
UC Berkeley
UC Berkeley Previously Published Works

Title
Debugging as a Context for Fostering Reflection on Critical Thinking and Emotion

Permalink
https://escholarship.org/uc/item/1x47k4v1

Authors
DeLiema, David
Dahn, Maggie
Flood, Virginia J
et al.

Publication Date
2019-09-12

DOI
10.4324/9780429323058-13
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1x47k4v1
https://escholarship.org/uc/item/1x47k4v1#author
https://escholarship.org
http://www.cdlib.org/


This is an accepted book chapter published by Routledge in the book, “Deeper Learning, Communicative 
Competence, and Critical Thinking: Innovative, Research-Based Strategies for Development in 21st 
Century Classrooms,” in 2020, available online: https://www.routledge.com/Deeper-Learning-Dialogic-
Learning-and-Critical-Thinking-Research-based/Manalo/p/book/9780367262259 
 
Reference: DeLiema, D., Dahn, M. Flood, V. J., Abrahamson, D., Enyedy, N., Steen, F. F. (2020). 
Debugging as a context for collaborative reflection on problem-solving processes. In E. Manolo (Ed.), 
Deeper Learning, Communicative Competence, and Critical Thinking: Innovative, Research-Based 
Strategies for Development in 21st Century Classrooms (part 4, chapter 12). New York: Routledge. 
 



Debugging as a context for fostering reflection on critical thinking and emotion 
  
David DeLiema1, Maggie Dahn2, Virginia J. Flood1, Ana Asuncion3, Dor Abrahamson1, Noel Enyedy4, 
Francis Steen2 

  

University of California, Berkeley1; University of California, Los Angeles2; 9 Dots3; Vanderbilt 
University4 

  
Summary: The process of handling breakdowns in computer programming, a practice known as 
debugging, provides an auspicious context for fostering teacher-student communication about critical 
thinking. Toward this end, this chapter explores two practical classroom designs. The first design focuses 
on student journaling and art making about critical thinking processes and emotional experiences that 
undergird debugging. The second design focuses on instructors modeling and prompting for reflection on 
critical thinking strategies during debugging. These teaching strategies lead to growth in students’ 
impressions of their skills for handling failure and their confidence during failure, both vital components 
of environments that promote deeper learning. 
 
Introduction 
 
When designing classroom activities to foster communicative competence, critical thinking, and deeper 
learning, educators should consider a common albeit challenging event in the learning process: the 
moment that a course of action breaks down, ushering in “a more reflective or deliberative stance toward 
ongoing activity” (Koschman, Kuutti, Hickman, 1998, p. 26; ; see also Schön, 1983). Because 
breakdowns in learning catalyze reflection and storytelling (Heider, 1958; Herman, 2009; Weiner, 1985), 
they naturally elicit communication about the learning process (DeLiema, 2017; Heyd-Metzunayim, 
2015). In addition, the causes of failure are numerous, interconnected, and distributed across people, 
materials, and time (Hesslow, 1988; Suchman, 1987). Reasoning about failure thus warrants critical 
thinking: identifying facts about the breakdown, formulating alternative conjectures about possible 
causes, clarifying points of confusion, developing new knowledge about the problem, and presenting and 
weighing arguments for why an intervention might work (Facione, 1990; Greiff, Wüstenberg, Csapó, 
Demetriou, Hautamäki, Graesser, & Martin, 2014; Hmelo-Silver, 2004). Furthermore, moments of failure 
create a bedrock for deeper content learning when teachers provide responsive scaffolding (Kapur, 2008; 
Schwartz & Martin, 2004). 

These observations raise a central question: How can educators take advantage of these 
opportunities in concert? In this chapter, we describe a pedagogical framework designed to promote 
deeper learning by uniting communication and critical thinking around moments of failure. In the 
proposed framework, students communicate about how they intend to address upcoming, as-yet-unknown 
breakdowns in learning, including by planning critical thinking strategies for moments of failure and 
approaches to negotiating the emotional components of failure. In turn, when breakdowns arise in 
learning, instructors respond to what students have communicated by modeling, prompting for, and 
reflecting on students’ proposed strategies for handling failure. Afterwards, students reflect on past 
failures, evaluating the efficacy of their strategies and documenting their emotional experiences. This 
pedagogical approach establishes a connection between the application of critical thinking strategies 
during failure and communication about the critical thinking process before and after failure. In addition, 



this approach acknowledges the inextricable relationship between thinking and emotion. Beyond 
providing examples of how instructors engage with this approach, this chapter covers preliminary 
evidence that these teaching strategies lead to growth in students’ impressions of their skills for handling 
failure and their confidence during failure, both vital components of environments that promote deeper 
learning. 
  
