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Abstract

Role of experimental data in validating and quantifying uncertainties in complex physical
systems

by

James Robert Oreluk

Doctor of Philosophy in Engineering - Mechanical Engineering

with Designated Emphasis

in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Michael Frenklach, Co-chair

Professor Andrew Packard, Co-chair

Model validation is the process of evaluating how well a computational model represents
reality. That is to say, does the model make predictions that adequately agree with the
experimental evidence? Both model validation and uncertainty quantification have gained
tremendous attention from researchers in engineering, physics, chemistry, and biology.
Uncertainty quantification methods have been successfully applied to assessing model
predictions of unmeasured quantities of interest and assisting in the development of
computationally efficient, yet predictive, reduced-order models. In both cases, experimental
data are incorporated into the analysis to refine the uncertainty estimate. However, with
the amount of experimental data published and being generated through ongoing scientific
endeavors, it is crucial to organize and integrate experimental data with the uncertainty
quantification methods.

In this work, I develop tools for uncertainty quantification and construct a validation
workflow that seamlessly integrates uncertainty quantification tools with an online
database of chemical kinetics validation data. The first part of this dissertation discusses
the need for structured experimental data, emphasizing its value towards model validation,
and explore how online databases provide structure to data. An optimization-based
framework for uncertainty quantification, Bound-to-Bound Data Collaboration, is employed
throughout the dissertation to verify the compatibility of models with data. A novel
strategy for surrogate modeling using Bound-to-Bound Data Collaboration is developed to
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guide the fitting procedure towards regions of the parameter space where the model
predicts the data accurately. This technique is demonstrated in two simple examples and a
solid-fuel combustion example. In the second part of this dissertation, three complex
physics-based models are investigated, specifically H2/O2 combustion, a solid-fuel char
oxidation model, and a semi-empirical quantum chemistry model. The efficacy of the
validation workflow for developing predictive models, and the scientific insights uncovered
from the analysis, is discussed.
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Chapter 1

Introduction

1.1 Motivation

Experimentation has long been the predominant route for investigating scientific
phenomena. However, with more sophisticated computational simulations that employ
underlying physics-based models, more scientists today rely on simulations for their
scientific endeavors. Physics-based models are now an integral part of engineering and are
essential to the analysis of complex physical problems [1–4]. Such simulations are
increasingly used as test-beds for new engineering designs and to support decision-making.
The reliability of a computer simulation is of the utmost importance when using models for
decision-making. It is natural for scientists to question these models, e.g., what evidence is
there to trust predictions from the computational model? How accurate is the model
prediction? Such questions are fundamental to the field of uncertainty quantification (UQ),
where reliability and uncertainty are studied across various problems, e.g., model
validation, code verification, parameter estimation, inverse problems, and prediction.

The U.S. Department of Energy had defined UQ as “the end-to-end study of the
reliability of scientific inferences [5].” For any inference to be practical, it will demand that
the model agrees adequately with reality, i.e., with experimental evidence. This
assessment, termed model validation, quantifies the accuracy of a model’s output against
experimental evidence [6, 7]. Model validation can ensure that a model is being used
within its domain of applicability [8]. For a computational model to be useful does not
require the model to be valid for all scenarios, only that it is valid in the scenarios for
which it is being employed. Use of a computational model outside of the domain where it
has been validated, i.e., extrapolating model predictions, is always a perilous task. Model
validation (and UQ in general), is not meant to determine if a model is ‘true.’ UQ tells us
that, “if you accept the validity of the model (to some quantified degree), then you must
logically accept the validity of certain conclusions (to some quantified degree) [9].”

A common problem in UQ is the forward propagation of uncertainty in model prediction.
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Model prediction determines the uncertainty (or error) associated with a model output due
to the uncertainty in the model parameters. Model parameters are not known precisely, as
they were measured with error. This lack of certainty propagates through the model into
an uncertain prediction. Physics-based models and their associated set of model parameters
attempt to represent reality. Therefore, it is crucial to refine the model parameters and
reduce their related uncertainties to obtain a better understanding of reality.

Methods for computing the forward propagation vary depending on how the uncertainty
is modeled. Uncertainty can be modeled as a probabilistic (stochastic) or deterministic
quantity, and in the following section, these representations of uncertainty are discussed.
The inverse problem is the reverse of the forward problem, where one infers the unknown
parameters from a set of experimental measurements. Inverse problems, in general, are
challenging to solve as they may not have a unique solution [10].

Model validation and UQ heavily depend on experimental evidence, which is often
generated through scientific experimentation. Experimental results can be found in
approximately 33,000 active peer-reviewed journals with nearly three million new scientific
papers each year [11]. With the abundance of published content, discovering, extracting,
and transforming a heterogeneous collection of experimental data into knowledge is
challenging [12, 13]. It is clear to the scientific community that analyzing experimental
data requires better organization [14, 15] as well as a platform for collaboration to help
develop predictive models [16–18]. Here, a model is deemed “predictive” when the model
prediction adequately agrees with experimental data.

