCP Layer uses the above outlined Corrected RTT (from NW Conges-

tion perspective) for each segment

3.2.3 Enhanced Fast-Retransmission: Link-Layer Reordering

Three Duplicate Acknowledgments (DUPAcks) received by TCP is interpreted

as datagram lost and results in Fast Retransmit. However, this does not factor in certain

45

datagrams requiring link-layer retransmissions, resulting in reordering of datagrams, as

sent to the network. The resulting inadvertent FAST Retransmit initiation on receipt

of 3 DUPAcks causes needless additional traffic and potential network congestion. A

dynamic DUPack mechanism instead of a hard-coded number (3) of DUPAcks, to ac-

count for potential link-layer retransmission of certain segments causing a reordering in

actual transmission has been proposed in [77] to address this issue. TCP-EWSC factors

in reordering of acknowledgment packets due to link-layer retransmissions of acknowl-

edgment packets on the TCP-source’s receive side return path and potential inadvertent

re-ordering of the ACKs as they get delivered back to Source’s TCP layer. This prevents

any additional errors in identifying successive real duplicate acknowledgment (DUPAck)

receipts to accurate count to trigger initiation of a fast-retransmit.

TCP-EWSC assigns an ACK-receipt-TCP-source-AP-side-sequence-number to

every acknowledgment frame in the order in which it is received from the network by

the local-Wireless-Router(Access Point). The goal is to track the order of receipt of

the ACKs from the network and this is included in every ACK frame. The ACKs

are reordered according to ACK-receipt-TCP-source-AP-side-sequence-number in the

Transport layer as soon as the ACKs are received before they are processed by the TCP

Receiver. This way it is ensured that DUPAcks, which trigger a retransmission, are

indeed accurately doing so, due to a corresponding real network congestion issue (and

not impacted or modified due to transient wireless-link-layer glitches).

46

3.2.4 RSSI Enhancement: Receiver Zero-Window Buffer Spoof

Receiver Zero-Window Buffer Spoofing is initiated for sender-side transient

link-layer Signal Drops. TCP-EWSC proactively responds to the dynamic temporary

RSSI (Receiver wireless Signal Strength Indicator) signal strength reduction by spoofing

TCP Receiver Zero-Window Buffer to ensure the TCP session is kept intact during

this transient glitch. Subsequently, the TCP window size bounces back quickly to the

optimal size using the Enhanced BEST-START window mechanism outlined above

in subsection 3.2.1.

For every tcp session, the last ACK received is saved in the link-layer of the

TCP sender. If the RSSI suddenly goes to zero, namely sporadic wireless outage is

sensed by the wireless MAC layer, then the last ACK received is repurposed and using

the same ACK number however with zero receive buffer size spoofed to the transport

layer, so the TCP session is not torn down, though the data transmission is brought

to a standstill. TCP-EWSC also augments the TCP transport layer fast-retransmit

implementation so that when a DUP-ACK is received and the receive buffer size is

”0”, the DUP-ACK is not counted to trigger a fast-retransmission. A timer is started

to a preset ”timeout” value, for the duration up to which this ”Receiver Zero window

spoofing is maintained”.

3.2.5 Enhanced Cluster Analysis

When an observed RTT value is more than twice the standard deviation ob-

served so far with respect to the given session, then it is deemed as a one-off RTT

47

variant and ignored. TCP-EWSC uses the ”corrected RTT” values after accounting

for any ”link-layer” retransmissions so that only the variations and variance from true

network congestion are factored in, while doing the statistical cluster analysis. After

review of some of the RTT statistics and data available, it was felt that ignoring those

RTT values which are close to and more than twice the standard deviation of the RTT

value observations might be the best approach.

3.3 Performance Results

The simulation was done with NS-2 and the results are shared below:

Figure 3.1: TCP-Cubic with No-Loss

48

Figure 3.2: TCP-Cubic with 10% Loss

Figure 3.3: TCP-Cubic with 20% Loss

49

Figure 3.4: TCP-NewReno with No-Loss

Figure 3.5: TCP-NewReno with 10% Loss

50

Figure 3.6: TCP-NewReno with 20% Loss

3.4 Performance Comparison

As is clear from the observations from the simulations, if there is any loss then

the enhanced mechanisms proposed in TCP-EWSC result in a significant improvement

in performance over other TCP variants. In Figure 3.2 and Figure 3.3, the transient

performance right after a glitch using TCP-EWSC’s mechanism is maintained at prior

levels whereas with existing implementations there is a drop of about 8%. Looking at

the graph it is evident that the ”throughput is almost sustained” at the prior levels

even when compared to other TCP variants, unlike the 8% to 10% drop observed with

existing TCP implementations as seen with TCP NewReno simulations in Figure 3.5

with 10% loss and in Figure 3.6 with 20% loss.

51

3.5 Summary

The several enhancements proposed ensure every bit of available bandwidth

is fully used and nothing is inadvertently left free and unused, particularly during the

transient phases of a TCP session when there is a sudden increase in loss, primarily

due to link-layer errors (wireless signal strength fluctuations). In today ubiquitous

wireless deployments and the mission critical requirements of best connectivity and full

utilization of available bandwidth at any given point in time, including in the midst of an

ongoing TCP session, the enhancements proposed in TCP-EWSC in subsections 3.2.1

ensure that there is constant leverage of prior TCP sessions parameters and judicious use

of that knowledge as proposed in subsections 3.2.2 and 3.2.3 to accurately and quickly

converge to optimal steady state usage of the available bandwidth instead of going

back to the traditional slow-start phase. Also, for momentary unforeseen wireless signal

glitches, the Enhanced Receiver Zero-Window Buffer Spoof mechanism in subsection

3.2.4 is significant relief to the end-users to navigate and recover from it gracefully,

seamlessly.

52

Chapter 4

TCP-NEWT:

TCP Network-Coding Enhanced

Window Transformation

TCP-NEWT (TCP with Network Coding Enhanced Congestion Window

Transformation) transforms the original TCP congestion window into a new TCP con-

gestion window comprising of network coded data generated from a group of segments

in the original TCP window on the sender side.

Similarly, on the receiver side, on detecting the receipt of a TCP-NEWT net-

work coded segment, TCP-NEWT transforms the TCP-NEWT receiver window into

the corresponding original TCP receiver window comprising of the original TCP data

segments generated by decoding of the received group of coded TCP segments. Ad-

ditionally, TCP-NEWT introduces a novel mechanism for processing of the acknowl-

53

edgment packets so that the path metrics like RTT measurements by the TCP-NEWT

network coded segments are accurately relayed back to the original TCP stack.

The design of TCP-NEWT assumes a fixed goodput and its specification con-

sists of: (a) the TCP packet header augmentation needed to support network coding,

(b) the available choice of coefficient values that are supported by TCP-NEWT’s de-

sign, (c) the enumeration of the permitted group sizes, (d) encoding of the original

TCP segments on the sender side and (e) decoding of the network coded segments on

the receiver side.

An example has been taken below, to illustrate how TCP-NEWT transforma-

tion works on group sizes of 1 and 2. This provides sufficient insight and clarity as to

how it would work on larger group sizes. Subsequently, encoding, decoding and pro-

cessing of acknowledgments including relaying of the network health (observed through

RTT measurements) back to original TCP window, are elaborated in detail.

A key consideration in TCP-NEWT’s approach has been to keep the computa-

tion overhead of generating the network-coded segments for transmission at the sender

side as well as the subsequent decoding at the receiver side to bare minimal. This would

enable TCP-NEWT deployment on mobile end-nodes with significant limitations on the

computing, memory and in many cases power resources available, which is one of the

objectives of this work.

54

4.1 Basic Operation

In TCP-NEWT, the header of a TCP-NEWT segment is augmented with a

specific boolean field ”network-coded” to indicate if it is a network-coded segment.

Figure 4.1 illustrates the packet headers used in TCP-NEWT. The first 20 bytes of the

TCP header are always used in TCP-NEWT. The options field is of variable size, and it

starts from row 6 and can go up to 40 bytes. TCP-NEWT uses the TCP Option Kind

number 25 [35] [80]. The newly introduced TCP-NEWT specific option field entries

are (a) kind equal to 25 (8 bits); (b) length in bytes (8 bits); (c) network coded:1

(8 bits); (d) group size equal to 1, 2, 4 or 8 (8 bits); (e) group id: ”Grp Seq Num”

(32 bits); and (f) CEi equal to 1, 2, 4, 8, 16 or 32 with i = 1 to 32 (6 unique values can

be represented by 3 bits, however 4 bits are allocated for each CE).

Figure 4.1: TCP-NEWT header

55

The ”group-id” field is initialized to reflect the group-number corresponding to

this coded segment and similarly the ”Random Linear Coefficients” fields are assigned

the RLC coefficients used to generate this segment, namely CE1, CE2....

Linear combinations of segments, part of a group, are combined to generate a

network-coded segment. Hence, the number of terms being added is equal to the group

size. The permitted group sizes in TCP-NEWT’s implementation are 1 or 2 or 4 or 8

(though group size of 16 is also depicted as an option in the TCP header field). The

permitted coefficients for generating the corresponding linear combinations in TCP-

NEWT’s implementation are one of six values namely 1, 2, 4, 8, 16 or 32, which ensures

that multiplication with these coefficients is simply a bit-shifting operation and thus

incurs minimal computational overhead. Though 3 bits would suffice for representing

6 unique values, an additional bit is also reserved for this and a total of 4 bits are

allocated to represent each coefficient. The maximum number of bits consumed in

the TCP header is: (number of bits per coefficient) multiplied by (number

of coefficients), which is 4 × 16 = 64 bits. In TCP-NEWT’s implementation, the

maximum group size is restricted to 8, hence 4× 8 = 32 bits are used.

Another important consideration in the choice of coefficients is that the random

linear coefficients (RLC) of the segments in the original group being used to generate the

coded TCP segments are such that its determinant can be evaluated without significant

computation overhead at the receiver to regenerate the original packets in the group.

56

TCP-NEWT Permitted Random Linear Coefficient Values

TCP-NEWT restricts the choice of the random linear coefficients to the follow-

ing 6 values: 1, 2, 4, 8, 16 and 32 . The rationale for this choice is that multiplication

with these numbers involves just a bit shift in binary numbers and thus involves minimal

additional processing overhead. Also, the payload size could increase when bit shifting

if the leading data field is a ”1”. Hence TCP-NEWT uses an additional 8 bits reserved

for potential payload bloat when computing the coded segments.

TCP-NEWT Permitted Group Sizes

The group size indicates the number of segments grouped together from the

original non-coded data segments. These segments are then combined (added) together

after each is multiplied by suitably chosen coefficient from the set of random linear

coefficients listed below to generate a coded segment. This above step is repeated till

the required number of ”coded segments” based on the loss-ratio (1 - goodput): packets-

dropped/total-packets-sent. For design simplicity, permitted group sizes is restricted to

one of the following: 1, 2, 4 or 8. The number of RLC (Random Linear Coded) unique

segments that can be generated with the above permitted choices: A group size of 1

results in 1 × 6 = 6 maximum RLC coded segments, as 6 RLC values (as outlined in

subsection 4.1) are permissible. A group size of 2 results in 6 × 6 = 36 RLC coded

segments, a group size 4 results in 6 × 6 × 6× = 1296 RLC coded segments, and so

on. However, some of the random linear combinations may be scaled version of another

tuple, in which case they would not be capturing any unique information and TCP-

57

NEWT design avoids choice of such tuples. The worst-case additional bloat in the RLC

coded segment is computed as follows: The largest group size permitted is 8. Worst-

case scenario is all of them getting scaled and multiplied by the largest permitted RLC

coefficient of 32, which causes a bit of shift of 5. Assuming the data in all the 8 (worst-

case scenario) had a 1 in the MSB (most significant bit), it would increase the number of

bits by log2 8, (where 8 is the maximum permitted group size in TCP-NEWT’s design)

which is 3 bits. The worst-case maximum bit shift of 5 due to multiplication by RLC,

plus a bloat of 3 bits due to addition results in a total cumulative increase of 8 bits

and TCP-NEWT allocates 16 bits for data payload bloat due to network coding, thus

providing for sufficient room for future scaling for larger group sizes. In the figure 4.2

below, a fixed goodput is assumed and the entire set of 4 segments in the initial group

from original TCP sliding window are coded using random coefficients to generate 5

coded segments for the 15% loss-ratio scenario (85% goodput). These are placed in the

new TCP-NEWT window.