Description of teaching strategies 
 
Computer programming as a context for communication about critical thinking 
 
Practice-based documentation of these teaching strategies comes from the domain of computer science. In 
computer science, identifying and correcting errors, known as debugging, is part and parcel of the pursuit. 
For programmers, debugging is a routine part of coding, supported by specialized tools (e.g., syntax 
checkers and print statements) and critical thinking strategies (Murphy-Hill, Zimmermann, Bird, & 
Nagappan, 2013; Perscheid, Siegmund, Taeumel, & Hirschfeld, 2017). Although programmers develop 
debugging skills by coding, it is challenging to learn independently (Klahr & Carver, 1988). Current 
techniques for supporting debugging learning include providing students with resources to make 
debugging more tractable or efficient (Katz & Anderson, 1987; Ko & Myers, 2009), designing game-
based contexts to facilitate debugging (Liu, Zhi, Hicks, & Barnes, 2017), and providing students with 
faulty artifacts to repair (Fields, Searle, & Kafai, 2016). Educational researchers have paid less attention 
to teaching strategies that promote and sustain student-driven communication about the critical thinking 
and emotional processes that surround debugging.  
  
Planning and reflecting on critical thinking strategies for failure 
  
Design principles 
Our journaling and art making designs invited 5th – 10th grade students to communicate about critical 
thinking strategies and emotional experiences that surround debugging. To frame this work, instructors 
told stories about professionals’ routine encounters with failure en route to progress, a practice found to 
normalize failure and motivate students (Lin-Siegler, Ahn, Chen, Fang, & Luna-Lucero, 2016). Students 
then envisioned “strategies and skills for dealing with everyday problems in school” (Oyserman, Terry, & 
Bybee, 2002, p. 316), specifically by planning critical thinking strategies for debugging. Students also 
created artwork about debugging that moved beyond conventional story archetypes about failure, 
examining how emotion shapes the process of building knowledge (Jaber & Hammer, 2016). Below, we 
outline the specifics of these instructional strategies.    
 
Using journals for planning and reflecting  
At the start of a coding session, students used personal coding journals to reflect on their past critical 
thinking strategies for debugging and set an intention to learn a new critical thinking strategy for 
debugging. Drawing on Twitter conventions, students wrote brief statements followed by hashtags: 
phrases that describe the topic of the message or “the tone of the message or the tweeter's emotions” 
(Mohammad & Kiritchenko, 2015, p. 302). Hashtags serve as “instrument(s) for creative self-expression 
and language play” (Heyd & Puschmann, 2017, p. 51). In our coding workshops, students wrote in 
personal journals responding to the following prompts: 



● What debugging strategy worked well for you last time? #Hashtags 
● Tweet your goal for when coding gets tough today. Choose one new debugging strategy to work 

on. #Hashtags. 
The instructors framed students’ goal setting by telling a story at the beginning of class about how 
someone outside of a coding context insightfully responded to failure, such as how a rock climber worked 
through a tough section or how an artist learned to draw an object that had previously stymied her. 
Instructors also gave students a chance to consult a visual map of the debugging-specific critical thinking 
strategies students surfaced at the workshop. 

At the end of class, students evaluated the efficacy of their past debugging strategies and planned 
their approach to the next coding session. Students wrote specifically in response to the following 
prompts: 

● Tweet a description of a bug you encountered. #Hashtags 
● How well did your debugging strategy work? #Hashtags 
● How do you think the bug got into your code in the first place? #Hashtags 
● How will you tackle the next bug you encounter? #Hashtags 

On some days, students wrote their goals and reflections on sticky notes, placing them on a large poster 
board (see Figure 1) or next to their laptop keyboards. 
 

 
Figure 1. Students’ sorted sticky note reflections; the overlaid image shows a zoomed-in portion. 
 
 
 



Communicating about emotion and thinking processes through visual artwork  
To make space for alternative forms of communication about the learning process, we capitalized on the 
centrality of emotion (Langer, 1953), metacognition (Goldberg, 2005), and transformation (Pelowski & 
Akiba, 2011) in art making. Students created abstract watercolor paintings, comic-strip-like panels, data 
visualizations, and code poems about coding and debugging (see examples and brief descriptions of each 
art project in Table 1 below). Each art class focused on an essential question (e.g., “How do artists use 
color, shape, texture, etc. to communicate different feelings?”) and began with a warm-up conversation 
about the topic. The warm-up invited storytelling about students’ recent experiences with coding. To 
familiarize themselves with the art materials and the topic, students then engaged in a quick, exploratory 
art making activity. After considering a broad range of works of art on the topic, students then used open-
ended studio time (stretching over a few days) to develop their work of art. During art making, the 
instructor scaffolded students’ work by encouraging students to adopt flexible goals and remain open to 
uncertainty and surprise, allow the materials to guide exploration of the topic, ground the artwork in 
memories of coding experience, and embrace the challenge of producing art (Dahn, DeLiema, & Enyedy, 
in press). Students concluded by writing artist statements and sharing their artwork in whole class and 
small group settings. A central outcome of these art making activities was discovering different ways of 
seeing, documenting, and showing experience, in particular focused on the relationship between thinking 
and emotion during failure.  
 
Table 1. Art making activities and example projects 

Description of art making  Student example 

Abstract watercolor paintings: 
Students used watercolor, oil 
pastel, and colored pencils to 
create abstract depictions of 
emotions they experienced 
during moments of coding and 
debugging 

In this piece I wanted to show a common 
emotion that I felt when I solve a bug. In 
this case that emotion was the feeling of 
awareness. To me being aware feels clear, 
bright, colorful, curious, and experimental. I 
used light and (cool) bright colors to 
represent brightness, and contrast. 

Comic-strip-like panels: Students 
created a simple coding and 
debugging story focused on an 
event unfolding over time 

When I get a bug, I feel like a Rubiks 
Cube. Hard to solve, but looks easy. 
But then, an explosion becomes an 
answer.  

