
UC Irvine
UC Irvine Previously Published Works

Title

A Web-Based Deep Learning Model for Automated Diagnosis of Otoscopic Images

Permalink

https://escholarship.org/uc/item/1x2850v1

Journal

Otology & Neurotology, 42(9)

ISSN

1531-7129

Authors

Tsutsumi, Kotaro
Goshtasbi, Khodayar
Risbud, Adwight
et al.

Publication Date

2021-10-01

DOI

10.1097/mao.0000000000003210
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1x2850v1
https://escholarship.org/uc/item/1x2850v1#author
https://escholarship.org
http://www.cdlib.org/


D
ow

nloaded
from

http://journals.lw
w
.com

/otology-neurotology
by

BhD
M
f5ePH

Kav1zEoum
1tQ

fN
4a+kJLhEZgbsIH

o4XM
i0hC

yw
C
X1AW

nYQ
p/IlQ

rH
D
3i3D

0O
dR

yi7TvSFl4C
f3VC

4/O
AVpD

D
a8KKG

KV0Ym
y+78=

on
10/13/2021

Downloadedfromhttp://journals.lww.com/otology-neurotologybyBhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC4/OAVpDDa8KKGKV0Ymy+78=on10/13/2021

Copyright © 2021 Otology & Neurotology, Inc. Unauthorized reproduction of this article is prohibited.

Original Study

A Web-Based Deep Learning Model for Automated
Diagnosis of Otoscopic Images

�Kotaro Tsutsumi, �Khodayar Goshtasbi, �Adwight Risbud, �yPooya Khosravi, �Jonathan C. Pang,
�Harrison W. Lin, �yHamid R. Djalilian, and �Mehdi Abouzari

�Department of Otolaryngology-Head and Neck Surgery; and yDepartment of Biomedical Engineering, University of California,
Irvine, California

Objectives: To develop a multiclass-classifier deep learning
model and website for distinguishing tympanic membrane
(TM) pathologies based on otoscopic images.
Methods: An otoscopic image database developed by utiliz-
ing publicly available online images and open databases was
assessed by convolutional neural network (CNN) models
including ResNet-50, Inception-V3, Inception-Resnet-V2,
and MobileNetV2. Training and testing were conducted with
a 75:25 breakdown. Area under the curve of receiver
operating characteristics (AUC-ROC), accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) were used to compare different CNN
models’ performances in classifying TM images.
Results: Our database included 400 images, organized into
normal (n¼ 196) and abnormal classes (n¼ 204), including
acute otitis media (n¼ 116), otitis externa (n¼ 44), chronic
suppurative otitis media (n¼ 23), and cerumen impaction
(n¼ 21). For binary classification between normal versus
abnormal TM, the best performing model had average AUC-
ROC of 0.902 (MobileNetV2), followed by 0.745 (Inception-

Resnet-V2), 0.731 (ResNet-50), and 0.636 (Inception-V3).
Accuracy ranged between 0.73–0.77, sensitivity 0.72–0.88,
specificity 0.58–0.84, PPV 0.68–0.81, and NPV 0.73–0.83.
Macro-AUC-ROC for MobileNetV2 based multiclass-classi-
fier was 0.91, with accuracy of 66%. Binary and multiclass-
classifier models based on MobileNetV2 were loaded onto a
publicly accessible and user-friendly website (https://head-
neckml.com/tympanic). This allows the readership to upload
TM images for real-time predictions using the developed
algorithms.
Conclusions: Novel CNN algorithms were developed with
high AUC-ROCs for differentiating between various TM
pathologies. This was further deployed as a proof-of-
concept publicly accessible website for real-time predic-
tions. Key Words: Classification—Convolutional neural
network—Deep learning model—Otoscopic image—
Tympanic membrane.

Otol Neurotol 42:e1382–e1388, 2021.

Otologic diseases are oftentimes initially diagnosed
via inspection of patients’ tympanic membrane (TM), but
the proper use of otoscopes requires training (1) and the
diagnoses of otologic disorders can remain prone to error
in primary health care (2). For instance, general practi-
tioners and pediatricians correctly diagnosed otologic
diseases through inspection of TM images roughly
64% and 50% of the time, respectively, while extensively
trained otolaryngologists provided accurate diagnoses

73% of the time (3). This is especially important to
consider given how low and middle-income countries
can have a limited number of trained otolaryngologists
(4), despite their high prevalence of otologic disorders
(4–6). Consequently, there is a great need to develop
automated diagnostic technologies that allow for early
and effective diagnosis of such diseases especially in
regions with limited resources.