58

Figure 4.2: Network Coding

4.2 Protocol Description

Each generated RLC segment has the following additional fields:

1. Orig-Grp-size: (≤ 16) permitted values in TCP-NEWT’s design: 1 or 2 or 4 or 8,

(Number of segments in a group from the original TCP window).

2. RLC coefficients: the number of coefficients is equal to the Orig-Grp-size, (the

coefficients used for generating the new coded segments are unique tuples).

3. Unique Group ID: Group Sequence number for each group, common for all mem-

bers in a group (like the sequence number for individual segments).

4. Coded-Grp-size = Orig-Grp-size/(1 - WLR), (where WLR is worst-case loss-ratio

and Coded-Grp-size is the number of coded segments generated from the group

59

in Original TCP Window).

The protocol description is presented through a couple of scenarios.

4.2.0.1 Group size 1

The figure 4.3 depicts a scenario with just a single TCP segment in a group.

Figure 4.3: Group Size 1

Sending Side

The figure 4.3 depicts the transmit mechanism when there is a single segment.

When there is a single segment in the sliding window and there are no other data/seg-

ments queuing in from higher layers for this TCP session, then group size (Orig-Grp-size)

is set to 1. Depending on the loss-ratio, the number of coded segments generated could

range from 2 to 4. In the above example, the network coding group-id is 8 and the

number of coded segments generated has been chosen to be 4.

60

Figure 4.4: Original Sample Data Seg 1 - Hex Dump

One of the stated goals is to ensure that both processor utilization as well as

memory consumption is bare minimal. This will ensure they are deploy-able in mobile

end-nodes with limited processing and memory capacities. The ease with which the

coded segments can be generated in TCP-NEWT’s approach is demonstrated using an

actual sample data comprising the following two TCP segments, segment-1 in figure 4.4

depicted above and segment-2 in figure 4.20 shown later.

Figure 4.5: Group Size 1: Coded Datagram 8.1’s TCP Header

The modified TCP-NEWT header using a coefficient of 2 is depicted above.

61

Figure 4.6: Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting

A simple left shift of all the contents by 1 bit generates the coded data.

Figure 4.7: Group Size 1: CE1-2 Coded Datagram 8.1’s TCP Data

The above depicts the actual contents of network coded segment with CE1=2.

Figure 4.8: Group Size 1: Coded Datagram 8.2’s Relevant TCP Header fields

The modified TCP-NEWT header with 4 Coefficient is depicted above.

62

Figure 4.9: Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting

A simple left shift of all the contents by 2 bits generates the coded data.

Figure 4.10: Group Size 1: CE1-4 Coded Datagram 8.1’s TCP Header

The above depicts the actual contents of the network coded segment with

CE1=4.

Figure 4.11: Group Size 1: Coded Datagram 8.3’s Relevant TCP Header fields

The modified TCP-NEWT header using a coefficient of 8 is depicted above.

63

Figure 4.12: Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting

A simple left shift of the contents by 3 bits generates the coded data.

Figure 4.13: Group Size 1: CE1-8 Coded Datagram 8.3’s TCP Header

The above depicts the actual contents of network coded segment with CE1=8.

Figure 4.14: Group Size 1: Coded Datagram 8.4’s Relevant TCP Header fields

The modified TCP-NEWT header for a Coefficient of 16 is depicted above.

64

Figure 4.15: Group Size 2: CE1-16 Coded Datagram 8.1’s Computation by bit shifting

A simple left shift of the contents by 4 bits generates the coded data.

Figure 4.16: Group Size 1: CE-16 Coded Datagram 8.1’s TCP Header

The above depicts the actual contents of network coded segment with CE1=16.

Receiving Side Group Size 1

The figure 4.17 depicts the receive mechanism when there is a single segment.

Figure 4.17: Group Size 1 RX

Receipt of any one coded segment would suffice to recompute the original

65

segment, by a simple bit shift operation to the right according to the value of the CE1,

coefficient 1 in the TCP Header of the received coded segment.

If CE1=2, right shift by 1 bit; if CE1=4, right shift by 2 bits; if CE1=8, right

shift by 3 bits and if CE1=16, right shift by 4 bits to generate original Segment D1.

Acknowledgment for Group Size 1

For a group size of one, if an acknowledgment for any one coded segment is

received, it confirms receipt of the data.

One of the contributions of TCP-NEWT is ensuring full accurate health of the

network is captured and relayed back as-is to the higher layer and applications by the

combined TCP stack. In the example depicted, four coded segments are sent, and the

receiver receives only two of them and the acknowledgments for both reach the sender.

In the eventuality of more packet drops and not one reaching the receiver side or none of

the acknowledgments from the received side reaching the sender, TCP-NEWT computes

a new unique coded segment, simply by added two of the prior coded segments CD8.1

and CD8.2 to generate CD8.5 with CE1 field in TCP header for CD8.5 = CE1 (from

CD8.1 header) + CE2 (from CD8.2 header); Similarly, CD8.1 and CD8.3 are added to

generate CD8.6 with CE1 field in TCP header for CD8.6 = CE1 (from CD8.1 header) +

CE2 (from CD8.3 header).

To compute the current RTO, a TCP sender maintains two state variables,

SRTT and RTTVAR. TCP-NEWT computes the RTO at the end of receipt of acknowl-

edgment for each of the 4 coded segments transmitted using the exact method outlined

66

in RFC 2988 [66].

When the first RTT measurement R is made, the host MUST set:

SRTT ← R

RTTVAR ← R/2

RTO ← SRTT + max (G, K*RTTVAR)

(Where K = 4)

For every subsequent RTT measurement R’ in each NC group, the sender

updates RTTVAR and SRTT for TCP-NEWT window, as follows till measurements for

all coded segments are completed.

Figure 4.18: Group Size 1:RTTVAR and SRTT parameters mapping

RTTVAR8.1←(1-beta)*RTTVAR8 + beta* | SRTT - R8.1’ |

SRTT8.1 ← (1 - alpha) * SRTT8 + alpha * R8.1’

RTTVAR8.2 ←(1 - beta)*RTTVAR8.1 + beta * | SRTT8.1 - R8.2’ |

67

SRTT8.2 ← (1 - alpha) * SRTT8.1 + alpha * R8.2’

RTTVAR8.3 ← (1 - beta) * RTTVAR8.2 + beta * | SRTT8.2 - R8.3’ |

SRTT8.3 ← (1 - alpha) * SRTT8.2 + alpha * R8.3’

RTTVAR8.4 ← (1 - beta) * RTTVAR8.3 + beta * | SRTT8.3 - R8.4’ |

SRTT8.4 ← (1 - alpha) * SRTT8.3 + alpha * R8.4’

The RTTVAR and SRRT corresponding to CD8.4 from TCP-NEWT window

are assigned to the updated RTTVAR and SRRT corresponding to completion of suc-

cessful transmission of D1 and receipt of ACK.

RTTVAR9 ← RTTVAR8.4

SRTT9 ← SRTT8.4

4.2.0.2 Group Size 2

The figure 4.19 depicts the scenario where a group contains two TCP segments.

Figure 4.19: Group Size 2

68

Grp size 2 Sending Side

Figure 4.19 depicts the transmission of the two segments, D1 in figure 4.4 and

D2 in figure 4.20. When there are two segments in the original TCP sliding window and

there are no other segments pending queuing in from higher layers for this TCP session,

then the group size (Orig-Grp-size) is set to 2. Depending on the loss-ratio, the number

of coded segments generated ranges from 2 (no loss) to 4 (50% loss). In this example,

the network coding group-id is 8 and the number of coded segments generated is 4.

Figure 4.20: Original Data Segment 2- Hex Dump

The linear combinations of the sample data comprising of the two TCP seg-

ments, segment-1 in figure 4.4 and segment-2 in figure 4.20, can be very easily computed.

Figure 4.21: Group Size 2: Coded Datagram 8.1’s TCP Header

The modified TCP-NEWT header using a (CE1) coefficient of 4 for first seg-

ment D1 and (CE2) coefficient of 1 for 2nd segment D2 is depicted below.

69

Figure 4.22: Group Size 2: CE1-2 Coded Datagram 8.1’s TCP Data

CD8.1 is computed by adding 4*D1 (figure 4.13) + 1*D2 (figure 4.20).

Figure 4.23: Group Size 2: Coded Datagram 8.2’s TCP Header

Figure 4.24: Group Size 2: CE1-2 Coded Datagram 8.1’s TCP Data

CD8.2 is computed by adding 2*D1 (figure 4.13) + 1*D2 (figure 4.20).

Similarly CD8.3 is computed by adding 1*D1 (figure 4.13) + 2*D2 (figure 4.20).

Similarly CD8.4 is computed by adding 1*D1 (figure 4.13) + 4*D2 (figure 4.20).

70

Grp Size 2 Receiving Side

The figure 4.25 depicts the receive mechanism when there are two segments.

Figure 4.25: Group Size 2 RX

Receipt of any two coded segments out of the 4 transmitted coded segments

suffices to recompute the two original segments.

Figure 4.26: Group Size 2: CE1-2 Coded Datagram 8.1’s TCP Data

The original segments are retrieved from the received coded segments as fol-

lows: After inspecting the CE1, CE2 tuple values in the 2 received coded segments, and

noting that received coded segment RLC2 has (4,1) and RLC1 has (2,1), TCP-NEWT

computes (RLC2 - RLC1) and the result is depicted below, which is 2*D1 (2 times the

original data D1 of Segment-1).

71

Figure 4.27: Group Size 2: D1 obtained by RLC2 - RLC1 is divided by 2

Bit shift to the right by 1-bit (division by 2) results in original data D1 retrieval.

Figure 4.28: Group Size 2:

2*D1 is subtracted from (2*D1 + 1*D2) to retrieve the original data D2. Thus,

both the original transmitted segments D1 and D2 are retrieved and available at receiver

with minimal number of bit-shifting and addition operations.

Acknowledgment for Group Size 2

Ensuring that the full accurate health of the network is captured and relayed

back to the higher layer by the combined TCP stack is one of the significant contributions

of TCP-NEWT and this is accomplished for this scenario comprising a group size of

72

2 in a very similar manner to the approach, elaborated in detail earlier for group size

1. Reiterating just the key aspects below: Original TCP Stack keeps track of the RTO

as well as RTTVAR and SRRT at a group level. However in TCP-NEWT, for each

subsequent RTT measurement R’ in each NC group, the sender updates RTTVAR and

SRTT for TCP-NEWT window, as follows till measurements for all coded segments are

completed as per RFC2988 [66]. Thereafter, the final TCP-NEWT RTTVAR and SRTT

values are used to update the values of RTTVAR and SRTT in the original TCP before

the start of the next group formation prior to its network coded segment generation.

The RTTVAR and SRRT corresponding to CD8.4 from TCP-NEWT window are then

assigned to the updated RTTVAR and SRRT corresponding to completion of successful

transmission of D1 and D2 and receipt of ACKs.

RTTVAR9 ← RTTVAR8.4

SRTT9 ← SRTT8.4

4.2.0.3 Algorithm – TCP-NEWT

The algorithms for encoding and decoding a group of segments in TCP-NEWT

are enumerated below. Once the receiver has received sufficient number of coded seg-

ments for a group, equal to the size of the group, the decoding steps are initiated.

