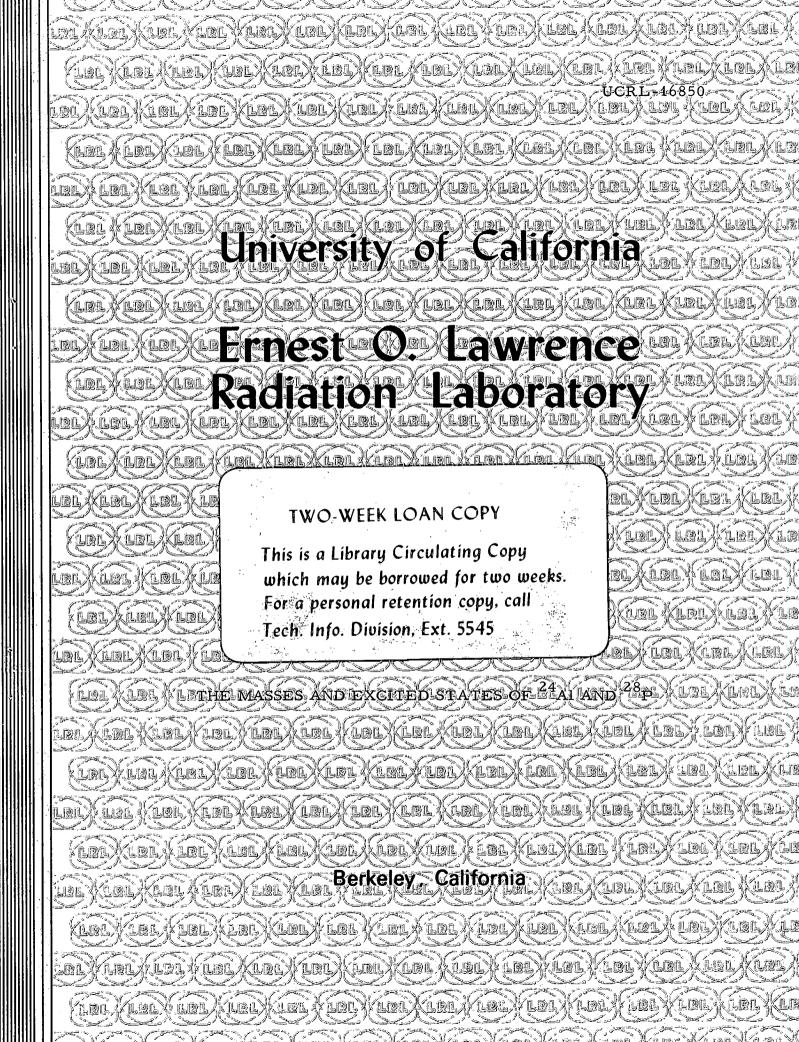
Lawrence Berkeley National Laboratory

Recent Work

Title

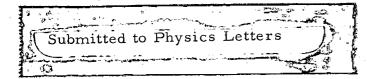
THE MASSES AND EXCITED STATES OP 2IfrAI AND 28P


Permalink

https://escholarship.org/uc/item/1x51p9tf

Authors

Mangelson, N. Reed, M. Lu, C.C. <u>et al.</u>


Publication Date 1966-05-01

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the Regents of the University of California.

h

UCRL-16850

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

THE MASSES AND EXCITED STATES OF 24 and 28 p

N. Mangelson, M. Reed, C. C. Lu, and F. Ajzenberg-Selove

May 1966

UCRL -16850

THE MASSES AND EXCITED STATES OF ²⁴Al AND ²⁸P[†]

N. Mangelson, M. Reed, C. C. Lu, and F. Ajzenberg-Selove^{††}

Lawrence Radiation Laboratory University of California Berkeley, California

May 1966

The ${}^{24}Mg({}^{3}He,t){}^{24}Al$ and ${}^{28}Si({}^{3}He,t){}^{28}P$ reactions have been studied at ${}^{3}He$ energies in the range 37.8 to 40.1 MeV. The mass excesses of ${}^{24}Al$ and ${}^{28}P$ are, respectively, -0.07 \pm 0.06 and -7.12 \pm 0.06 MeV; 18 excited states of ${}^{24}Al$ and 12 excited states of ${}^{28}P$ have been observed.