In this dissertation, I aim to develop UQ tools to aid in the analysis of physics-based
models by utilizing an online database of experimental data. These tools are demonstrated in
three real-world applications, described in Section 1.2. In these examples we remind ourselves
that a model can never truly be validated in the sense that it is certified to perform well in
scenarios beyond the data. A model can only be assessed based on the experimental data
(evidence) at hand. We can only determine the compatibility with the current evidence. As
new information is obtained, a model deemed valid could become incompatible with the new
evidence.

Representation of uncertainty

Uncertainty can enter a complex physics-based model through various sources, e.g., model
parameters, model form, experimental data [6]. Identifying these sources and their
magnitudes are essential to a UQ analysis. Many methodologies have been developed to
represent, combine, and propagate uncertainty, e.g., probability theory (frequentist [19] and
Bayesian approaches [20–23]), interval propagation [24, 25], probability bound analysis [26],
evidence theory [27, 28], fuzzy logic [29, 30], etc. In this dissertation, an
optimization-based framework for UQ will be used where constraints specify parametric
and experimental uncertainty. The details of this framework are discussed in Chapter 3. A
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review of a more general statistical framework for inverse problems is discussed in [31].

Both probabilistic and non-probabilistic methodologies for UQ have been studied
extensively, and it cannot be stated that one method is superior to the other. There are
advantages and disadvantages for each [32, 33], and these have been compared [34, 35].
Often, a problem’s description of the uncertainty dictates the more suitable methodology.
These methods should not add additional information that is not present, but also not
ignore information that is present. For example, when representing uncertainty as a prior
or constraint careful treatment is necessary as far more information than intended can be
included in the analysis [36].

1.2 Organization of dissertation

This dissertation intends to illustrate how tools for UQ can be applied to practical engineering
problems by combining the UQ analysis with access to experimental data. A validation
workflow is demonstrated on three examples to quantify the agreement (or disagreement)
between models and experimental data. The dissertation is organized as follows:

1. This first chapter summarizes the motivation for this dissertation. An outline of the
challenges in computational modeling, decision-making, and prediction under
uncertainty is given, with an emphasis on model validation.

2. The second chapter underlines the necessity of organized validation data, specifically
storing experimental data with a common structure and the interlinking between the
data records. A summary of the PrIMe Data Warehouse, which was developed to
archive chemical kinetics experimental data, is provided. A collection of solid-fuels
experiments was recently integrated into the Data Warehouse by building upon
existing data models. Tools for access to the Data Warehouse and building
stand-alone applications are introduced.

3. The third chapter focuses on a mathematical framework used for uncertainty
quantification, called Bound-to-Bound Data Collaboration (B2BDC). I present this
framework with a focus on model validation that is achieved through B2BDC’s scalar
consistency measure. A validation workflow is proposed that integrates the B2BDC
framework with experimental data retrieved from the PrIMe Data Warehouse.

4. The fourth chapter introduces a novel strategy for developing piecewise polynomial
surrogate models for B2BDC. This strategy utilizes experimental data during the fitting
procedure to determine if the model and data are compatible over a subdomain. The
efficacy of the strategy is demonstrated on a simple example and used in the analysis
in Chapter 6.
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The following three chapters demonstrate how the developed validation workflow and
piecewise modeling strategy can be utilized to examine complex physical systems.

5. The fifth chapter explores a developed H2/O2 system and its compatibility with
shock-tube and laminar flame speed experiments. Here, the computational model is
known with high certainty; however, considerable uncertainty exists in the
experimental measurements. The developed chemical kinetics mechanism was
incompatible with a set of low-temperature, high-pressure shock-tube experiments.
The developed mechanism, UQ analysis, and results are discussed. Reasons for the
disagreement observed in the shock-tube experiments are discussed in light of recent
experiments and analysis.

6. The sixth chapter analyzes the development of a reduced char oxidation model when
both the char model and experimental data have significant uncertainty. The
validation workflow was employed iteratively to construct a reduced-order model, by
systematically invalidating potential model forms. With this novel strategy for
piecewise modeling, I uncovered a potential issue with a widely used prior modeling
assumption.

7. The seventh chapter studies the ability of a semi-empirical quantum chemistry model
to predict the heats of formation of a series of alkanes. The experimental data have
high precision, whereas the computational model is empirically based and uncertain.
The quantum chemistry model, experimental data, and the analysis are discussed.
A charge-based model discrepancy is explored as a potential means of rectifying the
observed inconsistency that provides additional feedback to domain scientists.

The three systems examined using this methodology illustrate how the developed workflow
can provide analysis and feedback when the model or data is uncertain.

8. The final chapter concludes by encapsulating the main findings and results from the
three use cases. Current challenges for model validation and uncertainty quantification
are presented, with some suggestions of promising approaches.

1.3 Contributions of dissertation

The work presented in this dissertation creates tools that combine UQ analysis with an
organized collection of validation data. These tools and techniques are then applied to refine
our knowledge and understanding of complex physics-based models. These contributions
include:

• The creation of a validation workflow that connects the online platform of PrIMe with
the B2BDC UQ framework. The workflow acts as a semi-automated and systematic
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procedure for model validation. The workflow was used to analyze three systems in
this dissertation.

