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Abstract. Clifford quantum circuits are elementary invertible transformations of quantum sys-
tems that map Pauli operators to Pauli operators. We study periodic one-parameter families
of Clifford circuits, called loops of Clifford circuits, acting on d-dimensional lattices of prime p-
dimensional qudits. We propose to use the notion of algebraic homotopy to identify topologically
equivalent loops. We calculate homotopy classes of such loops for any odd p and d = 0, 1, 2, 3,
and 4. Our main tool is the Hermitian K-theory, particularly a generalization of the Maslov index
from symplectic geometry. We observe that the homotopy classes of loops of Clifford circuits in
(d+1)-dimensions coincide with the quotient of the group of Clifford Quantum Cellular Automata
modulo shallow circuits and lattice translations in d-dimensions.

1. Introduction

Unitary dynamics of many-body quantum systems is one of the core components of the theory of
quantum computation and information processing. Recent works have made tremendous progress
in understanding the entanglement generation [1, 2, 3, 4], scrambling of information [5], and many-
body localization [6, 7] by generic (random) quantum circuits. Unitary dynamics, more general
than evolution with quantum circuits, is given by automorphisms of the algebra of local observables
preserving the locality strictly, also known as quantum cellular automata (QCA) [8, 9]. QCA are
intrinsically related to topological phases of matter and play an important role in the construction
and classification thereof [10, 11]. In fact, one can study topological phases of unitary dynamics on
their own – we say that two QCA belong to the same topological phase of unitary dynamics if they
differ by a quantum circuit and/or lattice translation. Phases of Clifford unitary dynamics acting
on lattices of prime-dimensional qudits have been completely analyzed in [12]. The main subject
of our paper is the analysis of topological phases of periodic one-parameter families of unitary
dynamics, sometimes going by the name of Clifford Floquet circuits.

The notion of a topological phase of matter colloquially means a family of systems whose ele-
ments can be connected by adiabatic evolution. A mathematically rigorous definition of topological
phases of quantum lattice systems involves sophisticated functional analysis and is an area of ac-
tive research, see [13, 14, 15, 16] and references therein. In this paper, we use algebraic tools to
study homotopy groups (in a sense explained below) of loops of translation invariant Clifford QCA,
i.e. QCA that map tensor products of Pauli operators to tensor products of Pauli operators. A
natural way to study Clifford QCA is by analyzing their action on the stabilizer Hamiltonians. It
is known that the stabilizer Hamiltonians admit a description in terms of isotropic submodules
of the so-called Pauli module, a module over the ring of Laurent polynomials [8], while Clifford
QCA correspond to automorphisms of the Pauli modules. These observations allow us to treat
the problems of classification of Clifford QCA and of loops of Clifford unitaries using algebra and
algebraic geometry.

We argue that the phases of Clifford unitary dynamics can be analyzed by studying the homotopy
theory of the Lagrangian Grassmannian, the set of Lagrangian submodules of the Pauli module,
up to stabilization with ancillary qudits. In particular, we analyze topological phases of loops of
Clifford automorphisms by studying periodic paths in the Lagrangian Grassmannian. The group
structure on the set of loops of Clifford automorphisms is induced by stacking corresponding families
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of invertible Hamiltonians. We analyze periodic paths in the Lagrangian Grassmannian using a
generalization of the classical Maslov index, which is a homotopy invariant of loops in the real
Lagrangian Grassmannian. The version of the Maslov index used in this paper is a manifestation
of the fundamental theorem of Hermitian K-theory [17] of Karoubi in the interpretation of Barges
and Lannes [18]. Since the fundamental theorem of Hermitian K-theory is applicable only to the
Laurent polynomial rings with coefficients in Fp with p > 2, our results do not apply to lattices
made of qubits.

The main result of this paper is a classification of homotopy classes of loops of translationally
invariant Clifford automorphisms acting on d-dimensional lattices of prime p-dimensional qudits
with d = 0, 1, 2, 3, and 4, and with p greater than 2, which we denote by ΩC(d, p):

ΩC(0, p) ∼= ΩC(1, p) ∼= ΩC(2, p) ∼= ΩC(3, p) ∼= 0 ,

ΩC(4, p) ∼=

{
Z/2Z⊕ Z/2Z , p ≡ 1 mod 4 ,

Z/4Z , p ≡ 3 mod 4 .

This paper is organized as follows. In Section 2 we give an extended introduction to the sym-
plectic formalism for Clifford QCA, starting with Clifford gates. In section 3 we set the notation for
modules equipped with (anti-) hermitian forms and module automorphisms, as well as review some
elementary facts about algebraic and Hermitian K-theory. In Section 4 we introduce the notion
of algebraic homotopies of Lagrangian submodules, discuss their basic properties and relate them
to the elementary automorphisms of the Pauli module. In Section 5 we pause for a discussion of
how the algebraic homotopy equivalence between Lagrangian stabilizer modules corresponds to the
CFDQC equivalence between the stabilizer Hamiltonians. Then, we review the classical Maslov
index for loops of Lagrangians in the real phase space. In Section 6 we continue the analysis of
loops of Lagrangians inside Pauli modules using a generalization of the Maslov index. In Section
7 we review some known results about the Witt group of hermitian forms and compute relevant
fundamental ideals. We make concluding remarks in Section 8.

We use some classical results from Hermitian K-theory, like its homotopy invariance, without
proofs. We provide proofs for less standard facts that constitute the computation of the homotopy
classes of loops of Lagrangians. Many important results have been reviewed in [12], where we
inherited our system of notations from.

Acknowledgments. We thank P. Balmer, J. Fasel, P. Orson, and W. Pitsch for correspondence
and M. Levin and Y. Liu for discussions. We thank J. Haah and T. Mainiero for comments on the
draft. R.G. is grateful to C. Weibel for a hint and to G. Shuklin for many valuable discussions. R.G.
also thanks the organizers of the summer school “Mathematics of Topological Phases of Matter”
where he learned about QCA.

2. Review of symplectic formalism

Throughout this letter, we assume that the quantum lattice systems under consideration are
translation-invariant and automorphisms acting on the operator algebras are translation invariant
as well. We will also restrict to algebra automorphisms that map tensor products of Pauli operators
with finite support to tensor products of Pauli operators with finite support, also known as Clifford
QCA. In this section we review the formalism of symplectic vector spaces and symplectic modules
as a convenient framework for stabilizer Hamiltonians and Clifford QCA.

Single qudit. We begin our review with the case of a single qudit of dimension p where p is
a prime greater than 2. All operators acting on the qudit form an algebra of p × p matrices with
complex coefficients. As a complex vector space, this algebra is spanned by the generalized Pauli
operators Pp. The generalized Pauli operators form a group, also known as the Heisenberg-Weyl
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group over Z/pZ, that we define 1 through generators and relations:

Pp := ⟨X,Z, ω | Xp = Zp = ωp = 1, XZ = ωZX⟩ .(1)

Let us pick an orthonormal basis {|n⟩}p−1
n=0 for Cp, then the minimal faithful unitary representation

of Pp is given by

ω|n⟩ = e2πi/p|n⟩ , X|n⟩ = |n+ 1mod p⟩ , Z|n⟩ = e2πin/p|n⟩ .
The group CUp of Clifford unitaries is a subgroup of the unitary group Up whose adjoint action
normalizes Pp (more accurately, the image of Pp in Up):

CUp := {x ∈ Up |xPp x
−1 = Pp} .

Let us point out that the adjoint action of the unitary group is not faithful – the kernel of this
action is isomorphic to U1. In its turn, the adjoint action of the quotient group Up/U1, also known
as the projective unitary group PUp, on the matrix algebra is faithful. In order to get rid of this
redundancy, we define the projective Clifford group PCUp:

PCUp := {x ∈ PUp |xPp x
−1 = Pp} .

There is an alternative description of PCUp, which will be important for future applications. Let
APp := Pp/[Pp,Pp] ∼= Fp⊕Fp be the abelianization of Pp, which can be thought of the Pauli group
modulo phases. Let Ab : Pp → APp be the abelianization homomorphism, then Ab(X)p = 1,
Ab(Z)p = 1, and Ab(X)Ab(Z) = Ab(Z)Ab(X). Thus, the alternative definition of PCUp is

PCUp = {x ∈ PUp |Ab(xPp x
−1) = APp} .

Clearly, Pp is a subset of PCUp and its adjoint action on APp induced by Ab is trivial. Therefore,
we define the quotient Clifford group whose adjoint action on APp is faithful:

Cp := PCUp/Pp .(2)

A crucial fact about the quotient Clifford group is that it is isomorphic to the group Sp(2;Fp)
of invertible transformations of the two-dimensional Fp-vector space which preserve the standard

symplectic form λ =
(

0 1
−1 0

)
[19, 20]. Any element of Sp(2;Fp) corresponds to an automorphism of

the operator algebra acting on a qudit that maps a Pauli operator to a Pauli operator with no fixed
points. Explicitly, Paulis up to phases form a regular representation of Sp(2;Fp):

Cp : APp → APp ,

(
x
z

)
7→ Φ ·

(
x
z

)
(3)

where

(
x
z

)
∈ Fp ⊕ Fp

∼= APp and Φ ∈ Sp(2;Fp) ∼= Cp.

N qudits. We treatN copies of p-dimensional qudits in the complete analogy with one qudit: the
Pauli group PN

p consists of N types of species of X and Z such that different species commute. The

abelianization of the Pauli group in this case APN
p
∼= FN

p ⊕FN
p , is a 2N -dimensional Fp-vector space,

while the quotient Clifford group CN
p is isomorphic to Sp(2N ;Fp), the group of automorphisms of

the Fp-module FN
p ⊕ FN

p preserving the standard symplectic form λN =
(

0 1N
−1N 0

)
.

d > 0 dimensions. The symplectic formalism can be extended to translationally invariant
many-body systems in any number of spatial dimensions. Let us consider a cubic lattice Zd with
N copies of p-dimensional qudits attached to each lattice site. In other words, each site x ∈ Zd

supports the Pauli group of N qudits PN
p . The set of all local Pauli operators, i.e., operators having

finite support, acted by the group ring Fp(Zd). For example, let us consider a one dimensional lattice
with a single qudit per site. Invertible elements of Fp(Z) are given by monomials of the form a t

1Note that for p = 2 the Pauli group must include
√
−1.
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with some a ∈ F×
p and t ∈ Z; let Xs be a Pauli operator supported at site s ∈ Z, then a t maps it

to the Pauli operator (Xs+t)
a. Note that in order to preserve the commutation relations, a t must

map Zs to Za−1

s+t . The case of a = 1 corresponds to pure translations, while transformations with
a ̸= 1 are called generalized translations.