⁺This work was supported by the U. S. Atomic Energy Commission and by the National Science Foundation.

⁺⁺J. Simon Guggenheim Fellow 1965-1966; now at Haverford College, Haverford, Pennsylvania. There is very little known¹,[†] about the proton-rich nuclei, $\frac{24}{13}$ Al and $\frac{28}{15}$ P. The positron decay has been observed¹⁻³) to various of the states in the corresponding $T_z = 0$ nuclei, $\frac{24}{12}$ Mg and $\frac{28}{14}$ Si. The atomic mass excesses of 2^4 Al $\frac{28}{12}$ P are ⁴),^{††} 0.09[±]0.3 MeV and -7.69[±]0.3 MeV. If the 24 Al E_{β^+} (max) reported by Scott and Polichar³) are assumed to be due to transitions to the 24 Mg states at 4.12 MeV¹ and 8.44 MeV^{4,5}), the atomic mass excess of 24 Al is -0.01[±]0.13 MeV. No energy levels of 24 Al and 28 P have been reported. By analogy with the mirror nucleus 24 Na, the ground state of 24 Al should have $J^{\pi} = 4^+$. The corresponding T = 1 state in 24 Mg has been located³) at $E_x = 9.512^{\pm}0.008$ MeV. The ground state of 28 P is possibly a $J^{\pi} = 3^+$ state, by analogy with the 3⁺, first T = 1 state¹) in 28 Si at $E_x = 9.324^{\pm}0.011$ MeV³, although the close spacing of the next T = 1 state ($\Delta E_x = 31$ keV in 28 Al, between the $J^{\pi} = 3^+$ and 2⁺) would permit $J^{\pi} = 2^+$ as an alternative.

The two types of reaction which can be used to study ²⁴Al and ²⁸P are the (p,n) and the (³He,t) reactions on ²⁴Mg and ²⁸Si with Q values of -14 to -15 MeV. We will report on a study of the ²⁴Mg(³He,t)²⁴Al and ²⁸Si(³He,t)²⁸P reactions^{†††} at E(³He) ~ 40 MeV.

[†]C. Van der Leun, private communication. We are indebted to Dr. Van der Leun for information concerning more recent evidence on ²⁴Al and ²⁸P. ^{††}These mass excesses have been calculated on the basis of the ²⁴Mg and ²⁸Si masses given by ref. 4, and the Q of the ²⁴Al and ²⁸P β ⁺ decay given by ref. 1. ^{+††}These reactions have been observed, but no results have been published: See M. Rickey and R. G. Matlock, Bull. Am. Phys. Soc. <u>10</u> (1965) 463. A beam of 40 MeV ³He particles, accelerated by the Berkeley 88-inch spiral ridge cyclotron, was used for the experiments. The experimental procedures were identical to those described in another paper⁶. The ²⁴Mg and Si targets[†] were self-supporting foils. The magnesium target was enriched to 99.96% ²⁴Mg and its thickness was $270\pm30 \ \mu\text{g/cm}^2$. The silicon was not enriched and therefore contained 92.2% ²⁸Si: the target thickness was $160\pm15 \ \mu\text{g/cm}^2$. ¹²C foils used for calibration purposes ranged from 150 to 300 $\mu\text{g/cm}^2$.

Figure 1 shows parts of the triton spectra for the ${}^{24}\text{Mg}({}^{3}\text{He},t){}^{24}\text{Al}$ reaction at $\text{E}({}^{3}\text{He}) = 39.3 \text{ MeV}$, $\theta = 20^{\circ}$ and 25°. Additional spectra were also obtained at $\text{E}({}^{3}\text{He}) = 39.3 \text{ MeV}$ ($\theta = 30^{\circ}$, 50°, 55°, and 60°) and at $\text{E}({}^{3}\text{He}) = 40.1$ MeV ($\theta = 30^{\circ}$). The FWHM of peaks corresponding to single states is ≈ 85 keV. The Q value for the ground-state reaction was determined to be -13.88 ± 0.06 MeV. From this and the masses given by Mattauch et al.⁴) for ${}^{24}\text{Mg}$, ${}^{3}\text{He}$, and t, the mass excess of ${}^{24}\text{Al}$ is determined to be -0.07 ± 0.06 MeV. The excitation energies of the observed states of ${}^{24}\text{Al}$ are displayed in table 1. The first excited state we observe in ${}^{24}\text{Al}$ at $\text{E}_{x} = 0.47\pm0.03$ MeV is in good agreement with the energy of the known¹) first state in the mirror nucleus ${}^{24}\text{Na}$, $\text{E}_{x} = 0.473\pm0.003$ MeV. The higher states cannot be meaningfully compared. It is clear that some of our triton groups correspond to unresolved levels. The differential cross section for formation of the ground state of ${}^{24}\text{Al}$ decreases from 67 ± 15 µb/sr at 23.4°c.m. to 6 ± 2 µb/sr at 68.4° c.m.