• Employing this validation workflow in the H2/O2 combustion model, identified a set of
potentially problematic shock-tube experiments that span the high-pressure and low-
temperature scenarios. Inconsistencies between model predictions and data under these
different conditions called for a reconsideration of the experimental measurements,
assumed uncertainties, and the idealized reactor used in the simulation.

• The B2BDC methodology was used to guide the development of piecewise polynomial
surrogate models. A novel strategy for piecewise modeling is presented that combines
piecewise surrogate modeling and B2BDC’s scalar consistency measure. This strategy
eliminates subdomains incompatible with experimental evidence. On the tested
examples, a significant reduction in the overall number of function evaluations is
achieved by targeting regions of the parameter space where the model adequately
predicts the data.
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Chapter 2

Providing structure to experimental
data through PrIMe

Experimental data plays a critical role in model development and validation. A database of
reliable experimental data can help validate models and ensure the preservation of historical
data. The cloud-based infrastructure Process Informatics Model (PrIMe) was established
to support the development of predictive chemical kinetic models, by enabling automated
access to experimental data. Automated access to data requires the experimental data to be
organized and have a common structure; both are provided by the PrIMe Data Warehouse,
an online repository of chemical kinetics data and experiments. The PrIMe Data Warehouse,
the newly developed data models for solid-fuels, and Warehouse APIs are reviewed in this
chapter.

2.1 Introduction

In the combustion community, scientists perform experiments to gain understanding of the
fundamental combustion processes. Apparatuses are built for experiments; instrumentation
is used to measure the various physical phenomena, from flame propagation speeds to the
formation or decay of radical species. Measurement data are essential for verifying the
reliability of a developed chemical kinetics model through model validation or prediction.
Additional experimental data can be helpful for comparison of a model’s output at various
scenarios. Added data can also be useful in model prediction, where the set of compatible
model parameters is reduced, thus decreasing the uncertainty in a model prediction (as
described in Section 3.3). Unfortunately, acquiring diverse data is not easy.

Published journal articles use tables and figures to report and visualize experimental
data. Often, additional data are stored in the supplementary materials, which can be in
a variety of file formats based on the experimenters’ preferences, e.g., Excel spreadsheets,
CSV files, plain-text files, etc. No one standard prevails. Data collection is the process of
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gathering relevant data across the published literature, which is an arduous task. However,
data collected cannot be used immediately. Experimental data must be parsed and cleaned,
extracting the pertinent information and fixing typographical errors. Each data set needs
individual attention. Developing specialized parsing scripts to parse each data set when
considering a substantial collection of data, quickly becomes a burden. After the data is
parsed, additional issues may arise because of missing information, e.g., a data set may not
have reported the measurement units. Without a standardized data format, searching for a
sizable collection of experimental data introduces significant and avoidable challenges.

The necessity of a standardized combustion database containing (i) a complete record of
the experiment, (ii) a machine-readable data format, and (iii) a common format for all records
was addressed by the pioneering work of PrIMe Kinetics [13, 37]. PrIMe is a cloud-based
infrastructure to help develop predictive chemical kinetics models through collaborative data.
PrIMe is composed of two major components: the PrIMe Workflow Application and the
PrIMe Data Warehouse. The PrIMe Workflow Application is a front-end interface with
a variety of tools for users to discover, create, share, and analyze chemical models [38].
The PrIMe Data Warehouse is an online repository that archives combustion data and their
associated uncertainties. Central to the PrIMe Data Warehouse are the PrIMe Data Models,
which assign a common data format for archiving experimental data. Early work by Michael
Frenklach and Zoran Djurisic [37] laid the foundation of the Data Warehouse and its data
models, which will be extended to store a collection of solid-fuel data.

2.2 PrIMe Data Models

A data model is a set of standards that defines how data and its properties are organized
and associated. PrIMe’s Data Models introduced a standard on how combustion data should
be organized [13]. All data records are encoded as an eXtensible Markup Language (XML)
document, which supplies additional metadata information in the form of tag pairs enclosing
the data. Each XML tag is labeled, allowing the data to be searched and giving structure
to the experimental data.

Structured data labels each piece of information, making it more efficient to process and
analyze. Source Code 2.1 shows an example of how XML metadata provides structure to
data. In this example, a shock-tube with an inner diameter of 9.82 cm is encoded in XML.
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Source Code 2.1: Example of XML Metadata

1 <property name="diameter" id="d_inner" units="cm" description="Inner diameter of

shock-tube">↪→
2 <value>9.82</value>

3 </property>

The property tag pair marks the start and end of an element. All information between
the opening and closing property tags are associated with a single property element.
Attributes relate additional information to a property element, e.g., name, id, units, and
description. The name of the property is a diameter, units are centimeters, and the id,
d inner, denotes an inner diameter. Nested between the property tags is the child
element, value, which contains the measurement value, 9.82. Collectively, the unstructured
text description of “a shock-tube with an inner diameter of 9.82 cm” was encoded in XML
in Source Code 2.1 by adding metadata information.

The XML schema governs the organization of the XML tags and determines which are
valid. XML schemas are representations of the PrIMe Data Models, acting as a blueprint for
all experimental records stored in the Data Warehouse. XML schemas can require specific
information, e.g., reporting the measurement units of a property. All properties of an XML
document must contain the measurement units; otherwise, the document is invalid.

