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Abstract

Trash to Treasure:
Extracting Cosmological Utility from Sparsely Observed Type Ia Supernovae

by

Benjamin Ernest Stahl

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Alexei V. Filippenko, Co-chair

Associate Professor Daniel Kasen, Co-chair

Type Ia supernovae (SNe Ia) are magnificent explosions in the Cosmos that are thought to
result from the thermonuclear runaway of white dwarf stars in multistar systems (see, e.g.,
Jha et al. 2019, for a recent review). Though the exact details of the progenitor system(s)
and explosion mechanism(s) remain elusive, SNe Ia have proven themselves to be immensely
valuable in shaping our understanding of the physical laws that govern the evolution of the
Universe (i.e., physical cosmology). This value is manifested chiefly in two empirical facts:
(i) SNe Ia are incredibly luminous (reaching the equivalent of several billion Suns), and
(ii) the relatively similar peak luminosities that all “normal” SNe Ia reach can be further
homogenized by exploiting a correlation with the rate of photometric evolution (e.g., Phillips
1993). Together, these facts make SNe Ia excellent extragalactic distance indicators, and
their use as such led to the discovery of the accelerating expansion of the Universe (Riess
et al. 1998; Perlmutter et al. 1999). Through this, the current cosmological paradigm came
into favor — the so-called ΛCDM model, where the Universe consists primarily of repulsive
dark energy (of which a leading candidate is Einstein’s cosmological constant, Λ) and cold
dark matter (CDM).

In this thesis, I present a comprehensive study that follows the entire SN Ia cosmology life-
cyle, from data acquisition to cosmological analysis (albeit of a different flavor than those
mentioned above). While these “bookends” provide natural segmentation points in this the-
sis, there is a third, intermediate segment which serves to present a complementary method
for SN Ia distance measurement that is far less data intensive than conventional approaches.
In this way, the segments are hierarchical, each depending on its predecessor and enabling
its successor.

After appropriately setting the stage in Chapter 1, I delve into the first segment (data



2

acquisition) with Chapter 2, a data release and analysis of 93 multipassband SN Ia light
curves collected between 2005 and 2018, and Chapter 3, a complementary release of 637 low-
redshift SN Ia optical spectra from a similar time interval. In both, I describe open-source
software I developed for data processing and analysis purposes, and make — in addition to
the data themselves — useful, value-added data products (e.g., fitted parameters from light
curves) available to the community. When combined with prior releases, the Berkeley SN Ia
sample now reaches nearly 2000 optical spectra and more than 250 multiband light curves,
all observed and processed with the utmost care for quality and internal consistency.

This large, homogeneous sample proves critical for the second segment of this thesis, in which
I ultimately develop and validate the aforementioned technique — the snapshot distance
method (SDM) — for estimating the distance to an SN Ia from sparse observations. As a
prerequisite to the SDM, I develop, in Chapter 4, an open-source software package called
deepSIP that is capable of determining the phase and light-curve shape of an SN Ia — both
of which conventionally require a well-sampled light curve — from a single optical spectrum.
At its heart, deepSIP consists of a set of three convolutional neural networks trained on
a significant fraction of all publicly available SN Ia optical data (including those presented
in the first segment of this thesis), with judicious augmentation steps included to promote
telescope agnosticism and model robustness. The impressive performance of deepSIP enables
the SDM, which, as I demonstrate in Chapter 5, is capable of deriving an SN Ia distance
estimate from as little as one optical spectrum and one epoch of 2+ passband photometry
with notable precision over a wide range of SN Ia parameters.

This leads, finally, into the last segment of this thesis (cosmological analysis), where I use
the SDM to turn trash (i.e., SN Ia observations that were previously unusable owing to
data sparsity) into treasure (i.e., reliable distance estimates to be used in a cosmological
study). In particular, in Chapter 6, I combine a novel sample of 137 SDM-resurrected
SNe Ia with a large literature sample of SNe Ia and SNe II to measure peculiar velocities
and set leading (from an SN-only perspective) constraints on the cosmological parameter
combination fσ8 and the nature of bulk flows in the local Universe. Moreover, the methods
by which I perform this analysis establish a reproducible and extensible blueprint for future
such analyses as large-scale surveys come online and unleash an unprecedented data volume.



i

Dedicated to those across the globe whose lifestyles, livelihoods, and very lives have been
disrupted by the COVID-19 pandemic. That this dissertation was completed in the midst

of a global crisis is a testament not to myself, but to my privilege.



ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Supernova Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Photometry of 93 SNe Ia 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Sample Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Light Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Spectroscopy of 247 SNe Ia 50
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 Sample Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 deepSIP 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



iii

4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Supplementary Light Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7 Light-Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 SN Ia Snapshot Distances 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 The Snapshot Distance Method . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Validating the Snapshot Distance Method . . . . . . . . . . . . . . . . . . . 120
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Peculiar-velocity Cosmology with Supernovae 132
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.6 Snapshot Distance Sample Selection . . . . . . . . . . . . . . . . . . . . . . . 153

7 Conclusion 157

Bibliography 160



iv

List of Figures

2.1 Transmission curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Galaxy subtraction example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Uncertainty distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Nickel2 colour terms as a function of time . . . . . . . . . . . . . . . . . . . . . 20
2.5 Nickel2 atmospheric correction terms as a function of time . . . . . . . . . . . . 21
2.6 KAIT4 − Nickel2 calibration star residual distributions . . . . . . . . . . . . . . 23
2.7 Distributions of dataset parameters . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Number of photometry epochs vs. average cadence . . . . . . . . . . . . . . . . 26
2.9 Distributions of ∆m15 and E(B − V )host . . . . . . . . . . . . . . . . . . . . . . 31
2.10 ∆m15(B) vs. ∆m15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.11 Distributions of ∆ and AV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.12 Comparison of light-curve fitter results . . . . . . . . . . . . . . . . . . . . . . . 35
2.13 Observed BVRI and unfiltered light curves . . . . . . . . . . . . . . . . . . . . . 40

3.1 Low, medium, and high SNR SN Ia spectra . . . . . . . . . . . . . . . . . . . . 54
3.2 SNID-determined redshifts versus host-galaxy redshifts . . . . . . . . . . . . . . 60
3.3 SNID-determined phases versus those derived from light-curve maxima . . . . . 62
3.4 Distributions of SN-level parameters . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Distributions of spectrum-level parameters . . . . . . . . . . . . . . . . . . . . . 65
3.6 Example of spectral processing with respext . . . . . . . . . . . . . . . . . . . 67
3.7 Evolution of pseudo-equivalent widths . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Evolution of expansion velocities . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Measured velocity shifts from nebular spectra . . . . . . . . . . . . . . . . . . . 74

4.1 Cuts made to obtain final compilation . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Dataset parameter distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Distribution of ∆m15 and phase for the spectra in our compilation . . . . . . . . 88
4.4 Sequences of variance spectra binned by phase or ∆m15 . . . . . . . . . . . . . . 90
4.5 Example of spectral preprocessing procedure and data augmentation strategy . . 93
4.6 Neural network architecture used by deepSIP models . . . . . . . . . . . . . . . 96
4.7 Validation ROC curve for Model I . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.8 Validation RMSE and mean predicted uncertainty values for Models II and III . 104



v

4.9 Phase and ∆m15 predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.10 Estimated uncertainties versus predicted labels . . . . . . . . . . . . . . . . . . 108
4.11 Observed light curves for previously unpublished SNe Ia . . . . . . . . . . . . . 111

5.1 Schematic representation of the snapshot distance method . . . . . . . . . . . . 118
5.2 Comparison of SDM-derived distance moduli to SNooPy reference values . . . . . 123
5.3 Mean residuals as a function of passband combination and photometric epoch . 124
5.4 Residuals as a function of photometric and spectroscopic properties . . . . . . . 125
5.5 One- and two-dimensional projections of parameter residuals . . . . . . . . . . . 127

6.1 Cuts made in selecting the OSC subcatalogues . . . . . . . . . . . . . . . . . . . 137
6.2 Hubble diagram and redshift distribution . . . . . . . . . . . . . . . . . . . . . . 140
6.3 On-the-sky distribution of sample . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.4 σint posterior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5 Bulk-flow amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.6 S8 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



vi

List of Tables

2.1 Colour Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 SN Ia sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Light-curve properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Results of SNooPy and MLCS2k2 fitting . . . . . . . . . . . . . . . . . . . . . . . 46
2.6 Natural-System Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 SN Ia spectral information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 SNID classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Spectral features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Near-maximum spectral feature measurements . . . . . . . . . . . . . . . . . . . 68
3.5 Late-time spectral feature measurements . . . . . . . . . . . . . . . . . . . . . . 75
3.6 SN Ia information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Hyperparameter Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 SNooPy Fitted Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Validation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Flow model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



vii

Acknowledgments

The profound awe of the Cosmos that was the fundamental driver in my undertaking this
dissertation was born late at night sitting with my dad as a young child, just looking at the
stars. To my parents, Jan and Bob: on top of the love, support, and encouragement you
have always given me, I thank you most here for embracing my curious nature so early on.
You didn’t have the answer to every question I asked, but you encouraged me to find the
answers for myself. This dissertation represents the answer to some of those questions.

As with most things worth doing, the earning of a PhD is challenging. It would be very
easy to give all of oneself to conquering the challenge — indeed many do — but balance is
the key to fulfillment. Thank you, Bodhi, Eli, and friends whose names are too numerous to
list, for patiently but persistently reminding me of this on long bike rides, over shared meals,
in contentious Scrabble games, during Battlestar Galactica binges, and between sips of craft
beer. I also thank fellow graduate students, Caleb and Sam, for the (let’s be honest, wimpy)
gym sessions, help through a year of Quantum Mechanics, and hearing damage incurred at
death metal shows in Oakland.

Beyond what was taught in lecture halls, I am eternally grateful to the many academic
mentors who have honored me with their time, advice, and experience in my journey through
higher education. To Jo-Ann Panzardi at Cabrillo College: thank you for making room for me
at the last second, for the many opportunities to assist you in teaching your courses, and for
so deeply and genuinely caring about me and all of your students. I’m (not) sorry I decided to
pursue Physics instead of Engineering, but you should really blame Carlos! Carlos Figueroa,
thank you for bringing me to the “dark side” and for sharing your infectious admiration for
the beauty of Physics with me. You are a world class educator.

My heartfelt gratitude goes to Professor J. Xavier Prochaska at UC Santa Cruz, whose
Advanced Astronomy Lab was, without reservation, the most practically useful, rewarding,
and enjoyable course I have taken anywhere, ever. Moreover, X, I thank you for your
generous and expediently rendered advice on graduate school. Also at UC Santa Cruz, I
thank Professor Tesla Jeltema, my undergraduate thesis advisor, for meaningfully integrating
me into her vibrant research group. I am so fortunate to have been able to travel with you
to Keck Observatory (a feat that I did not repeat while a student at Berkeley), and to have
had your support in my transition to graduate school.

At Berkeley, the list is long. First, I thank Professor Josh Bloom for sharing his intellect
and “his” postdoc, Jorge Mart́ınez-Palomera, on what proved to be an integral part of this
dissertation. What would have been satisfactory became truly outstanding as a result of your
and Jorge’s contributions. Next, I thank my committee members, Professors Dan Kasen,
Saul Perlmutter, and Uroš Seljak — I’m sure one’s qualifying exam is always memorable,
but perhaps mine will especially be so; your faces on Zoom are permanently burned into
my memory. Thank you for assembling on my behalf during a time of worldwide crisis, for
meeting with me, and for providing such valuable advice.

To Alex Filippenko, my doctoral advisor: thank you for your unwavering support these
last five years, for your trust in allowing me to develop as an independent researcher, for



viii

your monumental contributions to humanity’s scientific understanding, for your tireless en-
thusiasm for communicating said understanding, and for providing & 150 pounds of pizza1

that I personally consumed. Amongst the many ways in which your support enabled this
dissertation, I want to call particular attention to the high-caliber team you’ve maintained
for many years. First, to your former graduate students, Mohan Ganeshalingam and Jeffrey
Silverman: thank you for laying the foundations atop which Chapters 2 & 3 sit. To former
graduate student Isaac Shivvers: thank you for showing me the ropes while our tenures briefly
overlapped, and for being a sounding board in the years since. To my frequent collaborators,
group members Thomas de Jaeger and WeiKang Zheng: you two (and possibly my wife) are
the only ones who really know what all of this took. Thank you for being with me at every
step of the journey, for teaching me so much, and for allowing our relationship to evolve
from mentor/mentee to peer/peer. The honor is, and has always been, mine. I also want to
thank all of the brilliant undergraduate students in our group, past and present, whom I’ve
had the honor of working with. In particular, to Goni Halevi for your outstanding edits to
the journal versions of Chapters 2 & 3, to Keto Zhang for help with all things statistical,
and most of all, to Yukei Murakami: I have cherished our work and its unexpected offshoots.
Finally, Tom Brink, I thank you for “saving” me from many a sleepless night (and for the
company on sleepless nights) at the controls of the telescopes our group is fortunate to use.

To have significant portions of this dissertation published in the peer-reviewed scientific
literature is a legacy I will deeply cherish. I thank all of those individuals not already
mentioned above who helped make this a reality. To the referees of my papers: thank you
for holding me accountable and for pushing me to do the best science possible. To all of my
coauthors: thank you for your contributions, feedback, and patience. Chapters 2 & 3 would
not have been possible without the herculean efforts of dozens of (mostly undergraduate)
observers over the past decade, and for this, I offer my deepest gratitude. I am grateful
for the excellent staff at both Lick and Keck Observatories — in particular, Elinor Gates
and Paul Lynam — for their support and service to the astronomical community. I also
wish to recognize and acknowledge the very significant cultural role and reverence that the
summit of Maunakea has always had within the indigenous Hawaiian community. I am most
fortunate to have the opportunity to conduct observations from this mountain.

During my time at Berkeley, I was supported in part by the Marc J. Staley Graduate
Fellowship in Astronomy. Marc, although we will never meet, know that your generosity
has made an impact not just for myself and some of my predecessors, but for the scientific
community and humanity as whole through the research you’ve enabled. Rest in peace.

Finally, to my wife, Darla, and son, Silas: there are not words strong enough to express
the extent of my gratitude, but I will try. Dar, to paraphrase a line from our wedding vows, I
spend a great deal of my time literally looking at the heavens [as evidenced by this thesis], but I
need look no further than your embrace to find sublime happiness, comfort, and love. You’ve
been with me every step of the way, from my graduation from UC Santa Cruz, to uprooting
your life and moving to Berkeley, to helping me see past my own doubts; enabling me, with

1The derivation of this amount is left as an exercise for the reader.



ix

your encouragement, to fully realize my potential. I could not have done this without you.
Si, you’ve helped me find a part of my heart that I didn’t know existed. You’ve also taught
me a lot about productivity — what a privilege it has been to think about Astrophysics
while taking you for walks, changing your diaper, and reading to you (yes, parents quickly
become multitasking masters). May you have, and capitalize on, all the opportunities that
I have been so fortunate to have; but never forget to step back, share, and have an open,
inquisitive mind. As with science, life is best practiced inclusively and with balance.



1

Chapter 1

Introduction

Supernovae (SNe), titanic explosions that demarcate the one-way boundary between life and
death for some stars, have long been the subject of human fascination. Though formally
recognized as a class of astrophysical objects in the early 1900s (the so-called “super-novae”
Baade and Zwicky 1934), SNe can be found in the historical record at least as early as the
year 185 AD, when a bright “guest star” was noted by Chinese astronomers. SNe occur
at a rate of roughly twice per century in a galaxy the size of the Milky Way; thus, the
discovery of > 20, 000 such objects over the last 130 years (Stritzinger and Moriya 2018) is
a truly incredible accomplishment. Only through dedicated telescope surveys (e.g., the Lick
Observatory Supernova Search with the robotic Katzman Automatic Imaging Telescope Li
et al. 2000; Filippenko et al. 2001; Ganeshalingam et al. 2010) have we been able to probe
a sufficiently vast portion of space to discover so many in such a relatively short amount of
time. As part of this thesis (Chapters 2 & 3), I present contributions that further extend
this collective sample.

Before delving into these contributions and the studies that they afford, it is prudent to
describe SNe more substantially. The remainder of this chapter therefore serves to introduce
our understanding of the physical underpinnings of SNe, the tools with which an observa-
tional astronomer studies them, and their broader utility in refining our knowledge of the
basic laws that govern the Universe (i.e., physical cosmology). My coverage of these topics is,
necessarily, incomplete. Indeed, even after decades of intensive study, such a basic detail as
the progenitor system(s) for some SNe (see Section 1.1.2) is not fully understood. Moreover,
I aim for brevity, deferring the reader to seminal articles and reviews where possible.

1.1 Supernovae

As astrophysical objects, SNe can be broadly classified into two groups based upon their
underlying explosion mechanisms: core-collapse SNe (hereafter CCSNe; see Section 1.1.1)
and thermonuclear SNe (hereafter SNe Ia; see Section 1.1.2). However, as observable objects,
SNe have traditionally been classified into four distinct categories (see, e.g., Filippenko 1997,
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for a review of spectroscopic classifications of SNe): those with features of hydrogen (SNe II)
and those without (SNe I) — and of the latter, there are those with silicon features (SNe Ia;
the class of objects studied herein) and those without silicon that do have features of helium
(SNe Ib) or do not have helium (SNe Ic). If this weren’t convoluted enough, it is now known
that SNe II, SNe Ib, and SNe Ic are all, in fact, CCSNe. As I move into a discussion of
the aforementioned explosion mechanisms (and their constituent SNe), I emphasize that the
broad classes mentioned here can all be divided into observationally distinct subgroups. In-
deed, and as we shall see, there exists a specific set of SNe Ia that behave as “standardizeable
candles” (i.e., those SNe Ia that follow the Phillips relation; Phillips 1993), a property that
makes them immensely useful as cosmological distance indicators. Such SNe Ia are integral
to the work I present in Chapters 4, 5, and 6.

1.1.1 Core-Collapse Supernovae

Most high-mass stars (i.e., those with M & 8M�)1 end their lives as CCSNe. As such
stars evolve, their luminosity is powered by the fusion of progressively heavier elements
in their cores. This proceeds until iron builds up in the core, which, owing to its nuclear
stability, marks the end of (exothermic) fusion. Eventually the inert iron core approaches the
Chandrasekhar limit (see Section 1.1.2 for further discussion), and the electron degeneracy
pressure that supports the core can no longer balance the inward pressure due to gravity.
Collapse promptly ensues, accelerating as neutrinos carry away energy, and proceeds until
the core’s rising density reaches roughly that of an atomic nucleus. At this density, neutron
degeneracy pressure and the strong nuclear force take over and halt the collapse. Infalling
matter from the outer layers then rebounds, producing a shock wave that propagates through
the star, though the energy responsible for actually unbinding the star is carried by neutrinos.
This basic physical picture has been in place for roughly 50 years (e.g., Colgate and White
1966), but unresolved details remain (for a slightly dated review, see Woosley and Janka
2005)

As noted above, this basic mechanism is responsible for SNe II, Ib, and Ic, which are
(observationally) segmented by the presence or absence of hydrogen and helium in their
spectra. Physically, these realizations correspond to the state of the progenitor star prior to
explosion. If the outermost hydrogen and helium layers have been lost2 prior to explosion,
the result is an SN Ic; if just the hydrogen layer has been lost, the result is an SN Ib; and if
no layers have been lost, the result is an SN II. Left undiscussed here, and throughout this
thesis, are the multitude of subtypes into which CCSNe can be categorized (see Shivvers
et al. 2017, and references therein).

11M� ≈ 2× 1033 g is the mass of the Sun.
2The stripping of outer layers is thought to be driven by stellar winds and/or mass transfer to a binary

companion.
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1.1.2 Thermonuclear Supernovae

As opposed to high-mass stars, those with relatively low masses (i.e., M . 8M�) are not
guaranteed to end their lives in violent explosions. Instead, they “retire” as white dwarfs
(WDs) — incredibly dense stellar remnants, usually made up mostly of carbon and oxygen
(hereafter, C/O), that are supported against gravitational collapse by electron degeneracy
pressure. There is a preponderance of convincing, albeit circumstantial, evidence that SNe Ia
result from the complete thermonuclear runaway of C/O WDs (e.g., lack of hydrogen and
helium in observations, significant production of 56Ni, predisposition of WDs to runaway
burning, energetics), and direct evidence, though not conclusive, is mounting (e.g., Bloom
et al. 2012a). Taking this to be the truth, the question is, then, how to initiate the ther-
monuclear runaway?

The conventional picture is that the WD is not solitary, but rather in a binary system
in which it can accumulate matter from its companion. The physics of electron degeneracy
dictates an upper bound on the mass of a WD, above which it is unable to support itself
against its own gravity (this is known as the Chandrasekhar limit, with a value of ∼ 1.4M�
for a nonrotating WD). If the companion is nondegenerate (i.e., it is not supported by
degeneracy pressure), then as the WD accretes from it and approaches the Chandrasekhar
limit, it shrinks in size and increases its core temperature to the extent that carbon fusion
can be ignited. Then, in this “single-degenerate channel” (e.g., Whelan and Iben 1973), the
WD is completely unbound by runaway nuclear fusion, manifesting in a brilliant SN Ia. A
“double-degenerate scenario” also exists (e.g., Webbink 1984; Iben and Tutukov 1984), in
which the WD merges with a degenerate companion. This second scenario is often invoked to
explain “super-Chandrasekhar” SNe Ia (e.g., Silverman et al. 2011, though “normal” SNe Ia
can result from this channel as well), and is, in fact, suspected as the dominant mechanism
by which SNe Ia are produced (see Jha et al. 2019, for a recent review), though the matter
is far from settled. A third scenario, in which two WDs in a triple-star system collide head
on, has also received some attention (Katz and Dong 2012; Kushnir et al. 2013; Dong et al.
2015). I emphasize that much is still unknown about the explosion mechanism(s), the exact
properties of the binary companion, and how these factors manifest the observably distinct
subtypes that have been identified.

Despite these gaps in our understanding, the fact remains that SNe Ia are incredibly
luminous (Lpeak ≈ 1043 erg s−1) and relatively homogeneous (known empirically, and often
“justified” with the ultimate ∼ 1.4M� mass of the WD in the canonical single-degenerate
channel). Moreover, it has been demonstrated that there exists a specific subclass of SNe Ia
(hereafter, “normal” SNe Ia) whose peak luminosities can be standardized by accounting for
the shape of their light curves (i.e., the timescale over which they brighten and fade). Though
this so-called “width-luminosity relation” (WLR) has some theoretical support (e.g., Kasen
and Woosley 2007), it has remained largely empirically rooted in its further development
(e.g., Guy et al. 2007; Jha et al. 2007; Burns et al. 2011). Regardless, the WLR imbues
SNe Ia with the property of being excellent cosmological distance indicators. Despite being
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observationally expensive to compile3, efforts to produce a significant dataset of SN Ia-
inferred distances were rewarded with the paradigm-shifting discovery of the accelerating
expansion of the Universe (Riess et al. 1998; Perlmutter et al. 1999). A major focus of this
thesis is estimating the distances to “normal” SNe Ia from far fewer observations than have
traditionally been required (see Chapter 5). Accordingly, my coverage of the plethora of
“peculiar” SN Ia subtypes is intentionally sparse (see Jha et al. 2019, for a comprehensive
discussion of the “Thermonuclear Supernova Zoo”).

1.2 Observables

Distinct from virtually all other physical sciences, observational astronomy has no laboratory
with which to conduct experiments. Instead, the observational astronomer discovers, infers,
and conducts their scientific inquiries by, well, observing. Such observing is done predomi-
nantly with telescopes (both on Earth and in space) that gather light (i.e., electromagnetic
radiation) after it has traversed vast distances through the Cosmos. Owing to the finite
speed of light and the truly immense distances in question, this mode of inquiry allows us
to study the Universe at great distances both in space and (backwards) in time. In this
thesis, I present extensive observations of SNe Ia conducted primarily within the optical4

range of the electromagnetic spectrum. Two distinct techniques — photometry (Chapter 2)
and spectroscopy (Chapter 3) — are employed. I provide an introduction and background to
both in the following paragraphs, with emphasis placed on their relevance to the subsequent
chapters of this thesis.

1.2.1 Photometry

Photometry is a technique which allows astronomers to quantitatively measure the light
intensity of an object. The basic apparatus consists of a telescope, camera (e.g., a charge-
coupled device — CCD), and optionally, a filter to selectively block certain wavelength
ranges. In observation-based SN Ia science, photometry plays two pivotal roles: (i) discovery
and (ii) the monitoring of flux evolution.

In modern surveys, (i) is accomplished by periodically monitoring a large number of
galaxies (or in the case of wide-field surveys, large patches of sky). The constituent images
are then “differenced” against template images using sophisticated subtraction algorithms,
resulting most of the time in nothing, but occasionally in a point source — a candidate
SN. Figure 2.2 shows an example of the procedure, which my illustrious advisor likes to
summarize, in jest, as discovering SNe by “looking for the arrows.” I discuss the primary
means by which candidate SNe are formally classified in Section 1.2.2. The majority of the
aforementioned sample of > 20, 000 SNe have been discovered in the last ∼ 30 years using

3Standardizing an SN Ia requires extensive observations to properly measure the light-curve shape.
4The optical range (∼ 3500–7500 Å) is well suited to SN Ia observations, as a majority of their luminosity

emerges at such wavelengths.



CHAPTER 1. INTRODUCTION 5

this methodology, and in the upcoming ten-year Legacy Survey of Space and Time (LSST)
to be conducted by the Vera C. Rubin Observatory, a further & 106 SNe are projected to be
discovered using this technique (LSST Science Collaboration et al. 2009).

Photometry enables (ii), or the construction of “light curves” in the usual parlance, in a
very natural way. By performing photometry on images (typically in several filters) collected
over the rise and subsequent decline from peak brightness, one can sample the photometric
evolution5 of an SN Ia (or other transient) at whatever cadence is dictated by their scientific
objectives. I present multifilter photometry for 93 SNe Ia at a median cadence of 5.4 days
in Chapter 2. For SN Ia observations intended to result in a distance estimate, it is best
to have light curves sampled at a relatively high cadence, so as to allow the peak observed
brightness and light-curve shape to be precisely determined. As previously mentioned, a
significant component of this thesis is a technique — the snapshot distance method (SDM;
Chapter 5) — that renders these (observationally) expensive requirements largely obsolete.

1.2.2 Spectroscopy

In essence, spectroscopy can be thought of as photometry in the limit where a large number of
very narrow filters are used contemporaneously (in this way, spectra inherently contain more
information than light curves). In practice, spectroscopy is performed by using an optical
element (e.g., a prism or diffraction grating) to disperse the light from an astrophysical object
collected by a telescope into its constituent wavelengths. The brightness at each of these
wavelengths is then recorded using a CCD (as with photometry), yielding a spectrum. At
early times, SN spectra consist of a blackbody continuum with superposed P Cygni profiles
corresponding to species found in the ejecta. Thus, it is through spectra that we know SNe Ia
lack hydrogen but have silicon6 (or rather, the reverse: SN Ia are classified as such owing
to these spectral markers, amongst others). Indeed, most SNe are classified based on the
presence (or absence), shape, and location of features in their spectra. I present a sample of
637 optical spectra of 247 SNe Ia in Chapter 3.

Though SN Ia spectra allow for a vast array of diagnostics (e.g., probing chemical com-
position and the motions of ejecta), we focus on how they can contribute to SN Ia distance
estimation. This can be decomposed into at least two distinct facets: the way(s) in which
spectra might improve the quality of photometric distance estimates, and the way(s) in which
they might improve the efficiency of such distance estimates. Efforts to address the former
have been substantial and fruitful (e.g., Fakhouri et al. 2015, and references therein), but
work on the latter has been notably absent from the recent literature despite indications
that SN Ia follow a spectral analog to the photometric WLR (Nugent et al. 1995). I present
significant progress in addressing this latter area in Chapter 4, demonstrating that modern
machine-learning techniques can recover the light-curve shape of an SN Ia (amongst other
quantities) from a single optical spectrum (I also provide this functionality to the community

5SN Ia light curves are powered predominantly by the radioactive decay chain 56Ni→ 56Co→ 56Fe.
6A broad absorption complex produced by Si ii λλ6347, 6371 (collectively called Si ii λ6355 hereafter) is

omnipresent in near-maximum-light SN Ia spectra.
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as an open-source software package called deepSIP7). In turn, this enables one to estimate
the distance to an SN Ia from a single epoch of spectroscopy and an epoch of multifilter
photometry (see Chapter 5).

1.3 Supernova Cosmology

Setting aside a number of tantalizing open questions surrounding SNe Ia (e.g., details of the
explosion mechanisms, progenitor systems, and many more), I focus now on their utility in
cosmological studies. Such studies typically probe the expansion history of the Universe, with
the emergent picture being that we live in a Universe that is currently dominated (ΩΛ ≈ 0.7)
by a repulsive and mysterious “dark energy” (see, e.g., Scolnic et al. 2018, for recent SN Ia
based constraints) and that is currently expanding at a rate of H0 ≈ 74 km s−1 Mpc−1 (Riess
et al. 2019). Though the latter does call some things into question (see Riess 2019, for a suc-
cinct review), the ΛCDM model still offers a compelling and exquisitely well-substantiated
description for the evolution and content of the Universe, having notched many successes in-
cluding explaining the existence and structure of the cosmic microwave background (CMB),
the observed abundances of hydrogen, helium, and lithium, and of course, the accelerating
expansion of the Universe that brought it into favor when discovered through SN Ia obser-
vations (Riess et al. 1998; Perlmutter et al. 1999). In this thesis, I focus on a distinct way in
which SNe Ia can test ΛCDM; I defer the reader to the references above (and those therein)
for more detail on the aforementioned probes and cosmological parameters.

Henceforth, my focus is not on constraining the cosmological model directly, but rather
on the scatter about the best-fitting model. As we shall see, this allows one to measure
the growth of structure of the Universe, which, at the low redshifts I consider, yields con-
straints on the nature of gravity. Chapter 6 covers the quantitative foundations of this test,
but here I introduce it at a more fundamental level. I start with the unrealistic — but
conceptually simplifying — assumptions that SNe Ia can be perfectly observed (i.e., that
their observed redshifts and magnitudes can be known with infinite precision and accuracy)
and standardized (i.e., that the SN Ia WLR leaves nothing unmodeled and thus perfectly
reconstructs intrinsic, absolute magnitudes), and moreover that the effects of dust can be
perfectly taken into account and that redshifts are sufficiently low that K-corrections are
negligible. In such a scenario one might assume that there would be no remaining dispersion
in the SN Ia Hubble diagram (see Figure 6.2 for an example), but this is not true — I have
carefully stripped away all sources of scatter with my simplifying assumptions except for
one: peculiar velocities (i.e., motions that deviate from the smooth Hubble flow) induced by
the gravitational pull from large-scale structure. Parametrically, this scatter is due to the
difference between the observed redshift, zobs, and the cosmological redshift, z̃, which relate

7https://github.com/benstahl92/deepSIP

https://github.com/benstahl92/deepSIP
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to the line-of-sight peculiar velocity, v, by

v = v · r̂ =

(
zobs − z̃
1 + z̃

)
c, (1.1)

where c is the speed of light and r̂ is a unit vector pointing from the observer to a given
SN Ia (though the notion can be applied to any object for which the redshift can be directly
observed and then inferred through distinct observations and a given cosmological model).
In the case of SNe Ia, the path to z̃ from observations begins with a distance modulus; I
defer the reader to Chapter 6 for more details. I do emphasize, however, that SNe Ia are an
attractive class of objects with which to measure peculiar velocities because of the precision
afforded by modern implementations of the WLR. Moreover, being induced by large-scale
structure, SN Ia-inferred peculiar velocities offer a direct probe of the total matter distri-
bution (thus bypassing the tedious “bias corrections” that must be made when measuring
galaxy distributions).

In Chapter 6, I compile a vast collection of SN Ia-based peculiar-velocity measurements
using a literature sample and a number of new estimates derived using my SDM (see Chap-
ter 5), to which I add a modest sample of SNe II. I then aggregate over the constituent
peculiar velocities to measure the bulk flow of our Local Group relative to the CMB, finding
a result that agrees with the expectation inferred from ΛCDM. Also, by comparing against
a reconstructed peculiar-velocity field, I derive the tightest ever SN-based constraints on the
growth rate of structure normalized by the standard deviation of overdensities in 8h−1 Mpc
spheres (i.e., fσ8, where f is the growth rate of structure and σ8 is the normalization factor).
As explained in Chapter 6, this provides an exquisite test of general relativity (spoiler alert:
test passed).

1.4 This Thesis

I organize the remainder of this thesis to largely follow the development given thus far. The
two following chapters are used to present significant, new sets of photometric (Chapter 2)
and spectroscopic (Chapter 3) observations and analyses of relatively nearby SNe Ia. I then
combine portions of these datasets with a substantial and carefully reprocessed literature
sample to form the compilation of SN Ia spectra with corresponding light-curve-derived
parameters used to develop and evaluate deepSIP (Chapter 4), an open-source software
package that measures the phase and — for the first time ever using deep learning — light-
curve shape of an SN Ia from a single optical spectrum. Using this tool, I demonstrate how
the SDM of Chapter 5 can be used to estimate the distance to an SN Ia from just one optical
spectrum and one epoch of multifilter photometry. Finally, I use the SDM in Chapter 6
to estimate the distances to a significant number of sparsely observed SNe Ia, which I then
combine with a literature sample of SN Ia and SN II distances to study the bulk flow of
the local Universe and set stringent constraints on the degenerate cosmological parameter
combination, fσ8. Brief concluding remarks are given in Chapter 7.
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Chapter 2

Lick Observatory Supernova Search
Follow-Up Program: Photometry
Data Release of 93 Type Ia
Supernovae

A version of this chapter was originally published in The Monthly Notices of the Royal
Astronomical Society (Stahl et al. 2019).

Chapter Abstract

We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the
Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and
2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided
between distinct subclasses (three SN 1991bg-like, three SN 1991T-like, four SNe Iax, two
peculiar, and three super-Chandrasekhar events), and has a median redshift of 0.0192. The
SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4
days, and the median first observed epoch is ∼ 4.6 days before maximum B -band light.
We describe how the SNe in our sample are discovered, observed, and processed, and we
compare the results from our newly developed automated photometry pipeline to those from
the previous processing pipeline used by LOSS. After investigating potential biases, we derive
a final systematic uncertainty of 0.03 mag in BVRI for our dataset. We perform an analysis
of our light curves with particular focus on using template fitting to measure the parameters
that are useful in standardising SNe Ia as distance indicators. All of the data are available
to the community, and we encourage future studies to incorporate our light curves in their
analyses.
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2.1 Introduction

Type Ia supernovae (SNe Ia) are objects of tremendous intrigue and consequence in astron-
omy. As individual events, SNe Ia — especially those at the extremes of what has been
previously observed (e.g., Filippenko et al. 1992b,a; Foley et al. 2013a) — present inter-
esting case studies of high-energy, transient phenomena. Collectively, SNe Ia are prized as
“cosmic lighthouses” with luminosities of several billion Suns, only a factor of 2–3 lower
than an L∗ host galaxy of ∼ 1010 L�. The temporal evolution of the luminosity of a SN Ia,
which is powered largely by the radioactive decay chain 56Ni→ 56Co→ 56Fe, is codified by
light curves (typically in several broadband filters). With some variation between filters, a
SN Ia light curve peaks at a value determined primarily by the mass of 56Ni produced and
then declines at a rate influenced by its spectroscopic/colour evolution (Kasen and Woosley
2007). With the advent of empirical relationships between observables (specifically, the rate
of decline) and peak luminosity (e.g., Phillips 1993; Riess et al. 1996; Jha et al. 2007; Zheng
et al. 2018a), SNe Ia have become immensely valuable as cosmological distance indicators.
Indeed, observations of nearby and distant SNe Ia led to the discovery of the accelerating
expansion of the Universe and dark energy (Riess et al. 1998; Perlmutter et al. 1999), and
they continue to provide precise measurements of the Hubble constant (Riess et al. 2016,
2019).

The aforementioned light-curve “width-luminosity” relations form the basis for the use of
SNe Ia as cosmological distance indicators. To further refine these relationships as well as un-
derstand their limitations, extensive datasets of high-precision light curves are required. At
low redshift, multiple groups have answered the call, including the Calán/Tololo Supernova
Survey with BVRI light curves of 29 SNe Ia (Hamuy et al. 1996), the Harvard-Smithsonian
Center for Astrophysics (CfA) Supernova Group with > 300 multiband light curves spread
over four data releases (Riess et al. 1999; Jha et al. 2006; Hicken et al. 2009a, 2012, hence-
forth CfA1-4, respectively), the Carnegie Supernova Project (CSP) with > 100 multiband
light curves (Contreras et al. 2010; Folatelli et al. 2010; Stritzinger et al. 2011; Krisciunas
et al. 2017, henceforth CSP1, CSP1a, CSP2, and CSP3, respectively), and our own Lick
Observatory Supernova Search (LOSS) follow-up program with BVRI light curves of 165
SNe Ia (Ganeshalingam et al. 2010, henceforth G10). More recently, the Foundation Super-
nova Survey has published its first data release of 225 low redshift SN Ia light curves derived
from Pan-STARRS photometry (Foley et al. 2018). Despite these extensive campaigns, there
exist many more well-observed light curves for high redshift (z & 0.1) SNe Ia than for those
at low redshift (Betoule et al. 2014). As low-redshift SNe Ia are used to calibrate their
high-redshift counterparts, a larger low-redshift sample will be useful for further improving
width-luminosity relations, gauging systematic errors arising from the conversion of instru-
mental magnitudes to a uniform photometric system, and for investigating evolutionary
effects over large timescales.

The LOSS follow-up program has been in continuous operation for over 20 years. The
result is an extensive database of SN Ia photometry from images obtained with the 0.76 m
Katzman Automatic Imaging Telescope (KAIT) and the 1 m Nickel telescope, both located
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at Lick Observatory. G10 released SN Ia light curves from the first 10 years of the LOSS
follow-up campaign, and in this paper we publish the corresponding dataset for the following
10 years (2009–2018). We also include several earlier SNe Ia that were omitted from the first
publication. In aggregate, our dataset includes BVRI light curves of 93 SNe Ia with a typical
cadence of ∼ 5.4 days drawn from a total of 21,441 images.

Our dataset overlaps with those of CfA3, CfA4, and CSP3. In particular, we share 7
SNe with CfA3 and 16 with CfA4; however, we expect the upcoming CfA5 release to have
considerable overlap with ours, as it will be derived from observations over a similar temporal
range. With regard to CSP3, we have 16 SNe in common. Accounting for overlaps, 28 SNe
in our sample have been covered by at least one of these surveys, thus leaving 65 unique SNe
in our sample.

The remainder of this paper is organised in the following manner. Section 3.2.2 details
our data acquisition, including how our SNe are discovered and which facilities are employed
to observe them. In Section 2.3 we discuss our data-reduction procedure, with particular
emphasis placed on our automated photometry pipeline. Section 6.4 presents our results,
including comparisons with those in the literature that were derived from the same KAIT
and Nickel images, when such an overlap exists. We derive and discuss the properties of our
light curves in Section 5.4, and our conclusions are given in Section 6.5.

2.2 Observations

2.2.1 Discovery

Many of the SNe Ia presented here were discovered and monitored by LOSS using the robotic
KAIT (Li et al. 2000; Filippenko et al. 2001, see G10 for remarks on SN Ia discovery with
LOSS). We note that the LOSS search strategy was modified in early 2011 to monitor
fewer galaxies at a more rapid cadence, thus shifting focus to identifying very young SNe in
nearby galaxies (e.g., Silverman et al. 2012b). Consequently, the proportion of our sample
discovered by LOSS is less than in that presented by G10. Those SNe in our sample that
were not discovered with KAIT were sourced from announcements by other groups in the SN
community, primarily in the form of notices from the Central Bureau of Electronic Telegrams
(CBETs) and the International Astronomical Union Circulars (IAUCs). Whenever possible
and needed, we spectroscopically classify and monitor newly discovered SNe Ia with the Kast
double spectrograph (Miller and Stone 1993) on the 3 m Shane telescope at Lick Observatory.
Discovery and classification references are provided for each SN in our sample in Table 2.3.

While the focus in this paper is on SNe Ia, we have also built up a collection of images
containing SNe II and SNe Ib/c (see Filippenko 1997, for a discussion of SN spectroscopic
classification). These additional datasets have been processed by our automated photometry
pipeline and will be made publicly available pending analyses (T. de Jaeger et al. 2019, in
prep., & W. Zheng et al. 2019, in prep.; for the SN II and SN Ib/c datasets, respectively).
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2.2.2 Telescopes

The images from which our dataset is derived were collected using the 0.76 m KAIT (∼ 86%
of the total) and the 1 m Nickel telescope (∼ 14% of the total), both of which are located
at Lick Observatory on Mount Hamilton near San Jose, CA. The seeing at this location
averages ∼ 2′′, with some variation based on the season.

KAIT is a Ritchey-Chrétien telescope with a primary mirror focal ratio of f/8.2. Between
2001 September 11 and 2007 May 12 the CCD used by KAIT was an Apogee chip with
512× 512 pixels, and henceforth it has been a Finger Lakes Instrument (FLI) camera with
the same number of pixels. We refer to these as KAIT3 and KAIT4, respectively1. Both
CCDs have a scale of 0′′.8 pixel−1, yielding a field of view of 6′.7 × 6′.7. As a fully robotic
telescope, KAIT follows an automated nightly procedure to acquire data. Observations of a
target are initiated by submitting a request file containing its coordinates as well as those of a
guide star. A master scheduling program then determines when to perform the observations
with minimal disruption to KAIT’s SN search observations. Under standard conditions we
use an exposure time of 1–6 min in B and 1–5 min in each of VRI.

The 1 m Nickel is also a Ritchey-Chrétien telescope, but with a primary mirror focal
ratio of f/5.3. Since 2001 April 3 its CCD has been a thinned, Loral, 2048 × 2048 pixel
chip located at the f/17 Cassegrain focus of the telescope. With a scale of 0′′.184 pixel−1,
the field of view is 6′.3× 6′.3. In March of 2009 the filter set was replaced — we refer to the
period before as Nickel12 and after as Nickel2. Pixels are binned by a factor of two to reduce
readout time. Since 2006, most of our Nickel observations have been performed remotely
from the University of California, Berkeley campus. Our observing campaign with Nickel
is focused on monitoring more distant SNe and supplementing (particularly at late times)
data taken with KAIT. Under standard conditions, we use exposure times similar to those
for KAIT.

In Figure 2.1 we compare the standard throughput curves of Bessell (1990) to those of
the two Nickel 1 m configurations covered by our dataset (G10 show the analogous curves
for KAIT3 and KAIT4). We find good agreement between both Nickel1 and Nickel2 filter
responses in the VR bands with the corresponding Bessell curves. In B, the agreement is
good for Nickel2 but there is a noticeable discrepancy between the Nickel1 filter response
compared to that of Bessell. The filter response in I for both Nickel configurations shows the
most substantial departures from the Bessell standard, with Nickel2 exhibiting the most egre-
gious disagreement. Nevertheless, the transmission curve has been verified through repeated
measurements.

1G10 use KAIT1 and KAIT2 for earlier CCD/filter combinations. Our use of KAIT3 and KAIT4 is
consistent with theirs.

2Our Nickel1 is referred to as Nickel by G10.
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Figure 2.1: Transmission curves for the two Nickel 1 m configurations covered by our dataset
compared with standard Bessell (1990) BVRI curves.
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2.3 Data Reduction

With over 21,000 images spanning 93 SNe Ia with a median of 16 observed epochs, our dataset
is too large to manually process. We have therefore developed an automated photometry
pipeline3 to calculate light curves from minimally preprocessed4 KAIT and Nickel images
(those from other telescopes could be incorporated with minimal modifications). Although it
makes use of distinct software packages and utilises components written in several different
programming languages, the pipeline is wrapped in a clean Python interface. It automatically
performs detailed logging, saves checkpoints of its progress, and can be run interactively if
desired — thus, in cases where the data require special care, the user is able to perform each
processing step manually with increased control. We detail the primary steps performed by
the pipeline in the following sections.

2.3.1 Start Up and Image Checking

At a minimum, the pipeline requires four pieces of information to run: the coordinates of the
target (right ascension and declination), the name of an image to use for selecting candidate
calibration stars (henceforth, the “reference image”), and a text file containing the name
of each image to process. In the absence of additional information, the pipeline will make
sensible assumptions in setting various parameters during the start up process.

Processing commences by performing several checks on the specified images to see if any
should be excluded. The first removes any images collected through an undesired filter,
and the second excludes those collected outside a certain range of dates. In processing our
dataset, we allow only unfiltered (referred to as “Clear”) images and those collected through
standard BVRI filters between 60 days prior to, and 2 yr after, discovery as specified on the
Transient Name Server (TNS)5, to continue to subsequent processing steps.

2.3.2 Selection of Calibration Star Candidates

In the next processing step, candidate calibration stars are identified in the reference image
using a three-stage process. First, all sources above a certain threshold in the image are
identified and those that are farther than 8′′ from that target are retained.

Next, a catalog of potential calibration stars in the vicinity of the SN is downloaded (in
order of preference) from the archives of Pan-STARRS (PS1; Chambers and Pan-STARRS
Team 2018), the Sloan Digital Sky Survey (SDSS; Alam et al. 2015), or the AAVSO Photo-
metric All-Sky Survey (APASS; Henden et al. 2018). The 40 brightest stars common to the
reference image and the catalog are then retained. If the pipeline is being run interactively,
the user can visually inspect the positions of these stars against the reference image and

3https://github.com/benstahl92/LOSSPhotPypeline
4Preprocessing consists of removing bias and dark current, flatfielding, and determining an astrometric

solution.
5https://wis-tns.weizmann.ac.il/

https://github.com/benstahl92/LOSSPhotPypeline
https://wis-tns.weizmann.ac.il/
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Table 2.1: Summary of Colour Terms

System CB CV CR CI
KAIT3 −0.057 0.032 0.064 −0.001
KAIT4 −0.134 0.051 0.107 0.014
Nickel1 −0.092 0.053 0.089 −0.044
Nickel2 0.042 0.082 0.092 −0.044

remove any that should not be used (such as those that are not well-separated from the
target’s host galaxy).

Finally, the magnitudes (and associated uncertainties) of the selected catalog stars are
converted to the Landolt system (Landolt 1983, 1992) using the appropriate prescription6,
and subsequently to the natural systems of the various telescope/CCD/filter sets that are
spanned by our dataset as discussed in Section 2.2.2. Conversion from the Landolt system
to the aforementioned natural systems is accomplished using equations of the form

b = B + CB(B − V ) + constant, (2.1a)

v = V + CV (B − V ) + constant, (2.1b)

r = R + CR(V −R) + constant, and (2.1c)

i = I + CI(V − I) + constant, (2.1d)

where lower-case letters represent magnitudes in the appropriate natural system, upper-case
letters represent magnitudes in the Landolt system, and CX is the linear colour term for
filter X as given in Table 2.1. The KAIT3, KAIT4, and Nickel1 colour terms were originally
given by G10, while those for Nickel2 are presented here for the first time. We derive the
Nickel2 colour terms (and atmospheric correction terms, ki; see Section 2.3.8.2) as the mean
values of the appropriate terms measured over many nights using steps from the calibration
pipeline described by G10.

2.3.3 Galaxy Subtraction

A large proportion of SNe occur near or within bright regions of their host galaxies. It is
therefore necessary to isolate the light of such a SN from that of its host prior to performing
photometry. This is accomplished by subtracting the flux from the host at the position of the
SN from the measured flux of the SN. To measure such host fluxes for the SNe in our sample
needing galaxy subtraction (as determined by visual inspection and consideration of the

6The transformation given by Tonry et al. (2012) is used for PS1 catalogs, whereas SDSS and APASS cata-
logs are treated with the prescription of Robert Lupton in 2005 (https://www.sdss.org/dr12/algorithms/
sdssUBVRITransform/)

https://www.sdss.org/dr12/algorithms/sdssUBVRITransform/
https://www.sdss.org/dr12/algorithms/sdssUBVRITransform/
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Subtracted Image

Figure 2.2: Example of our galaxy-subtraction procedure. The left image shows SN 2013gq
on 2013 March 25 UT, with the SN flux clearly contaminated by the host galaxy. The centre
image is the host-galaxy template used for subtraction, and the right image is the result of
our galaxy-subtraction procedure.

offsets given in Table 2.3), we obtained template images using the 1 m Nickel telescope (for
BVRI images) and KAIT (for unfiltered images) after the SNe had faded beyond detection,
or from prior to the explosions if available in our database. Template images selected for use
in galaxy subtraction are preprocessed identically to science images as described above.

The first step in our subtraction procedure is to align each science image to its cor-
responding template image. We do this by warping each template such that the physical
coordinates of its pixels match those of the science image. Next, we perform the subtraction
using the ISIS package (Alard and Lupton 1998; Alard 1999), which automatically chooses
stars in both images and uses them to compute the convolution kernel as a function of posi-
tion. We use ten stamps in the x and y directions to determine the spatial variation in the
kernel. ISIS matches the seeing between the warped template image and the science image
by convolving the one with better seeing and then subtracts the images. An example image
with subtraction applied is shown in Figure 2.2.

Some SNe in our dataset occurred sufficiently far from the nuclei of their host galaxies
to not suffer significant contamination from galaxy light. In these cases, we did not per-
form galaxy subtraction. Table 2.3 includes a column that indicates whether host-galaxy
subtraction was performed for each SN in our sample.

2.3.4 Photometry

After galaxy subtraction has been performed (or skipped if not needed), the pipeline performs
photometry on the target SN and each selected calibration star. For images that have
been galaxy subtracted, photometry is only performed on the SN (as the calibration stars
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will have been subtracted out), and photometry of the calibration stars is measured from
the unsubtracted images. This requires the user to take care when doing calibration (see
Section 2.3.5) to ensure that the calibration stars used are not themselves contaminated by
light from the SN’s host galaxy.

By default, both point-spread function (PSF) and aperture photometry (through multiple
apertures), along with standard photometry uncertainty calculations for each, are performed
using procedures from the IDL Astronomy User’s Library7. Henceforth, we consider only
PSF photometry.

The pipeline automatically keeps track of failures and removes the associated images
from further processing. The user can easily track such failures and subsequently investigate
each problematic image in more detail.

2.3.5 Calibration to Natural Systems

In the next step, the pipeline calibrates measured photometry to magnitudes in the appro-
priate natural system as follows. For each unsubtracted image, the mean magnitude of the
selected calibration stars in the natural system appropriate to the image (from the cata-
log downloaded and converted according to the specifications in Section 2.3.2) is computed.
Next, the mean measured magnitude of the same set of reference stars is computed for each
aperture. The difference between the former and the latter yields a set of offsets (one for
each aperture) to add to the measured magnitudes such that, in the current image, the
average magnitude of the selected calibration stars matches that from the catalog. These
offsets are also applied to the measured SN photometry from the image (and if it exists,
the SN photometry from the associated galaxy-subtracted image). Standard techniques of
error propagation are applied through these operations to determine the uncertainty in all
derived natural system magnitudes, accounting for uncertainties in the calibration catalog
and photometry.

This procedure is clearly sensitive to which calibration stars are used, and so several steps
are employed in an attempt to make an optimal decision. First, calibration is performed on
each image using all available calibration stars. Any calibration stars that are successfully
measured in < 40% of images are removed and calibration is run again using the remaining
calibration stars. Next, any images in which < 40% of the calibration stars are successfully
measured are removed from further consideration. After these two preliminary quality cuts
are performed, an iterative process is used to refine and improve the calibration. Each
iteration consists of a decision that changes which calibration stars are used or which images
are included and a recalibration based on that decision.