[†]The targets were prepared by C. E. Ellsworth and A. Johns. We acknowledge with thanks their invaluable help. The separated ²⁴Mg was furnished by the Stable Isotopes Division of ORNL. Figure 2 shows parts of the triton spectra for the ${}^{28}\text{Si}({}^{3}\text{He},t){}^{28}\text{P}$ reaction at $\text{E}({}^{3}\text{He}) = 37.8 \text{ MeV}$, $\theta = 20^{\circ}$ and 35° . Additional spectra were obtained at $\text{E}({}^{3}\text{He}) = 40.1 \text{ MeV}$, $\theta = 30^{\circ}$ and 35° . The Q value for the ground state reaction was determined to be $-14.38\pm0.06 \text{ MeV}$. From this the mass excess of ${}^{28}\text{P}$ was determined to be $-7.12\pm0.06 \text{ MeV}$. The excitation energies of the observed ${}^{28}\text{P}$ states are shown in table 1. The ground state and first excited states of ${}^{28}\text{P}$ were resolved by fitting the triton peaks with two Gaussian peaks. It is clear here also, by comparison with ${}^{28}\text{Al}$, that many of the triton groups are due to unresolved states. The differential cross section for the ground state of ${}^{28}\text{P}$ falls from 70±15 µb/sr at 22.8°c.m. to 25±6 µb/sr at 39.7°c.m.

By use of the method of Wilkinson⁷⁾ and the 1964 mass tables⁴⁾, the excitation energy of the first T = 1, $T_z = 0$ level was predicted for the A = 24 and A = 28 isobaric triplets. The first T = 1 level of ²⁴Mg is 9.512 ± 0.008 MeV³⁾, compared with predicted values of 9.502 ± 0.008 and 9.54 ± 0.07 MeV based on the masses of ²⁴Na and ²⁴Al respectively. The first T = 1 level of ²⁸Si is $9.324\pm0.011 \text{ MeV}^{3)}$ compared with predicted values of 9.378 ± 0.008 and 9.35 ± 0.07 MeV based on the masses of ²⁸Al and ²⁸P respectively.

We are grateful to the entire staff of the 88-inch cyclotron, and in particular to Joel Moss, Creve Maples, Jr., Donald A. Landis, and Fred S. Goulding. We are greatly indebted to Dr. Bernard G. Harvey and Dr. J. Cerny for their interest and many useful comments.

References

1)	P. M. Endt and C. Van der Leun, Nucl. Phys. <u>34</u> (1962) 1.
2)	A. Scott and R. Polichar, Bull. Am. Phys. Soc. 8 (1963) 85.
3)	M. Rickey, E. Kashy, and D. Knudsen, Bull. Am. Phys. Soc. 10 (1965) 550.
4)	J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nucl. Phys. <u>67</u> (1965) 1
5)	E. L. Haase, H. A. Hill and D. B. Knudsen, Phys. Letters $\frac{1}{4}$ (1963) 338.
6 <u>)</u>	N. Mangelson, F. Ajzenberg-Selove, M. Reed, and C. C. Lu, Nucl. Phys.
	(1966).
7)	D. H. Wilkinson, Phil. Mag. <u>1</u> (1956) 1031.