Let us notice that the group ring Fp(Zd) is isomorphic to the ring of Laurent polynomials with
coefficients in Fp:

Fp(Zd) ∼= Fd
p := Fp[x1, x

−1
1 , . . . , xd, x

−1
d ] := {

∑
i1,...,id

xi11 . . . x
id
d ai1,...,id | ai1,...,id ∈ Fp} .(4)

The ring Fd
p is called the Pauli algebra. In their turn, the Pauli operators up to phases are labelled

by the elements of (Fd
p)

2N . This is a straightforward generalization of our previous observation that

abelianization of the Pauli group on a single site is isomorphic to (Fp)
2N .

The Pauli algebra, as a group ring, has an innate involution corresponding to the reflection
around the origin in Zd. In the language of Laurent polynomials, this involution acts as x1 →
x−1
1 , . . . , xd → x−1

d . The involution allows us to define an Fd
p-valued anti-hermitian form, called

standard anti-hermitian form, on (Fd
p)

2N :

(5) ⟨
∑

i1,...,id

xi11 . . . x
id
d yi1,...,id ,

∑
j1,...,jd

xj11 . . . xjdd y
′
j1,...,jd

⟩ =

∑
i1,...,id

∑
j1,...,jd

x−i1
1 . . . x−id

d xj11 . . . xjdd λN (yi1,...,id , y
′
j1,...,jd

) ,

where yi1,...,id and y′j1,...,jd are elements of F2N
p .

As a group ring, Fd
p comes with augmentation, a map which picks the coefficient of zero degree:

ε : Fd
p → Fp , ε

{ ∑
i1,...,id

xi11 . . . x
id
d ai1,...,id

}
= a0,...,0 .(6)

To this end, we define an Fp-valued anti-hermitian form on (Fd
p)

2N by composing (5) and ε. The
Fp-valued anti-hermitian form encodes the commutation relations between the Pauli operators on

the lattice. For example, let y1, y2 ∈ (Fd
p)

2N be a pair of elements corresponding to Pauli operators

up to phases: their commutator is given by e
2πi
p

ε{⟨y1,y2⟩}. Therefore, we can replace the set of Pauli
operators on the lattice with (Fd

p)
2N equipped with the standard anti-hermitian form.

Basis-free notation. Let L be a free Fd
p-module and L∗ be its dual, then L ⊕ L∗ equipped

with the standard anti-hermitian form is called Pauli module. The direct summand L should be
seen as a module containing all species of the Pauli X operators, while L∗ contains all the Pauli
Z operators. Note that we need the dual module in order to have a pairing between Pauli X and
Pauli Z operators, similarly to the conjugate variables in Hamiltonian mechanics.

Automorphisms of Pauli modules. The automorphism of the Pauli module is an invertible
Fd
p-linear transformation that preserves the anti-hermitian form – we will call such automorphisms

λ−-unitary. It turns out the action of the quotient Clifford group on Pauli operators is isomorphic
to the action of the group of λ−-unitaries on the Pauli module, see [8]. We deliberately abstain
from using the term “symplectic” in the case d > 0, as we keep track of the involution on the Pauli
algebra.

An implicit feature of the formalism of λ−-unitaries is that any λ−-unitary has a property that
it maps operators localized in a finite region to operators localized in a finite region. This property
follows from the fact that we are operating with the ring of Laurent polynomials. If we pick a
basis for the Pauli module, then a λ−-unitary will be represented by a matrix with coefficients from
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the ring of Laurent polynomials. The maximal degree among the matrix elements will roughly
correspond to the radius of action of the corresponding Clifford QCA.

2.1. Stabilizer modules. It is convenient to analyze the λ−-unitaries by their action on submod-
ules of Pauli modules, more precisely, on Lagrangian submodules. For that reason we briefly digress
to discuss the stabilizer modules, following [21, 22].

Let us consider a translation invariant Hamiltonian

(7) H = −
∑
t∈Zd

(h1,t + · · ·+ hv,t)

where h1,t, . . . , hv,t are terms corresponding to the interaction types that satisfy a number of prop-
erties: we assume that the terms h1,t, . . . , hv,t are made of Pauli operators, mutually commute, and
H is frustration-free – such Hamiltonians are called stabilizer Hamiltonians. Since the Hamil-
tonian in (7) is obtained by all possible translations of these v terms, we can view these terms as
generators for an Fd

p-module. The module generated by h1,t, . . . , hv,t is called stabilizer module.
Example. As an example, let us consider a one-dimensional spin-chain with a single p-dimensional
qudit per site. Here, the Pauli algebra is F1

p = Fp[x, x
−1] and the Pauli module is rank two. Let H

be a generalized Z/dZ cluster Hamiltonian:

H =
∑
t∈Z

Xt−1ZtXt+1 + h.c.(8)

The stabilizer module for such a Hamiltonian is generated by

(
x−1 + x+1

1

)
and

(
−x−1 − x+1

−1

)
,

which is, in fact, a rank-one module.
The commutation relations between Pauli operators are encoded by the pairing (5). By definition,

all elements of the stabilizer module mutually commute which means that the stabilizer module is
isotropic, i.e., pairing (5) degenerates on such a submodule. Further, we can ask – what Pauli
operators commute with the terms in H, i.e., what are the local symmetries admitted by H? Let us
denote the stabilizer module by S, then the operators commuting with S form the submodule S⊥

which is orthogonal with respect to the pairing (5) within the Pauli module. The isotropy condition
S ⊂ S⊥ is implied by the definition of the stabilizer module, while the absence of local symmetries
is equivalent to the condition S⊥ ⊂ S, i.e., S is coisotropic. Any Hamiltonian corresponding to
a coisotropic stabilizer module is said to satisfy the local topological order condition. There
is a special class of locally topologically ordered Hamiltonians having a unique ground state on
any topology – we call such Hamiltonians short-range entangled. Even more restricted is the class
of Hamiltonians corresponding to Lagrangian stabilizer modules defined in Section 3.5: they are
isotropic, coisotropic and direct summands in the Pauli module. If we obtained a Lagrangian module
from a stabilizer Hamiltonian, then such Hamiltonian is necessarily short-range entangled. For
example, the module obtained from the cluster Hamiltonian (8) is Lagrangian. We recommend [21]
and [22] for further reading on how properties of stabilizer modules translate into physical properties
of Hamiltonians. The upshot of this discussion is that Lagrangian submodules of the Pauli module
correspond to short-range entangled Hamiltonians. Note that QCA can entangle/disentangle only
short-range entangled Hamiltonians and we will study QCA by their action on such Hamiltonians.

2.2. Clifford QCA. We identify the groups of (quotient) Clifford QCA and the groups of λ−-
unitaries. The most elementary CQCA are given by conjugations with Clifford gates. An oper-
ator evolution generated by mutually commuting Clifford gates is called Clifford quantum circuit
(CQC). A finite number of layers of CQCs is called Clifford finite-depth (shallow) quantum circuit
(CFDQC), which is a prototypical example of a CQCA. While the group of CQCA correspond to
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the group of λ−-unitaries, CFDQCs correspond to the normal subgroup of elementary λ−-unitaries,
see, e.g., [21].
Example. In the setting of the previous example, let us provide an elementary λ−-unitary that
maps the product state Hamiltonian H0 =

∑
t∈ZXt+h.c., which corresponds to a stabilizer module

generated by

(
1
0

)
, to the cluster Hamiltonian (8):(

1 x−1 + x+1

0 1

)
.

This example demonstrates that the cluster state can be prepared by a shallow Clifford circuit.
Besides shallow circuits, there is another important class of CQCA which is given by generalized

translations (we will equally use the term “shifts”). A translation along one of the lattice directions
is obviously a CQCA, yet it cannot be presented by a finite number of layers of Clifford circuits.
Indeed, if we try to do so, then we either loose the locality, or we end up with an infinite number
of layers. Together with the ordinary translations, we are interested in generalized translations
– λ−-unitaries defined by a property that they do not mix the generalized Pauli X and Pauli Z
operators. In other words, a generalized translation consists of a simultaneous translation and a
mixing of species of qudits. All generalized translations correspond to the subgroup of “hyperbolic”
λ−-unitaries defined in (11).

3. Algebraic preliminaries

In this section we give necessary definitions, set notation and conventions, and review some
relevant theorems.

3.1. Notations and conventions. Throughout this paper, by R we will mean a regular (a ring
is regular if it is commutative Noetherian and has a finite global homological dimension) commu-
tative ring with involution where 2 is invertible. The involution of a ∈ R is denoted by ā. Here
and throughout the paper we will assume without mention that R-modules are finitely-generated
projective (FGP). For an R-module L, we define its dual as L∗ := HomR(L, R) with the following
module structure:

R× L∗ → L∗ , (a, Z) 7→ ā Z .

The canonical pairing between L and L∗ is the simple evaluation:

L× L∗ → R , (X,Z) 7→ Z(X) .

We adopt matrix notation for maps defined on direct sums of modules. For example, a module
map L⊕M→ N⊕Q comprises of four maps: α ∈ HomR(L,N), β ∈ HomR(M,N), γ ∈ HomR(L,Q),

and δ ∈ HomR(M,Q), which we denote by
(
α β
γ δ

)
. The dual to α ∈ HomR(L,N) is the map

α∗ ∈ HomR(L
∗,N∗) defined by

α∗(g)(X) = g(α(X)) for any X∈L and g∈N∗ .

Similarly, the dual to
(
α β
γ δ

)
is the map

(
α∗ γ∗

β∗ δ∗

)
.

Note that the double dual of any FGP module is canonically isomorphic to itself: we use this
canonical isomorphism to identify L∗∗ and L. A ±hermitian form on an FGP R-module L is an
element ϕ ∈ HomR(L,L

∗) such that ϕ∗ = ±ϕ. The more familiar notion of a ±hermitian form as
a pairing corresponds to our definition through the following identification. A ±hermitian form ϕ

corresponds to the pairing ϕ̃ via ϕ̃(X1, X2) = ϕ(X1)(X2) such that ϕ̃(X1, X2) = ±ϕ̃(X2, X1) and

ϕ̃(X1, aX2) = aϕ̃(X1, X2). We denote the space of +hermitian forms on L (on L∗) by SL (by
SL∗). We say that a ±hermitian form ϕ is non-degenerate if it is an isomorphism of R-modules.
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3.2. λ±-unitaries. For an FGP R-module L, we define two modules H±(L) = L ⊕ L∗ equipped
with the ±hermitian form:

λ± =

(
0 1
±1 0

)
,(9)

such that the associated pairing is given by

λ̃±((X1, Z1), (X2, Z2)) = Z1(X2)± Z2(X1) .