When run interactively, the pipeline provides the user with extensive information to
consider when making this decision. In each iteration, the reference image is displayed with
the current calibration stars and the SN identified. It also provides tables for each passband
which include, for each calibration star: the median measured and calibration magnitudes as

7https://idlastro.gsfc.nasa.gov/homepage.html

https://idlastro.gsfc.nasa.gov/homepage.html
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well as the median of their differences, the standard deviation of the measured magnitudes,
and the proportion of all images in the current passband for which the calibration star’s
magnitude was successfully measured. The user can remove certain calibration stars, or
all that (in any passband) exceed a specific tolerance on the median magnitude difference.
Other options and diagnostics are available, and thus an experienced user will develop certain
decision-making patterns when performing interactive calibration, but further discussion is
beyond the scope of this description.

The automated pipeline makes the decision as follows. Any image containing a reference
star that differs by the greater of 3 standard deviations or 0.5 mag from the mean measured
magnitude of that reference star in the relevant filter/system is removed and logged inter-
nally for later inspection. If no such discrepant images are identified, then the calibration
star whose median difference between measured and reference magnitudes is most severe is
removed, so long as the difference exceeds 0.05 mag. If neither of these two criteria is trig-
gered, then the calibration process has converged and iteration exits successfully. However,
if a point is reached where only two reference stars remain, the tolerance of 0.05 mag is
incremented up by 0.05 mag and iteration continues. If the tolerance is incremented beyond
0.2 mag without iteration ending successfully, the calibration process exits with a warning.

The process described above tends to lead to robust results, but it is still possible for
individual measurements to be afflicted by biases. Because of this, we visually inspect our
results after automated calibration and in some cases interactively recalibrate and/or remove
certain images if they are suspected of contamination or are of poor quality.

2.3.6 Landolt System Light Curves

The final stage of processing involves collecting each calibrated (natural system) magnitude
measurement of the SN under consideration to form light curves (one for each combination
of aperture and telescope system). Prior to transforming to the Landolt system, several
steps are applied to these “raw” light curves. First, magnitudes in the same passbands that
are temporally close (< 0.4 days apart) are averaged together. Next, magnitudes in distinct
passbands that are similarly close in temporal proximity are grouped together so that they
all have an epoch assigned as the average of their individual epochs. These steps result in a
light curve for each telescope system used in observations, with magnitudes in the associated
natural system.

Next, these light curves are transformed to the Landolt system by inverting the equa-
tions of Section 2.3.2 and using the appropriate colour terms from Table 2.1. Finally, the
transformed light curves are combined into a final, standardised light curve which represents
all observations of the SN.

2.3.7 Uncertainties

To quantify the uncertainties in results derived from our processing routine, we inject arti-
ficial stars of the same magnitude and PSF as the SN in each image and then reprocess the
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Figure 2.3: Distribution of uncertainties arising from statistical, calibration, and simulation
sources. All magnitudes are instrumental magnitudes, and the median uncertainty from each
source is printed.

images. We use a total of 30 artificial stars to surround the SN with five concentric, angularly
offset hexagons of increasing size. The smallest has a “radius” of ∼ 25′′ (exactly 20 KAIT
pixels) and each concentric hexagon increases this by the same additive factor. We assign
the scatter in the magnitudes of the 30 recovered artificial stars to be the uncertainty in our
measurement of the SN magnitude. This is then added in quadrature with the calibration
and photometry uncertainties and propagated through all subsequent operations, leading to
the final light curve.

This method has the advantage of being an (almost) end-to-end check of our processing,
and it can still be used effectively when certain steps (namely, host-galaxy subtraction)
are not necessary. We note that by treating uncertainties in this way, we are making the
assumption that the derived magnitude and PSF of the SN are correct. If this assumption is
not met, the artificial stars we inject into each image will not be an accurate representation of
the profile of the SN, and thus we cannot be assured that the distribution in their recovered
magnitudes is a reasonable approximation to that of the SN. Furthermore, errors will be
substantially overestimated when an injected star overlaps with a true star in the image.
When this happens (as verified by a visual inspection) we do not inject a star at this position
and thus in some cases the uncertainty estimate is made with slightly fewer than 30 stars.

Altogether, the final uncertainty on each magnitude in our light curves is derived by
propagating three sources of uncertainty through our calculations. These sources are (1)
“statistical” (e.g., scatter in sky values, Poisson variations in observed brightness, uncer-
tainty in sky brightness), (2) “calibration” (e.g., calibration catalog, derived colour terms),
and (3) “simulation” (as described in the preceding paragraphs). In terms of instrumental
magnitudes, we find median uncertainties from these sources of 0.037 mag, 0.015 mag, and
0.062 mag, respectively. We show the distribution of each in Figure 2.3.
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2.3.8 Systematic Errors

In order to combine or compare photometric datasets from different telescopes, one must
understand and account for systematic errors. In this section, we consider sources of possible
systematic errors and quantify their impact on our final photometry. As three of the four
telescope/detector configurations spanned by our dataset are already extensively considered
by G10, our goal here is primarily to extend their findings to cover the fourth configuration,
Nickel2.

2.3.8.1 Evolution of Colour Terms

The Nickel2 colour terms given in Table 2.1 are the average colour terms from observations
of Landolt standards over many nights. Any evolution in the derived colour terms as a
function of time introduces errors in the final photometry that are correlated with the colour
of the SN and reference stars. To investivate this effect, we plot the Nickel2 colour terms as
a function of time in Figure 2.4, but find no significant evidence for temporal dependence.
This conclusion is in line with the findings of G10 for KAIT3, KAIT4, and Nickel1.

2.3.8.2 Evolution of Atmospheric Terms

For the same set of nights for which we compute the colour terms which constitute Fig-
ure 2.4, we also derive atmospheric correction terms. Because we source calibration stars
from established catalogues (as outlined in Section 2.3.2), our derived atmospheric correction
terms affect processing only indirectly (i.e., in the determination of colour terms). As such,
we discuss them here only as a stability check. Figure 2.5 shows their evolution as a function
of time. We do not find significant evidence for temporal dependence, which is consistent
with the findings of G10 for KAIT3, KAIT4, and Nickel1. It is also worth noting that our
derived terms (kB = 0.278, kV = 0.157, kR = 0.112, and kI = 0.068)) are similar to those
derived for Nickel1 by G10 (0.277, 0.171, 0.120, and 0.078, respectively).

2.3.8.3 Combining KAIT and Nickel Observations

Another potential source of systematic error arises when combining observations from dif-
ferent configurations (e.g., KAIT4 and Nickel2). Any systematic differences between con-
figurations introduces an error when observations from various systems are combined. To
search for and investigate such differences, we compare the mean derived magnitude of each
calibration star used in determining our final photometry for unique combinations of pass-
band and system. In this investigation, we only consider instances where a calibration star
was observed using two different systems. Figure 2.6 shows the distribution of differences
in each passband for the common set of calibration stars between the KAIT4 and Nickel2
systems, which have the largest overlap. Similar distributions were constructed for all other
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system combinations, and in all cases we find a median offset of . 0.003 mag8 with scatter
σ . 0.03 mag in each filter.

2.3.8.4 Galaxy Subtraction

When subtracting host-galaxy light, the finite signal-to-noise ratio (S/N) of the images used
as templates can limit measurements of the magnitude of a SN, thereby introducing a cor-
related error between epochs of photometry. To investigate the severity of this effect, G10
stacked images to obtain a deeper set of template images with increased S/N for SN 2000cn,
a SN Ia from their sample. By reprocessing their data with the new template images, G10
were able to probe the influence of host-galaxy templates derived from single images. Un-
surprisingly, they found that the correlated error introduced by using a single image for a
template is not negligible, but that it is appropriately accounted for by their error budget.
As the modest differences between the Nickel1 and Nickel2 systems should not manifest any
substantial differences with regard to galaxy subtraction in this manner, and because the
error budget of G10 is similar to our own (as laid out in Section 2.3.7), we see no need for
repetition of this test.

2.3.8.5 Total Systematic Error

Based on the preceding discussion, we assign a systematic uncertainty of 0.03 mag in BVRI
to our sample, consistent with G10. This uncertainty is not explicitly included in our pho-
tometry tables or light curve figures (e.g., Tables 2.2 & 2.6 and Figure 2.13), but must be
accounted for when combining our dataset with others.

2.4 Results

In this section we present the results obtained by running our photometry pipeline on SNe Ia
from LOSS images collected from 2009 through 2018, with several earlier SNe Ia also in-
cluded. Basic information and references for each SN in our sample are provided in Table 2.3.
The NASA/IPAC Extragalactic Database (NED)9 and the TNS were used to source many
of the given properties.

Figure 2.13 shows our light curves, each shifted such that time is measured relative to the
time of maximum B-band brightness as determined by MLCS2k2 (Jha et al. 2007) fits or Gaus-
sian Process interpolations (Lochner et al. 2016) for peculiar SNe (see Sections 2.5.2.2 & 2.5.1,
respectively). An example of our photometry is given in Table 2.2. In addition to leaving out
the systematic 0.03 mag uncertainty derived in Section 2.3.8.5, we choose to provide light
curves without considering corrections such as Milky Way (MW) extinction, K-corrections

8The only exception is the median I -band offset between Nickel1 and KAIT3, which is 0.008 mag.
9The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology, under contract with the National Aeronautics and Space Administration
(NASA).
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Figure 2.6: Distributions of the residuals of the mean derived magnitude of each calibration
star used in determining final photometry for SNe in our dataset covered by the KAIT4 and
Nickel2 systems. The distributions reveal negligible offset between these two systems in all
bands with a scatter < 0.03 mag. The median and standard deviation of the residuals are
printed for each passband.
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Table 2.2: Photometry of SN 2008ds.

SN MJD B (mag) V (mag) R (mag) I (mag) Clear (mag) System
2008ds 54645.47 ... ... ... ... 15.700± 0.033 kait4
2008ds 54646.47 ... ... ... ... 15.574± 0.024 kait4
2008ds 54647.46 15.613± 0.012 15.630± 0.010 15.593± 0.012 15.744± 0.018 15.501± 0.010 kait4
2008ds 54650.47 15.503± 0.014 15.487± 0.010 15.475± 0.013 15.766± 0.016 ... kait4
2008ds 54653.13 15.483± 0.009 15.474± 0.005 15.413± 0.006 15.756± 0.008 ... nickel1
2008ds 54653.44 15.492± 0.018 15.470± 0.010 15.435± 0.011 15.828± 0.017 ... kait4
2008ds 54655.13 15.570± 0.008 15.512± 0.006 15.451± 0.007 15.826± 0.009 ... nickel1
2008ds 54655.48 15.567± 0.016 15.507± 0.012 15.467± 0.015 15.925± 0.023 ... kait4
2008ds 54658.13 15.704± 0.008 15.606± 0.006 15.542± 0.006 15.962± 0.008 ... nickel1
2008ds 54662.16 15.995± 0.012 15.773± 0.005 ... ... ... nickel1
Note: First 10 epochs of BVRI + unfiltered photometry of SN 2008ds. This table shows the form
and content organisation of a much larger table that covers each epoch of photometry for each SN in
our dataset. The full table is available online at http://heracles.astro.berkeley.edu/sndb/info#

DownloadDatasets(BSNIP,LOSS).

(Oke and Sandage 1968; Hamuy et al. 1993; Kim et al. 1996), or S-corrections (Stritzinger
et al. 2002). This provides future studies the opportunity to decide which corrections to
apply and full control over how they are applied. Because of the low redshift range of our
dataset (see the right panel of Figure 2.7) and the similarity between systems, the K- and
S-corrections will be quite small in any case. Though magnitudes in Figure 2.13 and Ta-
ble 2.2 are given in the Landolt system, we also make our dataset available in natural-system
magnitudes for those that would benefit from the reduced uncertainties (see Section 2.8.2).
Our entire photometric dataset (Landolt and natural-system magnitudes) is available online
from the Berkeley SuperNova DataBase10 (SNDB; Silverman et al. 2012a; Shivvers et al.
2016).

2.4.1 The LOSS Sample

In order to accurately measure and exploit the correlation between light-curve width and
luminosity for SNe Ia, thus allowing for precision measurements of cosmological parameters,
densely sampled multicolour light curves which span pre- through post-maximum evolution
are required. In Figure 2.8 we show the number of epochs of photometry for each SN in our
sample versus the average cadence between epochs of photometry. The plot indicates that
the majority of SNe in our sample have more than 10 epochs of observations with a cadence
of fewer than 10 days, while a significant number of SNe were observed many more times
at even higher frequency. These metrics confirm that on average, our light curves are well
sampled and span a large range of photometric evolution.

10http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)

http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
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Figure 2.7: Distributions of dataset parameters. The left panel is the number of epochs of
photometry as measured from V -band observations, centre is the first epoch of observation
relative to time of maximum B -band light, and right is redshift.

The left panel of Figure 2.7 presents a histogram of the total number of photometry
epochs for all SNe in our sample, and we find a median of 16 epochs. SN 2011dz has just one
epoch of photometry and five objects (SNe 2006ev, 2009D, 2009hp, 2012E, 2012bh) have
two epochs each, while SN 2013dy has 126 (the most), followed by SN 2012cg and then
SN 2017fgc. We begin photometric follow-up observations for the typical SN in our sample
∼ 4.6 days before maximum light in the B -band, with 52 SNe having data before maximum
brightness. The centre panel of Figure 2.7 shows the distribution of first-observation epochs
for our sample. The median redshift of our full sample is 0.0192, with a low of 0.0007 (SN
2014J) and a high of 0.0820 (SN 2017dws). We show the distribution of redshifts in the
right panel of Figure 2.7. If we restrict to z ≥ 0.01 (i.e., within the Hubble flow), our sample
consists of 71 SNe with a median redshift of 0.0236.

2.4.2 Comparison with Published LOSS Reductions

For several of the SNe presented here, previous reductions of the photometry (usually per-
formed with an earlier photometry pipeline, developed by G10) have been published. A
comparison between these previous results and our own offers a useful efficacy check of our
pipeline while avoiding the issues arising from comparisons between different telescopes or
photometric systems. Wherever sufficient overlap between one of our light curves and that
from a previous publication exists, we quantify the extent to which the datasets agree by
computing the weighted mean residual. In some cases we further compare by considering
the agreement between derived quantities such as the light-curve shape, ∆m15(B), and the
time of maximum brightness, tBmax . We emphasise that in general our results are derived
from different sets of reference stars for calibration than those used to derive the results
with which we compare, and that even when reference stars overlap, we may draw their
magnitudes from different catalogs.
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Figure 2.8: Scatterplot of the number of photometry epochs for each SN vs. the average
cadence between epochs. The tight grouping with a lower average cadence and mid to high
number of epochs indicates that our SNe are well sampled and cover a large portion of
photometric evolution. The single SN with an average cadence in excess of 80 days is SN
2016ffh.
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2.4.2.1 SN 2005hk

Phillips et al. (2007) published optical light curves from KAIT data for the Type Iax SN
2005hk. At the time of publication, no template images were available and so the authors
acknowledged that their derived magnitudes for the SN, located ∼ 18.5′′ from the nucleus
of its host galaxy, were probably affected by the background light. In the prevailing time,
we have obtained template images of the host and used them to separate its flux from that
of the SN. Comparing results, both of which were obtained using PSF-fitting photometry,
we find agreement to within 0.090 mag in BVRI. It is worth noting that our measurements
are generally fainter, especially when the SN is rising and declining. This suggests that
host-galaxy subtraction is indeed necessary for this object. We also compare measurements
of the light-curve shape parameter ∆m15(B), and find strong agreement between our value
(see Section 2.5.1 and Table 2.4) of 1.58± 0.05 mag and theirs of 1.56± 0.09 mag.

2.4.2.2 SN 2009dc

Our Nickel and KAIT images of the extremely slow-evolving SN 2009dc — a super-Chandrasekhar
candidate (see Noebauer et al. 2016, for a summary of the properties of this subclass of ther-
monuclear SNe) — were initially processed and used to construct light curves by Silverman
et al. (2011). In both our reduction and theirs, PSF-fitting photometry was employed and
galaxy subtraction was not performed owing to the large separation between the SN and its
host galaxy. We find agreement to better that 0.020 mag in BVRI. Furthermore, we derive
∆m15(B) = 0.71± 0.06 mag, consistent with their result of ∆m15(B) = 0.72± 0.03 mag.

2.4.2.3 SN 2009ig

Optical light curves of SN 2009ig were derived from KAIT data and published by Foley
et al. (2012). Both our reduction procedure and theirs used PSF-fitting photometry after
subtracting template images of the host galaxy. We find that our results agree to within
0.055 mag in BVRI. It is worth adding that SN 2009ig is in a field with very few stars available
for comparison when calibrating to natural-system magnitudes — Foley et al. (2012) used
only one star for comparison while we have used two. In light of these challenges, we are
content with the similarity between our results, especially because we obtain a consistent
value of ∆m15(B)11. As an added check, we reprocessed our data for SN 2009ig using the
same calibration star as Foley et al. (2012) and find agreement to within ∼ 0.025 mag in
BVRI.

2.4.2.4 SN 2011by

KAIT BVRI photometry of SN 2011by was published by Silverman et al. (2013) and later
studied in detail by Graham et al. (2015). In comparing our light curves (which have host-

11We find ∆m15(B) = 0.85±0.12 mag (the large uncertainty is mostly due to the uncertainty in the time
of B maximum), while Foley et al. (2012) find ∆m15(B) = 0.89± 0.02 mag.
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galaxy light subtracted) to theirs (which do not), we find agreement to within ∼ 0.05 mag.
Furthermore, Silverman et al. (2013) found Bmax = 12.89 ± 0.03 mag and ∆m15(B) =
1.14 ± 0.03 mag, which are consistent with our results of Bmax = 12.91 ± 0.02 mag and
∆m15(B) = 1.09± 0.10 mag.

2.4.2.5 SN 2011fe

SN 2011fe/PTF11kly in M101 is perhaps the most extensively observed SN Ia to date (Nugent
et al. 2011; Vinkó et al. 2012; Richmond and Smith 2012; Graham et al. 2015; Zhang et al.
2016). Photometry derived from KAIT data has been published by Graham et al. (2015)
and Zhang et al. (2016), but we compare only with the latter. For the 20 epochs that overlap
between our dataset and theirs, we find agreement of better than ∼ 0.04 mag in BVRI.

2.4.2.6 SN 2012cg

SN 2012cg was discovered very young by LOSS, and KAIT photometry from the first ∼ 2.5
weeks following discovery was published by Silverman et al. (2012b). Because of the small
temporal overlap between this early-time dataset and the much more expansive set presented
herein, and because we have obtained template images and used them to remove the host-
galaxy light, it is not instructive to quantitatively compare between our dataset and theirs.
We note, however, that we find a similar time of B -band maximum and that there is clear
qualitative agreement between the two samples.

2.4.2.7 SN 2013dy

Zheng et al. (2013) published early-time KAIT photometry of SN 2013dy and used it to
constrain the first-light time, while Pan et al. (2015a) published extensive optical light curves.
We compare the 85 overlapping epochs of our dataset with those of Pan et al. (2015a),
both of which were obtained using PSF-fitting photometry, and find agreement better than
∼ 0.03 mag in BVRI.

2.4.2.8 SN 2013gy

KAIT B and V observations were averaged in flux space to create so-called BV.5-band
photometry by Holmbo et al. (2019), who then used S-corrections to transform to the g band
on the Pan-STARRS1 photometric system. Because of the difference between our choice of
photometric system and theirs, we opt only to compare derived light-curve properties. Our
result for the time of B -band maximum is within one day of theirs (consistent, given the
uncertainties), and we find ∆m15(B) = 1.247± 0.072 mag, nearly identical to their result of
∆m15(B) = 1.234± 0.060 mag.
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2.4.2.9 SN 2014J

SN 2014J in M82 has been extensively studied — unfiltered KAIT images were presented
by Zheng et al. (2014) and used to constrain the explosion time, and Foley et al. (2014)
published photometry from many sources, including a number of KAIT BVRI epochs. A
comparison between our results and theirs reveals substantial (∼ 0.2 mag) discrepancies.
The origin of this disagreement stems from differences in our processing techniques — Foley
et al. (2014) calibrated instrumental magnitudes against reference-star magnitudes in the
Landolt system (thereby disregarding linear colour terms), while we have done calibrations
with reference-star magnitudes in the natural system appropriate to the equipment before
transforming to the Landolt system. When we reprocess our data using the former approach
in conjunction with the reference stars used by Foley et al. (2014), we find agreement between
our non-host-galaxy subtracted light curve and theirs to within 0.01 mag in BVRI. Our final
light curve for SN 2014J reflects the latter approach (which is the default of our pipeline),
and was derived using a different set of calibration stars after subtracting host-galaxy light.

2.4.2.10 SN 2016coj

SN 2016coj was discovered at a very early phase by LOSS, and Zheng et al. (2017) pre-
sented the first 40 days of our optical photometric, low- and high-resolution spectroscopic,
and spectropolarimetric follow-up observations. Because our full photometric dataset en-
compasses a much broader time frame and Zheng et al. (2017) focused only on unfil-
tered photometry, a direct comparison is not possible. However, we note that our derived
∆m15(B) = 1.33 ± 0.03 mag, Bmax = 13.08 ± 0.01 mag, and tBmax = 57547.15 ± 0.19 MJD
are consistent with their preliminary reporting, based on photometry without host-galaxy
subtraction, of 1.25± 0.12 mag, 13.1± 0.1 mag, and 57547.35 MJD, respectively.

2.4.2.11 Summary of Comparisons

We have compared the results of our photometry to the results derived from previous process-
ing pipelines used by our group for ten SNe Ia. Of these, five (SNe 2009dc, 2009ig, 2011fe,
2013dy, and 2014J) can be directly compared in the sense that identical processing steps
(e.g., whether galaxy subtraction was performed) were used. For this subsample, we find
excellent (. 0.05 mag) agreement except for the cases of SN 2009ig (< 0.055 mag) and SN
2014J (∼ 0.2 mag). However, we are able to attain much stronger agreement (. 0.025 mag
and . 0.010 mag, respectively) if we employ the same calibration procedures used in the
original processing. For the remaining five, we find consistent results in derived light-curve
parameters, and more generally, good qualitative agreement in the shape of the light curves.
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2.5 Discussion

The absolute peak brightness that a SN Ia attains has been shown to be strongly correlated
with the “width” of its light curve (e.g., Phillips 1993). Thus, given a model for this corre-
lation and a measurement of the light-curve width of a SN Ia, one can compute its intrinsic
peak luminosity. By comparing this to its observed peak brightness, the distance to the
SN Ia can be estimated. In this section, we examine the properties of the light curves in our
sample in more detail. Specifically, in Section 2.5.1 we directly measure light-curve proper-
ties from interpolations, whereas in Section 2.5.2 we model our light curves with light-curve
fitting tools.

2.5.1 Interpolated Light-Curve Properties

Perhaps the most ubiquitous parametrisation of the width (or decline rate) of a SN Ia light
curve is ∆m15(X), the difference in its magnitude at maximum light and 15 days later in
passband X. We measure this quantity in B and V by interpolating the (filtered) light
curves using Gaussian Processes, a technique that has proved useful in astronomical time
series analysis due to its incorporation of uncertainty information and robustness to noisy
or sparse data (Lochner et al. 2016).

For each SN in our sample where the photometry in B and/or V encompasses the max-
imum brightness in that band, we employ the following approach using tools from the
SNooPy12 package (Burns et al. 2011). First, we interpolate the light curve in each pass-
band using Gaussian Processes, allowing us to determine the time at which that light curve
peaks. With the phase information that this affords, the data are K-corrected using the
spectral energy distribution (SED) templates of Hsiao et al. (2007). We further correct the
data for MW extinction (Schlafly and Finkbeiner 2011) and then perform a second interpo-
lation on the corrected data. From this interpolation we measure tXmax , Xmax, and ∆m15(X)
— the time of maximum brightness, maximum apparent magnitude, and light-curve width
parameter (respectively) — in filters B and V . In measuring ∆m15(X), we correct for the
effect of time dilation. The final results of this fitting process are presented in Table 2.4.

2.5.2 Applying Light-Curve Fitters

While interpolation is viable for well-sampled light curves, those that are more sparsely sam-
pled or which do not unambiguously constrain the maximum brightness cannot be reliably
treated with this technique. Furthermore, interpolation completely disregards the effects of
host-galaxy extinction, which must be accounted for when estimating distances.

Because of these limitations, we also employ two light-curve fitters to measure the prop-
erties of our sample. To the extent that the templates used by these fitters span the diversity
in our dataset, this approach does not suffer from the same limitations as interpolation.

12https://csp.obs.carnegiescience.edu/data/snpy/documentation/snoopy-manual-pdf

https://csp.obs.carnegiescience.edu/data/snpy/documentation/snoopy-manual-pdf
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Figure 2.9: Distributions of ∆m15 and E(B − V )host from SNooPy E(B − V ) model fits to
the light curves in our dataset appear in black. We include the corresponding distributions
derived from Burns et al. (2011) in red.

2.5.2.1 SNooPy E(B − V ) Model

We use the so-called “EBV model” in SNooPy to simultaneously fit the BVRI light curves
in our sample. In observed band X and SN rest-frame band Y , the model takes on the
mathematical form

mX(t− tmax) = TY (trel,∆m15) +MY (∆m15) + µ+

RXE(B − V )gal +RYE(B − V )host+

KX,Y (z, trel, E(B − V )host, E(B − V )gal) , (2.2)

where m is the observed magnitude, tmax is the time of B-band maximum, trel = (t′ −
tmax)/(1 + z) is the rest-frame phase, M is the rest-frame absolute magnitude of the SN, µ is
the distance modulus, E(B − V )gal and E(B − V )host are the reddening due to the Galactic
foreground and host galaxy, respectively, R is the total-to-selective absorption, and K is
the K-correction (which depends on the epoch and can depend on the host and Galactic
extinction).

SNooPy generates the template, T (t,∆m15), from the prescription of Prieto et al. (2006).
As indicated, the light curve is parameterised by the decline-rate parameter, ∆m15, which is
similar to ∆m15(B). It is important to note, however, that these quantities are not identical,
and may deviate from one another randomly and systematically (see Section 3.4.2 in Burns
et al. 2011). The model assumes a peak B-band magnitude and B − X colours based on
the value of ∆m15, with six possible calibrations derived from CSP1a. We use calibration
#6, which is derived from the best-observed SNe in the sample, less those that are heavily
extinguished.
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The template-fitting process with SNooPy consists of the following steps. First, an initial
fit is made to determine the time of B-band maximum. This allows for initial K-corrections
to be determined using the SED templates from Hsiao et al. (2007). The K-corrected data
are then fit again, allowing colours to be computed as a function of time. Next, improved
K-corrections are computed, warping the SED such that it matches the observed colours.
Last, a final fit is performed using the improved K-corrections. The results from fitting are
tmax,∆m15, E(B − V )host, and µ. We present these quantities for our dataset in Table 2.5.
We also visualise the distributions of ∆m15 and E(B−V )host from our dataset in Figure 2.9,
with the corresponding distributions from Burns et al. (2011) overlaid for comparison.

For ∆m15, we find a median value of 1.11 mag with a standard deviation of 0.26 mag,
consistent with the respective values of 1.15 mag and 0.32 mag from the dataset of Burns
et al. (2011). And for E(B − V )host, we find a median of 0.10 mag with a dispersion of
0.29 mag for our sample, similar to their values of 0.12 mag and 0.29 mag, respectively. We
stress that comparing these parameters between our dataset and that of Burns et al. (2011)
is only to provide a diagnostic view of how our sample is distributed relative to another from
the literature — there is minimal overlap between the two samples, so we are not looking
for a one-to-one correspondence.

Furthermore, we can use the fitted model for each light curve to calculate other param-
eters of interest, such as those derived from direct interpolation. This gives a method by
which we can check for consistency in our results. For example, we expect the time of maxi-
mum brightness in a given band to be the same, regardless of whether it was calculated from
an interpolation or a fitted model. We employ Kolmogorov-Smirnoff tests on our calculated
times of maximum (where we have results from both interpolation and template fitting) to
quantify the likelihood that those from interpolation are drawn from the same distribution
as those from template fitting. In both cases (tBmax and tVmax), we find p-values of unity,
indicating that our expectation is met.

Applying such tests for Bmax and Vmax is less straightforward because of the presence of
systematic offsets between results derived from interpolation and those derived from fitting
SNooPy’s E(B − V ) model. While both methods provide peak magnitudes after performing
K-corrections and correcting for MW reddening, only the E(B − V ) model fits account for
host-galaxy reddening. With this caveat noted, it is still instructive to make comparisons,
and in doing so we find p-values of 0.708 and 0.981 for Bmax and Vmax, respectively. If we
impose restrictions to make the comparison more legitimate — namely to use only those SNe
in our sample that are not heavily extinguished by their hosts (|E(B − V )host| < 0.1 mag),
that are spectroscopically normal (as given in Table 2.3), and for which SNooPy measures
∆m15 < 1.7 mag — we find substantially improved agreement, with p-values of 0.956 and
1.000, respectively.

As noted above, ∆m15 does not exactly correspond to ∆m15(B). In comparing them,
Burns et al. (2011) found a linear relationship of ∆m15(B) = 0.89∆m15 + 0.13. Performing
an analogous comparison with our dataset subjected to the aforementioned light-curve shape
restriction, we find ∆m15(B) = (0.97 ± 0.12)∆m15 + (0.02 ± 0.14). Figure 2.10 shows our
derived linear relationship within the context of our data.



CHAPTER 2. PHOTOMETRY OF 93 SNe Ia 33

0.8 1.0 1.2 1.4
m15 (mag)

0.6

0.8

1.0

1.2

1.4

1.6

m
15

(B
) (

m
ag

)

m15(B) = 0.97 m15 + 0.02

Figure 2.10: Comparison of the decline-rate parameter as measured from our Gaussian
Process interpolations, ∆m15(B), with that obtained directly from our SNooPy E(B − V )
model fits, ∆m15.
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Figure 2.11: Distributions of ∆ and AV from MLCS2k2 model fits to the light curves in our
dataset appear in black. We include the corresponding distributions derived from CfA3 in
red.

2.5.2.2 MLCS2k2

In addition to the methods described above, we have run MLCS2k2.v007 (Jha et al. 2007) on
our sample of light curves. MLCS2k2 parameterises the absolute magnitude of a SN in terms
of ∆, which quantifies how luminous a SN is relative to a fiducial value. By using a quadratic
dependence on ∆, intrinsic variations in peak magnitude are modeled without introducing a
parameter for intrinsic colour. In order to do this, MLCS2k2 corrects for MW reddening and
attempts to correct for reddening due to the host galaxy by employing a reddening law, RV ,
to obtain the host-galaxy extinction parameter, AV , after employing a prior on E(B − V ).

MLCS2k2 yields four fitted parameters for each BVRI light curve: the distance modulus
(µ), the shape/luminosity parameter (∆), the time of B-band maximum (t0), and the host-
galaxy extinction parameter (AV ). In running MLCS2k2 on our dataset, we fix RV to 1.7 and
use the default host-reddening prior, which consists of a one-sided exponential with scale
length τE(B−V ) = 0.138 mag. We use the SED templates of Hsiao et al. (2007), and following
Hicken et al. (2009b) we use MLCS2k2 model light curves trained using RV = 1.9. We present
the results of running MLCS2k2.v007 on our sample in Table 2.5 and the distributions of ∆
and AV in Figure 2.11. We find a median and standard deviation for ∆ of −0.11 and 0.46,
and for AV of 0.20 and 0.45. Comparing these to the corresponding parameters from CfA3
we find reasonable agreement, with −0.04 and 0.48, and 0.13 and 0.44, respectively. Our
dataset only shares minimal overlap with that of CfA3, so these comparisons serve to reveal
how our dataset is distributed relative to another low-z sample.
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Figure 2.12: Comparison of the (scaled) distance modulus and host-galaxy reddening results
from both light-curve fitters for the selected subset of our dataset.

2.5.3 Comparison of Light-Curve Fitter Results

To make any cosmological statements based on the results in the previous section is beyond
the scope of this paper, as this would require a detailed study and justification of the utilised
light-curve fitters and their parameters, amongst many other considerations. It is interesting
and possible, however, to compare results from the two light-curve fitters we employ to check
for consistency. As the principal quantity of interest when fitting the light curves of SNe Ia
is distance, we will focus our comparison on the derived distance moduli.

The left plot in Figure 2.12 compares the distance moduli from SNooPy and MLCS2k2

after correcting to put the measurements on the same scale (so that relative distance moduli
are compared, independent from assumptions about the Hubble constant). This correction
consists of adding an offset to the distance moduli from each fitter such that the value of H0

measured from each set of results yields 65 km s−1 Mpc−1. We perform this comparison only
for spectroscopically normal SNe Ia in our sample for which SNooPy finds ∆m15 < 1.7 mag
and for which z > 0.01. Of course, further restrictions should be placed when selecting a
sample for cosmological purposes, but our selection is reasonable for performing a general
comparison. We find strong agreement between the two sets of corrected distance moduli
— a Kolmogorov-Smirnoff test gives a p-value of 1.000. The median residual is −0.026 mag
with a statistical dispersion of 0.135 mag.

If we were to ensure consistency in choosing the parameters for each light-curve fitter, the
residuals would almost certainly decrease. In particular, when fitting with MLCS2k2, we place
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an exponentially decaying prior on AV , but no such prior was imposed with SNooPy. This
difference may well manifest in statistically and systematically different results for host-
galaxy reddening and distance moduli between the two fitters. We compare host-galaxy
reddening results in the right panel of Figure 2.12, where for MLCS2k2 we have converted to
reddening using E(B− V )host = AV /RV , with RV = 1.7. The agreement is reasonable, with
a median residual of −0.056 mag and statistical uncertainty of 0.055 mag. Furthermore, the
facts that the median residual (SNooPy minus MLCS2k2) is negative and that the disagreement
is most severe for small E(B − V )host are consistent with what one might expect given the
prior imposed by MLCS2k2.

2.6 Conclusion

In this paper we present BVRI (along with some unfiltered) light curves of 93 SNe Ia derived
from images collected by the LOSS follow-up program primarily over the interval from 2009–
2018, but with several instances as early as 2005. Careful and consistent observational
and processing techniques ensure that our data is prepared in a homogeneous fashion. We
estimate the systematic uncertainty in our dataset to be 0.03 mag in BVRI, and we encourage
the community to incorporate our light curves in future studies.

In cases where our results overlap with previous reductions of LOSS data, we provide
a set of comparisons as a consistency check. In general, we find good agreement, giving
us confidence in the quality of our processing and analysis. When combined with the light
curves of G10, the resulting dataset spans 20 years of observations of 258 SNe Ia from the
same two telescopes.

We study the properties of the light curves in our dataset, with particular focus on
the parameters used in various width-luminosity relationships. Using direct interpolations,
we measured ∆m15(B) and ∆m15(V ). We also apply the light-curve fitters SNooPy and
MLCS2k2.v007 to measure ∆m15 and ∆, respectively. We compare results derived from
these methods, and find an acceptable degree of agreement given the differences in starting
assumptions.

A consideration of the photometric dataset presented here alongside spectra from the
Berkeley Supernova Ia Program (BSNIP) database will enable further utility. Our dataset
overlaps with 13 SNe from the first BSNIP data release (Silverman et al. 2012a), with an
average of 4.5 spectra each. Furthermore we expect significant overlap between the SNe in
our dataset and our upcoming second BSNIP data release of ∼ 700 spectra from ∼ 250
SNe Ia observed over a similar temporal range (Stahl et al. 2020b).

2.7 Sample Information
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Table 2.3: SN Ia sample.

SN R.A.a Decl.a Discoverya Discovery Spectroscopicb Typec Hosta zhelio
d E(B − V )MW

e Ef Nf Host
Name α(2000) δ(2000) Date (UT) Reference Reference Galaxy (mag) (′′) (′′) Subtr.g

2005hk 6.96196 −1.19792 30 Oct 2005 IAUC 8625 CBET 269, Ph07 Iax UGC 272 0.013 0.020 16.9 7.5 Y
2005ki 160.11758 9.20233 18 Nov 2005 CBET 294 CBET 296 Ia NGC 3332 0.019 0.027 −2.2 71.2 N
2006ev 322.74692 13.98922 12 Sep 2006 IAUC 8747 CBET 622 Ia UGC 11758 0.029 0.077 23.9 11.3 Y
2006mq 121.55162 −27.56261 22 Oct 2006 CBET 721 CBET 724 Ia ESO 494–G26 0.003 0.362 17.3 −123.1 N
2007F 195.81283 50.61881 11 Jan 2007 CBET 803 CBET 805 Ia UGC 8162 0.024 0.015 −9.8 −7.0 Y
2007bd 127.88867 −1.19944 4 Apr 2007 CBET 914 CBET 915 Ia UGC 4455 0.031 0.029 6.0 −6.2 Y
2007bm 171.25958 −9.79828 20 Apr 2007 CBET 936 CBET 939 Ia NGC 3672 0.006 0.035 −2.5 −10.4 Y
2007fb 359.21821 5.50883 3 Jul 2007 CBET 992 CBET 993 Ia UGC 12859 0.018 0.048 12.2 1.5 Y
2007fs 330.4185 −21.50822 15 Jul 2007 CBET 1002 CBET 1003 Ia ESO 601–G5 0.017 0.029 34.5 10.6 Y

2007if 17.71404 15.46108 16 Aug 2007 CBET 1059 CBET 1059 SC Anon. 0.074± 0.071 ... ... N

2007jg 52.46175 0.05683 14 Sep 2007 CBET 1076 CBET 1076 Ia SDSS J032950.83 + 000316.0† 0.037 0.091 −0.1 8.6 Y
2007kk 55.59692 39.24178 28 Sep 2007 CBET 1096 CBET 1097 Ia UGC 2828 0.041 0.196 −9.1 −9.9 Y
2008Y 169.87737 54.46283 6 Feb 2008 CBET 1240 CBET 1246 Ia MCG +09–19–39 0.070 0.011 −2.3 7.1 Y

2008dh 8.79717 23.25419 8 Jun 2008 CBET 1409 CBET 1409 Ia PGC 1684149† 0.037 0.026 12.2 −3.0 Y
2008ds 7.46179 31.39275 28 Jun 2008 CBET 1419 CBET 1419 Ia-pec UGC 299 0.021 0.055 −33.0 −2.2 Y
2008eg 27.90112 19.10469 20 Jul 2008 CBET 1444 CBET 1444 Ia UGC 1324 0.034 0.057 0.3 4.3 Y
2008ek 241.38821 17.59256 28 Jul 2008 CBET 1452 CBET 1454 Ia IC 1181 0.033 0.038 −9.7 −4.1 Y
2008eo 10.46683 32.99033 3 Aug 2008 CBET 1459 CBET 1465 Ia UGC 442 0.016 0.070 4.4 −3.5 Y

2008eq 255.03 23.13239 2 Aug 2008 CBET 1460 CBET 1465 Ia PGC 214560† 0.057 0.063 4.1 3.6 Y

2008fk 38.52108 1.39514 2 Sep 2008 CBET 1494 CBET 1499 Ia 2MASX J02340513+0123408† 0.072 0.020 −1.2 1.9 Y
2008fu 45.61875 −24.45597 25 Sep 2008 CBET 1517 CBET 1519 Ia ESO 480–IG21 0.052 0.019 −2.6 −0.5 Y
2008gg 21.346 −18.17244 9 Oct 2008 CBET 1538 CBET 1540 Ia NGC 539 0.032 0.021 18.7 −30.9 N
2008gl 20.22842 4.80531 20 Oct 2008 CBET 1545 CBET 1547 Ia UGC 881 0.034 0.024 20.2 14.3 Y

2008go 332.68679 −20.78811 22 Oct 2008 CBET 1553 CBET 1554 Ia Anon.† 0.062 0.032 11.9 8.8 N
2008gp 50.75304 1.36189 27 Oct 2008 CBET 1555 CBET 1558 Ia MCG +00–9–74 0.033 0.104 10.9 −14.0 Y
2008ha 353.71954 18.2265 7 Nov 2008 CBET 1567 CBET 1576 Iax UGC 12682 0.005 0.068 −11.5 −2.6 Y
2008hs 36.37342 41.84308 1 Dec 2008 CBET 1598 CBET 1599 Ia NGC 910 0.017 0.049 31.7 67.7 N
2009D 58.59512 −19.18172 2 Jan 2009 CBET 1647 CBET 1647 Ia MCG –03–10–52 0.025 0.046 −26.1 30.9 N

2009al 162.84196 8.57853 26 Feb 2009 CBET 1705 CBET 1708 Ia NGC 3425† 0.022 0.021 −51.3 41.0 N
2009an 185.69779 65.85117 27 Feb 2009 CBET 1707 CBET 1709 Ia NGC 4332 0.009 0.016 4.4 26.6 Y
2009dc 237.8005 25.70778 9 Apr 2009 CBET 1762 CBET 1776 SC UGC 10064 0.021 0.060 −15.7 21.1 N
2009ee 170.35542 34.33981 9 May 2009 CBET 1795 CBET 1802 Ia IC 2738 0.035 0.021 27.7 −60.7 N
2009eq 280.03458 40.12681 11 May 2009 CBET 1805 CBET 1817 Ia-pec NGC 6686 0.024 0.053 14.7 −39.0 N
2009eu 247.17137 39.55347 21 May 2009 CBET 1813 CBET 1817 Ia NGC 6166 0.030 0.010 30.6 6.9 Y
2009fv 247.43425 40.81161 2 Jun 2009 CBET 1834 CBET 1846 Ia NGC 6173 0.029 0.005 −7.7 0.0 Y
2009hn 38.00129 1.24819 24 Jul 2009 CBET 1886 CBET 1889 Ia UGC 2005 0.022 0.021 38.1 6.0 Y
2009hp 44.59983 6.59308 26 Jul 2009 CBET 1888 CBET 1889 Ia MCG +01–08–30 0.021 0.198 −9.2 4.6 Y
2009hs 268.96221 62.59975 28 Jul 2009 CBET 1892 CBET 1909 91bg-like NGC 6521 0.027 0.035 17.2 −45.0 N
2009ig 39.54837 −1.31253 20 Aug 2009 CBET 1918 CBET 1918 Ia NGC 1015 0.009 0.028 0.7 22.2 Y
2009kq 129.06288 28.06714 5 Nov 2009 CBET 2005 ATEL 2291 Ia MCG +05–21–1 0.012 0.035 −4.2 24.5 Y
2010ao 205.92079 3.90003 18 Mar 2010 CBET 2211 CBET 2223 Ia UGC 8686 0.023 0.023 11.8 14.5 Y

2010hs 36.41308 24.76489 12 Sep 2010 CBET 2454 CBET 2461 Ia PGC 1715790† 0.076∓ 0.100 −93.4 −46.4 N
2010ii 339.55492 35.49167 30 Sep 2010 CBET 2474 CBET 2474 Ia NGC 7342 0.027 0.075 0.4 −25.9 Y
2010ju 85.48329 18.4975 14 Nov 2010 CBET 2549 CBET 2550 Ia UGC 3341 0.015 0.361 6.3 18.5 Y
2011M 75.17312 62.24406 19 Jan 2011 CBET 2640 CBET 2640 Ia UGC 3218 0.017 0.352 −15.1 0.1 Y

2011bd 266.77633 57.30131 24 Mar 2011 CBET 2685 CBET 2685 Ia NGC 6473 0.028‡ 0.041 3.3 −31.0 Y
2011by 178.93983 55.32606 26 Apr 2011 CBET 2708 CBET 2708 Ia NGC 3972 0.003 0.012 4.0 19.1 Y
2011df 291.89017 54.38647 21 May 2011 CBET 2729 CBET 2729 Ia NGC 6801 0.014 0.112 −19.0 48.9 Y

2011dl 244.52071 21.55111 17 Jun 2011 CBET 2744 CBET 2744 Ia UGC 10321 0.026‡ 0.067 −18.6 −35.0 N
Table 2.3 continued
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SN R.A.a Decl.a Discoverya Discovery Spectroscopicb Typec Hosta zhelio

d E(B − V )MW
e Ef Nf Host

Name α(2000) δ(2000) Date (UT) Reference Reference Galaxy (mag) (′′) (′′) Subtr.g

2011dz 243.18675 28.28422 26 Jun 2011 CBET 2761 CBET 2761 Ia UGC 10273 0.025 0.044 −2.4 −61.8 Y
2011ek 36.45371 18.53333 4 Aug 2011 CBET 2783 CBET 2783 Ia NGC 918 0.005 0.307 −27.7 133.5 Y

2011fe 210.77421 54.27372 24 Aug 2011 CBET 2792 CBET 2792 Ia M101‡ 0.001 0.008 −59.3 −270.1 Y
2011fs 334.33133 35.58056 15 Sep 2011 CBET 2825 CBET 2825 Ia UGC 11975 0.021 0.101 −2.7 33.8 N
2012E 38.34496 9.58489 14 Jan 2012 CBET 2981 CBET 2981 Ia NGC 975 0.020 0.063 0.6 −60.5 N
2012Z 50.52229 −15.38767 29 Jan 2012 CBET 3014 CBET 3014 Iax NGC 1309 0.007 0.034 −17.5 44.6 N
2012bh 183.40546 46.48347 11 Mar 2012 CBET 3066 CBET 3066 Ia UGC 7228 0.025 0.016 5.2 −37.8 N
2012cg 186.80346 9.42033 17 May 2012 CBET 3111 CBET 3111 Ia NGC 4424 0.001 0.018 18.1 −1.2 Y

2012dn 305.90108 −28.27872 8 Jul 2012 CBET 3174 CBET 3174 SC PGC 64605‡ 0.010 0.052 ... ... Y
2012ea 266.29333 18.14078 8 Aug 2012 CBET 3199 CBET 3199 91bg-like NGC 6430 0.010 0.055 −55.2 6.6 N
2012gl 153.20967 12.68242 29 Oct 2012 CBET 3302 CBET 3302 Ia NGC 3153 0.009 0.036 −2.6 56.7 N
2013bs 259.34179 41.06672 18 Apr 2013 CBET 3494 CBET 3494 Ia NGC 6343 0.028 0.025 65.1 50.4 N
2013dh 232.50454 12.98692 12 Jun 2013 CBET 3561 CBET 3561 91T-like NGC 5936 0.013 0.033 3.8 −8.7 Y

2013dr 259.87608 47.70128 1 Jul 2013 CBET 3576 CBET 3576 Ia PGC 60077‡ 0.017 0.021 −8.7 −4.3 Y
2013dy 334.57333 40.56933 10 Jul 2013 CBET 3588 CBET 3588 Ia NGC 7250 0.004 0.132 −2.3 25.0 Y
2013ex 83.19425 −14.04594 19 Aug 2013 CBET 3635 CBET 3635 Ia NGC 1954 0.010 0.123 −24.9 60.6 N
2013fa 310.97321 12.51436 25 Aug 2013 CBET 3641 CBET 3641 Ia NGC 6956 0.016 0.086 −2.1 8.8 Y
2013fw 318.43654 13.57592 21 Oct 2013 CBET 3681 CBET 3681 Ia NGC 7042 0.017 0.067 −15.9 3.6 Y
2013gh 330.591 −18.91678 8 Aug 2013 CBET 3706 CBET 3706 Ia NGC 7183 0.009 0.025 3.1 −1.0 Y
2013gq 124.47275 23.46958 25 Mar 2013 CBET 3730 CBET 3730 Ia NGC 2554 0.014 0.049 −0.4 −9.2 Y
2013gy 55.57033 −4.72181 6 Dec 2013 CBET 3743 CBET 3743 Ia NGC 1418 0.014 0.050 10.8 32.2 N
2014J 148.92558 69.67389 21 Jan 2014 CBET 3792 CBET 3792 Ia NGC 3034 0.001 0.136 −55.2 −19.8 Y
2014ai 139.93404 33.76378 21 Mar 2014 CBET 3838 CBET 3838 Ia NGC 2832 0.023 0.015 −33.5 50.5 N
2014ao 128.63883 −2.54336 17 Apr 2014 CBET 3855 CBET 3855 Ia NGC 2615 0.014 0.031 −0.4 12.4 Y

2014bj 290.66312 43.89081 22 May 2014 CBET 3893 CBET 3893 Ia Anon. 0.005‡ 0.091 ... ... N
2014dt 185.48987 4.47181 29 Oct 2014 CBET 4011 CBET 4011 Iax NGC 4303 0.005 0.019 39.9 −6.6 Y
2015N 325.82037 43.57989 6 Jul 2015 CBET 4124 CBET 4124 Ia UGC 11797 0.019 0.456 −36.1 12.9 Y
2016aew 212.86037 1.28596 12 Feb 2016 TNSTR–2016–106 TNSCR–2016–114 Ia IC 0986 0.025 0.033 3.9 −2.0 Y
2016coj 182.02833 65.17729 28 May 2016 TNSTR–2016–384 TNSCR–2016–386 Ia NGC 4125 0.005 0.016 4.9 11.3 Y
2016fbk 26.02737 34.38283 16 Aug 2016 TNSTR–2016–568 TNSCR–2016–572 Ia UGC 01212 0.036 0.042 −19.6 −16.1 Y
2016ffh 227.95617 46.25089 17 Aug 2016 TNSTR–2016–583 TNSCR–2016–589 Ia CGCG 249–011 0.018 0.024 11.4 −10.7 Y
2016gcl 354.48592 27.27715 8 Sep 2016 TNSTR–2016–644 TNSCR–2016–655 91T-like AGC 331536 0.028 0.063 −2.7 −1.5 Y
2016gdt 328.09396 3.42181 8 Sep 2016 TNSTR–2016–652 TNSCR–2016–666 91bg-like IC 1407 0.029 0.072 −13.3 −19.3 N
2016hvl 101.009 12.39662 4 Nov 2016 TNSTR–2016–884 TNSCR–2016–892 Ia UGC 3524 0.013 0.377 22.9 −19.2 N
2017cfd 130.20479 73.48754 16 Mar 2017 TNSTR–2017–315 TNSCR–2017–325 Ia IC 511 0.012 0.019 −5.5 3.1 Y
2017drh 263.10854 7.0632 3 May 2017 TNSTR–2017–513 TNSCR–2017–516 Ia NGC 6384 0.006 0.106 26.1 10.5 Y

2017dws 235.05904 11.34486 3 May 2017 TNSTR–2017–528 TNSCR–2017–534 Ia Anon. 0.082‡ 0.035 ... ... Y
2017erp 227.31171 −11.33422 13 Jun 2017 TNSTR–2017–647 TNSCR–2017–655 Ia NGC 5861 0.006 0.093 −18.8 −45.2 N
2017fgc 20.06017 3.40277 11 Jul 2017 TNSTR–2017–753 TNSCR–2017–757 Ia NGC 0474 0.008 0.029 116.0 −45.4 N
2017glx 295.91787 56.11008 3 Sep 2017 TNSTR–2017–963 TNSCR–2017–970 91T-like NGC 6824 0.011 0.107 −3.4 2.2 Y

2017hbi 38.13154 35.4836 2 Oct 2017 TNSTR–2017–1066 TNSCR–2017–1074 Ia Anon. 0.040‡ 0.061 ... ... N
2018aoz 177.75762 −28.74406 2 Apr 2018 TNSTR–2018–428 TNSCR–2018–433 Ia NGC 3923 0.006 0.072 1.8 223.1 N
2018dem 317.99387 −0.2181 8 Jul 2018 TNSTR–2018–947 TNSCR–2018–1219 Ia SDSS J211158.77–001309.9 0.060 0.072 −3.6 4.8 Y
2018gv 121.39421 −11.43786 15 Jan 2018 TNSTR–2018–57 TNSCR–2018–75 Ia NGC 2525 0.005 0.050 −50.4 −39.0 Y
aBasic information for each SN, including its J2000 right ascension and declination (in decimal degrees), its host galaxy, and its discovery date, were sourced from TNS.
However, host galaxies marked with a “†” symbol were obtained from Lennarz et al. (2012a), while those with a “‡” are from the given discovery reference.
bSpectroscopic classification reference. Ph07 refers to Phillips et al. (2007).
cSpectroscopic type as classified in the spectroscopic reference. Super-Chandrasekhar candidates are labeled with “SC”.
dHost-galaxy heliocentric redshifts are from NED unless otherwise indicated. Those marked with a “‡” symbol were obtained from their spectroscopic references, and “±”
refers to Scalzo et al. (2010) and “∓” to Lennarz et al. (2012a).
eExtinction is calculated at the SN position using the dust maps of Schlegel et al. (1998) subject to the recalibration of Schlafly and Finkbeiner (2011).
fOffsets from host-galaxy nuclei are computed using the host location as given by NED (if available) for all SNe except SN 2010hs, whose host coordinates are from the
catalog of Lennarz et al. (2012a).
gIndicates whether the SN had its host galaxy subtracted (Y) or not (N).
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2.8 Light Curves

2.8.1 Light-Curve Properties
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Figure 2.13: Observed BVRI and unfiltered light curves of our SN Ia sample. Blue up-
triangles are B + 2, green diamonds are V , red squares are R − 2, dark red down-triangles
are I − 4, and black circles are Clear−1. In most cases the error bars are smaller than the
points themselves. All dates have been shifted relative to the time of maximum B-band
brightness, if determined, and relative to the time of the first epoch otherwise.