Developments in artificial intelligence (AI) and
increases in available annotated medical data have allowed
for successful application of these technologies to many
fields of medicine (7–9). A subset of AI, deep learning, is
particularly suited for image classification and segmenta-
tion tasks and has recently been applied for making diag-
noses based on TM images taken via otoscopes (10,11).
Such technology has significant potential for supporting
proper patient care in regions lacking in medical resources
by outputting automatic diagnoses. This is especially
pertinent due to recent developments in smartphone oto-
scopes, as smartphone-enabled medical devices have been
shown to be effective at mediating telemedicine (12–15).
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Given such context, we aimed to develop a proof-of
concept, mobile-compatible website that classifies oto-
scopic images as one of five different classes (normal,
acute otitis media, otitis externa, chronic suppurative
otitis media, and cerumen impaction). We constructed
deep learning models, specifically convolutional neural
networks (CNNs), based on four pre-existing networks
(ResNet-50, Inception-V3, Inception-Resnet-V2, and
MobileNetV2) and trained them on an original image
database consisting of publicly available online images
and open databases. Such technology could serve as a
useful diagnostic tool, especially in regions lacking in
otology resources and medical personnel.

METHODS

Image Database
This study did not require approval from the Institutional

Review Board’s biomedical research committee because of the
use of publicly available databases. A database of TM images
was developed by utilizing publicly available online images and
open databases. A total of 400 high-quality TM images from the
Van Akdamar Hospital eardrum database (16) and Google
Images (17) were queried using the terms ‘‘tympanic mem-
brane,’’ ‘‘otoscopic image,’’ ‘‘eardrum,’’ ‘‘cerumen impac-
tion," ‘‘acute otitis media,’’ ‘‘otitis externa,’’ and ‘‘chronic
suppurative otitis media.’’ The Van Akdamar Hospital eardrum
database consisted of images with a dimension of 500� 500
pixels. These were taken from a cohort of 282 patients who
volunteered for the study and were evaluated by three otolar-
yngologists, and represented a wide range of TM presentations.
Images were also acquired from Google Images based on hits
that appeared postquery and may constitute of images that are
more prototypical of each pathology while varying in resolution
and size. The database was bipartitely organized into normal
(196) and abnormal (204) classes. The abnormal class further
contained images representing four different pathologies: acute
otitis media (AOM; 116), otitis externa (OE; 44), chronic
suppurative otitis media (CSOM; 23), and cerumen impaction
(21) (Fig. 1).

Convolutional Neural Network
Since our dataset was relatively small for training a deep

learning model from scratch, we employed a technique referred
to as transfer learning, in which pretrained networks are fine-
tuned on new datasets. For this study, we utilized some of the
many publicly available models pretrained on the ImageNet
database (http://www.image-net.org) including the ResNet-50,
Inception-V3, Inception-Resnet-V2, and MobileNetV2

networks (18–21). The pretrained networks were loaded
through the open sourced Keras library written in the Python
programming language.

To develop and test the algorithms, 60% of the database was
used for training, 15% for validation, and 25% for testing of the
model. Two different sets of models were trained and com-
pared. We first trained our model solely for detection of
abnormal versus normal TM (binary classification). Next, to
further expand classification capacities, we trained our model as
a multiclass classifier that identified the five individual classi-
fication classes. All layers of the loaded models were frozen
excluding BatchNormalization layers. The following five layers
were added at the ends of the models: GlobalAveragePoo-
ling2D, Dense (256, activation¼ ‘‘relu’’), Dropout (0.25),
and BatchNormalization. A fully connected layer with two
output nodes with a SoftMax activation function was added
as the last layer. This final layer was modified to contain five
output nodes for the five-class classification task. Hyperpara-
meters for the training process were as follow: batch size 32,
number of epochs 20, learning rate 0.001, optimizer root mean
square propagation (RMSprop). All images were resized to
224� 224� 3 pixel images containing three color channels of
red, green, and blue. We performed data augmentation with
rotation range 180, sheering range 0.3, zoom range 0.6, random
brightness change between ranges of 0.2–2.7, and random
horizontal and vertical flips. The study was conducted via
Google Collaboratory notebook ran on its GPU.