Data visualizations: Students 
collected data on a number of 
self-identified factors that were 
interesting to them during their 
coding and debugging process; 
students used data to create a 
visual representation of their 
experiences 

Symbols indicate progression of how 
time was spent, syntax errors, # of runs 
until code was correct, grammatical 
errors, # of times me and my friends 
laughed, # of times me and my friends 
talked about code, # of times me and my 
friends played cards 



Code poems: Students printed 
out in-process code and then 
wrote free verse poems inspired 
by the lines in their code and 
memory of their experience  

This didn’t look hard but it didn’t look 
easy at all 
#confused 
I’m trying to focus but this is taking me 
so long 
#tired 
A syntex error, that’s bad 
#I messed up #I have to redo it 
After a while I feel like my brain is 
going to explode 
#Exhausted 
After everything I finally completed the 
task 
#I will #Dead bug #bye bug 

 
Engaging with critical thinking during failure 
 
Design principles 
The prior section focused on teaching strategies that encouraged students through journaling and art 
making to plan before and reflect after moments of failure. In this section, we describe how our 
instructors incorporated students’ ideas about critical thinking during moments of failure. This teaching 
strategy helped form a close connection between planning, enacting, and reflecting, and ensured that 
students’ prior communication about critical thinking strategies and emotion informed their coding 
practice. In particular, teachers and students focused on critical thinking strategies valuable to the process 
of navigating failure (Lewis, 2012), a practice programmers have long sought to support and understand 
(Ducassé & Emde, 1988; Freeman, 1964; Ripley & Druseikis, 1978). Below, we outline the specifics of 
these instructional strategies.   
  
Modeling and prompting for critical thinking strategies during debugging 
The foundation of this design is a set of critical thinking strategies for debugging that we amalgamated 
from research and from professional programmers’ reflections on their practice (e.g., Zeller, 2009).  
 
1.     Pre debugging 

a. Get in the debugging state of mind: fearlessness, curiosity, thoughtfulness. 
b. Recall student’s personally selected debugging goal/strategy for the day. 

2.     What is going wrong? 
c. Describe in granular detail what the program is doing when you run it. 
d. Describe in granular detail what you want to the program to do when you run it. 

3.     Propose an explanation for why the program is going wrong 
e. Propose a starting place to search for the bug. 
f. Explain what is happening in the code at that point. 
g. Explain how the code might be causing the problem when you run the program. 

4.     Attempt to fix the bug 
h. Form a plan to repair the code. 
i. Rewrite the code. 



j. Explain why this plan might work. 
k. Run the code. 
l. Return to step 2 if bug persists.  

5.     Reflect on the debugging process 
m. Reflect on the process taken during the debugging exchange. 
n. Talk about how the bug got there in the first place. 
o. Talk about goals for the next debugging exchange. 

  
These debugging strategies correspond to recognized facets of critical thinking (Facione, 1990; Haynes, 
Lisic, Goltz, Stein, & Harris, 2016) by inviting students to decode the significance of observed outcomes 
of the program (c and d); analyze the argument or logic of their code (e and f); evaluate where that logic 
breaks down (g); formulate alternative conjectures about ways to fix the breakdown (h, i, and l); justify 
conjectures about the etiology and resolution for the breakdown (j and m); and examine one’s own 
assumptions in iterative cycles of attempting a fix (l). In addition, the state of mind strategy aims to 
deliver on the goal of cultivating affective dispositions in critical thinking (Facione, 1990), such as self-
confidence, open-mindedness, and alertness. Lastly, two strategies (b and o) incorporate students’ earlier 
communication about critical thinking during debugging, uniting the processes of planning and enacting.  

In their pedagogy, instructors participated in one-on-one and small-group debugging sessions 
with students. These sessions were informed by the tenets of reciprocal teaching (Palincsar & Brown, 
1984). Instructors aimed to understand students’ baseline debugging skills and looked for opportunities to 
model new and relevant critical thinking strategies, incorporating both the expert heuristics noted above 
and the strategies students planned in their journals. Modeling the strategy entailed carrying out the 
strategy and narrating what an expert might think when enacting it (Collins, Brown, & Newman, 1989). 
Moving forward, instructors then prompted students to use that strategy and reflect on how it works. Over 
the long run, instructors during debugging sessions with students aimed to listen to students articulate 
their strategies for debugging code. 
  
Research evidence 
 
This research took place in 2-week summer computer programming workshops (2 sessions; n = 120; 47 
girls) and in 8-day weekend computer programming workshops (3 sessions; n = 123; 55 girls). The 
workshops served late elementary students, middle school students, and early high school students, all of 
whom either demonstrated financial need or attended schools with high proportions of students from low-
income families. Undergraduate computer science majors at the beginning stages of developing their 
teaching practice worked as lead instructors. Students used four programming contexts -- 
OpenProcessing, PixelBots, Minecraft, and Lego Robotics -- to learn foundational computer science 
concepts in project-based environments. We documented classroom discourse during programming with 
multiple GoPro cameras and with screen recordings of students’ coding activities, we photographed the 
artifacts students produced along the way (e.g., journals and artwork), and we conducted semi-structured 
interviews with students at the end of the workshop to gauge their thoughts about debugging. In addition, 
we collected survey measures of students’ impressions of their own confidence and skill level with 
debugging.  