If R = Fd
p and L is free, then H−(L) is nothing but the Pauli module. The group of module auto-

morphisms of L⊕ L∗ preserving λ± is called the group of λ±-unitaries and denoted by U±(L;R).
The group of λ−-unitaries has a subgroup generated by the following automorphisms:

E0(q0) =

(
1 0
q0 1

)
, E1(q1) =

(
1 q1
0 1

)
(10)

where q0 is a +hermitian form on L and q1 is a +hermitian form on L∗. Such λ−-unitaries are
called elementary; they generate the group of elementary λ−-unitaries, denoted by EU−(L;R)2.
The group of elementary λ+-unitaries is generated by the transformations of the form (10) with q0
and q1 being anti-hermitian forms and one more automorphism

(
0 1
1 0

)
.

Another important subgroup of U−(L;R) comes from automorphisms of L, and is defined as the
image of the “hyperbolic” group homomorphism:

H± : GL(L;R)→ U±(L;R) ,(11)

a 7→
(
a 0
0 (a∗)−1

)
.(12)

3.3. Hermitian K-theory. Let us give a minimal review of some facts from hermitian K-theory.
We recommend [23] as the standard reference on algebraic K-theory. Let P(R) be the monoid of
isomorphism classes of FGP R-modules with the direct sum as the binary operation. The ordinary
K0(R) is the abelian group which is obtained as the Grothendieck completion of P(R). If f is a
ring homomorphism, then K0(f) is a homomorphism of abelian groups induced by the extension
of scalars. In other words, K0 is a functor from the category of rings to the category of abelian
groups.

In order to define K1, we first introduce the stable general linear group of R. There is an inclusion
of groups:

GL(Rn;R)→ GL(Rn+1;R) , u 7→ u⊕ 1 .

The direct limit of these inclusions is called the stable general linear group of R and denoted by
GL(R). We define

K1(R) := GL(R)/[GL(R),GL(R)]

where [GL(R),GL(R)] is the subgroup of GL(R) formed by all possible commutators such that
K1(R) is an Abelian group. The Whitehead lemma provides an alternative description of K1(R)
as the quotient group GL(R)/EGL(R) where EGL(R) is the stable group of elementary automor-
phisms. A useful property of K1(R) that we will use frequently is that, for any free R-module L,
the class of a ∈ GL(L;R) in K1(R) does not depend on the isomorphism L ∼= Rn for some n, see
Lemma 1.6 in [23].

While the algebraic K-theory of a ring deals with FGP modules and automorphism groups of such
modules, a hermitian K-theory of a ring with involution deals with FGP modules equipped with a
non-degenerate ±hermitian form and module automorphisms preserving this form. We recommend

2Note, our definition of elementary λ±-unitaries differs from that of [12].
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[24] as a general reference on hermitian K-theory. Instead of the monoid of FGP modules P (R),
we now consider the monoid of FGP modules equipped with a non-degenerate ±hermitian form,
which we denote by Q±(R). The hermitian version of K0(R) is the Grothendieck-Witt group of R,
denoted by GW±(R), which is the Grothendieck completion of Q±(R). In the complete analogy
with the stable group GL(R) we define stable λ±-unitary groups, denoted by U±(R), and stable
elementary λ±-unitary groups, denoted by EU±(R). The analog of K1(R) in the ±hermitian case
is the abelian group U±(R)/EU±(R).

The map L → H±(L) induces a homomorphism of groups K0(R) → GW±(R), while map (11)
induces the homomorphism GL(R) → U±(R). Using the former hyperbolic map, we define the
Witt group of non-degenerate ±hermitian forms as follows:

W±(R) := coker(H± : K0(R)→ GW±(R)) .(13)

We will be interested in the group of λ±-unitaries modulo elementary and hyperbolic ones, which
we denote by U±(R):

U±(R) := U±(R)/(EU±(R)⋊H±(GL(R)) .(14)

This group is abelian, see Proposition 3.12 of [12] for a proof, and U± is a functor from the category
of rings to the category of abelian groups.

3.4. Polynomial extensions. For a given ring R, there are two extensions that will be relevant
below: a polynomial extension R[T ] and Laurent polynomial extension R[T, T−1]. Recall, R[T ] is
the ring of polynomials in T with coefficients in R and where involution acts trivially on T :

N∑
n=0

an Tn =
N∑

n=0

ān T
n .(15)

The R[T, T−1] is the ring of Laurent polynomials in T with coefficients in R and where involution
acts on T by inversion

N∑
n=−N

an Tn =
N∑

n=−N

ān T
−n .(16)

There are ring homomorphisms given by evaluation at 1:

ev1 : R[T ]→ R , ev1 : R[T, T
−1]→ R

while R[T ] also admits evaluation at 0, denoted by ev0. As functors, K0 and K1 associate group
homomorphisms to these ring homomorphisms – this is a subject of fundamental theorems of
(hermitian) K-theory. A fundamental theorem for K0- and K1-functors, in particular, states that
for any regular ring R there are isomorphisms K0(R[T ]) ∼= K0(R) and K1(R[T ]) ∼= K1(R), see
Chapter II and Chapter III of [23] respectively – these statements are also known as homotopy-
invariance theorems. The homotopy invariance of GW±(R) for a regular R is Theorem 1.2 of [24].
The homotopy invariance of U±(R) for a regular R with 2 invertible follows from Corollary 0.8 of
[24] and [17].3

3The homotopy invariance of U−(R) for regular rings with trivial involution and where 2 is invertible is proven in
Appendix D of [18].
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3.5. Lagrangians. Let Λ be a submodule of H−(L): it is called a Lagrangian if it is:

1) isotropic: λ̃−|Λ = 0,

2) coisotropic: Λ⊥ ⊂ Λ, where Λ⊥ is the orthogonal complement to L with respect to λ̃−,
3) direct summand in H−(L).
There is the standard Lagrangian in H−(L), the submodule of the form (L, 0), for brevity, we

will simply denote it by L ⊂ H−(L). The set of Lagrangians in H−(L) is denoted by LL(R) –
this is a pointed set with the distinguished point L. In what follows, we will be interested in the
set of Lagrangians up to stabilization. Let us define the Lagrangian Grassmannian L(R) as a
direct limit of inclusions:

LRn(R)→ LRn+1(R)

Λ 7→ Λ⊕R
Thus defined L(R) is a pointed set with the structure of an abelian monoid with the direct sum as
the binary operation.

Below we will analyze the orbits of the group of elementary λ−-unitaries. Elementary λ−-
unitaries are closely related to the notion of transversality of Lagrangians. Let Λ1,Λ2 ∈ LL(R),
we say that these Lagrangians are transversal if their set-theoretic union is the whole H−(L). We
denote this relation by ⋔:

Λ1 ⋔ Λ2 ⇐⇒ Λ1 ∪ Λ2 = H−(L) .

Obviously, L ⋔ L∗. It is easy to see that any Lagrangian transverse to L∗ is a graph of some
+hermitian form q0 on L:

Λ ⋔ L∗ ⇐⇒ Λ =

(
1 0
q0 1

)
· L .(17)

and, similarly, any Lagrangian transverse to L is a graph of some +hermitian form q1 on L∗:

Λ ⋔ L⇐⇒ Λ =

(
1 q1
0 1

)
· L∗ .(18)

Further, we will use the following elementary observation:(
1 0
q0 1

)
· L ⋔ L⇐⇒ q0 is non-degenerate ,(19)

and analogous statement for L∗.
Serre-Suslin-Swan theorem. We aim to apply our results to the rings of Laurent polynomials

with coefficients in a prime field Fp for some p > 2. For such rings a powerful theorem by Serre-
Suslin-Swan holds [25, 26]. This theorem states that all finitely-generated projective modules over
Fd
p are free, which, in particular, implies that K0(Fd

p)
∼= Z. This theorem is the algebraic analog

of the Quillen-Suslin theorem in algebraic geometry. Let us also notice that since any Lagrangian
module Λ ∈ LL(Fd

p) is free, there always exists a λ−-unitary Φ such that Λ = Φ · L. This is a
well-known theorem, see, e.g., Proposition 3.10 of [12].

4. Paths of Lagrangians

In this section we discuss paths of Lagrangians and connected components of the Lagrangian
Grassmannian. We fix a ring R which we assume to be regular, commutative, equipped with an
involution, and such that 2 is invertible.

As we reviewed in the previous section, the polynomial extension R[T ] of R comes with the
two evaluation homomorphisms ev0 and ev1. Given an R[T ] module M and a homomorphism ev0
(ev1), we can apply the extension of scalars procedure to obtain a module over R via M ⊗ev0 R
(M ⊗ev1 R) – for brevity, we will call this action simply as evaluation at 0 (at 1). Due to the
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homotopy invariance of K0, we can think of FGP modules over R[T ] as of “paths of modules” over
R. For any R-module L, we can form a “constant” path of modules L[T ] := R[T ] ⊗R L whose
evaluation at 0 and at 1 is L. We will be interested in paths of Lagrangian submodules, which
can be thought of as paths in the set of all Lagrangian submodules. The path of Lagrangians is
itself a module over the “time-dependent” ring R[T ]. We say that two Lagrangians Λ1,Λ2 ∈ LL(R)
are homotopic if there exists a Lagrangian α ∈ LL[T ](R[T ]) such that ev∗0(α) := α ⊗ev0R = Λ1 and
ev∗1(α) := α ⊗ev1R = Λ2. In order to lighten the notation, we will simply write LL(R[T ]) meaning
LL[T ](R[T ]).

Algebraic homotopies used in this text are continuous in the following sense. By the Yoneda
lemma, each algebraic homotopy defines a morphism from the affine line A1

R to the Lagrangian
Grassmannian over R. In other words, any such homotopy defines a path between R-points and
is continuous in the Zariski topology4. Observe that this data can also be interpreted as an A1-
homotopy [27].

Since our goal is to study λ−-unitaries, we will be mostly working with free R-modules. Our first
result relates the connected component of LL(R) with paths of λ−-unitaries. Most of the proofs
here adapted from [18] to the rings with involution.

Proposition 4.1. Let L be a free R-module and α ∈ LL(R[T ]) be such that α(0) = L, then there
exists a free R-module L′ and Φ ∈ U−(L⊕ L′;R[T ]) with Φ(0) = 1 so that

α⊕ L′[T ] = Φ · (L[T ]⊕ L′[T ]) ∈ LL(R[T ]) .