Documents that adhere to the rules set by the data model are validated by the schema
and can be archived in the PrIMe Data Warehouse. This validation process ensures that
each data record complies with the standards set by the PrIMe Data Models. Records that
have missing information, misspellings/typos, or are duplicate entries are invalid.

2.3 Organization of the PrIMe Data Warehouse

The PrIMe Data Warehouse is a central repository for archiving chemical kinetics data
relevant to the development of predictive models. These documents include experimental
data, the properties of the chemical species, or the chemical kinetic models. Archiving a
document in the Data Warehouse requires more than just a data model; the organization of
the documents is also essential. Documents in the PrIMe Data Warehouse are organized by
catalogs, where each catalog belongs to a collection. Table 2.1 shows a list of the collections
in the PrIMe Data Warehouse.

For each item listed in Table 2.1, there is an associated data model. Each bulleted item
is a collection in the Data Warehouse. Non-bulleted items are auxiliary data records, which
are XML documents containing supporting information to another record. A schematic
illustrating the hierarchical organization of the Data Warehouse is shown in Figure 2.1.
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Table 2.1: List of collections in PrIMe Data Warehouse

• Bibliography (b)

• Element (e)

• Chemical Species (s)

Transport Coefficient (tr)

Thermodynamic Coefficient (thp)

Chemical Analysis (ca)

• Reaction (r)

Reaction Rate (rk)

• Experiment (e)

• Chemical Model (m)

• Dataset (d)

Surrogate Model (sm)

• Data Attribute (a)

Instrument Model (im)

• Optimization Variable (v)

Optimization Variable Bounds (vb)

Linking XML documents

Each XML document stored in the PrIMe Data Warehouse has only one copy, preventing
repeated information from being archived. Linking (or cross-referencing) documents is
possible when there is just a single XML document.

To exemplify the linking between records, we will consider an example of methane gas.
Methane gas is a chemical species; therefore, it has an associated XML document in the
species catalog. Each XML document is assigned a unique identifier, known as a PrIMe ID
(primeID). The PrIMe ID for methane is s00009193. Any experiment, reaction, or transport
property that is associated with or uses methane gas will reference methane by its PrIMe
ID.

The letter preceding the eight digit number in the PrIMe ID specifies the catalog. For
methane gas, the s corresponds to a chemical species record. Table 2.1 shows the three
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Figure 2.1: Schematic of the PrIMe Data Warehouse. Each collection (bibliography,
dataAttribute, datasets, etc.) contains a catalog folder and data folder. The catalog
folder contains all XML files for the particular collection. The data folder contains any
additional information for the particular record. A thermodynamic polynomial XML file,
thp00000001.xml and transport coefficient file, tr00000001.xml are shown in the data
directory for species s00009193.

possible auxiliary files for a chemical species record: transport coefficient files,
thermodynamic coefficient files, and chemical analysis files. Each auxiliary file provides
additional data (properties) about the associated chemical species. Transport properties
are stored in a transport coefficient XML document and thermodynamic properties are
stored in the thermodynamic coefficient XML document. Chemical analysis was recently
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developed by the author and added to the PrIMe Data Warehouse to further describe
solid-fuel data. Both transport and thermodynamic files are available for methane gas. A
new XML document with its unique PrIMe ID will be created for each new transport or
thermodynamic data set.

Source Code 2.2 shows a thermodynamic XML document for methane gas. For all XML
documents, the opening tag defines the record; in this case, thermodynamicPolynomials.
Inside the opening tag is the attribute primeID, which has the value thp00000003. This
thermodynamic PrIMe ID is unique for the associated chemical species. The tag
speciesLink connects the thermodynamic polynomial with an associated chemical species,
s00009193; i.e., methane gas.

Similarly, the tag bibliographyLink connects the thermodynamic polynomial to a
bibliography reference. A majority of the content in the document is between the
polynomial tags, which define the NASA polynomials and their valid temperature ranges
[39]. In this single XML document, then, all thermodynamic information is labeled and
annotated with provenance information.

Source Code 2.2: Thermodynamic Polynomial XML

1 <thermodynamicPolynomials xmlns="http://purl.org/NET/prime/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type="nasa7"

primeID="thp00000003" xsi:schemaLocation="http://purl.org/NET/prime/

http://warehouse.primekinetics.org/schema/thermodynamicPolynomials.xsd">

↪→
↪→
↪→

2 <copyright>primekinetics.org 2006</copyright>

3 <bibliographyLink preferredKey="Burcat A., Ruscic B., 2006." primeID="b00014727"/>

