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Abstract

Objective—Plasma levels of the fibrinogen degradation product D-dimer are higher among 

African Americans (AAs) compared to those of European ancestry and higher among women 

compared to men. Among AAs, little is known of the genetic architecture of D-dimer or the 

relationship of D-dimer to incident CVD.

Approach and Results—We measured baseline D-dimer in 4,163 AAs aged 21–93 years from 

the prospective Jackson Heart Study (JHS) cohort and assessed association with incident CVD 

events. In participants with whole genome sequencing data (n=2,980), we evaluated common and 

rare genetic variants for association with D-dimer. Each standard deviation higher baseline D-

dimer was associated with a 20–30% increased hazard for incident coronary heart disease, stroke, 

and all-cause mortality. Genetic variation near F3 was associated with higher D-dimer (rs2022030, 

β= 0.284, p=3.24 × 10−11). The rs2022030 effect size was nearly three times larger among women 

(β= 0.373, p= 9.06 × 10−13) than men (β= 0.135, p= 0.06, p-interaction= 0.009). The sex by 

rs2022030 interaction was replicated in an independent sample of 10,808 multi-ethnic men and 

women (p-interaction=0.001). Finally, the African ancestral sickle cell variant (HBB rs334) was 

significantly associated with higher D-dimer in JHS (β= 0.507, p=1.41 × 10−14), and this 

association was successfully replicated in 1,933 AAs (p= 2.3 × 10−5).

Conclusion—These results highlight D-dimer as an important predictor of CVD risk in AAs and 

suggest that sex-specific and African ancestral genetic effects of the F3 and HBB loci contribute to 

the higher levels of D-dimer among women and AAs.

Graphical abstract
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INTRODUCTION

Plasma D-dimer, a fibrin degradation product, is a coagulation related biomarker. Clinically, 

extremely elevated levels of D-dimer are a hallmark of disseminated intravascular 

coagulation, while D-dimer levels in the normal range are used to exclude a diagnosis of 

deep venous thrombosis and pulmonary embolism.1 In healthy people, higher D-dimer 

predicts future risk of cardiovascular disease (CVD) events,2, 3 particularly venous 

thrombosis,4, 5 stroke,6, 7 and all-cause mortality8, 9 independently of conventional CVD risk 

factors. More modest associations have generally been observed for incident coronary heart 

disease (CHD).6, 7, 10–12 D-dimer is also associated with CVD events and mortality in 

patients with peripheral arterial disease13 and mortality in patients with cancer.14

African Americans (AAs) have higher mean levels of D-dimer than Europeans, independent 

of other CVD risk factors.15–17 However, the relationship of D-dimer to CVD events 

specifically in AAs has only been addressed in one recent study.7 D-dimer levels are also 

higher in women than men, for unknown reasons.6, 8, 9 Family-based heritability studies and 

genome-wide association studies (GWAS) including mainly individuals of European descent 

have shown significant heritability for D-dimer, and variants in three coagulation factor-

related loci (F3, F5, and FGA/FGG) have been associated with D-dimer.18 Despite their 

higher D-dimer levels, little is known about the genetic architecture or environmental 
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correlates of D-dimer in AAs, or factors that account for higher D-dimer in women 

compared to men.

We measured baseline D-dimer in 4,163 AAs from the Jackson Heart Study (JHS), of whom 

2,980 had available whole genome sequencing (WGS) data through the National Heart, 

Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project. 

We assessed the environmental and genetic correlates of D-dimer, as well as the association 

of baseline D-dimer with incident CVD events and all-cause mortality in JHS. We then 

performed WGS association analysis, including coding and non-coding genetic variants, 

which encompass African population-specific variants that may not be captured by 

conventional GWAS genotyping platforms. For any genome-wide significant loci, we tested 

for sex by genotype interaction. Finally, we sought replication and follow-up of sex- or 

ancestry-specific genetic association findings using independent samples from the Multi-

Ethnic Study of Atherosclerosis (MESA), Cardiovascular Health Study (CHS), Framingham 

Heart Study (FHS), and REasons for Geographic and Racial Differences in Stroke 

(REGARDS) studies.

MATERIALS AND METHODS

Materials and Methods are available in the online-only Data Supplement.

RESULTS

Genetic and environmental correlates of D-dimer levels in JHS AAs

Older age, female sex, and higher BMI were each strongly and independently associated 

with higher D-dimer, using a Bonferroni correction for multiple comparisons (p<0.004) 

(Table 1, Figure S1). Adjusting for age and sex, heritability (h2) of D-dimer was estimated as 

0.284 (standard error (SE) = 0.057, p= 3.75 × 10−9). In age- and sex-adjusted models or 

multivariate adjusted models (Table 1, Figure S1), higher CRP and higher fibrinogen were 

each associated with higher D-dimer. Greater estimated African ancestry percentage was 

nominally associated with higher D-dimer levels in a model adjusted for CVD risk factors.