CHAPTER 2. PHOTOMETRY OF 93 SNe Ia 41

0 60 120

15

18

21M
ag

ni
tu

de

2008fu

0 40 80

15

18

21

2008gg

0 40 80

12

16

20

24

2008gl

15 0 15

15

18

21

2008go

0 40 80

12

16

20

24

M
ag

ni
tu

de

2008gp

0 20 40

16

20

24

2008ha

0 40 80

12

15

18

21

2008hs

0 15

12

15

18

2009D

0 40 80

12

15

18

21M
ag

ni
tu

de

2009al

0 50 100

12

16

20

2009an

0 80

12

15

18

21

2009dc

20 40 60

15

18

21

24

2009ee

0 50 100

16

20

24

M
ag

ni
tu

de

2009eq

0 30 60

15

18

21

24

2009eu

0 40 80

12

15

18

21

2009fv

0 10 20

15

18

21

2009hn

0 10 20
Phase (days)

15

18

21M
ag

ni
tu

de

2009hp

0 25 50
Phase (days)

15

18

21

2009hs

0 80 160
Phase (days)

12

16

20

2009ig

0 60 120
Phase (days)

12

16

20

2009kq

Figure 2.13: Observed BVRI and unfiltered light curves of our SN Ia sample. Blue up-
triangles are B + 2, green diamonds are V , red squares are R − 2, dark red down-triangles
are I − 4, and black circles are Clear−1. In most cases the error bars are smaller than the
points themselves. All dates have been shifted relative to the time of maximum B-band
brightness, if determined, and relative to the time of the first epoch otherwise.
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Figure 2.13: Observed BVRI and unfiltered light curves of our SN Ia sample. Blue up-
triangles are B + 2, green diamonds are V , red squares are R − 2, dark red down-triangles
are I − 4, and black circles are Clear−1. In most cases the error bars are smaller than the
points themselves. All dates have been shifted relative to the time of maximum B-band
brightness, if determined, and relative to the time of the first epoch otherwise.
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Figure 2.13: Observed BVRI and unfiltered light curves of our SN Ia sample. Blue up-
triangles are B + 2, green diamonds are V , red squares are R − 2, dark red down-triangles
are I − 4, and black circles are Clear−1. In most cases the error bars are smaller than the
points themselves. All dates have been shifted relative to the time of maximum B-band
brightness, if determined, and relative to the time of the first epoch otherwise.
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Figure 2.13: Observed BVRI and unfiltered light curves of our SN Ia sample. Blue up-
triangles are B + 2, green diamonds are V , red squares are R − 2, dark red down-triangles
are I − 4, and black circles are Clear−1. In most cases the error bars are smaller than the
points themselves. All dates have been shifted relative to the time of maximum B-band
brightness, if determined, and relative to the time of the first epoch otherwise.
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Table 2.4: Light-curve properties derived from Gaussian Process interpolation.

SN tBmax (MJD) Bmax (mag) ∆m15(B) (mag) tVmax (MJD) Vmax (mag) ∆m15(V ) (mag) (B − V )Bmax (mag)
2005hk 53684.32± 0.29 15.850± 0.022 1.580± 0.053 53688.11± 0.56 15.703± 0.018 0.799± 0.039 0.069± 0.029
2005ki 53704.67± 0.40 15.572± 0.042 1.275± 0.080 53705.97± 0.56 15.534± 0.043 0.826± 0.067 0.021± 0.060
2007F 54122.32± 0.45 15.975± 0.016 0.864± 0.085 54124.03± 0.54 15.928± 0.011 0.550± 0.069 0.029± 0.020
2007bd 54210.22± 1.87 16.680± 0.051 1.451± 0.248 54212.58± 1.74 16.552± 0.074 0.891± 0.177 0.095± 0.090
2007bm 54224.46± 0.50 14.548± 0.022 1.232± 0.057 54225.66± 0.39 14.057± 0.011 0.690± 0.025 0.481± 0.025
2007fb 54287.92± 0.62 15.792± 0.021 1.332± 0.093 54288.90± 0.65 15.668± 0.024 0.726± 0.049 0.119± 0.032
2007kk 54382.76± 1.41 16.953± 0.024 0.954± 0.169 54385.52± 0.98 16.993± 0.017 0.559± 0.063 −0.064± 0.030
2008ds 54651.90± 0.24 15.263± 0.009 0.957± 0.030 54652.49± 0.25 15.303± 0.004 0.617± 0.019 −0.042± 0.010
2008eo 54688.14± 0.81 15.311± 0.020 1.026± 0.070 54689.74± 0.30 15.220± 0.006 0.675± 0.016 0.074± 0.021
2008eq 54689.54± 0.93 18.222± 0.027 1.029± 0.148 54691.77± 1.22 18.141± 0.029 0.576± 0.092 0.064± 0.040
2008gg 54749.80± 1.50 16.677± 0.033 0.983± 0.181 54752.39± 1.20 16.523± 0.029 0.570± 0.130 0.130± 0.044
2008gl 54767.98± 0.83 16.882± 0.043 1.394± 0.158 54769.51± 1.32 16.870± 0.039 0.704± 0.101 0.005± 0.058
2008gp 54779.28± 0.85 16.484± 0.037 1.136± 0.135 54780.97± 1.16 16.610± 0.038 0.631± 0.108 −0.136± 0.053
2008hs 54812.80± 0.52 15.932± 0.106 1.991± 0.160 54814.38± 0.54 15.769± 0.123 1.228± 0.161 0.129± 0.162
2009dc 54946.34± 0.80 15.148± 0.014 0.713± 0.060 54946.85± 0.85 15.166± 0.015 0.294± 0.035 −0.020± 0.021
2009eu 54984.59± 0.50 17.690± 0.054 1.816± 0.132 54986.86± 0.68 17.464± 0.041 1.006± 0.091 0.179± 0.068
2009fv 54994.47± 0.40 16.887± 0.024 1.670± 0.090 54998.15± 1.33 16.775± 0.022 0.767± 0.123 0.069± 0.032
2009hs 55048.55± 0.34 17.376± 0.041 2.090± 0.109 55051.00± 0.32 17.170± 0.030 1.186± 0.058 0.136± 0.051
2009ig 55079.70± 1.11 13.560± 0.032 0.850± 0.124 55082.78± 0.44 13.427± 0.013 0.682± 0.023 0.095± 0.034
2009kq 55155.05± 0.39 14.591± 0.014 1.091± 0.067 55156.49± 0.24 14.540± 0.010 0.658± 0.023 0.037± 0.017
2010ao 55289.32± 0.57 15.857± 0.037 1.329± 0.094 55290.55± 0.59 15.921± 0.024 0.693± 0.053 −0.073± 0.045
2010ii 55480.46± 0.21 16.207± 0.011 1.034± 0.317 55481.61± 0.47 16.248± 0.012 0.769± 0.241 −0.052± 0.016
2010ju 55525.65± 1.04 16.136± 0.073 1.315± 0.106 55526.39± 1.01 15.628± 0.056 0.715± 0.053 0.505± 0.092
2011M 55593.45± 0.26 15.225± 0.014 1.136± 0.050 55595.27± 0.32 15.228± 0.013 0.649± 0.050 −0.023± 0.019
2011by 55690.56± 0.68 12.906± 0.018 1.085± 0.095 55692.59± 0.62 12.874± 0.015 0.695± 0.052 0.014± 0.024
2011ek 55789.58± 0.85 14.504± 0.123 1.272± 0.190 55790.80± 0.67 13.715± 0.061 0.795± 0.092 0.775± 0.137
2011fs 55832.32± 0.69 15.357± 0.009 0.808± 0.071 55835.04± 0.57 15.313± 0.008 0.565± 0.035 0.018± 0.012
2012Z 55965.90± 0.38 14.662± 0.026 1.199± 0.074 55973.93± 0.86 14.377± 0.016 0.790± 0.066 0.105± 0.030
2012cg 56081.36± 0.26 12.115± 0.012 0.906± 0.032 56083.25± 0.24 11.952± 0.005 0.631± 0.013 0.144± 0.013
2012ea 56157.89± 0.11 15.848± 0.009 1.945± 0.028 56160.18± 0.14 15.403± 0.007 1.224± 0.018 0.387± 0.012
2013bs 56406.88± 1.68 16.697± 0.090 1.533± 0.144 56409.11± 0.71 16.589± 0.038 0.903± 0.049 0.073± 0.098
2013dh 56463.02± 0.62 17.507± 0.069 1.554± 0.155 56467.07± 0.54 17.524± 0.048 1.014± 0.071 −0.151± 0.084
2013dy 56500.40± 0.19 12.697± 0.008 0.870± 0.023 56501.84± 0.34 12.578± 0.005 0.609± 0.021 0.109± 0.010
2013fw 56601.14± 0.26 15.078± 0.006 1.038± 0.037 56603.53± 0.29 15.059± 0.006 0.630± 0.021 −0.010± 0.008
2013gh 56527.13± 0.41 14.434± 0.028 1.223± 0.050 56529.24± 0.49 14.180± 0.011 0.606± 0.029 0.225± 0.030
2013gq 56384.64± 0.66 14.738± 0.029 1.229± 0.154 56386.45± 0.77 14.753± 0.019 0.645± 0.072 −0.035± 0.035
2013gy 56647.80± 0.65 14.751± 0.025 1.247± 0.072 56650.05± 0.55 14.803± 0.006 0.644± 0.034 −0.071± 0.025
2014J 56688.93± 0.65 11.452± 0.020 0.890± 0.074 56689.71± 0.50 10.237± 0.017 0.553± 0.033 1.211± 0.026
2015N 57222.81± 0.27 14.853± 0.025 1.109± 0.078 57225.28± 0.79 14.768± 0.032 0.628± 0.054 0.040± 0.041
2016coj 57547.15± 0.19 13.082± 0.007 1.329± 0.030 57547.89± 0.18 13.088± 0.007 0.681± 0.018 −0.010± 0.010
2016gcl 57647.90± 1.63 16.227± 0.023 0.741± 0.126 57650.42± 1.18 16.251± 0.016 0.543± 0.069 −0.044± 0.028
2016hvl 57709.70± 0.47 14.392± 0.022 1.037± 0.055 57713.43± 0.67 14.282± 0.011 0.619± 0.028 0.058± 0.025
2017drh 57891.14± 0.44 16.691± 0.022 1.370± 0.065 57891.98± 0.48 15.396± 0.010 0.720± 0.032 1.291± 0.024
2017erp 57934.53± 0.22 13.336± 0.008 1.086± 0.031 57937.21± 0.35 13.275± 0.007 0.667± 0.020 0.036± 0.010
2017glx 58007.78± 0.25 14.228± 0.009 0.780± 0.026 58009.73± 0.87 14.250± 0.007 0.493± 0.045 −0.037± 0.011
2017hbi 58045.80± 0.61 16.580± 0.019 0.710± 0.074 58045.64± 0.76 16.671± 0.014 0.310± 0.045 −0.091± 0.024
2018aoz 58222.46± 0.58 12.761± 0.030 1.305± 0.124 58223.38± 0.46 12.730± 0.018 0.779± 0.077 0.025± 0.035
2018gv 58149.38± 0.31 12.751± 0.015 0.853± 0.037 58153.39± 0.32 12.788± 0.007 0.740± 0.017 −0.125± 0.017
Note: Only those SNe from our sample where the fitting process described in Section 2.5.1 succeeded appear here.
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Table 2.5: Results of SNooPy and MLCS2k2 fitting.

SNooPy E(B − V ) Fitted Parameters MLCS2k2 Fitted Parameters
SN tmax (MJD) ∆m15 (mag) E(B − V )host (mag) µ (mag) t0 (MJD) ∆ AV (mag) µ (mag)

2005ki 53705.23± 0.06 1.419± 0.013 −0.011± 0.009 34.666± 0.013 53705.21± 0.11 0.373± 0.052 0.027± 0.017 34.719± 0.065
2007F 54123.83± 0.09 1.096± 0.012 0.041± 0.010 35.163± 0.011 54123.13± 0.10 −0.179± 0.033 0.204± 0.036 35.351± 0.046
2007bd 54207.12± 0.50 1.351± 0.067 0.010± 0.037 35.748± 0.050 54206.65± 0.23 0.209± 0.103 0.082± 0.054 35.851± 0.097
2007bm 54225.02± 0.15 1.224± 0.014 0.588± 0.011 32.635± 0.019 54223.94± 0.08 0.057± 0.038 1.109± 0.036 32.389± 0.048
2007fb 54287.48± 0.16 1.353± 0.016 0.100± 0.009 34.657± 0.017 54286.73± 0.31 0.285± 0.055 0.142± 0.042 34.749± 0.059
2007fs 54293.70± 0.42 0.879± 0.015 0.015± 0.013 34.505± 0.014 54295.17± 0.35 −0.161± 0.028 0.116± 0.032 34.649± 0.044
2007if 54338.39± 0.86 0.768± 0.029 0.034± 0.026 36.133± 0.033 54343.02± 1.17 −0.350± 0.062 0.384± 0.068 36.245± 0.123
2007jg 54365.35± 0.47 1.199± 0.022 −0.021± 0.024 36.493± 0.032 54364.35± 0.55 −0.025± 0.060 0.092± 0.051 36.616± 0.071
2007kk 54383.83± 0.26 1.088± 0.035 −0.004± 0.022 36.267± 0.025 54382.59± 0.44 −0.340± 0.040 0.168± 0.071 36.558± 0.066
2008Y 54499.62± 1.52 0.939± 0.126 0.164± 0.045 37.425± 0.078 54498.33± 1.66 −0.110± 0.112 0.226± 0.090 37.503± 0.127
2008dh 54625.56± 0.67 0.924± 0.035 0.026± 0.024 36.282± 0.020 54626.31± 0.66 −0.124± 0.052 0.077± 0.044 36.436± 0.077
2008ds 54651.45± 0.15 0.865± 0.010 −0.013± 0.007 34.746± 0.011 54652.06± 0.18 −0.270± 0.023 0.045± 0.027 34.975± 0.039
2008ek 54668.63± 2.52 1.813± 0.033 0.669± 0.145 36.434± 0.096 54662.46± 1.63 1.213± 0.141 0.220± 0.135 35.997± 0.120
2008eo 54686.91± 0.38 0.884± 0.018 0.095± 0.015 34.513± 0.015 54688.23± 0.30 −0.197± 0.028 0.261± 0.039 34.630± 0.045
2008eq 54689.59± 0.28 0.971± 0.032 0.207± 0.015 37.155± 0.036 54689.46± 0.34 −0.227± 0.053 0.444± 0.048 37.277± 0.068
2008fk 54722.03± 1.02 1.263± 0.074 −0.197± 0.067 37.749± 0.091 54719.62± 0.99 −0.229± 0.084 0.028± 0.020 37.967± 0.087
2008gg 54750.61± 0.58 1.087± 0.060 0.111± 0.036 35.720± 0.050 54749.06± 0.72 −0.350± 0.046 0.267± 0.051 36.047± 0.071
2008gl 54766.97± 0.27 1.178± 0.027 0.124± 0.012 35.917± 0.024 54767.32± 0.37 0.189± 0.109 0.227± 0.058 35.913± 0.086
2008go 54765.09± 1.09 1.158± 0.101 0.081± 0.022 37.167± 0.073 54764.78± 0.65 0.002± 0.118 0.191± 0.062 37.317± 0.109
2008gp 54779.01± 0.08 1.087± 0.011 −0.048± 0.008 35.909± 0.009 54778.92± 0.35 −0.106± 0.064 0.051± 0.035 36.094± 0.073
2008hs 54813.07± 0.11 1.720± 0.012 0.103± 0.017 34.836± 0.033 54812.83± 0.08 1.181± 0.042 0.011± 0.010 34.297± 0.058
2009D 54841.02± 0.54 0.932± 0.041 0.026± 0.017 35.140± 0.018 54841.93± 1.47 −0.138± 0.108 0.125± 0.056 35.248± 0.080
2009al 54896.75± 0.35 1.106± 0.029 0.264± 0.022 35.127± 0.023 54894.38± 0.79 −0.264± 0.043 0.503± 0.054 35.305± 0.066
2009dc ... ... ... ... 54945.34± 0.16 −0.693± 0.017 0.348± 0.031 34.687± 0.037
2009ee 54951.64± 0.80 1.273± 0.021 0.210± 0.056 36.209± 0.042 54949.75± 0.71 0.466± 0.086 0.085± 0.076 36.068± 0.085
2009eu 54984.30± 0.12 1.787± 0.013 0.279± 0.021 35.924± 0.025 54984.38± 0.20 1.199± 0.058 0.056± 0.046 35.606± 0.063
2009hs 55048.76± 0.11 1.798± 0.013 0.269± 0.025 35.728± 0.024 55048.51± 0.13 1.259± 0.034 0.018± 0.012 35.404± 0.048
2009ig ... ... ... ... 55079.47± 0.09 −0.354± 0.023 0.123± 0.029 33.167± 0.039
2009kq 55154.71± 0.15 1.103± 0.018 0.017± 0.011 33.834± 0.014 55154.69± 0.20 −0.062± 0.035 0.154± 0.036 33.954± 0.047
2010ao 55288.84± 0.30 1.129± 0.031 0.037± 0.019 35.122± 0.028 55288.75± 0.26 0.009± 0.056 0.195± 0.048 35.147± 0.069
2010ii ... ... ... ... 55481.48± 0.19 0.315± 0.116 0.031± 0.022 35.457± 0.096
2010ju 55524.52± 0.29 1.175± 0.032 0.440± 0.023 34.477± 0.044 55524.07± 0.23 −0.044± 0.070 0.931± 0.122 34.315± 0.107
2011M 55593.49± 0.12 1.119± 0.025 0.048± 0.012 34.482± 0.019 55593.14± 0.15 −0.008± 0.060 0.183± 0.107 34.475± 0.082
2011by 55690.78± 0.09 1.091± 0.010 0.094± 0.011 32.077± 0.011 55690.33± 0.09 −0.037± 0.029 0.300± 0.028 32.071± 0.042
2011df 55715.10± 0.30 0.943± 0.019 0.056± 0.010 34.161± 0.013 55716.02± 0.41 −0.162± 0.038 0.215± 0.053 34.261± 0.056
2011dl 55738.35± 0.50 1.089± 0.046 0.169± 0.033 36.079± 0.031 55736.95± 0.77 −0.278± 0.060 0.439± 0.053 36.228± 0.064
2011ek 55789.74± 0.10 1.522± 0.021 0.503± 0.012 32.250± 0.026 55789.14± 0.15 0.562± 0.073 0.979± 0.101 31.821± 0.090
2011fe 55815.22± 0.06 1.096± 0.005 −0.006± 0.005 29.228± 0.006 ... ... ... ...
2011fs 55833.25± 0.19 0.911± 0.016 0.064± 0.012 34.620± 0.013 55832.95± 0.26 −0.310± 0.026 0.209± 0.044 34.825± 0.045
2012E 55949.73± 0.79 1.343± 0.051 0.117± 0.026 34.682± 0.018 55948.57± 1.67 0.343± 0.162 0.200± 0.107 34.612± 0.111
2012cg 56082.40± 0.06 1.060± 0.006 0.173± 0.007 31.054± 0.006 56081.62± 0.06 −0.254± 0.021 0.543± 0.026 31.120± 0.035
2012dn 56132.44± 0.00 0.940± 0.028 0.458± 0.025 32.725± 0.023 56134.14± 0.57 −0.181± 0.050 0.841± 0.044 32.744± 0.076

Table 2.5 continued
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SN tmax (MJD) ∆m15 (mag) E(B − V )host (mag) µ (mag) t0 (MJD) ∆ AV (mag) µ (mag)
2012ea 56158.17± 0.06 1.821± 0.000 0.389± 0.009 33.883± 0.009 56158.11± 0.07 1.396± 0.022 0.048± 0.029 33.496± 0.034
2013bs 56406.52± 0.22 1.507± 0.027 0.067± 0.016 35.516± 0.026 56406.38± 0.23 0.686± 0.062 0.031± 0.023 35.332± 0.071
2013dr 56486.38± 1.02 0.987± 0.089 0.153± 0.044 34.181± 0.174 56486.04± 1.44 −0.217± 0.080 0.332± 0.075 34.328± 0.160
2013dy 56501.48± 0.07 0.995± 0.006 0.123± 0.005 31.773± 0.008 56500.13± 0.06 −0.325± 0.016 0.420± 0.046 31.923± 0.040
2013ex 56529.48± 0.40 1.013± 0.030 0.044± 0.019 33.648± 0.033 56530.06± 0.60 −0.066± 0.051 0.142± 0.061 33.770± 0.067
2013fa 56536.19± 0.23 1.140± 0.023 0.297± 0.011 34.320± 0.018 56535.17± 0.46 −0.114± 0.037 0.607± 0.044 34.347± 0.053
2013fw 56601.68± 0.10 1.085± 0.014 0.031± 0.009 34.314± 0.014 56600.81± 0.09 −0.277± 0.027 0.189± 0.038 34.588± 0.043
2013gh 56529.10± 0.32 1.142± 0.032 0.366± 0.021 33.146± 0.028 56528.32± 0.08 0.112± 0.036 0.798± 0.034 32.808± 0.046
2013gq 56385.29± 0.18 1.233± 0.015 −0.003± 0.016 33.946± 0.029 56384.22± 0.17 0.008± 0.043 0.096± 0.040 34.119± 0.056
2013gy 56649.21± 0.12 1.125± 0.011 0.073± 0.012 34.024± 0.012 56648.36± 0.07 0.026± 0.032 0.280± 0.034 33.947± 0.044
2014J 56690.04± 0.13 0.952± 0.020 1.179± 0.014 28.415± 0.025 56689.20± 0.09 −0.219± 0.025 2.194± 0.048 27.865± 0.047
2014ai 56745.96± 0.23 1.490± 0.058 0.128± 0.025 35.097± 0.054 56744.75± 0.51 0.191± 0.124 0.277± 0.069 35.308± 0.115
2014ao 56766.17± 0.34 0.977± 0.032 0.820± 0.014 34.759± 0.033 56765.77± 0.61 −0.204± 0.088 1.441± 0.053 34.515± 0.076
2014bj 56796.73± 0.55 1.108± 0.038 0.044± 0.021 36.632± 0.024 56795.74± 0.65 −0.168± 0.071 0.169± 0.062 36.824± 0.078
2015N 57223.19± 0.15 1.087± 0.015 0.181± 0.012 33.877± 0.017 57222.89± 0.21 −0.134± 0.045 0.430± 0.142 33.865± 0.098
2016coj 57547.89± 0.23 1.131± 0.034 0.121± 0.018 32.306± 0.026 57547.83± 0.06 0.613± 0.033 0.024± 0.017 31.969± 0.042
2016fbk 57624.94± 0.41 0.993± 0.034 0.241± 0.016 36.180± 0.036 57625.09± 0.51 −0.046± 0.049 0.468± 0.046 36.156± 0.062
2016gcl 57649.84± 0.53 0.849± 0.024 0.025± 0.032 35.608± 0.056 57649.62± 0.38 −0.366± 0.029 0.126± 0.041 35.852± 0.050
2016gdt 57641.53± 1.08 1.822± 0.001 0.677± 0.064 35.832± 0.051 57640.11± 0.91 1.499± 0.077 0.147± 0.103 35.492± 0.076
2016hvl 57711.00± 0.12 1.123± 0.014 0.116± 0.012 33.420± 0.014 57709.48± 0.11 −0.281± 0.026 0.343± 0.115 33.634± 0.075
2017cfd ... ... ... ... 57844.39± 0.13 0.093± 0.048 0.504± 0.041 33.693± 0.058
2017drh 57890.60± 0.09 1.340± 0.011 1.601± 0.014 32.687± 0.013 57889.72± 0.10 0.112± 0.036 2.558± 0.045 32.169± 0.053
2017dws 57867.60± 1.20 0.882± 0.030 −0.051± 0.051 37.935± 0.038 57869.18± 1.29 −0.339± 0.091 0.075± 0.049 38.258± 0.135
2017erp 57935.15± 0.06 1.118± 0.006 0.099± 0.006 32.405± 0.006 57933.88± 0.06 −0.234± 0.021 0.444± 0.039 32.503± 0.039
2017fgc 57955.52± 0.38 0.840± 0.008 0.081± 0.016 32.775± 0.035 57955.78± 0.41 −0.324± 0.026 0.305± 0.033 32.866± 0.049
2017glx ... ... ... ... 58009.16± 0.16 −0.196± 0.025 0.174± 0.044 33.684± 0.044
2017hbi ... ... ... ... 58044.44± 0.14 −0.692± 0.017 0.186± 0.035 36.347± 0.041
2018aoz 58221.43± 0.14 1.283± 0.008 −0.079± 0.011 32.001± 0.014 58221.27± 0.19 0.187± 0.040 0.018± 0.012 32.107± 0.053
2018gv 58150.11± 0.08 1.006± 0.011 −0.046± 0.006 32.164± 0.013 58149.59± 0.11 −0.169± 0.024 0.035± 0.020 32.363± 0.038
Note: Only those SNe from our sample where the fitting process described in Sections 2.5.2.1 or 2.5.2.2 succeeded appear here.
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2.8.2 Natural-System Light Curves

SN light curves have long been released on the Landolt system (e.g., CfA1, CfA2, G10), thus
allowing for easy comparison between datasets from different telescopes. Indeed, we anal-
ysed our light curves only after transforming to the Landolt system — a decision motivated
largely by the fact that our dataset is derived from observations collected with four distinct
telescope/CCD/filter combinations. However, there are instances where natural-system light
curves are more attractive. Since the stellar SEDs that are used to derive colour terms do not
accurately reflect those of SNe Ia, SN photometry transformed using such colour terms will
not necessarily be on the Landolt system. Conventionally, second-order “S-corrections” are
performed to properly account for the SN SED by using a selected spectral series (Stritzinger
et al. 2002), but many groups are now releasing their low-z SN Ia photometry datasets in
the natural systems of their telescopes along with the transmission curves of their photom-
etry systems (e.g., CfA3, CfA4, CSP1-3). Thus, given a spectral series (e.g., Hsiao et al.
2007) and transmission functions, one can transform photometry from one system to another
without the need for colour corrections. In turn, this should provide less scatter in SN flux
measurements.

The aforementioned benefits motivate us to release our photometric dataset (see Sec-
tion 6.4) in the relevant natural systems in addition to the Landolt system. A table of
natural-system magnitudes analogous to Table 2.2 is available for our entire dataset, with a
sample given in Table 2.6. We reiterate that owing to changes in the observing equipment,
there are four transmission curves (KAIT3, KAIT4, Nickel1, Nickel2) for each bandpass. Any
analysis of the dataset as a whole should therefore be done either on the Landolt system or
after transforming all of the data to a common system (see Appendix A of Ganeshalingam
et al. 2013). Transmission curves for all filter and system combinations covered by our
dataset are archived with the journal and available online in our SNDB.
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Table 2.6: Natural-System Photometry of SN 2008ds.

SN MJD B (mag) V (mag) R (mag) I (mag) Clear (mag) System
2008ds 54645.47 ... ... ... ... 15.700± 0.033 kait4
2008ds 54646.47 ... ... ... ... 15.574± 0.024 kait4
2008ds 54647.46 15.615± 0.012 15.629± 0.010 15.597± 0.011 15.742± 0.018 15.501± 0.010 kait4
2008ds 54650.47 15.501± 0.014 15.488± 0.010 15.476± 0.012 15.762± 0.015 ... kait4
2008ds 54653.13 15.482± 0.009 15.474± 0.005 15.418± 0.005 15.768± 0.008 ... nickel1
2008ds 54653.44 15.489± 0.018 15.471± 0.010 15.439± 0.010 15.823± 0.016 ... kait4
2008ds 54655.13 15.565± 0.008 15.515± 0.006 15.456± 0.006 15.840± 0.009 ... nickel1
2008ds 54655.48 15.559± 0.016 15.510± 0.012 15.471± 0.013 15.919± 0.022 ... kait4
2008ds 54658.13 15.695± 0.008 15.611± 0.006 15.548± 0.005 15.978± 0.008 ... nickel1
2008ds 54662.16 15.975± 0.011 15.785± 0.005 ... ... ... nickel1
Note: First 10 epochs of natural-system BVRI + unfiltered photometry of SN 2008ds. This table shows
the form and content organisation of a much larger table that covers each epoch of photometry for each SN
in our dataset. The full table is available online at http://heracles.astro.berkeley.edu/sndb/info#

DownloadDatasets(BSNIP,LOSS).

http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
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Chapter 3

Berkeley Supernova Ia Program:
Data Release of 637 Spectra from 247
Type Ia Supernovae

A version of this chapter was originally published in The Monthly Notices of the Royal
Astronomical Society (Stahl et al. 2020b).

Chapter Abstract

We present 637 low-redshift optical spectra collected by the Berkeley Supernova Ia Program
(BSNIP) between 2009 and 2018, almost entirely with the Kast double spectrograph on the
Shane 3 m telescope at Lick Observatory. We describe our automated spectral classification
scheme and arrive at a final set of 626 spectra (of 242 objects) that are unambiguously
classified as belonging to Type Ia supernovae (SNe Ia). Of these, 70 spectra of 30 objects are
classified as spectroscopically peculiar (i.e., not matching the spectral signatures of “normal”
SNe Ia) and 79 SNe Ia (covered by 328 spectra) have complementary photometric coverage.
The median SN in our final set has one epoch of spectroscopy, has a redshift of 0.0208
(with a low of 0.0007 and high of 0.1921), and is first observed spectroscopically 1.1 days
after maximum light. The constituent spectra are of high quality, with a median signal-to-
noise ratio of 31.8 pixel−1, and have broad wavelength coverage, with ∼ 95% covering at
least 3700–9800 Å. We analyze our dataset, focusing on quantitative measurements (e.g.,
velocities, pseudo-equivalent widths) of the evolution of prominent spectral features in the
available early-time and late-time spectra. The data are available to the community, and we
encourage future studies to incorporate our spectra in their analyses.
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3.1 Introduction

Supernovae (SNe) have proven themselves to be powerful probes of the dynamic nature of
the Universe on scales ranging from stellar to cosmological. The class of objects known as
Type Ia supernovae (SNe Ia), which result from the thermonuclear explosions of carbon-
oxygen white dwarfs in binary systems (e.g., Hoyle and Fowler 1960; Colgate and McKee
1969; Nomoto et al. 1984), have been of particular interest to astrophysicists for many years.

Despite intensive study, many important details of SNe Ia remain poorly understood, if
at all (for a review, see Howell 2011). How do differences in initial conditions lead to the
variation in properties observed among SNe Ia? What are the physical details of the explosion
mechanism(s)? Are the progenitor systems “single-degenerate” (Whelan and Iben 1973) or
“double-degenerate” (Webbink 1984; Iben and Tutukov 1984), and how do they contribute
to the observed variance in SN Ia attributes? To answer these and other questions, numerous
observations of SNe Ia will undoubtedly be required — preferably obtained and reduced in
a thorough and consistent manner.

Despite these outstanding questions regarding SNe Ia as astrophysical objects, they are
highly prized for their large and relatively homogeneous optical spectra and luminosities
at peak brightness, though some differences do exist (e.g., Filippenko 1997, and references
therein). To the extent that their peak luminosities are “standardisable,” SNe Ia are excellent
cosmological distance indicators. Accordingly, much effort has been expended in developing
methods to better calibrate relationships between various observables and peak luminosity.
The “Phillips relation” identifies a correlation between luminosity at peak brightness and
light-curve decline rate for most SNe Ia (Phillips 1993). By making use of optical colours,
Riess et al. (1996) have devised a method that yields further improvements, including the
determination of the extinction caused by dust in the host galaxy of a SN Ia. Distance
measurements derived using such methods led to the discovery of the accelerating expansion
of the Universe (Riess et al. 1998; Perlmutter et al. 1999), which revolutionised the field
of cosmology. Indeed, the nature of the dark energy that gives rise to the acceleration is
currently one of the most important questions in physics.

SNe Ia have since been used to place increasingly stringent constraints on cosmological
parameters (Astier et al. 2006; Riess et al. 2007; Hicken et al. 2009b; Suzuki et al. 2012;
Betoule et al. 2014; Jones et al. 2018; Scolnic et al. 2018) and continue to provide precise
measurements of the Hubble constant (Riess et al. 2016, 2019; Dhawan et al. 2018). As spec-
tra must contain more information than light curves, many have searched for and identified
spectroscopic parameters to make SN Ia distance measurements more precise (Bailey et al.
2009; Wang et al. 2009; Blondin et al. 2011; Silverman et al. 2012c; Fakhouri et al. 2015;
Zheng et al. 2018a). In addition, Foley and Kasen (2011) found that the intrinsic colour of
SNe Ia at peak brightness depends on the velocity of their ejecta, and Wang et al. (2013)
have shown that the latter has a significant connection to SN Ia birthplace environments —
and hence progenitor stars. It is likely that future increases in distance measurement preci-
sion will make use of spectroscopic parameters, motivating the need for extensive, consistent
samples of SN Ia spectra.
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The Berkeley Supernova Ia Program (BSNIP) is a large-scale effort to study the properties
of SNe Ia at low redshift (z . 0.05), primarily via optical spectroscopy (Silverman et al.
2012a, henceforth S12a) and photometry (Ganeshalingam et al. 2010; Stahl et al. 2019,
henceforth G10 and S19, respectively). The spectra presented in this data-release paper are
complementary to those published by S12a, and extend the BSNIP SN Ia spectral dataset
to cover the period from 1989 through 2018. Our strategy is generally to observe as many
SNe Ia as possible, with particular effort invested in obtaining frequent spectral coverage of
peculiar objects. Furthermore, we strive for spectral coverage of all objects that our group is
also observing photometrically (consequently, there is considerable overlap in SNe Ia between
the spectra presented herein and the photometric dataset released by S19), and we aim to
provide prompt spectroscopic classifications of all SNe discovered by the 0.76-m Katzman
Automatic Imaging Telescope at Lick Observatory (KAIT; Filippenko et al. 2001). Our
spectra are obtained and reduced in a controlled and consistent manner, thereby eliminating
many of the systematic differences that manifest when distinct datasets are collected into
one sample.

In this data release, we present and characterise 637 optical spectra of 247 distinct objects
collected by the BSNIP between the beginning of 2009 and the end of 2018. The spectra were
obtained with the Shane 3 m telescope at Lick Observatory and the Keck-I 10 m telescope
at the W. M. Keck Observatory. Of the full set of spectra, 546 are published here for the
first time. When we combine our spectral dataset with that presented by S12a, we obtain
a sample of nearly 2000 spectra of low-redshift SNe Ia, all of which have been observed
and reduced in a consistent manner. We organise the remainder of this paper as follows.
Section 6.2 describes the organisation, observation, and reduction strategies employed in
assembling our dataset. In Section 3.3 we detail our spectral classification scheme, and we
study its results and derive final object classifications. We present our final spectroscopic
dataset and explore its early-time and late-time evolution in Section 6.4, and we conclude
with Section 6.5.

3.2 Data

3.2.1 Data Management and Selection

All BSNIP spectroscopy, along with useful metadata for those observations and the SNe in
them (e.g., observer, reducer, host galaxy, redshift, etc.), are catalogued in our UC Berkeley
SuperNova DataBase1 (SNDB; S12a, Shivvers et al. 2016) after the data are processed and
reduced (see Section 3.2.3 for a summary of our data-processing techniques). Therefore, to
collect the dataset presented herein we simply query the private (prepublication) portion
of our SNDB for all spectra observed between 1 January 2009 and 31 December 2018 for

1http://heracles.astro.berkeley.edu/sndb/

http://heracles.astro.berkeley.edu/sndb/
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objects spectroscopically classified2 as SNe Ia.
This results in 744 matches, which we then filter by (i) selecting only those spectra

with an average signal-to-noise ratio (SNR) greater than 5 pixel−1 (yielding 714 matches
above this quality threshold) and (ii) retaining only those with a wavelength coverage of at
least 3700–7000 Å (yielding 648 matches with sufficient spectral coverage for our subsequent
analyses). Finally, we remove several of the remaining spectra, including any that are from
SNe discovered earlier than 1 January 2008 (to avoid presenting only late-time spectra of
an object at the early end of our selection range), to obtain the aforementioned set of 637
spectra. Following publication, all previously unpublished spectra will be transferred to the
publicly accessible portion of the SNDB. We list basic SN-level information in Table 3.6
and spectrum-level information in Table 3.1, with many of the properties sourced from
the Transient Name Server (TNS)3 or the NASA/IPAC Extragalactic Database (NED)4.
Representative SN Ia spectra from our sample showing low, medium, and high SNRs are
given in Figure 3.1. The SNR of the central spectrum in the figure is similar to the mean
SNR for our entire sample (as discussed in Section 3.4.1), and is thus indicative of the high
quality of the spectra presented herein.

3.2.2 Observations

The vast majority of the spectra in our dataset (579/637) were obtained using the Kast
double spectrograph (Miller and Stone 1993) mounted on the Shane 3 m telescope at the
Lick Observatory. The remaining observations (58/637) were made with the Low Resolution
Imaging Spectrometer (LRIS; Oke et al. 1995) at the W. M. Keck Observatory. The seeing
at these locations averages ∼ 2′′ and ∼ 1′′, respectively. Most spectra presented here were
obtained with the long slit at or near the parallactic angle so as to reduce the differential light
loss caused by atmospheric dispersion (Filippenko 1982); however, this was not necessary
with LRIS, as it is equipped with an atmospheric dispersion corrector. The specific details of
our observing strategy are thoroughly documented by S12a, so here we mention only relevant
changes to the aforementioned instruments.

On 18 September 2016, the Kast red-side CCD was replaced with a Hamamatsu 1024×
4096 pixel device with 15 µm pixels, yielding a spatial scale of 0′′.43 pixel−1. Compared to
the previous red-side CCD, the new detector features significantly reduced readout noise and
better quantum efficiency for wavelengths greater than 5000 Å. Most (483/579) Kast spectra
presented herein were taken prior to this upgrade.

In May and June of 2009, the LRIS red-channel CCD was replaced with a mosaic of two
2k × 4k pixel Lawrence Berkeley National Lab (LBNL) CCDs with a spatial scale of 0′′.135

2We source spectroscopic classifications primarily from the Central Bureau of Electronic Telegrams
(CBETs) and the International Astronomical Union Circulars (IAUCs).

3https://wis-tns.weizmann.ac.il
4The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology, under contract with the National Aeronautics and Space Administration
(NASA).

https://wis-tns.weizmann.ac.il
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Figure 3.1: Representative SN Ia spectra from our sample showing low, medium, and high
SNRs (progressing downward). The spectra have been deredshifted and normalised to a
range of unity, and all are at 4± 1 days relative to to their SN’s light-curve-determined time
of maximum brightness.
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Table 3.1: SN Ia spectral information.

SN UT Datea tLC
b Instr.c Wavelength Res.d P.A.e Airmassf Exposure SNR Referenceg

Name (Y-M-D) Range (Å) (Å) (◦) Time (s)
SN 2008hm 2008−12−31.311 26.5 1 3452−10700 4.3/10.5 110.7 1.12 1800 31.7 ...
SN 2008hv 2008−12−31.378 14.3 1 3452−10700 4.7/11.9 138.8 1.32 1200 61.1 ...
SN 2008hy 2009−01−05.155 32.9 1 3400−10700 4.9/9.8 35.7 1.31 1200 24.9 ...
SN 2009D 2009−01−05.184 −5.6 1 3390−10700 5.0/12.2 161.1 1.86 1200 8.3 ...
SN 2009Y 2009−02−19.665 5.7 2 3270−9270 2.1/6.7 183.0 1.29 180 95.1 ...
SN 2009Y 2009−03−29.532 43.2 1 3410−10100 5.3/11.3 203.8 2.32 1500 9.6 ...
SN 2009Y 2009−04−18.416 62.9 1 3454−9900 4.3/10.5 181.7 1.76 1800 31.8 ...
SN 2009V 2009−02−19.605 ... 2 3388−9270 4.5/5.9 95.0 1.68 450 7.5 ...
SN 2009ae 2009−02−19.677 ... 2 3270−9270 4.5/5.4 85.0 1.02 300 39.6 ...
SN 2009an 2009−03−29.507 21.1 1 3410−10100 4.5/12.1 107.2 1.42 1500 34.1 ...
Abridged table of SN Ia spectral information (the full table is available online at http://heracles.astro.berkeley.
edu/sndb/info#DownloadDatasets(BSNIP,LOSS)).
aEach UT date is specified for the temporal midpoint of the associated observation.
bPhases are in rest-frame days as computed from the appropriate redshift and photometry references from Table 3.6.
cInstruments (Instr.) are as follows: (1) Kast (Shane 3 m) and (2) LRIS (Keck-I 10 m).
dSpectral resolution (Res.) are for the blue and red components, respectively. See Section 2 of S12a for more
information.
eObserved slit position angle (P.A.) for each observation.
fEach airmass is specified for the temporal midpoint of the associated observation.
gReferences to previous publications including the noted spectra are as follows: (1) Silverman et al. (2011), (2) Foley
et al. (2012), (3) Foley et al. (2013a), (4) Silverman et al. (2013), (5) Mazzali et al. (2015), (6) Silverman et al.
(2012b), (7) Childress et al. (2013), (8) Zheng et al. (2013), (9) Pan et al. (2015a), (10) Foley et al. (2015), (11) Foley
et al. (2016), (12) Zheng et al. (2017), and (13) Xuhui et al. (2019, in prep.).

pixel−1. The mosaic features smaller pixels and higher quantum efficiency in the red than
the original CCD (Rockosi et al. 2010). Nearly all (52/58 since 1 July 2009) LRIS spectra
were taken using this upgraded configuration.

3.2.3 Data Reduction

An important attribute of our sample is the consistency with which the data have been
reduced. Regardless of instrument, the same general procedures are followed for all spectral
reductions, and just five individuals are responsible for reducing the majority (> 88%) of
our dataset. In the following paragraph, we briefly summarise the principal steps in our
reduction strategy (see S12a for a more comprehensive discussion), which are implemented
using IRAF5 routines and publicly available Python and IDL programs6.

First, standard preparation steps including bias removal, cosmic ray rejection, and flat-
field correction are performed. Following extraction, one-dimensional spectra are wavelength-
calibrated using comparison-lamp spectra typically taken in the afternoon prior to each ob-

5IRAF is distributed by the National Optical Astronomy Observatory, which is operated by AURA, Inc.,
under a cooperative agreement with the U.S. National Science Foundation (NSF).

6Kast and LRIS data are currently reduced with KastShiv (Shivvers et al. 2016) and LPipe (Perley
2019), respectively. Prior to October 2016, a number of LRIS spectra were reduced with purpose-built
routines from the Carnegie Python (CarPy) Distribution (Kelson et al. 2000; Kelson 2003).

http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
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serving run. The spectra are then flux-calibrated using spectra (taken during each observing
run with the appropriate instrumental setup) of bright spectrophotometric standard stars
at similar airmasses. Finally, atmospheric (telluric) absorption features are removed and
overlapping (i.e., red- and blue-side spectra from Kast or LRIS) are combined by scaling one
so that it matches the other7 over the common wavelength range. We consider spectra at
this stage to be “science ready.”

3.3 Classification

Optical spectra are widely used to classify SNe as belonging to one of several distinct types,
and possibly subtypes (e.g., Filippenko 1997). We perform such classification in an au-
tomated fashion using the SuperNova IDentification code (SNID, Blondin and Tonry 2007)
with tightly controlled tolerances. SNID classifies SNe by cross-correlating an input spectrum
against a large library of template spectra (Tonry and Davis 1979). In the following sections
we detail our spectral classification procedure, present results, and discuss verifications of
these results.

3.3.1 SNID Classification Procedure

Using a classification scheme similar to that employed by S12a, we attempt to determine
the type, subtype, redshift, and age from each spectrum in our sample via consecutive SNID

runs that adhere to the specifications outlined in the following sections.

3.3.1.1 SNID Type

We first attempt to determine the type of a SN from its spectrum by executing a SNID run
and requiring an r lap8 value of at least 10. If the host-galaxy redshift of the SN is listed in
Table 3.6, then we force SNID to use this redshift by invoking the forcez keyword — otherwise
SNID will attempt to find the redshift simultaneously. In order for type determination to be
considered successful, we require that the fraction of “good”9 correlations corresponding to
the proposed type be > 50% and that the best-matching “good” template be of the same
type. If no type is determined by this approach, we relax the minimum r lap value to 5
and repeat the procedure. If a type is determined at this stage, we proceed to subtype
determination.

7For Kast spectra, the blue side is scaled to match the red side, while for LRIS spectra, whichever side
shows the lower transmission level is scaled upward.

8The r lap is a measure of quality used by SNID — higher values correspond to classifications that are
more trustworthy.

9In SNID, a template is graded “good” when its strongest correlation with the input spectrum occurs at
a redshift that differs by less than 0.02 from the forced (or simultaneously fit) redshift of the input spectrum.
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3.3.1.2 SNID Subtype

In the subtype-determination run, we again force SNID to use the redshift of the SN if it is
available (and find it simultaneously otherwise). We also force SNID to use only templates
that match the previously found type. Again, we attempt a SNID run with a minimum
r lap value of 10, and relax this to 5 if the first run is unsuccessful. In the case of subtype
determination, success is achieved if the fraction of “good” correlations corresponding to a
subtype is > 50% and the best-matching “good” template is of the same subtype.

3.3.1.3 SNID Redshift

We use SNID to determine the redshift from a spectrum by executing a SNID run that
requires all templates to be of the subtype found previously (or type, if the subtype was
not successfully determined). We use no external redshift information, even if it appears in
Table 3.6, but we do restrict the range of template redshifts to lie within 0 < z < 0.3. We
calculate the redshift as the median of all “good” template redshift values, and the redshift
uncertainty is taken to be the standard deviation of these values. If the redshift and subtype
are determined, then we attempt to find the rest-frame phase relative to maximum light
(henceforth referred to as “age”) from the spectrum.

3.3.1.4 SNID Age

We attempt to determine the age of a SN spectrum by executing a SNID run that uses only
templates of the subtype determined previously and that requires SNID to use the known
redshift, or the redshift determined previously if it was not known. The age (henceforth,
tSNID) is calculated as the median of only the “good” template ages that have an r lap value
of at least 75% of the largest achieved r lap value. The age uncertainty is the standard
deviation of these ages. Furthermore, we require that the age uncertainty be less than the
larger of 4 days or 20% of the determined age.

3.3.2 Classification Results and Verifications

Of the 637 spectra selected for characterisation, our SNID routine successfully determines
the type in 608 instances, the subtype in 506, the redshift in 605, and the age in 406. We
present the results derived from performing our SNID classification procedure in Table 3.2,
and we discuss and examine them in the following subsections.

3.3.2.1 Types and Subtypes

To study the robustness of our SNID-determined types and subtypes, we look for distinctions
we can draw between spectra that were successfully classified versus those that were not. In
particular, we investigate whether there is a significant difference between success and failure



CHAPTER 3. SPECTROSCOPY OF 247 SNe Ia 58

Table 3.2: SNID classification results.

Classification Results Best-Matching SNID Template
SN Type Subtype zSNID tSNID

a Name Subtype r lap z ta

SN 2008hm Ia ... 0.0195 ± 0.0046 ... sn99aa Ia-99aa 17.5 0.0321 34.1
SN 2008hv Ia Ia-norm 0.0114 ± 0.0037 18.9± ... sn04ey Ia-norm 31.2 0.0114 18.9
SN 2008hy Ia ... 0.0076 ± 0.0038 ... sn91T Ia-91T 23.4 0.0054 46.6
SN 2009D Ia Ia-norm 0.0214 ± 0.0063 −10.6± 2.8 sn90N Ia-norm 16.7 0.0301 −6.4
SN 2009Y Ia Ia-norm 0.0014 ± 0.0060 5.9± 3.2 sn02bo Ia-norm 14.0 0.0041 5.5
SN 2009Y Ia Ia-norm 0.0085 ± 0.0023 44.5± 5.7 sn02bo Ia-norm 14.0 0.0070 44.5
SN 2009Y Ia Ia-norm 0.0116 ± 0.0031 72.5± 9.7 sn02bo Ia-norm 14.1 0.0091 72.5
SN 2009V Ia Ia-norm 0.0933 ± 0.0044 11.2± 0.5 sn94ae Ia-norm 15.6 0.0938 11.3
SN 2009ae Ia Ia-norm 0.0307 ± 0.0043 18.2± 3.4 sn02bo Ia-norm 17.2 0.0345 17.8
SN 2009an Ia Ia-norm 0.0078 ± 0.0030 ... sn02eu Ia-norm 14.5 0.0065 33.4
Abridged table of SNID classifications (the full table is available online at http://heracles.astro.

berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)).
aSpectral ages (phases) are in rest-frame days relative to the time of the associated SN’s maximum brightness.
Age uncertainties marked with “...” correspond to cases where only one template was a “good” match.

that is codified by (i) the average SNR of a spectrum, or (ii) the phase in a SN’s temporal
evolution during which that spectrum was observed.

The median SNR of the spectra for which SNID successfully determines a type (subtype)
is 32.7 pixel−1 (33.4 pixel−1), while for those where it failed the median is 14.3 pixel−1 (26.4
pixel−1). For the case of determining the type, this presents a compelling argument —
spectra for which the type is classified are generally of higher quality (as assessed by the
SNR) than those that are not. Although the gap in median SNR between the successful and
failed subsets is notably less pronounced for the case of determining the subtype, we must
make a concession for the fact (as stated in Section 3.3.1.1) that the entire population, for
which an attempt is made to determine subtype, is drawn only from those where the type
has been successfully determined (and hence whose aggregate SNR is higher, as discussed
above). With this important caveat noted, it would appear that the gap in SNR between
successful and failed subtype classifications is indeed meaningful — those SNe for which the
subtype is not successfully determined have a median SNR that is ∼ 9 times below that
of the entire population, relative to the median SNR for those for which the subtype is
determined.