Our analysis of artifacts and interviews involved iterative stages of looking at subsets of the data, 
writing memos about tentative themes emerging from the data, forming and reducing 



categories/constructs, sharing inferences with the research team, and returning to the data, all features of 
the constant comparative method (Glaser, 1967). Our analysis of classroom discourse data focused on 
creating multimodal transcripts of moments of debugging and considering how participants worked 
together to accomplish debugging. This approach followed conventions of interaction analysis research 
(Jordan & Henderson, 1996; Goodwin, 2018). In our transcripts below, brackets signal overlapping talk, 
lines with arrows connect strips of talk to co-occurring changes in the environment and/or non-verbal 
actions of participants, words in italics describe observable action, numbers in parenthesis describe gaps 
in talk in seconds, and punctuation (e.g., a question mark) marks grammatical structure.   

  
Journaling and art making about critical thinking and emotion 
 
We found that asking students to journal about debugging generated reflection on a wide array of critical 
thinking strategies. Responding to the prompt to plan “one new debugging strategy” and then evaluate 
how well a past “debugging strategy work[ed],” students across two eight-session weekend workshops 
surfaced numerous strategies  (see Table 2).  
 
Table 2. Categorization of the debugging strategies students documented in their journals 

Category Strategy Student quote 

Work alone Try to do it by myself 

Believe in myself I want to be able to believe in myself 

Myself 

Remind myself of 
past successes 

When coding gets tough, I’m going to remind  myself 
how far I’ve come 

Teacher If or when I have trouble…I would ask one of my 
mentors for help 

Peer When it gets tough I will ask my peers for help 

Social support 

Unspecified When it gets tough ask someone 

Shyness My goal is not to be shy 

Anger Don’t get mad if I fail 

Disappointment Don’t be disappointed 

Relaxation #becalm 

Fear When coding gets hard…don’t be afraid to be wrong 
#Don’t be Afraid 

Emotion 

Frustration Don’t be frustrated when it doesn’t come out the way I 
wanted 



Observe My goal for when coding gets tough is to look very 
closely for my  mistakes 

Memory I’ll try to not to forget which is left and right… 

Prior knowledge My personal goal for the day when it gets tough is to 
put all of my knowledge I have learned before into one 

Cognitive 

Think #Think about it 

Console Joey helped me find the bug using console #thanksfam Coding specific 
tools 

Stepper tool I used the stepper to fix the problem 

Effort …I want to be able to fix it and not give up 

Novelty Think of different ways to solve something                                
#trydifferentstrategies 

Prior exemplars We looked up the zene 

Experimentation #fun experimenting (with code!) 

Play Play with a lot then ask advice 

Focus Consintrate on the question 

Find the cause If coding gets tough today, I will…find whats wrong 

Make mistakes Moreover, when we make mistakes it helps us learn 

Prepare I will study to give me stuff that I need for the solution 

Faith #believe 

Creativity #be creative 

Define Said what the x, y 

Miscellaneous 

Interact We worked with it…and got our answer 

No strategy My goal is to make it work after solving 

 
 Table 2 documents the set of actions that students positioned as strategies for debugging. Many 
of these strategies allude to domain-general critical thinking moves (Facione, 1990; Haynes et al., 2016): 
examining ideas (define, prior exemplars), analyzing arguments (find the cause, stepper tool), identifying 
new information (console), self-examining (prior knowledge), and drawing conclusions 
(experimentation). Other strategies, such as play, creativity, thought, and preparation, might encompass a 
number of critical thinking moves without explicitly labeling them. Yet other strategies implicate 



resources pivotal to critical thinking: perception, memory, peers, teachers, and students themselves. 
Furthermore, in line with the recognition that there are dispositional elements to critical thinking 
(Facione, 1990), students described a range of strategies involving emotion, such as relaxing, disposing of 
fear, and curtailing frustration.  

Separately, three art projects (abstract emotion drawings, code poems, and three-panel stories) 
offered a space for students to communicate about how affect surrounds moments of critical thinking 
during failure (Dahn, DeLiema, & Enyedy, under review). Students provided vibrant accounts of how it 
feels during failure, including feeling down (“when you gloomy, you really don’t see anything but 
nothing”), angry (“Mad is a fist that you are holding up”), and alert (“the feeling of awareness”). 
Moreover, students documented how emotions change or layer up, such as feeling “sad because I'm 
getting frustrated” or “how nervousness can take over, yet can become something beautiful if you change 
the perspective on it.” In particular, students described emotional states that arose during specific stages 
of the code writing process: “OH NO A BUG #MAD #feelingsmall,” “The red is supposed to represent 
the anger when I don’t get a bug,” and “Bug arises. Time to fix it. #Calm #Cool.” Because debugging is 
such a rich site for critical thinking, this artwork challenged our research-practice team to continue to 
grapple with how emotion, and interactions between emotions, co-occurred with and perhaps shaped how 
students worked through problem solving.  