4 <preferredKey group="prime">g 8/99 ANHARMONIC</preferredKey>

5 <speciesLink preferredKey="CH4" primeID="s00009193"/>

6 <referenceState>

7 <Tref units="K">298.15</Tref>

8 <Pref units="Pa">100000</Pref>

9 </referenceState>

10 <dfH units="J/mol">-74595.4242</dfH>

11 <polynomial>

12 <validRange>

13 <bound kind="lower" property="temperature" units="K">200.000</bound>

14 <bound kind="upper" property="temperature" units="K">1000</bound>

15 </validRange>

16 <coefficient id="1" label="a1">5.1491</coefficient>

17 <coefficient id="2" label="a2">-0.013662</coefficient>

18 <coefficient id="3" label="a3">4.9145e-005</coefficient>

19 <coefficient id="4" label="a4">-4.8425e-008</coefficient>

20 <coefficient id="5" label="a5">1.666e-011</coefficient>

21 <coefficient id="6" label="a6">-10246.5983</coefficient>

22 <coefficient id="7" label="a7">-4.6385</coefficient>

23 </polynomial>

24 <polynomial>

25 <validRange>
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26 <bound kind="lower" property="temperature" units="K">1000</bound>

27 <bound kind="upper" property="temperature" units="K">6000.000</bound>

28 </validRange>

29 <coefficient id="1" label="a1">1.6533</coefficient>

30 <coefficient id="2" label="a2">0.010026</coefficient>

31 <coefficient id="3" label="a3">-3.3166e-006</coefficient>

32 <coefficient id="4" label="a4">5.3648e-010</coefficient>

33 <coefficient id="5" label="a5">-3.147e-014</coefficient>

34 <coefficient id="6" label="a6">-10009.5936</coefficient>

35 <coefficient id="7" label="a7">9.9051</coefficient>

36 </polynomial>

37 </thermodynamicPolynomials>

Data enrichment and reproducibility

One benefit of the PrIMe Data Warehouse is the ability to archive complete documentation
of the experiment conducted. Full documentation is essential when preserving historical
data, which may contain known typographical errors that are commonly not corrected when
published in a journal [40]. The community can enrich or add value to an experiment by
maintaining an experimental record with the most up-to-date information, which is beneficial
to all researchers.

Reproducibility is especially important when considering validation data that has been
published in graphical figures. Recovering the exact measurement data from a figure can be
challenging. Data is often extracted by using a plot digitizer, which is a tool for extracting
numerical values from a digital figure. Human interaction with this tool creates inherent
variability in the extracted numerical values. Two researchers claiming to use the “same”
set of measurement data could use different extracted values, making their analyses difficult
to reproduce.

The public XML documents in the PrIMe Data Warehouse can help demystify any
ambiguity as to what experimental data was used in a study. Experimental documents
stored in the Data Warehouse are easily accessible through the PrIMe Workflow
Application [37, 38] or through the Warehouse API described in Section 2.5. Each
document from the Data Warehouse can be referenced by their unique PrIMe ID, giving
subsequent researchers a means of obtaining an exact copy of the data used in a study,
allowing for the study to be reproduced. PrIMe strives to deliver both publicly available
experimental data and software for developing predictive models, both of which are critical
components to computational reproducibility [41].

2.4 Addition of solid-fuels experimental data

In Chapter 6, the validity of a reduced char oxidation model is analyzed against a set of
validation data coming from a collection of solid-fuel experiments. At the beginning of our
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study, solid-fuel experimental data did not exist in the PrIMe Data Warehouse. Data models
for chemical species are encoded by their chemical composition, i.e., the number of atoms
of each element. A detailed description of the molecular composition of a solid-fuel is not
attainable because of the complexity and inhomogeneity of the fuel. Often proximate or
ultimate analyses are used to characterize the composition of a solid-fuel [42]. A proximate
analysis abstracts the basic chemical properties, i.e., the percentage of moisture, ash, volatile
matter, and fixed carbon. Elemental composition of the solid-fuel can be determined through
the ultimate analysis, where the percentages of carbon, hydrogen, oxygen, nitrogen, and
sulfur are measured. To complicate matters, the proximate and ultimate analysis can vary
between solid-fuels of the same name. One example of this is Pittsburgh No. 8 coal, which
is a typical medium sulfur high-volatile bituminous coal coming from the Pittsburgh Coal
Seam in Pennsylvania and Ohio. A piece of Pittsburgh No. 8 coal used in an experiment
conducted at Sandia National Laboratories [43] contained 6.9% ash, whereas another test at
the International Flame Research Foundation [44] used a piece of Pittsburgh No. 8 containing
8.1% ash. Coal mined from one shaft can vary in its properties from coal in a nearby shaft.

Due to the variability of the chemical properties of a similar solid-fuel, it is essential to
document the proximate and ultimate analyses of the fuel used in each experiment. The
chemical species data models have been expanded to handle either a chemical composition
specified by the number of atoms in each element, shown in Source Code 2.3, or by a
secondary chemical analysis file, shown in Source Code 2.4. The chemical species XML
document for methane gas is seen in Source Code 2.3. Methane gas can be specified by
its atomic makeup. Therefore, Lines 15-18 report its composition; namely 1 carbon and 4
hydrogen atoms. Unlike methane, Black Thunder Coal, shown in Source Code 2.4, cannot
be specified by an atomic makeup. Lines 8-10 show the chemical composition is described
by a chemical analysis file, ca00000001 (shown in Appendix A.2).