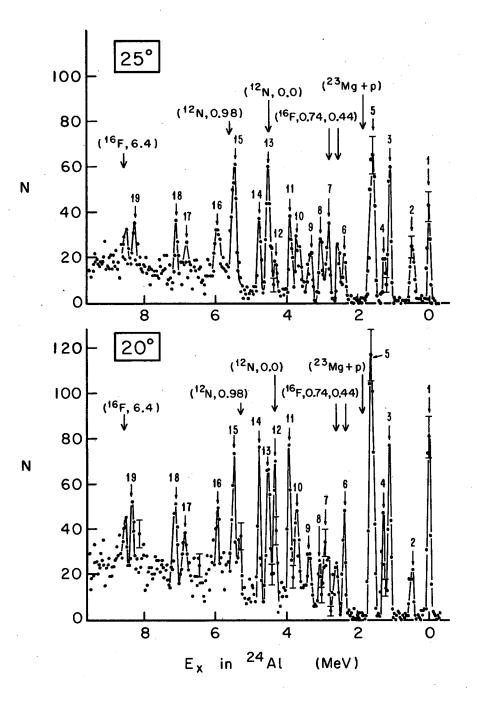
-5-

UCRL-16850

	Levels	of ²⁴ Al		3	Levels of ²⁸ P			
Group no.	E _x Group no.		Е _х а	Group no.	Е _х а	Group no.	E _x a	
1	0	. 11	3.92±30	1	0.	11	4.17±70	
2	0.47±30	12	4.34±40	2	0.125±30	12	4.53±50	
3	1.12±30	13	4.53±40	3	1.14±40	13	4.94±30	
4	1.28±50	14	4.77±50	4	1.31±30			
5	1.62±40	· 15	4.48±60	5	1.54±40		· · ·	
6	2.38±40	16	5.93 ^{±1} 40	6	2.12±30			
7	2.88±30	17	6.81±40	7	2.65±100	0		
8	3.06±40	1.8	7.07±50	8	3.24±30	· .	•	
. 9	3.35±50	19	(8.25±50)	° 9	3•59±30			
10	3.71±50			10	3.84±30	4 1 1		

Table 1

Energy levels of 24 Al and 28 P


a Energies given in MeV ± keV.

^bAssignment to ²⁴Al not certain.

Figure Captions

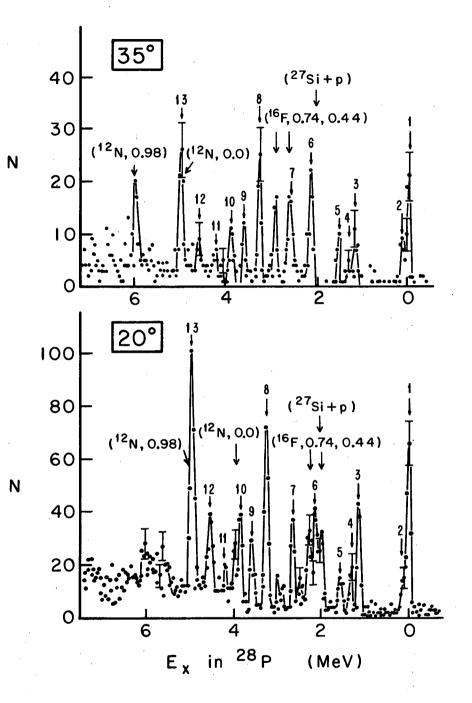

-7-

Fig. 1. Spectra from the ${}^{24}Mg({}^{3}He,t){}^{24}A1$ reaction at $E({}^{3}He) = 39.3$ MeV, $\theta = 20^{\circ}$ and 25° . N represents the number of counts per channel. The E_x scale gives the excitation energy in ${}^{24}A1$. The binding energy ($E_b = 1.88$ MeV) for breakup into ${}^{23}Mg + p$ is indicated. The locations of possible contaminant groups from ${}^{12}C({}^{3}He,t){}^{12}N$ and ${}^{16}O({}^{3}He,t){}^{16}F$ are also shown. Fig. 2. Spectra from the ${}^{28}Si({}^{3}He,t){}^{28}P$ reaction at $E({}^{3}He) = 37.8$ MeV ($\theta = 20^{\circ}$ and 35°). The binding energy (2.03 MeV) for breakup into ${}^{27}Si^{+}p$ is shown. See also caption for fig. 1.

MUB-10173

Fig. 1

MUB-10172

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