Next, we examine how the difference in rest-frame days between when a spectrum was
observed and when the SN in that spectrum reached maximum brightness as determined from
its light curve (i.e., the phase) may influence SNID’s success rate with regard to (sub)type
classification. We find that the median phase in cases where SNID successfully identifies a
type (subtype) is 19.4 days (16.5 days), while in cases where it fails the median is 65.3 days
(40.7 days). Owing to the much sparser coverage of SNID spectral templates at late phases
(see, e.g., Figure 6 of S12a), it makes sense for the failure rate to be larger for spectra at
late phases. In addition, spectra at earlier phases tend to have higher SNRs than do those

http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
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at later phases10 because SNe Ia fade throughout their post-maximum evolution. As we
have seen above, the SNR of a spectrum plays a substantive role the outcome of (sub)type
classification. We find it reasonable, then, that the median phase is earlier for successes than
it is for failures. Furthermore, while the caveat from the preceding paragraph regarding
the population for which subtype-determination is attempted is still relevant, it is similarly
overcome — the difference between the median phase of those for which the subtype is not
successfully determined (40.7 days) and that of the entire population (19.4 days) is ∼ 7 times
larger than the associated difference for those whose subtype is determined (16.5 days).

3.3.2.2 Redshifts

We investigate our SNID-determined redshifts by comparing them to the corresponding host-
galaxy redshifts, when they are available, as shown in Figure 3.2. From the 563 spectra in our
sample for which (i) SNID determined a redshift, (ii) SNID determined the spectrum was of
a SN Ia (independent of the subtype classification), and (iii) a redshift is listed in Table 3.6,
we find a median residual of 0.0002 with a standard deviation of 0.0039. Furthermore, we
calculate the normalised median absolute deviation (Ilbert et al. 2006), defined as

σ ≡ 1.48×median

[
|zSNID − zgal|

1 + zgal

]
, (3.1)

and find a value 0.003, similar to S12a who found 0.002 for their dataset. Of the spectra used
for comparison, 446 have a redshift residual within one standard deviation of the median,
522 are within two standard deviations, and 553 are within three.

3.3.2.3 Phases

Next we compare SNID-determined phases to those calculated (in rest-frame days) relative to
light-curve-determined times of maxima (henceforth, tLC), when available (see Table 3.1 for
tLC values and Table 3.6 for references on the times of maximum brightness used to compute
them). We perform this comparison for all spectra with the requisite information which
SNID classified as belonging to a SN Ia (for a total of 219 spectra), and the result is shown
in Figure 3.3. There is a rather tight correlation for tSNID . 100 days, but beyond this point
the SNID-determined ages systematically underestimate the true (i.e., light-curve-derived)
phases. This is not unexpected given the dearth of template spectra available at late phases
(as discussed in Section 3.3.2.1) and is consistent with the results of previous studies (e.g.,
Figure 7 of S12a).

If we further restrict the subset used for phase comparison to cover only the earlier,
more rapidly evolving stages of spectroscopic evolution [namely, only those for which the
(rest-frame) light-curve-determined phase is < 50 days and the SNID-determined phase is
< 30 days], we are left with 127 spectra. The median residual for this subset is ∼ 0.4 days

10If we divide our sample into two groups based on phase (< 20 days, > 20 days), the median SNR of the
early-time subset is 57.6 pixel−1, while for the late-time subset it is 32.4 pixel−1.
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Figure 3.2: SNID-determined redshifts versus host-galaxy redshifts, with residuals in the
lower panel. The dashed line in the top panel shows the one-to-one correspondence for zgal,
and in the bottom panel it indicates the median residual. The green, yellow, and red regions
in the lower panel correspond to the 1σ, 2σ, and 3σ bounds about the median residual,
respectively. We note that the typical uncertainties for zgal (which are omitted from the
figure) are ∼ 1/4 of those for zSNID.
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with a standard deviation of ∼ 3.9 days. Of this subset, 95 spectra have a residual that
lies within 1σ of the median, 116 are within 2σ, and 125 are within 3σ. We find that for
very early phases (tLC . −10 days), SNID-determined phases tend to be an overestimate (as
can be seen in the inset panel of Figure 3.3). As with SNID’s tendency to underestimate the
phase of late-time spectra, the dominant cause of the noted early-phase overestimate can be
attributed to the paucity of template spectra at similar phases.

3.3.3 Object Classifications

Many of the SNe in our sample have multiple spectra, and therefore we must combine the
classification information derived for each spectrum to obtain a final classification for each
object. To determine the type of an object with multiple spectra, we choose the most
frequently occurring type in that object’s spectral classifications. In cases with a tie between
two possible type characterisations, we use the type of the spectrum whose best-matching
SNID template has the larger r lap value. To account for the uncertainty surrounding such
classifications, we add a “*” to the type. We follow a similar procedure for determining
the subtype of each object, except that in cases where there is a tie for the most frequent
subtype, we do not classify the subtype. The final (sub)type derived from this methodology
is listed for each SN in our sample in Table 3.6. Altogether, 242 objects are unambiguously
classified as SNe Ia and one is given the classification of “Ia*”. The remaining four objects
are discussed in the following section.

3.3.4 Objects Not Classified as SNe Ia

There are four objects (SN 2009eq, LSQ 12fhe, SN 2013gh, and SN 2013fw) in our dataset
for which the aforementioned classification method either fails to classify the object at all, or
classifies it as something other than a SN Ia. We examine and briefly discuss each of these
objects below.

3.3.4.1 SN 2009eq

Of the three spectra of SN 2009eq included in our dataset, two (taken 3 d and 20 d after
our first spectrum) are classified as belonging to a SN Ic, and the remaining one (our first
observation of the object) is not successfully classified at all. After visual inspection of
the three spectra by multiple coauthors, we override the SNID-determined type in favour
of “Ia*” — the spectra appear to be consistent with that of a SN Ia, and particularly a
SN 1991bg-like (Filippenko et al. 1992a; Leibundgut et al. 1993) object evolving within one
month of maximum brightness. However, given that our SNID-based classification scheme
does not come to the same conclusion, we cannot unambiguously give a “Ia” classification
from our dataset alone. It is also worth noting that our determination that SN 2009eq is a
SN 1991bg-like object is consistent with its initial classification (Foley et al. 2009).
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Figure 3.3: SNID-determined phases versus those derived from light-curve maxima and
listed in Table 3.1. Residuals are shown in the lower panel. The dashed line in the top
panel indicates the one-to-one correspondence for tLC, and in the bottom panel it shows the
median residual. The inset panel displays the residuals from the subset of our sample for
which tSNID ≤ 30 days and tLC ≤ 50 days, in addition to the conditions used to select the
initial sample. The green, yellow, and red regions correspond to the 1σ, 2σ, and 3σ bounds
about the median residual, respectively.
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3.3.4.2 LSQ 12fhe

Our classification scheme deems the single spectrum of LSQ 12fhe in our dataset to be of
a SN Ic, contradicting the object’s initial classification as a SN Ia of the SN 1991T-like
(Filippenko et al. 1992b; Phillips et al. 1992) subtype (Hadjiyska et al. 2012). Looking more
closely at our SNID classification, we see that the SN Ic classification was favoured by just one
more template than for a SN Ia. After visual inspection by multiple coauthors, we reach a
consensus that the object is definitely a SN Ia, and most likely of the SN 1991T-like subtype
(consistent with the initial classification). Accordingly, we override our SNID-determined
type to be “Ia*” — this reflects its true classification but accounts for the fact that our
classification scheme does not reach the correct conclusion.

3.3.4.3 SN 2013gh

SN 2013gh is covered by three spectra in our dataset (with light-curve-determined phases of
−12, 70, and 392 days). The first spectrum is unambiguously determined to be of a SN Ia
(with an undetermined age), while the second is assigned as a SN Ic (with an age of 1.5 days),
and the third is undetermined (not surprising given SNID’s lack of late-phase templates, as
previously discussed). In light of (i) the visually obvious SN Ia determination from the first
spectrum, (ii) the completely incorrect SNID-determined phase of the second spectrum, and
(iii) the multiple-coauthor consensus that the second spectrum is consistent with that of a
SN Ia at the appropriate phase, we again override our SNID-determined type in favour of
“Ia*”.

3.3.4.4 SN 2013fw

The single spectrum of SN 2013fw in our dataset is at a very late phase (> 300 days),
and thus it is unsurprising, given SNID’s lack of suitable templates (as discussed in Sec-
tion 3.3.2.1), that our classification scheme does not succeed. We thus defer to the existing
object classification (Jin et al. 2013), and assign its type as “Ia*” — it is a SN Ia but we
cannot conclusively confirm or refute the classification using our dataset alone.

3.4 Results

In this section we present and study our low-redshift SN Ia spectral dataset derived from
observations totaling more than 275 hr of telescope time. Of our initial selection (from
Section 3.2.1), 242 objects (covered by a total of 626 spectra) are unambiguously classified
as SNe Ia by the methodology described in the preceding section. In the discussion that
follows, we consider only this selection of spectra. We provide plots and file access for all
spectra described in this work electronically via our SNDB.
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Figure 3.4: Distributions of SN-level parameters, with the associated median (standard
deviation) values included. The left panel is the number of spectra, centre is the light-curve-
determined rest-frame phase of the first observed spectrum, and right is redshift. The SNe
responsible for the outlying bins in the centre and right panels are labeled.

3.4.1 Sample Characteristics

Our dataset averages 2.6 spectra per SN Ia (with a median of 1), similar to the ∼ 2.2 spectra
per object S12a found for their dataset and reflective of BSNIP’s emphasis on maximising the
number of objects studied spectroscopically rather than the number of spectra per object.
SN 2016coj has the most spectra of any object in our sample with 20, followed by SN 2011fe
with 17. Figure 3.4 shows the full distribution of the number of spectra per SN Ia. Of
the 242 SNe Ia in our sample, 109 are covered by at least two spectra. For the 79 SNe
in our sample that have a light-curve-determined time of maximum brightness (as noted in
Table 3.6), we find a median (rest-frame) phase of the first spectrum of 1.1 days, as shown
in the centre panel of Figure 3.4. Of this subsample with phase information, 38 SNe have a
spectrum observed before the time of maximum brightness and 69 have one within 20 days
of maximum. We show the redshift distribution of the objects in our sample in the right
panel of Figure 3.4. Aside from two SNe with redshifts of near (but below) 0.2, all have
z < 0.1 and 201 (of the 221 with a redshift listed in Table 3.6) have z ≤ 0.05. We find a
median redshift of 0.0208 for the full sample, and for the 184 SNe with z ≥ 0.01 (i.e., within
the Hubble flow) we find a median of 0.0230.

We show the distribution of average SNRs for the spectra in our dataset in the left
panel of Figure 3.5. The median is 31.8 pixel−1 (with a mean of 38.3 pixel−1), and 574/626
spectra have SNR > 10 pixel−1. By design (see Section 3.2.1), we find a minimum SNR
of ∼ 5 pixel−1. As shown in the centre panel of Figure 3.5, we find the median (light-
curve-determined rest-frame) phase for the spectra with such information to be 19.4 days.
The spectrum with the earliest phase belongs to SN 2011fe at −17.2 days, followed by two
spectra of SN 2012cg with phases of −16.4 days and −15.4 days. The spectrum with the
latest phase belongs to SN 2013dy at 422 days, followed by one from SN 2011fe at 379 days.
Our dataset includes 15 spectra at phases of at least 160 days. We find that 168 of the 328
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Figure 3.5: Distributions of spectrum-level parameters, with the associated median (stan-
dard deviation) values included. The left panel shows the SNR, centre is the light-curve-
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spectra in our sample which have light-curve-determined phases correspond to earlier than
20 days in the post-maximum evolution of their SN. The distributions of the wavelengths of
the blue and red ends of our spectra are shown in the right panel of Figure 3.5. We find a
median blue (red) wavelength limit of 3450 Å (10,500 Å), and 592 of our spectra cover at
least 3700–9800 Å.

3.4.2 Early-time Spectra

A number of prior SN Ia analyses (e.g., Riess et al. 1997b; Folatelli 2004; Foley et al. 2005a;
Branch et al. 2006; Garavini et al. 2007; Wang et al. 2009; Blondin et al. 2012; Silverman
et al. 2012d; Folatelli et al. 2013; Childress et al. 2014; Zhao et al. 2015) have studied SN Ia
optical spectra in terms of multiple “features” — each typically a blend of many spectral
transitions, but distinctive enough to be considered in aggregate as a single major absorption
feature complex. Of principal interest are assessments of (i) the expansion velocities of such
features, and (ii) quantities that probe the relative strengths of the features, often assessed
through pseudo-equivalent width (pEW) measurements.

Providing a tracer of explosion kinetic energy, the expansion velocities of SN Ia ejecta
have been extensively studied — especially during the characteristic decline through the
near-maximum evolution (e.g., Benetti et al. 2005; Wang et al. 2009). Silverman et al.
(2012d, henceforth S12b) find velocities within a few days of maximum brightness that are
consistent with the notion that SN Ia ejecta are layered — features of O i, Si ii, and S ii tend
to have lower velocities (and are thus found in the inner, more slowly expanding layers), while
those of Ca ii have the highest velocities (and are therefore associated with the outer, more
rapidly expanding layers). These findings are consistent with our own (see Section 3.4.2.2).
Together with probes of feature strength (e.g., pEW measurements), expansion velocities
can be used to quantify the degree of homogeneity between spectra of different SNe Ia (and
hence SNe themselves) at similar epochs, as well as describe the expected temporal evolution
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Table 3.3: Spectral features.

Feature Rest Blue Red
Wavelength (Å) Boundary (Å) Boundary (Å)

Ca ii H&K 3945.28 3400–3800 3800–4100
Si ii λ4000 4129.73 3850–4000 4000–4150
Mg ii ...a 4000–4150 4350–4700
Fe ii ...a 4350–4700 5050–5550
S ii “W” 5624.32 5100–5300 5450–5700
Si ii λ5972 5971.85 5400–5700 5750–6000
Si ii λ6355 6355.21 5750–6060 6200–6600
O i triplet 7773.37 6800–7450 7600–8000
Ca ii near-IR triplet 8578.75 7500–8100 8200–8900
Note: Spectral features and boundaries, as adapted from S12b.
aA single reference wavelength is not useful for this feature because it is
a blend of too many spectral lines. Hence, we do not compute expansion
velocities for this feature.

of spectral features (Folatelli 2004). Feature-strength measurements from SN Ia spectra are
further prized for the prospect that they might correlate with luminosity (e.g., Nugent et al.
1995; Silverman et al. 2012c).

Following S12b, we measure the expansion velocities, pEWs, and fluxes at the endpoints
of nine features in the spectra from our sample which have a light-curve-determined rest-
frame phase of < 20 days11. While some studies consider high-velocity and photospheric
components for certain features (typically by fitting a series of Gaussians to the absorption
profile; e.g., Silverman et al. 2015; Pan et al. 2015b; Zhao et al. 2016), we do not draw
such a distinction in the following analysis (so as to remain consistent with the methodology
of S12b). Our selected features, each labeled by the ion or spectral transition line most
dominant in the absorption, are listed in Table 3.3 along with their rest wavelengths.

Because SN Ia spectra — and hence the aforementioned features — undergo tempo-
ral evolution for an individual SN Ia and exhibit variation over many SNe Ia (even when
comparing similar epochs), the endpoints of each feature must be determined on a spectrum-
by-spectrum basis. To this end we have developed respext12, a Python package for auto-
mated SN Ia spectral feature analysis that is an object-oriented and extensively modified
refactorisation (or redux ) of the spextractor13 package. Given an input spectrum, the

11Two pairs of the selected features (Si ii λ4000, Mg ii; and S ii “W”, Si ii λ5972) become significantly
blended at the late end of this range, so we therefore only measure these features for tLC ≤ 10 days.

12https://github.com/benstahl92/respext
13https://github.com/astrobarn/spextractor

https://github.com/benstahl92/respext
https://github.com/astrobarn/spextractor


CHAPTER 3. SPECTROSCOPY OF 247 SNe Ia 67

4000 5000 6000 7000 8000 9000
Rest Wavelength ( )

0.0

0.3

0.6

0.9

1.2

N
or

m
al

is
ed

 F
lu

x 
D

en
si

ty

C
a 

II
 H

&
K

Si
 II

 
40

00

M
g 

II

Fe
 II

S 
II

 "
W

"

Si
 II

 
59

72

Si
 II

 
63

55

O
 I 

tr
ip

le
t

C
a 

II
 n

ea
r-

IR
 tr

ip
le

t

Before Smoothing
Pseudo-Continuum
After Smoothing

Figure 3.6: Spectrum of SN 2016coj at roughly 0.5 day before maximum brightness after
processing with respext. The Galactic reddening-corrected and deredshifted (but otherwise
unprocessed) original spectrum appears in grey, while the smoothed spectrum is in red. Large
black dots represent the identified feature boundaries which define the pseudo-continuum (in
blue). Smaller black circles indicate absorption minima and the pseudo-continuum fluxes at
their locations.

program smooths14 it using a Savitzky-Golay filter (Savitzky and Golay 1964) and then
automatically (or if necessary, manually) selects absorption-feature boundaries, from which
pseudo-continua are derived. It then measures the pEWs, expansion velocities, and bound-
aries of those features. Figure 3.6 shows the result of this procedure when applied to a
spectrum of SN 2016coj near maximum brightness. In the following subsections, we describe
our measurement procedure in detail and present our results.

3.4.2.1 Pseudo-continua and Pseudo-equivalent Widths

After taking steps to standardise15 an input spectrum, the first task is to determine the
edges of each of its features. We do this by means of a two-step process: (i) we compute
the derivative of the smoothed spectrum and identify the wavelengths corresponding to
where it changes from positive to negative (i.e., the wavelengths of local maxima); (ii) of

14In tests, we have found negligible difference between measurements conducted with and without smooth-
ing. Smoothing does, however, allow us to study spectra whose SNRs would otherwise make their measure-
ment unreliable.

15The steps performed to homogenise input spectra include correcting for Milky Way (MW) reddening
using the values given in Table 3.6 and assuming the extinction law of Cardelli et al. (1989) as modified by
O’Donnell (1994), deredshifting (again using values from Table 3.6), flux-normalising, and smoothing.
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Table 3.4: SN Ia spectral feature measurements near maximum brightness.

SN Feature tLC
a F bb F br pEWc vd

SN 2008hv Ca II H&K 14.29 2.66± 0.17 4.04± 0.11 62.7± 5.2 −11.74± 0.16
SN 2009D Ca II H&K −5.61 6.67± 0.74 7.29± 0.50 120.1± 6.3 −20.01± 0.16
SN 2009Y Ca II H&K 5.72 8.75± 0.14 16.24± 0.25 114.7± 2.4 −17.87± 0.16
SN 2009bv Ca II H&K 12.46 0.86± 0.04 1.24± 0.04 83.0± 3.5 −12.14± 0.16
SN 2009cz Ca II H&K −3.03 6.51± 0.16 6.75± 0.11 117.1± 2.7 −19.59± 0.16
SN 2009dc Ca II H&K −5.74 7.15± 0.11 6.97± 0.34 40.4± 4.7 −16.16± 0.16
SN 2009ds Ca II H&K 8.62 12.71± 0.42 15.66± 0.31 80.5± 2.9 −12.61± 0.16
SN 2009eu Ca II H&K −4.80 0.42± 0.02 0.58± 0.02 100.5± 3.5 −18.79± 0.16
SN 2009fw Ca II H&K 5.30 0.31± 0.11 0.43± 0.09 68.5± 14.5 −19.88± 0.16
SN 2009fw Ca II H&K 6.44 0.53± 0.05 1.26± 0.05 77.9± 5.4 −19.10± 0.16

Abridged table of SN Ia spectral feature measurements (the full table is available online at http:

//heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)).
aPhases are in rest-frame days as given in Table 3.1.
bFluxes at feature boundaries are in units of 10−15 erg s−1 cm−2 Å−1.
cPseudo-equivalent widths are in units of Å.
dExpansion velocities are in units of 103 km s−1 and are blueshifts.

these identified wavelengths, the one corresponding to the maximum flux of the smoothed
spectrum within the blue (red) edge boundary (as given in Table 3.3) is used to define
the blue (red) edge of the absorption feature. Owing to the fact that the blue end of the
O i triplet rarely reaches a local maximum, we follow S12b by modifying our procedure to
identify where the derivative passes through −2.0× 10−18 erg s−1 cm−2 Å−2 (moving in the
positive direction). We visually inspect all feature boundaries derived from this procedure,
and infrequently override them by manually selecting boundary points when the original ones
are not correct. The uncertainty in the flux at the boundary points is assigned as the root-
mean-square error (RMSE) between the input and smoothed fluxes within a range identical
to the width of the smoothing window centred at the identified boundary wavelengths. We
list all measured feature-boundary fluxes (and their uncertainties) in Table 3.4.

If the blue and red boundaries of a feature are successfully determined, we define the
pseudo-continuum by connecting the boundary points with a line. The lower (upper) uncer-
tainty of the pseudo-continuum is derived by connecting a line between the boundary points,
with their fluxes reduced (increased) by their uncertainties. Once the pseudo-continuum is
determined, we calculate the pEW (e.g., Garavini et al. 2007, S12b),

pEW =
N−1∑
i=0

∆λi

(
1− f(λi)

fc(λi)

)
, (3.2)

where N is the number of pixels between the blue and red boundaries of the feature (which

http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS)
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also define the pseudo-continuum as discussed above), λi (∆λi) is the wavelength (width)
of the ith pixel, and f(λi) [fc(λi)] is the spectrum [pseudo-continuum] flux at λi. The
uncertainty in our measurement of the pEW is calculated using standard techniques of error
propagation using both the uncertainty of the pseudo-continuum (as described above) and
the uncertainty in the spectrum flux at each pixel (derived using the RMSE as done for
feature boundaries, also described above).

Table 3.4 includes a column containing all measured pEWs, and we visualise their tem-
poral evolution in Figure 3.7. In the same figure, we compare the aggregate pEW evolution
for each feature in our dataset to those derived from the dataset of S12b. Given that this
comparison is for measurements made between different (but similarly targeted, observed,
and reduced) spectra from different SNe Ia, we find the level of consistency satisfactory.
Indeed, the same evolutionary trends clearly manifest themselves in both datasets — we
mention some of the more noteworthy observations in the following paragraphs.

Both the Ca ii H&K feature and Ca ii near-infrared (IR) triplet exhibit relatively large
pEWs for tLC . −5 days, but while the former has a pEW that slowly declines through
its evolution beyond this point (with noticeably reducing scatter), the pEW of the latter
markedly grows. These features, together with the Fe ii complex (which seems to grow
quadratically for tLC & −8 days), have the largest pEWs of all features measured (and are
thus in the last row of Figure 3.7).

The Mg ii feature pEW measurements show a modestly increasing trend and have rela-
tively small scatter compared to those for the Si ii λ6355 feature and O i triplet (all three
displayed in the central row of Figure 3.7 owing to their similar range of values). The O i
triplet’s mean pEW evolution appears to consist of several distinct stages: there is an in-
crease for tLC . 5 days, at which point the evolution reaches a broad peak of ∼ 120 Å, and
then there is a stage of decrease. The mean pEW evolution of the S ii “W” feature follows a
similar trend, except that the peak of ∼ 80 Å occurs a few days earlier and is more sharply
defined.

Si ii λ6355, the most characteristic spectral feature of SNe Ia near maximum brightness,
shows relatively flat pEW evolution (∼ 100 Å) for tLC . 10 days, after which our measure-
ments are consistent with a “hint of sharp upturn” as was noted by S12b, and which is likely
due to blending with Si ii λ5972 at such epochs. Similarly, the Si ii λ5972 feature exhibits
relatively constant (if slightly increasing) pEW evolution until tLC ≈ 5 days, at which phase
there is an uptick, likely due to blending with the Na i D line (from the MW, and owing to
their low redshifts, possibly from the host galaxies of the SNe). The Si ii λ4000 feature has
the lowest aggregate pEWs in our sample (hence its position in the first row of Figure 3.7,
along with the measurements for Si ii λ5972 and S ii “W”), and shows evidence for a slight
trend of increasing pEW.

3.4.2.2 Expansion Velocities

With feature boundaries determined according to Section 3.4.2.1, we identify the absorption
minimum (wavelength and flux) in each feature by fitting the smoothed flux (within each
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Figure 3.7: Evolution of pEWs for the features noted in Table 3.3, grouped by pEW magni-
tude. Grey circles are measured pEWs for spectra belonging to SNe classified as “Ia-norm”
according to the prescription of Section 3.3, and grey squares are those for SNe classified as
“Ia” of any subtype (except “Ia-norm”) or “Ia” with no subtype determined. The red line
and filled region represent the mean and standard deviation (respectively) of all “Ia-norm”
measurements within four days of each half-day increment in the evolution, and the dashed
blue lines represent the corresponding descriptors derived from the dataset of S12b. The
feature and number of “Ia-norm” measurements for it are included in each panel.
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feature boundary) with a cubic spline and computing the minimum. We do this for all
features with identified boundaries except for Mg ii and Fe ii, which are composites of so
many blended lines that there is ambiguity when choosing a reference wavelength against
which to measure expansion velocities. The S ii “W” feature has two broad absorptions,
so for consistency — both internally and with the results described by S12b — we always
measure the minimum of the redder of the two features (even if the bluer component has
a deeper absorption). As with measurements of feature boundaries, we perform a visual
inspection, and in cases where the spline fit does not accurately reflect the true flux minimum
we manually adjust the range over which the spline is fit in order to more faithfully capture
the signal. Following S12b, we impose a 2 Å uncertainty on the wavelength of the feature
minimum (and do not explicitly account for systematic uncertainties due to the spectral
resolution).

To calculate the expansion velocity of a feature, v, we use the wavelength of its flux mini-
mum (as determined above) and the appropriate rest wavelength (as given in Table 3.3) with
the relativistic Doppler equation. The uncertainty in the expansion velocity is obtained by
propagating the wavelength uncertainty (as described above). We present all of our velocity
measurements in Table 3.4. We emphasise that they are derived from blueshifted spectral
features (and hence appear as negative number in the table). All velocity measurements
are shown in Figure 3.8, and the aggregate results are compared to those derived from the
dataset of S12b. As with the pEW comparison, we find clear qualitative consistency in evo-
lutionary trends (especially given some allowance for biases due to low-number statistics at
the earliest epochs).

Similar to S12b, we find the highest expansion velocities from the two Ca ii features we
investigated. The features exhibit similar evolution, with velocities in excess of 25, 000 km
s−1 (and as high as ∼ 30, 000 km s−1) for t . −5 days, followed by a rapid decline to relative
constancy (slightly decreasing for Ca ii H&K) at ∼ 12, 000 km s−1 for t & 0 days.

All three features of Si ii show a similar evolutionary track of modest decline, albeit with
different scales. The largest velocities are claimed by Si ii λ6355, followed by Si ii λ5972
(both of which converge to a steady velocity of ∼ 11, 000 km s−1 for t & 0 days), and finally
Si ii λ4000 (which continues to decline throughout the evolution). The velocity of the S ii
“W” feature shows a very similar evolution to that of Si ii λ4000, but with a bit more scatter
and a slightly steeper decline.

The expansion velocities of the O i triplet cover a similar range of values to those of
the Si ii “W” feature, but with a significantly larger degree of scatter (especially for later
epochs). This is unsurprising: the O i triplet is a broad feature, and thus when it becomes
weak (as it does at later phases, as shown in Figure 3.7) the exact location of the minimum
is more challenging to robustly determine. It is difficult to quantify the extent to which this
mechanism introduces scatter relative to what may be intrinsic, but after visually inspecting
the results, we find the derived minima to be reasonable.
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Figure 3.8: Same as Figure 3.7, but for expansion velocities. Though we show positive
velocity scales, we reiterate that the velocities correspond to blueshifts.
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3.4.3 Late-time Spectra

As a SN Ia reaches the so-called nebular phase in its evolution (starting t & 100 days after
maximum light, and fully for t & 160 days), the density of the ejecta diminishes to the point
of becoming optically thin, thereby allowing light from deep within the interior to escape.
This results in broad emission lines (due mostly to iron-group elements) in the late-time
optical spectra of SNe Ia, which may encode important physical and geometric details of
the explosion mechanism(s) (Maeda et al. 2010b; Maguire et al. 2018). In particular, many
studies of late-time SN Ia spectra have considered three broad emission features centred near
4701, 6155, and 7378 Å, which are attributed to blends of various lines of [Fe iii], [Fe ii], and
[Ni ii], respectively (Mazzali et al. 1998; Maeda et al. 2010a; Blondin et al. 2012; Silverman
et al. 2013; Maguire et al. 2018).

Of the spectra in our dataset having light-curve-determined phases, there are 15 (spanning
7 SNe Ia) for which tLC ≥ 160 days. Though this is not a sufficiently large sample to perform
a stand-alone study (and because a subset of these spectra have already been considered in
other works; see the references listed in Table 3.1), we perform only a brief analysis focusing
on the velocity shift of the [Fe iii] λ4701 feature and the mean velocity shift of the two
remaining features (which, for consistency with the aforementioned studies, we refer to as
the “nebular velocity”). We describe our methodology and measurements in the following
subsections.

3.4.3.1 Methodology

We measure velocities of the listed features in our nebular spectra using tools from our
respext package. Again, we preprocess spectra by correcting for Galactic extinction and
then deredshifting, flux-normalising, and smoothing. Emission peaks are identified by eye
and then, following the approach described in Section 3.4.2.2, we fit a cubic spline to the
smoothed spectrum in the vicinity of the peak, allowing us to derive the wavelength at
which the flux is maximal. Consistent with our treatment of early-time spectra, we impose a
uniform 2 Å uncertainty on all wavelengths determined by this method. The velocity of the
feature is then obtained using the relativistic Doppler equation. Our results are summarised
in Table 3.5.

3.4.3.2 [Fe iii] λ4701 Velocities

We present our measurements of the velocity shifts of the [Fe iii] λ4701 feature in the top
panel of Figure 3.9. Similar to Silverman et al. (2013), we find evidence for a slow decrease
in blueshift (i.e., a velocity increase) in the nebular-phase evolution. For the three SNe Ia
in our sample having multiple nebular-phase spectra with nonnegligible temporal separation
(SN 2011fe, SN 2011by, and SN 2014J), we find average velocity increase rates of 15, 11, and
5 km s−1 d−1 (respectively).
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Figure 3.9: Measured velocity shifts from the nebular spectra in our sample. The top panel
shows the velocity shifts for the [Fe iii] λ4701 feature, while the bottom shows the nebular
velocities (as discussed in Section 3.4.3.3). SNe Ia with multiple nebular spectra are marked
as indicated in the legend and connected by lines. The error bars, which do not account for
systematic uncertainties from the resolution of our spectra, are typically smaller than the
markers. For a typical resolution of ∼ 10 Å, the omitted systematic uncertainty amounts to
∼ 500 km s−1.
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Table 3.5: Late-time SN Ia spectral feature measurements.

SN tLC
a Velocityb Velocityb Velocityb

Name [Fe iii] λ4701 [Fe ii] λ7155 [Ni ii] λ7378
SN 2009ig 160.3 −2.47± 0.13 0.83± 0.08 −1.36± 0.08
SN 2011by 206.7 −1.68± 0.13 −1.38± 0.08 −1.73± 0.08
SN 2011by 310.3 −0.54± 0.13 −1.05± 0.08 −1.15± 0.08
SN 2011fe 164.9 −2.64± 0.13 −1.37± 0.08 ...
SN 2011fe 203.9 −1.54± 0.13 −1.26± 0.08 −1.12± 0.08
SN 2011fe 224.8 −1.17± 0.13 −0.93± 0.08 −1.09± 0.08
SN 2011fe 309.6 −0.63± 0.13 −1.22± 0.08 −0.94± 0.08
SN 2011fe 346.5 −0.32± 0.13 −0.76± 0.08 −0.89± 0.08
SN 2011fe 378.5 0.20± 0.13 −1.10± 0.08 −0.90± 0.08
SN 2013dy 422.2 2.88± 0.13 0.55± 0.08 0.39± 0.08
SN 2013gy 271.8 −0.56± 0.13 −0.29± 0.08 −2.95± 0.08
SN 2014J 264.6 −0.90± 0.13 0.86± 0.08 1.45± 0.08
SN 2014J 291.6 −0.75± 0.13 1.00± 0.08 1.38± 0.08
ASASSN 14lp 170.1 −2.07± 0.13 0.57± 0.08 0.53± 0.08
ASASSN 14lp 175.1 −2.23± 0.13 0.44± 0.08 0.19± 0.08
aSpectral phases are in rest-frame days as given in Table 3.1.
bVelocities are in units of 103 km s−1. Negative values are blueshifted.
Systematic uncertainties associated with the resolution of the spectra are
not included.

3.4.3.3 Nebular Velocities

As with Maeda et al. (2010a), Blondin et al. (2012), and Silverman et al. (2013), we derive
nebular velocities as the arithmetic mean of the [Fe ii] λ7155 and [Ni ii] λ7378 feature ve-
locities. Whereas previous studies have determined the uncertainty in the nebular velocity
as the difference between the constituent velocities (Maeda et al. 2010a), or half of this dif-
ference (Silverman et al. 2013), we derive it from direct propagation of uncertainties. We
present our nebular velocity measurements in the bottom panel of Figure 3.9. In contrast
to the slow (but noticeable) increasing trend in the [Fe iii] λ4701 velocities, we find an even
weaker trend in nebular velocities. For the previously mentioned set of three SNe Ia with
multiple nebular spectra, we find average velocity increase rates of just 2, 4, and 1 km s−1

d−1 — consistent with the assertion made by Silverman et al. (2013) that a single measure-
ment of the nebular velocity of a given SN Ia is sufficient to describe that SN throughout its
nebular-phase evolution.
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3.5 Conclusion

In this paper we present 637 optical spectra collected by the Berkeley Supernova Ia Program
using the Kast double spectrograph at Lick Observatory and LRIS at the W. M. Keck Obser-
vatory between 2009 and 2018. Careful observation and processing techniques perfected over
the last 20+ years are employed to prepare the spectra in a manner that is (i) self-consistent
and (ii) consistent with earlier BSNIP spectral data releases (S12a).

We employ a robust automated spectral classification procedure that uses SNID to derive
the type, subtype, redshift, and rest-frame phase of the spectra in our dataset, achieving a
successful result in the majority of cases. Furthermore, we perform a study of the results
and conclude that failures preferentially occur for late-phase spectra (where the temporal
coverage of SNID is sparse) and for spectra with lower SNRs (and which are thus of lower
quality). Where independent measurements (i.e., host-galaxy redshifts, and light-curve-
derived rest-frame phases) are available, we compare them to SNID-based predictions. The
redshifts show negligible difference in aggregate and have relatively small scatter, while the
phases have a larger — but still reasonable — scatter (especially when a more temporally
restrictive subset is selected). After combining the classifications in cases where multiple
spectra are available for a given object, we address the several cases in which a selected
object was not classified as a SN Ia. Ultimately, we obtain a final sample of 626 spectra from
242 low-redshift SNe Ia.

We study the early-time and late-time properties of our dataset, with emphasis on mea-
surements of the most prominent features in SN Ia spectra at such phases. In particular, we
measure the expansion velocities, pEWs, and fluxes at the boundaries of nine absorption-
feature complexes from the subset of our spectra that were observed within 20 days of
maximum light. When we compare with the analogous set of measurements performed on
an earlier set of BSNIP spectra (S12b), we find clear evidence for the same evolutionary be-
haviours in the features. Similarly, we measure the velocity shifts of three emission features
from the subset of our spectra that were observed more than 160 days after maximum light.
With just 15 such nebular spectra, our sample is too small to merit a stand-alone study, but
we do find clear manifestations of the evolutionary behaviours noted by more comprehensive
studies.

When our dataset is combined with that described by S12a, the BSNIP low-redshift
SN Ia spectral dataset reaches nearly 2000 optical spectra, all of which have been handled
consistently through all phases of observing and processing. Further utility will be unlocked
by considering the aforementioned spectral dataset in conjunction with its companion pho-
tometric dataset of more than 250 SNe Ia from the Lick Observatory Supernova Search
follow-up program (see G10 and S19, for the photometric datasets covering 1998–2008 and
2009–2018, respectively). In a future study, we will leverage these datasets to explore the
extent to which photometrically derived parameters can be reconstructed from SN Ia spectra
(Stahl et al. 2020a).
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3.6 Sample Information

Table 3.6: SN Ia information.

SN Discovery R.A. Decl. zhelio
a E(B − V )MW

b SNIDc # of Firstd Lastd MJDe
max

Name Date (UT) α(2000) δ(2000) (mag) (sub)type Spectra Epoch Epoch Reference
SN 2008hm 2008−11−25 51.7954 46.9443 0.0197 0.381 Ia 1 26.5 ... 2
SN 2008hv 2008−12−02 136.8920 3.3923 0.0125 0.027 Ia-norm 1 14.3 ... 2
SN 2008hy 2008−12−06 56.2852 76.6654 0.0085 0.203 Ia 1 32.9 ... 2
SN 2009D 2009−01−02 58.5951 −19.1817 0.0250 0.046 Ia-norm 1 −5.6 ... 1
SN 2009Y 2009−02−01 220.5990 −17.2468 0.0094 0.087 Ia-norm 3 5.7 62.9 2

SN 2009V 2009−02−02 153.2030 43.1832 0.0930†(c) 0.012 Ia-norm 1 ... ... ...
SN 2009ae 2009−02−15 249.8700 21.3154 0.0311 0.049 Ia-norm 1 ... ... ...
SN 2009an 2009−02−27 185.6980 65.8512 0.0092 0.016 Ia-norm 2 21.1 40.7 2
SN 2009bp 2009−03−17 211.9570 36.6436 ... 0.004 Ia 1 ... ... ...
SN 2009bs 2009−03−21 201.7340 52.7549 0.0298 0.011 Ia-91bg 2 ... ... ...
SN 2009bv 2009−03−27 196.8350 35.7844 0.0367 0.008 Ia-norm 1 12.5 ... 2
SN 2009cz 2009−04−06 138.7500 29.7353 0.0211 0.022 Ia 1 −3.0 ... 4
SN 2009dc 2009−04−09 237.8010 25.7078 0.0214 0.060 Ia-norm 8 −5.7 109.5 1
SN 2009do 2009−04−22 188.7430 50.8512 0.0397 0.013 Ia-norm 1 23.4 ... 2
SN 2009ds 2009−04−28 177.2670 −9.7291 0.0193 0.033 Ia-norm 1 8.6 ... 2
SN 2009en 2009−05−08 221.5940 13.0242 0.0467 0.020 Ia-norm 2 ... ... ...
SN 2009ep 2009−05−11 208.0440 2.3242 0.0237 0.025 Ia-norm 2 ... ... ...
SN 2009eq 2009−05−11 280.0350 40.1268 0.0236 0.053 Ia* 3 ... ... ...
SN 2009ew 2009−05−16 249.7490 17.9828 ... 0.062 Ia-norm 2 ... ... ...
SN 2009eu 2009−05−21 247.1710 39.5535 0.0304 0.010 Ia-norm 1 −4.8 ... 1
SN 2009ft 2009−05−23 216.0250 7.7695 0.0568 0.021 Ia-norm 1 ... ... ...
SN 2009fx 2009−05−29 253.2970 23.9653 0.0477 0.049 Ia-norm 1 ... ... ...
SN 2009fl 2009−05−30 246.2920 40.8891 0.0294 0.007 Ia-norm 2 ... ... ...
SN 2009fu 2009−06−01 33.0375 44.5653 0.0171 0.076 Ia-norm 1 ... ... ...
SN 2009fy 2009−06−01 351.0210 16.6641 0.0410 0.028 Ia-norm 2 ... ... ...
SN 2009fv 2009−06−02 247.4340 40.8116 0.0293 0.005 Ia-norm 3 3.8 16.4 1

SN 2009gq 2009−06−02 333.7200 17.5131 0.0670†(c) 0.037 Ia-norm 1 ... ... ...
SN 2009fw 2009−06−06 308.0770 −19.7332 0.0282 0.050 Ia-norm 4 5.3 17.9 2
SN 2009gf 2009−06−15 213.9050 14.2802 0.0185 0.022 Ia-norm 3 ... ... ...
SN 2009gs 2009−06−15 319.7060 −5.9530 ... 0.102 Ia-norm 3 ... ... ...
SN 2009he 2009−07−03 245.5510 57.2729 0.0306 0.008 Ia-91bg 1 ... ... ...
SN 2009hi 2009−07−10 350.9840 16.7749 0.0411 0.026 Ia-norm 3 ... ... ...

SN 2009hk 2009−07−11 309.6560 −25.1156 0.0180†(c) 0.038 Ia 1 ... ... ...

SN 2009hl 2009−07−11 262.7920 36.4278 0.0494†(d) 0.030 Ia-norm 2 ... ... ...
SN 2009hn 2009−07−24 38.0013 1.2482 0.0220 0.021 Ia-norm 1 ... ... ...
SN 2009ho 2009−07−25 37.1389 37.9511 ... 0.049 Ia 1 ... ... ...
SN 2009hp 2009−07−26 44.5998 6.5931 0.0211 0.198 Ia-norm 1 ... ... ...
SN 2009hs 2009−07−28 268.9620 62.5998 0.0275 0.035 Ia 1 8.6 ... 1

SN 2009hr 2009−07−29 10.1422 3.5414 0.0170†(c) 0.022 Ia-norm 1 ... ... ...

PTF 09dlc 2009−08−17 326.6250 6.4192 0.0672†(p) 0.047 Ia-norm 2 −2.3 18.2 5

SN 2009jb 2009−08−17 260.9240 30.4971 0.0237†(p) 0.037 Ia-norm 3 ... ... ...

PTF 09dnp 2009−08−18 229.8520 49.4990 0.0376†(p) 0.016 Ia-norm 2 ... ... ...
SN 2009ig 2009−08−20 39.5484 −1.3125 0.0088 0.028 Ia-norm 16 −13.8 160.3 1
SN 2009ih 2009−08−21 238.8790 41.9483 0.0329 0.015 Ia-91bg 1 ... ... ...
SN 2009ix 2009−09−08 49.4709 40.9589 ... 0.128 Ia-norm 2 ... ... ...
SN 2009jg 2009−09−22 265.1430 18.7137 ... 0.062 Ia-norm 1 ... ... ...
SN 2009jr 2009−10−08 306.6080 2.9092 0.0165 0.116 Ia-99aa 2 −3.6 5.3 2

SN 2009jp 2009−10−09 349.4280 13.9569 0.0550†(c) 0.040 Ia-norm 1 ... ... ...
SN 2009kk 2009−10−15 57.4345 −3.2644 0.0129 0.118 Ia-norm 2 −0.4 19.4 2
SN 2009ko 2009−10−28 120.4930 15.0596 0.0162 0.028 Ia-norm 2 ... ... ...
SN 2009kq 2009−11−05 129.0630 28.0671 0.0117 0.035 Ia-norm 4 −9.2 28.4 1
SN 2009lg 2009−11−10 354.7080 28.2651 0.0580 0.165 Ia-norm 1 ... ... ...
SN 2009le 2009−11−16 32.3214 −23.4124 0.0178 0.014 Ia-norm 1 17.5 ... 2
SN 2009li 2009−11−16 5.7142 6.9699 0.0404 0.023 Ia-norm 1 ... ... ...
SN 2009lv 2009−11−19 4.1107 22.4361 ... 0.059 Ia-norm 2 ... ... ...
SN 2009lu 2009−11−20 163.5870 −4.3442 0.0215 0.026 Ia-norm 1 ... ... ...
SN 2009lr 2009−11−23 348.5600 −2.7533 ... 0.041 Ia 2 ... ... ...
SN 2009me 2009−12−03 182.4160 43.6750 ... 0.012 Ia-norm 2 ... ... ...
SN 2009mj 2009−12−10 103.3010 44.0713 0.0196 0.092 Iax 1 ... ... ...
SN 2009mh 2009−12−12 175.9830 10.7820 0.0197 0.038 Ia 1 ... ... ...
SN 2009mv 2009−12−16 108.9160 35.2412 ... 0.053 Ia-norm 1 ... ... ...
SN 2009nr 2009−12−22 197.7460 11.4915 0.0112 0.022 Ia-norm 3 11.6 129.3 6
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SN 2009mz 2009−12−26 210.8530 −6.0587 0.0086 0.024 Ia-norm 2 ... ... ...
SN 2009na 2009−12−26 161.7560 26.5439 0.0210 0.028 Ia-norm 3 3.0 39.4 2
SN 2009nq 2009−12−28 348.8210 19.0229 0.0158 0.125 Ia-norm 1 ... ... ...
SN 2009nk 2009−12−29 212.7450 6.3633 0.0196 0.023 Ia-norm 2 ... ... ...
SN 2010A 2010−01−04 38.1644 0.6195 0.0207 0.025 Ia-99aa 1 ... ... ...
SN 2010B 2010−01−07 208.5370 60.6804 0.0102 0.011 Ia-norm 4 ... ... ...

SN 2010N 2010−01−12 197.2720 17.0729 0.0210†(c) 0.019 Ia-norm 2 ... ... ...
SN 2010H 2010−01−16 121.6020 1.0359 0.0154 0.026 Ia-norm 3 ... ... ...

SN 2010V 2010−02−04 217.1600 30.6360 0.0129†(d) 0.019 Ia-norm 3 ... ... ...
SN 2010Y 2010−02−08 162.7660 65.7797 0.0109 0.011 Ia-norm 4 −6.4 22.3 2
SN 2010p1 2010−02−12 160.6750 58.8438 0.0313 0.007 Ia-norm 2 ... ... ...
SN 2010ag 2010−03−05 255.9730 31.5017 0.0337 0.026 Ia 3 0.3 58.3 2

SN 2010ai 2010−03−08 194.8500 27.9964 0.0193†(d) 0.008 Ia-norm 1 −6.4 ... 2
SN 2010an 2010−03−11 244.4190 35.0028 0.0295 0.020 Ia-norm 3 ... ... ...
SN 2010au 2010−03−15 138.1520 34.8547 0.0615 0.018 Ia-norm 2 ... ... ...
SN 2010ax 2010−03−15 220.4730 10.7504 0.0508 0.024 Ia-norm 1 ... ... ...
SN 2010ao 2010−03−18 205.9210 3.9000 0.0228 0.023 Ia-norm 1 −11.1 ... 1
SN 2010at 2010−03−19 181.2480 76.1312 0.0418 0.073 Ia 1 ... ... ...
SN 2010ba 2010−03−21 179.5860 15.3363 ... 0.037 Ia-norm 3 ... ... ...

SN 2010bn 2010−04−05 176.2320 −5.0789 0.0530†(c) 0.019 Ia-norm 1 ... ... ...

SN 2010bu 2010−04−09 235.7430 2.2813 0.0390†(c) 0.064 Ia-norm 2 ... ... ...
SN 2010cp 2010−05−09 195.1080 −15.2889 0.0164 0.049 Ia-91bg 1 ... ... ...
SN 2010cs 2010−05−12 221.9820 19.0549 0.0419 0.029 Ia-norm 1 ... ... ...
SN 2010cr 2010−05−15 202.3540 11.7962 0.0216 0.030 Ia-norm 2 8.2 15.0 2
SN 2010dl 2010−05−24 323.7540 −0.5133 0.0300 0.033 Ia-norm 1 18.1 ... 2
SN 2010eb 2010−06−12 20.4074 5.2944 0.0076 0.026 Ia-norm 1 ... ... ...

SN 2010gj 2010−07−10 327.7260 −17.7693 0.0370†(c) 0.047 Ia 1 ... ... ...
SN 2010gl 2010−07−18 247.9110 59.6239 0.0188 0.013 Ia-norm 2 ... ... ...
SN 2010gv 2010−08−09 269.5940 50.7928 ... 0.040 Ia 1 ... ... ...
SN 2010gz 2010−08−16 23.2128 −12.1893 0.0184 0.021 Ia-norm 1 ... ... ...
SN 2010hh 2010−09−01 269.8270 45.8756 0.0190 0.033 Ia-91bg 1 ... ... ...
SN 2010hz 2010−09−12 28.4249 29.9346 0.0255 0.047 Ia-norm 1 ... ... ...
SN 2010ii 2010−09−30 339.5550 35.4917 0.0269 0.075 Ia-norm 2 ... ... ...
SN 2010iw 2010−10−14 131.3130 27.8227 0.0215 0.047 Ia-norm 1 10.4 ... 2
SN 2010ju 2010−11−14 85.4833 18.4975 0.0152 0.361 Ia-norm 2 6.1 19.9 1
SN 2010kg 2010−11−29 70.0350 7.3500 0.0166 0.134 Ia-norm 2 −13.0 0.8 2
SN 2011H 2011−01−04 35.7751 43.0423 0.0220 0.073 Ia-norm 1 ... ... ...

SN 2011K 2011−01−13 71.3766 −7.3480 0.0145†(d) 0.088 Ia-norm 1 9.1 ... 2
SN 2011U 2011−01−28 63.3914 27.5435 0.0134 0.593 Ia-norm 1 ... ... ...
SN 2011ao 2011−03−03 178.4630 33.3628 0.0107 0.017 Ia-norm 3 −8.7 37.6 2
SN 2011ay 2011−03−18 105.6420 50.5903 0.0210 0.072 Iax 9 ... ... ...
SN 2011by 2011−04−26 178.9400 55.3261 0.0028 0.012 Ia-norm 11 −11.1 310.3 1
SN 2011dm 2011−06−15 329.1730 73.2969 0.0049 0.519 Ia-norm 1 ... ... ...
SN 2011dn 2011−06−21 299.6480 2.6045 0.0253 0.151 Ia-pec 1 ... ... ...

SN 2011fg 2011−08−20 350.8360 16.7948 0.0450†(d) 0.023 Ia-norm 2 ... ... ...
SN 2011fe 2011−08−24 210.7740 54.2737 0.0008 0.008 Ia-norm 17 −17.2 378.5 1
SN 2011fk 2011−08−29 13.6753 36.7643 0.0201 0.048 Ia 1 ... ... ...
SN 2011fs 2011−09−15 334.3310 35.5806 0.0209 0.101 Ia-99aa 3 −2.6 25.8 1

SN 2011gy 2011−10−22 52.3971 40.8676 0.0169†(d) 0.166 Ia-norm 1 ... ... ...

SN 2011hb 2011−10−24 351.9810 8.7794 0.0289†(d) 0.051 Ia-norm 1 ... ... ...
SN 2011iv 2011−12−02 54.7140 −35.5922 0.0065 0.010 Ia-norm 2 ... ... ...
SN 2011jh 2011−12−22 191.8100 −10.0631 0.0078 0.032 Ia-norm 3 ... ... ...
SN 2011jr 2011−12−25 106.6660 23.8936 0.0226 0.052 Ia-norm 2 ... ... ...

SN 2011jn 2011−12−26 194.3120 −17.4001 0.0475†(d) 0.059 Ia-norm 1 ... ... ...

SN 2011jt 2011−12−31 223.3460 2.9620 0.0278†(d) 0.039 Ia-norm 2 ... ... ...