Website Structure
A web-based platform was developed to demonstrate how

these algorithms work in real-time by allowing any TM image
to be uploaded for an immediate prediction with the associated
probability. Our MobileNetV2 model was selected for this
deployment due to its small size and high performance, allow-
ing for classification with low-latency and low-power. Using
TensorFlow.js (22), a JavaScript interface for machine learning
algorithms, our model runs entirely in the browser session of a
user’s device to ensure privacy and security of the data. This
allows the model to predict results without the need to send
information to a server for inference. Additionally, the web
interface is also available on mobile devices.

RESULTS

Algorithm Performance
We tested our models using 100 images that were

never seen by the models during training. The algorithms
were primarily evaluated according to their classification
accuracy and area under the curve of the receiver oper-
ating characteristic curve (AUC-ROC). Accuracy was

FIG. 1. Examples of our tympanic membrane image classifications representing A, normal, B, acute otitis media, C, otitis externa, D,
chronic suppurative otitis media, and E, cerumen impaction.
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calculated as the percentage of correct classifications
made in classifying the test dataset with a classification
threshold of 0.5. AUC-ROC represents the area under the
curve created by plotting true positive rates against false
positive rates of the test dataset classification.

We first conducted a binary classification task
through which the models classified the input images
into either normal or abnormal classes. The highest
AUC-ROC and accuracy were yielded by the Mobile-
NetV2 (AUC-ROC 0.902, accuracy 77%), followed by
Inception-Resnet-V2 network (AUC-ROC 0.745, accu-
racy 73%), ResNet-50 (AUC-ROC 0.731, accuracy
71%), then Inception-V3 (AUC-ROC 0.636, accuracy
72%) (Table 1). The AUC-ROC curves of all models at

various discrimination thresholds when classifying the
test dataset are demonstrated in Figure 2. MobileNetV2
outperformed other models while also being a much
smaller network, being suited for effective deployment
via a web application. We then proceeded to test the
model for classifying the input images into five indi-
vidual diagnostic categories. Given the results of the
previous binary classification task, we employed the
MobileNetV2 model. The macro-AUC-ROC was 0.91
and all the individual AUC-ROC per each classifica-
tion are demonstrated in Figure 3. Additionally, the
sensitivity and positive predictive value (PPV) of the
model for predicting each classification are shown in
Table 2.

TABLE 1. Performance of models for binary classification (classification threshold¼ 0.5)

Model AUC-ROC Accuracy Sensitivity Specificity PPV NPV Network Size (MB)

Inception-V3 0.590 0.73 0.720 0.740 0.735 0.725 92

ResNet-50 0.718 0.74 0.800 0.680 0.714 0.773 98

Inception-Resnet-V2 0.745 0.73 0.880 0.580 0.677 0.829 215

MobileNetV2 0.902 0.77 0.700 0.840 0.814 0.737 14

AUC-ROC, area under the curve of the receiver operating characteristic; NPV: negative predictive value; PPV, positive predictive value.

FIG. 2. AUC-ROC curves for A, Inception-V3, B, ResNet-50, C, Inception-Resnet-V2, and D, MobileNetV2 networks for binary
classification. AUC-ROC, area under the curve of receiver operating characteristics.
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Web Application
A web-based platform was created to allow users to

upload images and use our MobileNetV2-based model
for their classification (Fig. 4). Each input image is first
resized into a 224� 224� 3 image. The image is then fed
into our MobileNetV2-based model and the output pre-
dictions are shown to the user with the associated prob-
abilities. To enhance user experience, we organized the
website such that the users are able to intuitively drag
and drop one or many images into a box. Both binary and
multiclass classification results are presented and

organized based on image name, thumbnail, and its
classification. The website is publicly accessible at the
following link: https://headneckml.com/tympanic.html.

DISCUSSION

In this study, we developed novel deep learning algo-
rithms and a proof-of-concept website that allows users
to classify TM images belonging to five different clas-
sifications. We first created an original otoscopic image
dataset by collecting images from various public sources.

FIG. 3. AUC-ROC curve for MobileNetV2 network multiclass classification. AUC-ROC, area under the curve of receiver operating
characteristics.