Source Code 2.3: Example of chemical species XML specified by atomic makeup

1 <chemicalSpecies xmlns="http://purl.org/NET/prime/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" primeID="s00009193"

xsi:schemaLocation="http://purl.org/NET/prime/

http://warehouse.primekinetics.org/schema/species.xsd">

↪→
↪→
↪→

2 <copyright>primekinetics.org 2005-2018</copyright>

3 <content bibliography="b00014319" copyrighted="true" source="NIST">

4 Elements attributed to NIST are part of a collection copyrighted by NIST.

5 </content>

6 <preferredKey group="prime" type="formula">CH4</preferredKey>

7 <chemicalIdentifier>

8 <name source="NIST" type="CASRegistryNumber">74-82-8</name>

9 <name source="NIST" type="formula">CH4</name>

10 <name source="NIST">methane</name>

11 .

12 .

13 .

14 </chemicalIdentifier>
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15 <chemicalComposition>

16 <atom symbol="C">1</atom>

17 <atom symbol="H">4</atom>

18 </chemicalComposition>

19 </chemicalSpecies>

Source Code 2.4: Example of chemical species XML specified by chemical analysis

1 <chemicalSpecies xmlns="http://purl.org/NET/prime/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" primeID="s00011163"

xsi:schemaLocation="http://purl.org/NET/prime/

http://warehouse.primekinetics.org/schema/species.xsd">

↪→
↪→
↪→

2 <copyright>primekinetics.org 2005-2018</copyright>

3 <preferredKey>Black Thunder Seam, WY</preferredKey>

4 <chemicalIdentifier>

5 <name source="Sandia">Black Thunder Seam</name>

6 <name type="FuelType">Subbituminous</name>

7 </chemicalIdentifier>

8 <chemicalComposition item="coal">

9 <coal specifiedBy="chemicalAnalysis">ca00000001</coal>

10 </chemicalComposition>

11 </chemicalSpecies>

Chemical analysis data models helped store data on 269 solid-fuels used in 2,710
experiments in the PrIMe Data Warehouse. A collection of experimental data was provided
by Sandia National Laboratories and the International Flame Research Foundation. The
flexibility of the PrIMe Data Models made the storage of solid-fuel data possible and gave
a standard structure for all experimental records. In the following section, we discuss the
newly developed Warehouse API and a front-end application for analyzing coal data.

2.5 PrIMe Data Warehouse API

Archiving combustion data in the PrIMe Data Warehouse preserves the data, but most
practical applications require access to the data. There are two methods for retrieving
experimental data from the Data Warehouse. The first method uses the PrIMe Workflow
Application, a cloud-based interface for creating and executing projects on PrIMe [37]. Each
PrIMe Workflow Application project is formed by a set of components. Each component is
an interactive block of code that executes online and enables a user to perform a simulation
or data analysis task.

A more versatile method for accessing the Data Warehouse is through the Warehouse
API, available online at [45] and in Appendix A.2. The Warehouse API is a set of methods
and objects written in MATLAB and Python and are used to communicate with the PrIMe
Data Warehouse. The Warehouse API constructs an Elasticsearch query, which is then
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passed to and executed by the PrIMe server [46]. Results are then returned to the user. By
standardizing the storage of experimental data, users can find all records of interest with
a single search via the Warehouse API. The Warehouse API will be used throughout this
dissertation to find quantities of interest and obtain all pertinent simulation information,
i.e., input conditions, observed values, and the experimental bounds.

The PrIMe Data Models and API allow developers to create software that can interact
with documents stored in the PrIMe Data Warehouse. Parsing relevant features from an
XML document is simple, only requiring a couple of lines of code, since all experimental
documents share a common structure. An example of an application that can be built using
the Warehouse API is the Carbon Capture Multidisciplinary Simulation Center (CCMSC)
Coal Database, which is discussed below.

CCMSC Coal Database

A significant amount of coal data was collected from a crowd-sourced effort to validate a
reduced char oxidation model (discussed in Chapter 6). The culmination of this is the
CCMSC Coal Database [47], a front-end application to the experimental data on coal (or
char) in the PrIMe Data Warehouse. The CCMSC Coal Database is a stand-alone MATLAB
application that uses the Warehouse API. Figure 2.2 shows the application’s GUI, through
which users can search for relevant coal experiments by coal name, coal rank, gas mixture,
properties, etc. The interaction between the application and the Data Warehouse is through
the Warehouse API. Search results are visualized within the application or data are saved
locally.

Figure 2.3 shows two examples of data visualization in the Coal Database application.
Figure 2.3(a) is experimental data of mass loss of Rietspruit char from the International
Flame Research Foundation, while Figure 2.3(b) shows char combustion temperature from
an experiment conducted at Sandia National Laboratories.

The CCMSC Coal Database application shows that a collection of experimental data
stored in a standard, structured format can be efficiently queried, extracted, and analyzed,
irrespective of where the data originated. The PrIMe Data Warehouse eliminated the
difficulties in parsing an extensive collection of experimental data and is just one example
of a chemical kinetics database. Alternative chemical kinetics databases that fulfill a
similar role to the Data Warehouse are discussed in the following section.