SN 2012B 2012−01−08 57.8938 37.0785 0.0173†(d) 0.271 Ia-norm 1 ... ... ...
SN 2012E 2012−01−14 38.3450 9.5849 0.0203 0.063 Ia-norm 1 −4.3 ... 1
SN 2012Z 2012−01−29 50.5223 −15.3877 0.0071 0.034 Iax 4 −7.6 35.1 1
SN 2012c1 2012−03−27 166.3340 −1.8681 0.0908 0.047 Ia-csm 2 ... ... ...
SN 2012cg 2012−05−17 186.8030 9.4203 0.0015 0.018 Ia-norm 10 −16.4 46.5 1
SN 2012cu 2012−06−14 193.3720 2.1608 0.0035 0.023 Ia-norm 3 ... ... ...
SN 2012de 2012−06−25 333.7720 10.3035 ... 0.062 Ia-norm 1 ... ... ...

SN 2012dn 2012−07−08 305.9010 −28.2787 0.0102†(d) 0.052 Ia-norm 2 −14.6 −9.6 1
SN 2012dv 2012−07−18 327.1260 −12.8392 0.0700 0.037 Ia-norm 1 ... ... ...
SN 2012ea 2012−08−08 266.2930 18.1408 0.0102 0.055 Ia 2 −6.8 29.8 1
PTF 12ild 2012−09−06 338.2420 −0.2152 0.1723 0.051 Ia-norm 1 ... ... ...
PTF 12irf 2012−09−15 30.5316 0.1838 0.1921 0.020 Ia 1 ... ... ...
LSQ 12fhe 2012−10−02 323.0390 −5.7260 0.0275 0.062 Ia* 1 ... ... ...
SN 2012fr 2012−10−27 53.4000 −36.1271 0.0055 0.018 Ia-norm 9 −6.1 92.1 7
SN 2012gl 2012−10−29 153.2100 12.6824 0.0094 0.036 Ia-norm 1 ... ... ...
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SN 2012gx 2012−11−18 9.5073 −13.8610 0.0140†(d) 0.019 Ia-norm 1 ... ... ...
SN 2012ht 2012−12−18 163.3450 16.7764 0.0036 0.025 Ia-norm 13 1.9 128.2 8

SN 2012ij 2012−12−29 175.0660 17.4562 0.0110†(d) 0.023 Ia-91bg 4 ... ... ...
SN 2013E 2013−01−04 150.0230 −34.2337 0.0094 0.084 Ia-norm 5 ... ... ...
SN 2013Q 2013−01−25 356.7830 29.4865 0.0172 0.085 Ia-norm 2 ... ... ...

SN 2013S 2013−01−25 53.8762 38.2832 0.0186†(d) 0.305 Ia-99aa 1 ... ... ...
SN 2013gq 2013−03−25 124.4730 23.4696 0.0139 0.049 Ia-norm 4 1.1 16.7 1
SN 2013ct 2013−05−10 18.2288 0.9794 0.0038 0.024 Ia 1 ... ... ...
SN 2013dj 2013−06−10 251.5080 6.4665 0.0253 0.063 Ia-91T 1 ... ... ...
SN 2013dh 2013−06−12 232.5050 12.9869 0.0134 0.033 Ia 4 −5.7 19.1 1
SN 2013di 2013−06−12 339.1140 21.6151 0.0238 0.040 Ia-norm 2 ... ... ...
SN 2013dy 2013−07−10 334.5730 40.5693 0.0039 0.132 Ia-norm 14 −11.7 422.2 1
SN 2013gh 2013−08−08 330.5910 −18.9168 0.0088 0.025 Ia* 3 −11.8 392.2 1
SN 2013fa 2013−08−25 310.9730 12.5144 0.0155 0.086 Ia-norm 1 2.0 ... 1
SN 2013fw 2013−10−21 318.4370 13.5759 0.0170 0.067 Ia* 1 347.3 ... 1
SN 2013gs 2013−11−29 142.7870 46.3848 0.0169 0.017 Ia-norm 1 ... ... ...
SN 2013gy 2013−12−06 55.5703 −4.7218 0.0140 0.050 Ia-norm 3 5.6 271.8 1
PSN J03055989+0432382 2013−12−21 46.4995 4.5439 ... 0.146 Ia-norm 1 ... ... ...
SN 2013hs 2013−12−25 29.7237 5.5904 0.0194 0.036 Ia-norm 1 ... ... ...
SN 2014J 2014−01−21 148.9260 69.6739 0.0007 0.136 Ia-norm 10 33.9 291.6 1
SN 2014ag 2014−03−11 247.6690 44.5096 0.0317 0.011 Ia 1 ... ... ...
SN 2014ao 2014−04−17 128.6390 −2.5434 0.0141 0.031 Ia-norm 1 10.3 ... 1
ASASSN 14ar 2014−04−24 137.4240 37.6018 0.0230 0.017 Ia-norm 1 ... ... ...

SN 2014ck 2014−06−29 341.4120 73.1619 0.0050†(d) 0.394 Iax 2 ... ... ...

SN 2014da 2014−08−07 7.3130 2.8660 0.0141†(d) 0.025 Ia-91bg 1 ... ... ...

ASASSN 14gh 2014−08−28 258.7890 41.8109 0.0044†(d) 0.023 Ia-norm 1 ... ... ...

SN 2014dg 2014−09−11 57.0824 70.1318 0.0040†(d) 0.628 Ia-norm 11 ... ... ...
SN 2014dl 2014−09−25 247.4420 8.6418 0.0330 0.054 Ia-91T 1 ... ... ...

SN 2014dm 2014−09−27 62.0297 −8.8270 0.0330†(d) 0.041 Ia-norm 1 ... ... ...
SN 2014dt 2014−10−29 185.4900 4.4718 0.0052 0.019 Iax 13 ... ... ...
PSN J03034759+0024146 2014−11−17 45.9483 0.4041 0.0430 0.073 Ia-norm 1 ... ... ...
iPTF 14jfw 2014−11−23 137.5080 52.3157 ... 0.011 Ia-norm 1 ... ... ...
ASASSN 14lp 2014−12−09 191.2880 0.4590 0.0052 0.014 Ia-norm 15 −0.8 175.1 9

Gaia 15aba 2015−02−06 240.8760 52.2607 0.0460†(d) 0.015 Ia-norm 1 ... ... ...

Gaia 15abu 2015−02−09 256.2090 41.0179 0.0750†(d) 0.024 Ia-norm 1 ... ... ...
SNHunt 276 2015−02−10 177.4950 21.3172 0.0261 0.025 Ia-91bg 1 ... ... ...
SN 2015H 2015−02−10 163.6760 −21.0705 0.0125 0.047 Iax 1 ... ... ...

Gaia 15aby 2015−02−11 214.8040 10.7169 0.0790†(d) 0.026 Ia-norm 1 ... ... ...
PSN J13471211−2422171 2015−02−12 206.8000 −24.3714 0.0190 0.064 Ia-norm 1 ... ... ...
ASASSN 15db 2015−02−15 236.7450 17.8840 0.0113 0.029 Ia-norm 1 ... ... ...
SNHunt 281 2015−03−16 226.3670 1.6350 0.0041 0.045 Ia-norm 3 −5.3 20.5 10

ASASSN 15fr 2015−03−24 140.0850 −7.6408 0.0334†(d) 0.033 Ia-norm 1 ... ... ...

ASASSN 15hy 2015−04−25 302.5100 0.7392 0.0250†(d) 0.105 Ia-norm 12 −13.4 152.2 3
ASASSN 15jm 2015−05−19 260.2880 25.5821 ... 0.056 Ia-csm 1 ... ... ...
iPTF 15awr 2015−05−25 225.3300 16.7800 ... 0.036 Ia-norm 1 ... ... ...
ASASSN 15kx 2015−06−10 334.0490 37.4739 0.0182 0.141 Ia-norm 3 31.3 121.3 3
ASASSN 15lo 2015−06−19 343.3910 19.7084 ... 0.056 Ia-norm 1 ... ... ...
ASASSN 15lu 2015−06−20 200.3040 40.2658 0.0350 0.014 Ia-norm 1 −2.2 ... 3
ASASSN 15mc 2015−07−05 42.2482 3.1696 0.0138 0.052 Ia-norm 3 ... ... ...
SN 2015N 2015−07−06 325.8200 43.5799 0.0149 0.456 Ia-norm 11 −5.3 82.2 1

ASASSN 15mi 2015−07−06 210.8160 41.6040 0.0344†(d) 0.018 Ia-99aa 1 2.0 ... 3

ASASSN 15mg 2015−07−09 233.0950 41.8499 0.0428†(d) 0.028 Ia-norm 8 −0.7 83.3 3

ASASSN 15mp 2015−07−17 14.6886 −14.0699 0.0370†(d) 0.020 Ia-99aa 1 ... ... ...
SN 2015ac 2015−07−28 349.1810 33.9966 0.0168 0.062 Ia 1 ... ... ...
ASASSN 15ns 2015−08−06 250.1170 39.3202 0.0307 0.011 Ia 1 ... ... ...

ASASSN 15og 2015−08−13 50.2810 −31.3127 0.0681†(d) 0.011 Ia-csm 7 ... ... ...
PS 15cut 2015−09−10 358.1550 14.5526 0.0266 0.036 Ia-norm 1 ... ... ...
PSN J02524671+4656470 2015−09−12 43.1946 46.9464 0.0281 0.170 Ia-norm 1 ... ... ...

ASASSN 15pr 2015−09−13 346.6650 −12.5729 0.0331†(d) 0.029 Ia-norm 1 31.2 ... 3
ASASSN 15qc 2015−10−01 9.8249 3.9500 0.0176 0.022 Ia-norm 1 ... ... ...
MOT J041227.87+342902.0 2015−10−06 63.1161 34.4839 0.0214 0.312 Ia-norm 1 ... ... ...

PS 15cku 2015−10−16 21.0939 3.5876 0.0230†(d) 0.023 Ia-norm 1 −3.8 ... 3
ASASSN 15rm 2015−10−19 94.0160 −16.8249 0.0208 0.147 Ia-norm 1 ... ... ...

ASASSN 15rw 2015−10−24 33.9923 12.2374 0.0189†(d) 0.118 Ia-norm 1 15.6 ... 3

ASASSN 15sf 2015−10−30 2.8650 −6.4273 0.0270†(d) 0.026 Ia-norm 2 3.9 10.6 3
PS 16ud 2015−11−01 166.7820 −5.3789 0.0373 0.063 Ia-norm 1 ... ... ...
ASASSN 15so 2015−11−08 168.5460 48.3187 0.0067 0.013 Ia-norm 2 −7.7 27.0 3
PSN J09100885+5003396 2015−11−08 137.5370 50.0610 0.0343 0.017 Ia-norm 7 ... ... ...

PS 15cwx 2015−11−17 78.6992 7.0504 0.0460†(d) 0.149 Ia-99aa 1 −3.0 ... 3
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SN 2015bd 2015−12−07 170.9410 −1.1059 0.0187 0.046 Ia-norm 5 ... ... ...

PSN J12265018+1615496 2015−12−07 186.7090 16.2638 0.0455†(d) 0.021 Ia-norm 1 ... ... ...

ASASSN 15ub 2015−12−14 166.8040 65.0995 0.0320†(d) 0.014 Ia-norm 2 ... ... ...

SN 2016F 2016−01−04 24.8835 33.8267 0.0161†(d) 0.042 Ia 1 22.3 ... 3

SN 2016zc 2016−01−28 211.4880 43.8839 0.0337†(d) 0.006 Ia-norm 1 ... ... ...
SN 2016aqt 2016−02−28 206.4610 26.7965 ... 0.015 Ia-norm 3 ... ... 3

SN 2016blh 2016−03−31 212.4190 0.6567 0.0238†(t) 0.032 Ia-norm 1 1.4 ... 3
SN 2016bln 2016−04−04 203.6900 13.8540 0.0233 0.025 Ia-norm 3 −4.0 24.2 3
SN 2016bsa 2016−04−22 331.1480 42.3257 0.0143 0.273 Ia-norm 1 ... ... ...

SN 2016ccj 2016−05−03 257.6000 26.3966 0.0418†(d) 0.029 Ia-norm 1 110.5 ... 3
SN 2016cmn 2016−05−20 277.5100 39.9655 0.0183 0.053 Ia-norm 1 ... ... ...
SN 2016coj 2016−05−28 182.0280 65.1773 0.0045 0.016 Ia-norm 20 −11.4 147.1 1

SN 2016flv 2016−08−27 341.3750 −7.3353 0.0530†(t) 0.035 Ia-norm 2 ... ... ...

SN 2016hvl 2016−11−04 101.0090 12.3966 0.0130†(t) 0.377 Ia 2 16.6 104.5 1
SN 2016ije 2016−11−22 29.6264 12.9244 ... 0.045 Ia-91bg 1 ... ... ...
SN 2017cfd 2017−03−16 130.2050 73.4875 0.0119 0.019 Ia-norm 4 3.9 61.1 1
SN 2017drh 2017−05−03 263.1090 7.0632 0.0056 0.106 Ia-norm 7 2.5 101.9 1

SN 2017dws 2017−05−03 235.0590 11.3449 0.0818†(t) 0.035 Ia-norm 1 7.7 ... 1
SN 2017dwp 2017−05−04 187.9320 36.2097 0.0334 0.010 Ia* 3 ... ... ...
SN 2017erp 2017−06−13 227.3120 −11.3342 0.0063 0.093 Ia-norm 16 −9.6 75.8 1
SN 2017fgc 2017−07−11 20.0602 3.4028 0.0081 0.029 Ia-norm 11 −3.3 99.8 1
SN 2017glx 2017−09−03 295.9180 56.1101 0.0114 0.107 Ia-norm 4 2.0 41.5 1
SN 2017hbi 2017−10−02 38.1315 35.4836 ... 0.061 Ia-norm 5 ... ... 1
SN 2017hou 2017−10−24 62.2589 −1.1601 0.0167 0.108 Ia-norm 3 ... ... ...
SN 2017hpa 2017−10−25 69.9615 7.0652 0.0156 0.154 Ia-norm 5 ... ... ...
SN 2017igr 2017−11−18 64.6815 26.9314 0.0250 0.571 Ia 1 ... ... ...
SN 2017iji 2017−11−20 183.1130 29.1493 0.0135 0.018 Ia-norm 3 ... ... ...

SN 2017iws 2017−12−12 130.6730 13.9678 0.0910†(w) 0.027 Ia-norm 1 ... ... ...

SN 2017ixg 2017−12−14 350.1270 24.7776 0.0277†(w) 0.076 Ia-norm 2 ... ... ...
SN 2018gl 2018−01−13 149.5260 10.3594 0.0180 0.033 Ia-norm 1 ... ... ...
SN 2018gv 2018−01−15 121.3940 −11.4379 0.0053 0.050 Ia-norm 1 8.7 ... 1
SN 2018pc 2018−02−03 142.2300 49.2381 0.0090 0.012 Ia-norm 1 ... ... ...
SN 2018pv 2018−02−03 178.2320 36.9866 0.0031 0.018 Ia 1 ... ... ...
SN 2018oh 2018−02−04 136.6650 19.3383 0.0110 0.039 Ia-norm 1 ... ... ...

SN 2018aae 2018−02−06 185.3920 55.5743 0.0290†(d) 0.010 Ia-norm 1 ... ... ...
SN 2018aoz 2018−04−02 177.7580 −28.7441 0.0058 0.072 Ia-norm 1 37.7 ... 1
SN 2018bsn 2018−05−14 224.3700 5.8425 0.0590 0.031 Ia-norm 1 ... ... ...

SN 2018cni 2018−06−13 225.3450 −10.1805 0.0320†(t) 0.087 Iax 1 ... ... ...

SN 2018eqq 2018−08−03 46.7298 41.5091 0.0160†(t) 0.127 Ia 1 ... ... ...

SN 2018feb 2018−08−16 257.5470 21.6490 0.0148†(t) 0.052 Ia-norm 6 ... ... ...
SN 2018hfp 2018−10−07 314.9490 −16.6369 0.0291 0.063 Ia-norm 3 ... ... ...
SN 2018hfr 2018−10−10 142.7300 −4.5712 0.0226 0.024 Ia-91T 3 ... ... ...
SN 2018hhn 2018−10−13 343.1340 11.6741 0.0288 0.061 Ia-norm 3 ... ... ...

SN 2018htt 2018−10−31 46.5121 −15.6116 0.0087†(t) 0.032 Ia-norm 1 ... ... ...
SN 2018hzg 2018−11−06 175.5980 10.2644 0.0216 0.049 Ia 1 ... ... ...

SN 2018jaz 2018−11−20 204.8340 34.6888 0.0231†(t) 0.009 Ia 1 ... ... ...
aHost-galaxy heliocentric redshifts are from NED unless marked with a “†” symbol, in which case they are collected using the Open
Supernova Catalog (Guillochon et al. 2017) from the following sources: (c) the supernova catalog of Lennarz et al. (2012b), (p) the
spectroscopic host-galaxy observations of PTF SNe Ia described by Pan et al. (2014), (t) the TNS, (w) the Weizmann Interactive
Supernova Data Repository Yaron and Gal-Yam (WISeREP 2012), or (d) the appropriate discovery or classification announcement
(e.g., CBET or IAUC).
bExtinction is calculated at the SN position using the dust maps of Schlegel et al. (1998) subject to the recalibration of Schlafly and
Finkbeiner (2011).
cSN classifications are derived from our SNID classification scheme, as described in Section 3.3. Based on the arguments made by Foley
et al. (2013a), we have relabeled all SNe Ia with a “Ia-02cx” subtype as “Iax”.
dFirst and last observation epochs are in rest-frame days relative to the time of B-band maximum brightness, and are computed using
information from the table.
eReferences for the light-curve-determined MJD corresponding to B-band maximum brightness are as follows: (1) S19, (2) Friedman
et al. (2015) and references therein, (3) Foley et al. (2018), (4) Krisciunas et al. (2017), (5) Maguire et al. (2014), (6) Khan et al.
(2011), (7) Zhang et al. (2014), (8) Yamanaka et al. (2014), (9) Shappee et al. (2016), and (10) Srivastav et al. (2017).



81

Chapter 4

deepSIP: Linking Type Ia Supernova
Spectra to Photometric Quantities
with Deep Learning

A version of this chapter was originally published in The Monthly Notices of the Royal
Astronomical Society (Stahl et al. 2020a).

Chapter Abstract

We present deepSIP (deep learning of Supernova Ia Parameters), a software package for
measuring the phase and — for the first time using deep learning — the light-curve shape of
a Type Ia supernova (SN Ia) from an optical spectrum. At its core, deepSIP consists of three
convolutional neural networks trained on a substantial fraction of all publicly-available low-
redshift SN Ia optical spectra, onto which we have carefully coupled photometrically-derived
quantities. We describe the accumulation of our spectroscopic and photometric datasets,
the cuts taken to ensure quality, and our standardised technique for fitting light curves.
These considerations yield a compilation of 2754 spectra with photometrically characterised
phases and light-curve shapes. Though such a sample is significant in the SN community, it
is small by deep-learning standards where networks routinely have millions or even billions
of free parameters. We therefore introduce a data-augmentation strategy that meaningfully
increases the size of the subset we allocate for training while prioritising model robustness and
telescope agnosticism. We demonstrate the effectiveness of our models by deploying them on
a sample unseen during training and hyperparameter selection, finding that Model I identifies
spectra that have a phase between −10 and 18 d and light-curve shape, parameterised by
∆m15, between 0.85 and 1.55 mag with an accuracy of 94.6%. For those spectra that do
fall within the aforementioned region in phase–∆m15 space, Model II predicts phases with
a root-mean-square error (RMSE) of 1.00 d and Model III predicts ∆m15 values with an
RMSE of 0.068 mag.
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4.1 Introduction

The optical spectra of Type Ia supernovae (SNe Ia) are rich with information (for a review,
see, e.g., Filippenko 1997). In addition to probing ejecta dynamics and chemical composition,
spectral features have been found to encode the phase of a SN Ia in its temporal evolution
(e.g., Riess et al. 1997c; Foley et al. 2005b; Howell et al. 2005; Blondin and Tonry 2007;
Muthukrishna et al. 2019b), and to a somewhat less quantitatively formalised extent, its
peak luminosity (Nugent et al. 1995; Arsenijevic et al. 2008; Bailey et al. 2009; Blondin et al.
2011; Silverman et al. 2012c; Zheng et al. 2018b; Siebert et al. 2019). The ability to extract
the former (henceforth, the “phase”) and the latter (or something that correlates with it via
a width-luminosity relation, such as ∆m15 or ∆; Phillips 1993; Riess et al. 1996, respectively)
from optical spectra is of particular significance because both are conventionally derived from
photometry. As the requisite light curves must consist of numerous individual observations
conducted over at least several weeks, the ability to measure the aforementioned quantities
from perhaps just a single observation (i.e., a spectrum) is of great value when allocating
limited observing resources to optimise for specific science goals.

The SuperNova IDentification code (SNID; Blondin and Tonry 2007) has become the de
facto1 tool for classifying the type and phase of a SN from spectra, though alternatives do
exist (e.g., Superfit; Howell et al. 2005). To determine the phase of a SN Ia, such conven-
tional approaches compare2 an input spectrum to a large database of spectra with known
phases and then perform an aggregation of the phases from the best-matching templates.
This approach has the advantage of being easy to understand (“SN X is most similar to SN Y
at Z days relative to maximum brightness”), but it has the disadvantage of being inherently
slow — prediction time scales linearly with the number of template spectra in the database.

Machine learning (ML; see Ivezić et al. 2014, for an overview of use cases in astronomy)
provides an interesting and fundamentally different approach to these tasks. In particu-
lar, phase and light-curve-shape determination can both be treated within the “supervised
learning” paradigm, where a robust mapping between inputs and outputs is derived from
a training set of input-output pairs. Subject to passing user-defined efficacy criteria when
applied to a distinct testing set, the derived map can then be deployed to characterise new,
unseen data. This approach leads to predictions that are fast (i.e., based on features them-
selves instead of comparisons against a large database) and therefore scalable. Accordingly,
supervised ML has become increasingly prevalent in astronomical research campaigns (e.g.,
Bloom et al. 2012b; Masci et al. 2014; Goldstein et al. 2015; Wright et al. 2015; Miller et al.
2017; Kim and Brunner 2017; Zhang and Bloom 2020).

Indeed, ML has proven to be a viable approach to photometric SN classification (e.g.,
Richards et al. 2012; Möller et al. 2016; Lochner et al. 2016; Charnock and Moss 2017;
Narayan et al. 2018; Muthukrishna et al. 2019a), but only several studies thus far have
applied such techniques to SN spectra. Sasdelli et al. (2016) use unsupervised ML techniques

1As assessed from its prevalence in spectroscopic classifications issued by the Central Bureau of Electronic
Telegrams (CBET) and in International Astronomical Union Circulars (IAUCs).

2SNID uses cross-correlation (Tonry and Davis 1979) for comparison while Superfit uses χ2 minimisation.
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to explore the spectroscopic diversity of SNe Ia, and find that much of the spectral variability,
including that of the peculiar SN 1991bg-like (Filippenko et al. 1992a; Leibundgut et al.
1993) and SN 2002cx-like (now known as the distinct “SN Iax” class; Filippenko 2003; Li
et al. 2003; Foley et al. 2013b) objects, can be parameterised by a carefully constructed five-
dimensional space. As a much faster alternative to the aforementioned template-matching
options (i.e., SNID, Superfit), Muthukrishna et al. (2019b) have used a deep convolutional
neural network (CNN; see, e.g., LeCun et al. 2015) to develop DASH, a software package that
classifies the type, phase, redshift, and host galaxy (but not light-curve shape) of a supernova
from optical spectra.

Motivated by this and the well-documented ability of CNNs to extract representative
low-dimensional features from input signals, we formulate our approach as a set of three
models, each of which utilises a similar CNN architecture to (Model I) determine if an input
spectrum belongs to a SN Ia within a specific domain in a space defined by phase and
light-curve shape, (Model II) calculate the phase if it is within the domain, and (Model III)
calculate a measure of the light-curve shape (∆m15; Burns et al. 2011) if the same criterion
is met. Although Model II shares a common objective and architectural elements with DASH

(i.e., phase determination via a CNN architecture), we optimise specifically for SNe Ia that
fall within certain thresholds, treat the problem as one of regression (not classification), and
utilise dropout variational inference as a method by which to model uncertainties (Gal and
Ghahramani 2015; Leung and Bovy 2019). Moreover, our development of a CNN to predict
the light-curve shape of a SN Ia from its spectrum is novel.

We use the following sections to present the development of the aforementioned models.
Section 6.2 details the accumulation of our dataset, including how we process and prepare
spectra for ingestion by our models. We outline our model architecture and discuss training
and hyperparameter selection procedures in Section 4.3, and we provide model-specific results
in Section 6.4. Concluding remarks are then given in Section 6.5.

4.2 Data

4.2.1 Spectra

We source the spectra used herein from the three largest low-redshift SN Ia spectral datasets
currently in existence: the Berkeley SuperNova Ia Program (BSNIP; Silverman et al. 2012a;
Stahl et al. 2020b, henceforth S12 and S20, respectively) sample with a total of 1935 spectra
covering the period from 1989 through 2018 (see S12 for 1989–2008 and S20 for 2009–2018),
the Harvard-Smithsonian Center for Astrophysics (CfA) sample with a total of 2603 spectra
from observations spanning 1993–2008 (Blondin et al. 2012), and the Carnegie Supernova
Program (CSP) sample with 630 spectra observed in the range 2004–2009 (Folatelli et al.
2013). From this initial compilation of 5168 spectra, we perform two modest “usability” cuts
that reduce our sample to 4941 (these cuts, in addition to those that are introduced below,
are outlined in Figure 6.1). First, we drop the small fraction without a redshift listed in their
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associated publication, thereby yielding 5110 spectra, and second, we remove a further 169
that lack full coverage3 of the Si ii λ6355 feature that is ubiquitous in near-maximum-light
SN Ia spectra.

In addition to the high quality and sheer size of these datasets, the BSNIP and CfA
sets were specifically selected for their complementarity — whereas the observing strategy
employed by the BSNIP is generally to prioritise the total number of SNe observed instead
of the number of spectra per SN, the CfA dataset covers fewer SNe but with higher cadence.
This is clearly seen in the distribution of the number of spectra per SN in the top panel
of Figure 4.2: the BSNIP sample spans many more SNe with several observations than
does the CfA (or CSP) sample, but beyond ∼ 6 spectra per object, the CfA sample wins
out. Together, then, these datasets offer comprehensive coverage of the spectral diversity of
SNe Ia at both the individual and population levels.

We show the distribution of blue (red) wavelength limits for the spectra in our compi-
lation in the lower panel of Figure 4.2. The superior red-wavelength coverage of the Kast
double spectrograph on the 3 m Shane telescope at Lick Observatory (responsible for ∼ 79%
of the BSNIP sample; Miller and Stone 1993) to that of the FAST spectrograph on the 1.5 m
Tillinghast telescope at Whipple Observatory (responsible for ∼ 94% of the CfA sample;
Fabricant et al. 1998) is evident. The Lick spectra as well as most from CSP have good rel-
ative spectrophotometry owing to the slit being placed at the parallactic angle (Filippenko
1982), but the continuum shapes of the FAST spectra may be inaccurate in some cases since
the slit could not be rotated to arbitrary parallactic angles. Because any heterogeneities in
the inputs to our models should reflect only physically significant information, we formulate
our data preprocessing and augmentation procedures (see Sections 4.2.3.2 & 4.2.3.3, respec-
tively) to obscure as much source-specific information and contamination (e.g., wavelength
limits, inaccurate continuum shapes) as possible.

4.2.2 Light curves

As the purpose of this study is to identify and therefore derive, through supervised learning,
certain photometrically-derived properties encoded in SN Ia spectra, the aforementioned
spectral compilation must be coupled to photometric observations (i.e., light curves), thereby
allowing for the desired properties to be measured. To this end, we collect the requisite
information from data releases by the same groups responsible for our compilation of spectra
(Ganeshalingam et al. 2010; Stahl et al. 2019; Riess et al. 1999; Jha et al. 2006; Hicken et al.
2009a; Krisciunas et al. 2017, henceforth G10 and S19 for the Berkeley sample, CfA1-3 for
the CfA sample, and CSP3 for the CSP sample, respectively), as well as publish several new
light curves (see Section 4.6). We use the E(B − V ) model implemented within the SNooPy

package (Burns et al. 2011, see Section 4.7 for additional details) to fit the aforementioned
light curves (except for those from S19 and CSP3, who have published fits using the same

3We consider a SN Ia spectrum to have full coverage of the Si ii λ6355 feature if it has a minimum
wavelength of less than 5750 Å and a maximum in excess of 6600 Å. These values represent the minimum
and maximum extremes of the domains S20 use to search for the feature’s blue and red endpoints, respectively.
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BSNIP
1935

CfA
2603

CSP
630

5168 (Initial)

1877 2603 630

58 (Redshift)

169 (Si II 6355)

1850 2594 497

1885 (Phase)

854 1786 416

21 (Uncertainty)

848 1773 414

281 (Bin Saturation)

776 1566 412
2754 (Final)

Figure 4.1: Full accounting of all cuts made in distilling our initial set of 5168 spectra down
to the 2754 in our final compilation (1113 of which are within the “domain” defined in
Section 4.2.3). We delineate the source of each spectrum in the top row. By a wide margin,
the lack of suitable photometric observations is responsible for the most severe cut (indicated
with “Phase”).
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Figure 4.2: Stacked distributions of dataset parameters for our spectral compilation, distin-
guished by source. The top panel shows the number of spectroscopic observations per object
(the tail extends to higher numbers of spectra, but is truncated for clarity) and the bottom
panel displays the blue and red wavelength limits of the spectra. Overlaid on the bottom
panel is the cumulative (inverse-cumulative) distribution of blue (red) wavelength limits, and
the intersecting horizontal lines reflect the bounds defined in Section 4.2.3.2. The number
of spectra above and below each intersecting line are also labeled.
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procedure along with their photometry), allowing us to measure the time of maximum B -
band brightness (and hence the phase4) and the decline-rate parameter5, ∆m15.

4.2.3 Final Compilation

All told, 3056 spectra are linked to light curves with successful SNooPy fits, but as shown
in Figure 6.1, we remove 21 spectra having a phase uncertainty in excess of 1 day (d)
and/or a ∆m15 uncertainty exceeding 0.1 mag, thus yielding 3035 spectra. We visualise
this compilation within the photometric parameter space of interest (namely, ∆m15 and
phase) in Figure 4.3. Unsurprisingly, the densest coverage — by a wide margin — occurs
for ∆m15 ≈ 1.1 mag (reflecting that of a prototypical SN Ia), but particularly impressive is
the coverage within the region defined by −10 . phase . 18 d and 0.85 . ∆m15 . 1.55 mag
(albeit a bit sparse for the more rapidly declining objects within this region).

Motivated by this coverage, we impose the aforementioned region as a “domain” on our
models in the following way: Model I is tasked with classifying whether an input spectrum
lies within its boundaries, while Model II and Model III determine the phase and ∆m15

(respectively) for spectra within this restricted domain. To mitigate the imbalance caused
by the dominance of samples with ∆m15 ≈ 1.1 mag, we enforce a “saturation point” of 40
samples for each in-domain bin in Figure 4.3. According to this policy, overly dense bins
are brought into compliance by removing spectra with the largest ∆m15 uncertainties until
only 40 remain. A total of 281 spectra are removed by this action, leaving 2754 examples
(1113 of which are in-domain and thus relevant to Models II & III) in what will henceforth
be referred to as our final compilation (see the bottom row of Figure 6.1). Though this runs
contrary to the common dogma that more data is always better, we have found our choice
to be empirically superior in this specific application.

A cursory inspection of Figure 4.3 reveals that our coverage does not drop off significantly
at larger phase and ∆m15 values than those which terminate our selected domain. It is
therefore tempting to consider expanding the domain until such a drop is achieved (so as
to make predictions over a wider swath of parameter space), but we choose not to do so
for a myriad of reasons, the bulk of which are conveyed in the sequences of variance spectra
presented in Figure 4.4. If we assume that the spectral energy distribution (SED) of a SN Ia is
predominantly6 determined by its phase and light-curve shape, then considering sequences of

4The phase of a spectrum is the time interval between when it is observed and when its SN reaches
maximum B -band brightness, as derived in Section 4.7 and listed in Table 4.2, divided by a factor of (1 + z)
to correct for time dilation. The adopted redshift was listed in the original publication for that spectrum.

5Our selected implementation of the SN Ia width-luminosity relation uses a generalised light-curve shape
parameter, ∆m15, which is similar to — but distinct from — the more popular ∆m15(B) used in the Phillips
relation (i.e., the decline in magnitudes of a SN Ia over the first 15 d of its post-maximum B-band evolution).
Indeed, the two may deviate randomly and systematically (see Section 3.4.2 of Burns et al. 2011).

6We emphasise that “predominantly” does not mean “exclusively” — other factors such as Galactic and
host-galaxy extinction have an effect on an observed SN Ia SED; our assumption is merely that those factors
are of secondary significance to phase and light-curve shape, especially for spectra that have already been
pre-processed in accordance with Section 4.2.3.2.
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Figure 4.3: Distribution of ∆m15 and phase for the spectra in our compilation, with axes
truncated to focus on the domain of interest. The empty-black one-dimensional projections
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spectra are removed to enforce the saturation criteria of 40 examples per bin (leaving 1113
in-domain spectra). The number of spectra falling within each in-domain bin and their
immediate neighbors is labeled.
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variance spectra — whereby one of the aforementioned parameters is discretised into narrow
bins and the variations within those bins are studied — allows us to infer which regions in
SN Ia spectra vary the most at a given point in the sequence. If our assumption that the
SED is largely a function of these two parameters holds, then such regions of large variation
encode the most discriminating information about the nondiscretised parameter.

With this interpretation established, we note that for spectra with phases between −10 d
and 18 d, the variance spectra in the left column of Figure 4.4 show notably similar structure
for ∆m15 bins ranging from 0.90 mag to 1.50 mag. We interpret this as an indication that,
at least within this range of ∆m15 values, phases between −10 d and 18 d are encoded
by a common — or “slowly” evolving — set of features. A consequence of this is that a
fairly simple convolutional neural network should be able to learn these features without
much difficulty (we discuss our network architecture, including the way in which Figure 4.4
motives it, in more detail in Section 4.3.1), and although a sophisticated network may well
be able to learn “when” to weight certain features more heavily — in addition to the features
themselves — we are content with the range of ∆m15 values afforded by our selected domain.
Indeed, our coverage drops off sharply for lower ∆m15 and the more rapidly declining SNe Ia
in our dataset (i.e., those with ∆m15 & 1.6 mag) are likely to be SN 1991bg-like objects
which do not follow the Phillips relation (or its derivatives).

The aforementioned arguments do not perfectly carry over when we consider the phase-
binned variance spectra for those SNe Ia in our sample having 0.85 ≤ ∆m15 < 1.55 mag.
Before maximum light, the blue wing of the Ca ii H&K feature exhibits the most variability
and thus offers the best discrimination of ∆m15, but beyond peak, this variability fades and
the dominant variation is observed in the blue wing of the Si ii λ6355 feature. At phases
& 10 d, this too begins to fade and variability is strongest at intermediate wavelengths,
typically those in the vicinity of the S ii “W” feature. It is beyond the scope of this study
to speculate about — or offer an explanation of — the physical mechanism(s) that give
rise to these observations, but we note that Nugent et al. (1995) identified these features in
particular as a probe of SN Ia luminosity, with the cause ascribed to temperature differences
(and thus, to the total amount of 56Ni produced) between explosions. We do not pursue
earlier phases owing to a paucity of data (indeed, Figure 4.3 reveals that doing so would
result in several empty bins), and while our compilation may well support an extension to
later phases, we do not undertake such an addition here because Model III would have to
become very robust to evolving features.

4.2.3.1 Training, Validation, and Testing Sets

In developing a neural network (or any supervised ML model), one typically divides the
available data into three distinct subsets: a “training” set used to derive the decision path
between features and outputs, a “validation” set to assess model performance during training
and tune externally assigned hyperparameters, and finally, a completely separate “testing”
set, which is used to probe the efficacy of the final model against unseen data, and not used
for either the optimisation of the network or the assignment of hyperparameters. In light of
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Figure 4.4: Sequences of variance spectra progressing through equally spaced ∆m15 (left
column) and phase (right column) bins. Each column begins with the selection criteria for
the spectra in it and the mean spectrum of all those that are selected. Prominent spectral
features are indicated. After advancing through the indicated variance sequence, the column
terminates with the coverage per wavelength bin of the selected spectra. The same vertical
scaling is applied to all variance spectra, but the colour map is normalised to each and is
used to emphasise regions of significant variation. Our selected domain of interest is covered
by the green region with diagonal hatching. All spectra used in generating the sequences
have been preprocessed according to the specifications of Section 4.2.3.2. The narrow spike
that appears redward of the Si ii λ6355 line in some variance spectra is due to nebular Hα
emission from the host galaxy.
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the small absolute size of our compilation (by modern ML standards), we intentionally set
the validation and testing splits (10% each) to be smaller than conventional allocations so
as to keep our training set as large as possible.

We take a nuanced approach to ensure that our proportionally smaller validation and
testing sets provide a realistic representation of our final compilation. Specifically, we sample
according to a pseudostratified scheme for the 1113 in-domain spectra in our compilation,
whereby we select random subsets of the appropriate size from each bin in Figure 4.3. In this
way, the Model II & III training, validation, and testing sets have approximately the same
binwise distribution. We impose a floor so that even bins with fewer than 10 total instances
have at least one sample for each of the validation and testing sets. As a result, the actual
validation and testing ratios are elevated slightly higher than the targeted 10%. The Model I
sets are generated by randomly sampling all out-of-domain spectra at the prescribed ratios
and then adding them to the pseudostratified in-domain sets. This ensures that all spectra
in the Model II/III sets are just subsets of the corresponding Model I sets. Therefore, we
can holistically assess deepSIP via the Model I testing set without fear of Model II or III
inadvertently being asked to characterise spectra that occur in their training or validation
sets.

4.2.3.2 Preprocessing

Our models should be sensitive only to the physical characteristics encoded in the spectra
they are trained on, not to any peculiarities relating to how the spectra were collected or
reduced. Furthermore, it is imperative that each spectrum is processed in a carefully con-
trolled and systematic way to avoid inadvertent biases. We therefore perform the following
preprocessing steps to homogenise input spectra prior to ingestion by our models.

1. Each spectrum is de-redshifted — that is, the redshift is removed. This step is skipped
for augmented spectra (see Section 4.2.3.3) which are already in (or near) the rest
frame.

2. Each spectrum is smoothed using a Savitzky-Golay filter (Savitzky and Golay 1964)
with a window equivalent to 100 Å, though the window is varied for augmented spectra.

3. The pseudocontinuum is modeled by again smoothing the spectrum, but with a much
wider window of 3000 Å (unless this exceeds the range of the spectrum, in which
case we use a dynamically determined value corresponding to ∼ 70% of the available
wavelength range). We then subtract it from the spectrum.

4. The spectrum is binned onto a log-wavelength scale consisting of 1024 points between
3450 Å and 7500 Å. As shown in Figure 4.2, these endpoints are such that ∼ 50%
of our global compilation (i.e., including those without phase information) have addi-
tional spectral information either below 3450 Å or above 7500 Å that is disregarded.
This painful step of throwing away potentially useful information is necessary to avoid
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inducing significant biases between our data sources. If a spectrum does not have sig-
nal all the way to the blue or red ends of this range, we set it to zero in the missing
end(s). In addition to ensuring that all spectra are represented by vectors of the same
length, this transformation has the useful consequence that redshifting corresponds to
a linear translation (see Section 4.2.3.3 for more details).

5. We scale the signal so that it has a range of unity and then translate it such that it
has a mean of zero.

6. The first and last 5% of the signal in the spectrum is tapered using a Cosine Bell (i.e.,
a Hanning window) so that it smoothly goes to zero at the ends.

7. Finally, we add 0.5 to the signal so that it is positive everywhere. Henceforth, we refer
to this quantity as “scaled flux.”

We show an example of the intermediate stages and final result derived from our preprocess-
ing procedure in Figure 4.5.

4.2.3.3 Augmentation

Though we have taken care to assemble a significant fraction of all publicly available low-
redshift SN Ia optical spectra currently in existence, our final compilation is still rather small
by modern standards in deep learning (especially for the domain-restricted subset that is
relevant for Models II and III). For this reason, we formulate a data-augmentation strategy
(i.e., a method for extending our training set beyond its limited size while preserving its
characteristics; e.g., Dieleman et al. 2015; Cabrera-Vives et al. 2017; Mart́ınez-Palomera et al.
2018; Boone 2019) that generates a training set of substantially increased size. To accomplish
this, we randomly sample data from the Model I (II/III) training set, with replacement, until
we have a collection whose size, when combined with the non-augmented training set, equals
5000 examples (a ∼ 4-to-1 ratio of augmented to original training samples for the Model
II/III set). After obtaining samples according to this prescription, we transform each sampled
spectrum using the following operations.

1. Redshifting: As noted in Section 4.2.3.2, we remove the redshift from all spectra
that are fed into our models. However, we expect our models to be robust to small
redshift errors that propagate into the rest-wavelength transformation. To this end, we
perturb the rest wavelength array of each sampled spectrum by a multiplicative factor
of (1 + δz), where δz is drawn from a uniform distribution, δz ∼ U(−0.004, 0.004),
motivated by the mean uncertainty in the SNID-derived redshifts reported by S20 for
their dataset. Coupled with log-binning (which converts redshifting/de-redshifting into
a linear offset; see Section 4.2.3.2), this allows us to reinforce and exploit the invariance
to small translations that CNN architectures exhibit (LeCun et al. 2015).
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Figure 4.5: Snapshots showing various stages of our preprocessing routine as applied to a
spectrum of SN 2016coj at +1.3 d. The numerals indicate the last preprocessing step to have
been performed on the plotted spectrum, and the dashed orange line illustrates the fitted
(and subsequently removed) pseudocontinuum. The bottom panel shows an example of the
spectrum after data augmentation steps have been applied.
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2. Noise: To encourage our models to be robust to variations in the signal-to-noise ratios
of input spectra, we vary the degree of smoothing applied to each sampled spectrum
during our preprocessing procedures (see Section 4.5). We do this by randomly selecting
the smoothing window, w ∼ U(50, 150) Å, with these bounds chosen to be roughly
consistent with the range of wavelength-space extents of the high-variance regions
identified in Figure 4.4.

3. Trimming: We expect our models to be insensitive to any information about the
observing apparatus and configuration that might be encoded in a spectrum. For
example, the median phase of the BSNIP-collected spectra in our compilation is ∼ 18 d,
while for the CfA-collected spectra it is ∼ 9 d, but our models should not form a
decision path that preferentially associates spectra having extensive red-wavelength
coverage (namely, the BSNIP spectra) with later phases — this correlation is purely
a consequence of exogenous biases in our compilation. Therefore, in addition to the
preprocessing steps outlined in Section 4.2.3.2, we remove a random proportion, f ,
from the blue and red ends of each sampled spectrum, where f ∼ U(0, 0.1), with the
upper bound chosen so as to maintain full coverage of the characteristic Si ii λ6355
feature that we require for spectra in our compilation to possess.

We show an example of the results of the aforementioned augmentation procedures in the
bottom panel of Figure 4.5.

4.3 Models

As noted, we have constructed three models to ultimately determine the phase and light-
curve shape parameter, ∆m15, of a SN Ia from an optical spectrum. The first model de-
termines if the input is from a SN Ia with a phase of −10 ≤ phase < 18 d that has a
light-curve-shape parameter of 0.85 ≤ ∆m15 < 1.55 mag. The second model determines the
phase, and the third, ∆m15, both only within the domain for which Model I discerns. We
formulate the first model as a binary classification problem — either a spectrum belongs
to a SN Ia subject to the aforementioned photometric restrictions, or it does not. The re-
maining models can be construed as a regression problem, where a continuous quantity (e.g.,
phase or ∆m15) is to be predicted. Despite their differing applications, each model uses a
similar neural network architecture, and much of the work flow of training and evaluating
them is common. We therefore devote the following subsections to discussing the underlying
architecture employed in our models and the common aspects of our work flow. We present
model-specific results in Section 6.4.

4.3.1 Architecture

At the heart of our models is a deep (i.e., multilayer) CNN, but whereas the prototypical use-
case is two-dimensional (2D) — deep 2D CNNs have a storied history in image classification
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(e.g., LeCun et al. 1990, 1998; Szegedy et al. 2014) and even Muthukrishna et al. (2019b)
resorted to tiling 1D SN spectra into 2D “images” to formulate their problem as one of
image identification — we follow the inherent dimensionality of our data by using a 1D
implementation (for a summary of 1D CNNs, see Kiranyaz et al. 2019). In addition to being
more conceptually compatible with our application, our use of a 1D CNN gives us much more
control over the degree to which nonlocal features are aggregated though pooling operations.

We present a schematic of our neural architecture, which utilises a total of four convolu-
tional layers to extract representative features from input spectra, in Figure 4.6. We apply
the Rectified Linear Unit (ReLU, Nair and Hinton 2010) activation function to the output
of each convolutional and fully connected layer. Following each convolutional layer we apply
max pooling to reduce computational complexity and remove irrelevant features. Finally,
we conclude each “block” (i.e., convolution + ReLU + max pool + dropout) in our network
with a dropout layer to assist in the prevention of overfitting (Srivastava et al. 2014). Each
convolutional and fully connected layer has its weights initialised with zero-centred Gaus-
sian noise and its bias to a small, positive value. All of our models are implemented using
PyTorch 1.0 (Paszke et al. 2019), and we make our trained models and framework available
as deepSIP7, an open-source Python package (see Section 4.8 for guidelines on basic usage).

Our selected architecture is largely motivated by insights gleaned from the sequences
of variance spectra presented in Figure 4.4. As noted earlier, the ∆m15-binned sequence
shows more or less the same structure over our selected range of values. This homogeneity
supports the use of a simple feed-forward network in the case of Model II, but the depth
of the network (i.e., how many convolutional layers are used) and the progression in the
number of filters computed per layer are motivated by the heterogeneity in features as they
progress through the sequence. For example, the blue wing of the Si ii λ6355 feature shows
variation throughout the sequence, but the exact “shape” of that variation as a function
of wavelength varies. For this reason, we use multiple convolutional layers and increase
the number of convolutional kernels per layer in all but the last so that our networks have
the capacity to make decisions based on many complex, highly-specialised features that
are computed from a smaller number of basic features supplied by the earlier layers. The
situation is mostly the same for Model III, but the relevant variance spectra (i.e., those in
the right column of Figure 4.4) exhibit fewer common features and more extreme evolution
in their shapes as the sequence progresses through phase bins. Motivated by this, we did
carry out experiments with several architectures capable of predicting the phase in tandem
with ∆m15, but none performed substantively better than our set of simple, independent
networks. We do expect, however, that in addition to requiring much more high-quality
training data, a specialised architecture would be crucial in expanding the output domain
of Models II and III. Indeed, extending the sequences of Figure 4.4 out to larger phase and
∆m15 values reveals significant feature evolution. A network capable of providing feedback
between phase and ∆m15 predictions would allow for this evolution to be properly modeled.

The aforementioned dropout layers — each of which randomly drops elements from their

7https://github.com/benstahl92/deepSIP

https://github.com/benstahl92/deepSIP
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Figure 4.6: Schematic of the common neural network architecture used by each of the
three fully independent networks that constitute Models I–III (which collectively comprise
deepSIP). A set of n feature maps is computed from the preprocessed input spectrum and
down-sampled using max pooling (the resulting maps are indicated by grey boxes). This
operation is then recursively applied to the down-sampled feature maps a total of three addi-
tional times, with the number of feature maps doubling for all but the last set. The final set
of down-sampled feature maps is then flattened into a vector of length 256n and fed through
a fully connected layer consisting of f neurons before reaching the output neuron. Then,
depending on the model, a final operation is performed to transform the raw output of the
network into the appropriate context (“probabilities” in the case of Model I or dimensional
phase or ∆m15 values for Models II and III, respectively). The convolution kernel, k, number
of feature maps generated by the first convolutional layer, n, and the number of neurons in
the fully-connected layer, f , are all hyperparameters whose preferred value depends on the
specific model. A dropout layer with dropout probability p follows each weight layer aside
from the output neuron.
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input with Bernoulli-distributed probability, p, and (in our implementation) rescales outputs
by a factor of 1/(1−p) during training — serve a secondary purpose in our networks. Namely,
this purpose is to make the networks probabilistic (Gal and Ghahramani 2015): each forward
pass with dropout enabled in training mode produces a different prediction, and thus, it is
straightforward to quantitatively describe not only a point estimate (the prediction of a
model) but also, an estimate of its uncertainty. To do so when generating predictions, we
make N stochastic (i.e., with dropout turned on) forward passes8 for a given input and assign
the mean and standard deviation of the resulting collection of predictions as the final model
prediction and an estimate of its uncertainty.

4.3.2 Training

To train each of our models, we supply the appropriate training set in small batches and
utilise an adaptive gradient descent algorithm (ADAM; Kingma and Ba 2014) to minimise
the appropriate objective function by updating the weights and biases in each layer of the
network. For Model I we employ the binary cross-entropy loss as our objective function,
while for Models II and III we use the mean squared error (MSE) loss. We also scale
training outputs that are continuous (i.e., phase and ∆m15) such that they range from 0 to 1
using a transformation of the form y′ = (y−ymin)/(ymax−ymin), where (ymin, ymax) represent
the domain boundary (as shown in Figure 4.3) along the output’s dimension. Subsequent
predictions by these models are then unscaled using the inverse of this transformation. Model
I predictions are transformed into “probabilities” using the sigmoid function.

We train each of our models for a total of 75 epochs, with the learning rate set to step
down by a multiplicative factor of 0.1 after thresholds of 45, 60, and 70 epochs are reached.
In testing, we found these choices to yield stable convergences without requiring excessive
training time. At the culmination of each epoch we compute success metrics against the
relevant validation set, thereby affording a specific measure of model-performance evolution
in terms of the metrics we care most about (e.g., in dimensional, unscaled units for Models II
and III). For Model I, we primarily use the area under the curve (AUC) of the Receiver
Operating Characteristic (ROC) curve9, whereas for Models II and III, we primarily use the
root-mean-square error (RMSE). We emphasise that although these are the primary metrics,
we consider secondary indicators as well (see Sections 4.4.1 & 4.4.2 for Models I and II/III,
respectively).

8We use a fiducial value of N = 75 when evaluating on the validation sets to select preferred train-
ing hyperparameters (see Section 4.3.3), but then treat it is a parameter to be further optimised prior to
production-scale use (see Section 4.4.2.1).

9An ROC curve shows the true-positive rate (ordinate) versus the false-positive rate (see Figure 4.7).
The most optimal AUC score is 1, corresponding to a false-positive rate of 0 and a true positive rate of 1.
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4.3.3 Hyperparameter Selection

There are several external parameters (i.e., not determined through backpropagation; hence-
forth referred to as “hyperparameters”) that must be selected specifically for each of our
models. Some are architectural (e.g., k, the size of each convolutional kernel; n, the number
of distinct feature maps computed by the first convolutional layer; f , the number of neurons
in the fully-connected layer; and p, the dropout probability used for training; see Figure 4.6),
and some have to do with our training algorithm (e.g., training batch size, learning rate,
and weight decay). The optimal choice of such parameters is not known a priori and is ap-
plication dependent (e.g., we find that Model II performs best when k is less than the value
that maximises Model III performance; see Table 4.1). We note that the dropout probability
used during training need not be the same as that used when generating predictions. We
therefore consider them separately as follows: the dropout probability for training is cho-
sen as part of our hyperparameter selection process and the dropout probability used for
generating predictions is separately chosen in tandem with N (see Section 4.4.2.1).