TABLE 2. Performance of MobileNetV2 for multiclass classification (classification threshold¼ 0.5)

Classification N: Training and Validation (Test) AUC-ROC Sensitivity PPV

Normal 146 (50) 0.85 0.62 0.82

Acute otitis media 87 (29) 0.89 0.90 0.50

Chronic suppurative otitis media 18 (5) 0.79 0.40 0.67

Cerumen 16 (5) 0.87 0.40 1.00

Otitis externa 33 (11) 0.98 0.45 1.00

AUC-ROC, area under the curve of the receiver operating characteristic; PPV, positive predictive value.
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These images were then used for training deep learning
algorithms based on multiple different pre-existing mod-
els, after which the models were tested using a fraction of
the original dataset and the models were compared
regarding their performance. The main novelty of this
study is the proof-of-concept website that allows the
readership to upload pictures for predicting whether an
uploaded TM image is normal or abnormal, along with
further prediction of possible pathologies with their
associated probabilities. To the best of our knowledge,
this is the first study that illustrates the viability of a user-
friendly website that classifies TM images based on a
deep learning model.

Our deep learning models were constructed based on a
method referred to as transfer learning (23). This is
founded on the concept of fine-tuning pretrained net-
works with new datasets rather than training a deep
learning model from scratch. Since these networks have
already learned general features present among many
types of images, consisting of millions of labelled images
belonging to around 1000 different categories, training
on top of these knowledge allows for classification of
images via small datasets. Hence, transfer learning was
the ideal technique for this study, given our relatively
small image dataset. Since transfer learning builds on top
of pre-existing networks, it was crucial to determine the
most ideal model for the specific task at hand. To do so,
we developed different algorithms based on four distinct
models that have been widely utilized in previous liter-
ature, including the ResNet-50, Inception-V3, Inception-
Resnet-V2, and MobileNetV2 networks.

The algorithm that was transfer-learned on Mobile-
NetV2 performed the best regarding AUC-ROC, accu-
racy, and specificity, while the Inception-ResNet-V2
based model performed the best in terms of sensitivity.
Given that classification technology will most likely

become implemented in the form of devices that aid
physicians in making diagnoses, it is important to heavily
weight both the sensitivity and specificity in evaluating
these technologies. This will put pressure on these devi-
ces to detect abnormalities with a higher reliability and to
have the capability of differentiating between various
otologic pathologies, which is necessary given the dis-
ease-specific treatments. Together, this will allow physi-
cians to make final diagnoses on top of the output results.
In this regard, it is important to note Inception-Resnet-
V2-based model’s high sensitivity that outperformed the
counterpart models.

Given our goal of deploying a functional website based
on these deep learning models, we must also consider
their speed and size. Although recent trends in computer
vision work towards achieving higher accuracies by
making networks deeper and more complicated, this
approach comes with tradeoffs in speed and size. In this
context, MobileNet and MobileNetV2 were designed as
lightweight models for solving computer vision tasks on
computationally limited platforms such as mobile devi-
ces (20). MobileNets achieve this reduction in computa-
tion and model size by first applying a single depthwise
convolution filter to each color channel. This is then
combined with a 1� 1 pointwise convolution in separate
layers, in contrast to standard convolutional strategies in
which filters and inputs are both combined in one step. As
a result, our model transfer-learned on MobileNetV2
achieved AUC-ROC, accuracy, and specificity higher
than that of other models while also being the most
lightweight. Taking these into account, this particular
model may be the most suited for the aim of this study.
Furthermore, we proceeded to conduct multiclass classi-
fication using MobileNetV2, which yielded high AUC-
ROCs for each class that were comparable to those from
the binary classification task. Importantly, a previous

FIG. 4. User interface for the web deployment: https://headneckml.com/tympanic.html.
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study has shown that pediatricians and otolaryngologists
provided accurate diagnoses based on TM images
roughly 50% and 73% of the time, respectively (3). Other
studies showed that general practitioners diagnose AOM
correctly roughly 64% of the time based on both TM
images and symptoms (2). Though underlying processes
behind algorithm-based diagnoses and physician inter-
pretation of patient presentation contrasts significantly,
our CNN-based algorithm performed favorably to the
average performance of physicians when solely consid-
ering accuracy; however, since the number of images
belonging to each class was limited, it is important to
interpret these results with caution.

Machine learning approaches are often limited by the
size of available samples. This was no different for the
present study, which solely relied on publicly available
datasets and images. While we utilized techniques
designed to overcome this challenge such as image aug-
mentation and modification of hyperparameters, a larger
image database would likely have increased the perfor-
mances of different models. However, given the diversity
of the images contained within our dataset collected
through various sources, a high AUC-ROC could indicate
that our model may be capable of classifying a diverse
range of target images that will most likely be encountered
in real clinical settings. Nevertheless, our future study will
involve incorporating institutional images to continue
building up on the current model.