2.6 Alternative chemical kinetics databases

This chapter gave an overview of how the PrIMe Data Warehouse and its data models create
a common, structured data format for the archival of chemical kinetics data. It is important
to acknowledge a few other recently developed chemical kinetics databases, where, in all
examples, a new data format was developed to archive chemical kinetics data, with the
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Figure 2.2: Snapshot of the stand-alone CCMSC Coal Database MATLAB application.

hopes of promoting wider adoption of the proposed format. The most interesting examples
are ReSpecTh and ChemKED. ReSpecTh [49], launched in June 2015, has a data format
that begins with the existing PrIMe Data Models (i.e., XML schemas) and makes a few
modifications. The ReSpecTh database contains nearly 1,000 experiments, although many
overlap with those already stored in PrIMe. Because of the inherent similarity in the formats,
a comparison between PrIMe and ReSpecTh is made in Appendix A.3.

ChemKED launched in 2017 by Weber and Niemeyer [50]. Unlike PrIMe, ChemKED
stores experimental data in YAML, which may be considered a cleaner format. ChemKED
also launched with the Python package, PyKED, providing an interface with the ChemKED
files. ChemKED has archived a collection of butanol, toluene, and n-heptane experiments.
Although not an experimental data format, in 2013 Cloudflame [51, 52] provided an online
infrastructure to execute numerical simulations and simplified searches of experimental data.

Irrespective of which chemical kinetics database a user adopts, the community has been
moving towards archiving experimental data in a common format. The benefits of a
combustion database outweigh the single, upfront cost of encoding a published journal
article in the chosen format. Queries can be made across the entire database with no need
to parse each journal article. Although many data formats have manifested in recent years,
it is theoretically possible to convert from one data format to another, as long as a few
necessary conditions are held. First, each experimental document has to contain full
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(a) (b)

Figure 2.3: Visualization of experimental data from the CCMSC Coal Database application.
Panel a: the fraction of weight loss of Rietspruit char at various gas temperatures [48]. Panel
b: char combustion temperature of Pittsburgh coal at three oxidation conditions [43].

information of the experiment conducted; e.g., measurement units, apparatus, conditions,
bibliography reference, measured value, etc. Second, all information has to be distinctly
labeled. Data format conversion — e.g., from PrIMe(A) to ChemKED(B) — would then
be a mapping (A 7→ B) without loss of any information.

2.7 Summary

The PrIMe Data Warehouse and Data Models create a standard on how chemical kinetics
data are encoded, organized, and archived. The flexibility of the PrIMe Data Models was
highlighted when 2,710 solid-fuel experiments were added to the Data Warehouse. A new
auxiliary data model was created to archive the proximate and ultimate analyses that are
commonly used to characterize the chemical composition of solid-fuels. Researchers can
interact with the entire collection of experimental data by using the Warehouse API. The
CCMSC Coal Database demonstrated how the Warehouse API could also be used for
application development. Experimental data stored in the Data Warehouse will be used as
validation data throughout this dissertation.
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Chapter 3

Bound-to-Bound Data Collaboration

Complex physics-based simulations are becoming increasingly common to support
engineering analysis. Such computational models are used to test new designs and support
decision-making. The accuracy of the information obtained from a computational
simulation requires the model to be in good correspondence with nature, i.e., experimental
evidence. In the previous chapter, we discussed a database that gives structure to
experimental data; however, a database is only useful for predictive modeling if there exists
a mathematical framework to quantify the agreement (or disagreement) between models
and data. In this chapter, the uncertainty quantification framework called Bound-to-Bound
Data Collaboration (B2BDC) will be discussed in the context of model validation and
prediction.

3.1 Introduction

B2BDC is an optimization-based framework for uncertainty quantification, where uncertain
model parameters are constrained by the combination of models and experimental data.
This chapter will provide an overview of the B2BDC methodology. An emphasis is placed
on the methodological details for model validation, precisely the consistency of a domain
and model prediction. The methodology used here follows previous lab members works that
derive many of the optimization problems shown below [53–56].

Let us define {Me(x)}e=1,...,N as a collection of polynomial surrogate models mapping
from a common parameter space to various scalar-valued quantities of interest (QOIs). For
a parameter vector x ∈ Rn, the expression Me(x) evaluates the model prediction for the e-th
quantity of interest (QOI). Uncertainty in the experimental observations of the QOIs are
represented deterministically. These uncertainties come in B2BDC in the form of expertly
assessed, interval bounds, {[L̃e, Ũe]}e=1,...,N .

Often, prior knowledge can confine the model parameters, x, to a set H ⊂ Rn. Prior
knowledge can be represented as a set of constraints on either individual model parameters,



CHAPTER 3. BOUND-TO-BOUND DATA COLLABORATION 19

e.g., −1 ≤ x1 ≤ 3 or can represent relationships between parameters, e.g., 0 ≤ 5x1 + x2 ≤ 2.

In B2BDC, polynomial surrogate models, Me(x), are used to approximate the often
computationally expensive underlying model, f(x, xs,e), where xs,e are the scenario
parameters for the e-th QOI. Scenario parameters are the model parameters that are
assumed to have no uncertainty. Approximating an underlying model with a surrogate
model can cause a potential difference or error. Appendix B.2 discusses how surrogate
modeling error is estimated. The fitting error of the e-th QOI, denoted εe, will be
accounted for in the analysis by adding the error to the associated experimental bounds,
where [Le, Ue] = [L̃e − εe, Ũe + εe].