Thus, for each of Models I, II, & III, we perform a randomised search whereby we select
preferred hyperparameter values by training and validating the models on many combinations
of hyperparameters that are randomly drawn from a grid. A total of 12 hr of compute time on
a single of NVIDIA Tesla K80 GPU was allocated, per model, for these searches. We increase
efficiency by automatically stopping training after 20 epochs when a performance threshold
is not achieved on the validation set, and as a result, we are able to explore a significant
portion of the selected hyperparameter space. Table 4.1 details the full hyperparameter grid,
and summarises the final set for each model. We discuss our selection criteria for determining
these final, preferred sets in Sections 4.4.1 & 4.4.2 for Models I and II/III, respectively.

4.4 Results

4.4.1 Model I: Domain Classification

4.4.1.1 Preferred Hyperparameters

Our first model is designed to determine if an input spectrum belongs to a SN Ia having
−10 ≤ phase < 18 d and 0.85 ≤ ∆m15 < 1.55 mag. If a spectrum satisfies these criteria, it
is said to be in the domain of interest; otherwise it is out. In this way, Model I serves as a
precursor to Models II and III: the subsequent predictions for spectra that it classifies as being
outside the domain of interest should be carefully scrutinised, if not disregarded altogether.
From our Model I hyperparameter search (as discussed in Section 4.3.3 and summarised
in Table 4.1), we find that the highest achieved validation ROC AUC score is 0.992 (see
Figure 4.7), and on the basis of this score, we select the hyperparameters that yield it as
the final, preferred set. These hyperparameters produce a network with a relatively modest
number (∼ 75k) of trainable parameters. Though we currently do not consider uncertainty
estimates for Model I, we still use the full machinery of our probabilistic architecture with
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Table 4.1: Hyperparameter Grid.

Hyperparameter Valuesa

convolution kernelb (k) 5, 15, 25I,II, 35III

filters in first convolution (n) 8I,II,III, 16, 32
fully connected neurons (f) 16I,II, 32, 64, 128III

training dropout probability (p) 0.01I,II,III, 0.05, 0.1
batch sizec 2, 4, 8, 16I,II, 32III

learning rate 0.0005II,III, 0.001I

weight decay 0.00001III, 0.0001I,II

aSuperscripts mark the preferred hyperparameter of
the denoted model.
bThough small (e.g., 3× 3) kernels are typical in 2D
scenarios, significantly larger kernels have proven op-
timal in some 1D applications to astrophysical signals
(e.g., quasar spectra, Parks et al. 2018).
cMasters and Luschi (2018) have suggested that batch
sizes between 2 and 32 yield the best performance.

settings aligned to those of Models II and III (i.e., N = 30 and p = 0.02; see Section 4.4.2.1)
for consistency and to make possible straightforward extensibility in the future.

4.4.1.2 Decision Threshold

With the information afforded by Figure 4.7, we are also able to tune the decision threshold
of our model (i.e., the minimum “probability” of being in to be classified as such). While
many opt to use a default threshold of 50% without further consideration, the optimal
choice depends on striking an application-specific balance between the extent to which false
positives can be tolerated and true positives can be missed. Taking a holistic view and
recalling the aforementioned role of Model I in the overall output of deepSIP, it becomes
obvious that the quality of Model II and III predictions should be given the utmost priority.
The optimal decision threshold in our case is therefore the one that yields the best Model II
and III performance on spectra that Model I classifies as in-domain (which will be a mixture
of true positives and false positives). This criterion is much more important than the overall
classification accuracy10 given the “blurry” nature of the domain boundary — individual
spectra can and do fall so close to it that the particular side they end up on is determined
by statistical variations.

10The accuracy score is the fraction of all predicted labels that are correct.
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To identify the optimal threshold, then, we use the Model I validation11 set to study, as
a function of decision threshold, Model II/III RMSE scores segmented, based on the clas-
sifications of Model I, into false negatives (FN), false positives (FP), true positives (TP),
and all positives (P = FP + TP). We find that the Model II scores belonging to FN and
FP both follow a trend of decrease with rising decision threshold, and that those for FN are
generally larger by a modest (∼ 0.5 d) amount. The corresponding FN scores for Model III
also follow a decreasing trend (with rising threshold) but are significantly lower than those
for the FP, which remain roughly constant at ∼ 0.2 mag until a dip forms between ∼ 90–
95%. While one could argue that the FP scores for Model II are acceptable over a wide
range of thresholds (∼ 2–2.5 d for thresholds of ∼ 5–80%, and lower thereafter), the afore-
mentioned Model III scores over a similar range are prohibitive. We simply cannot tolerate
any significant contamination by FP with such high RMSE scores. This constrains the range
of acceptable decision thresholds to just ∼ 90–95%, even at the expense of more FN with
reasonable Model II/III performance.

As the P scores are fairly flat between these bounds, we err to the low side (thereby
minimising the number of incorrect classifications) and set our Model I decision threshold to
90%. This yields 13 FN (with RMSE scores of 1.91 d and 0.080 mag from Models II and III,
respectively) and 122 P (with scores of 1.05 d and 0.068 mag, respectively) of which 4 are
FP (with scores of 1.39 d and 0.160 mag, respectively) from the 295 spectra (including 160
true negatives) in our validation set. Though this results in an accuracy score (94.2%) that
is slightly suboptimal to the peak value of 95.9% achieved at a different threshold, it is still
vastly in excess of the baseline score yielded by picking the most popular class every time
(55.6%) and it gives us confidence that the positives Model I passes on to Models II and III
are sufficiently “pure.”

4.4.1.3 Performance on Testing Set

With the decision threshold determined, we now make predictions on the testing set (which,
as outlined in Section 4.2.3.1, has not been used to optimise the network or hyperparameters)
and assess the efficacy of Model I by comparing predicted labels to true labels. We find a
similarly high ROC AUC of 0.989 and note that Model I achieves a TP rate of 90.8% at
a FP rate of 2.4% for our selected threshold of 90%. From the 295 spectra in the testing
set, Model I delivers 160 true negatives, 12 FN, 4 FP, and 119 TP, collectively yielding an
accuracy score of 94.6% (as compared to the 55.6% baseline score obtained by picking the
most popular class every time). Of those marked as in-domain (i.e., P), Models II and III
yield RMSE scores of 1.06 d and 0.072 mag, respectively, while the TP subset performs even
better at 1.00 d and 0.064 mag. These measures give us a high level of satisfaction with
Model I, and we therefore consider it complete.

11As discussed in Section 4.2.3.1, our careful preparation of the Model I validation and testing sets
ensures that they are supersets of the corresponding sets for Models II and III. Because of this, we can make
predictions with the latter models on the former sets without concern for contamination.
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4.4.2 Models II & III: Photometric Quantity Estimation

4.4.2.1 Preferred Hyperparameters

Models II and III are intended to determine the rest-frame phase and ∆m15, respectively,
of a SN Ia from its spectrum, assuming that it is within the phase and light-curve shape
bounds that Model I identifies (i.e., the spectrum is in the relevant domain). As previously
stated, our primary metric for regression tasks is the RMSE, but we consider two secondary
indicators when selecting the final hyperparameter values: (i) the slope of a linear fit to
predictions as a function of ground truth values, and (ii) the maximum absolute difference
between predictions and labels (henceforth MR, for maximum residual). The first diagnoses
the directionality of prediction errors — systematic overestimates for low values and under-
estimates for high values are conveyed in a fitted slope of less than unity (and vice versa,
though our models only bias in the aforementioned direction; see Section 4.4.2.5), and the
second gives an indication of how homogeneous the absolute residuals are (when compared
with the corresponding RMSE score). It is not sufficient for a set of hyperparameters to
yield a competitive RMSE score; they must yield competitive scores across each of these
three metrics.

We therefore identify the preferred hyperparameters for Models II and III using a tiered
approach to our search results. First, we filter to select only those results that have a slope
above and an MR below a fiducial value when evaluated against the relevant validation
set. Then, from the resulting subset, we select the entry with the lowest RMSE score. In
this way, the final, preferred Model II hyperparameters are chosen for yielding an RMSE of
1.15 d, a slope of 0.96, and an MR of 4.32 d and the Model III hyperparameters on the basis
of yielding scores of 0.065 mag, 0.823, and 0.206 mag, respectively. The final networks have
∼ 75k and ∼ 320k trainable parameters, respectively. Although it is beyond the scope of
this study to make any definitive or in-depth statements about the significance of the final
hyperparameters, it is interesting to note the differences between those that yield the best
observed performance in Models II and III. For example, we find that Model III performs
best with a larger convolution kernel, k, than does Model II (35 for Model III versus 25
for Model II); this may indicate that features encoding phase information are generally
narrower than those which encode ∆m15. At the same time, Model II requires fewer neurons
in the fully connected layer than does Model III. This is consistent with our general intuition
that phases are more “simply” codified in spectral features than ∆m15 (or other luminosity
indicators), which may be best parameterised by ratios of nonlocal features (as suggested by
Nugent et al. 1995).

As a final refinement to the parameters that govern Models II and III, we study the effect
of varying the number of stochastic forward passes (N) and dropout probability (p) when
the models are used to generate predictions. To do so, we use Models II and III to generate
predictions from the relevant validation set over a grid of (N, p) values and then tabulate the
RMSE and mean estimated uncertainty at each point. The results (visualised in Figure 4.8)
are generally consistent with our expectations: mean predicted uncertainties steadily grow
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with p as do RMSE values, albeit at a much less significant rate. For Model III, both
metrics show minimal dependence on N , but for Model II there are “bands” of improved
RMSE performance at N = 30–80, 140–160, and beyond 180 (though they only outperform
their surroundings by . 0.2 d). While our primary concern is optimising model performance
(i.e., achieving low RMSE scores and “reasonable” uncertainty estimates), it is desirable
from a compute-time perspective to use the lowest N value possible. We therefore select
(N, p) = (30, 0.02) for all deepSIP predictions. As Figure 4.8 clearly shows, this yields
the desired low N (for fast prediction times) without compromising the quality of model
predictions.

4.4.2.2 Performance on Testing Set

Having selected the final hyperparameters for each model, we make predictions on the rel-
evant testing sets. As shown in Figure 4.9, we find strong agreement when we compare
predictions to ground truth labels, achieving RMSE, slope, and MR scores of 1.00 d, 0.97,
and 3.22 d; and 0.068 mag, 0.809, and 0.228 mag, respectively. For the 131 samples in each
testing set, the median phase (∆m15) residual is −0.19 d (0.001 mag); also, 94 (94) are within
one standard deviation of the median, 122 (123) are within two, and 130 (129) are within
three.

In Section 4.4.2.6, we investigate the quality of the uncertainty estimates produced by
our models, which serve as a systematic error probe by quantifying the dispersion between
N realisations drawn (for each input spectrum) from the underlying distribution that is
each of our models. Here we do the opposite in an attempt to quantify statistical error:
we remove the stochasticity from our models (by disabling dropout) and assess prediction
robustness when they are fed perturbed inputs. We generate such inputs using our data-
augmentation strategy (see Section 4.2.3.3) to bootstrap our Model II and III testing sets
up to 5000 instances, each of which is slightly perturbed in redshift, noise, and signal length.
The results, which we assess by means of the RMSE, are highly satisfactory: Model II yields
1.05 d and Model III delivers 0.080 mag, both broadly consistent with the corresponding
measures reported above. One could potentially use a variation of this strategy to generate
a unique statistical uncertainty estimate for each input spectrum and include that with each
prediction, but we defer that task to future study and development.

4.4.2.3 Comparison with SNID-derived Phases

To contextualise the level of performance of Model II with regard to phase predictions, we
attempt to characterise the spectra in the testing set using a series of SNID runs that adhere
to the specifications12 laid out by S20. When we do so, we find that deepSIP performs

12The SNID procedure is minimally intrusive, but intended to increase reliability by determining the type,
subtype, redshift, and phase from a SN Ia spectrum in consecutive runs which progressively refine the set of
templates used for comparison.
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Figure 4.9: Phase (left panel) and ∆m15 (right panel) determined by deepSIP versus ground
truth values from the respective Model II and III testing sets, with residuals in the lower
panels. The indigo line in each upper plot shows the one-to-one correspondence for ground
truth values, while in the lower plots, it indicates the median residual. The green, yellow,
and red regions indicate the 1σ, 2σ, and 3σ bounds about the median residual, respectively.
We mark the relevant RSME and slope, both globally and for a restricted subset (see Sec-
tion 4.4.2.5) in each panel. SNID-based phase predictions are presented as an overlay to the
upper-left panel, but they are omitted from the residuals for clarity.

significantly better than SNID in virtually every way. Whereas the SNID-based scheme (con-
sisting of a total of four runs per spectrum, all of which are controlled and read using a
Python script and hence subject to small Python overheads) takes ∼ 7 min to process all
131 testing samples on a server with a modern CPU, our Model II (which entails a total of
30 stochastic forward passes per spectrum) takes under 1 s on a single NVIDIA Tesla K80
GPU to characterise preprocessed spectra (< 1 min on a modern, four-core CPU), with < 1 s
for preprocessing. Moreover, the SNID approach fails to derive a phase in 18/131 instances
while deepSIP is successful in making a prediction in all cases. Perhaps most significantly,
the RMSE between those instances where SNID successfully predicts a phase and the true
phases is 3.48 d, a factor of ∼ 3.5 times worse (in RMSE; ∼ 12 times worse in MSE) than
that for our deepSIP-derived results. The SNID results are also much more afflicted by a
bias to overestimate the earliest phases (a tendency that has been observed and discussed
by S20 and others); the mean residual (predicted minus true) at phases from −10 d to −5 d
is +3.30 d for SNID-derived results, but just +0.31 d for those from deepSIP. This bias is
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also exhibited in the aforementioned fitted-slope metric, with SNID yielding a value of 0.80
compared to 0.97 for Model II.

4.4.2.4 ∆m15 Consistency

Unfortunately, we are unable to perform an analogous SNID-based comparison for ∆m15

values, but we can exploit a unique feature that the ∆m15 labels possess to perform a
separate test on the validity of Model III. Unlike phases which are are unique to individual
spectra, ∆m15 values are unique to individual SNe Ia. As a result, it is not uncommon
for multiple spectra in the training, validation, or testing sets to map to the same ∆m15

value. We can test how well Model III deals with this degeneracy by looking at the scatter
(parameterised by the standard deviation) in ∆m15 predictions in the testing set, grouped
by distinct ∆m15 label (and therefore, by distinct object).

When we do so, we find encouraging results which we summarise with the following
observations: (i) as compared to the global scatter in predicted ∆m15 values (0.161 mag),
the median scatter in predicted values per distinct ∆m15 label is just 0.018 mag; (ii) the
observed distribution is positively skewed so that the majority of the scatter is near zero
(e.g., the 25th percentile is 0.007 mag while the 75th percentile is 0.045 mag); and (iii) of
the two examples with scatter > 0.07 mag, both are at or near the extremes of the predicted
∆m15 values (i.e., where the model’s predictions are typically the most uncertain and the
training data are sparsest).

4.4.2.5 Biases

Though mitigated by our selection criteria (namely, our choice to enforce a 40 spectrum-
per-bin saturation policy), Model II and (especially) Model III do exhibit some bias toward
the more central values in their prediction ranges. This is unfortunate, but expected given
the nonuniformity of our training data (e.g., see Figures 4.3 & 4.10). We emphasise that
despite this bias, the residual distributions are approximately symmetric. Still, it is useful to
quantify the extent of this bias, and we choose to do so by means of the previously mentioned
slope of a linear fit to the results presented in Figure 4.9.

In doing so, we find a slope of 0.97 for phases and 0.809 for ∆m15 values, confirming our
suspicion that the bias is present (and more pronounced in Model III). However, if we select
a more restrictive subset to exclude the biased ends (taken to be the equivalent of 1.5 bins
from Figure 4.3; i.e., 6 d and 0.15 mag from each end), the fitted slopes improve to 0.99 and
0.927, respectively. The Model III RMSE value improves as well, dropping to 0.056 mag.
Users of deepSIP may therefore choose to give more weight to results within these restricted
ranges. Such improvements reinforce our belief that more performance could be extracted
from our models with a larger and more balanced training set.
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4.4.2.6 Estimated Uncertainties

The aforementioned metrics are quite satisfactory, but we must also verify the quality of
the uncertainty estimates produced by our models. A basic measure of this is afforded by
comparing RMSE to weighted RMSE values (henceforth, wRMSE), defined by

wRMSE =

√∑N
i=1(ŷi − yi)2σ̂−2

i∑N
i=1 σ̂

−2
i

, (4.1)

where y are ground truth labels, and (ŷ, σ̂) are the corresponding predicted labels and
estimated uncertainties (i.e., the mean and standard deviation of the stochastic samples
generated as described in Section 4.3.1). A situation where wRMSE > RMSE would re-
flect poorly on the uncertainty estimates because it would imply, in aggregate, an inverse
correlation between them and residuals (i.e., model predictions are generally more wrong
where the model is more certain); conversely, a situation where wRMSE < RMSE is an
affirmation (but not conclusive determination) of the quality of our uncertainty estimates
because it suggests that model predictions are generally more correct where the model is
more certain. In our case, the results are favorable (albeit at only a modest level): Model II
yields a wRMSE score of 0.92 d while Model III yields 0.065 mag.

To further probe the quality of our estimated uncertainties, one might be tempted to
study the relationship between estimated and true uncertainties (i.e., those derived from
light-curve fits). This, however, would not be appropriate because the true uncertainties
were not accounted for by our loss function during model training (nor anywhere else aside
from selection cuts). Instead, we can ask a more appropriate question of our estimated
uncertainties: how do they behave relative to the data our models were trained on? The
answer, depicted in Figure 4.10, is encouraging. We see that our estimated uncertainties for
both models are generally smallest in the region where training data are most abundant, and
that the uncertainties grow steadily as the training data become more scarce. This captures
the general behaviour we desire, though the uncertainties may be modestly underestimated
(given the lower panels in Figure 4.9, but we defer an extensive study of this to future work).
Thus, on the basis of this desired behaviour and all prior points elucidated above, we consider
Models II and III ready for deployment.

4.5 Conclusion

In this paper we present and characterise the performance of deepSIP, an open-source soft-
ware package that encapsulates a set of three CNNs that collectively map optical SN Ia
spectra to their corresponding phases and light-curve shapes (parameterised by ∆m15). The
treatment of these tasks with supervised learning — and the specific use of a CNN architec-
ture — is a natural choice in many regards. This choice is rewarded with highly satisfactory
performance.
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Figure 4.10: deepSIP-determined phase (left panel) and ∆m15 (right panel) uncertainties
versus predicted values from the respective Model II and III testing sets. The grey distri-
butions behind each convey the relevant training data (including those from the augmented
training set).

To train, validate, and test our models, we compile a significant collection of low-redshift
SN Ia spectra by drawing from public data releases from the CfA, CSP, and our own BSNIP.
These spectra form, after preprocessing, the inputs of the input-output pairs that our models
learn to map. To assemble the corresponding outputs (i.e., phases and light-curve shapes),
we draw from the photometric data releases of the same research campaigns, supplementing
with five SNe Ia for which we publish light curves that have recently become available in our
own archives. We fit all light curves (except for those from S19 and CSP3 who performed the
same fits) using the SNooPy E(B − V ) model, ensuring systematic consistency between all
phase and ∆m15 values used herein. After all cuts are accounted for, our final compilation
consists of 2754 spectra with photometrically-derived phase and ∆m15 values, and of these,
1113 are within the phase and ∆m15 constrained domain of interest for Models II and III.

Because we draw spectra from multiple sources, we take great care to both understand
and mitigate systematic differences between sources so that our models form decision paths
exclusively from physically significant features encoded in the spectra. Our mitigation strat-
egy manifests chiefly in our preprocessing procedure which, among other things, discards any
spectral information below 3450 Å or above 7500 Å. Though painful, this prevents our mod-
els from being affected by the presence or absence of signal at more extreme wavelengths —
a distinction which on the red end almost perfectly segments CfA, CSP, and BSNIP spectra.
We also let our desire for telescope agnosticism guide the data augmentation strategy that
we employ to increase our modest sample size. In addition to a redshift perturbation, we
vary the extent to which augmented spectra are smoothed and randomly drop signal from
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the ends. The latter two actions serve to blur out the signature imparted by the specific
equipment used to collect a given spectrum.

We describe the common neural network architecture which underlies each of our models
and whose organisation and layout is largely motivated by our consideration of sequences
of variance spectra. Under the assumption that spectral variations in SNe Ia are mostly a
result of phase and light-curve shape (i.e., luminosity, via a width-luminosity relation), such
sequences inform us about which regions in spectra most strongly encode a given target.
Our observation of a relatively consistent set of features in such sequences has informed our
adoption of a rather simple feed-forward network. To estimate uncertainties alongside point
values for our targets, we use a probabilistic model provided by dropout variational inference.
We employ a randomised grid search to determine the preferred set of hyperparameters for
each of Models I–III, and upon doing so, set out to assess their performance.

To do so, we deploy each model against a distinct (i.e., unused during training and
hyperparameter selection) testing set. In the case of Model I (a binary classifier of “in/out”
with regard to a domain defined by −10 ≤ phase < 18 d and 0.85 ≤ ∆m15 < 1.55 mag),
we achieve an accuracy score of 94.6% and ROC AUC of 0.989. At a false-positive rate
of 2.4%, Model I has an in-domain detection rate of 90.8%. With Model II (a continuous
predictor of phases from −10 d to 18 d), we achieve an RMSE (wRMSE) of 1.00 d (0.92 d),
a marked improvement over SNID-derived predictions on the same spectra. Finally, for
Model III (a continuous predictor of ∆m15 values from 0.85 mag to 1.55 mag), we achieve an
RMSE (wRMSE) of 0.068 mag (0.065 mag). These final, trained models are publicly available
through deepSIP which provides an easy-to-use API for deploying them to characterise new
SN Ia spectra. We strongly encourage public use of deepSIP for this purpose.

Looking to the future, we expect that the performance of deepSIP could be significantly
improved as more spectra with corresponding light curves become available. Indeed, the
dominant factor in our selection of the phase–∆m15 domain inside of which Models II and
III offer predictions is the paucity of data available with more extreme light-curve shapes.
As such data become more prevalent, the networks which underly deepSIP can easily be
retrained and if necessary, modified to accommodate feedback between predicted phase and
∆m15 values that may be necessary given the substantial feature evolution observed beyond
the domain boundary. We welcome community involvement on these fronts (accumulating
more data and designing more sophisticated network architectures), and intend to continue
active, transparent development on our publicly hosted GitHub repository.

4.6 Supplementary Light Curves

In the time since the photometric dataset presented by S19 was published, we have continued
to obtain host-galaxy template images for the unpublished SNe Ia in our archives. With
these new observations, we are able to process five additional SNe Ia (SN 2007S, SN 2008hv,
SN 2010kg, SN 2017hpa, and SN 2018oh.) of utility to this work. We therefore present their
BVRI light curves (some also have unfiltered observations, which we refer to as Clear). All
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processing steps are identical to those described by S19, so we provide only a brief summary
of the methodology before delivering results.

All images were collected using either the 0.76 m Katzman Automatic Imaging Telescope
(KAIT; Li et al. 2000; Filippenko et al. 2001) or the 1 m Nickel telescope, both of which are
located at Lick Observatory where the seeing averages ∼ 2′′. After removing bias and dark
current, flat-field correcting, and deriving an astrometric solution, we pass images to our
automated photometry pipeline13 (LOSSPhotPypeline; see S19), which handles all aspects
of the remaining processing.

With host-galaxy template images obtained on dark nights using the Nickel telescope,
the pipeline removes contaminating flux due to a SN’s host galaxy and then performs point-
spread function (PSF) photometry using procedures from the IDL Astronomy User’s Li-
brary14 to measure the SN’s flux relative to selected standard stars in the same field. The
resulting instrumental magnitudes are calibrated with at least two (but often more) of the
selected standard stars from the Pan-STARRS1 Survey (PS1; Chambers and Pan-STARRS
Team 2018). To do this, PS1 magnitudes are transformed to the Landolt (1992) system using
the prescription given by Tonry et al. (2012), and then into the appropriate natural-system
magnitudes using coupled equations of the form

b = B + CB(B − V ) + constant, (4.2)

v = V + CV (B − V ) + constant, (4.3)

r = R + CR(V −R) + constant, and (4.4)

i = I + CI(V − I) + constant, (4.5)

where natural (Landolt) system magnitudes are expressed in lower (upper)-case letters and
CX is the linear colour term corresponding to filter X (given in S19’s Table 1). Temporally
close (< 0.4 d) observations in the same passband are averaged together and then those in
distinct passbands are grouped by their midpoint epoch to form natural-system light curves.
Finally, the aforementioned equations are inverted to yield standardised light curves on the
Landolt system. The uncertainties on each magnitude in our light curves are ultimately
derived from three sources: “statistical” (e.g., Poisson variations in observed brightness,
scatter in sky values, uncertainty in sky brightness), “calibration” (e.g., derived colour terms,
uncertainty in PS1 magnitudes), and “simulation” (as described by S19).

We present the final Landolt-system light curves derived from the aforementioned pro-
cessing steps in Figure 4.11. The final light curves are publicly available through our U.C.
Berkeley SuperNova DataBase15 (SNDB; S12; Shivvers et al. 2016) and in the Supplemen-
tary Materials included with the corresponding journal article. We describe our method for
(and results from) fitting these light curves (and the others in our compilation) using SNooPy

in the following section.

13https://github.com/benstahl92/LOSSPhotPypeline
14https://idlastro.gsfc.nasa.gov/homepage.html
15http://heracles.astro.berkeley.edu/sndb/

https://github.com/benstahl92/LOSSPhotPypeline
https://idlastro.gsfc.nasa.gov/homepage.html
http://heracles.astro.berkeley.edu/sndb/
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Figure 4.11: Observed light curves for the previously unpublished SNe Ia in our archives. In
most cases the error bars are smaller than the points themselves. All dates have been shifted
relative to the time of maximum B -band brightness. The light curves are available in tabular
form through our SNDB and are also accessible via the online supplementary materials in
the corresponding journal article.

4.7 Light-Curve Fitting

We use the E(B−V ) model as implemented by the SNooPy package to simultaneously fit the
BVRI (or subset thereof) light curves in our photometry compilation. The model assumes a
peak B -band magnitude and B−X colours parameterised by the decline rate, and the results
from fitting are the time of maximum B -band light (tmax), decline-rate parameter16 (∆m15),
host-galaxy reddening, and distance modulus. We use the fitting results obtained by S19 and
CSP for their datasets, and employ the strategy of the former to fit the remaining SNe Ia in
our photometry compilation (i.e., those from G10 and CfA1-3). We give the resulting values
of tmax and ∆m15 for all SNe which pass a visual inspection for fit quality in Table 4.2, and
defer a more thorough explanation of the fitting process to S19 (and their listed references).

16Though already stated, we emphasise again that ∆m15 may deviate from ∆m15(B), as discussed by
Burns et al. (2011) and subsequently verified by S19.
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Table 4.2: SNooPy Fitted Parameters.

SN Sourcea tmax (MJD) ∆m15 (mag) SN Sourcea tmax (MJD) ∆m15 (mag) SN Sourcea tmax (MJD) ∆m15 (mag)
1993ac CfA1 49269.34± 0.70 1.098± 0.040 2001bg G10 52039.95± 0.24 1.155± 0.029 2004dt G10 53240.19± 0.18 1.136± 0.022
1993ae CfA1 49289.15± 0.19 1.480± 0.022 2001br G10 52051.78± 0.16 1.435± 0.024 2004fu CfA3 53325.28± 0.48 1.170± 0.063
1994M CfA1 49474.56± 0.29 1.331± 0.021 2001cj G10 52064.98± 0.11 0.903± 0.013 2004fz G10 53333.53± 0.10 1.473± 0.027
1994Q CfA1 49495.35± 0.40 1.093± 0.020 2001ck G10 52072.10± 0.12 1.079± 0.017 2005bc G10 53469.96± 0.12 1.646± 0.028
1994S CfA1 49517.90± 0.36 1.021± 0.038 2001cp G10 52087.82± 0.08 0.884± 0.009 2005bo G10 53478.10± 0.16 1.270± 0.008
1994ae CfA1 49685.19± 0.10 1.058± 0.011 2001da G10 52107.02± 0.19 1.149± 0.021 2005cf G10 53533.85± 0.08 1.123± 0.008
1995D CfA1 49767.78± 0.16 0.886± 0.012 2001dl G10 52130.58± 0.12 1.022± 0.023 2005de G10 53598.65± 0.10 1.216± 0.012
1995E CfA1 49774.49± 0.22 1.069± 0.018 2001eh G10 52168.42± 0.16 0.837± 0.006 2005eu G10 53659.81± 0.12 1.099± 0.018
1995ac CfA1 49992.44± 0.30 0.941± 0.036 2001en G10 52192.43± 0.10 1.282± 0.005 2005hf CfA3 53660.68± 0.95 1.449± 0.053
1995ak CfA1 50022.22± 0.50 1.278± 0.018 2001ep G10 52199.65± 0.17 1.133± 0.023 2005ls CfA3 53714.40± 0.31 0.930± 0.033
1995al CfA1 50028.26± 0.19 0.910± 0.014 2001ex G10 52204.27± 0.28 1.813± 0.029 2005lz CfA3 53735.82± 0.39 1.276± 0.031
1995bd CfA1 50086.33± 0.15 0.937± 0.030 2001fe CfA3 52229.01± 0.30 0.956± 0.019 2005mc CfA3 53733.83± 0.22 1.733± 0.026
1996C CfA1 50127.77± 0.33 0.965± 0.019 2002G G10 52297.43± 0.43 1.145± 0.050 2005ms CfA3 53744.16± 0.10 1.079± 0.018
1996X CfA1 50190.73± 0.13 1.225± 0.009 2002aw G10 52324.57± 0.25 1.123± 0.017 2005mz CfA3 53745.01± 0.13 1.864± 0.003
1996ai CfA1 50256.52± 0.38 1.112± 0.036 2002bf G10 52335.09± 0.00 1.093± 0.032 2006X G10 53786.01± 0.55 0.971± 0.038
1996bk CfA1 50369.07± 0.55 1.758± 0.010 2002bo G10 52356.29± 0.12 1.105± 0.014 2006ac G10 53779.74± 0.51 1.199± 0.029
1996bl CfA1 50376.23± 0.19 1.100± 0.019 2002bz CfA3 52368.19± 0.53 1.366± 0.045 2006al CfA3 53789.06± 0.35 1.569± 0.044
1996bo CfA1 50386.51± 0.38 1.156± 0.036 2002cd G10 52384.39± 0.23 1.101± 0.024 2006az CfA3 53826.76± 0.13 1.354± 0.027
1996bv CfA1 50403.42± 0.39 0.930± 0.023 2002cf G10 52384.39± 0.10 1.823± 0.001 2006bb CfA3 53815.83± 0.48 1.615± 0.018
1997bp CfA2 50550.08± 0.43 1.114± 0.049 2002cr G10 52409.07± 0.09 1.260± 0.007 2006bt G10 53857.71± 0.23 1.091± 0.036
1997bq CfA2 50558.43± 0.31 1.136± 0.031 2002cs G10 52410.26± 0.17 1.097± 0.020 2006cc CfA3 53874.13± 0.13 1.044± 0.030
1997br CfA2 50559.90± 0.27 1.122± 0.027 2002cu G10 52416.12± 0.10 1.461± 0.022 2006cp G10 53896.91± 0.31 1.130± 0.054
1997cw CfA2 50627.98± 0.44 0.811± 0.020 2002de G10 52432.99± 0.16 1.071± 0.021 2006dm G10 53928.20± 0.09 1.523± 0.017
1997do CfA2 50766.18± 0.23 1.088± 0.023 2002dj G10 52450.79± 0.35 1.149± 0.046 2006ef G10 53968.14± 0.22 1.273± 0.012
1997dt CfA2 50786.77± 0.23 1.341± 0.054 2002dl G10 52451.92± 0.09 1.759± 0.007 2006ej G10 53975.67± 0.17 1.498± 0.037
1998ab CfA2 50914.39± 0.19 1.103± 0.021 2002do G10 52441.42± 0.47 1.718± 0.010 2006em G10 53976.32± 0.24 1.823± 0.001
1998bp CfA2 50936.36± 0.18 1.800± 0.012 2002dp G10 52450.38± 0.11 1.214± 0.008 2006en G10 53970.97± 0.34 0.974± 0.021
1998de G10 51025.70± 0.12 1.821± 0.001 2002eb G10 52494.31± 0.08 1.067± 0.012 2006gr G10 54012.41± 0.13 1.084± 0.017
1998dh G10 51029.00± 0.12 1.118± 0.015 2002ef G10 52489.88± 0.17 1.144± 0.019 2006hb G10 54000.62± 0.29 1.693± 0.011
1998dk CfA2 51057.17± 0.29 1.135± 0.015 2002el G10 52507.93± 0.07 1.367± 0.020 2006le G10 54047.74± 0.16 1.082± 0.018
1998dm G10 51060.25± 0.12 1.008± 0.015 2002er G10 52524.49± 0.16 1.140± 0.018 2006lf G10 54045.03± 0.17 1.459± 0.032
1998ec G10 51088.65± 0.93 1.146± 0.072 2002eu G10 52520.22± 0.24 1.731± 0.010 2006mo CfA3 54048.02± 0.35 1.653± 0.047
1998ef G10 51113.19± 0.10 1.280± 0.007 2002fb G10 52529.02± 0.09 1.824± 0.000 2006mp CfA3 54053.92± 0.12 0.995± 0.019
1998eg G10 51110.13± 0.70 1.117± 0.047 2002fk G10 52547.13± 0.10 1.027± 0.010 2006oa CfA3 54066.52± 0.19 0.953± 0.054
1998es G10 51142.61± 0.07 0.925± 0.010 2002ha G10 52580.77± 0.04 1.362± 0.008 2006qo CfA3 54082.94± 0.15 1.054± 0.014
1999aa G10 51231.89± 0.13 0.886± 0.014 2002he G10 52585.40± 0.06 1.439± 0.011 2006sr CfA3 54092.38± 0.14 1.279± 0.011
1999ac G10 51249.98± 0.19 1.104± 0.022 2002hu CfA3 52592.12± 0.13 1.089± 0.015 2006td CfA3 54099.32± 0.14 1.422± 0.020
1999by G10 51307.95± 0.10 1.824± 0.000 2002hw CfA3 52595.63± 0.12 1.552± 0.027 2006te CfA3 54096.89± 0.40 1.130± 0.021
1999cc CfA2 51315.33± 0.18 1.344± 0.028 2002jg G10 52609.62± 0.07 1.417± 0.019 2007O G10 54122.77± 0.40 1.139± 0.041
1999cl G10 51340.88± 0.22 1.144± 0.026 2002jy CfA3 52634.02± 0.37 0.881± 0.026 2007S this 54144.73± 0.24 0.836± 0.005
1999cp G10 51362.61± 0.12 1.032± 0.021 2002kf CfA3 52638.27± 0.43 1.236± 0.016 2007al CfA3 54169.59± 0.25 1.857± 0.016
1999da G10 51369.79± 0.09 1.823± 0.001 2003W G10 52679.65± 0.23 1.130± 0.029 2007ap CfA3 54168.31± 0.15 1.490± 0.018
1999dg G10 51392.64± 0.32 1.509± 0.049 2003Y G10 52676.54± 0.12 1.822± 0.001 2007au G10 54183.75± 0.17 1.754± 0.017

Table 4.2 continued
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SN Sourcea tmax (MJD) ∆m15 (mag) SN Sourcea tmax (MJD) ∆m15 (mag) SN Sourcea tmax (MJD) ∆m15 (mag)
1999dk G10 51414.72± 0.13 1.103± 0.014 2003cg G10 52729.24± 0.14 1.136± 0.015 2007bj G10 54199.92± 0.70 0.905± 0.039
1999dq G10 51435.95± 0.10 1.090± 0.012 2003ch CfA3 52725.42± 0.35 1.274± 0.019 2007bz CfA3 54213.68± 0.50 0.888± 0.051
1999ej G10 51482.78± 0.06 1.565± 0.010 2003cq G10 52737.64± 0.33 1.170± 0.023 2007ci G10 54246.24± 0.18 1.732± 0.015
1999ek CfA2 51481.16± 0.39 1.164± 0.016 2003du G10 52765.71± 0.11 1.055± 0.007 2007co G10 54264.07± 0.13 1.108± 0.020
1999gd CfA2 51518.85± 0.53 1.168± 0.025 2003fa G10 52806.74± 0.08 1.072± 0.009 2007cq G10 54280.01± 0.16 1.148± 0.018
1999gh CfA2 51513.29± 0.37 1.737± 0.008 2003gn G10 52852.44± 0.09 1.399± 0.028 2007fr G10 54301.70± 0.16 1.755± 0.013
1999gp G10 51549.68± 0.12 1.076± 0.014 2003gs G10 52847.65± 0.25 1.820± 0.001 2007qe G10 54429.37± 0.24 1.128± 0.029
2000ce CfA2 51666.53± 0.46 1.015± 0.034 2003gt G10 52861.61± 0.06 1.095± 0.008 2007sr G10 54447.66± 0.33 1.085± 0.015
2000cf CfA2 51671.86± 0.29 1.144± 0.022 2003he G10 52875.89± 0.11 0.956± 0.016 2008C G10 54463.84± 0.53 1.100± 0.019
2000cn G10 51706.76± 0.08 1.713± 0.008 2003hv G10 52890.04± 0.09 1.554± 0.008 2008L G10 54493.79± 0.14 1.545± 0.023
2000cp G10 51719.52± 0.68 1.158± 0.070 2003ic CfA3 52906.73± 0.71 1.425± 0.058 2008Q G10 54504.62± 0.23 1.029± 0.090
2000cu G10 51743.78± 0.10 1.502± 0.017 2003it CfA3 52934.97± 0.21 1.435± 0.029 2008Z G10 54514.74± 0.21 1.020± 0.043
2000cw G10 51747.89± 0.17 1.153± 0.022 2003iv CfA3 52933.94± 0.20 1.527± 0.047 2008af CfA3 54503.68± 0.73 1.532± 0.041
2000cx G10 51752.60± 0.15 1.265± 0.011 2003kf G10 52980.13± 0.22 1.025± 0.025 2008ar G10 54534.35± 0.17 1.113± 0.023
2000dk G10 51811.79± 0.05 1.712± 0.005 2004E G10 53014.95± 0.43 1.121± 0.023 2008dr G10 54649.53± 0.22 1.463± 0.035
2000dm G10 51815.25± 0.11 1.535± 0.017 2004S G10 53039.57± 0.26 1.115± 0.013 2008ec G10 54673.78± 0.09 1.341± 0.016
2000dn G10 51824.52± 0.15 1.107± 0.023 2004as G10 53084.66± 0.18 1.133± 0.037 2008ei G10 54670.78± 0.75 1.142± 0.058
2000dr G10 51833.97± 0.00 1.753± 0.007 2004at G10 53091.65± 0.07 1.092± 0.009 2008hv this 54817.01± 0.08 1.276± 0.007
2000fa G10 51891.78± 0.12 0.974± 0.012 2004bd G10 53096.93± 0.39 1.736± 0.007 2010kg this 55543.89± 0.19 1.269± 0.014
2001E G10 51926.16± 0.41 1.021± 0.058 2004bg G10 53108.35± 0.22 1.024± 0.018 2017hpa this 58066.66± 0.05 1.101± 0.005
2001V G10 51971.43± 0.30 0.849± 0.013 2004bk G10 53111.45± 0.46 0.892± 0.019 2018oh this 58163.16± 0.07 1.064± 0.008
2001ah G10 52005.19± 0.21 0.921± 0.036 2004br G10 53147.60± 0.23 0.880± 0.022 SNF20071021-000 G10 54406.73± 0.18 1.180± 0.017
2001az CfA3 52031.82± 0.59 1.016± 0.043 2004bv G10 53160.48± 0.10 1.083± 0.010 SNF20080514-002 G10 54611.84± 0.13 1.393± 0.015
2001bf G10 52044.66± 0.00 0.921± 0.025 2004bw G10 53162.66± 0.11 1.323± 0.012 SNF20080909-030 G10 54730.08± 0.62 0.926± 0.032
Note: only fitted parameters used in our final compilation are presented. See CSP3 and S19 for the corresponding fits for their datasets.
aSources of light curves used for fitting. Those marked by “this” refer to those that we publish here (see Section 4.6).



CHAPTER 4. deepSIP 114

4.8 Usage

In tandem with this paper, we provide a well-documented17 and easy-to-use Python package
called deepSIP. The final, trained models presented herein are shipped with the code base,
and hence, it is ready for deployment on new spectra. To use deepSIP for this purpose,
one must prepare spectra as a pandas DataFrame with three mandatory columns: SN,

filename, z for the for name(s) of the SN(e) Ia, their filenames, and their redshifts (it is
assumed that the spectra need to be de-redshifted), respectively. Generating predictions is
then accomplished as follows:

from deepSIP import deepSIP

ds = deepSIP ()

predictions = ds.predict(spectra , status=True)

All necessary spectral preprocessing steps are performed automatically prior to generating
predictions. No arguments are necessary to instantiate deepSIP under normal use cases
(though one may give the keyword argument drop rate to change the dropout probability).
When generating predictions from spectra, three keyword arguments can — but need not be
— invoked: (i) threshold sets the decision threshold for Model I (0.9 by default), (ii) mcnum
sets the number of stochastic forward passes (30 by default), and (iii) status can be used to
enable status bars. The returned predictions are provided as a pandas DataFrame with
five columns: Domain, prob Domain, Phase, e Phase, dm15, e dm15, corresponding to
the respective predictions of Models I–III. Each row in predictions corresponds to the
spectrum from the same row in spectra.

17https://deepsip.readthedocs.io

https://deepsip.readthedocs.io
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Chapter 5

The Snapshot Distance Method:
Estimating the Distance to a Type Ia
Supernova from Minimal Observations

A version of this chapter has been accepted for publication in The Monthly Notices of the
Royal Astronomical Society (Stahl et al. 2021b).

Chapter Abstract

We present the snapshot distance method (SDM), a modern incarnation of a proposed tech-
nique for estimating the distance to a Type Ia supernova (SN Ia) from minimal observations.
Our method, which has become possible owing to recent work in the application of deep learn-
ing to SN Ia spectra (we use the deepSIP package), allows us to estimate the distance to an
SN Ia from a single optical spectrum and epoch of 2+ passband photometry — one night’s
worth of observations (though contemporaneity is not a requirement). Using a compilation
of well-observed SNe Ia, we generate snapshot distances across a wide range of spectral and
photometric phases, light-curve shapes, photometric passband combinations, and spectrum
signal-to-noise ratios. By comparing these estimates to the corresponding distances derived
from fitting all available photometry for each object, we demonstrate that our method is
robust to the relative temporal sampling of the provided spectroscopic and photometric in-
formation, and to a broad range of light-curve shapes that lie within the domain of standard
width-luminosity relations. Indeed, the median residual (and asymmetric scatter) between
SDM distances derived from two-passband photometry and conventional light-curve-derived
distances that utilise all available photometry is 0.013+0.154

−0.143 mag. Moreover, we find that
the time of maximum brightness and light-curve shape (both of which are spectroscopically
derived in our method) are only minimally responsible for the observed scatter. In a com-
panion paper, we apply the SDM to a large number of sparsely observed SNe Ia as part of
a cosmological study.
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5.1 Introduction

Type Ia supernovae (SNe Ia) result from the thermonuclear runaway explosions of car-
bon/oxygen white dwarfs in binary star systems (e.g., Hoyle and Fowler 1960; Colgate and
McKee 1969; Nomoto et al. 1984) in which the stellar companion may (e.g., Webbink 1984;
Iben and Tutukov 1984) or may not (e.g., Whelan and Iben 1973) be another white dwarf.
Despite our incomplete understanding of SN Ia progenitor systems and explosion mechanisms
(see Jha et al. 2019, for a recent review), it remains an empirical fact that SNe Ia (or at least,
a subset thereof) follow photometric (e.g., Phillips 1993; Riess et al. 1996; Jha et al. 2007)
and spectroscopic (e.g., Nugent et al. 1995) sequences with regard to peak luminosity. This
fact, in conjunction with their extraordinary luminosities, makes SNe Ia immensely valuable
as cosmological distance indicators. Indeed, exploitation of the aforementioned photometric
sequence, whereby the width of an SN Ia light curve is used to standardise its peak lumi-
nosity (hence the “width-luminosity relation” moniker), along with photometrically-derived
corrections for reddening due to host-galaxy dust, led to the discovery of the accelerating
expansion of the Universe (Riess et al. 1998; Perlmutter et al. 1999).

As the photometric samples of nearby (redshift z . 0.1; Riess et al. 1999; Jha et al. 2006;
Hicken et al. 2009a; Ganeshalingam et al. 2010; Contreras et al. 2010; Stritzinger et al. 2011;
Krisciunas et al. 2017; Foley et al. 2018; Stahl et al. 2019) and distant (z & 0.1; e.g., Miknaitis
et al. 2007; Frieman et al. 2008; Narayan et al. 2016) SNe Ia have grown, parameterisations
of the SN Ia width-luminosity relation (WLR) have become increasingly robust (e.g., Guy
et al. 2007; Burns et al. 2011). Together, these have aided in placing increasingly stringent
constraints on the composition (Wood-Vasey et al. 2007; Kessler et al. 2009; Conley et al.
2011; Sullivan et al. 2011; Suzuki et al. 2012; Ganeshalingam et al. 2013; Betoule et al. 2014;
Scolnic et al. 2018) and present expansion rate (Riess et al. 2016, 2019) of the Universe.

At the same time, the spectroscopic sample of SNe Ia has grown considerably (e.g., Silver-
man et al. 2012a; Blondin et al. 2012; Folatelli et al. 2013; Stahl et al. 2020b). Consequently,
there has been forward progress in identifying spectroscopic parameters to potentially im-
prove the precision of SN Ia distance measurements (e.g., Bailey et al. 2009; Wang et al.
2009; Blondin et al. 2011; Silverman et al. 2012c; Fakhouri et al. 2015; Zheng et al. 2018b;
Siebert et al. 2019; Léget et al. 2020). Relatedly, recent work has demonstrated that ∆m15,
a measure of light-curve shape — and hence, of peak luminosity via the SN Ia WLR — can
be recovered from a single optical spectrum with a high degree of precision through the use
of convolutional neural networks (using, e.g., the deepSIP1 package; Stahl et al. 2020a, S20
hereafter). Moreover, owing to the data-augmentation strategy employed in the training of
its models, deepSIP is robust to the signal-to-noise ratios (SNRs) of spectra it processes (we
defer the reader to S20 for more details). In addition to ∆m15, deepSIP can also, again
from a single optical spectrum, predict the the time elapsed since maximum light — i.e., the
phase — of an SN Ia in the rest frame, from which the time of maximum brightness, tmax,
can be calculated. Together, these two quantities (∆m15 and tmax) amount to half of those

1https://github.com/benstahl92/deepSIP

https://github.com/benstahl92/deepSIP
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that are conventionally derived from a light-curve-fitting analysis, with other two being (i) a
measure of the extinction produced by dust in the SN’s host galaxy and (ii) the distance to
the SN (see, e.g., Jha et al. 2007; Burns et al. 2011, for WLR implementations that function
in this way).

As a result, a single SN Ia spectrum — via deepSIP — can powerfully constrain the family
of light curves that could possibly correspond to that object. This motivates us to revisit
the notion of a “snapshot” distance (Riess et al. 1998, hereafter R98): the idea that a single
night’s worth of SN Ia observations — an optical spectrum and one epoch of multiband
photometry — is sufficient to estimate the distance to an SN Ia. Although photometric
classification schemes are now available (e.g., Richards et al. 2012; Muthukrishna et al.
2019a), the results are not yet — and may never be — competitive with spectra. Hence,
spectra are still the preferred method for classifying SNe (see, e.g., Filippenko 1997; Gal-
Yam 2017, for reviews of SN classification), and as a result, a viable method of snapshot
distances could render some cosmologically-motivated follow-up photometry unnecessary,
thereby conserving valuable and limited observing resources.

In this paper, we present the snapshot distance method (SDM), a modern version of
the initial concept established by R98. We describe the method itself in Section 6.3 before
undertaking a rigorous and comprehensive study of its efficacy in Section 5.3. We conclude
with a discussion of possible variations of the SDM and anticipated uses in Section 5.4.

5.2 The Snapshot Distance Method

As demonstrated by S20, the phase and light-curve shape of an SN Ia can be inferred (with
an expected precision of ∼ 1.0 d and ∼ 0.07 mag, respectively; see S20 for additional details)
from an optical spectrum using deepSIP. This information, in conjunction with an apparent
magnitude and an estimate of the extinction produced by host-galaxy dust (which can be
derived from a single epoch of multiband photometry), is sufficient to estimate the distance
to an SN Ia. Figure 5.1 provides a schematic representation of the procedure, which is also
described comprehensively below.

While R98 treat this and the associated uncertainty estimation analytically within the
multicolour light-curve shape (MLCS) formalism of Riess et al. (1996), we use the spectro-
scopically recovered parameters (and their uncertainties) as priors in a Markov Chain Monte
Carlo (MCMC) fit of the E(B−V ) model from the SNooPy light-curve fitter to the available
photometry (see Burns et al. 2011, for details on SNooPy and its capabilities). This has
the advantage of allowing for the best estimates of the time of maximum brightness and
light-curve shape — which are derived solely from an optical spectrum — to be updated in
light of additional evidence: the multiband photometry. The resulting distance estimate is
therefore derived from parameters that extract maximal utility from the available data.

Our algorithm for estimating the distance to an SN Ia from an optical spectrum and an
epoch of multiband photometry that can, but need not, be contemporaneous, is as follows.
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Figure 5.1: Schematic representation of the SDM applied to observations of SN 2017erp
(Stahl et al. 2019, 2020b). Using deepSIP, the phase and light-curve shape (each with
uncertainties) are extracted from an optical spectrum. These parameters alone are suffi-
cient to derive the intrinsic luminosity evolution, MY + TY , in rest-frame passband Y (see
Equation 5.1 for details). By comparing an observed magnitude, mX , in the corresponding
observer-frame passband (blue circle) to this evolution sampled at the epoch of the observed
magnitude, the distance modulus can be readily derived after computing K-corrections and
accounting for Galactic and host-galaxy reddening using a second observed magnitude in a
distinct passband.
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1. Using deepSIP’s Model I — a binary classifier — we determine if the spectrum belongs
to an SN Ia with a phase and light-curve shape2 satisfying the conditions −10 ≤
phase < 18 d and 0.85 ≤ ∆m15 < 1.55 mag, corresponding to the bounds within
which deepSIP can reliably make continuous predictions with its other models. If
the spectrum is classified as being within this “domain” in phase−∆m15 space, we
measure its phase and light-curve shape using Models II and III from deepSIP. The
time of maximum brightness, tmax, is then computed as the difference between the
time at which the spectrum was observed minus the reconstructed phase, multiplied
by a factor of 1 + z to express the time interval in the observer frame. As shown in
Equation 5.1 and Figure 5.1, these two parameters are sufficient to reconstruct the
intrinsic luminosity evolution of an SN Ia through the use of a WLR. In the work
described herein, we use the SNooPy E(B − V ) model (Burns et al. 2011), but others
could conceivably be used if deepSIP were retrained to predict the required light-curve-
shape parameter.