TCP-NEWT uses the Gaussian-elimination [28] procedure for solving a system of linear

equations to decode and arrive at the original data sent.

73

Algorithm 3 decode(group)

1: while TCP Session is still active do
2: Wait for the receipt of a packet. if times out waiting, quit;
3: Determine the group (group id) of the received segment.
4: Determine the group size of the group, grp sz;
5: Determine if there is already a sink created to gather all segments of this group.
6: If not, create a new sink for this group and initialize grp rcv cnt, group receive

count to 1;
7: Check If grp sz for this group equals grp rcv cnt for this sink
8: if yes pass the set of packets to the ”GaussianElimination” function, which will

return the original segments of this group.
9: end while

Algorithm 4 encode(group)

1: Determine the group (group id) of the set of packets to be encoded.
2: Size of the group, grp sz;
3: Determine the group seq num for each individual packet within the group
4: Based on LR (Loss Ratio), determine the number of encoded packets to be gener-

ated: numEncoded
5: for i = 1; i ≤ numEncoded; i ++ do
6: Determine the unique set of NC Coefficients Tuples: CE[1], CE[2], · · ·,

CE[numEncoded]
/* (based on the group id and group seq num for each encoded packet to be gen-
erated.) */

7: Clear RLC PAC[i];
8: Compute the contents of the coded packet.
9: for j =1 ; j ≤ grp sz; j++ do

10: RLC PAC[i] = RLC PAC[i] + CE[i][j] × PAC[j]
11: end for
12: Populate the packet hdr of RLC PAC[i] with the NC Coefficients used to generate

it;
13: Upload RLC PAC[i] the newly generated coded packet into new TCP NWT

window.
14: end for

74

TCP-NEWT for Distributed object store (ICN [36]/CCN [41])

In this section, a proposal for a more generalized setting with receiver requiring

retrieval of data as and when needed is outlined (publish/subscribe model, applicable to

ICNs (Information Centric Networks), CCNs (Content Centric Networks). There are

2 distinct phases in this more generalized setting:

Figure 4.29: Distributed Object Storage with Network Coding

75

Figure 4.30: Distributed Object Storage with Selective Network Coding

4.2.0.4 Transport phase

Transport phase is managed like the one outlined in 4.2.0.1 above except that

approach is tweaked to account for worst-case scenarios (from OLR - observed Loss

ratio which the receiver might encounter when they request for the data of interest).

TCP-NEWT hard codes the WLR to 70% loss ratio for distributed object storage (cor-

responding in real-world to a transient flaky wireless link scenario with close to 70%

76

Figure 4.31: Distributed Object Storage with Compressed Network Coding

77

loss/drops in link-layer signal strength and interference issues, thus not really a ”TRUE”

congestion in the network. Secondly, the coded data is stored at many different prior

identified and well-known distributed object stores. This aspect is like traditional mul-

ticast data delivery, except that the coded data is now being delivered to intermediate

distributed object storage devices instead of end-consumers of the data and the coded

data sent to each node is a different unique RLC for the same group. To enforce secu-

rity and privacy, effort is taken to ensure that each individual distributed object storage

node has less than the ”minimal set of RLC packets for each group” and as a heuristic

measure, TCP-NEWT proposes storing 90% of the RLC coded packets for every group

at each storage node. This will ensure that it is not possible for the intermediate storage

node to “recreate or regenerate” the original segments. However, there could be some

losses in the transmission path. For example, if there is a 15% loss in the transmission

path to a given node then (0.9 *0.85) = 0.765 or 76% of the RLC coded packets are

available in that storage node.

4.2.0.5 Receiver phase

The more generalized sub-problem statement for the receiver phase is as fol-

lows: There are ‘n’ (distributed storage) nodes, each having a different ”loss-ratio” and

a different ”hop-count”, ”delay” in its path to a particular destination of interest.

The proposed algorithm produces that minimal optimal subset (n1) of nodes,

such that the overall bandwidth usage as well as transmission delay is minimized, while

ensuring that sufficient RLC datagrams reach the destination, so that zero retransmis-

78

sions are needed. An algorithm for converging on the ”optimal subset of individual

nodes”, which would be identified and requested to respond, in order to ensure 100%

data available at the receiver (without having the need for any retransmission) is pro-

posed below.

This is an example of a file being retrieved by an interested receiver. Each file

has a unique object identifier specific to itself. File is an ordered collection of groups of

RLC packets. It may have been split up originally by the original source node into a

sequential ordered list of groups, where each group has a unique group sequence number.

These RLC packets are all now saved in several distributed intermediate storage nodes

and every one of these individual RLC packets will also have the ”original file’s unique

Object identifier” in addition to the ”specific group sequence number”.

4.2.0.6 Algorithm – TCP-NEWT

1. Receiver expresses interest in an object/data/file/information by broadcasting the

”object ID” corresponding to it. For security purposes, the receiver should have

authorization to request for this data.

2. Each intermediate storage node, which is a repository of some of the RLC packets

corresponding to the “object ID”, identifies the request and notes down the ”time

it took for the request to reach it: Treach” and the ”hop count: hc-reach traversed

from the receiver” and responds back to the receiver identifying itself as a repos-

itory of the partial data along with the ”Treach” and ”hc-reach” parameters as

well as the lower bound of the percentage of RLC packets (rlc-percent) for each

79

group that it has in its storage.

3. The receiver would have heard back from each of the distributed data storage

nodes and with the full round-trip metrics including the return path specifics

”Treturn” & ”hc-return”. The receiver also starts with an initial estimate value

of the loss-ratio for each path, which it subsequently keeps continuously updating

to reflect reality as accurately as possible.

4. Since each RLC group would have a different number of packets, a request for

a ”specific unique percentage of the RLC datagrams”, applicable for any given

group” to each specific node, is initiated.

5. This problem reduces to a classic optimization problem of minimizing the delay

while accounting for the potential loss while receiving from each node and factoring

in the bandwidth constraints in the path to each. Thus, the send-request to each

intermediate storage node has only one parameter namely: percentage of the RLC

coded packets to send (send-RLC-Percent).

x1
r1

+ d1 =
x2
r2

+ d2 (4.1)

x1
r1

+ d1 =
x3
r3

+ d3 (4.2)

x1
r1

+ d1 =
xn
rn

+ dn (4.3)

k1x1 + k2x2 + · · · k1xn = x (4.4)

80

For each node i, send-RLC-percent(i) is computed from LR(i), rlc-percent(i), Treach(i),

Treturn(i) as well as hc-reach(i) and hc-return(i). Detailed performance analysis of

TCP-NEWT for distributed object store is subject of future work.

4.3 Performance Results

Performance results with no-loss, 10% loss, 20% loss, 30% loss, 40%loss and

50% loss are shown below. It was ensured there were losses only on the wireless last-mile

link and no real congestion in the network.

Figure 4.32: TCP Network Coding with No-Loss

81

Figure 4.33: TCP Network Coding with 10% Loss

Figure 4.34: TCP Network Coding with 20%Loss

82

Figure 4.35: TCP Network Coding with 30%Loss

Figure 4.36: TCP Network Coding with 40%Loss

83

Figure 4.37: TCP Network Coding with 50%Loss

4.4 Performance Comparison

As very succinctly evident in the results of the simulation in section 4.3, the

performance has been maintained at the same level despite varying levels of errors,

all the way from 10% loss in figure 4.33, 20% loss in figure 4.34, 30% loss in figure

4.35, 40% loss in figure 4.36 and finally even with 50% loss as seen in the figure 4.37.

Comparing these with the loss-less scenario in figure 4.32, clearly shows TCP-NEWT

can guarantee performance and throughput despite level of errors/losses with one big

CAVEAT to remember, namely: these errors are ONLY due to wireless link-layer errors

and NOT due to a true congestion in the network.

84

4.5 Summary

Thus TCP-NEWT protocol, TCP with a Network coding Enabled conges-

tion Window Transformation, while incorporating network coding and creating a new

network-coded congestion window housing all the newly coded data, captures all the

network transient parameters and suitably passes them over to the original TCP stack.

This ensures that TCP-NEWT is empowered to make all its real-time adjustments

as it would in a normal TCP implementation with the observed network dynamics.

TCP-NEWT proactively sends the right apt amount of additional network coded seg-

ments based on the error level scenario being simulated. The next chapter explores and

proposes a mechanism for proactively detecting the error-level and adjusting to it in

real-time on the fly dynamically during an existing TCP session.

85

Chapter 5

TCP-PNC:

TCP Predictive Network Coding

In this chapter, TCP-PNC [87] (TCP with Predictive Network Coding) is

introduced, which enhances TCP-NEWT (TCP Network-Coding Enhanced Window

Transformation) by incorporating a real-time accurate goodput prediction mechanism,

which is a new contribution.

5.1 Basic Operation

TCP-PNC [87] improves on TCP-NEWT by incorporating optimal network-

coding to proactively address packet loss without retransmission, by dynamically pre-

dicting the expected goodput (1 - loss-ratio) on an ongoing basis during the course

of a TCP session. This ensures that the optimal amount of network coded packets is

transmitted, nothing more and nothing less. The dynamic predictive mechanism re-

86

sulting in the efficient optimal amount of network coded packets transmission is a new

contribution in TCP-PNC. Additionally, TCP-NEWT already ensures all TCP session

metrics are also suitably transformed and passed back to original TCP stack and this

is a new contribution in this thesis. Sliding Window Protocol as used in TCP, which is

being enhanced with the Sliding Window Transformation Protocol is yet another new

contribution in this work.

Due to use of network coding, TCP-PNC and TCP-NEWT are in a better

position to guarantee a predictable performance and SLAs (service level agreement on

upper bounds for data delivery) for both data stores and writes as well as data fetch and

reads. This is because retransmissions, due to transmission losses in WAN link, is ab-

solutely minimal, if not completely absent, in the approach used. Additionally, network

coding also guarantees data privacy, as only the ”network coded” data is transported

and not the actual data. The beauty of using network coding (NC) is that the amount

of traffic it generates, and transports compared to non-coded transmission is exactly

of the same order. There is, however, an increase in processing and storage. But, if

the system is lossy or congested, or if diversity (e.g., multiple paths or caching proxies)

can be exploited, NC can provide faster end-end data transport. Network coding of the

data packets is done prior to their being dispatched for storage in the distributed stor-

age system, which could be geographically dispersed across a WAN link. Based on the

current dynamically estimated goodput of the network at a given point in time, using

a new enhanced approach based off [95], the number of network coded data packets (n)

to be generated from an initial dataset (m) of data packets is computed. These ”n”

87

network coded packets are then prefixed with the same unique prefix (specific for this

dataset), and they are transported across the WAN link (TCP/IP) and these network

coded packets are stored in different smart storage devices (not the original data). By

leveraging network coding to retrieve a data block (containing ”m” units of data), it

suffices if any ”m” random linear combinations can be retrieved to reconstruct, decipher,

and extract the actual ”data-set” of interest.

A simple example helps to illustrate. If a file is sent in n chunks, the receiver

must receive each chunk correctly to decode the file. If each transmission failed with

probability (1-p) independently of other transmissions, each chunk takes 1/p transmis-

sions (geometric distribution) to be received correctly and the file need n/p transmis-

sions. If NC is used, the receiver still needs n linear combinations to decode the file.