Association of D-dimer levels with incident CVD events and mortality in JHS

In minimally and fully-adjusted models, higher D-dimer was nominally associated with 

increased hazard for CHD, stroke, and all-cause mortality (all p≤ 0.039) (Table 2). One 

standard deviation (SD) difference in log-transformed D-dimer was associated with a 20–

30% greater hazard. Adjustment for CRP attenuated the associations with stroke (hazard 

ratio (HR) 1.19 (95% CI 0.97, 1.45), p=0.099), while the association with CHD (HR 1.24 

(95% CI 1.05, 1.46), p=0.010) and mortality (HR 1.27 (95% CI 1.14, 1.42), p= 1.54 × 10−5) 

remained similar.

Whole genome sequence association analysis of D-dimer in JHS AAs

We performed both (1) single-variant association tests and (2) gene-based association tests 

of aggregated variants with a minor allele frequency <5%. Manhattan plots of the single-

variant whole genome association results and gene-based rare variant results are displayed in 
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Figure S2. No significant systematic inflation was observed on QQ-plots (Figure S3); the 

calculated genomic inflation factor (λ) was 1.006 for single-variant analysis and 1.06 for 

gene-based analysis. Two loci, on chromosomes 1 (near F3) and 11 (HBB), reached 

significance in single variant testing (Figure S2a). HBB also was significantly associated 

with D-dimer levels in gene-based testing (p=2.35 ×10−10) (Figure S2b). These are 

described further in detail below.

Of other single variants previously associated with D-dimer, we observed significance and 

the same direction of association (β= 0.112, p= 0.01, effect allele frequency (EAF) 10.1%) 

for the coagulation factor V (F5) locus variant (rs6687813) associated with D-dimer in 

Europeans.18 We also observed a concordant direction of association for rs6025 (FV Leiden) 

(β= 0.277, p= 0.093, EAF 0.6%),16 a well-studied variant at this locus associated with VTE 

risk.19 The fibrinogen alpha/fibrinogen gamma chain (FGA/FGG) locus variant 

(rs13109457) did not replicate (β= 0.010, p= 0.755, EAF 23.7%),18 nor did a coding variant 

in FGA (rs6050) from analysis of a candidate gene array in AAs (β= −0.003; p= 0.912, EAF 

36.8%).16 An insertion variant at nucleotide 545 in FGL1 previously associated with D-

dimer in Finns was not observed20; no exonic or splicing variants in this gene were 

associated with D-dimer (p>0.05).

Chromosome 1 locus near F3—The chromosome 1 signal was an intergenic locus near 

tissue factor (F3, top variant rs2022030, β= 0.284, SE= 0.043, p=3.24 × 10−11, effect allele 

frequency (EAF) = 10.3%) explained 1.47% of the phenotypic variance). A LocusZoom 

plot21 is displayed in Figure S4. A total of 9 variants at the chr 1 locus were significant at the 

1 × 10−9 level, including two index SNPs previously associated with D-dimer in European 

GWAS (rs1202908018, rs202230922). However, none of these variants remained significant 

after conditioning on the lead variant rs2022030 (Figure S5a). Similarly, adjustment for lead 

European meta-analysis variant rs12029080 greatly attenuated the association signal at 

rs2022030 (β= 0.323, SE=0.136, p= 0.017) (Figure S5b) in JHS. These two variants were in 

strong linkage disequilibrium (LD) in JHS (r2=0.90).

As the F3 variant associated with D-dimer is common among all major continental 

ancestries, we attempted to further explore the F3 rs2022030 genotype association with F3 
RNA expression and monocyte tissue factor expression using RNA sequencing and flow 

cytometry data available in the multi-ethnic MESA cohort. The minor allele of the index 

SNP F3 rs2022030 associated with higher D-dimer was nominally associated with increased 

F3 expression in monocytes (β= 0.182, SE= 0.073, p= 0.013). Index SNP rs2022030 was 

also associated with an increased percentage of TF+ monocytes in the LPS stimulated 

expression assay (β = 0.119, SE= 0.038, p= 0.002) but was not associated with percentage of 

TF+ monocytes in the unstimulated assay (β = −0.023, SE= 0.061, p= 0.705).