Proof. The homotopy invariance of K0 states that the evaluation map K0(R[T ]) → K0(R) is an
isomorphism, which in our case means that the class of α in K0(R[T ]) is the same as the class of
L in K0(R). Since L is free, its class in K0(R) is trivial, and the isomorphism K0(R) → K0(R[T ])
is given by the extension of scalars, α ⊕ R[T ]m must be free for some natural m. Therefore,
due to Proposition 3.10 of [12], there exists Φ ∈ U−(L[T ] ⊕ R[T ]m;R[T ]) such that α ⊕ R[T ]m =
Φ′ · (L[T ] ⊕ Rm[T ]). In case Φ′(0) ̸= 1, we can always redefine Φ(T ) = Φ′(T )Φ′−1(0) such that
Φ(0) = 1. □

The following lemma demonstrates that a path of λ−-unitaries that starts at the identity is a
composition of “shifts” and elementary λ−-unitaries up to stabilization.

Proposition 4.2. Let L be a free R-module and Φ ∈ U−(L[T ];R[T ]) with Φ(0) = 1, then there
exists a free module L′, an element Ψ ∈ EU−(L[T ] ⊕L′[T ];R[T ]), and an element Γ ∈ GL(L[T ] ⊕
L′[T ];R[T ]) such that Φ = ΨH−(Γ).

Proof. We use the homotopy invariance of U−(R) = U−(R)/EU−(R)H(GL(R)): U−(R[T ]) ∼= U−(R)
where isomorphism U−(R[T ]) → U−(R) is induced by the evaluation map. Therefore, if a path of
λ−-unitaries Φ evaluates to the identity, then it must represent the trivial element in U−(R[T ]).
A lift of the trivial element of U−(R[T ]) is a λ−-unitary which is a composition of an elementary
λ−-unitary and a shift, up to stabilization. □

As a corollary from the lemmas above, we obtain a characterization of the connected component
of LL(R).

Corollary 4.3. Let L be a free R-module and α ∈ LL(R[T ]) be such that α(0) = L and α(1) = Λ.
Then, there exists a free R-module L′ such that

α⊕ L′[T ] = Ψ(L[T ]⊕L′[T ])(20)

for some Ψ ∈ EU−(L[T ]⊕L′[T ];R[T ]).

4We thank G. Shuklin for this remark.
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In other words, a path of Lagrangians beginning at the base point can be presented as a path
of elementary λ−-unitaries up to stabilization. Vice versa, if a Lagrangian is connected to the
standard Lagrangian by an elementary λ−-unitary, then there is a homotopy between the two.

Proposition 4.4. Let Λ ∈ LL(R) be such that Λ = Ψ · L for some Ψ ∈ EU−(L;R). Then, there
exists a path α ∈ LL(R[T ]) such that α(0) = L and α(1) = Λ .

Proof. By the assumption, Ψ = E0(q0) ·E1(q1) · · ·E0(qn−1) ·E1(qn) where q1, . . . , qn are +hermitian
forms defined on L and L∗ in the alternating fashion and where some of them can be zero-forms.
The desired path is given by α = E0(Tq0) · E1(Tq1) · · ·En(Tqn) · L. □

Combining Corollary 4.3 and Proposition 4.4, we obtain the following bijection of monoids:

π0L(R) ∼= L(R)/EU−(R) .(21)

4.1. Sturm sequences. We have shown that any path of Lagrangians corresponds to an elemen-
tary λ−-unitary (in a highly non-unique way) which is encoded by a sequence of +hermitian forms.
In what follows, we will obtain a Lagrangian transversal to any Lagrangian obtained from the
standard Lagrangian by an elementary λ−-unitary. This result will allow us to obtain a concise
representation for any path of Lagrangians in L(R).

We begin with a review of the technique of Sturm sequences of [18] adjusted for rings with
involution. Let us fix a free R-module L and introduce the following notation:

Ln :=

{
L , n ≡ 0 mod 2

L∗ , n ≡ 1 mod 2
En :=

{
E0 , n ≡ 0 mod 2

E1 , n ≡ 1 mod 2
σn :=

{
1 , n ≡ 0 mod 2

σ , n ≡ 1 mod 2

where σ : H−(L)→ H−(L∗) is a module isomorphism whose matrix representation is that of λ−. A
Sturm sequence of type (m,n) is a sequence of +hermitian forms (qm, qm+1, . . . , qn) where qn ∈ SLn :
such a sequence is denoted by q. Any Sturm sequence q defines an elementary λ−-unitary:

E(q) = Em(qm) · · ·En(qn) .

Proposition 4.5. Let q be a Sturm sequence of type (m,n) and (xm−1, xm, . . . , xn, xn+1) be a
sequence of elements xi ∈ Li with m − 1 ⩽ i ⩽ n + 1. Then, for any m ⩽ k ⩽ n the following
conditions are equivalent:

1) The sequence (xk−1, xk, xk+1) satisfies

xk−1 + (−1)kqk(xk) + xk+1 = 0 .

2) The sequence (xk−1, xk, xk+1) satisfies

(xk−1, xk) = (−1)k−1(σk−1 · Ek(qk) · σ−1
k )(xk, xk+1)

Here (xk, xk+1) is identified with the element of xk ⊕ xk+1 ∈ H−(Lk).

Proof. The proof is by elementary unpacking the definitions. □

For a Sturm sequence q of type (m,n), we define Lm,n := ⊕n
k=mLk and let S(q) be a +hermitian

form on Lm,n with the following matrix representation
(−1)mqm 1

1 (−1)m+1qm+1 1
1

1
1 (−1)nqn

 .(22)

The following proposition gives a constructive completion to any Lagrangian obtained from the
standard Lagrangian by an elementary λ−-unitary.
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Proposition 4.6. Let L be a free R-module and let q = (q0, . . . , q2n) and q′ = (q0, . . . , q2n−1) be
a pair of Sturm sequences of type (0, 2n) and (0, 2n−1) respectively. Denote by Λ the Lagrangian
defined by the first sequence:

Λ = E(q) · L .(23)

Then the following Lagrangians are transverse(
1 0

S(q′) 1

)
· (L⊕ L1,2n−1) ⋔ Λ⊕ L1,2n−1 .(24)

Proof. We begin with noticing that L⊥
1,2n−1 = L0,2n−1 ⊕ L∗

0 within H−(L0,2n−1) (obviously, L1,2n is

not a Lagrangian in H−(L0,2n−1) as it is not coisotropic). Let us introduce the notation

X(q′) :=

(
1 0

S(q′) 1

)
· L0,2n−1

and notice that X(q) ⋔ L⊥
1,2n−1, which follows from the concrete form of S(q).

Let i : L1,2n−1 → L0,2n−1 be an inclusion and i∗ : L∗
0,2n−1 → L∗

1,2n−1 be its dual. The transver-

sality condition X(q) ⋔ L⊥
1,2n implies that i∗ ◦ S(q) is a surjective map. Let us denote the kernel of

i∗ ◦ S(q) by κ := ker(i∗ ◦ S(q)). An element (x0, . . . x2n−1) ∈ L0,2n−1 belongs to κ iff it is a solution
of the following system

xk + (−1)kqk(xk) + xk+1 = 0 for 1 ⩽ k ⩽ 2n− 1(25)

where we put x2n+1 = 0. Algebraic system (25) has rank 2n−1 and we can choose x2n−1 as
an independent solution. Let ρ : κ → L2n−1 be the isomorphism of “solving system (25)”. It is
elementary to check that

X(q) ∩ L⊥
1,2n−1 =

(
1 0

S(q) 1

)
· κ .

Let µ be the projection X(q) ∩ L⊥
1,2n−1 → L⊥

1,2n−1/L1,2n−1. We wish to track the image of x2n−1 ∈
L2n−1 under the sequence of maps

L2n−1 → κ→ X(q) ∩ L⊥
1,2n−1 → L⊥

1,2n−1/L1,2n−1
∼= H−(L0) .

We take an element x2n−1 ∈ L2n−1 and rewrite it through system (25). The composition µ ◦(
1

S(q)

)
◦ ρ−1(x2n−1) is equal to E(q′) ·

(
x2n
0

)
– this is a result of consecutive applications of point

2) of Proposition 4.5. Therefore, the image of X(q′) ∩ L1,2n in H−(L0) is given by E(q′) · L2n−1.

To this end, we use an elementary fact E(q′) · L2n−1 ⋔ E(q) · L2n holding for any +hermitian
form q2n. We conclude the proof with the following observation

E(q′) · L2n−1 ⋔ E(q) · L2n ⇔ X(q′) ⋔ E(q) · L2n ⊕ L1,2n−1

for which we essentially use the fact that E(q′) · L2n−1 is the image of µ. □

This proposition associates a single +hermitian form defined on a bigger space to any Lagrangian
obtained from the standard Lagrangian by a sequence of elementary λ−-unitaries. We immediately
obtain a corollary from this proposition by using equivalence (18).

Corollary 4.7. Let L be a free R-module, q = (q0, . . . , q2n) be a Sturm sequence of type (0, 2n),

and Λ = E(q) · L. Then, there exists a free R-module L′, +hermitian form X on L ⊕ L′ and a

+hermitian form Y on (L⊕ L′)∗ such that

Λ⊕ L′ =

(
1 0
X 1

)(
1 Y
0 1

)
· (L⊕ L′)∗ .(26)
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Proposition 4.6 and Corollary 4.7 provide a convenient presentation of a Lagrangian obtained
from the standard one by a sequence of elementary λ−-unitaries, and, consequently, to any La-
grangian homotopy equivalent to the standard Lagrangian. This presentation will be useful for the
analysis of loops of Lagrangians that we conduct in later sections.

5. An interlude

Let us comment more on the correspondence between stabilizer modules and stabilizer Hamil-
tonians. Any concrete stabilizer Hamiltonian like (7) generates an isotropic submodule of the
Pauli module. Since the set of generators for any module is highly non-unique, many stabilizer
Hamiltonians may generate the same stabilizer module. In the opposite direction, if two stabilizer
Hamiltonians generate the same module, then they are homotopy-equivalent, i.e., there exists a
path of gapped Hamiltonians connecting them, see Proposition 2.1 of [21], which is formulated for
qubits but can be adjusted to qudits of any prime dimension. Thus, there is a 1-1 correspondence
between the stabilizer modules and homotopy equivalence classes of stabilizer Hamiltonians. We
denote the homotopy class of the Hamiltonian H by {H}.