This also takes n/p transmission on average. However, with NC, any n linear combi-

nations received enable correct decoding. Without NC, the exact n chunks must be

received. Depending on the retransmission strategy, this can take much longer. The

question is how much coding overhead to use in NC, so that an apt excessive num-

ber of combinations are sent, and this depends on perceived congestion or errors. If

no errors are perceived, one transmission suffices with or without NC. For an exam-

ple like ”real-time streaming” applications, where the data is needed in real time for

high-fidelity video and quality experience, there is no point in retransmission of lost

packets. However, using the network coding approach, even when the network is almost

perfect, with an extremely low loss-ratio, very close to ensuring 100% packets receipt at

the same timeframe is a high probability and so the viewing experience becomes, with

88

HD video, perfect, as all frames are available at the destination in time. In summary,

TCP as a mechanism ensures reliability through retransmission, but this takes time to

detect a loss and subsequent retransmission. So, it is a reactive approach. TCP-PNC’s

approach tries to ensure reliability in real-time, using network coding and proactively

sending the apt amount of random linear unique combinations (RLC) of the packets

in each set, leveraging a predictive means to estimate the expected goodput. This is a

new contribution in this thesis. So, it is a proactive approach. Additionally, prior NC

proposals for working with Transmission Control Protocol (TCP) were incremental ad-

ditions to the existing TCP implementations and so, certain intrinsic TCP metrics and

parameters measuring RTT, delays, latencies as relayed back to host were not exactly

accurate. TCP-NEWT and TCP-PNC incorporate a mechanism to ensure all the TCP

session metrics for RLC segments are suitably returned to the original TCP session.

This is another new contribution of this thesis.

Figure 5.1: Native TCP based Selective Network Coding

89

Figure 5.2: TCP-NEWT with Selective Network Coding

In the above approaches, all the data is not coded, the additional packets

required per the identified goodput are the only network coded packets.

90

Figure 5.3: TCP-NEWT congestion window comprises only coded segments

Goodput for different range of the time periods ”M” starting from 2 to about

32 is computed in every measurement period tm . Let lM (k) be the payLoad deLivery

(LL) ratio (goodput) of the k-th measurement, which is calculated as the number of

delivered packets over the total number of packets sent during the latest M periods (see

equation 5.1), where Nd(k) is the number of packets delivered in the k-th measurement

period, and Ns(k) is the number of packets sent in the k-th measurement period.

lM (k) =

(
M−1∑
i=0

Nd(k − i)

)
(
M−1∑
i=0

Ns(k − i)

) , M = 2, 3, 4, · · · , 32 (5.1)

In real scenario M can be any value ≥ 0:

91

M = 0, LL(k) = l0(k) (5.2)

M = 1, LL(k) =
l0(k) + 2−1l1(k)

20 + 2−1
(5.3)

M = 2, LL(k) =
l0(k) + 2−1l1(k) + 2−2l2(k)

20 + 2−1 + 2−2
(5.4)

LL(k) =

20 × l0(k) + 2−1 × l1(k) + 2−2 × l2(k) + · · ·
+2−n × ln(k)

20 + 2−1 + 2−2 + · · ·+ 2−n
(5.5)

5.2 Protocol Description

For every TCP session, TCP-PNC computes the observed Loss Ratio (OLR:

1 - observed goodput) at every 2 secs interval and saves it in a ObservedLossRa-

tio, a variable array containing the values observed in the last one hour (array size is

3600/2 = 1800). Using the past saved values of the observed loss ratio, along with

currently observed loss ratio, extrapolation of the gradient and prediction of the PLR

(Predicted Loss-Ratio) value(s) expected in the next 2 secs (PLR(t0 + 2) as well as

92

next 4 (PLR (t0 + 4) secs is done. Based on this trend, the max (LR(t0), PLR (t0+2),

PLR (t0+4)) is chosen as the ”WLR (t0)” potential ”Worst-case Loss-Ratio” scenario

to be addressed while deriving the number of RLC (Random Linear Coded) TCP seg-

ments. Given a TCP window size (n) at a given point in time, TCP-PNC’s design

restricts the max grp size of the number of TCP datagrams to be Network Coded as

a group to 8. One of the main considerations in keeping a smaller max group size

value is to ease the computational burden on the end-nodes (some of which may have

potential processing and/or memory constraints). Ceiling function ⌈(N/8)⌉ is the num-

ber of network coded groups. There will be 2 sliding windows, one with the ”original

segments” (orig SlidingWnd) and the other with the ”random linear coded segments”

(coded slidingWnd), wherein each of the packets are enhanced with the additional fields

as listed above in (3). One of the key contributions in TCP-PNC and TCP-NEWT is

preserving all the TCP handshake parameters seamlessly and accurately including the

transient parameters like RTT and acknowledgments received (which would correspond

to the ”coded SlidingWnd’ and accurately reflect that back to the ‘Orig SlidingWnd’).

If an acknowledgment is confirmed for receipt of ”K” RLC packets at the receiver, WLR

at this current point is immediately computed and floor function ⌊K ∗WLR⌋ is the cor-

responding number by which the Orig SlidingWnd is increased. Additionally, another

additional pointer is maintained for start and end of each RLC group. Till the receiver

acknowledges the successful receipt of the required number of coded packets needed to

be able to compute and generate the original datagrams of this group, these 2 pointers

are maintained. This is just in case additional RLC packets are needed at the receiver

93

due to more than expected packet losses and to enable the receiver to have the minimal

number of coded segments required to generate the original segments. The TCP header

4.1 in each RLC packet of TCP-PNC generated for a given network coded group is the

same as TCP-NEWT and illustrated in figure 4.1.

5.2.0.1 TCP-PNC Dynamic Goodput Computation Algorithm

Orig Grp size (≤ 8)

RLC coefficients (the number of coefficients is exactly equal to the Orig Grp size

– listed in (i) above)

Unique Group ID – Group Sequence number for each group (like the sequence

number for individual packets) TCP-PNA ensures that the Random Linear Codes

used for generating each of the new coded packets are a unique tuple of dimension

Orig Grp size (max possible is 8)

Coded Grp size = Orig Grp size/(1 - WLR). Another important consideration

is to ensure that the choice of coefficients is such that – the random linear coefficients

of any 8 (actually Orig Grp size) is such that its determinant can be evaluated (at the

receiver in order to be able to regenerate the Original packets in the group – in any

possible scenario of the order of the actual RLC grp packets received by the receiver)

94

TCP-NWT Congestion tm[32] fields: start, end,

Window segments-sent, segments-acked

Figure 5.4: LL Goodput Computation

95

Algorithm 5 TCP-PNC Overview

1: LR NUM = 0;
2: LR DEN = 0;
3: cum sent = 0;
4: cum ack = 0;
5: M = 32;
6: time slot = 1;
7: prevLR = 0.5;
8: LR = 0.5; LR1= 0.5; PLR2=0.5; PLR3=0.5; PLR4=0.5
9: curLR = 1

10: do
11: start = time slot mod M;
12: j = start;
13: term = 0;
14: do
15: cum sent += cum sent + tm[j].sent;
16: cum ack += cum sent + tm[j].ack;
17: LR NUM += (1/(2 ∗∗ term))* (cum ack/cum sent);
18: LR DEN += 1/(2 ∗∗ term);
19: term +=1;
20: j=j-1;
21: while j >= 1
22: j = M-1;
23: do
24: cum sent += cum sent + tm[j].sent;
25: um ack += cum sent + tm[j].ack;
26: LR NUM += (1/2**term)* (cum ack/cum sent);
27: LR DEN += 1/(2**term);
28: term +=1;
29: j=j-1;
30: while j <= start
31: curLR = (LR NUM/LR DEN);
32: LR1 = curLR;
33: PLR2 = LR1 + (LR1 - prevLR);
34: PLR3 = PLR2 + (LR1 - prevLR);
35: PLR4 = PLR3 + (LR1 - prevLR);
36: WLR = MIN(prevLR, LR1, PLR2, PLR3, PLR4);
37: CODED GRP SZ = ORIG GRP SZ/(1 - WLR);
38: prevLR = curLR
39: while (TCP Session is still active)

96

TCP-PNC - Protocol Description by Example

Figure 5.5: An Example of Dynamic Goodput (1 - Loss-Ratio) Prediction

An actual example is taken below, to succinctly illustrate TCP-PNC’s proposed

mechanism for dynamically arriving at the predicted loss at the next upcoming time

interval. Value of M determines the number of time periods over which the loss ratio is

computed. TCP-PNC incorporates an assignment of a weight of 1 for loss ratio l0(k),

2−1 for l1(k), 2
−2 for l2(k) and so on, to ensure the data comprising just the immediate

past is given a higher importance compared to the data corresponding to a slightly

larger duration from the past. In the example below, with the actual sample data, it is

observed that in the k-th measurement, out of 4 packets sent, 2 are successfully received

and acknowledged. In the (k+1)th measurement, out of 4 packets sent, 3 are successfully

received and acknowledged. Loss-Ratio(LR) = 1 - payLoad-deLivery-Ratio (LL)

M = 0; l0(k − 1) =
3

4
= 0.75; (5.6)

97

LL(k − 1) =
1 ∗ l0(k − 1)

1
= 0.75 (5.7)

LR(k-1) = 1 - LL(k-1) = 1- 0.75 = 0.25 (5.8)

M = 0; l0(k) =
2

4
= 0.5 (5.9)

M = 1; l1(k) =
3 + 2

4 + 4
=

5

8
= 0.625 (5.10)

LL(k) =
1 ∗ l0(k) + (1/2) ∗ l1(k)

1 + 1/2
= 0.54 (5.11)

LR(k) = 1 - LL(k) = 1 - 0.54 = 0.46 (5.12)

M = 0; l0(k + 1) =
3

4
= 0.75 (5.13)

M = 1; l1(k + 1) =
3 + 2

4 + 4
=

5

8
= 0.625 (5.14)

M = 2; l2(k + 1) =
3 + 2 + 3

4 + 4 + 4
=

8

12
= 0.67 (5.15)

98

LL(k + 1) =
1 ∗ l0(k + 1) + (1/2) ∗ l1(k + 1) + (1/4) ∗ l2(k + 1)

1 + 1/2 + 1/4
= 0.70 (5.16)

LR(k+1) = 1 - LL(k+1) = 1 - 0.7 = 0.3 (5.17)

Expected Dynamic Loss-Ratio: Using LR(k-1), LR(k), and LR(k+1), TCP-

PNC predicts thePLR (Predicted LossRatio) at the next three time-intervals PLR(k+2),

PLR(k+3), PLR(k+4) using following simple mechanisms. TCP-PNC does a linear ex-

trapolation of the Observed loss ratio values at (k) and (k+1) to arrive at PLR(k+2).

LR(k) is 0.46 and LR(k+1) is 0.30 and therefore initial estimate for PLR(k+2) is 0.14.

However, since in this example, 4 segments are sent in a timeslot, the actual possible val-

ues for l0(k+2) are 0, 0.25, 0.5, 0.75 and 1. Since the initial estimate of 0.14 is between 0

and 0.25, TCP-PNC takes the higher of the two namely 0.25 as the PLR(k+2). Similarly

taking the values of OLR(k+1) and PLR(k+2) and doing a similar linear extrapolation,

TCP-PNC estimates PLR(k+3), which in this example turns out to be 0.25. Similarly

taking PLR(k+2) and PLR(k+3), TCP-PNC estimates PLR(k+4), which also turns out

to be 0.25. Next TCP-PNC predicts the worst-case loss-ratio by taking the minimum

of the observed loss ratio in the last two measurement periods and the predicted loss

ratio in the upcoming two measurement periods:

MAX(LR(k), LR(k+1), PLR(k=2), PLR(k=3), PLR(k=4)), namely MAX(0.46,

0.30, 0.25, 0.25, 0.25), which is 0.46. This is closest to 0.5, which would be the worst case

99

loss-ratio in the above example. For a given session, at every 2 secs interval the Observed

Loss-Ratio (OLR) is computed and saved in a LossRatioTable for last hour (array size

is 3600/2 = 1800). Using the past saved values of the observed loss ratio, along with

currently observed loss ratio extrapolation of the gradient/trend and prediction of the

PLR (Predicted Loss-Ratio) values for the next 3 time periods is done. Based on this

trend, the MAXIMUM (OLR(t0-4), OLR(t0-2), PLR(t0), PLR(t0+2), PLR(t0+4)) is

chosen as the WLR(t0) potential Worst-case Loss-Ratio scenario to be addressed while

deriving the number of RLC TCP datagrams. Coded Grp size = Orig Grp size/(1 -

WLR).