2. We then perform an initial, nonlinear least-squares fit — holding tmax and ∆m15 fixed
at their deepSIP-determined values — to the available photometry using the E(B−V )
model, which takes the mathematical form

mX(t− tmax) = MY (∆m15) + TY (trel,∆m15) + µ+

RXE(B − V )gal +RYE(B − V )host +KX,Y (5.1)

where X (Y ) refers to the observed (rest-frame) passband, m is the observed magni-
tude, trel = (t′ − tmax)/(1 + z) is the rest-frame phase, M is the rest-frame absolute
magnitude of the SN, T is a light-curve template3 generated from the prescription of
Prieto et al. (2006), µ is the distance modulus, E(B − V )gal and E(B − V )host are
the reddening due to the Galactic foreground and host galaxy (respectively), R is the
total-to-selective absorption, and KX,Y is the K-correction (Oke and Sandage 1968;
Hamuy et al. 1993; Kim et al. 1996). In effect, this reduces the number of parameters
fit from four [µ,E(B − V )host, tmax,∆m15] to two [µ and E(B − V )host], because the
other two (i.e., tmax and ∆m15) are constrained directly by deepSIP. We show KX,Y —
which is computed by warping the appropriate SED template from Hsiao et al. (2007)
such that performing synthetic photometry on it yields colours that match those from
the observed photometry — without its redshift, temporal, and extinction dependences
for clarity. Thus, KX,Y depends mostly on the supplied photometric information, but
the spectroscopically derived value for tmax factors into the calculation of trel as shown
above. Note that in the low-redshift limit (within which we primarily work herein), X
and Y are very nearly the same passband and the K-corrections are small.

2We note that ∆m15 is a generalised light-curve-shape parameter, distinct from the traditional ∆m15(B).
The two may deviate randomly and systematically (see Section 3.4.2 in Burns et al. 2011).

3MY (∆m15) + TY (trel,∆m15) gives the absolute magnitude of an SN Ia having the specified light-curve
shape in passband Y at the given phase.
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3. The results from this initial fit serve as the starting point for the MCMC chains in the
final fit, during which we fit for the full four parameters of the E(B−V ) model. In doing
so, we employ Gaussian priors for tmax and ∆m15 with means (standard deviations) set
to the predictions (predicted uncertainties) derived from deepSIP’s Models II and III,
respectively. All other facets of the model — e.g., priors for the other fitted parameters
and values for static paremeters — are left at SNooPy defaults (see Burns et al. 2011,
for more details). We adopt the distance modulus resulting from this final fit as our
best estimate of the SN’s distance.

5.3 Validating the Snapshot Distance Method

As argued in Section 6.3, it is possible — in principle — to estimate the distance to an SN Ia
from a single epoch of multiband photometry and an optical spectrum. However, before
such estimates can be made with any confidence, the SDM must be subjected to a rigorous
assessment to quantify its effectiveness and reliability. We endeavor to administer such a
“stress test” by constructing snapshot distances from a masked collection of (photometri-
cally) well-monitored objects having at least one available optical spectrum. In the following
subsections we describe this collection of photometric and spectroscopic observations, the
details of our validation exercise, and quantitative statements that our results substantiate.

5.3.1 Data

In developing deepSIP, S20 assembled a significant compilation of low-redshift SN Ia optical
spectra from the data releases of the Berkeley SuperNova Ia Program (BSNIP; Silverman
et al. 2012a; Stahl et al. 2020b), the Harvard-Smithsonian Center for Astrophysics (CfA;
Blondin et al. 2012), and the Carnegie Supernova Program (CSP; Folatelli et al. 2013) that
they then coupled to photometrically derived quantities (i.e., tmax and ∆m15) obtained by
either (i) refitting the SN Ia light curves published by the same groups (Ganeshalingam et al.
2010; Riess et al. 1999; Jha et al. 2006; Hicken et al. 2009a, the first for the initial Berkeley
sample and the last three for the CfA sample), or (ii) taking the (identically derived) fitted
parameters as directly published (Krisciunas et al. 2017; Stahl et al. 2019, the former for the
CSP sample and the latter for the latest Berkeley sample).

Altogether, this sample is nearly ideal for our purposes — it consists of optical SN Ia
spectra spanning a wide range of phases and light-curve shapes, both of which are ulti-
mately determined from fits to well-sampled light curves — but we must impose two cuts on
the full sample (i.e., the “in-domain” sample from S20 satisfying −10 ≤ phase < 18 d and
0.85 ≤ ∆m15 < 1.55 mag; we defer the reader to S20 for more details) in order to proceed.
First, we drop all spectra that were used to train4 deepSIP. This ensures that deepSIP-based
phase and ∆m15 predictions used in constructing snapshot distances during validation are

4S20 allocated ∼ 80% of their compilation for training, leaving the remainder (which we use in this work)
for validation and testing.
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not unrealistically accurate. Second, we drop all spectra corresponding to SNe Ia whose
photometrically-derived parameters (e.g., ∆m15) were derived from the uBV griY JH ob-
servations published by Krisciunas et al. (2017) because, for simplicity, we prefer to use a
consistent photometric system and set of passbands (i.e., standard BV RI) in the analysis de-
scribed herein. Moreover, this second cut mitigates the potential for performance indicators
that are favourably biased due to the fact that SNooPy was developed for use with CSP (and
more generally, natural system) photometry — by removing these, our analysis proceeds
with only Landolt-system data, thereby ensuring uniformity in the inputs to SNooPy. In the
end, this leaves us with 190 spectra of 97 distinct SNe Ia, which are collectively covered by
2450 epochs of multipassband photometry.

5.3.2 Validation Strategy

With the aforementioned dataset, we are able to test the SDM at scale. We do so by
generating snapshot distances — whereby we provide one epoch of photometry and one
optical spectrum corresponding to the same SN Ia and generate a distance estimate according
to the algorithm detailed in Section 6.3 — exhaustively across our dataset. Our strategy
is organised as follows. For each spectrum in our dataset, we generate a distinct distance
estimate by providing the deepSIP-inferred tmax and ∆m15 values from the spectrum and
every possible combination of a single photometric epoch in at least two passbands from the
available photometry of the relevant SN Ia. Thus, for the typical BV RI coverage available in
the photometric component of our dataset, there are 11 unique passband combinations5 and
hence as many distinct distance estimates per single epoch of photometry. Altogether, then,
a total of 34,721 distinct distance estimates are attempted after we remove those photometric
epochs that have rest-frame phases outside the range spanned by −10 and 70 d (i.e., the full
temporal extent of the light-curve templates used in fitting), as determined relative to the
deepSIP-inferred tmax.

5.3.3 Results

Of the 34,721 attempted distance estimates, only 238 fail during the preliminary least-squares
fitting and a further 101 fail during the final MCMC fit. In contrast, when we repeat the
exercise but do not provide the spectroscopically derived parameters (i.e., we attempt to
fit only the sparse photometry), over 24,000 failures occur. This is, of course, expected
because SNooPy (and indeed, all light-curve-fitting methods) is not intended to be used with
a single epoch of photometry. Though the SDM failures represent only a small proportion of
all attempts, it is important to understand their origin. Our investigations reveal that the
dominant mechanism in these failure modes is the phase of the supplied photometric epoch.
Aggregating over the 339 total failures, the median photometric phase is ∼ 65 d, but just

5The 11 possible combinations for selecting 2+ passbands from BV RI are BV , BR, BI, V R, V I, RI,
BV R, BV I, BRI, V RI, and BV RI.
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∼ 15 d for those with successful fits. We reiterate that we impose an upper limit of 70 d with
respect to photometric phases that we even attempt to fit, so the fact that the median failure
has a photometric phase so near to the upper bound illuminates how skewed the distribution
of failures is toward late phases. More concretely, it is negligible up to ∼ 30 d, slowly grows
from there until ∼ 60 d, and then blows up beyond. This follows our expectation — SN Ia
photometric evolution progresses more slowly at later phases, and thus, it is reassuring to
find that when our method breaks down, it coincides with this late-time behaviour.

Before we delve into the quantitative efficacy measures discussed in the following para-
graphs, it is important that we establish clear criteria for evaluation. We will henceforth
consider the parameters derived from an E(B − V ) model fit to all available photometry
for a given well-sampled object in our data compilation to comprise a set of “reference”
values (hereafter, SNooPy reference values). The goal of the SDM is therefore to reproduce
the reference values of our selected light-curve fitter (i.e., SNooPy) using a severely limited
amount of data, and although we have assumed a specific light-curve fitter in our current
implementation, our algorithm is sufficiently general to transcend it — the basic requirement
would be to retrain deepSIP to predict the specific light-curve-shape parameter of relevance.
In this spirit, we focus our subsequent study on our current SDM implementation’s abil-
ity to reconstruct the SNooPy reference values described above, quantified in most cases by
distance-modulus residuals,

µresid ≡ µSDM − µref , (5.2)

where µSDM is the distance modulus produced by the SDM for the data subset under consid-
eration and µref is that produced by a standard light-curve fitter (e.g., SNooPy in this case)
without the use of spectral information, but with the object’s full light curve.

The top-level result (see Figure 5.2) is encouraging: the median residual across all val-
idation snapshot distances is just 0.008+0.138

−0.124 mag (16th and 84th percentile differences are
reported for scatter in this fashion here and throughout), and as we shall see in the fol-
lowing subsections, an even higher level of performance is realised when we restrict to
the more information-rich maskings of our data. By way of comparison, the correspond-
ing result for our “control” exercise (where we omit spectroscopically-derived quantities) is
−0.034+0.290

−0.288 mag.
Despite the notation used above and throughout (which we employ for compactness), we

emphasise that the reported scatter values should not be confused with uncertainty estimates
— indeed, they are in no way derived from µSDM error bars. To provide such an uncertainty
estimate on a single metric (e.g., µresid) that describes our full set of residuals would be
difficult, given the correlations induced by the repetition of spectra and photometry in our
validation exercise. Instead, we perform another test where we pick three characteristic
points in the photometric evolution of each distinct SN Ia in our sample: (i) “Earliest,”
corresponding to the first available photometric epoch for a given object; (ii) “Nearest to
Max,” for the photometric epoch closest to tmax; and (iii) “Latest,” giving the last available
photometric epoch. Iterating through each of the 11 distinct passband combinations available
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Figure 5.2: Comparison of SDM-derived distance moduli to their SNooPy reference values,
with residuals in the bottom panel. Colours distinguish the number of passbands used for
the single photometric epoch in the SDM fit.
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Figure 5.3: Mean residuals with propagated uncertainties in a grid determined by passband
combination and representative photometric epoch. Each point uses a single value for each
SN Ia in our compilation to derive the mean and its propagated uncertainty from SDM-
distance error bars, thus avoiding data repetition and the correlations it can induce.

for our compilation, we select — for each distinct SN Ia in our sample — the single µresid

value (and its error bar) corresponding to each of these photometric-evolution points, from
which we compute the mean and its propagated uncertainty for each. In cases where multiple
spectra are available for a given object, we use only the one closest to tmax.

These values, shown in Figure 5.3, represent aggregations over nonrepeated data, thus
affording a proper uncertainty diagnostic that is free from artifacts introduced by correlation.
Across the 33 distinct mean residual values (11 passband combinations × 3 characteristic
photometric-evolution points), 25 are consistent (i.e., within their 1σ error bars) with zero.
Aggregating over the selected photometric evolution points, we find that, given their gen-
erally large uncertainty values (median uncertainty: 0.21 mag) 11/11 “Latest” residuals are
consistent with zero, while 9/11 “Nearest to Max” values (having a median uncertainty of
0.05 mag) are, and just 5/11 “Earliest” values (with a median uncertainty of 0.07 mag) are.
Moreover, all are consistent with zero at the 2σ level. These results are satisfactory and
consistent with our expectations: maximum performance is achieved when the photometric
data are near maximum light, but the performance degradation at earlier or later times is
not so significant as to mitigate the utility of the SDM.

5.3.3.1 Parameter Dependence

To search for biases in the snapshot distances generated by our validation exercise, we study
distance-modulus residuals, µresid, as a function of temporal indicators, luminosity indicators
inferred from deepSIP predictions, and spectrum SNRs, each segmented by the number of
passbands included in the photometric epoch. The results, conveyed in Figure 5.4, are highly
encouraging. We find that the distance-modulus residuals are consistent with zero and show
no obvious correlation with deepSIP-predicted phase, rest-frame photometric epoch, rest-
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Figure 5.4: Distance-modulus residuals (SDM minus SNooPy reference) as a function of (from
left to right) deepSIP-predicted phase, rest-frame photometric epoch relative to maximum,
rest-frame difference between phase of photometric epoch and phase of spectrum, deepSIP-
predicted ∆m15 value, and spectrum SNR (the average pixel size of spectra in our compilation
is 1.7 Å). The distributions of each quantity are projected outside the axes. Data points are
colour-coded according to the same scheme as in Figure 5.2, and the white error bars signify
the median residual (and its 16th and 84th percentile differences) for each fixed-width bin
in the upper projections. The error bars — which are indicative of scatter, not propagated
uncertainty — are slightly horizontally offset as a visual aid to see the number of passbands
used in computing them, again denoted by colour.

frame difference between the phase of the photometric epoch and that of the spectrum,
deepSIP-predicted ∆m15, or spectrum SNR. Moreover, we find that both the median absolute
residual and scatter decrease as we permit more passbands to be included in the SDM fit
(see Table 5.1 for a summary of all results, segmented by passband combination).

As evidenced in Table 5.1, the median residual for each of the 11 distinct passband
combinations overlap within their scatter (and are all consistent with zero), but interestingly,
the residuals for SDM fits using the BR passband combination perform markedly better than
all other two-passband fits (having a median ∼ 3–8 times closer to zero), and better than
all three-passband fits as well (except for BV I). The scatter for BR fits is competitive with
that for BV RI (and much tighter than all other two-passband combinations except BI),
but the latter outperforms the median residual of the former by a factor of ∼ 3. Though
the origin of the relatively high quality of BR (and to a lesser extent, BI) SDM fits remains
somewhat unclear, the fact remains that, at least for our data compilation, distances can be
estimated to a very satisfactory degree of certainty using just one optical spectrum and two
contemporaneous photometric points in distinct passbands (and the relative quality increases
as more passbands are added). Moreover, given the relative scale of all scatter values reported
in Table 5.1 relative to their corresponding median residual values, the discussion in this
paragraph is, perhaps, nearing the limit of being overly detailed. We emphasise the main
takeaway: that all median residual values are consistent with zero, given the scale of the
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Table 5.1: Validation Results.

Bands med
(
µresid

)
Bands med

(
µresid

)
Bands med

(
µresid

)
(mag) (mag) (mag)

BI 0.031+0.126
−0.120 BRI 0.010+0.109

−0.092 BV RI −0.003+0.107
−0.097

BR −0.009+0.107
−0.098 BV I −0.008+0.109

−0.105

BV −0.075+0.143
−0.156 BV R −0.024+0.107

−0.098

RI 0.053+0.177
−0.182 V RI 0.056+0.127

−0.115

V I 0.049+0.145
−0.142

V R 0.053+0.149
−0.158

2 0.012+0.156
−0.143 3 0.007+0.120

−0.107 4 −0.003+0.107
−0.097

Note: The last row shows the results segmented by the number of
passbands, instead of the specific combination. Following the conven-
tion of this paper, the median values are reported with 16th and 84th
percentile differences to show the scale of the scatter.

observed scatter.

5.3.3.2 Fit Quality

Next, we investigate the quality of SDM fits by computing the residuals between realised
model parameters in such fits and the corresponding SNooPy reference values for a given
SN Ia. We present the one- and two-dimensional distributions of these residuals in Figure 5.5,
and we note that they are best grouped into two categories: those determined largely by
deepSIP from spectra (e.g., tmax and ∆m15) and those derived via the MCMC fit [e.g., µ
and E(B − V )host].

The former (i.e., tmax and ∆m15 residuals) are mostly — but not exclusively, as we
shall shortly discuss — a measure of the quality of deepSIP predictions. From the one-
dimensional distributions in Figure 5.5, we can see that deepSIP-predicted ∆m15 values in
aggregate fall within ∼ 0.005 mag of the corresponding values from a fit to all photometry,
and deepSIP-inferred tmax values to within ∼ 0.05 d. Perhaps unsurprisingly, these metrics
(derived from the final MCMC fit described in Section 6.3) represent a modest improvement
over what is obtained by doing the preliminary least-squares fit. More significantly, the
fact that we perform an MCMC fit is why the aforementioned metrics are not a perfect
measure of the quality of deepSIP predictions — we allow our estimates for tmax and ∆m15,
initially derived from an optical spectrum via deepSIP, to be updated in light of additional
evidence: the photometric data. The fact that this procedure leads to superior agreement
is a very promising result indeed; deepSIP predictions provide an excellent starting point
for tmax and ∆m15, but both are generally even better fit when photometric information
is taken into account. Moreover, it is precisely because of this that the “clumpiness” in
the tresid

max − ∆mresid
15 distribution in Figure 5.5 gets modestly blurred out. This inherent
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Figure 5.5: One- and two-dimensional projections of E(B − V ) model parameter residuals
between SDM fits and SNooPy reference values (made with the corner package; Foreman-
Mackey 2016). Data points and stacked histograms are colour-coded according to the same
scheme as in Figure 5.2, and smoothed 1σ and 2σ contours are given in black. For each set
of residuals, the median value and 16th and 84th percentile differences are labeled (the latter
as an indicator of scatter, not propagated uncertainty), and vertical and horizontal lines are
used to locate the expected zero-residual location.
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“clumpiness” is expected owing to the fact that tmax and ∆m15 are properties of a specific
SN Ia, not a specific spectrum: many distinct points corresponding to different spectra,
photometric epochs, and passband combinations should map to exactly the same point in
the tresid

max −∆mresid
15 distribution. We also note that the scatters in residuals (∼ 0.06 mag for

∆m15 and ∼ 1 d for tmax) are broadly consistent with the findings of S20 when they studied
the quality of deepSIP predictions.

Moving now to the latter set of residuals [i.e., µ and E(B−V )host], we first remark on the
quality of the fits: in aggregate, µ is recovered to . 0.01 mag with a scatter of ∼ 0.13 mag
while E(B−V )host is recovered even more closely and tightly. As our focus in this work is on
distances, we limit the following discussion to µ except for where E(B−V )host has an impact.
Looking at the left-most bottom two panels in Figure 5.5, we are encouraged to see nearly
negligible dependence of the µ residuals on those for tmax or ∆m15. Indeed, the colour scale
implies that the number of passbands used in the SDM fit has a much bigger impact on the
quality of µ predictions, with 2-band fits (signified by red dots) visibly protruding from the
horizontal edges of the 2σ contours, thereby broadening the distribution of distance-modulus
residuals. The full, 4-band BV RI fits (green dots), when visible, only “bleed” out from the
top and bottom of the contours, thus maintaining the narrow subdistribution that is seen in
the one-dimensional µresid distribution at the top of Figure 5.5. There is some evidence for an
inverse correlation between µ residuals and those for E(B − V )host, but this is unsurprising
given the form of Equation 5.1: since the sum of µ+E(B − V )host is in part responsible for
the observed magnitude, an overestimate by one can be compensated by an underestimate
of the other. Regardless, the effect of this degeneracy is most pronounced for the 2-band fits
which, as shown in Table 5.1, underperform the 3-band and 4-band fits in most regards.

5.4 Discussion

5.4.1 Summary

As we have shown in Section 6.3, it is possible to generate robust “snapshot” distance
estimates to SNe Ia from a very limited observing expenditure — one optical spectrum and
one epoch of multipassband photometry per object are sufficient. The optical spectrum,
via deepSIP, delivers the intrinsic photometric evolution (parameterised in our case by tmax

and ∆m15), and the epoch of photometry provides a sampling of this evolution, but in the
observer frame. The discrepancy between the former and the latter is due mostly to the
inverse-square law of light (i.e., because of the distance to the object), and the remainder
can be appropriately modeled and accounted for using the colour information provided by
the photometry.

To test the efficacy of our method, we assemble a compilation of SN Ia spectra with
corresponding well-observed light curves from a larger set that was uniformly prepared by
S20. Using this compilation, we generate > 30, 000 snapshot distances by providing every
possible combination of one spectrum and one epoch of 2+ passband photometry that fall
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within minimally restrictive temporal bounds. We then compare these validation snapshot
distances to the corresponding distances obtained from a light-curve fit to all available pho-
tometry (taken reference values), and use the residuals as an overall probe of our method’s
ability to reproduce the latter, SNooPy reference values.

To this end, our method performs very well, with a median residual between all snapshot
distance moduli and their SNooPy reference counterparts of just 0.008+0.138

−0.124 mag. Performance
roughly at this level is maintained over a wide range of rest-frame spectral (−10–18 d) and
photometric (−10–70 d) phases, as well as ∆m15 values (0.85–1.5 mag) and spectrum SNRs.
Indeed, our investigations reveal that a much stronger determinant of performance is the
number of passbands available in the single epoch of photometry — in aggregate, the median
absolute residual and scatter decrease as we supply more contemporaneous photometric
points in distinct passbands, reaching a level of −0.003+0.107

−0.097 mag (a scatter in distance of
just∼ 5% relative to the “true” values) when each epoch includes information inBV RI. This
trend follows our intuition that SDM fits should be better constrained and hence of higher
quality as more data are provided. Interestingly, however, one 2-passband combination (BR)
and three 3-passband combinations (BRI, BV I, and BV R) have a similarly small degree of
scatter, but none produces a median residual quite as close to zero.

5.4.2 Variations of the Snapshot Distance Method

Returning to the aforementioned trend (of increasing quality as more data are provided),
we can investigate the extent to which adding data along the temporal dimension — as op-
posed to the wavelength dimension, which is accomplished by adding more contemporaneous
passbands — reduces scatter. Such supplementation of temporal data can be accomplished
either by providing additional spectra or additional epochs of multiband photometry, and
the results can help us to identify which component of our method has the largest leverage
in reducing the observed scatter in µresid. We therefore study both as follows.

5.4.2.1 Additional Spectra

The former is straightforward to implement. We simply repeat the validation exercise de-
scribed in Section 5.3.2, except that instead of iterating over all spectra, we step through
the 50 SNe Ia having at least two spectra in our compilation and set tmax and ∆m15 for
each object as the mean of the deepSIP-inferred values from all of the available spectra.
Uncertainties are derived through error propagation.

The top-level result is µresid = 0.013+0.129
−0.111 mag, consistent with the corresponding met-

ric from our original validation exercise, albeit with slightly reduced scatter. A similar
trend is realised when we look at the BR (µresid = −0.008+0.090

−0.084 mag) and BV RI (µresid =
0.002+0.085

−0.071 mag) subsets. We find a “sweet spot” of ∼ 3 spectra per object where the scatter
is further reduced, and although one might expect a continuing trend of reduction as more
spectra are provided, we do not see this in our low-number-statistics data for > 4 spectra
per object. In any case (and independent of the number of spectra provided), the improved
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metrics noted above only modestly outperform the results of our original validation exercise
— spectra appear not to be the origin of most of the observed scatter. We take this to
be an indication of the quality of deepSIP predictions: one spectrum, truly, is sufficient to
robustly estimate tmax and ∆m15.

5.4.2.2 Additional Photometry

Testing the latter — i.e., incorporating additional epochs of photometry — is much more
computationally expensive. With (2, 450 total epochs)/(97 SNe Ia) ≈ 25 epochs of multiband
photometry per object, on average, the task of handling all possible combinations of two
epochs grows by a factor of 12 relative to the one-epoch case, and by a factor of 92 for
the three-epoch case. As our primary validation exercise already takes ∼ 26 hr to run on a
modern 20-core server, it is hard to justify an even larger expenditure for this investigation,
and even if we did, an exhaustive search over all possible combinations is simply intractable;
e.g., there are > 5×106 ways to select a sample of 12 from 25. We therefore perform another
validation exercise, but instead of selecting all possible combinations, NCn, where N is the
number of photometric epochs available for a given SN Ia and 1 ≤ n < N is the subset
size (this is the very expensive part), we select subsets using a simple “dilution” factor, φ.
Specifically, we perform an identical exercise to that described in Section 5.3.2, except that
instead of masking all but one epoch, we mask all but every φth epoch for φ = 2, 3, · · · , 12
(the special case of φ = 1 corresponds to a fit to all available photometry, which we refer to
as “SNooPy reference” throughout).

Unsurprisingly, the best results are found with φ = 2 (corresponding to the densest tem-
poral sampling, yielding µresid = 0.011+0.075

−0.071 mag), and particularly for the subset provided
with simultaneous6 BV RI information in each epoch (µresid = 0.005+0.021

−0.027 mag). In the case
of φ = 12 (i.e., ∼ 2 photometric epochs per SN Ia, on average) the corresponding metrics
grow (in scatter) to 0.010+0.101

−0.097 mag and 0.003+0.067
−0.079 mag, respectively. In comparing against

“control” exercises (where we do not provide spectroscopically-derived quantities), we find
comparable levels of performance up to φ = 4 and then a growing trend of SDM outperform-
ing the control with increasing φ (i.e., as the photometric coverage becomes more sparse).
This suggests that above a certain threshold of photometric coverage, the SDM is consistent
with, but not necessarily superior to, a conventional light-curve fit, but below this threshold,
it offers significantly improved prediction power (as is our expectation).

As a result of this, we can identify two “levers” that wield significant influence over the
scatter in µresid: (i) the number of simultaneous passbands provided per epoch (i.e., the
wavelength-space extent of the SN Ia spectral energy distribution sampled at a specific in-
stant; as we have concluded above, more is better), and (ii) the number of distinct multiband
epochs of photometry available for the fit (i.e., the temporal-space extent of the SN Ia spec-
tral energy distribution evolution, with sampling provided by the photometric observations;
more is better). Neither appears to be decisively stronger than the other; e.g., the size of

6We consider photometric points within ±0.001 d of one another to be simultaneous.
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the scatter reduction in taking φ = 12 → 2 in the global set is roughly the same as that
harnessed in holding fixed φ = 12 and going from the global set to the BV RI subset. This
suggests that sparser temporal coverage can be compensated for by providing more exten-
sive wavelength coverage (i.e., supplying more passbands per epoch). Though it is beyond
the scope of this study, it would be interesting to examine how well these conclusions are
rederived by a more extensive (and necessarily, expensive) validation exercise that makes
fewer simplifying assumptions than we have invoked here.

5.4.3 Applications and Future Work

There are, of course, many further variations that one could explore with regard to our
method (e.g., the photometric contemporaneity requirement could be relaxed). Nevertheless,
the studies presented herein demonstrate that the distance to an SN Ia can be robustly
estimated from just one night’s worth of observations, and that when more data are available,
the estimates improve in quality until reaching a level of consistency with conventional light-
curve fits. Thus, in the coming era of wide-field, large-scale surveys, our snapshot distance
method will ensure maximal scientific utility from the hundreds of thousands of SNe Ia
that will be discovered, but which may not be sufficiently well monitored to derive reliable
distances by conventional means. Moreover, our method holds the prospect of “unlocking” a
significant number of otherwise unusable observations that currently exist. As a case study,
we present (in a companion paper) our use of the SDM to estimate the distances to > 100
sparsely observed SNe Ia which, when combined with a literature sample, deliver cutting-edge
constraints on the cosmological parameter combination, fσ8 (Stahl et al. 2021a).
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Chapter 6

Peculiar-velocity Cosmology with
Types Ia and II Supernovae

A version of this chapter has been submitted for publication in The Monthly Notices of the
Royal Astronomical Society (Stahl et al. 2021a).

Chapter Abstract

We present the Democratic Samples of Supernovae (DSS), a compilation of 775 low-redshift
Type Ia and II supernovae (SNe Ia & II), of which 137 SN Ia distances are derived via the
newly developed snapshot distance method. Using the objects in the DSS as tracers of the
peculiar-velocity field, we compare against the corresponding reconstruction from the 2M++
galaxy redshift survey. Our analysis — which takes special care to properly weight each
DSS subcatalogue and cross-calibrate the relative distance scales between them — results
in a measurement of the cosmological parameter combination fσ8 = 0.390+0.022

−0.022 as well as
an external bulk flow velocity of 195+22

−23 km s−1 in the direction (`, b) = (292+7
−7,−6+5

−4) deg,
which originates from beyond the 2M++ reconstruction. Similarly, we find a bulk flow
of 245+32

−31 km s−1 toward (`, b) = (294+7
−7, 3

+6
−5) deg on a scale of ∼ 30h−1 Mpc if we ignore

the reconstructed peculiar-velocity field altogether. Our constraint on fσ8 — the tightest
derived from SNe to date (considering only statistical error bars), and the only one to utilise
SNe II — is broadly consistent with other results from the literature. We intend for our data
accumulation and treatment techniques to become the prototype for future studies that will
exploit the unprecedented data volume from upcoming wide-field surveys.
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6.1 Introduction

In observational cosmology, Type Ia supernovae (SNe Ia) — titanic explosions of white dwarfs
in multistar systems (e.g., Hoyle and Fowler 1960; Colgate and McKee 1969; Nomoto et al.
1984) — are highly prized for their standardiseability via the so-called “width-luminosity
relationship”1 (WLR; e.g., Phillips 1993; Riess et al. 1996; Jha et al. 2007; Guy et al. 2007;
Burns et al. 2011), which imbues them with the property of being precise extragalactic
distance indicators. Exploiting this property with statistical samples of SNe Ia has borne
considerable fruit, including the discovery of the accelerating expansion of the Universe (Riess
et al. 1998; Perlmutter et al. 1999), as well as the identification of a tension between local and
distant measurements of the Hubble constant (as reviewed by Riess 2019). More recently,
SNe II — colossal explosions of massive, evolved, hydrogen-envelope-bearing stars via core
collapse (see, e.g., Smartt 2015, for a review) — have been used for such purposes (e.g.,
de Jaeger et al. 2020a,b) owing to their standardiseability via the standard candle method
(SCM; Hamuy and Pinto 2002).

In both sets of aforementioned cosmological analyses, recession velocities (i.e., redshifts)
are compared to luminosity distances (i.e., distance moduli) to constrain the relevant cosmo-
logical parameters (see, e.g., Jha et al. 2019, and references therein). There exists, however,
a distinct set of cosmologically important parameters that can be probed not by the rela-
tionship between the aforementioned observables, but instead by the residuals that remain
between them after removing a fiducial cosmological model (e.g., Peebles 1993; Huterer and
Shafer 2018; Scolnic et al. 2019). Discounting unmodeled diversity in the underlying popula-
tions of SNe Ia and SNe II (which is still considerable in the latter), a significant contributor
to these residuals comes from peculiar velocities — i.e., deviations from the Hubble flow
that are gravitationally induced by inhomogeneities. In turn, this makes SNe Ia (and now,
for the first time thanks to the SCM, SNe II) an excellent probe of peculiar velocities (e.g.,
Miller and Branch 1992; Riess et al. 1997a; Weyant et al. 2011; Tully et al. 2016), as well as
quantities derivable from them such as bulk flows in the nearby Universe (which can shed
light on the structures driving the flows of galaxies; e.g., Riess et al. 1995; Colin et al. 2011;
Dai et al. 2011; Feindt et al. 2013; Mathews et al. 2016) and the cosmological parameter
combination fσ8 (e.g., Turnbull et al. 2012; Howlett et al. 2017; Huterer et al. 2017; Boruah
et al. 2020).

Though our analysis touches on each of these facets, our primary focus is on fσ8, which
can be decomposed as the dimensionless growth rate, f = d lnD

d ln a
(where D is the growth

function of linear perturbations and a is the scale factor; see Peebles 1993), times the matter
overdensity root-mean-squared fluctuations in a sphere of radius 8h−1 Mpc, σ8. The link
back to peculiar velocities is provided by linear perturbation theory (Peebles 1993) via

v(r) =
H0f

4π

∫
d3r′δ(r′)

r′ − r

|r′ − r|3
, (6.1)

1Here, “width” is with regard to an optical light curve, thus capturing the characteristic luminosity
evolution timescale.
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where δ = ρ/ρ−1 is the overdensity field. Through f ≈ Ωγ
m (where, e.g., γ = 0.55 for general

relativity and a simple function of the dark energy equation of state in general; see Linder
and Cahn 2007), a constraint on fσ8 can serve as a test of gravity (e.g., Said et al. 2020).
As Linder (2013) show in their Figure 2, fσ8 is most influenced by γ at low redshifts. Thus,
the use of SNe II in our analysis (in addition to a large sample of SNe Ia as described below)
yields a tertiary benefit beyond (i) increasing statistical weight via a larger sample, and (ii)
laying the foundation for future such analyses, of (iii) lowering the aggregate redshift of our
full sample.

Still, as noted, the bulk of our sample is intentionally composed of SNe Ia: they (with
typical distance uncertainties of . 10% after standardisation via a WLR) offer more con-
straining power per unit object than do SNe II (with distance uncertainties of 10–15% after
applying the SCM; de Jaeger et al. 2020a) and galaxies (with distance uncertainties of ∼ 25%
after applying scaling relationships; e.g., Said et al. 2020). An unfortunate requirement, how-
ever, of applying a standard WLR-based standardisation to SN Ia observations is that the
requisite photometry must be sufficiently well sampled to reconstruct the “width” of the
light curve. Consequently, there exists a significant set of SN Ia observations that have not
been used in cosmological analyses (SNe Ia are routinely cut for having too few epochs of
photometry; e.g., Betoule et al. 2014; Foley et al. 2018).

With the advent of deepSIP (Stahl et al. 2020a), this requirement and the waste it incurs
can be mitigated if an optical spectrum is available — by using a sophisticated convolu-
tional neural network trained on a significant fraction of all relevant SN Ia observations,
deepSIP is able to map the spectrum of an SN Ia to its corresponding light-curve shape with
impressive precision. In turn, this has enabled the snapshot distance method (SDM; Stahl
et al. 2021b), which allows SN Ia distances to be estimated with as little as one spectrum
and two photometric points in different passbands. For the first time ever, we use the SDM
to “resurrect” a significant sample of SNe Ia which would otherwise have to be discarded in
cosmological studies, and we include this sample in our analysis.

The remainder of this paper is organised as follows. First, we describe our accumula-
tion of a sizeable dataset (Sec. 6.2) consisting of SNe Ia and SNe II, and then provide a
comprehensive description of our analysis methodology (Sec. 6.3). We present our results in
Section 6.4 and then offer conclusions in Section 6.5. Throughout we assume a flat ΛCDM
cosmology with Ωm = 0.3 and h = H0/(100 km s−1), where H0 is the local Hubble constant.

6.2 Data

6.2.1 Type Ia Supernovae

6.2.1.1 Amended Second Amendment SN Ia Compilation

As a starting point we turn to the — until now — largest ever peculiar-velocity catalogue
derived from nearby SNe Ia: the Second Amendment (A2) compilation of 465 SN Ia dis-
tances (Boruah et al. 2020). A2 draws SNe Ia from the third Carnegie Supernova Program
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(CSP) data release (Krisciunas et al. 2017), the Lick Observatory Supernova Search (LOSS)
cosmology sample (Ganeshalingam et al. 2013), the first Foundation Supernova Survey data
release (Foley et al. 2018), and the First Amendment (A1) compilation (Turnbull et al. 2012),
which is itself an aggregation of SNe Ia from the first CSP data release (Folatelli et al. 2010)
and the “Constitution” set (Hicken et al. 2009b), atop which the “Amendments” are made.

Though nicely organised and homogenised in many regards, the A2 compilation remains
fundamentally heterogeneous. For example, the A1 and CSP DR3 subcatalogs consist of
distance moduli (derived using different light-curve fitters), while the Foundation and LOSS
subcatalogs provide only SALT2 (Guy et al. 2007) light-curve parameters2, from which
distances are derived using the Tripp (1998) formula,

µ = mB −M + αx1 − βSNc, (6.2)

where we have added the “SN” subscript to β to avoid any confusion with β = f/b used
elsewhere in our analysis. Our analysis method (see Sec. 6.3) is therefore carefully formulated
to account for these and other differences between subcatalogs, ensuring (among other things)
a consistent relative distance scale and proper weighting.

For the analysis described herein we use an amended version of A2 (hereafter A2.1),
derived by removing3 all duplicates of individual SNe Ia from A2. Though scientifically
important in the sense that it prevents any particular peculiar-velocity signal from having
an artificially high weight in our fit, this removes just 13/465 distances. As a result, prior
and future analyses that use the full A2 set (instead of the 452 in A2.1) should only suffer
from a minimal (perhaps imperceptible) bias due to duplication.

6.2.1.2 Lick Observatory Supernova Search Sample

In the time since the publication of the first LOSS data release (Ganeshalingam et al. 2010)
— the source for many of the low-redshift objects used in the LOSS cosmology sample —
the LOSS team has continued to perform multiband photometric and spectroscopic follow-
up observations of newly discovered SNe Ia (Stahl et al. 2019, 2020b,a). We draw from
these new data to construct LOSS2.0: a set of 45 distinct (from A2.1) SNe Ia that pass
minimal cuts for utility and reliability. In contrast to the SALT2 parameters of LOSS1.0
(from A2.1), LOSS2.0 is a catalog of distance moduli taken directly from the SNooPy (Burns
et al. 2011) fits that were published in accompaniment to the light curves from which they
were derived, and then uniformly shifted to be consistent with our fiducial distance scale.
The corresponding redshifts are all firmly established from SN host galaxies and in the CMB
frame, except that those objects known to be within a group of galaxies have their redshifts
updated to that of their host group. This is consistent with the preparation of A2 (and hence

2The parameters derived from fitting the SALT2 model to a multipassband temporal series of SN Ia
fluxes (i.e., a multiband light curve) are mB , the observed B-band magnitude at maximum light; x1, the
light-curve stretch parameter; and c, the colour parameter.

3In cases of duplicated SNe Ia, we choose which set of data to keep by using the following order of
preference (highest first): CSP DR3, CSP DR1 (in A1), LOSS, Constitution (in A1).
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A2.1; Boruah et al. 2020), and helps to mitigate the noise induced by the velocity dispersion
between member galaxies.

6.2.1.3 Snapshot Distances Sample

The amalgamation described above (A2.1 + LOSS2.0) is, perhaps, the largest ever compi-
lation of low-redshift SN Ia distances ever assembled, utilising the collective observations of
many campaigns over the last 30+ years. With conventional methods (i.e., applying a WLR
to well-sampled SN Ia light curves), one would find that this set already accounts for the
majority of data that are publicly available. However, this set can be further expanded by
employing the SDM, which removes the requirement that light curves be well sampled in ex-
change for providing an optical spectrum. We therefore devote this section to describing the
accumulation of a significant sample of SDM-derived distances for sparsely observed SNe Ia.

To do so, we turn to the Open Supernova Catalog4 (OSC; Guillochon et al. 2017) which, as
of the date of our original query, contained a total of 64,715 transients with 14,140 classified
as some form of SN Ia. From this subset, we impose three additional cuts to derive our
initial candidate pool for the SDM: (i) we keep only those 6359 that have redshift z < 0.07
as required by our analysis method (see Sec. 6.3), (ii) of these, we keep those 3951 that have
at least one spectrum, and (iii) we keep those 2900 objects that, in addition to the above,
have at least two epochs of photometry. We emphasise that these cuts yield only an initial
sample of candidates that satisfy the most basic prerequisites of our analysis.

Following a sequence of judiciously chosen cuts to ensure quality, consistency, and com-
patibility (see Appendix 6.6 and Figure 6.1), we perform the SDM and as a check, a näıve fit
to the light curves using no deepSIP-derived information. The top-line results are consistent
with our high expectations for the power of the SDM: out of the 223 objects considered,
the SDM succeeds in deriving a distance in 197 cases while the standard fit succeeds in
only 175 (owing mostly to data sparsity). Moreover, we find a high degree of consistency
between SDM distances and their conventionally derived counterparts when both methods
are successful — a Kolmorgorov-Smirnoff test produces a p-value of 0.993, and the distances
have a median residual of just 0.001 mag.

Still, there are several instances where the difference between an individual SDM distance
and its corresponding conventional estimate do differ significantly. This is not unexpected,
given the highly underconstrained nature of the conventional fits in the presence of sparse
data; however, to be cautious, we visually inspect the fits for all SNe whose distance estimates
(SDM and conventional) differ by more than the lesser of their corresponding error bars. Of
the 34 SNe for which this is the case, we manually assign the distance used in our analysis to
be from the SDM in 19 cases, from the conventional fit in one case, and for the remainder, to
be selected using our default strategy of using the distance with a smaller uncertainty. All
told, this distills our OSC sample into 199 SNe, 150 of which have distances derived using
the SDM (the remainder are derived via the conventional method).

4https://sne.space

https://sne.space
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Figure 6.1: Full accounting of the cuts that take the initial sample of Open-Supernova-
Catalog-obtained SN Ia candidates for snapshot distances to the final sample of robust,
high-confidence distances. The colour map shows the size of each cut (per column) as a
percentage of the number initially retrieved. Numbers marked with an asterisk (*) are
omitted from the calculations because they are self-reported by the Open Supernova Catalog.
Boxes are used to denote the data level (e.g., SNe, spectra, photometry) to which a given
cut is applied. Repeated cuts are intentional and explained in Appendix 6.6.
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After uniformly shifting all distances to our fiducial distance scale, we impose minimal
reliability cuts that reduce the sample to 193 objects, and we cut a further 13 objects for
having distance moduli that differ by more than 1 mag from the cosmologically-expected
value at their redshifts. In our sample, this preferentially removes fainter-than-expected
objects — an encouraging result in light of the fact that our selection criteria do not include
a spectroscopic classification step to explicitly identify and remove contaminating transient
events (such as core-collapse SNe) that may be spuriously present. This results in a final
sample of 180 distances (137 of which are derived from the SDM).

6.2.2 Type II Supernovae

With the addition of the OSC sample, our low-redshift SN Ia distance compilation provides
comprehensive coverage of all publicly available objects that satisfy basic suitability criteria
(note that these criteria are now agnostic to how well sampled an individual object’s light
curve is, thanks to the SDM). Without proprietary datasets, one would be unable to mean-
ingfully increase the sample size at the present time. With this limitation in mind and a
persisting desire to grow the sample larger while simultaneously building a foundation for
further work, we turn to another class of standardiseable SNe.

In contrast to SNe Ia (which are standardised via a WLR), SNe II can be standardised
using the SCM (Hamuy and Pinto 2002; de Jaeger et al. 2017), which exploits the empirical
fact that intrinsically brighter SNe II have higher expansion velocities (as probed by the Hβ
spectral feature velocity, vHβ) and are bluer in colour (c). As such, one can write (similar to
Eq. 6.2)

µ = m−M + α log10

(
vHβ

vHβ

)
− βSN(c− c), (6.3)

where m is the apparent magnitude in a given passband at 43 d after the explosion and
the overbars are used to denote averaged quantities. As in Equation 6.2, the absolute
magnitude (M) and slopes (α and βSN) are nuisance parameters to be derived jointly with
the scientifically important parameters in our analysis (see Sec. 6.3 for more details).

We therefore compile a sample of 98 low-redshift SNe II — the first ever to be used in a
peculiar-velocity analysis — from the following surveys: CSP-I (Hamuy et al. 2006), LOSS
(de Jaeger et al. 2019), the Sloan Digital Sky Survey-II SN Survey (SDSS-II; Frieman et al.
2008; D’Andrea et al. 2010), and the Dark Energy Survey Supernova Program (DES-SN;
Bernstein et al. 2012; de Jaeger et al. 2020a). More information about our SN II compilation
is provided by de Jaeger et al. (2020b). Consistent with the other samples used herein, we
use group redshifts for any SNe II known to be in a group of galaxies.

6.2.3 Final Compilation: The Democratic Samples of SNe

Aggregating over all sources listed above (A2.1 + LOSS2.0 + OSC + SNe II), we arrive at a
catalog of 775 SN-based distances. As it is built atop the “Constitution” set and its “first”
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and “second” amendments, we dub this catalog the “Democratic Samples of Supernovae”
(DSS). The DSS represents a ∼ 70% increase over the number of unique objects in A2 (i.e,
the number of SNe Ia in A2.1), which was, until now, the largest such catalog used to study
bulk flows in the nearby Universe. Moreover, our sample is the first ever to use SNe II for
this purpose. In addition to opening an entirely new avenue with which to study peculiar
velocities, our SN II subcatalog benefits our analysis by lowering the aggregate redshift (as
is clearly visible in Fig. 6.2) and characteristic depth,

d∗ =

∑
i ri/σ

2
i∑

i 1/σ
2
i

, (6.4)

of our full sample (e.g., dA2.1
∗ = 39h−1 Mpc, dSNe II

∗ = 10h−1 Mpc, and dDSS
∗ = 28h−1 Mpc).

As noted in Section 6.1, our analysis has the most discriminating power between gravitational
models at low redshifts.

A secondary benefit of including the SN II subcatalog in our analysis is the added
Southern-hemisphere coverage that it yields (see Fig. 6.3, though our SN Ia sample also
fares much better than prior samples in this regard). With upcoming wide-field surveys, we
expect sky coverage to become even better in short order, and especially for studies that use
SNe Ia (both well and sparsely observed) and SNe II as we do here.

6.2.4 Reconstructed Density and Velocity Fields

As will be shortly understood, our analysis methodology requires observed peculiar veloc-
ities (e.g., our DSS catalog) and knowledge of the overdensity field (δ) which, in light of
Equation 6.1, dictates the peculiar-velocity field for a given set of cosmological parameters.
There are, however, two problems that prevent the direct application of Equation 6.1 in our
(and indeed, every) case:

1. δ is not observable. The density contrast as traced by galaxies (δg) is, however, and
we assume the two are related by δg = bδ, where b is the linear bias factor.

2. δg cannot be measured for all space. Instead, we assume it is measured only up to
some maximum distance, Rmax, by (for example) an all-sky redshift survey.

Invoking the above and defining β ≡ f/b, we modify Equation 6.1 to

v(r) =
H0β

4π

∫ Rmax

0

d3r′δg(r
′)

r′ − r

|r′ − r|3
+ Vext, (6.5)

where the first term is the peculiar-velocity field generated by structure within the volume
covered by the redshift survey, and the second term (Vext) is a coherent, residual bulk flow
driven by structure outside the covered volume. Together, then, these terms constitute a
reconstructed peculiar field that can be compared with direct measurements (as we do here)
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Figure 6.2: Hubble diagram with redshift distribution projected above for our DSS sample,
with subcatalogs distinguished by colour. Distance moduli and error bars (which include
subcatalog-specific instrinsic scatter) are derived following the prescription of Section 6.3.
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Figure 6.3: Mollweide projection of the on-the-sky distribution of our sample (in equato-
rial coordinates), with subcatalogs distinguished by colour. Unlike some prior studies, our
Southern-hemisphere coverage is substantial.

to constrain β and Vext. This method has been validated with N -body simulations and semi-
analytic galaxy formation models; bias in the resulting values of fσ8 (as derived from β) are
found to be . 5% (Hollinger and Hudson 2021). We note that all uncertainties reported
herein are statistical only.

As a matter of implementation, we derive δ and v (both as a function of position) by
interpolating over the reconstructions5 produced by Carrick et al. (2015) up to Rmax =
200h−1 Mpc using the 2M++ galaxy redshift catalog (Lavaux and Hudson 2011). For v,
we remove the coherent bulk flow, Vext = (89,−131, 17) km s−1 in galactic Cartesian coordi-
nates, and normalise over β = 0.43, included in their published velocity field, because our aim
is to refit those quantities here. Hereafter, v will refer to the peculiar-velocity reconstruction
with this modification.

6.3 Method

The fundamental aim of this study is to compare the reconstructed peculiar-velocity field
(see Sec. 6.2.4) to the tracers which comprise our DSS catalog, and in doing so, to fit for β

5The reconstructions are available at https://cosmicflows.iap.fr.

https://cosmicflows.iap.fr
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and Vext. The former allows us to constrain the degenerate cosmological parameter combi-
nation fσ8 (see Sec. 6.4), while the latter may result from, and thus constrain, properties
of large-scale structures that exist beyond the volume of our selected peculiar velocity field
reconstruction. We devote the remainder of this section to describing our method for fitting
these quantities, which we denote collectively as the flow model, as well as a number of
subcatalog-specific nuisance parameters that homogenise the objects in our global catalog.

6.3.1 The Forward Likelihood Method

We use an updated implementation of the forward likelihood method (Pike and Hudson
2005) used by Boruah et al. (2020). In this method, the flow model (β,Vext) and (mostly
subcatalog-specific) nuisance parameters (Θ) are coupled to the observable parameters of an
SN (xi) through the conditional probability P(β,Vext,Θ|xi), which, given Bayes’ theorem,
can be expressed as

P(β,Vext,Θ|xi) ∝ P(xi|β,Vext,Θ)P(β,Vext,Θ). (6.6)

An advantage of this method is that it mitigates inhomogeneous Malmquist bias, which arises
when line-of-sight inhomogeneities are ignored (Strauss and Willick 1995) and can cause the
inferred value of β to be biased high (e.g., Carrick et al. 2015). This is accomplished by
accounting for inhomogeneities along the line of sight via the radial distribution

P(r|Θ) =
1

N (Θ)
r2 exp

{
− [µ(r)− µ(Θ)]2

2σ2
µ(Θ)

}
[1 + δg(r)] , (6.7)

where r is a vector whose length (r) denotes a comoving distance and whose direction
corresponds to a point on the celestial sphere, N (Θ) is a nuisance-parameter-dependent
normalisation factor, δg is the overdensity in the galaxy field, and σµ — the quadrature-sum
of the (fitted, subcatalog-specific) intrinsic scatter and the propagated distance uncertainty
— is explicitly shown as a function of Θ for clarity. This is then marginalised over to derive
the likelihood

P(xi|β,Vext,Θ) =

∫ Rmax

0

drP(xi|r, β,Vext,Θ)P(r|Θ), (6.8)

where Rmax corresponds to the extent of our reconstructed density and peculiar velocity
fields, and

P(xi|r, β,Vext,Θ) =
1√

2πσ2
v

exp

{
− [czobs − czpred(r, β,Vext)]

2

2σ2
v

}
. (6.9)

In our analysis, we treat σv as a global nuisance parameter (i.e., a component of Θ) to be
fit simultaneously with the other parameters of our model (in contrast to other studies that
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fix σv to (for example) 200 km s−1 or 150 km s−1; Pike and Hudson 2005; Boruah et al. 2020,
respectively), take zobs as a mandatory component of xi (prepared as discussed in Sec. 6.2),
and compute the predicted redshift (shown above with its explicit parameter dependence)
according to (Davis and Scrimgeour 2014)

1 + zpred = [1 + z̃(r)]

{
1 +

1

c
[βv(r) + Vext] · r̂

}
, (6.10)

where v is the reconstructed peculiar velocity and z̃ is the cosmological redshift, approxi-
mated to second order (Peebles 1993) as

z̃ =
1

1 + q0

[
1−

√
1− 2H0r

c
(1 + q0)

]
, (6.11)

which makes it clear that z̃ is solely a function of the assumed cosmological model and a
precise, redshift-independent SN distance (parameterised here by the comoving distance, r).
For the deceleration parameter, we use q0 = Ωm/2− ΩΛ for a flat ΛCDM Universe.