It turns out that such properties as the ground state degeneracy are characteristics of the sta-
bilizer module and not of a specific Hamiltonian [21]. We focus on special classes of Hamiltonians
corresponding to Lagrangian stabilizer modules as they are particularly simple. Let Λ1 and Λ2 be
a pair of Lagrangians in the Pauli module that can be connected by an elementary λ−-unitary, and
let {H1} and {H2} be a pair of corresponding classes of Hamiltonians, then, we have an equivalence:

{H1}
CFDQC←−−−→ {H2} ⇐⇒ Λ1

EU−
←−→ Λ2

In the previous section we have discussed the algebraic homotopy relation between Lagrangian
submodules. We can think of such a homotopy as a time-dependent Hamiltonian interpolating
between the end points of the path. Note that the time parametrizing the path is not on the same
footing as the spatial coordinates. The algebraic homotopies are defined through the polynomial
extension of the Pauli algebra. Monomials in the non-extended Pauli algebra generate lattice trans-
lations, while the new time variable generates translations only in one direction. We observed that
if two Lagrangians are connected by an elementary λ−-unitary, then they are homotopy equivalent
and vice versa up to stabilization. In other words, we have an equivalence

{H1}
CFDQC←−−−→ {H2} ⇐⇒ [Λ1] ∼h [Λ2]

where [Λ] stands for the stabilization of [Λ], i.e., the class of Lagrangians obtained by adding
all possible ancilla. In what follows, by a “Hamiltonian”, we will mean the homotopy class of
Hamiltonians represented by this Hamiltonian.

Any stabilizer Hamiltonian corresponding to a Lagrangian stabilizer module can be disentangled
by some Clifford QCA5, which is unique up to a Clifford FDQC, according to the discussion in the
concluding paragraph of Section 3. On the other hand, we can map a Clifford QCA to the image of
the product Hamiltonian (the standard Lagrangian module) under this QCA. Therefore, there is a
correspondence between stabilizer Hamiltonians generating Lagrangian modules modulo the action
of Clifford circuits and Clifford QCA modulo Clifford circuits. According to (21) and the discussion
above, the Lagrangian Grassmannian L(R) modulo the action of Clifford circuits is isomorphic to
the monoid of connected components of L(R). Therefore, the study of phases of Clifford QCA boils
down to the analysis of the connected components of the Lagrangian Grassmannian.

Let us turn to the main subject of this paper, the loops of Clifford circuits that transform
any Lagrangian submodule of the Pauli module to the same submodule. Loops of Clifford circuits

5Moreover, any invertible stabilizer Hamiltonian (having a unique ground-state on any lattice) can be disentangled
with a Clifford QCA, see Theorem IV and Lemma IV.10 of [28]. We thank J. Haah for pointing these results to us.
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correspond to loops of Lagrangians. Without loss of generality, we consider loops in the Lagrangian
Grassmannian based on the distinguished point, the standard Lagrangian. We say that two loops
are homotopy equivalent if there exists a two-parameter family of Lagrangians interpolating between
the two loops. We will demonstrate that the monoid of connected components of loops in the
Lagrangian Grassmannian, modulo the action of generalized translations, is an abelian group. Due
to the relation between QCA and Lagrangian submodules, we associate the latter group with the
group of homotopy classes of loops of invertible states induced by Clifford circuits.

5.1. Classical Maslov index. The main tool of the next section is an algebraic generalization of
the Maslov index [29], which is well-known in symplectic geometry [30]. Before we proceed to the
algebraic version in the next section, we wish to demonstrate how the index works in the simplest
case of a two-dimensional real phase space. As we pointed out in the introduction, the Pauli module
is a direct analog of the phase space of Hamiltonian mechanics. The classical Maslov index of a
loop of Lagrangian subspaces in a real phase space is a Z-valued invariant that can be thought of
as the winding number of such a loop [31].

Let us consider the setting of Hamiltonian mechanics following [31]: the Pauli algebra is R = R
and the Pauli module is a real phase space R2n. It is a classical observation that Un/On acts freely
and transitively on the space of all Lagrangian subspaces LRn(R) of R2n. Therefore, by picking a
base-point, we obtain a diffeomorphism of manifolds

Un/On
∼−→ LRn(R) , u 7→ u · (Rn ⊕ 0) .(27)

Since the determinant of any matrix in On is ±1, there is a well-defined map:

det2 : LRn(R)→ U1(28)

whose fiber is the subspace of LRn(R) corresponding to (detu)2 = 1 under (27). Let us denote the
fiber of (28) by SLRn(R), then we have a fibration

SOn → SUn → SLRn(R)

The long exact sequence of homotopy groups for this fibration together with that for SLRn(R) →
LRn(R)→ U1 gives us an isomorphism π1(LRn(R)) ∼= Z.

The classical Maslov index is a tool calculating the degree of a loop of Lagrangians. Let us work
out the simplest possible example of a loop of Lagrangians in the real two-dimensional phase space.
The Lagrangians in R2 are straight lines such that LR(R) ∼= U1/O1

∼= RP1. To make a connection
with the generalized Maslov index considered in the next section, we restrict to loops parametrized
by algebraic polynomials. As an example, we consider

α(T ) =

(
4(T + 1√

2
)3 − 6(T + 1√

2
)2 + 1

12(T + 1√
2
)2 − 12(T + 1√

2
)

)
, T ∈ [0, 1] .(29)

The curve {α(T ) , T ∈ [0, 1]} ⊂ R2 defines a loop in LR(R) ∼= RP1 of degree one.
Let us describe an algebraic method of computing degrees of loops in LR(R) using Sturm functions

[32]. Let us consider αP (T ) of the form
(
P (T )
P ′(T )

)
where P (T ) is a polynomial of degree m with simple

roots and such that P (0), P (1) ̸= 0. We use the Euclidean algorithm to divide P (T ) by P ′(T ) which
results in a sequence of residues (q1, . . . , qm) where each element is a linear polynomial and qm ∈ R×.
One checks that the sequence of residues, also known as the Sturm sequence, linearizes αP (T ) in
the sense that (

P (T )
P ′(T )

)
=

(
q1 −1
1 0

)
· · ·
(
qm−1 −1
1 0

)
·
(
qm
0

)
.
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To this end, we define a bilinear form with the following matrix representation:

S =


q1(T ) −1
−1 q2(T ) −1

−1

−1
−1 qm(T )

 .

Then, the degree of the loop parametrized by αP (T ) is given by 1
2sign(S(1) ⊕ −S(0)), where sign

is the signature of a bilinear form [18, 33]. Using this formula, we confirm that the loop defined by
(29) indeed has degree one and this degree coincides with the Maslov index.

For the case of a real phase space, abstract algebraic loops of Lagrangians correspond to actual
geometric loops like the ones considered above. In the next section we will use an analog of the
Maslov index for Lagrangian submodules inside the Pauli module. One should be aware that the
Lagrangian Grassmannian for R = Fd

p is not a manifold but a scheme, and all that we can do is
put the Zariski topology on it. In this topology, the algebraic paths are actually continuous.

6. Loops of lagrangians

Recall, a path of Lagrangians in LL(R) is an element in LL(R[T ]). The goal of this section is to
analyze the space of loops in LL(R), which we denote by ΩLL(R):

ΩLL(R) := {α ∈ LL[T ](R[T ]) | α(0) = α(1) = L } .
In a moment, we will demonstrate a trick that shows that any loop of Lagrangians is homotopic

to the constant loop. Note that being homotopic within ΩLL(R) is not the same as being homotopic
within LL[T ](R[T ]). What we are going to show is that for any loop α(T ) ∈ ΩLL(R) ⊆ LL[T ](R[T ]),
there exists a homotopy to the constant loop L[T ] within LL[T ](R[T ]).

Let g be a homomorphism which acts on polynomials by a substitution

g : R[T ]→ R[T, τ ] , a(T ) 7→ a(Tτ) .

Then, the R[T, τ ]-module induced by g from a loop α(T ) ∈ ΩLL(R) is given by ℵ(T, τ) = R[T, τ ]⊗g

α(T ). Any such ℵ(T, τ) is a homotopy between α(T ) and L[T ]. Therefore, any α ∈ ΩLL(R) satisfies
Corollary 4.3. Using this observation and Proposition 4.6, we obtain the following proposition.

Proposition 6.1. Let α ∈ ΩLL(R), then there exists a free R-module L′ and a +hermitian form
S(T ) on L[T ]⊕ L′[T ] such that

α⊕ L′[T ] ⋔

(
1 0

S(T ) 1

)
· (L[T ]⊕ L′[T ]) .(30)

Let us evaluate (30) at 0 and at 1: we obtain a pair of relations

L⊕ L′ ⋔

(
1 0

S(0) 1

)
· (L⊕ L′) , L⊕ L′ ⋔

(
1 0

S(1) 1

)
· (L⊕ L′) ,(31)

which imply that S(0) and S(1) are non-degenerate +hermitian forms. The assignment of S(T )
to a loop of Lagrangians is highly non-unique. We aim to show that the homotopy class of the
form S(0) ⊕ −S(1)−1 completely determines the homotopy class of the loop. Before we discuss a
homotopy invariant of a loop, let us introduce some definitions and prove auxiliary lemmas.

Given a free R-module L, we denote the set of non-degenerate +hermitian forms on L⊕L∗

by FL(R), which is a pointed set with the base point λ+. Similarly to the paths of Lagrangians we
define paths of +hermitian forms in FL(R). We say that two forms ϕ, ψ ∈ FL(R) are homotopy-
equivalent, which we denote by ϕ ∼h ψ, if there exists Γ(T ) ∈ FL(R[T ]) such that Γ(0) = ϕ and
Γ(1) = ψ. The set of of connected components of FL(R) is denoted by π0FL(R).
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The following lemma will be useful for comparing two +hermitian forms satisfying (30) for the
same loop of Lagrangians.