5.3 Performance Results

The performance of TCP-PNC [87] was evaluated using discrete-event simu-

lation. The NS-2 simulator [81], which provides substantial support for simulation of

TCP, Routing, and Multicast Protocols over wired and wireless (local and satellite) net-

works, was used. The TCP implementation was modified to support the new proposed

protocols. This section describes simulations from 6 scenarios:

a. standard ns-2 [81] TCP-newReno [26]

(i) Using a wireless topology with an almost lossless wireless link

(ii) Using the same wireless topology with a substantial lossy wireless link at

both the wireless end-nodes

b. standard ns-2 [81] TCP-cubic [32]

100

(i) Using a wireless topology with an almost lossless wireless link

(ii) Using the same wireless topology with a substantial lossy wireless link at

both the wireless end-nodes

c. standard ns-2 [81] new Reno implementation modified with TCP-PNCs enhance-

ments for networks with wireless end-nodes.

(i) Using the same wireless topology with an almost lossless wireless link

(ii) Using the same wireless topology with a substantial lossy wireless link (10%

and subsequently 20%)

There was an improvement in overall throughput observed with the new im-

plementation, especially as the transmission errors (link-layer losses) increase. Compar-

ative results with TCP Cubic as well as TCP newReno [26] shows a significantly higher

throughput with TCP-PNC.

5.4 Performance Comparison

Observe an overall increase of end-to-end TCP throughput in the range of 30-

35% depending upon the amount of wireless-link-layer induced retransmissions, without

changing the underlying ”network congestion”. TCP-PNC’s results show that its pro-

posed approach significantly improves the throughput of TCP connections both for:

1. short data transfer bursts: due to its unique feature of starting remarkably

close to the available bandwidth rather than the traditional slow start mecha-

101

Figure 5.6: Cubic vs New Reno vs NC

nism in TCP implementations as well as due to quick proactive retransmissions

due to wireless-link-layer failures and hiding the wireless-link-layer delays due to

retransmission coupled with Network coding.

2. (2) Longer TCP sessions: as the wireless-link-layer issues and delays are iso-

lated from network congestion issues (without discarding the data completely

when there is wireless-link-layer issue, as is done in many of other enhance-

ments/proposals for augmenting TCP for wireless and wired networks). Signifi-

cant improvement in real-time delivery of data with predicable timelines at the

102

Figure 5.7: NC - Throughput

Figure 5.8: Cubic vs New Reno vs NC - 20% loss

103

end-application level.

5.5 Summary

The results show that TCP-PNC [87] along with TCP-NEWT can seamlessly

adapt and provide real-time guaranteed delivery of data in a 5G network with different

varying wireless-link-layer error levels and signal strengths (as long as the underlying

core network is not experiencing any real congestion).

104

Chapter 6

TCP-RTA:

TCP Real-Time Topology Adaptiveness

for Congestion Control

TCP-RTA [88] recognizes the possibility of underlying topology changes hap-

pening during the course of an ongoing TCP session. This is particularly relevant for

TCP sessions with mobile end-nodes, whose mobility during a TCP session could cause

a significantly impactful underlying topology change. It has been observed that dif-

ferent existing TCP implementations and their variants incorporate a single congestion

control strategy, which is fixed and cannot be changed dynamically. The response of the

current congestion control mechanisms implemented in different TCP variants, do not

account for the possibility of an inherent topology change as the cause of change in one

of the observed TCP parameters instead of a change in congestion in the network: for

105

example, a sudden significant increase in RTT is seen only as an increase in congestion

in the network, instead of being open for the possibility of a “change in the path taken

by the packets due to a topology change involving an addition of a wireless satellite

link”. The above indicated limitation of TCP implementations result in a sub-optimal

or in several scenarios highly inefficient usage of the available bandwidth, resulting in

low throughput.

Prior related research contributions, include ”D-TCP: Dynamic TCP Conges-

tion Control Algorithm for Next Generation Mobile Networks” [42], wherein Bandwidth-

Delay product is dynamically computed and a congestion metric derived off this com-

putation, is used to determine the response of the congestion control algorithm to in-

crease/decrease the CWND during the RTT update and loss detection. Thus, only a

single parameter is being dynamically modified and the underlying Congestion Control

algorithm is the same for all scenarios and through the life cycle of the current session

and thereafter till the TCP stack is changed.

TCP-RTA [88] dynamically recognizes potential underlying topology change

in the end-end path of an existing TCP session and incorporates the capability to adapt

in real-time, to the apt congestion control algorithm applicable for this updated new

topology, experienced by the TCP Session.

106

6.1 Basic Operation

There are proven very well performing and optimized custom congestion-control

strategies for specific environments as exemplified by some of the TCP variants including

TCP Hybla [15] for satellite links, HSTCP [25] for networks with a large bandwidth-

delay product along with low-latency, as well as some generic TCP variants like TCP

NewReno [26], among others. A new mechanism TCP-RTA [88] is proposed, wherein

apriori categorized values of some of the ranges of TCP parameters (primarily RTT)

as corresponding to a particular underlying nature of the environment (topology) are

leveraged. TCP-RTA uses the above information to help identify the actual environ-

ment encountered by a TCP Session at any given point during the given session. On

detection of a significant consistent change in the TCP session parameters of interest

(RTT in this scenario), which point to a topology/environment change, TCP-RTA tran-

sitions over completely to the custom congestion control strategy, which is apt for the

transitioned environment/topology.

An example would be a significant consistent increase in RTT. It would im-

ply a change of the environment to a ”satellite: very slow speed link” from a regular

environment. TCP-RTA’s mechanism would respond as follows: (1) start with default

TCP-NewReno [26], (2) detection of the significant consistent RTT increase (3) con-

clude that the new increased RTT values point to a transition to a path involving a

satellite (4) therefore initiate a switch over of the congestion-control algorithm from

that of TCP-NewReno’s [26] congestion-control algorithm to that of TCP-Hybla’s [15]

107

congestion control algorithm.

6.2 Protocol Description

TCP-RTA [88] uses the following high-level approach to effect the transition

across congestion control algorithms: It dynamically adapts the congestion control strat-

egy as enumerated below. For any TCP session, TCP-RTA starts with a default con-

figuration including congestion control strategy, which is chosen as TCP-NewReno for

this initial study and simulation. This default TCP configuration can be any variant

of TCP which is apt for the environment of the TCP session as it is established. One

of the proposed enhancements that is envisaged in future is the inclusion of negotiation

and convergence on the apt initial default configuration during the 3-way handshake

in the setup phase of any TCP session. The corresponding default RTT thresholds

for each environment is also deemed to be available and configured during the initial

3-way handshake. For the default TCP-NewReno configuration, the corresponding de-

fault RTT-threshold is initialized to 300 milli-seconds (ms). In TCP-RTA’s dynamic

adaptive algorithm, the last three observed RTTs at any point in time, RTT-Current,

RTT-Prev, RTT-Prev-Prev are saved, wherein:

RTT-Current: RTT for the most recent segment.

RTT-Prev: RTT for the segment prior to the most recent segment (prior seg-

ment).

RTT-Prev-Prev: RTT for the segment prior to the prior segment.

108

All the above 3 variables are initialized at the start of a session to the default-

RTT-threshold (300 ms in chosen test environment). After receipt of every acknowledg-

ment and the corresponding immediate computation of the observed RTT (RTT-new),

TCP-RTA updates the value of RTT-Prev-Prev with RTT-Prev, RTT-Prev with RTT-

Current and RTT-Current with RTT-new. If the three observed values of RTT are

all above 800 ms, TCP-RTA infers that there must have been an underlying topology

change based on some of the observed RTT times for TCP sessions going over a satellite

link [15], and initiates a change in the congestion control strategy which is more apt for

the newly observed dynamically changed environment, wherein the TCP session now

includes a path through a significantly larger delay (typically attributed to a satellite

link), namely TCP Hybla [15]. TCP-RTA repeats the above steps till the end of the TCP

session, with an additional check happening after every update to the observed RTT. if

TCP-RTA finds that the last three observed RTT values are all below RTT-threshold

for a non-satellite link, which has chosen as 300 ms based on reported observations in

[15], it reverts back the congestion control strategy to TCP-NewReno. The high-level

algorithm below clearly depicts the control flow of the newly proposed dynamic Adap-

tive TCP and its congestion control strategy. The main underlying premise is that if

there is a distinct change suddenly observed in the RTT and that change is consistently

maintained for at least 3 consecutive segments back-to-back, then TCP-RTA predicts

the cause of such a change should be an underlying topology change rather than a

sporadic congestion in the network. As part of the proposed approach in TCP-RTA

[88], it is also ensured that TCP-RTA’s adaptive congestion control strategy does not

109

respond to any sporadic one-off outliers in the TCP parameters. TCP-RTA ensures

that the hand-off from the current congestion control strategy happens seamlessly to

the appropriate target congestion control strategy for the newly identified topology to

which the network has transitioned to. Numerous experiments were conducted with

the same thresholds for transitions across different congestion control strategies as well

as having a common gray area, whose boundaries had to be crossed consistently three

times by the observed-RTT values.

Algorithm 6 TcpAdaptive-Overview

1: Def RTT TCP NEWRENO = 500;
2: Def RTT TCP HYBLA = 800;
3: m adaptiveAlgProg = TCP NEWRENO;
4: RTT-Current = Def RTT TCP NEWRENO;
5: RTT-Prev = Def RTT TCP NEWRENO;
6: RTT-Prev-Prev = Def RTT TCP NEWRENO;
7: do
8: if (m adaptiveAlg == TCP NEWRENO) then
9: if ((RTT-Current > Def RTT TCP HYBLA) &&

(RTT-Prev > Def RTT TCP HYBLA) &&
(RTT-Prev-Prev > Def RTT TCP HYBLA)) then

10: m adaptiveAlg = TCP HYBLA;
11: end if
12: else if (m adaptiveAlg == TCP HYBLA) then
13: if ((RTT-Current < Def RTT TCP NEWRENO) &&

(RTT-Prev > Def RTT TCP NEWRENO) &&
(RTT-Prev-Prev > Def RTT TCP NEWRENO)) then

14: m adaptiveAlg = TCP NEWRENO;
15: end if
16: end if
17: wait till next ACK received;
18: RTT-new = ComputeNewRTT();
19: RTT-Prev-Prev = RTT-Prev;
20: RTT-Prev = RTT-Current;
21: RTT-Current = RTT-new;
22: while (TCP Session is still active)

110

Algorithm 7 TcpAdaptive::UpdateAdaptiveAlg (const Time &rtt)

1: if m adaptiveAlgProg == ALOG INPROGRESS then
2: if m adaptiveAlgProgCnt ≤ 0 then
3: m adaptiveAlgProg = ALOG COMPLETED;
4: m adaptiveAlgProgCnt =ADAPTIVE ALG PROGRESS CNT;
5: end if
6: end if
7: if (m adaptiveMode) then
8: if (m adaptiveAlg == TCP NEWRENO) then
9: if (rtt > Seconds (0.800)) then