Importantly, students viewed making and communicating about art as capable of transforming 
their approach to coding. Students described a number of transformative potentials: self-understanding 
and awareness (“I learned how I got mad, how I got feelings”), setting expectations (“It made me 
understand how I feel and how I will when a bug comes”), shifting state of mind (“give me some hope 
and that I can fix it”), resting/relaxing/calming (“To keep you peace from overstress”), shifting emotion 
(“Art changed my way of feeling about coding”), and helping with confidence during problem solving 
(“And when I go to my other class after art, I feel like I can pass my challenge”). Similarly, students 
viewed their public-facing sticky note reflections as supports for thinking through and emotionally coping 
with debugging. Students discussed becoming aware that everyone debugs (“And when you look at other 
people’s sticky notes you’re like man I’m not the only person with this problem”), learning from the 
errors of their peers (“they can just go to the wall and learn from the other people’s mistakes”), recalling 
debugging strategies (“and it helps me know what I did so that next time I make a bug I can use that same 
process too”), returning oneself to a calm emotional state (“I feel like it let the stress out”), recognizing 
the classroom’s growth around debugging (“It’s just fun seeing your progress with your classmates like 
freaking out to calm”), and communicating one’s experiences (“I thought it was better to let out our 
feelings instead of just holding it in”). 

Overall, these data show that given the opportunity to communicate about failure through 
journaling and art making in a supportive classroom environment, students generated a wide array of 
critical thinking strategies and developed rich insights into how emotion surrounds thinking during 
failure. Moreover, students believed that these reflective experiences transformed their experience of 
navigating the critical thinking and affective demands of failure, such as developing self-understanding, 
setting new expectations, reminding themselves of effective strategies, drawing on community 
knowledge, or simply honoring gradual progress.  

 

 



Modeling, prompting, and reflecting on critical thinking during debugging 

 
We now turn attention to critical thinking during debugging. In order to support students’ more 
autonomous resolution of bugs, instructors often attuned their questioning and referring strategies to 
shape students’ perception of the affordances of the programming environment for debugging (Flood, 
DeLiema, Harrer, & Abrahamson, 2018). This enskilment process (Ingold, 2000) incorporates 
conversation practices such as the use of vague references and contracting and expanding question 
agendas. Here we describe three other teaching strategies: modeling a new critical thinking strategy, 
prompting for a student to apply a critical thinking strategy, and reflecting after the fact on the critical 
thinking process. 

In the first excerpt, an instructor models a critical thinking strategy for debugging. In this 
exchange, a student’s repeat loop is missing its final parenthesis, a bug known as a syntax error. With 
syntax errors, instructors can directly point them out and offer a way to remember a fix (e.g., introducing 
a phrase like, “every parenthesis needs a friend”). When this happens, instructors privately enact critical 
thinking strategies used both to find and fix the bug. In other debugging interactions with students, 
instructors explicitly model critical thinking strategies used to locate the bug (see Figure 2). In the 
transcript below, the instructor, Ben, models for the student, Mav, where to look for correct syntax and 
how to compare correct and broken syntax. 
  



 
Figure 2. Modeling a critical thinking strategy: Comparing broken code with working code in the API 

  
The instructor guides the student to a fix while introducing a critical thinking strategy for 

debugging: visually comparing correct syntax in the API with the student’s broken syntax. In terms of 
critical thinking, this approach explicitly models how to query the coding environment for information, 
systematically examine competing approaches to writing code (the API syntax and the student’s own 
syntax), draw a conclusion about a missing element, and ultimately self-correct. By publicly narrating 
and showing how to compare broken and accurate syntax, the instructor makes visible a set of critical 
thinking moves during failure that the student could independently apply to subsequent syntax errors. 
 Second, we examine how an instructor prompts for a student to use a tool in the programming 
environment that facilitates critical thinking about logic errors: situations in which the program runs but 
results in output the student does not intend or want. Instead of directly pointing out a flaw in the 
student’s reasoning, the instructor, Jad, prompts the student, Zoa, to use a tool to discover the underlying 



cause of the observable problem (see Figure 3). This example also illustrates how the goals students set in 
their coding journals can motivate the exploration of a debugging strategy. 

 
Figure 3. Prompting for use of a critical thinking tool: The stepper  



  
In this example, an instructor offers debugging support by asking the student about her debugging 

goal for the day and drawing attention to her debugging statistics. Using these two reflective practices as a 
point of departure, the instructor then prompts for exploration of a critical thinking tool for debugging. 
The tool, known as a stepper, promotes the integration of a number of critical thinking strategies: 
analyzing the argument or logic in the code line by line, evaluating the relationship between that logic 
and the output of the program (how the PixelBot moves and paints), and self-correcting by drawing a 
conclusion about a flaw in the code. Indeed, after prompting the student to try the stepper tool, the 
instructor in line 26 describes its value: helping the student to independently find (“help you see”) the 
source of the problem (“where things are going wrong”). Without the instructor describing what has 
caused the problem, the student is nonetheless able to use the stepper to locate the trouble spot and start to 
repair it (line 29 in Figure 3). 

Our third example (see Figure 4) documents how reflection on the critical-thinking process can 
incorporate debugging goals from students’ journals and take place in conversation just after a bug fix. In 
the following exchange, the student, Lin, and the instructor, Teo, have already worked together to 
successfully repair her code when the instructor prompts for reflection.  