We also assessed associations of rs2022030 with other coagulation-related biomarkers that 

were previously measured in MESA and CHS. The F3 lead variant rs2022030 was 

associated with higher levels of PAP (β=0.025, SE=0.007, p=0.00043). There were no 

associations between rs2022030 and either thrombin generation measured ex vivo or 

selected coagulation/fibrinolysis biomarkers related to TF or extrinsic pathway activation, 

including circulating levels of soluble TF, factor VIIa, or TFPI (Table S1).
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Chromosome 11 HBB locus—The second genome-wide significant locus for D-dimer 

was on chromosome 11. The lead variant, HBB rs334 (p.E6V, EAF =4.2%), which encodes 

the sickle cell mutation, was associated with higher D-dimer levels (β= 0.507, SE=0.065, 

p=1.41 × 10−14) and explained 1.97% of the phenotypic variance (Figure S6a). Excluding 

two homozygotes for the minor allele of rs334 did not substantively change this result (β= 

0.485, p=3.77 × 10−13). An additional chromosome 11 variant, intergenic indel rs149481026 

near OR51V1, was also significant (β= 0.490, SE=0.079, p= 6.19 × 10−10, EAF=2.9%). 

Conditioning on rs334 attenuated the rs149481026 signal (β= −0.003, SE= 0.1339, p= 

0.983, Figure S6b). These two variants were in moderate LD in JHS (r2=0.67). The gene-

based association signal at HBB was driven by only two variants, rs334 and non-significant 

variant rs33930165 (β= −0.003, SE=0.119, p=0.981, EAF=1.3%).

As rs334 is an African ancestry specific variant, we confined our replication analysis for this 

variant to an independent, single-ethnicity sample of N=1,933 AA participants from MESA 

and REGARDS. We found a similar association of HBB rs334 with higher D-dimer levels 

(β= 0.286, SE= 0.068, p= 2.31 × 10−5). To investigate the possible mechanism or influence 

on other coagulation-related parameters, we analyzed the relationship of HBB rs334 

genotype with additional coagulation measures available in MESA and/or REGARDS. We 

observed no association of HBB rs334 with fibrinogen, PAP, factor VIII, factor IX, factor 

XI, or protein C levels (Table S2).

Gene-sex interaction of F3 variant on D-dimer levels

Since D-dimer is higher in women than men, we performed an exploratory WGS association 

analysis stratified by sex in JHS AA. Manhattan and QQ-plots are shown in Figure S7. No 

variants were genome-wide significant in men. In women, both the chromosome 1 F3 
rs2022030 variant (β= 0.373, SE= 0.052, p= 9.06 × 10−13) and the chromosome 11 HBB 
rs334 variant (β= 0.523, SE= 0.085, p= 9.91 × 10−10) were genome-wide significant. The 

lead variant at the F3 locus in women was rs4609438 (β= 0.356, SE= 0.048, p= 2.72 × 

10−13, EAF 12.8%), which is in strong LD (r2=0.8) with rs2022030.

Though the chromosome 11 HBB rs334 variant did not reach genome-wide significance in 

men, it had a similar estimated effect in men (β= 0.468, SE= 0.100, p= 3.12 × 10−6, p-

interaction=0.923) compared to women. In contrast, F3 rs2022030, the lead variant in the 

sex combined analyses, had greatly reduced estimated effect size in JHS men (β= 0.135, 

SE= 0.072, p= 0.062) compared to JHS women. The rs2022030–sex interaction in JHS was 

significant (p interaction= 0.009) (Table 3).

We next tested for additional evidence of F3 rs2022030–sex interaction in an independent 

sample of 10,808 multi-ethnic men and women from MESA, FHS, and CHS (Table 3, 

Figure S8). In the combined analysis for these three cohorts, the effect size of rs2022030 

was higher (β= 0.073, SE= 0.023) among women than men, and this sex difference was also 

highly significant (p interaction=0.001).
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D-dimer associated genetic variants and risk of incident events in JHS

Finally, we assessed the relationship between D-dimer associated genetic variants and risk of 

clinical events in JHS. No significant associations with all-cause mortality, coronary heart 

disease, or stroke were observed for HBB rs334 (Table 4). For F3 variant rs2022030, 

nominal associations were observed with increased risk of CHD (HR 1.43 (95% CI 1.01, 

2.03), p=0.045) and stroke (HR 1.66 (95% CI 1.11, 2.47), p=0.013) in models adjusted for 

age, sex, and ancestry principal components. The results remained essentially unchanged 

when adjusted for BMI, current smoking, alcohol use, diabetes mellitus, hypertension, 

systolic blood pressure, low-density lipoprotein cholesterol, and CRP. We also constructed a 

simple genetic risk score, summing the number of D-dimer raising alleles at rs334 and 

rs2022030 (Table 4). This score was significantly associated with increased stroke risk (HR 

1.58 (95% CI 1.15, 2.17), p=0.004), but not with CHD (HR 1.21 (95% CI 0.88, 1.67), 

p=0.246) or mortality (HR 1.03 (95% CI 0.82, 1.29), p=0.825). The association between F3 
rs2022030 and risk of CHD and stroke and the association between the genetic risk score 

and risk of stroke were only partially attenuated by adjustment for D-dimer.