10: ++m adaptiveDetectCnt;
11: else
12: m adaptiveDetectCnt = 0;
13: end if
14: if (m adaptiveDetectCnt ≥ ADAPTIVE SWITCH CNT) then
15: m adaptiveAlg = TCP HYBLA;
16: m adaptiveAlgProg = ALOG INPROGRESS;
17: m adaptiveDetectCnt = 0;
18: m adaptiveAlgProgCnt = ADAPTIVE ALG PROGRESS CNT;
19: end if
20: end if
21: else if (m adaptiveAlg == TCP HYBLA) then
22: if (rtt < Seconds (0.800)) then
23: ++m adaptiveDetectCnt;
24: else
25: m adaptiveDetectCnt = 0;
26: end if
27: if (m adaptiveDetectCnt ≥ ADAPTIVE SWITCH CNT) then
28: m adaptiveAlg = TCP NEWRENO;
29: m adaptiveAlgProg = ALOG INPROGRESS;
30: m adaptiveDetectCnt = 0;
31: m adaptiveAlgProgCnt=ADAPTIVE ALG PROGRESS CNT;
32: end if
33: end if

111

Algorithm 8 TcpAdaptive::SlowStart

1: input Ptr SocketState, segmentsAcked
2: procedure TcpAdaptive SlowStart
3: if (segmentsAcked ≥ 1 && m adaptiveAlg == TCP NEWRENO) then
4: sndCwnd = tcb→ m cWnd;
5: tcb→m cWnd =

min((sndCwnd+(segmentsAcked*tcb →m segmentSize)), tcb →m ssThresh);
6: return segmentsAcked-((tcb→m cWnd-sndCwnd) / tcb→m segmentSize);
7: else if (segmentsAcked ≥ 1 && m adaptiveAlg == TCP HYBLA) then
8: /* slow start
9: INC = 2ρ - 1 */

10: increment = pow(2, m ρ) - 1.0;
11: incr = increment*tcb→m segmentSize;
12: tcb→m cWnd = min (tcb→m cWnd + incr, tcb→m ssThresh);
13: return segmentsAcked - 1;
14: end if
15: return 0;
16: end procedure

112

Algorithm 9 TcpAdaptive::CongestionAvoidance

1: input Ptr SocketState, segmentsAcked,
2: procedure TcpAdaptive CongestionAvoidance
3: while (segmentsAcked > 0 && m adaptiveAlg == TCP HYBLA) do
4: INC = ρ2 / W */
5: segCwnd = tcb → GetCwndInSegments ();
6: increment = std::pow (m ρ, 2) / static cast<double> (segCwnd);
7: m cWndCnt += increment;
8: segmentsAcked -= 1;
9: end while

10: if (segmentsAcked > 0 && m adaptiveAlg == TCP NEWRENO) then
11: if (m adaptiveAlgProg= ALOG INPROGRESS) then
12: w = tcb → m cWnd / tcb → m segmentSize;
13: if (w == 0) then w = 1;
14: end if
15: if (m cWndCnt ≥ w) then
16: m cWndCnt = 0;
17: tcb → m cWnd += tcb → m segmentSize;
18: end if
19: m cWndCnt += segmentsAcked;
20: if (m cWndCnt ≥ w) then
21: delta = m cWndCnt / w;
22: m cWndCnt -= delta * w;
23: tcb → m cWnd += delta * tcb → m segmentSize;
24: end if
25: end if
26: else
27: m adaptiveAlgProgCnt–;
28: tcb → m cWnd = m bd / tcb → m segmentSize;
29: end if
30: if (m cWndCnt ≥ 1.0 && m adaptiveAlg == TCP HYBLA) then
31: inc = m cWndCnt;
32: m cWndCnt -= inc; if (m adaptiveAlgProg= ALOG INPROGRESS)
33: tcb → m cWnd += inc * tcb → m segmentSize;
34: else
35: tcb → m cWnd = m bd / tcb → m segmentSize;
36: end if
37: end procedure

113

Adaptive TCP incorporates the following list of enhancements:

1. Slow Start Enhancement In TCP-NewReno, cwnd is increased by one segment

per acknowledgment. In TCP-RTA, cwnd is changed to SegAcked * Segment size

(like Cubic [32]).

2. Congestion Avoidance Enhancement NewReno, cwnd is increased by (1/cwnd) In

TCP-RTA, the following changes are introduced: In congestion avoidance phase,

the number of bytes that have been ACKed at the TCP sender side are stored in

a ‘bytes acked’ variable in the TCP control block. When ‘bytes acked’ becomes

greater than or equal to the value of the cwnd, ‘bytes acked’ is reduced by the

value of cwnd. Next, cwnd is incremented by a full-sized segment SMSS (SENDER

MAXIMUM SEGMENT SIZE). (Similar to Linux Reno [37] implementation)

3. On Fast-retransmit, TCP-RTA updates ssthresh to half of current cwnd:

ssthresh = bytesInFlight/2.

To recover faster, it is enhanced as follows:

ssthresh = (bytesInFlight * 2) /3.

4. Default boost of a factor of 10 (constant) of the Bandwidth*Delay product while

switching from LAN to Satellite and vice versa.

TCP-RTA has not impacted or changed any of the fairness with respect to other

TCP sessions co-existing as the underlying congestion control strategy adopted by TCP-

RTA is that of TCP-Hybla, when the topology change is detected through a consistent

114

increase in RTT. The fairness of TCP-Hybla and earlier that of TCP-NewReno has been

already established and proven and thus its applicable in this proposed solution. Even

in the transition from congestion control strategies from TCP-Hybla to TCP-NewReno,

the only change is TCP-RTA’s non-responsiveness to transients and that too for only 3

segments. Thus, fairness is guaranteed.

6.3 Performance Results

Several scenarios and options were tried out to truly validate the gains and

benefits of TCP-RTA. After close analysis of the various findings, ”Tcp-NewReno” and

”TCP-Hybla” were chosen for simulation. The behavior for the quite significantly im-

pactful change of a topology going through a local LAN in a home office or a corporate

network to a data path involving a satellite for wireless inducing a very highly signifi-

cant additional delay in the observed RTT, was studied. Unless the congestion control

strategy detects a topology change and evaluates the updated ”Bandwidth X Delay”

product to confirm it, TCP-RTA will not tamper with the currently in-place congestion

control mechanism.

As the results below succinctly indicate, a clear increase in the CWND size on

transition to satellite environment is observed, though accompanied by a significantly

higher RTT. NS3 was used for the simulation and a significant delay from time t=5 secs

to time t=15 secs was injected, to simulate a transition to a satellite back-haul and a

subsequent transition back from it.

115

Figure 6.1: CWND: Adaptive vs Hybla vs
NewReno

Figure 6.2: TX: Adaptive vs Hybla vs
NewReno

Figure 6.3: CWND before transition to
satellite: Adaptive vs Hybla vs NewReno

Figure 6.4: TX before transition to
satellite: Adaptive vs Hybla vs NewReno

116

Figure 6.5: CWND after transition to
Satellite link: Adaptive vs Hybla vs

NewReno

Figure 6.6: TX after transition to Satellite
link: Adaptive vs Hybla vs NewReno

Figure 6.7: CWND after transition from
Satellite link: Adaptive vs Hybla vs

NewReno

Figure 6.8: TX after transition from
Satellite link: Adaptive vs Hybla vs

NewReno

6.4 Performance Comparison

For the simulation studies, consistently observed RTT values in the range up-

wards of 800 ms were chosen to denote an environment comprising of a topology with a

117

satellite back-haul. Similarly, RTT values consistently observed in the range downwards

of 800 ms were earmarked for one set of experiments and for others a lower value 500 ms,

to denote an environment/topology without a satellite back-haul. Later, various other

RTT ranges could be added as needed to correspond to specific topology/environments,

for which a specific apt TCP variant with its own congestion control algorithm has been

identified. This would ensure that the best optimal bandwidth usage and performance

for that environment is provided. It can be observed from the results that there is a

significant boost in the optimal efficient usage of the network bandwidth. This idea can

be extrapolated, and it does not bring any restriction to the usage of the few specific

topologies used in the simulations. As soon as an underlying change to the topology is

observed, not restricted to detection by only RTT changes, and the corresponding best

congestion control approach for that topology is identified, TCP-RTA [88] can be lever-

aged and extended very easily in a pluggable manner to incorporate the corresponding

congestion control strategy.

6.5 Summary

As the results depict, the adaptive TCP provides a framework and mechanism

for leveraging the ”apt” congestion control strategy for a given dynamic scenario, thus

ensuring that the network is used in the most optimal efficient manner all the time.

The underlying design and approach used in Adaptive TCP lends itself to seamlessly

incorporate other specific scenarios and the transition to the corresponding congestion

118

control strategy. Currently the mechanism used to detect ”topology change” in this

thesis has been RTT and the RTT variations with time. However, TCP-RTA’s approach

does not preclude other usage of any other metrics or a combination of metrics to identify

and determine any significant network change. To scale TCP-RTA proposal further,

TCP-RTA’s framework does not preclude and would permit machine learning as well as

AI techniques for predicting proactively impending topology and environment change,

so an apt congestion control strategy can be dynamically invoked in real-time to always

ensure continuous ubiquitous efficient usage of network resources and bandwidth.

119

Chapter 7

Conclusion

The continuing seismic after-effects of the ALOHA channel, with its underlying

simple philosophy of transmission at will and if the transmitter is unsuccessful then it

will retransmit at some random time in the future over a wireless medium, along with

the groundbreaking demonstration of a wireless packet-switching network based on it

launched a revolution on packet switching over wireless links. The need to support

wireless links and packet switching through a hybrid network involving a mixture of

wired and wireless networks has been ever increasing and reached its zenith with the

5G technology coming of age and all carriers transitioning over it across the globe.

The many applications and compelling 5G technology driven use-cases as out-

lined in Figures 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8 mandate a compelling overhaul of

the currently deployed transport mechanisms in order to provide the infrastructure and

support for these very mission and time-critical applications requiring guaranteed suc-

cessful data delivery with upper-bound time limits. The study and research started with

120

outlining all these diverse use cases and arriving at a set of features, capabilities and

requirements for a new transport mechanism for next-gen 5G technology and beyond,

enabled-internet of the future.

Chapter 3 presented TCP Enhanced Wireless Santa Cruz (TCP-EWSC),

which covers the enhancements for the seamless adaptation of the original TCP to to-

day’s 5G technology-based hybrid networks. Among the several features incorporated,

include the capability to learn from history of steady state TCP session parameters of

prior TCP sessions 3.2.1 and keeping a TCP-session persistent during transient tempo-

rary complete drop and absence of the wireless signal 3.2.4.

Chapter 4 introduced TCP-NEWT (TCP with Network Coding Enabled

Window Transformation), which incorporates the best of network-coding while ensuring

seamless throughput for any wireless layer signal strength and channel error issues.

Chapter 5 presented TCP-PNC (TCP-Predictive Network Coding) [87],

which ensures that the apt optimal amount of additional network coded packets is

introduced to ensure real-time delivery of data.

Chapter 6 described TCP-RTA (TCP - Real-time Topology Adaptiveness)

[88], which proactively identifies underlying topology change and dynamically changes

the congestion control algorithm to an appropriate mechanism so that the underlying

available network infrastructure is put to optimal usage. This capability becomes es-

pecially important and critical for mobile end-nodes, including mobile vehicles. The

systems leverage prior TCP session experiences which can be saved due to increased

working memory capacity in today’s devices and puts them to effective use for future

121

similar situations.

There are a number of areas for future work based on the results we have

introduced in this thesis. We mention below four enhancements of our work as examples.

TCP-EWSC can be further improved by incorporating support for ECN (Ex-

plicit Congestion Notification) [72] to help detect network congestion more accurately.

In addition, the hard-coded weights used for the congestion window size in TCP-EWSC

could be changed dynamically based on the actual observed transition window sizes.

TCP-PNC [87] uses weights corresponding to terms of binomial series for more

longer historical time-based data, for predicting the impending goodput. Other models

could be used for assigning weights for prior historical goodput observed values to arrive

at goodput prediction.

Combining FEC (Forward Error Correction) [52] mechanisms in tandem with

TCP-NEWT and TCP-PNC [87] to check if the combination of both together can get

a better optimal solution is a future research area.