Lemma 6.2. Let α ∈ ΩLL(R), L′ be a free R-module and S1(T ), S2(T ) be a pair of +hermitian
forms on L[T ]⊕ L′[T ] such that

α⊕ L′[T ] ⋔

(
1 0

Sl(T ) 1

)
· (L[T ]⊕ L′[T ]) , l = 1, 2 .(32)

Then,

S2(0)⊕−S1(0)−1 ∼h S2(1)⊕−S1(1)−1 .(33)

Proof. Let us use Corollary 4.7 for α[T ]: there must exist a pair of +hermitian forms Y1(T ) and
Y2(T ) on L[T ]⊕ L′[T ] such that

α⊕ L′[T ] =

(
1 0

S1(T ) 1

)(
1 Y1(T )
0 1

)
· (L[T ]⊕ L′[T ])∗ , l = 1, 2 .(34)

Using (34) and (32) with l = 2, we obtain(
1 0

−S2(T ) 1

)(
1 0

S1(T ) 1

)(
1 Y1(T )
0 1

)
· (L[T ]⊕ L′[T ])∗ ⋔ (L[T ]⊕ L′[T ])

by inverting
(

1 0
S2(T ) 1

)
. It implies that (S1(T ) − S2(T ))Y1(T ) + 1 is non-degenerate. We use this

form to construct another non-degenerate form(
S2(T )− S1(T ) 1

1 −Y1(T )

)
.

Indeed, (S1(T )− S2(T ))Y1(T ) + 1 is the determinant of such and it is invertible. We use this form
to demonstrate that there is a homotopy(

S2(0)− S1(0) 1
1 Y1(0)

)
∼h

(
S2(1)− S1(1) 1

1 Y1(1)

)
.

If we evaluate (34) at 0 and 1, we find that Yl(0) and Yl(1) with l = 1, 2 are non-degenerate and
Yl(0)Sl(0) + 1 = 0, Yl(1)Sl(1) + 1 = 0 for l = 1, 2. Thus,(

S2(0)− S1(0) 1
1 −S1(0)−1

)
∼h

(
S2(1)− S1(1) 1

1 −S−1
1 (1)

)
.

Further, we use the following forms in FL(R[T ])(
1 TS1(0)
0 1

)(
S2(0)− S1(0) 1

1 −S−1
1 (0)

)(
1 0

TS1(0) 1

)
,(

1 TS1(1)
0 1

)(
S2(1)− S1(1) 1

1 −S−1
1 (1)

)(
1 0

TS1(1) 1

)
which demonstrate that(

S2(0)− S1(0) 1
1 −S−1

1 (0)

)
∼h

(
S2(0) 0
0 −S−1

1 (0)

)
,(

S2(1)− S1(1) 1
1 −S−1

1 (1)

)
∼h

(
S2(1) 0
0 −S−1

1 (1)

)
.

Finally, we conclude that (
S2(0) 0
0 −S−1

1 (0)

)
∼h

(
S2(1) 0
0 −S−1

1 (1)

)
.
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□

Lemma 6.3. Let q be a non-degenerate +hermitian form on a free R-module L. Then,

q ⊕−q−1 ∼h λ
+ .(35)

Proof. The proof essentially relies on the fact that 2 is invertible in R. The following form delivers
a concrete homotopy(

1 −T q
2

0 1

)(
1 0

Tq−1 1

)(
q 0
0 −q−1

)(
1 Tq−1

0 1

)(
1 0
−T q

2 1

)
.

□

The previous lemma characterizes the connected component of the base-point in FL(R). Let us
define the stable space F(R) as the direct limit of inclusions of pointed sets

FRn −→ FRn+1 ,

ϕ 7−→ ϕ⊕ λ+ .
Such a defined F(R) is an abelian monoid. Given a ϕ ∈ FL(R) for some free R-module L, its image
in π0F(R) is denoted by st[ϕ].

6.1. Maslov index. Let α ∈ ΩLL(R) be a loop of Lagrangians and let L′ and S(T ) be some free
R-module and some +hermitian form respectively satisfying Proposition 6.1, then we define the
Maslov index of a loop as

Mas(α) := st[S(1)⊕−S(0)−1]

Theorem 6.4. [18] The Maslov index does not depend on the choice of S and L′. There is an
isomorphism of abelian monoids

π0ΩL(R) ∼= π0F(R) .(36)

Proof. For the first part, assume S1(T ) and S2(T ) are two non-degenerate forms satisfying condition
(30). We have the following chain of equalities within π0F(R):

(37) st[S1(1)⊕−S1(0)−1]
(35)
= st[S1(1)⊕−S1(0)−1 ⊕ S2(0)⊕−S2(0)−1] =

st[S1(1)⊕−S2(0)−1 ⊕ S2(0)⊕−S1(0)−1]
(33)
= st[S2(1)⊕−S2(0)−1 ⊕ S1(1)⊕−S1(1)−1]

(35)
=

st[S2(1)⊕−S2(0)−1]

Thus, any +hermitian form on L[T ]⊕L′[T ] that satisfy (30) gives the same Maslov index. Further
we notice that adding a constant form does not change the Maslov index. Assume that

α⊕ L′ ⊕ L′′ ⋔

(
1 0

S(T )⊕ q 1

)
· (L⊕ L′ ⊕ L′′) ,(38)

then st[S(1)⊕ q⊕−S(0)−1⊕−q] = st[S(1)⊕S(0)−1] according to Eq. (35). We conclude that the
Maslov index is well-defined.

Next, let us demonstrate that the Maslov index is only sensitive to the homotopy class of loops
of Lagrangians. Let ℵ(T, τ) be a homotopy between loops α(T ), β(T ) ∈ ΩLL(R). In other words,
ℵ(T, τ) is an element of LL(R[T, τ ]) such that ℵ(T, 0) = α(T ) and ℵ(T, 1) = β(T ), while ℵ(0, τ) =
ℵ(1, τ) = L[τ ]. Such a homotopy also satisfies Proposition 4.6 and there exists a free R-module L′

and a +hermitian form S(T, τ) such that

ℵ(T, τ)⊕ L′[T, τ ] ⋔

(
1 0

S(T, τ) 1

)
· (L[T, τ ]⊕ L′[T, τ ]) .(39)
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We notice that S(0, τ) and S(1, τ) are non-degenerate and we use

S(1, τ)⊕−S(0, τ)−1

as the homotopy between Mas(α) and Mas(β). This demonstrates that the following diagram
commutes

ΩLL(R) π0F(R)

π0ΩLL(R)

Mas

So far, we have shown that Mas induces a map of sets π0ΩLL(R) → π0F(R), and, it is straight-
forward to check that the Maslov index induces a homomorphism of abelian monoids π0ΩL(R)→
π0F(R).

In order to construct the inverse, let us introduce a loop of Lagrangians parametrized by two
non-degenerate +hermitian forms. Let q0, q1 ∈ SL , then we define the following loop

l̂(q0, q1) =

(
1 0

(1− T )q0 + Tq1 1

)(
1 (T − 1)q−1

0 − Tq
−1
1

0 1

)
· L∗ ∈ ΩLL(R) .(40)

In particular, we have a map

l : FL(R)→ ΩLL⊕L∗(R) , ϕ 7→ l(ϕ) = l̂(λ+, ϕ) ,(41)

which preserves the base point: l̂(λ+, λ+) is the constant loop L[T ] ⊕ L∗[T ]. Moreover, if χ(τ) ∈
FL(R[τ ]) is the homotopy between ϕ and ψ, then l(χ(τ)) is the homotopy between l(ϕ) and l(ψ).
Further, if ϕ ∈ FL(R) and ψ ∈ FL′(R), then l(ϕ ⊕ ψ) is the direct sum of loops in LL⊕L∗(R) ⊕
LL′⊕L′∗(R) (we assume that both L and L′ are free). Therefore, l induces a homomorphism of
abelian monoids

l : π0F(R)→ π0ΩL(R) .(42)

Note that Mas(l̂(q0, q1)) = st[q1 ⊕−q−1
0 ]. Therefore, any element in π0ΩLL(R) can be presented

by the class of l̂(q0, q1) for some q0, q1 ∈ SL . Let us denote the class of α ∈ ΩLL(R) within π0ΩL(R)
by st[α]. We have the following chain of equalities:

st[ l̂(q0, q1)] = st[ l̂(q0 ⊕ q−1
0 , q1 ⊕−q−1

0 )] = st[ l̂(λ+, q1 ⊕−q−1
0 )] = st[ l(q1 ⊕−q−1

0 )](43)

which implies that (42) is surjective. To this end, let us check that Mas and l are inverse to each
other. We observe that λ+ ∼h −λ+ through the following homotopy

E0(−T/2)E1(T )E0(−T )E1(T/2)λ
+E0(T/2)E1(−T )E0(T )E1(−T/2)(44)

Thus, Mas ◦ l(ϕ) = st[ϕ⊕−λ+] = st[ϕ], while l ◦Mas is identity. □

This theorem can be seen as an incarnation of the fundamental theorem of hermitan K-theory
[17], and it is crucial for the further discussion.

6.2. More on π0F(R). The right hand side of (36) is a cryptic abelian monoid and in this section

we aim to give it more algebraic description. Recall the function l̂ that we used for the proof of
Theorem 6.4: it takes a pair of non-degenerate +hermitian forms as an input. We will demonstrate
that (π0F)(R) can be related to a more tractable monoid consisting of such pairs of +hermitian
subject to certain algebraic relations.

Let L be a free R-module and q be a non-degenerate +hermitian form on L; an isomorphism
between the pairs (L; q) and (L′; q′) is an isomorphism of modules a : L→ L′ such that q = a∗◦q′◦a.
We denote the isomorphism class of (L; q) by [L; q] and by Q+lib(R) we denote the abelian monoid
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of isomorphism classes of pairs (L; q) with the direct sum as the binary operation. The free
Grothendieck-Witt group GW+lib(R) is the Grothendieck completion of Q+lib(R). Further, we
consider triples of the form (L; q1, q2) where L is a free module and q1, q2 are non-degenerate
+hermitian forms on L. An isomorphism between the triples (L; q1, q2) and (L′; q′1, q

′
2) is an iso-

morphism of R-modules a : L → L′ such that q1 = a∗ ◦ q′1 ◦ a and q2 = a∗ ◦ q′2 ◦ a. We denote by

Q+lib
1 (R) the abelian monoid of isomorphism classes of triples (L; q0, q1) with the direct sum as the

binary operation and by GW+lib
1 (R) we denote its Grothendieck completion. The main object of

our interest is a subgroup of GW lib
1 (R) obtained by taking a quotient with respect to the “gluing”

relation

[L; q0, q1] + [L; q1, q2] ∼b [L; q0, q2] .(45)

Thus we define V (R) := GW+lib
1 (R)/ ∼b. We will use the same notation for the quotient [L; q0, q1] ∈

V (R). A simple calculation

[L; q0, q1] + [L; q, q] = [L; q0, q] + [L; q, q1] + [L; q, q] = [L; q0, q] + [L; q, q1] = [L; q0, q1]

demonstrates that [L; q, q] = 0 within V (R). As a consequence, we have [L; q0, q1] = −[L; q1, q0].
We aim to show that V (R) is an avatar of π0F(R). In order to do that, let us first collect basic

facts about V (R). There is a “bordism” map:

d : GW+lib
1 (R) −→ GW+lib(R) , [L; q0, q1] 7−→ [L; q0]− [L; q1](46)

which is a homomorphism of abelian groups. The rank of the free module is an obvious invariant
of [L; q] ∈ GW+lib(R) such that we have a group homomorphism

dim : GW+lib(R) −→ Z , [L; q] 7−→ dim L .(47)

The kernel of dim is called the fundamental ideal I lib(R) := ker(dim : GW+lib(R)→ Z) of the free
Grothendieck-Witt group. Homomorphism (46) induces a surjective homomorphism

δ : V (R) −→ I lib(R) .(48)

Lemma 6.5. For any free R-module L and any non-degenerate +hermitian form q on L, there is
a homomorphism of groups:

ν[L;q] : GL(L;R) −→ V (R) , a 7−→ [L; q, a∗ ◦ q ◦a] .(49)

Proof.