In this exchange, the instructor prompts for post hoc analysis of prior critical thinking strategies 
immediately after the bug is fixed. The student provides a label (experiment) for a critical thinking 
strategy she used, and then the instructor and a peer synchronously highlight another critical thinking 
strategy (inspect). The group then discusses whether experimenting and inspecting advanced Lin’s 
debugging goal for the day. Lin describes not meeting one of her goals: focusing. The instructor follows 
up by describing goal setting as a progressive practice, something we’re “always working on.”  This 
interaction demonstrates how instructors and peers can collaboratively reify a set of actions into 
overarching descriptions of critical thinking strategies, and then evaluate whether those strategies advance 
students’ debugging goals. This excerpt documents how collaborative reflection during coding can tie 
together, reify, and support the planning and enacting of critical thinking.  



 
Figure 4. Reflecting on critical thinking strategies after fixing a bug. 

 
Overall results of instructional strategies 
 
A number of interview and survey data sources used across our coding workshops suggest that the 
cumulative impact of our discourse and journaling/art making learning designs (core parts of all of our 
coding workshops) increased students’ sense of their debugging skill level, their confidence with 
debugging, and their awareness of debugging strategies. With respect to skill level and confidence, 
students across three coding workshops (Tables 3 and 4) showed the same trend from pre to post survey 
data on a five-item Likert scale: fewer students reporting having low (terrible, bad, or fine) debugging 
skill/confidence and more students reporting having high (good, extremely good) debugging 



skill/confidence (with average gains, calculated by subtracting the pre-test Likert score (1-5) from the 
post-test Likert score (1-5) for each student, of .59 in winter 2017; .76 in summer 2017; and .41 in Spring 
2018).  
 
Table 3. Survey results about students’ debugging skill level 

Question: How good are you at debugging code? 

  Pre 
Winter 2017 

Post 
Winter 2017 

Pre 
Summer 2017 

Post 
Summer 2017 

Terrible 6.12% 4.08% 11.90% 0% 

Bad 14.29% 8.16% 13.01% 3.57% 

Fine 48.98% 14.29% 35.71% 21.43% 

Good 26.53% 63.27% 30.96% 59.53% 

Extremely Good 4.08% 10.20% 8.33% 15.48% 

  n = 49 n = 84 

 
Table 4. Survey results about students’ confidence with debugging 

Question: How would you feel when you come across a problem with your code? 

  Pre 
Spring 2018 

Post 
Spring 2018 

Not at all confident that I can fix it. 0% 0% 

Slightly confident that I can fix it. 16.67% 6.25% 

Moderately confident that I can fix it. 47.92% 29.17% 

Very confident that I can fix it. 22.92% 50.00% 

Extremely confident that I can fix it. 12.50% 14.58% 

  n = 48 



   
In addition, we narrowed our focus in Spring 2018 and asked students whether they believed they could 
create a helpful strategy for debugging (see Table 5). A similar trend emerged in which fewer students 
reported disagreeing with the statement that they could create debugging strategies and more students 
reported agreeing with this statement (leading to an average Likert scale gain of .48). 
  
Table 5. Survey results about students’ capacity to create new debugging strategies 

 I can create a helpful strategy to find the problem with my code. 

  Pre 
Spring 2018 

Post 
Spring 2018 

Not at all 4.17% 2.08% 

Slightly 16.67% 2.08% 

Moderately 37.50% 29.17% 

Very 29.17% 50.00% 

Extremely 12.50% 16.67% 

  n = 48 

 
Apart from students reporting higher skill level/confidence in debugging and higher likelihood that they 
could invent debugging strategies, we also gathered evidence that students at the end of the summer 2017 
2-week coding workshop could talk extemporaneously about a number of debugging strategies they had 
used throughout camp. During in-depth end-of-workshop interviews with 20 students, researchers asked: 
“What is your debugging process -- how do you get rid of bugs?” Every student listed multiple debugging 
strategies. Overall, students discussed the strategies in Table 6 below. 
  
Table 6. Categorization of students’ stated debugging strategies during an end of workshop interview 

Percentage of students who 
described this strategy 

List of strategies 

5% - Use what I learned 
- Check the most recent change 
- Stay calm 
- Slow down code 
- Figure it out myself 
- Classify the bug type 



10% - Comment out code 
- Focus 

15% - Use the stepper tool 

30% - Automatic Syntax Checker 

40% - Experiment 
- Look for common syntax errors 

50% - Ask for help 
- Look at/Re-read my code 

60% - Compare with working code 

  
The table of strategies ranges from specific tools in the coding environment (e.g., stepper tool) and 
approaches to reviewing code (reread my code) to methods for tinkering with code (e.g., experiment) and 
cognitive/affective states (e.g., focus and stay calm). The table suggests that students new to coding can 
start to consider a relatively wide range of critical thinking and affective practices they enact to debug 
code. 
  