Finally, TCP-RTA [88] can be enhanced to dynamically determine the initial

starting topology by monitoring the RTT values observed during the initial TCP 3-way

handshake. This could ensure quicker convergence at the start of a TCP session. TCP-

RTA can also be enhanced with an adaptive learning mechanism to dynamically tweak

the RTT values used for low-water and high-water marks for a given topology based

on the observations. Arriving at this new adaptive learning mechanism is a another

compelling future research area.

122

Bibliography

[1] Rasool Al-Saadi, Grenville Armitage, Jason But, and Philip Branch. A survey of

delay-based and hybrid tcp congestion control algorithms. IEEE Communications

Surveys and Tutorials, 21(4):3609–3638, 2019.

[2] Khaled Alferaidi and Robert Piechocki. Tcp-mac cross layer integration for xor

network coding. In Science and Information Conference, pages 860–875. Springer,

2018.

[3] Mark Allman, Vern Paxson, Wright Stevens, et al. Tcp congestion control, 1999.

[4] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. Yeah-tcp: yet an-

other highspeed tcp. In Proc. PFLDnet, volume 7, pages 37–42, 2007.

[5] Ajay V Bakre and BR Badrinath. Handoff and systems support for indirect tcp/ip.

In Symposium on Mobile and Location-Independent Computing, pages 11–24, 1995.

[6] Bikram S Bakshi, P Krishna, Nitin H Vaidya, and Dhiraj K Pradhan. Improving

performance of tcp over wireless networks. In Proceedings of 17th International

Conference on Distributed Computing Systems, pages 365–373. IEEE, 1997.

123

[7] Hari Balakrishnan, Srinivasan Seshan, and Randy H Katz. Improving reliable

transport and handoff performance in cellular wireless networks. Wireless Networks,

1(4):469–481, 1995.

[8] Paul William Berg, Scott Isaacs, and Kelsey Lynn Blodgett. Airborne fulfillment

center utilizing unmanned aerial vehicles for item delivery. https://patents.

google.com/patent/US9305280, 2016.

[9] Sumitha Bhandarkar, Nauzad Erach Sadry, AL Narasimha Reddy, and Nitin H

Vaidya. Tcp-dcr: A novel protocol for tolerating wireless channel errors. IEEE

Transactions on Mobile Computing, 4(5):517–529, 2005.

[10] David Borman, R Braden, V Jacobson, and R Scheffenegger. Tcp extensions for

high performance. Request for Comments (Proposed Standard) RFC, 1323, 1992.

[11] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas: New

techniques for congestion detection and avoidance. In Proceedings of the conference

on Communications architectures, protocols and applications, pages 24–35, 1994.

[12] Lawrence S. Brakmo and Larry L. Peterson. Tcp vegas: End to end congestion

avoidance on a global internet. IEEE Journal on selected Areas in communications,

13(8):1465–1480, 1995.

[13] Lawrence S. Brakmo and Larry L. Peterson. Tcp vegas: End to end congestion

avoidance on a global internet. IEEE Journal on selected Areas in communications,

13(8):1465–1480, 1995.

124

https://patents.google.com/patent/US9305280
https://patents.google.com/patent/US9305280

[14] Ramon Caceres and Liviu Iftode. Improving the performance of reliable transport

protocols in mobile computing environments. IEEE journal on selected areas in

communications, 13(5):850–857, 1995.

[15] Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp enhancement for heteroge-

neous networks. International journal of satellite communications and networking,

22(5):547–566, 2004.

[16] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van

Jacobson. Bbr: congestion-based congestion control. Communications of the ACM,

60(2):58–66, 2017.

[17] Claudio Casetti, Mario Gerla, Saverio Mascolo, Medy Y Sanadidi, and Ren Wang.

Tcp westwood: end-to-end congestion control for wired/wireless networks. Wireless

Networks, 8(5):467–479, 2002.

[18] Vinton Cerf and Robert Kahn. A protocol for packet network intercommunication.

IEEE Transactions on communications, 22(5):637–648, 1974.

[19] Emina Soljanin Christina Fragouli. Network coding fundamentals. https://www.

nowpublishers.com/article/Details/NET-003, 2007.

[20] Erik Dahlman, Stefan Parkvall, and Johan Skold. 5G NR: The next generation

wireless access technology. Academic Press, 2020.

[21] Michiel JL De Hoon, Seiya Imoto, John Nolan, and Satoru Miyano. Open source

clustering software. Bioinformatics, 20(9):1453–1454, 2004.

125

https://www.nowpublishers.com/article/Details/NET-003
https://www.nowpublishers.com/article/Details/NET-003

[22] Disaster and Safety Communications Network Korea Safe-net. 5g network de-

ployment scenarios. https://www.mois.go.kr/eng/sub/a03/bestPractices7/

screen.do, 2018.

[23] Kevin Fall and Sally Floyd. Simulation-based comparisons of tahoe, reno and sack

tcp. ACM SIGCOMM Computer Communication Review, 26(3):5–21, 1996.

[24] Y. Feng and December 2006. G. Hamerly.. “pg-means: learning the number of

clusters in data”. 20th annual conference on neural information processing systems

(NIPS), 2006.

[25] Sally Floyd. Rfc3649: Highspeed tcp for large congestion windows, 2003.

[26] Sally Floyd, Tom Henderson, and Andrei Gurtov. Rfc3782: The newreno modifi-

cation to tcp’s fast recovery algorithm, 2004.

[27] Gabriel. Sliding window protocol. https://www.slideserve.com/

file-download/797317, 2012.

[28] Carl Friedrich Gauss. Gaussian elimination method. https://mathworld.

wolfram.com/GaussianElimination.html, 1850.

[29] Tom Goff, James Moronski, Dhananjay S Phatak, and Vipul Gupta. Freeze-tcp:

A true end-to-end tcp enhancement mechanism for mobile environments. In Pro-

ceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nine-

teenth Annual Joint Conference of the IEEE Computer and Communications So-

cieties (Cat. No. 00CH37064), volume 3, pages 1537–1545. IEEE, 2000.

126

https://www.mois.go.kr/eng/sub/a03/bestPractices7/screen.do
https://www.mois.go.kr/eng/sub/a03/bestPractices7/screen.do
https://www.slideserve.com/file-download/797317
https://www.slideserve.com/file-download/797317
https://mathworld.wolfram.com/GaussianElimination.html
https://mathworld.wolfram.com/GaussianElimination.html

[30] NATO IST-124 Research Task Group. 5g network deployment scenarios. https:

//anglova.net/, 2022.

[31] Cheng Jin David X. Wei Steven H. Caltechfast tcp: From theory to experiments,.

Low Engineering & Applied Science,, 2005.

[32] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed

tcp variant. ACM SIGOPS operating systems review, 42(5):64–74, 2008.

[33] Tomoya Hatano, Masahiko Fukuhara, Hiroshi Shigeno, and Ken-Ichi Okada. Tcp-

friendly sqrt tcp for high speed networks. Proceedings of APSITT (November 2003),

pages 455–460, 2003.

[34] Yong Huang, Majid Ghaderi, Don Towsley, and Weibo Gong. Tcp performance in

coded wireless mesh networks. In 2008 5th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pages

179–187. IEEE, 2008.

[35] IANA. 5g network deployment scenarios. https://www.iana.org/assignments/

tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1, 2022.

[36] ICNRG. Information-centric networking. https://datatracker.ietf.org/rg/

icnrg/about/, 2012.

[37] V Jacobson. “modified tcp congestion avoidance algorithm,”. Technical Report,,

1990.

127

https://anglova.net/
https://anglova.net/
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
https://datatracker.ietf.org/rg/icnrg/about/
https://datatracker.ietf.org/rg/icnrg/about/

[38] Van Jacobson. Congestion avoidance and control. ACM SIGCOMM computer

communication review, 18(4):314–329, 1988.

[39] Van Jacobson, Robert Braden, and David Borman. Tcp extensions for high per-

formance. Technical report, RFc 1323, May, 1992.

[40] Van Jacobson, Robert Braden, and Lixia Zhang. Tcp extension for high-speed

paths. Technical report, RFC-1185, October, 1990.

[41] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,

Nicholas H. Briggs, and Rebecca L. Braynard. Networking named content. In

Proceedings of the 5th International Conference on Emerging Networking Exper-

iments and Technologies, CoNEXT ’09, page 1–12, New York, NY, USA, 2009.

Association for Computing Machinery.

[42] Madhan Raj Kanagarathinam, Sukhdeep Singh, Irlanki Sandeep, Abhishek Roy,

and Navrati Saxena. D-tcp: Dynamic tcp congestion control algorithm for next

generation mobile networks. In 2018 15th IEEE Annual Consumer Communica-

tions Networking Conference (CCNC), pages 1–6, 2018.

[43] P. Karn and C. Partridge. “improving round-trip time estimates in reliable trans-

port protocols”. In Computer Communication Review,, 1987.

[44] Ghulam Kassem, Imran Ahmad, Fozia Hameed, and Asif Zakariyya. Tcp vari-

ants: An overview. In 2010 Second International Conference on Computational

Intelligence, Modelling and Simulation, pages 536–540, 2010.

128

[45] Madiha Kazmi, Muhammad Younas Javed, and Muhammad Khalil Afzal. An

overview of performance comparison of different tcp variants in ip and mpls net-

works. In Simon Fong, editor, Networked Digital Technologies, pages 120–127,

Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[46] Tom Kelly. Scalable tcp: Improving performance in highspeed wide area networks.

ACM SIGCOMM computer communication Review, 33(2):83–91, 2003.

[47] Gur KimchiDaniel, Buchmueller, Scott A. Green, Brian C. Beckman, Scott Isaac-

sAmir, NavotFabian HenselAvi, and Severan Sylvain Jean-Michel Rault Bar-Zeev.

Unmanned aerial vehicle delivery system. https://patents.google.com/patent/

US20150120094, 2015.

[48] TV Lakshman and Upamanyu Madhow. The performance of tcp/ip for networks

with high bandwidth-delay products and random loss. IEEE/ACM transactions

on networking, 5(3):336–350, 1997.

[49] Douglas J Leith, Robert N Shorten, and Gavin McCullagh. Experimental evalua-

tion of cubic-tcp, 2008.

[50] Wang Lian, David W Cheung, and SM Yiu. An efficient algorithm for finding dense

regions for mining quantitative association rules. Computers & Mathematics with

Applications, 50(3-4):471–490, 2005.

[51] D. Lin and H.T. Kung. Tcp fast recovery strategies: analysis and improvements. In

Proceedings. IEEE INFOCOM ’98, the Conference on Computer Communications.

129

https://patents.google.com/patent/US20150120094
https://patents.google.com/patent/US20150120094

Seventeenth Annual Joint Conference of the IEEE Computer and Communications

Societies. Gateway to the 21st Century (Cat. No.98, volume 1, pages 263–271 vol.1,

1998.

[52] Sui Luyi, Fu Jinyi, and Yang Xiaohua. Forward error correction. In 2012 Fourth

International Conference on Computational and Information Sciences, pages 37–

40, 2012.

[53] S.Floyd M. Mathis, J. Mahdavi and A. Romanow. “tcp selective acknowledgment

options, rfc 2018,, 1996.

[54] Fabio Martignon and Luigi Fratta. Loss differentiation schemes for tcp over wireless

networks. In International Workshop on Quality of Service in Multiservice IP

Networks, pages 586–599. Springer, 2004.

[55] Takahiro Matsuda, Taku Noguchi, and Tetsuya Takine. Survey of network coding

and its applications. IEICE transactions on communications, 94(3):698–717, 2011.