DISCUSSION

There were three main findings from this study. First, higher D-dimer was confirmed as an 

independent risk marker for future CVD and total mortality in AAs. Second, both acquired 

and genetic factors (including those that are shared with ancestral European populations 

such as F3 rs2022030) contributed to D-dimer variation among AAs. Third, we identified 

genetic factors that may in part account for gender and ethnic differences in D-dimer. 

Specifically, the African ancestral sickle cell variant (HBB rs334), was associated with 

higher D-dimer. Moreover, a sex-specific association of the F3 gene locus was seen in 

women but not men, which might explain, in part, the higher D-dimer levels among women 

compared to men.

Prior studies examining the role of D-dimer in risk prediction of stroke6, 7, CHD6, venous 

thromboembolism (VTE)4, 5, all CVD3, and mortality9 included both AA and European 

descent participants. Only one recent study in REGARDS reported the results stratified by 

race/ethnicity, which suggested a stronger association for CHD than stroke, particularly in 

AAs.7 Our results in JHS for the association of D-dimer with these CVD and mortality 

outcomes in AAs were generally consistent with these prior studies, although our precision 

was limited by the available sample size.3, 6, 9 Comparison of results between studies may be 

complicated by differences in sample sizes and numbers of events, length of follow-up/

proximity of clinical events to time of D-dimer measurement, and covariate adjustment, all 

of which may impact the reported risk estimates.

Among related AA individuals from JHS, we estimated the polygenic heritability of D- 

dimer as 0.284. Prior studies reported heritability estimates ranging from 0.11–0.65.23–26 

Global or genome-wide estimates of African ancestry have been associated with higher D-

dimer levels in some populations,27 but not others,28 with a modest positive association 

observed in JHS. Apart from any differences in genetic architecture of D-dimer levels due to 

ancestry-specific genetic factors, it is possible that polygenic influences may differ on the 

basis of age and/or sex. In the context of the observed F3 genotype-sex interaction we report 
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in JHS, it is interesting to note the relatively higher heritability estimate for D-dimer (65% in 

female European twin pairs) reported in the one prior study that only included women.23

To our knowledge, the current report is the first genome-wide, sequencing-based association 

study of D-dimer in a population of African ancestry, including analysis of coding and non-

coding variants across the entire allele frequency spectrum. Two prior genetic association 

analyses of D-dimer in AAs were limited to variants in candidate gene regions.16, 27 An 

analysis of variants from 42 coagulation genes in 327 AA participants from CHS found no 

significant associations.27 In an analysis of ITMAT-Broad-CARe (IBC) array data in 2,192 

AA participants, Weng et al. replicated the association of a coding variant in FGA (rs6050) 

with D-dimer previously observed in European populations.16

The genome-wide association of HBB rs334 (sickle cell trait) with D-dimer in JHS is 

consistent with previous work29–32 and the higher risk of VTE with sickle cell trait.5 While 

sickle cell disease is a hypercoagulable state, few prior studies have examined hemostatic 

measures in HBB rs334 heterozygotes.5, 30, 31, 33 We did not find any association between 

HBB rs334 and other hemostasis biomarkers, though our analysis may be limited by sample 

size. The mechanism responsible for higher D-dimer in sickle cell mutation carriers is 

unknown. Relatively low partial pressure of oxygen and dehydration in certain tissues34, 35 

may lead to erythrocyte sickling and endothelial activation, which may result in tissue 

damage, exposure of extracellular and intracellular proteins (e.g., tissue factor), which 

ultimately trigger activation of the blood coagulation system. The roles of subclinical 

rhabdomyolysis, proteinuria, or erythrocyte sickling and resultant erythrocyte 

phosphatidylserine exposure, protein S levels, and thrombin generation36 require further 

investigation to elucidate the mechanisms relating sickle trait to higher D-dimer and VTE 

risk.