Discussion 
 
Because breakdowns in learning naturally motivate reflection on a complex set of causes and possible 
resolutions (DeLiema, 2017; Heider, 1958; Herman, 2009; Weiner, 1985), they provide opportunities for 
communication about the critical thinking process. In this chapter, we described two instructional 
strategies designed to support communication about critical thinking: (1) student journaling and art 
making that focused on planning and examining critical thinking strategies and emotional experiences 
that surround failure; and (2) instructors modeling, prompting for, and reflecting on critical thinking 
strategies with students during failure to explore both expert debugging heuristics and students’ own 
goals. These designs prioritized public reflection on and communication about the critical thinking 
process (Collins, Brown, & Newman, 1989), both in stable artifacts (journals and artwork) and during 
coding. We argue that these teaching strategies are effective because they explicitly bridge planning, 
reflecting, and enacting, helping ensure that students and instructors actively pursue their plans for critical 
thinking during failure. Moreover, because this approach values reflection on the phenomenology of 
failure, or how it feels to encounter a breakdown (Jaber & Hammer, 2016; Sengupta, Dickes, & Farris, 
2018), it makes possible conversations in the classroom about how emotion shapes students’ selection of 
critical thinking strategies for failure, an insufficiently examined but important facet of problem solving. 
 
 
 
 



Connections to deeper learning 
 
Even though this chapter did not provide empirical evidence of the capacity of these teaching strategies to 
promote deeper learning, we would argue that fostering in students a capacity to think critically during 
failure, including by acknowledging affect and building students’ confidence during failure, constitute 
key elements of pathways that foster high quality learning. To be more specific, pedagogical frameworks 
such as preparation for future learning (Schwartz & Martin, 2004) and productive failure (Kapur, 2008) 
have empirically documented the value of failure for long-term, robust learning. However, as Kapur 
(2008) notes, “learners’ frustration thresholds and level of engagement in solving the problem, for 
example, may be particularly critical” (p. 414). Bringing experiences with frustration and other affective 
states out of the shadows and into public classroom discourse, whether through journaling or art making, 
invites collective approaches to understanding and supporting how emotion shapes critical thinking. In 
this way, deep learning may best emerge from failure when a community of teachers and students actively 
searches for ways to understand and communicate about emotion and critical thinking, rather than when 
students privately process breakdowns in learning. Moreover, explicitly working to build students’ 
authority to debug (Engle & Conant, 2002), including by guaranteeing access to relevant resources, 
empowers students themselves to generate deeper learning from struggle.  
 
Limitations and future work 
 
There a number of limitations to this work at its current stage. First, the link between the proposed 
teaching strategies and deeper learning is only hypothesized; future work should investigate whether 
communication about affect and critical thinking surrounding failure promotes robust learning. In a 
similar way, this study is limited by its focus on select moments of teaching and coverage of aggregate 
outcomes. More granular, longitudinal case studies, and systematic experimental work, could more 
meticulously document how and under what conditions these teaching strategies promote learning. In 
addition, even though we argued that failure provides a useful point of departure for communication about 
critical thinking, this assumption warrants inquiry. In particular, future research could explore these 
teaching strategies around moments of success in the learning process. Lastly, the data used in this study 
explored a limited dimension of time with respect to communication about failure. Journal reflections 
took place at the start and end of class, and interviews took place at the end of a 2-week workshop. Future 
work could explore whether and how student-driven communication about critical thinking strategies for 
failure, positioned at different points in the learning process (e.g., just before or just after a moment of 
failure), might promote more relevant or finer-grained planning with implications for the quality of 
learning.   
 
Acknowledgements 
This material is based upon work supported by the National Science Foundation under Grant No. 
1612660, 1612770, and 1607742. 
 
 
 
 
 



References 
 

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of 
reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, Learning, and Instruction: 
Essays in Honor of Robert Glaser (pp.  453-494). Hillsdale, NJ: Lawrence Erlbaum. 

Dahn, M., DeLiema, D., & Enyedy, N. (in press). Art as a point of departure for understanding student 
experience in learning to code. Teachers College Record. 

DeLiema, D. (2017). Co-constructed failure narratives in mathematics tutoring. Instructional Science, 
45(6), 709-735. 

Ducassé, M., & Emde, A. M. (1988). A review of automated debugging systems: Knowledge, strategies 
and techniques. In T. N. Nam (Ed.), Proceedings of the 10th International Conference on 
Software Engineering (pp. 162-171). Los Alamitos, CA: IEEE Computer Society Press. 

Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary 
engagement: Explaining an emergent argument in a community of learners’ classroom. Cognition 
and Instruction, 20(4), 399-483. 

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational 
assessment and instruction (ERIC Document Reproduction Service No. ED 315 423). Retrieved 
from PhilArchive open access website: https://philarchive.org/archive/FACCTA. 

Fields, D. A., Searle, K. A., & Kafai, Y. B. (2016). Deconstruction kits for learning: Students' 
collaborative debugging of electronic textile designs. In P. Blikstein, M. Berland, & D. A. Fields  
(Eds.), Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education 
(pp. 82-85). New York: ACM. 

Flood, V. J., DeLiema, D., Harrer, B. W., & Abrahamson, D. (2018). Enskilment in the digital age: The 
interactional work of learning to debug. In J. Kay & R. Luckin (Eds.), Rethinking Learning in the 
Digital Age: Making the Learning Sciences Count, 13th International Conference of the Learning 
Sciences (ICLS) 2018, Volume 3 (pp. 1405-1406). London, UK: International Society of the 
Learning Sciences. 

Freeman, D. N. (1964). Error correction in CORC, the Cornell Computing Language. AFIPS Conference 
Proceedings, Volume 26, Fall Joint Computer Conference (pp. 15-34). Baltimore, MD: Spartan 
Books. 

Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4), 
436–445. 

Goodwin, C. (2018). Co-operative action. New York: Cambridge University Press. 
Goldberg, P. D. (2005). Metacognition and art production as problem solving: A study of third grade 

students. Visual Arts Research, 31(2), 67-75. 
Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A. C., & Martin, R. 

(2014). Domain-general problem solving skills and education in the 21st century. Educational 
Research Review, 13, 74–83. 

Haynes, A., Lisic, E., Goltz, M., Stein, B., & Harris, K. (2016). Moving beyond assessment to improving 
students’ critical thinking skills: A model for implementing change. Journal of the Scholarship of 
Teaching and Learning, 16(4), 44-61. 

Heider, F. (1958). The psychology of interpersonal relations. Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Herman, D. (2009). Basic elements of narrative. Malden, MA: Wiley-Blackwell. 



Hesslow, G. (1988). The problem of causal selection. In D. J. Hilton (Ed.), Contemporary science and 
natural explanation: Commonsense conceptions of causality (pp. 11–32). Brighton, England: 
Harvester Press. 

Heyd-Metzuyanim, E. (2015). Vicious cycles of identifying and mathematizing: A case study of the 
development of mathematical failure. Journal of the Learning Sciences, 24(4), 504-549. 

Heyd, T., & Puschmann, C. (2017). Hashtagging and functional shift: Adaptation and appropriation of the 
#. Journal of Pragmatics, 116, 51-63. 

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational 
Psychology Review, 16(3), 235–266. 

Ingold, T. (2000). The perception of the environment: Essays on livelihood, dwelling and skill. Oxford, 
UK: Routledge. 

Jaber, L. Z., & Hammer, D. (2016). Engaging in science: A feeling for the discipline. Journal of the 
Learning Sciences, 25(2), 156-202. 

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the 
Learning Sciences, 4(1), 39-103. 

Kapur, M. (2008). Productive failure. Cognition and Instruction, 26(3), 379–424. 
Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies. Human-

Computer Interaction, 3(4), 351-399. 
Klahr, D., & Carver, S. M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, 

learning, and transfer. Cognitive Psychology, 20, 362-404. 
Ko, A., & Myers, B. A. (2009). Finding causes of program output with the Java Whyline. In D. R. Olsen 

& R. B. Arthur (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (pp. 1569-1578). New York: ACM. 

Koschmann, T., Kuutti, K., & Hickman, L. (1998). The concept of breakdown in Heidegger, Leont'ev, 
and Dewey and its implications for education. Mind, Culture, and Activity, 5(1), 25-41. 

Langer, S. (1953). Feeling and form: A theory of art. New York: Charles Scribner’s Sons. 
Lewis, C. M. (2012). The importance of students' attention to program state: A case study of debugging 

behavior. In A. Clear, K. Sanders, & B. Simon (Eds.), Proceedings of the Ninth Annual 
International Conference on International Computing Education Research (pp. 127-134). New 
York: ACM. 

Liu, Z., Zhi, R., Hicks, A., & Barnes, T. (2017). Understanding problem solving behavior of 6–8 graders 
in a debugging game. Computer Science Education, 27(1), 1-29. 

Lin-Siegler, X., Ahn, J. N., Chen, J., Fang, F. F. A., & Luna-Lucero, M. (2016). Even Einstein struggled: 
Effects of learning about great scientists’ struggles on high school students’ motivation to learn 
science. Journal of Educational Psychology, 108(3), 314. 

Metzger, R. (2004). Debugging by thinking: A multidisciplinary approach. Burlington, MA: Elsevier 
Digital Press. 

Mohammad, S. M., & Kiritchenko, S. (2015). Using hashtags to capture fine emotion categories from 
tweets. Computational Intelligence, 31(2), 301-326. 

Murphy-Hill, E., Zimmermann, T., Bird, C., & Nagappan, N. (2013). The design of bug fixes. In D. 
Notkin, B. H. C. Cheng, & K. Pohl (Eds.), Proceedings of the 35th International Conference on 
Software Engineering (pp. 332-341). Institute of Electrical and Electronics Engineers Press. 

Oyserman, D., Terry, K., & Bybee, D. (2002). A possible selves intervention to enhance school 
involvement. Journal of Adolescence, 25(3), 313–326. 



Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and 
comprehension-monitoring activities. Cognition and Instruction, 1(2), 117-175. 

Perscheid, M., Siegmund, B., Taeumel, M., & Hirschfeld, R. (2017). Studying the advancement in 
debugging practice of professional software developers. Software Quality Journal, 25(1), 83-110. 

Ripley, G. D., & Druseikis, F. C. (1978). A statistical analysis of syntax errors. Computer Languages, 
3(4), 227-240. 

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York: Basic 
Books. 

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of 
encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 
129–184. 

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in 
STEM education. In M. S. Khine (Ed.), Computational Thinking in the STEM Disciplines: 
Foundations and Research Highlights (pp. 49-72). Springer International Publishing.  

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine communication. New 
York: Cambridge University Press. 

Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological 
Review, 92(4), 548–573. 

Zeller, A. (2009). Why programs fail: A guide to systematic debugging. Burlington, MA: Elsevier. 
 