It is further important to note that this study is particu-
larly significant in the deployment of a functional website
that allows users to classify otoscopic images into multi-
ple classes. Proper use of otoscopes requires many years
of training and experience, presenting with a moderate
learning curve for many (1). Aiming to mitigate this
issue, recent studies have highlighted the potential and
the utility of smartphone-enabled otoscopes as a tele-
medicine tool, through which medical personnel without
sufficient otoscope training can relay information to
otolaryngologists for remote evaluation (13). The present
study effectively takes this one step further by automat-
ing the final diagnostic step, or it can be used as educa-
tional purposes for the initial evaluators. The ideal
implementation workflow in the future would be for
users to capture images via a smartphone-enabled oto-
scope and evaluate it on the same device through our
diagnostic website. This workflow could be applied for
varying scenarios, may it be for large hospitals that need
extra diagnostic capacity or for health care workers
located in under-served areas in need of expert special-
ists. With such use in mind, our website was designed to
have a user-friendly platform. While operating on com-
puters, the user can simply drag images to the dropzone
for analysis. The website is also mobile-friendly, allow-
ing for analysis of photos stored on mobile phones or
those directly captured through the device. Furthermore,
since medical images are highly sensitive, our deep
learning model runs locally on users’ devices to ensure
security and privacy. The data is never sent to a server or
stored for inference.

Several limitations exist despite the accomplishments
of this study. As previously mentioned, performance of
machine learning models is often limited by the size of its
training database. Image augmentation techniques were
implemented to overcome this issue, though, utilization
of a larger image database would most likely have
improved the performance and applicability of our algo-
rithms. Second, machine learning algorithms are often
considered a ‘‘black-box,’’ providing users with little to
no information on how the algorithm classified the input
image. Techniques such as Grad-CAM exist to highlight
particular areas of an image considered important
through the classification process, though this still does
not provide an explanation on how each aspect of the
image precisely influences the prediction (24). Machine
learning explainability and interpretation is a topic that is
under extensive investigation and will be extremely
important as such systems become more widely imple-
mented in the medical field in the future.

With regards to its current clinical utility, there exist
certain limitations inherent to our study methods and
image selection. It is important to note that the four ear
pathologies analyzed with our model are often straight-
forward for clinicians to discriminate between; the
greater challenge lies in distinguishing normal ears from
effusion and more subtle acute otitis media, which
unfortunately, was not evaluated using our algorithms.
Moreover, our classifier was likely trained/tested using
many prototypical images of each pathology, introducing
another source of bias and possibly resulting in artifi-
cially high performance outcomes. In clinical practice,
specific otoscopic features combined with additional
signs and symptoms aid in distinguishing the four pathol-
ogies from one another. For acute otitis media, there must
be evidence of moderate to severe bulging of the TM (or
mild bulging with recent onset otalgia or erythema), and
new onset of otorrhea not due to otitis externa (25). For
otitis externa, signs of ear canal inflammation must be
present, including ear canal and TM erythema/edema
(26). The diagnosis of chronic suppurative otitis media is
confirmed by visualization of TM perforation, with
findings of thickened granular middle ear mucosa and
polyps typically present (27). Lastly, the diagnosis of
cerumen requires otoscopic confirmation of cerumen
accumulation within the ear canal (28). Though deriva-
tion of clinical criteria for diagnosing different conditions
is imperative for clinical application of novel technolo-
gies, it is currently not possible to derive the exact
formula deep learning uses in making its decisions
(29). This issue of machine learning being a black box
is being heavily researched and will most likely be
crucial in implementing such technology to real-life
clinical settings in the future. Lastly, deep learning
performance is inevitably correlated to similarity in
quality of the training images and the input images.
Hence, a significant variance in the quality of input
images may render the algorithm less effective in making
accurate classifications. In real life, quality of input
images would depend on the healthcare practitioners
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using the otoscope, and this may potentially result in
variability in the performance of our algorithm depend-
ing on the user.

CONCLUSION

We developed otoscopic image classifiers trained on
publicly available images, of which MobileNetV2 had
the best relative performance with high AUC-ROC and
accuracy. An additional novelty of this work included the
development of a proof-of-concept website which uses
our best-performing novel algorithm to predict whether
an uploaded TM image is normal/abnormal and which of
five imaging classifications it belongs to. Improvements
of this platform and its effective application to clinic
practices could prove to be useful in bolstering the
shortage of diagnostic capacity of otologic diseases in
various scenarios.
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