[L; q, a′∗ ◦a∗ ◦ q ◦a ◦a′]
(45)
= [L; q, a′∗ ◦ q ◦a′] + [L; q ◦a′, a′∗ ◦a∗ ◦ q ◦a ◦a′] = [L; q, a′∗ ◦ q ◦a′] + [L; q, a∗ ◦ q ◦a]

□

Lemma 6.6. There is a homomorphism of abelian groups

ν : K1(R) −→ V (R)

which is induced by ν[L;q], and which does not depend on L and q.

Proof. Let us compare [L; q, a∗ ◦ q ◦a] and [L′; q′, a′∗ ◦ q′ ◦a′] for different a ∈ GL(L;R) and a′ ∈
GL(L′;R). In order to do that, we introduce an auxiliary module L′′ and do the following algebra

[L; q, a∗ ◦ q ◦a] = [L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, a∗ ◦ q ◦a⊕ q′ ⊕ q′′] =
[L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, (a∗ ⊕ 1⊕ 1) ◦ (q ⊕ q′ ⊕ q′′) ◦ (a⊕ 1⊕ 1)] ,

[L′; q′, a′∗ ◦ q′ ◦a′] = [L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, q ⊕ a′∗ ◦ q′ ◦a′ ⊕ q′′] =
[L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, (1⊕ a′∗ ⊕ 1) ◦ (q ⊕ q′ ⊕ q′′) ◦ (1⊕ a′ ⊕ 1)]
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Using the previous lemma, we find that

[L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, (1⊕ a′∗ ⊕ 1) ◦ (q ⊕ q′ ⊕ q′′) ◦ (1⊕ a′ ⊕ 1)] =

− [L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, (1⊕ (a′∗)−1 ⊕ 1) ◦ (q ⊕ q′ ⊕ q′′) ◦ (1⊕ a′−1 ⊕ 1)]

such that the difference is given by

[L; q, a∗ ◦ q ◦a]− [L′; q′, a′∗ ◦ q′ ◦a′] = [L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, (a⊕ a′−1 ⊕ 1)∗ ◦ (q ⊕ q′ ⊕ q′′) ◦ (a⊕ a′−1 ⊕ 1)] .

We use the identity holding for any a ∈ GL(L;R):(
a 0
0 a−1

)
=

(
1 a
0 1

)(
1 0
−a−1 1

)(
1 a
0 1

)(
1 0
1 1

)(
1 −1
0 1

)(
1 0
1 1

)
(50)

If a and a′ represent the same class in K1(R), then they are equivalent up to stabilization and
elementary automorphism: combination of this fact with identity (50) demonstrates that (a ⊕
a′−1⊕1) is an elementary automorphism if the auxiliary module L′′ is large enough. Thus, we have
demonstrated that the difference

[L; q, a∗ ◦ q ◦a]− [L′; q′, a′∗ ◦ q′ ◦a′] = [L⊕ L′ ⊕ L′′; q ⊕ q′ ⊕ q′′, e∗ ◦ (q ⊕ q′ ⊕ q′′) ◦e]

for some elementary automorphism e ∈ EGL(L⊕ L′ ⊕ L′′;R), which concludes the proof. □

Corollary 6.7. For any triple [L; q0, q1] ∈ V (R) and any a0, a1 ∈ GL(R), the following relation
holds

[L; a∗0 ◦ q0 ◦a0, a
∗
1 ◦ q1 ◦a1] = [L; q0, q1] + ν (Det (a1 ◦a

−1
0 ))

where Det(a1 ◦a
−1
0 ) is the image of a1 ◦a

−1
0 in K1(R).

Our immediate goal is to connect V (R) with F(R).

Lemma 6.8. The abelian monoid F(R)/EGL(R) is a group.

Proof. Any element in F(R) is the stabilization of some form ϕ ∈ FL(R). For appropriate choice
of a module, homotopy (35) evaluated at T = 1 gives an elementary transformation, denote it by
e, such that e∗ ◦ (ϕ⊕−ϕ−1) ◦e = λ+ ∈ FL⊕L(R). Therefore, the class of −ϕ−1 is inverse to the class
of ϕ in F(R)/EGL(R). □

Lemma 6.9. The map

χ : FL(R) −→ V (R) , ϕ 7−→ [L⊕ L∗;λ+, ϕ]

factors through the stabilization with the projection FL(R) → F(R)/EGL(R) where EGL(R) acts
on F(R) by conjugations. The following diagram commutes

FL(R) V (R)

F(R)/EGL(R)

χ

ϵ

and the induced map ϵ is a surjective homomorphism of abelian groups.

Proof. Clearly, all the maps on the diagram are homomorphisms of monoids. Factorization of χ
through the stabilization is straightforward, while factorization through the action of EGL(R) is
due to Corollary 6.7. Let us demonstrate that ϵ is surjective. Any element of V (R) is a triple

[L; q0, q1] obtained from GW+lib
1 by taking the quotient with respect to (45). Let us notice that

[L; q0, q1] = [L; q0, q1] + [L∗;−q−1
0 ,−q−1

0 ] = [L⊕ L∗; q0 ⊕−q−1
0 , q1 ⊕−q−1

0 ] .
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Homotopy (35) evaluated at T = 1 is an elementary transformation mapping q0 ⊕ −q−1
0 to λ+.

Using this observation and Corollary 6.7, we conclude that [L; q0, q1] = [L ⊕ L∗;λ+, q1 ⊕ −q−1
0 ] as

elements of V (R), what demonstrates that ϵ is surjective. □

Theorem 6.10. For a commutative ring with involution R where 2 is invertible, there is a homo-
morphism of groups:

ρ : V (R) −→ F(R)/EGL(R)(51)

induced by the map [L; q0, q1] 7→ q1⊕−q−1
0 , such that ρ is inverse to ϵ and V (R) ∼= F(R)/EGL(R).

Proof. It is straightforward to check that ρ is a homomorphism of abelian groups: the image of
[L; q, q] in F(R) is trivial thanks to the proof of Lemma 6.8. The composition ϵ◦ρ is identity thanks
to the proof of Lemma 6.9. Homotopy (44) evaluated at T = 1 gives an elementary transformation,
denote it by e−, such that e∗− ◦λ

+ ◦e− = −λ+. Therefore, ρ ◦ ϵ is identity as well. □

Theorem 6.11. For a commutative ring with involution R where 2 is invertible there is an iso-
morphism of groups:

F(R)/EGL(R) ∼= π0F(R).

Proof. If there exists e ∈ EGL(L ⊕ L∗;R) such that e∗ ◦ϕ ◦e = ψ ∈ FL(R), then ϕ ∼h ψ: a
concrete homotopy can be built from any presentation of e as a product of elementary matrices,
analogously to the one used in the proof of Proposition 4.4. This demonstrates that the map
F(R)/EGL(R) → π0F(R) is surjective. Let us demonstrate that this map is also injective. In
order to do that, we will prove that if ϕ ∼h ψ, as elements of F(R), then there exists a ∈ EGL(R)
such that a∗ ◦ϕ ◦a = ψ. The proof below is adapted from [34] and [35].

Let α(T ) ∈ FL(R[T ]) be such that α(0) = ϕ and α(1) = ψ. First of all, let us show that there
exists a free module L′ and e ∈ EGL(L⊕L∗⊕L′⊕L′∗;R[T ]) such that

e∗ ◦ (α(T )⊕ λ+
L′) ◦e = α0 + Tα1(52)

for some α0, α1 ∈ FL⊕L′(R). Since 2 is invertible in R, as well as in R[T ], we can represent any
+hermitian form as α(T ) = γ(T )+γ∗(T ) for some non-degenerate quadratic form γ. Let us assume
that the degree of γ in T is m and decompose γ into a sum of homogeneous components

γ =
m∑
k=0

γkT
k .

Let us fix a basis for L⊕L∗, and let {γij}ri,j=1 be the matrix of γm in this basis, then introduce a
module map :

κ =


−Tm−1 0 0 . . . 0
γ11T γ12T γ13T . . . γ1rT
0 −Tm−1 0 . . . 0

. . . . . .
γr1T γr2T γr3T . . . γrrT

 .

This map satisfies κ∗λ+
L′κ = −(γm + γ∗m)Tm and we can use it to cancel the Tm term in the

homogeneous decomposition of α(T ):(
1 κ∗

0 1

)(
α(T ) 0
0 λ+

)(
1 0
κ 1

)
=

(
α(T ) + κ∗λ+κ κ∗λ+

λ+κ λ+

)
(53)

The R.H.S. of (53) is an element of FL⊕L′(R) with the degree at T at most m− 1. By iterating this
process, we end up with a transformation of the form (52), which has the degree at most one in T .
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Let p(T ) be a formal series satisfying p(T )2 = 1 + T , i.e.,

p(T ) =

∞∑
k=0

(
1/2
k

)
T k ,

and let us introduce an automorphism ξ = α−1
0 ◦α1, which is nilpotent, see Section 16 of [35].

Therefore, p(ξT ) is a polynomial at ξT . We notice that α0 ◦ ξ = ξ∗ ◦α0 and α1 ◦ ξ = ξ∗ ◦α1 such
that (

p(ξT )−1
)∗
◦ (α0 + α1T ) ◦p(ξT )

−1 = (α0 + α1T ) ◦p(ξT )
−2 = α0 .(54)

Further, we use the homotopy invariance of K1-functor for regular rings. Namely, if we have a
path of automorphisms a(T ) ∈ GL(L;R[T ]) for some free module L such that a(0) = 1, then a(1)
is elementary up to stabilization. We apply this result to p(ξT )−1 to demonstrate that p(ξ) is
elementary up to stabilization.