Our results show that the association of the F3 locus with D-dimer initially observed in 

Europeans18 generalizes to AAs. F3 encodes tissue factor (TF), a necessary co-factor for 

factor VIIa in the initiation of the extrinsic blood coagulation pathway. TF is constitutively 

expressed in various extravascular cells, and can be induced in endothelial cells and 

monocytes/macrophages by a variety of agonists. According to high-resolution chromatin 

conformation capture assay, our lead variant rs2022030 physically interacts with the F3 
promoter region in trophoblast and spleen tissue.37 In analyses from the MESA cohort, our 

lead variant was also associated with increased monocyte F3 expression and an increased 

percentage of TF+ LPS-stimulated monocytes. Another LD proxy variant rs143015276 

located ~50 kb upstream of F3 is within promoter marks for lung and cervical tissue and 

enhancer histone marks for mesenchymal stem cells, skin, muscle, breast, and placental 

tissue.38 Taken together, these data suggest a potential regulatory role for one or more of the 

D-dimer-associated variants on tissue factor expression.

The observed rs2022030-sex interaction at F3 is concordant with higher levels of D-dimer in 

women6, 8, 9 (JHS mean 0.49, SD 0.65 in men, 0.62, SD 0.63 in women). Notably, TF 

expression can be induced by progesterone in human endometrial stromal cells and appears 

to play a role in reproductive and peripartum hemostasis.39 A genome-wide significant F3 
variant (rs143015276, p= 1.34 × 10−9) in LD with rs2022030 is located within predicted 
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binding motifs for FOXA1, a transcription factor for the estrogen receptor.38 A previous 

study did not find any association of the F3 variant and risk of incident VTE,40 however, 

further study of the F3 variant in women and in the contexts of exogenous sex hormones 

(oral contraceptives, hormone therapy) is warranted.

The connection between D-dimer associated genetic variants F3 rs2022030, HBB rs334, and 

CVD events is unclear. While we provide some additional suggestive evidence that D-dimer 

raising alleles are associated with increased risk of incident CHD and stroke in AA, the 

interpretation of results is limited by the relatively small number of CVD events in JHS. 

Moreover, the genetic variant – CVD associations were only partially attenuated by 

adjustment for D-dimer, suggesting that additional intermediates or pathways may mediate 

the putative genetic susceptibility. A prior meta-analysis of incident VTE and F3 variant 

rs12029080 in Europeans found no significant association.40 Further analyses, including a 

more formal Mendelian randomization analysis involving considerably larger sample sizes, 

will be required to clarify the relationship of D-dimer associated genetic variants to CVD 

risk, particularly in African ancestry populations.

Several additional limitations of our analysis should be noted. To date, VTE have not been 

adjudicated within the JHS, so we were unable to assess associations with D-dimer. Much 

larger sample sizes (currently accruing through WGS projects such as TOPMed) may be 

needed to assess the role of lower frequency variants associated with D-dimer levels. The 

lack of association between the F3 or HBB variants and other coagulation biomarkers may 

be due to heterogeneity of participant characteristics or assay methods between studies.

In summary, our results extend the importance of D-dimer as a CVD biomarker and 

predictor in AAs. Genetic factors including sickle cell trait and common variants at the F3 
locus contribute to the higher D-dimer levels among AAs and AA women, respectively. 

Given the role of D-dimer in the clinical evaluation and diagnosis of VTE, and potentially 

additional vascular conditions, future studies should address the clinical and public health 

implications of these ethnic and gender-related genetic influences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AAs African Americans

CVD cardiovascular disease

CHS Cardiovascular Health Study

CRP C-reactive protein

FHS Framingham Heart Study

GWAS genome-wide association studies

JHS Jackson Heart Study

LD linkage disequilibrium

LPS lipopolysaccharide

MAF minor allele frequency

MESA Multi-Ethnic Study of Atherosclerosis

NHLBI National Heart Lung, and Blood Institute

PAP plasmin-antiplasmin complex

PCs principal components

REGARDS REasons for Geographic and Racial Differences in Stroke

SD standard deviation

SE standard error

TF tissue factor

TFPI tissue factor pathway inhibitor

TOPMed Trans-Omics for Precision Medicine

VTE venous thromboembolism

WGS whole genome sequencing
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HIGHLIGHTS

Fibrin degradation product D-dimer is associated with risk of incident 

cardiovascular disease in African Americans (AAs) from the Jackson Heart Study 

(JHS).

Analysis of whole genome sequencing data in JHS revealed associations of 

intergenic variants near F3 and sickle cell trait (HBB locus) with D-dimer.

The signal at the F3 locus was driven mostly by women, and this significant sex 

interaction was replicated in a multi-ethnic sample.

Sex-specific and African ancestral effects of the F3 and HBB loci, respectively, 

may contribute to higher D-dimer among women and AAs.
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