6.3.2 Observable Parameters, Nuisance Parameters, and Priors

Thus far, we have maintained a level of abstraction from the data-specific details of our
method, but in order to continue our development, we must now delve into them. Namely, we
have referred to the observable parameters of a given SN only as xi and nuisance parameters
(with the exception of σv) as Θ. Moreover, we have not yet addressed the prior probability
term in Equation 6.6, P(β,Vext,Θ). There are three specific cases to describe, but first we
delineate those attributes that are generically present, regardless of the case.

As was stated in Section 6.3.1, zobs is a mandatory component of all xi. This is also true
for object coordinates (right ascension and declination), from which r̂ (i.e., the direction of r)
is computed. The remaining components of a given xi — which are responsible for providing
a redshift-independent distance — depend on the type of subcatalog to which it belongs.
We delve into this, along with nuisance parameters and priors, in the following paragraphs.

6.3.2.1 “Simple Distance” Subcatalogs

“Simple distance” subcatalogs are those which directly include distance moduli (e.g., A1,
CSP, LOSS2.0, OSC). These distance moduli (and their corresponding error bars) are con-
verted into comoving distances (with propagated error bars), which then become the final
components of the vector of observables for a given SN, xi.

For such catalogs there are two nuisance parameters, Θ = (η, σint), that are jointly fit with
the flow model. The first, η6, rescales the reported distance as r → ηr, ensuring a globally
consistent relative distance scale across multiple subcatalogs. The second, σint, is the usual

6Our η plays the same role as the h̃ used by Boruah et al. (2020).
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(fitted) intrinsic scatter employed in SN analyses to account for unmodeled behaviour that
is not captured in the standardisation technique. In our analysis, σint serves a secondary
purpose of controlling the weight of a given subcatalogue in the global fit (because each
catalogue has its own fitted σint).

For η, we impose a simple, positive-only prior and for σ2
int we use a log-normal prior

with a peak corresponding to σint = 0.15 mag. The latter enforces the requirement that σint

be positive while simultaneously being flexible enough to accommodate the range of values
expected for both conventionally- and SDM-standardised SNe Ia.

6.3.2.2 SN Ia Tripp Distance Subcatalogues

For the remaining SN Ia subcatalogues in the DSS (e.g., LOSS, Foundation), we add the
fitted SALT2 parameters (mB, x1, c) and their uncertainties as the final components of the
vector of observable quantities for a given SN, xi. Distance moduli are then derived via
Equation 6.2 with the requisite nuisance parameters being jointly fit with the flow model
and drawn from Θ = (M,α, βSN, σint). Using concepts from differential calculus, we express
the propagated distance modulus error (including the intrinsic scatter term) as

σ2
µ = σ2

mB
+ (ασx1)

2 + (βSNσc)
2 + σ2

int. (6.12)

Finally, we convert the distance moduli (and their corresponding error bars) into comoving
distances (with propagated error bars). From a practical point of view, the peak absolute
magnitude, M , serves a role analogous to η, in the sense that its value brings the relative
distance scale of the subcatalogue for which it is fit into agreement with the global scale used
in our analysis.

We place only very simple and nonrestrictive priors on M,α, and βSN, requiring M <
0 and α, βSN > 0. For σint we impose the same log-normal prior as for simple distance
subcatalogues.

6.3.2.3 SN II Subcatalogue

Parallel to our treatment of SN Ia Tripp Distance Subcatalogues, we add the parameters
(and their uncertainties) required by Equation 6.3 (i.e., m, vHβ, c) for deriving SN II distance
moduli as the final components of the vector of observable quantities for a given object, xi.
Propagating all uncertainties and including the intrinsic scatter term, the distance modulus
error can be expressed (in light of Eq. 6.3) as

σ2
µ = σ2

m +

(
ασvHβ

ln(10)vHβ

)2

+ (βSNσc)
2 + σ2

int. (6.13)

As a result, the nuisance parameters for our SN II Tripp Distance Subcatalogue are Θ =
(M,α, βSN, σint), consistent with the previous case. We therefore impose the same priors,
except that the peak of the σint prior is shifted to 0.27 mag, consistent with the result found
by de Jaeger et al. (2020b).
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6.3.3 Implementation

Given the definitions above and the dataset described in Section 6.2, we are now able to
implement our model and derive the best-fitting flow model (and nuisance parameters).
Formally, these optimal values are, in light of Equation 6.6, the ones that given our entire
DSS catalogue, {x}, maximise the joint posterior (assuming statistical independence),

P(β,Vext,Θ|{x}) ∝ P(β,Vext,Θ)
∏
i

P(xi|β,Vext,Θ). (6.14)

In practice, it is more convenient to work with the logarithm of this which we define up to
a multiplicative constant as L, so that (using logarithm algebra)

L = lnP(β,Vext,Θ) +
∑
i

lnP(xi|β,Vext,Θ). (6.15)

The flow model and nuisance parameters are thus inferred by sampling (using the emcee

package; Foreman-Mackey et al. 2013) assuming uniform priors on β > 0 and Vext, and a
reasonably broad (σ = 15 km s−1) Gaussian prior on σv centred at 150 km s−1 (the static
value used by other studies; e.g., Carrick et al. 2015; Boruah et al. 2020). In this Markov
Chain Monte Carlo (MCMC) simulation, we find that 256 walkers and 2000 steps (after
removing 500 for “burn in”) yields robust convergences of all parameters. We describe the
results in the following section.

6.4 Results

As discussed in Section 6.3, our method of analysis results in best-fit sets of parameters that
broadly belong to two categories: (i) subcatalogue-specific nuisance parameters, and (ii) the
flow model, which itself bears cosmological significance. Prior to discussing the latter and
its implications, we investigate the former as derived from our DSS catalogue, and through
this validation exercise, we strengthen the weight of all subsequent conclusions.

6.4.1 Nuisance Parameters

The most straightforward of all the subcatalogue-specific nuisance parameters to compare is
the intrinsic scatter term, σint, because it is present in each set. We perform such a compar-
ison by visualising the posterior distribution for each subcatalogue’s σint term (as derived
from our MCMC analysis) in Figure 6.4. As expected, we find that our SN II subcatalogue
exhibits the largest scatter at 0.30+0.03

−0.03 mag (median value with 16th and 84th percentile dif-
ferences; reported here and throughout), consistent7 with the corresponding determination
made with a superset of the subcatalogue in a different application (0.27+0.04

−0.04 mag; de Jaeger
et al. 2020b).

7Here and henceforth, we consider two measurements to be consistent if the lesser plus its upper uncer-
tainty bound exceeds the greater minus its lower uncertainty bound.
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Figure 6.4: Posterior distributions for each subcatalogue’s σint term. Each is normalised
to unit area and as a result, distributions with lower peaks are necessarily broader. The
distinct populations are visually apparent: (in order of increasing σint) those subcatalogues
with WLR-determined SN Ia distances, SDM-derived SN Ia distances, and SCM-derived
SN II distances. Colour-coded vertical lines are used to denote the median of each posterior.

Turning to those SN Ia subcatalogues with distances derived via conventional WLRs
(i.e., all but our SDM subcatalogue), we note that all have σint posteriors that peak within
the vicinity of ∼ 0.1 mag, consitent with recent analyses that have used related datasets
(e.g., Foley et al. 2018; Burns et al. 2018; Boruah et al. 2020). Finally, we note that our
subcatalogue of SDM-derived SN Ia distances has a σint posterior that falls nicely within a
SN Ia – SN II continuum, peaking at 0.21+0.02

−0.02 mag. This represents a further ∼ 0.16 mag in
(quadrature-added) scatter relative to the conventional WLR OSC catalogue and lies within
the range found by Stahl et al. (2021b) when validating the SDM.

To compare other nuisance parameters across distinct subcatalogues is less straightfor-
ward given the differences in parameters for different subcatalogue types (e.g., η for “Simple
Distance” subcatalogues, and M,α, βSN for SN Ia and SN II Tripp Distance subcatalogues).
Still, we find sensible results which we summarise by way of the following comments.

1. The parameters of our SN Ia Tripp Distance subcatalogues are all consistent (within
the uncertainties) with the corresponding values found by Boruah et al. (2020).

2. Our SN II Distance subcatalogue’s α and βSN values agree (within the uncertainties,
albeit just barely for the former) with those found by de Jaeger et al. (2020b), but M
does not. However, as Figure 3 from de Jaeger et al. (2020b) reveals a strong positive
correlation between H0 and M , a weaker (but clearly present) negative correlation with
α, and negligible correlation with βSN, our lack of consistency with M is not a concern;
rather, it is an expected consequence of our use of a different relative distance scale.

3. Our fitted values of η for the three Simple Distance subcatalogues that have distances
derived via the same light-curve fitter (i.e., LOSS2.0 and both OSC subcatalogues) are
consistent with one another, given their uncertainties.
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Table 6.1: Flow model parameters derived from the DSS and subsets of it.

Sample N fσlin
8 Vext (km s−1) l (deg) b (deg)

SNe Ia (WLR) 540 0.393+0.024
−0.024 193+25

−25 289+8
−8 −1+6

−6

SNe Ia (SDM) 137 0.450+0.057
−0.055 254+67

−63 285+18
−19 −2+11

−11

SNe Ia (all) 677 0.400+0.023
−0.023 200+24

−23 289+7
−7 −2+5

−5

SNe II 98 0.388+0.061
−0.063 184+62

−59 319+29
−29 −21+16

−17

DSS 775 0.390+0.022
−0.022 195+22

−23 292+7
−7 −6+5

−4

The only global nuisance parameter in our analysis is σv, for which we find σv = 128+10
−9 km s−1

— lower than 150 km s−1, but not significantly so given the scale of the prior placed on it.
Regardless, the flow-model results are not particularly sensitive to the exact value owing
to a degree of degeneracy between σv and σint (i.e., increasing the former tends to lead to
decreases in the latter).

6.4.2 Residual Bulk-Flow Velocity

Deferring a discussion of β until the following section, we turn our focus to Vext, the residual,
coherent bulk-flow velocity arising from the gravitational interaction between the objects in
our DSS set and large-scale structure existing beyond the volume encompassed by our recon-
struction. Our result, that Vext = 195+22

−23 km s−1 in the direction (`, b) = (292+7
−7,−6+5

−4) deg,
is listed in Table 6.1 along with the corresponding values for various subsets of our full DSS
sample.

Our result is mostly in agreement with Boruah et al. (2020), who find8 Vext = 177+24
−26 km s−1

toward (`, b) = (289+9
−8, 9

+9
−9) deg for the A2 compilation and similar (albeit more tightly con-

strained values) when they jointly fit A2 with a large sample of galaxy-derived peculiar
velocities. Discrepancies between our result and theirs may stem from our use of a differ-
ent dataset (both in the sense of using A2.1 instead of A2, and in the sense of including
additional subcatalogues), slightly different priors (that we believe to be more valid for the
domain of application), or our incorporation of SALT2-parameter uncertainties in Equa-
tions 6.12 and 6.13. We note that our result is also consistent with (but again higher in
magnitude than) that found by Carrick et al. (2015). Our hope is that larger, homeogeneous
samples of SNe Ia and SNe II may bring further convergence in the coming years.

8In the original journal publication, Boruah et al. (2020) quoted a significantly lower Vext for the A2
sample, but this was the result of a systematic redshift error. A revision is underway with the journal that
reflects the value we report herein.
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6.4.2.1 Bulk-Flow Velocity

Distinct from the residual bulk-flow velocity, Vext, discussed herein, many studies measure
a “bulk flow” from their peculiar-velocity catalogues. The difference between the two is
that the former is intended to be due solely to structure beyond the 2M++ reconstruction,
while the latter (which we refer to as Vbulk for clarity) makes no such distinction. In order
to facilitate a comparison between our work and the aforementioned studies, we derive an
analogous bulk-flow measurement by repeating the procedures of Section 6.3 except with the
constraint that β = 0 enforced.

In effect, this “turns off” the peculiar-velocity reconstruction (as evidenced in Eqs. 6.5 & 6.10),
and with it being no longer able to contribute in the comparison to the observed peculiar
velocities, all that remains is Vext → Vbulk. Following this approach, we find Vbulk =
245+32

−31 km s−1 in the direction (`, b) = (294+7
−7, 3

+6
−5) deg.

In comparing to other bulk-flow measurements (see Fig. 6.5), we caution that a variety
of methods exist — each with their own advantages and drawbacks (see, e.g., Turnbull
et al. 2012, for a discussion of two such methods; ours is of the maximum-likelihood estimate
variety). Moreover (and independent of the method), each peculiar-velocity catalogue will
have its own characteristic depth (e.g., ours is ∼ 30h−1 Mpc), and comparisons should only
be made at comparable depths. Keeping these caveats in mind, we are contented to find
consistency between our result and those of other SN-based studies, as well is with the ΛCDM
expectation. Though we show only bulk-flow magnitudes in Figure 6.5, we find reasonable
directional consistency as well.

6.4.3 Constraint on fσ8

Our result, β = 0.418+0.020
−0.020, is best interpreted after transforming according to fσ8 =

(f/b)(bσ8) = βσg8 . Here σg8 = 0.99± 0.04 is the root-mean-squared fluctuation in the galaxy
field as determined by Carrick et al. (2015). We perform this operation directly on the β
posterior samples from our MCMC chains, resulting in fσ8 = 0.413+0.026

−0.026. We must, however,
note that the value of σ8 appearing in this equation is the measured, nonlinear value of the
root-mean-square density fluctuation in an 8h−1 Mpc sphere at z ≈ 0. As a result, it cannot
be directly compared with other measurements in the literature which refer to the linear
value of this quantity (hereafter, σlin

8 ) extrapolated to z = 0. Thus, we need to linearise our
result prior to comparing it with constraints derived at high redshifts. To do so, we adopt
the prescription outlined in Equation 3.13 of Juszkiewicz et al. (2010),

(
σlin

8

)2
=

√
1 + 0.864σ2

8 − 1

0.432
, (6.16)

which requires that we explicitly assume a value of Ωm (we use 0.3, as stated in Sec. 6.1)
to break the degeneracy in fσ8 to constrain σ8 directly. We do this via f ≈ Ω0.55

m , which,
as introduced in Section 6.1, is valid for ΛCDM cosmology, resulting in σ8 = 0.801+0.050

−0.050.
After linearising according to Equation 6.16, this gives σlin

8 = 0.756+0.043
−0.043. Similar results
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Figure 6.5: Our result for the bulk-flow amplitude (left-most point) compared with other
SN-based results and the ΛCDM prediction (shown as the black line with 68% confidence
region). The two comparison values from the A1 compilation are derived via the minimum-
variance and maximum-likelihood methods, respectively (see Turnbull et al. 2012, for more
details). Where results are quoted over a redshift shell instead of at a characteristic distance
(e.g., Dai et al. 2011; Feindt et al. 2013), we convert the more distant end of the shell to the
distance used in our comparison.
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Figure 6.6: Our result for S8 (horizontal line) compared with results from the literature
derived via multiple means (as delineated at the top of each distinct section). All names and
values used in the RSD, Weak Lensing, Cluster Abundance (except DES-Y1 + SPT), and
CMB (except ACT DR4 + WMAP) sections are as listed in Table 7 of Boruah et al. (2020),
as are Nusser2017, 6dFGRSv + RSD, and 6dFGRSv + SDSS of the Peculiar Velocity section.
All others are as discussed herein. References are as follows (in order of first appearance
from left to right): Pike and Hudson (Pike2005; 2005), Turnbull et al. (A1; 2012), Huterer
et al. (Supercal and/or 6dFGRSv; 2017), Boruah et al. (A2; 2020), Nusser (Nusser2017;
2017), Adams and Blake (6dFGRSv + RSD; 2020), Said et al. (6dFGRSv + SDSS; 2020),
Lilow and Nusser (2MRS + CF3; 2021), eBOSS Collaboration et al. (eBOSS; 2020), Beutler
et al. (6dFGS; 2012), Heymans et al. (CFHT; 2013), Abbott et al. (DES-Y1; 2018), Hamana
et al. (HSC; 2020), Heymans et al. (KiDS-1000; 2020), Mantz et al. (WtG; 2015), Planck
Collaboration et al. (Planck-SZ; 2016), Costanzi et al. (redMaPPer; 2019), Bocquet et al.
(SPT-SZ; 2019), Costanzi et al. (DES-Y1 + SPT; 2021), Aiola et al. (ACT DR4 + WMAP;
2020), and Planck Collaboration et al. (Planck; 2020).

are obtained using the Mead et al. (2021) nonlinear modifications to the power spectrum
(without baryonic feedback) to calculate σ8 and σlin

8 . Hence, we find fσlin
8 = 0.390+0.022

−0.022,
representing the tightest SN-based constraint on the quantity to date. As with Vext, we
summarise our DSS-derived result as well as those derived from subsets of it in Table 6.1.

Our result is consistent with both the A2-only and A2 + galaxy constraints derived by
Boruah et al. (2020), albeit closer to the latter. We find this encouraging — it would seem
that our larger sample of SNe (including SDM-treated SNe Ia and SNe II) is on the path to
converging with comprehensive, large-scale studies utilising thousands of galaxies. Indeed,
we find this to be the case after comparing to a vast array of studies that utilise multiple
methods (see Fig. 6.6).
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Instead of fσ8, however, we use a related quantity for this comparison: S8 ≡ σ8(Ωm/0.3)0.5 ≈
fσlin

8 /(0.30.55), where the equivalency denotes the definition and the approximation denotes
its mapping from our results. In doing so, we can easily compare our result to those derived
through a variety of observations including the cosmic microwave background (CMB), clus-
ter abundances, weak gravitational lensing, redshift-space distortions (RSDs), and of course
peculiar velocities (as we have used in this work). In all but the last category (i.e., peculiar
velocities) and the cases of DES-Y1 + SPT and ACT DR4 + WMAP (which we take directly
from the publications; Costanzi et al. 2021; Aiola et al. 2020, respectively), we obtain S8

values directly from Table 7 of Boruah et al. (2020), who have already taken the requisite
steps to convert and homogenise the values reported by the original studies. This remains
true for the peculiar-velocity category as well, excepting the following.

1. Pike2005: Pike and Hudson (2005) report σ8(Ωm/0.3)0.6 = 0.86± 0.15 for their SN Ia-
only sample and σ8(Ωm/0.3)0.6 = 0.91±0.12 for their full compilation (including SNe Ia
and galaxies). We convert both to S8 by means of a multiplicative factor of (Ωm/0.3)−0.1

and the linearisation procedure described above, prior to including them in Figure 6.6.

2. A1: Turnbull et al. (2012) derive fσ8 = 0.424± 0.069 from their A1 SN Ia sample. We
convert this to S8 identically to our own result after linearisation.

3. Supercal and/or 6dFGRSv: Huterer et al. (2017) produce three constraints on fσ8:
0.370+0.060

−0.053 for the “Supercal” sample of SNe Ia (Scolnic et al. 2015), 0.481+0.067
−0.064 for a

large set of fundamental-plane distances from the 6dF galaxy survey (Springob et al.
2014), and 0.428+0.048

−0.045 for both samples combined. Our conversion of each to S8 is
identical to our treatment of A1 and our own result.

4. A2: Although Boruah et al. (2020) provide S8 for their full compilation (which we refer
to in Fig. 6.6 as A2 + 2MTF + SFI++), they do not provide the conversion for just
the A2 sample. Thus, we convert the relevant value in order to include it in Figure 6.6.

5. 2MRS + CF3: By comparing constrained realisations of the peculiar-velocity field from
the Two-Micron All-Sky Redshift Survey (2MRS; Huchra et al. 2012; Macri et al. 2019)
with observed peculiar velocities from the Cosmicflows-3 catalogue (CF3; Tully et al.
2016), Lilow and Nusser (2021) derive fσlin

8 = 0.363 ± 0.070. We convert this to S8

identically to our own result.

As Figure 6.6 shows, our result is highly consistent with those of other peculiar-velocity-based
studies, along with those derived across multiple other methods (except for CMB-based mea-
surements, which we discuss below). Indeed, even the most egregious disagreement (6dF-
GRSv + SDSS; Said et al. 2020) amounts to < 1.9σ — comfortably below the threshold for
statistical significance — and only two more out of a total of 25 exceed the 1σ discrepancy
level, though we emphasise that the samples used in the comparison are not all mutually
independent. Moreover, our result — derived with < 800 SNe — is more tightly constrained
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(based on its statistical-only error bars) than all but two other peculiar-velocity-based con-
straints, both of which use many thousands of galaxy distances (and in one case, the A2
SN Ia sample as well). Thus, in the coming era of wide-field, relatively high-cadence sur-
veys, the prospect for SNe (i.e., well-sampled SNe Ia standardised with a WLR, and now
SNe II as well as sparsely observed SNe Ia standardised with the SDM) to produce the best
low-redshift constraint on fσ8 is particularly bright.

6.4.3.1 Aside: The S8 Tension

As an interesting aside, we note that the single most tightly constrained value in our com-
parison (i.e., Planck ; Planck Collaboration et al. 2020) is one of the two remaining values
at > 1σ tension with our result (and the other, ACT DR4 + WMAP, is also CMB-based).
Given our result’s consistency with those it is compared against, this means that the CMB
results are in modest tension with most other comparison values. In fact, the second most
tightly constrained (i.e., KiDS-1000; Heymans et al. 2020) value we consider — which is
in full agreement (i.e., 0.2σ difference) with our result — differs from the Planck value
at the ∼ 3σ level. Moreover, if we pull out the Planck result and compare it with the
inverse-variance-weighted mean of all other values (including ours), the tension reaches 4.1σ
and remains & 3σ when we compare it to the same aggregation applied separately to the
Peculiar Velocity (4.5σ), Weak Lensing (3.3σ), and Cluster Abundance (2.8σ) categories.

Though these levels are overestimated in some cases (e.g., there is overlap in the datasets
used to derive some of the comparison values, and there is no guarantee that the comparison
values we have used are a truly comprehensive sample), we would be remiss not to note the
parallels to the current H0 tension (e.g., Riess 2019) — once again, we have a cosmological
parameter whose value as measured with low-redshift data is in significant disagreement with
the value inferred from CMB measurements. The difference here is that, discounting the
6dFGRSv + SDSS result (which appears to be an outlier in the Peculiar Velocity category),
it is only the aggregation of multiple measurements (with the marginal exception of KiDS-
1000; see Di Valentino et al. 2020, for more discussion on this “S8 tension”) that is in tension,
and thus we do not escalate our findings in this area beyond simply noting them here. As
with other parts of our analysis, we are optimistic that larger, homogeneous samples of
SNe Ia and II studied using our methodology will be able to shed more light on this issue.

6.5 Conclusion

In this paper, we painstakingly assemble the largest-ever SN-based peculiar-velocity cata-
logue: the Democratic Samples of Supernovae, consisting of 775 objects. In addition to its
sheer size, the DSS is novel for (i) its “resurrection” of otherwise unusable SN Ia observa-
tions (owing to data sparsity) via the snapshot distance method, and (ii) its inclusion of
SNe II, which have not until now been used in such a way. Our SDM-enabled subcatalogue
of 137 objects represents the final distillation of a candidate pool that started at ∼ 2, 500
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objects; with future improvements to the SDM and the tools that enable it, the efficiency
may well increase significantly. On this and both other fronts (SNe II and conventional
SN Ia distances), significantly larger samples than our DSS should rapidly become feasible
with the prevalence of wide-field surveys in the coming years that will discover hundreds of
thousands of SNe. Our intent is for the work described herein to become the prototype for
future studies that leverage such upcoming datasets.

To draw inferences from our DSS catalogue, we update and utilise a forward-likelihood
framework that has been used in related works for the last ∼ 15 yr. In this approach, a
parameter (β = f/b) related to fσ8 and the magnitude and direction of a coherent, external
bulk flow are jointly fit with subcatalogue-specific nuisance parameters that serve to cross-
calibrate between distinct subcatalogues. After performing basic validity checks on the
fitted nuisance parameter values (all of which are satisfactory), we report top-level results
of fσlin

8 = 0.390+0.022
−0.022 and Vext = 195+22

−23 km s−1 in the direction (`, b) = (292+7
−7,−6+5

−4) deg
— the tightest SN-based constraints (considering statistical error bars only) ever produced
on each. Moreover, we find a bulk flow (ignoring any influence from the peculiar-velocity
reconstruction) of Vbulk = 245+32

−31 km s−1 toward (`, b) = (294+7
−7, 3

+6
−5) deg on a scale of ∼

30h−1 Mpc.
By converting fσ8 to S8, we demonstrate that our result is consistent with that of many

other studies leveraging multiple methodologies. Indeed, none deviate from ours at a level
that warrants statistical significance, though we do find the Planck value (Planck Collabo-
ration et al. 2020) — which differs from our result by 1.7σ — to be significantly different
from aggregations of our value with other comparisons. Our result for Vext is consistent in
direction with prior studies (e.g., Boruah et al. 2020), but falls at the high end of magnitudes
in the same studies (though still consistent with the central values). We discuss this briefly,
but ultimately conclude that a larger, more homogeneous SN sample will be instrumental in
clarifying the matter. Consistent with what is stated above, we believe that such samples
will become available in the near future, offering an answer to this question while perhaps
opening others. Indeed, the future of SN Ia and II cosmology, particularly in the era of
wide-field surveys, holds much promise.

6.6 Snapshot Distance Sample Selection

Beyond the cuts employed in selecting our initial SDM candidate pool (see Sec. 6.2.1.3), many
more are required to ensure sufficient quality and homogeneity, and thus we carefully docu-
ment the sequence of cuts leading to our final sample below (the cuts are also summarised
in Fig. 6.1). Given the sheer size of our initial sample (2900 SNe with > 8900 spectra and
> 136,000 photometric points), we judiciously select the order so that algorithmic cuts are
always applied before those that require human attention.

Overlap: Our first cut is to remove the nearly 400 SNe in our sample that also occur
in A2.1 + LOSS2.0. The fact that almost all SNe from the latter are present in the
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former is expected, and those that are not usually fail the requirement that at least
one optical spectrum be available on the OSC. After imposing this cut, 2507 SNe
remain with ∼ 4700 spectra and ∼ 70,000 photometric points. It is encouraging that
the percentages of spectra and photometric points removed are both larger than the
corresponding percentage of SNe — those SNe that are removed are, on the average,
much better sampled than those that remain, rendering support to our assertion that
our A2.1 + LOSS2.0 amalgamation accounts for the majority of publicly-available
SN Ia observations.

Recency: To ensure that the data used herein were collected with relatively modern
techniques and equipment (e.g., CCDs), we drop spectra and photometric points that
were observed prior to 1990 (formally, we required that the MJD of all observations is
≥ 47892). Since the vast majority of human-studied SNe have been discovered in recent
years, this removes only a very modest number of objects, spectra, and photometric
points.

Spectral Coverage and Resolution: As deepSIP forms a central component of the
SDM, we must cut spectra that are not suitable for it. Specifically, this means that we
must drop spectra that do not have full coverage9 of the Si ii λ6355 feature, along with
those having insufficient resolution. Though the former removes ∼ 300 spectra, only
13 SNe are removed as a result. The latter is much more impactful, however, removing
∼ 700 spectra (mostly from the SED Machine; Blagorodnova et al. 2018) and nearly as
many SNe. In fact, this amounts to the most severe cut on SNe and the second most
severe cut on spectra (after the “overlap” cut). With future improvements to deepSIP

it may be possible to revisit and lessen the extremity of this cut, but this will have to
wait until those improvements can be realised.

Irrelevant Photometric Passbands: After the cuts described above, the 60,140 pho-
tometric points that remain are in one of 62 different passbands, some of which are
irrelevant to our analysis and must therefore be removed. By far, the primary factor in
rendering observations in a given passband “irrelevant” is if that band is too broad. For
example, 4923 Gaia G-band (Jordi et al. 2010), 2104 Pan-STARRS w-band (Chambers
and Pan-STARRS Team 2018), 612 ATLAS c-band or o-band (Tonry et al. 2018), and
many other wide-band observations are removed, along with a further 5061 unfiltered
photometric points. A second factor in determining the relevance of a passband is
the wavelengths of light that it passes. As our SDM uses a WLR implementation
that is trained at optical and near-infrared wavelengths, we must discard passbands
that lie outside this domain, thereby removing some Swift observations (Brown et al.
2014) amongst others. All told, 15,624 photometric points are removed, and those that
remain are homogenised down to 21 distinct passbands.

9Following S20, we define “full coverage” as having a minimum wavelength of less than 5750 Å and a
maximum that exceeds 6600 Å.
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Photometric Uncertainties: Of the remaining 44,516 photometric points, 10,429 do not
include a symmetric uncertainty in the reported magnitude. We are able to “fix” 6120
of these by taking the larger of their (asymmetric) lower and upper magnitude uncer-
tainty estimates, but 4393 remain which have no identifiable quantitative uncertainty
indicator. We take the conservative approach of removing these data, leaving us with
just under 1200 SNe covered by ∼ 2900 spectra and ∼ 40,000 photometric points.

2+ Distinct Passbands: As the SDM requires, at a minimum, two photometric points in
different passbands (and a spectrum), we remove SNe that fail this requirement. This
reduces the sample to 747 SNe with ∼ 2400 spectra and ∼ 35,000 photometric points.

Literature Search for Photometric Systems: While we have taken care above to ho-
mogenise the passbands in our sample (in the sense of resolving the differing names
given to identical filters), we must also understand the photometric systems to which
they belong. To do so, we visit the primary source provided by the OSC for each
remaining point in our photometry sample (amounting to 248 sources) and attempt to
determine the photometric system. We find that 26 SNe (covered by 5719 photometric
points) are either not an SN Ia or are not an SN Ia subclass that can be handled by our
WLR. These are dropped, as are an additional 7220 photometric points whose photo-
metric system is either not clear or not supported by our light-curve fitter (consistent
with LOSS2.0 distances, we use the “EBV model” in SNooPy; Burns et al. 2011). This
leaves 21,743 photometric points remaining (covering 670 SNe) in 16 distinct photo-
metric systems, with the plurality being the standard Landolt system (Landolt 1983,
1992), followed by the CSP natural system (Contreras et al. 2010), and then by the
Swift photometric system (Brown et al. 2014). To maximise the amount of data we
can use, we have registered the photometric systems of the Zwicky Transient Facility
(Bellm et al. 2019) and LOSS 1.0 (Ganeshalingam et al. 2010) into our light-curve
fitter.

2+ Distinct Passbands: As the cut described above modifies the photometric coverage
for some objects in our sample, we must repeat the 2+ passband cut. Though this
repetition is, perhaps, aesthetically unappealing, it represents a significant savings of
human time compared to the option of performing it only once at this stage (we would
have needed to review many additional sources in the literature-search stage). Upon
repeating this cut, we are left with 625 SNe covered by ∼ 1900 spectra and ∼ 21,000
photometric points.

Redshifts: As the purpose of this paper is to study the peculiar velocity field, precise
redshifts are of paramount importance (Davis and Scrimgeour 2014). We therefore
devote significant effort to obtaining high-quality host-galaxy redshifts for the SNe in
our sample using the following strategy. First, we query NED10 for the (heliocentric)

10The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under contract with the National Aeronautics and Space Administration.



CHAPTER 6. PECULIAR-VELOCITY COSMOLOGY WITH SUPERNOVAE 156

redshift of the host galaxy of each SN in our sample. For those that fail (either due to
the host galaxy not having a listed redshift, or the host galaxy not being provided by
the OSC), we perform a careful literature search, accepting only host-galaxy-derived
(and not SN-feature-derived) redshifts. This reduces our sample to 480 objects with
reliable, high-quality redshifts. We convert each (heliocentric) redshift to the CMB
frame and then (consistent with A2.1 + LOSS2.0), for those objects known to be in a
cluster of galaxies, we update the redshift to that of the cluster.

deepSIP: At this stage, we deploy deepSIP on the spectra that remain in our sample to
derive the phase and light-curve shape measurements required by the SDM. Of the 1752
spectra processed by deepSIP, 631 are categorised as “in-domain” — a requirement of
the SDM — leaving us 243 SNe with which to proceed with our analysis. For those
SNe having multiple spectra, we assign their time of maximum brightness and light-
curve shape as the average of the relevant deepSIP-reconstructed quantities. As with
other cuts that stem from deepSIP, the severity of this cut can likely be reduced in
the future as the model is improved.

Photometric Phase: Using the deepSIP-inferred times of maximum light, we compute
the rest-frame phase of every photometric point in our dataset, and remove any that
are earlier than −10 d or later than 70 d, corresponding to the temporal domain over
which SNooPy models light curves. This reduces our sample only modestly, leaving
11,063 photometric points covering 232 SNe.

2+ Distinct Passbands: As the cut described above modifies the photometric coverage
for some objects in our sample, we must again repeat the 2+ passband cut. This
reduces our sample by a further nine objects, leaving 223 SNe covered by 610 spectra
and 11,034 photometric points.

Those objects that remain at this point are then processed in accordance with the description
in Section 6.2.1.3.
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Chapter 7

Conclusion

This thesis is best decomposed into three parts, each of which enables the next: Chap-
ters 2 & 3 deliver novel, large-scale photometric and spectroscopic SN Ia datasets, respec-
tively. These data are then combined with a meticulously homogenized literature sample
to develop deepSIP (Chapter 4), which, in turn, breathes life into the snapshot distance
method (SDM; Chapter 5). Finally, in Chapter 6, I use the SDM to “resurrect” a significant
sample of otherwise discarded SN Ia observations, which, when combined with a large lit-
erature sample of SNe Ia and SNe II, provide the tightest-ever SN-based constraints on the
degenerate cosmological parameter combination fσ8. In the following paragraphs, I briefly
summarize key findings from each chapter.

In Chapter 2, I present light curves (in the BV RI, and in some cases unfiltered, pass-
bands) of 93 SNe Ia collected by the Lick Observatory Supernova Search (LOSS) between
2005 and 2018. The median SN Ia in the sample is covered by 16 photometric epochs
at a cadence of 5.4 days, has a redshift of 0.0192, and is first observed at ∼ −4.6 days
relative to maximum light. I describe the methods by which the SNe are discovered, ob-
served, and processed, with particular emphasis placed on documenting the functionality
of LOSSPhotPypeline1, the automatic photometry pipeline I developed to handle the large
volume of data. I demonstrate that LOSSPhotPypeline produces results that are consistent
with LOSS’s old, manual processing methods. All of the constituent data are openly avail-
able2 to the astronomical community, as are the parameters derived from a light-curve-fitting
analysis.

In complement with the photometry presented in Chapter 2, I provide, in Chapter 3,
637 low-redshift SN Ia optical spectra collected over a similar time period. After employing
an automated classification scheme3, I find that 626 spectra unambiguously belong to 242
distinct SNe Ia. At the SN level, the median object is first observed 1.1 days after maximum
light and has a redshift of 0.0208; at the single-spectrum-level, the median signal-to-noise
ratio is 31.8 pixel−1. I proceed with an analysis of prominent spectral features in the avail-

1https://github.com/benstahl92/LOSSPhotPypeline
2http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS,deepSIP)
3https://github.com/benstahl92/pySNID

https://github.com/benstahl92/LOSSPhotPypeline
http://heracles.astro.berkeley.edu/sndb/info#DownloadDatasets(BSNIP,LOSS,deepSIP)
https://github.com/benstahl92/pySNID
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able early-time and late-time spectra, in which velocities and pseudo-equivalent widths are
measured. These measurements, the code base4 developed and utilized to make them, and
the spectra that underly them are publicly available and will prove useful to the community.

When combined with prior data releases, Chapters 2 & 3 push the Berkeley SN Ia dataset
to nearly 2000 optical spectra and more than 250 multiband light curves. Accumulated over
the last ∼ 20 years, these data have been judiciously handled to ensure consistency across
all observing and processing stages, and as such, offer a tantalizing dataset with which as-
tronomers can study SNe Ia. In particular, I utilize these data (along with a comprehensive
literature sample) in Chapter 4 to explore the extent to which the parameters derived via a
light-curve-fitting analysis can be recovered from an optical spectrum (without any informa-
tion from the light curve). The result is deepSIP5, a software package capable of measuring
the phase and light-curve shape (both with impressive precision) of an SN Ia from a single
optical spectrum. “Under the hood,” deepSIP is comprised of three convolutional neural
networks that are trained on a significant fraction of all publicly-available low-redshift SN Ia
data, including in an augmented format to promote model robustness and telescope agnos-
ticism. deepSIP is open source and readily available to the astronomical community.

I demonstrate in Chapter 5 that deepSIP provides exactly what one needs to derive
an SN Ia distance estimate from as little as one epoch of two-passband photometry (and
the optical spectrum required by deepSIP, which need not be contemporaneous with the
photometry) using the snapshot distance method (SDM). After subjecting the SDM to a suite
of “stress tests,” I find that the method is robust across a wide range of “normal” light-curve
shapes, and to the relative temporal sampling of the photometry and spectroscopy that it
utilizes. Moreover, the precision of the method follows an intuitive trend, performing better
when more photometric information is provided (either in the form of more passbands per
epoch, or in the form of more epochs). Notably, more spectra do not appear to wield much
influence — a testament to the quality of deepSIP predictions.

In addition to the promise that the SDM holds in the near future when large, wide-
field surveys will discover many hundreds of thousands of SNe that they will not be able
to monitor at high cadence, I utilize it in Chapter 6 to turn trash to treasure by deriving
distance estimates to 137 sparsely observed SNe Ia that have been repeatedly omitted from
cosmological analyses owing to their data sparsity. By combining these objects with a large
sample of SNe Ia and SNe II, I utilize a sophisticated Bayesian framework to infer the
cosmological parameter combination fσ8 and the parameters that describe a coherent, bulk
motion in the local Universe, while taking care to enforce a consistent relative distance scale
between disparate subcatalogs, each weighted according to the precision of the objects of
which they consist. The constraints I present are the tightest ever derived from SNe, but
perhaps more importantly, the contents of Chapter 6 represent a prototype that can be
readily deployed as the aforementioned, massive SN datasets become available in the coming
years.

4https://github.com/benstahl92/respext
5https://github.com/benstahl92/deepSIP

https://github.com/benstahl92/respext
https://github.com/benstahl92/deepSIP
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Indeed, the future of supernova cosmology is quite bright. From the foundational datasets
of Chapters 2 & 3, to the suite of extensible (but immediately practical) tools of Chap-
ters 4 & 5, to the cosmological constraints and framework they enable in Chapter 6, this
dissertation represents my own small contributions to this future. Onward!
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D. Imel, W.-H. Ip, Ž. Ivezić, E. Jackson, L. Jones, M. Juric, M. M. Kasliwal, S. Kaspi,
S. Kaye, M. S. P. Kelley, M. Kowalski, E. Kramer, T. Kupfer, W. Landry, R. R. Laher,
C.-D. Lee, H. W. Lin, Z.-Y. Lin, R. Lunnan, M. Giomi, A. Mahabal, P. Mao, A. A. Miller,
S. Monkewitz, P. Murphy, C.-C. Ngeow, J. Nordin, P. Nugent, E. Ofek, M. T. Patterson,
B. Penprase, M. Porter, L. Rauch, U. Rebbapragada, D. Reiley, M. Rigault, H. Rodriguez,
J. van Roestel, B. Rusholme, J. van Santen, S. Schulze, D. L. Shupe, L. P. Singer, M. T.
Soumagnac, R. Stein, J. Surace, J. Sollerman, P. Szkody, F. Taddia, S. Terek, A. Van
Sistine, S. van Velzen, W. T. Vestrand, R. Walters, C. Ward, Q.-Z. Ye, P.-C. Yu, L. Yan,
and J. Zolkower. The Zwicky Transient Facility: System Overview, Performance, and
First Results. PASP, 131(995):018002, Jan. 2019. doi: 10.1088/1538-3873/aaecbe.

S. Benetti, E. Cappellaro, P. A. Mazzali, M. Turatto, G. Altavilla, F. Bufano, N. Elias-Rosa,
R. Kotak, G. Pignata, M. Salvo, and V. Stanishev. The Diversity of Type Ia Supernovae:
Evidence for Systematics? The Astrophysical Journal, 623(2):1011–1016, Apr 2005. doi:
10.1086/428608.



BIBLIOGRAPHY 163

J. P. Bernstein, R. Kessler, S. Kuhlmann, et al. Supernova Simulations and Strategies for
the Dark Energy Survey. ApJ, 753:152, July 2012. doi: 10.1088/0004-637X/753/2/152.

M. S. Bessell. UBVRI passbands. PASP, 102:1181–1199, Oct. 1990. doi: 10.1086/132749.

M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin, R. Biswas, P. Astier, P. El-Hage,
M. Konig, S. Kuhlmann, J. Marriner, R. Pain, N. Regnault, C. Balland, B. A. Bassett,
P. J. Brown, H. Campbell, R. G. Carlberg, F. Cellier-Holzem, D. Cinabro, A. Conley,
C. B. D’Andrea, D. L. DePoy, M. Doi, R. S. Ellis, S. Fabbro, A. V. Filippenko, R. J.
Foley, J. A. Frieman, D. Fouchez, L. Galbany, A. Goobar, R. R. Gupta, G. J. Hill,
R. Hlozek, C. J. Hogan, I. M. Hook, D. A. Howell, S. W. Jha, L. Le Guillou, G. Leloudas,
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lier, G. Zamorani, R. Pellò, A. Iovino, L. Tresse, V. Le Brun, D. Bottini, B. Garilli,
D. Maccagni, J. P. Picat, R. Scaramella, M. Scodeggio, G. Vettolani, A. Zanichelli,
C. Adami, S. Bardelli, A. Cappi, S. Charlot, P. Ciliegi, T. Contini, O. Cucciati, S. Foucaud,
P. Franzetti, I. Gavignaud, L. Guzzo, B. Marano, C. Marinoni, A. Mazure, B. Meneux,
R. Merighi, S. Paltani, A. Pollo, L. Pozzetti, M. Radovich, E. Zucca, M. Bondi, A. Bon-
giorno, G. Busarello, S. de La Torre, L. Gregorini, F. Lamareille, G. Mathez, P. Merluzzi,
V. Ripepi, D. Rizzo, and D. Vergani. Accurate photometric redshifts for the CFHT legacy
survey calibrated using the VIMOS VLT deep survey. A&A, 457:841–856, Oct. 2006. doi:
10.1051/0004-6361:20065138.
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E. Mart́ınez-González, S. Matarrese, N. Mauri, J. D. McEwen, P. R. Meinhold, A. Mel-
chiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschênes, D. Moli-
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N. Szalai, T. Szalai, K. Szatmáry, A. Szing, K. Vida, and J. C. Wheeler. Testing supernovae
Ia distance measurement methods with SN 2011fe. A&A, 546:A12, Oct. 2012. doi: 10.
1051/0004-6361/201220043.

X. Wang, A. V. Filippenko, M. Ganeshalingam, W. Li, J. M. Silverman, L. Wang,
R. Chornock, R. J. Foley, E. L. Gates, B. Macomber, F. J. D. Serduke, T. N. Steele,
and D. S. Wong. Improved Distances to Type Ia Supernovae with Two Spectroscopic Sub-
classes. The Astrophysical Journal, 699(2):L139–L143, Jul 2009. doi: 10.1088/0004-637X/
699/2/L139.

X. Wang, L. Wang, A. V. Filippenko, T. Zhang, and X. Zhao. Evidence for Two Distinct
Populations of Type Ia Supernovae. Science, 340(6129):170–173, Apr 2013. doi: 10.1126/
science.1231502.

R. F. Webbink. Double white dwarfs as progenitors of R Coronae Borealis stars and type I
supernovae. The Astrophysical Journal, 277:355–360, Feb 1984. doi: 10.1086/161701.

A. Weyant, M. Wood-Vasey, L. Wasserman, and P. Freeman. An Unbiased Method of
Modeling the Local Peculiar Velocity Field with Type Ia Supernovae. ApJ, 732(2):65,
May 2011. doi: 10.1088/0004-637X/732/2/65.

J. Whelan and J. Iben, Icko. Binaries and Supernovae of Type I. The Astrophysical Journal,
186:1007–1014, Dec 1973. doi: 10.1086/152565.

W. M. Wood-Vasey, G. Miknaitis, C. W. Stubbs, S. Jha, A. G. Riess, P. M. Garnavich, R. P.
Kirshner, C. Aguilera, A. C. Becker, J. W. Blackman, S. Blondin, P. Challis, A. Clocchiatti,
A. Conley, R. Covarrubias, T. M. Davis, A. V. Filippenko, R. J. Foley, A. Garg, M. Hicken,



BIBLIOGRAPHY 196

K. Krisciunas, B. Leibundgut, W. Li, T. Matheson, A. Miceli, G. Narayan, G. Pignata,
J. L. Prieto, A. Rest, M. E. Salvo, B. P. Schmidt, R. C. Smith, J. Sollerman, J. Spyromilio,
J. L. Tonry, N. B. Suntzeff, and A. Zenteno. Observational Constraints on the Nature of
Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. ApJ,
666(2):694–715, Sept. 2007. doi: 10.1086/518642.

S. Woosley and T. Janka. The physics of core-collapse supernovae. Nature Physics, 1(3):
147–154, Dec. 2005. doi: 10.1038/nphys172.

D. E. Wright, S. J. Smartt, K. W. Smith, P. Miller, R. Kotak, A. Rest, W. S. Burgett, K. C.
Chambers, H. Flewelling, K. W. Hodapp, M. Huber, R. Jedicke, N. Kaiser, N. Metcalfe,
P. A. Price, J. L. Tonry, R. J. Wainscoat, and C. Waters. Machine learning for transient
discovery in Pan-STARRS1 difference imaging. MNRAS, 449(1):451–466, May 2015. doi:
10.1093/mnras/stv292.

M. Yamanaka, K. Maeda, M. Kawabata, M. Tanaka, K. Takaki, I. Ueno, K. Masumoto,
K. S. Kawabata, R. Itoh, Y. Moritani, H. Akitaya, A. Arai, S. Honda, K. Nishiyama,
F. Kabashima, K. Matsumoto, D. Nogami, and M. Yoshida. Early-phase Photometry and
Spectroscopy of Transitional Type Ia SN 2012ht: Direct Constraint on the Rise Time.
ApJ, 782(2):L35, Feb 2014. doi: 10.1088/2041-8205/782/2/L35.

O. Yaron and A. Gal-Yam. WISeREP—An Interactive Supernova Data Repository. PASP,
124(917):668, Jul 2012. doi: 10.1086/666656.

J.-J. Zhang, X.-F. Wang, J.-M. Bai, T.-M. Zhang, B. Wang, Z.-W. Liu, X.-L. Zhao, and
J.-C. Chen. Optical and Ultraviolet Observations of the Narrow-lined Type Ia SN 2012fr
in NGC 1365. AJ, 148(1):1, Jul 2014. doi: 10.1088/0004-6256/148/1/1.

K. Zhang and J. S. Bloom. deepCR: Cosmic Ray Rejection with Deep Learning. ApJ, 889
(1):24, Jan 2020. doi: 10.3847/1538-4357/ab3fa6.

K. Zhang, X. Wang, J. Zhang, T. Zhang, M. Ganeshalingam, W. Li, A. V. Filippenko,
X. Zhao, W. Zheng, J. Bai, J. Chen, J. Chen, F. Huang, J. Mo, L. Rui, H. Song, H. Sai,
W. Li, L. Wang, and C. Wu. Optical Observations of the Type Ia Supernova SN 2011fe in
M101 for Nearly 500 Days. ApJ, 820(1):67, Mar. 2016. doi: 10.3847/0004-637X/820/1/67.

X. Zhao, X. Wang, K. Maeda, H. Sai, T. Zhang, J. Zhang, F. Huang, L. Rui, Q. Zhou, and
J. Mo. The Silicon and Calcium High-velocity Features in Type Ia Supernovae from Early
to Maximum Phases. ApJS, 220(1):20, Sep 2015. doi: 10.1088/0067-0049/220/1/20.

X. Zhao, K. Maeda, X. Wang, L. Wang, H. Sai, J. Zhang, T. Zhang, F. Huang, and L. Rui.
The Oxygen Features in Type Ia Supernovae and Implications for the Nature of Ther-
monuclear Explosions. ApJ, 826(2):211, Aug 2016. doi: 10.3847/0004-637X/826/2/211.



BIBLIOGRAPHY 197

W. Zheng, J. M. Silverman, A. V. Filippenko, D. Kasen, P. E. Nugent, M. Graham, X. Wang,
S. Valenti, F. Ciabattari, P. L. Kelly, O. D. Fox, I. Shivvers, K. I. Clubb, S. B. Cenko,
D. Balam, D. A. Howell, E. Hsiao, W. Li, G. H. Marion, D. Sand, J. Vinko, J. C. Wheeler,
and J. Zhang. The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon
Absorption in Early-time Spectra. The Astrophysical Journal, 778(1):L15, Nov 2013. doi:
10.1088/2041-8205/778/1/L15.

W. Zheng, I. Shivvers, A. V. Filippenko, K. Itagaki, K. I. Clubb, O. D. Fox, M. L. Graham,
P. L. Kelly, and J. C. Mauerhan. Estimating the First-light Time of the Type Ia Supernova
2014J in M82. ApJ, 783(1):L24, Mar. 2014. doi: 10.1088/2041-8205/783/1/L24.

W. Zheng, A. V. Filippenko, J. Mauerhan, M. L. Graham, H. Yuk, G. Hosseinzadeh, J. M.
Silverman, L. Rui, R. Arbour, R. J. Foley, B. Abolfathi, L. E. Abramson, I. Arcavi, A. J.
Barth, V. N. Bennert, A. P. Brand el, M. C. Cooper, M. Cosens, S. P. Fillingham, B. J.
Fulton, G. Halevi, D. A. Howell, T. Hsyu, P. L. Kelly, S. Kumar, L. Li, W. Li, M. A.
Malkan, C. Manzano-King, C. McCully, P. E. Nugent, Y.-C. Pan, L. Pei, B. Scott, R. O.
Sexton, I. Shivvers, B. Stahl, T. Treu, S. Valenti, H. A. Vogler, J. L. Walsh, and X. Wang.
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj. The
Astrophysical Journal, 841(1):64, May 2017. doi: 10.3847/1538-4357/aa6dfa.

W. Zheng, P. L. Kelly, and A. V. Filippenko. An Empirical Fitting Method to Type Ia
Supernova Light Curves. III. A Three-parameter Relationship: Peak Magnitude, Rise
Time, and Photospheric Velocity. ApJ, 858(2):104, May 2018a. doi: 10.3847/1538-4357/
aabaeb.

W. Zheng, P. L. Kelly, and A. V. Filippenko. An Empirical Fitting Method to Type Ia
Supernova Light Curves. III. A Three-parameter Relationship: Peak Magnitude, Rise
Time, and Photospheric Velocity. ApJ, 858(2):104, May 2018b. doi: 10.3847/1538-4357/
aabaeb.


	Contents
	List of Figures
	List of Tables
	Introduction
	Supernovae
	Observables
	Supernova Cosmology
	This Thesis

	Photometry of 93 SNe Ia
	Introduction
	Observations
	Data Reduction
	Results
	Discussion
	Conclusion
	Sample Information
	Light Curves

	Spectroscopy of 247 SNe Ia
	Introduction
	Data
	Classification
	Results
	Conclusion
	Sample Information

	deepSIP
	Introduction
	Data
	Models
	Results
	Conclusion
	Supplementary Light Curves
	Light-Curve Fitting
	Usage

	SN Ia Snapshot Distances
	Introduction
	The Snapshot Distance Method
	Validating the Snapshot Distance Method
	Discussion

	Peculiar-velocity Cosmology with Supernovae
	Introduction
	Data
	Method
	Results
	Conclusion
	Snapshot Distance Sample Selection

	Conclusion
	Bibliography