[56] Daniil S Meitis, Danil S Vasiliev, Albert Abilov, and Irina Kaysina. Comparison of

tcp congestion control algorithms in network coded relaying scheme. In 2019 Inter-

national Siberian Conference on Control and Communications (SIBCON), pages

1–4. IEEE, 2019.

[57] Arthur Holland Michel. Amazon’s drone patents. https://dronecenter.bard.

edu/files/2017/09/CSD-Amazons-Drone-Patents-1.pdf, 2017.

130

https://dronecenter.bard.edu/files/2017/09/CSD-Amazons-Drone-Patents-1.pdf
https://dronecenter.bard.edu/files/2017/09/CSD-Amazons-Drone-Patents-1.pdf

[58] Vasuky Mohanan, Rahmat Budiarto, and Ismat Aldmour. Powering the internet

of things with 5G networks. IGI Global, 2017.

[59] Wooseok Nam, Dongwoon Bai, Jungwon Lee, and Inyup Kang. Advanced inter-

ference management for 5g cellular networks. IEEE Communications Magazine,

52(5):52–60, 2014.

[60] Liadan O’callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and Rajeev

Motwani. Streaming-data algorithms for high-quality clustering. In Proceedings

18th International Conference on Data Engineering, pages 685–694. IEEE, 2002.

[61] Information Sciences Institute University of Southern California. Rfc793: Trans-

mission control protocol, 1981.

[62] Nathan Michael Paczan. Managing unmanned vehicles. https://patents.

google.com/patent/US9671791, 2017.

[63] Nathan Michael Paczan, Michael John Elzinga, and Raphael HsiehLuan Khai

Nguyen. Collective unmanned aerial vehicle configurations. https://patents.

google.com/patent/US20160378108, 2016.

[64] C. Parsa and J.J. Garcia-Luna-Aceves. Differentiating congestion vs. random

loss: a method for improving tcp performance over wireless links. In 2000 IEEE

Wireless Communications and Networking Conference. Conference Record (Cat.

No.00TH8540), volume 1, pages 90–93 vol.1, 2000.

[65] Christina Parsa and Jose Joaquin Garcia-Luna-Aceves. Improving tcp congestion

131

https://patents.google.com/patent/US9671791
https://patents.google.com/patent/US9671791
https://patents.google.com/patent/US20160378108
https://patents.google.com/patent/US20160378108

control over internets with heterogeneous transmission media. In Proceedings. Sev-

enth International Conference on Network Protocols, pages 213–221. IEEE, 1999.

[66] V. Paxson and M. Allman. Rfc 2988: Computing tcp’s retransmission timer, 2000.

[67] C. E. Perkins. “ip mobility support”. rfc 2002 ip mobility working group internet

draft,, 1996.

[68] Jon Postel. Rfc0761: Dod standard transmission control protocol, 1980.

[69] Quy-Vu-Khanh. 5g network deployment scenarios. https:

//www.researchgate.net/profile/Quy-Vu-Khanh/publication/

329587507/figure/fig1/AS:703015312965634@1544623320065/

An-example-of-Mobile-Ad-hoc-Network-applied-in-5G.jpg, 2018.

[70] Quy-Vu-Khanh. 5g network deployment scenarios. https://pdfs.

semanticscholar.org/2d98/d84caddae953f1d3b2758d7de39864282bff.pdf,

2018.

[71] Quy-Vu-Khanh. 5g network deployment scenarios. https://dl.acm.org/doi/10.

1145/2248326.224834, 2018.

[72] Kadangode Ramakrishnan, Sally Floyd, David Black, et al. The addition of explicit

congestion notification (ecn) to ip, 2001.

[73] Rapeepat Ratasuk, Athul Prasad, Zexian Li, Amitava Ghosh, and Mikko A Uusi-

talo. Recent advancements in m2m communications in 4g networks and evolution

132

https://www.researchgate.net/profile/Quy-Vu-Khanh/publication/329587507/figure/fig1/AS:703015312965634@1544623320065/An-example-of-Mobile-Ad-hoc-Network-applied-in-5G.jpg
https://www.researchgate.net/profile/Quy-Vu-Khanh/publication/329587507/figure/fig1/AS:703015312965634@1544623320065/An-example-of-Mobile-Ad-hoc-Network-applied-in-5G.jpg
https://www.researchgate.net/profile/Quy-Vu-Khanh/publication/329587507/figure/fig1/AS:703015312965634@1544623320065/An-example-of-Mobile-Ad-hoc-Network-applied-in-5G.jpg
https://www.researchgate.net/profile/Quy-Vu-Khanh/publication/329587507/figure/fig1/AS:703015312965634@1544623320065/An-example-of-Mobile-Ad-hoc-Network-applied-in-5G.jpg
https://pdfs.semanticscholar.org/2d98/d84caddae953f1d3b2758d7de39864282bff.pdf
https://pdfs.semanticscholar.org/2d98/d84caddae953f1d3b2758d7de39864282bff.pdf
https://dl.acm.org/doi/10.1145/2248326.224834
https://dl.acm.org/doi/10.1145/2248326.224834

towards 5g. In 2015 18th International Conference on Intelligence in Next Gener-

ation Networks, pages 52–57. IEEE, 2015.

[74] Karunaharan Ratnam and Ibrahim Matta. Effect of local retransmission at wireless

access points on the round trip time estimation of tcp. In Proceedings 31st Annual

Simulation Symposium, pages 150–156. IEEE, 1998.

[75] Karunaharan Ratnam and Ibrahim Matta. Wtcp: An efficient mechanism for im-

proving tcp performance over wireless links. In Proceedings Third IEEE Symposium

on Computers and Communications. ISCC’98.(Cat. No. 98EX166), pages 74–78.

IEEE, 1998.

[76] Karunaharan Ratnam and Ibrahim Matta. Wtcp: an efficient mechanism for im-

proving wireless access to tcp services. International journal of communication

systems, 16(1):47–62, 2003.

[77] R.Srinivasan. Efficient tcp enhancements for hybrid networks. Master’s thesis,

University of California, Santa Cruz, 2016.

[78] Hamlet Medina Ruiz, Michel Kieffer, and Béatrice Pesquet-Popescu. Redundancy

adaptation scheme for network coding with tcp. In 2012 International Symposium

on Network Coding (NetCod), pages 49–54. IEEE, 2012.

[79] Hamlet Medina Ruiz, Michel Kieffer, and Béatrice Pesquet-Popescu. Tcp and

network coding: Equilibrium and dynamic properties. IEEE/ACM Transactions

on Networking, 24(4):1935–1947, 2015.

133

[80] V. Paxson S. Bradner. Rfc2780: Iana allocation guidelines for values in the internet

protocol and related headers, 2000.

[81] S. Floyd S. McCanne and K. Fall. Network simulator. Public domain software,

1995.

[82] Bhaskar Sardar and Debashis Saha. A survey of tcp enhancements for last-hop

wireless networks. IEEE Communications Surveys and Tutorials, 8(3):20–34, 2006.

[83] Phillipa Sessini and Anirban Mahanti. Observations on round-trip times of tcp

connections, 2006.

[84] C. E. Shannon. A mathematical theory of communication. The Bell System Tech-

nical Journal, 27(3):379–423, 1948.

[85] spacelink. 5g network deployment scenarios. https://www.eosspacelink.com/

realizing-the-benefits-of-the-spacelink-relay-service, 2022.

[86] DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION. Internet pro-

tocol, 1981.

[87] R. Srinivasan and J.J. Garcia-Luna-Aceves. Optimized network coding with real-

time loss prediction for hybrid 5g networks. In Proc. International Conference on

Ubiquitous Networking ‘22. Montreal, QC, Canada, October 25–27, 2022.

[88] R. Srinivasan and J.J. Garcia-Luna-Aceves. Tcp-rta: Real-time topology adaptive-

ness for congestion control in tcp. In Proc. International Conference on Ubiquitous

Networking ‘22. Montreal, QC, Canada, October 25–27, 2022.

134

https://www.eosspacelink.com/realizing-the-benefits-of-the-spacelink-relay-service
https://www.eosspacelink.com/realizing-the-benefits-of-the-spacelink-relay-service

[89] Jiyan Sun, Yan Zhang, Ding Tang, Shuli Zhang, Zhijun Zhao, and Song Ci. Tcp-fnc:

a novel tcp with network coding for wireless networks. In 2015 IEEE International

Conference on Communications (ICC), pages 2078–2084. IEEE, 2015.

[90] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard, Michael Mitzenmacher,

and Joao Barros. Network coding meets tcp. In IEEE INFOCOM 2009, pages

280–288. IEEE, 2009.

[91] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. A compound tcp

approach for high-speed and long distance networks. In Proceedings-IEEE INFO-

COM, 2006.

[92] Yuechen Tao, Jingjie Jiang, Shiyao Ma, Luping Wang, Wei Wang, and Bo Li.

Unraveling the rtt-fairness problem for bbr: A queueing model. In 2018 IEEE

Global Communications Conference (GLOBECOM), pages 1–6, 2018.

[93] Celplan Engineerng team. 5G/IoT Network Design and Deployment. https://

www.celplan.com/services/5g-iot-design-deployment.

[94] Ye Tian, Kai Xu, and Nirwan Ansari. Tcp in wireless environments: problems and

solutions. IEEE Communications Magazine, 43(3):S27–S32, 2005.

[95] Chonggang Wang, Jiangchuan Liu, Bo Li, Kazem Sohraby, and Y Thomas Hou.

Lred: a robust and responsive aqm algorithm using packet loss ratio measurement.

IEEE Transactions on Parallel and Distributed Systems, 18(1):29–43, 2006.

135

https://www.celplan.com/services/5g-iot-design-deployment
https://www.celplan.com/services/5g-iot-design-deployment

[96] Jingyuan Wang, Jiangtao Wen, Jun Zhang, Zhang Xiong, and Yuxing Huan. Tcp-

fit: An improved tcp algorithm for heterogeneous networks. Journal of Network

and Computer Applications, 71, 04 2016.

[97] Kai Xu, Ye Tian, and Nirwan Ansari. Tcp-jersey for wireless ip communications.

IEEE Journal on selected areas in communications, 22(4):747–756, 2004.

[98] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control

(bic) for fast long-distance networks. In IEEE INFOCOM 2004, volume 4, pages

2514–2524. IEEE, 2004.

[99] Jiong Yang. Dynamic clustering of evolving streams with a single pass. In Proceed-

ings 19th International Conference on Data Engineering (Cat. No. 03CH37405),

pages 695–697. IEEE, 2003.

136

	List of Figures
	Abstract
	Dedication
	Acknowledgments
	Introduction
	5G Technology Use Cases
	5G Technology Data Transport Requirements
	Research Contributions
	Thesis Outline

	Related Work
	Survey of TCP Variants
	Limitations of TCP Prior Variants
	TCP Enhancements for Hybrid Networks
	TCP Enhancements with Network Coding
	TCP Enhancements for Dynamic Topology Changes

	TCP-EWSC: TCP Enhanced-Wireless-Santa-Cruz
	Basic Operation
	TCP-EWSC Description
	Enhanced BEST-START Window Size
	Enhanced RTT Correction: Link-Layer Retransmissions
	Enhanced Fast-Retransmission: Link-Layer Reordering
	RSSI Enhancement: Receiver Zero-Window Buffer Spoof
	Enhanced Cluster Analysis

	Performance Results
	Performance Comparison
	Summary

	TCP-NEWT: TCP Network-Coding Enhanced Window Transformation
	Basic Operation
	Protocol Description
	Performance Results
	Performance Comparison
	Summary

	TCP-PNC: TCP Predictive Network Coding
	Basic Operation
	Protocol Description
	Performance Results
	Performance Comparison
	Summary

	TCP-RTA: TCP Real-Time Topology Adaptiveness for Congestion Control
	Basic Operation
	Protocol Description
	Performance Results
	Performance Comparison
	Summary

	Conclusion
	Bibliography