Let us denote the image of FL(R) ∋ ϕ in F(R) by st(ϕ). Evaluation of (54) at 1 provides us
with an elementary transformation a ∈ EGL(R) such that a∗ ◦ st(ϕ) ◦a = st(ψ) which finishes the
proof. □

As a corollary from Theorems 6.4, 6.11, and 6.10, we get an isomorphism of abelian monoids
π0ΩL(R) ∼= V (R). The group V (R) is a well-studied object, see [24, 36], while V is a functor
“intermediate” between the algebraic and hermitian K-theory functors [17]. Later we will be
interested in Laurent extensions of Fp with p odd. Using techniques from [36], one checks that

V (Fp) ∼= F×
p and V (Fp[x, x

−1]) ∼= Z×
p ⊕ GW+lib(Fp) where GW+lib(Fp) ∼= GW+(Fp); further

Laurent extensions are less tractable.

Proposition 6.12. The following sequence is exact:

K1(R)
ν−−→ V (R)

δ−−→ I lib(R) −→ 0(55)

Proof. The kernel of δ consists of classes of triples [L; q0, q1] such that [L; q0]− [L; q1] = 0 ∈ I lib(R)
which means that q0 and q1 are isometric, i.e., q1 = a∗ ◦ q0 ◦a for some a ∈ GL(L;R). Due to
Corollary 6.7, the action of GL(L;R) factors through the homomorphism GL(L;R)→ K1(R). □

The main result of this section is the classification of loops of Lagrangians based at the stan-
dard Lagrangian L ⊂ H−(L) by pairs of non-degenerate +hermitian forms on L. Recall that the
hyperbolic λ−-unitaries stabilize the standard Lagrangian. As with the group U−(R), defined by
(14), we treat the hyperbolic λ−-unitaries as trivial. In terms of V (R), this amounts to taking the
quotient with respect to the action of K1(R), defined in Lemma 6.6, such that the quotient group is
the fundamental ideal I lib of the free Grothendieck-Witt group. In the next section, we will review
the calculation of W+lib(R) for multiple Laurent extensions of Fp and calculate the corresponding
fundamental ideals.

7. Fundamental ideal

In this section, we analyze the fundamental ideal of the free Witt group of +hermitian forms
for the ring of Laurent polynomials Fd

p := Fp[x1, x
−1
1 , . . . , xd, x

−1
d ] with odd p. Note that I lib(Fd

p) is

isomorphic to I(Fd
p) due to the Serre-Suslin-Swan theorem. Thus, it suffices to compute I(Fd

p).

Recall, the Witt group of +hermitian forms W+(Fd
p), defined in (13), is the quotient of the

Grothedieck-Witt group of +hermitian forms on free Fd
p-modules of finite rank modulo hyperbolic

forms. The fundamental ideal I(Fd
p) consists of elements from W+(Fd

p) corresponding to classes of
forms on modules of even rank. Thus, I fits into the following exact sequence

0 −→ I(Fd
p) −→W+(Fd

p) −→ Z/2 −→ 0(56)
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such that I(Fd
p) is a subgroup of W+(Fd

p) of order two.
It is instructive to calculate I(Fp) explicitly. It is well-known, see, e.g., [37], that the Witt group

W+(Fp) is a group of order four generated by +hermitian forms on rank one modules. Let us
denote those forms by ⟨1⟩ and ⟨θ⟩, where θ ∈ F×

p /F2×
p is a square non-residue. Then, the Witt

group is given by the following generators and relations depending on p mod 4:

W+(Fp) ∼= ⟨ ⟨1⟩, ⟨θ⟩ | 2⟨1⟩ = 2⟨θ⟩ = 0 ⟩ ∼= Z/2⊕ Z/2 , p ≡ 1 mod 4 ,

W+(Fp) ∼= ⟨ ⟨1⟩, ⟨θ⟩ | 2⟨1⟩ = 2⟨θ⟩, ⟨1⟩+ ⟨θ⟩ = 0 ⟩ ∼= Z/4 , p ≡ 3 mod 4 .

Thus, I(Fp) ∼= Z/2 is generated by ⟨1⟩ + ⟨θ⟩ for p ≡ 1 mod 4 and by 2⟨θ⟩ for p ≡ 3 mod 4. This
can also be seen directly from (55) after noting that V (Fp) ∼= F×

p .

We are interested in the fundamental ideal I(Fd
p) for d = 1, 2, 3, and 4. The calculation of

W+(Fd
p) was done by A. Ranicki in [38] and recently reviewed by J. Haah in [12]. Due to the Serre-

Suslin-Swan theorem, Ranicki’s V - and U -theories for Fd
p coincide. Also, theories of ±hermitian

forms coincide with theories of ±quadratic forms since we focus on Fd
p with odd p. We adopt the

notation used by Haah:

Ln(Fd
p) =


W+(Fd

p) , n ≡ 0 mod 4 ,

U+(Fd
p) , n ≡ 1 mod 4 ,

W−(Fd
p) , n ≡ 2 mod 4 ,

U−(Fd
p) , n ≡ 3 mod 4 .

These L-groups satisfy the following recursion relation [38, 12]:

Ln(Fd
p)
∼= Ln(Fd−1

p )⊕ Ln−1(Fd−1
p ) .(57)

The base of recursion is given by L0(Fp) = W+(Fp) and by known isomorphisms:

L1(Fp) ∼= 0 L2(Fp) ∼= 0 L3(Fp) ∼= 0 .

We immediately obtain:

W+(Fp) ∼= W+(F1
p)
∼= W+(F2

p)
∼= W+(F3

p) , W+(F4
p)
∼= W+(Fp)⊕W+(Fp) ,(58)

and obvious isomorphisms

I(Fp) ∼= I(F1
p)
∼= I(F2

p)
∼= I(F3

p) .(59)

In order to calculate I(F4
p), we need a closer look at how isomorphism (57) works. We always have a

ring homomorphism of evaluation at 1, which induces a group homomorphism W+(F4
p)→W+(F3

p)

whose kernel is isomorphic to W+(Fp). Moreover, one copy of W+(Fp) is present in W+(Fd
p) for all

d and it comes from d = 0. The second copy of W+(Fp) is the image of U−(F3
p) under a map B↑

3:

B↑
3 : U

−(F3
p)→W+(F4

p)(60)

defined in Section 5.8 of [12]. In short, B↑
3 maps a λ−-unitary u ∈ U−(L;R) to a +hermitian form

on the induced F4
p-module F4

p ⊗F3
p
(L ⊕ L∗). Explicitly, the non-trivial classes of forms in W+(F4

p)

can be obtained by applying B↑
3 to the non-trivial classes of U−(F3

p) which are provided in Section

IV of [39]. This simple observation leads to a conclusion that the whole image of B↑
3 consists of

classes of hermitian forms of even rank, and we obtain

I(F4
p)
∼= Z/2⊕W+(Fp) .(61)

Note that the first term Z/2 is also present in the zero-dimensional case, i.e., there is an inclusion
ι : I(Fp) → I(Fd

p) for d = 1, 2, 3. Clearly, any loop of Lagrangians over Fp defines a loop of
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Lagrangians over Fd
p. In order to get rid of the zero-dimensional loops, we define Ĩ(Fd

p) = coker ι.
A similar reduction of the space of invertible lattice systems is discussed in Section VI of [40].
As a result, we obtain that the homotopy classes of loops of free Lagrangians modulo shifts and
zero-dimensional loops are given by

Ĩ(Fd
p)
∼= 0 for d = 0, 1, 2, 3 , and Ĩ(F4

p)
∼= W+(Fp) .(62)

This concludes our calculation and we arrive at the result announced in Section 1.
It is not difficult to calculate Ĩ(Fd

p) for p > 2 and d > 4: there is a 4-fold periodicity in the

sense that Ĩ(Fd
p)
∼= Ĩ(Fd−4

p ) ⊕W+(Fp). We expect that the reduced fundamental ideal modulo
the coarse-graining procedure, as in Section 6 of [12], is completely 4-periodic. In other words, we
expect that the classification of loops of Clifford unitaries, up to a reasonable equivalence relation,
is periodic in spatial dimension with period 4.

8. Discussion

In this paper, we studied homotopy classes of periodic Clifford unitaries through the analysis
of stabilizer Hamiltonians they act on. We found that there are non-trivial homotopy classes of
periodic Clifford unitaries in four spatial dimensions.

1. Our calculations heavily relied on the classical results in Hermitian K-theory, in particular,
the fundamental theorem by Karoubi [17] and its interpretation by Barges and Lannes [18]. The
fundamental theorem applies only to rings with involution containing an element λ such that
λ + λ̄ = 2. In our case, this condition restricts us to prime p-dimensional qudits with p > 2.
However, from the physics perspective, we expect that similar results can be obtained for p = 2.
Namely, we expect that the group of homotopy classes of reduced loops of Clifford unitaries for
four-dimensional lattices of qubits is isomorphic to the Witt group of symmetric bilinear forms on
F2-vector spaces. The reason to believe it is true is described in the next paragraph.

2. The results obtained in this letter confirm the general correspondence between d-dimensional
QCA and (d + 1)-dimensional Floquet circuits, also known as the bulk-boundary correspondence,
as mentioned in [12] and analyzed for d = 1 in [41]. An heuristic argument towards the bulk-
boundary correspondence for QCA is a variant of the famous argument by Kitaev about loops of
short-range entangled phases [42], reviewed, in particular, in [43]. Colloquially speaking, we should
replace the d-dimensional SRE state in Kitaev’s argument with a d-dimensional QCA to obtain a
(d+1)-dimensional Floquet circuit parametrized by the QCA. In our approach, the bulk-boundary
correspondence arises as an incarnation of the fundamental theorem of hermitian K-theory.

3. As we reviewed in the introductory section, the Clifford framework admits a formulation
in terms of λ−-unitaries and is naturally connected to the Hermitian K-theory. Of course, there
are QCA beyond Clifford QCA, see examples in [44], for which the Hermitian K-theory does not
immediately apply. A novel approach to the general QCA in terms of invertible subalgebras can
be found in [45] and C∗-algebraic approach to symmetric QCA acting on fusion chains is discussed
in [46]. One of the possible candidates describing the structure of general QCA is a Hermitian
K-theory of dg categories in the sense of [47].
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