Constrained by both prior knowledge on x and the experimental uncertainty ranges,
[Le, Ue], each QOI has an associated feasible set of parameters for which model evaluations
agree with the corresponding experimental bounds:

Fe = {x ∈ H : Le ≤Me(x) ≤ Ue, for e = 1, 2, . . . , N}. (3.1)

A dataset is the collection of model-data constraints and prior knowledge on x. Model
parameters that satisfies all constraints in the dataset forms the feasible set of the dataset:

F =
N⋂
e=1

Fe = {x ∈ H : Le ≤Me(x) ≤ Ue, for e = 1, 2, . . . , N}. (3.2)

3.2 Dataset Consistency

Model validation in the B2BDC framework amounts to establishing the consistency of a
dataset. If the feasible set F is nonempty, the models and data are said to be consistent.
The scalar consistency measure can efficiently and provably quantify the consistency of a
dataset [56]. The scalar consistency measure can be formulated as the following constrained
optimization problem:

CD = max
γ∈R,x∈H

γ

s.t. Le +
(Ue − Le)

2
γ ≤Me(x) ≤ Ue −

(Ue − Le)
2

γ

for e = 1, 2, . . . , N,

(3.3)

where “s.t.” is an abbreviation for “subject to.” CD is the consistency measure of the
dataset, and γ is the symmetrical tightening (or expansion) of the experimental bounds.

If γ > 0, the feasible set is non-empty as the experimental bounds can be tightened such
that the feasible remains non-empty. The dataset is consistent as the models and data agree
in the prior domain x ∈ H. Alternatively if γ < 0, the feasible set is empty. This result
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tells us that the experimental bounds need to be expanded beyond their prescribed values,
for any model parameter in H to agree with all model-data constraints. The dataset is then
said to be inconsistent.

Exact calculation of the global maximum of the scalar consistency measure (Eq. 3.3) is
difficult to attain. The scalar consistency measure is a nonconvex quadratically constrained
quadratic program [57], a class of problems that are NP-Hard [58, 59]. Bounds on the value
of γ can be found by the inner (γ) and outer (γ) solutions to Eq. 3.3, where γ ≤ γ ≤ γ.
To determine γ, a convex relaxation to the original problem is necessary [56, 60]. A convex
relaxation is a reformulation of an original optimization problem, into a convex problem,
where the optimal value can be guaranteed to be the global solution [61]. With Eq. 3.3,
the optimal value of the convex relaxation problem is guaranteed to be at least as large as
the optimal value of the original problem, i.e., γ ≤ γ. Therefore, if γ < 0, then it can be
provably shown that the models and data are in disagreement over x ∈ H.

If a dataset is inconsistent, elucidating the exact cause of the inconsistency can be
challenging. The underlying model, the prescribed experimental bounds, or the prior
domain of the model parameters may be at fault. One means of diagnosing potential
dataset inconsistencies is through the sensitivities to the scalar consistency measure.
Highly sensitive model-data constraints may indicate models and data that could
potentially be responsible for the inconsistency [56]. Sensitivity to the scalar consistency
measure was shown to be inefficient when many model-data constraints are contributing to
an inconsistent dataset. For these cases, the vector consistency measure [62] was developed
where individual relaxations are applied to each model-data constraint to identify a sparse
resolution to the inconsistency. Throughout this dissertation, we will only require the
application of the scalar consistency measure.

3.3 Model prediction

If the feasible set is non-empty, the dataset is consistent and a posterior analysis can occur
by propagating all parametric uncertainties to model predictions. In B2BDC, the prediction
of a particular model, Mp(x), amounts to establishing bounds on the range of the prediction
model, subject to model parameters in the feasible set, F :[

min
x∈F

Mp(x), max
x∈F

Mp(x)

]
. (3.4)

In Eq. 3.4, the prediction model need not be a member of the collection of models that define
the feasible set, {Me(x)}e=1,...,N . Often an analysis requires the posterior bounds on the range
of an uncertain model parameter, which amounts to model prediction, where Mp(x) = xi.
Similar to the scalar consistency measure (Eq. 3.3), calculating the exact minimum or
maximum value of Eq. 3.4 is NP-Hard; therefore, only inner and outer bounding solutions
are computed [57]. In cases where validation data are not available to assess the predictivity
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of a dataset, an alternative approach is necessary. One technique, called blind prediction,
uses the training data to evaluate the prediction of the model on unseen data. Appendix
B.3 describes how blind prediction is implemented in the context of B2BDC.

3.4 Optimization methods

The feasible set, by definition, is a collection of model parameters that agree with the prior
knowledge on x and the model-data constraints. Any parameter in F is a viable option
based on a deterministic view of uncertainty. In some applications, it becomes intractable
to evaluate an underlying model with many samples from F . In these problems, it’s useful
to determine a representative parameter from F . However, we recognize and caution that
a single model parameter will not characterize the uncertainty exhibited by the set F . The
following optimization methods have been proposed to find an optimal point subject to
model parameters in F .

One method, referred to as the LS-F method [63], employs the following objective
function,

φLS =
N∑
e=1

[we(Me(x)− ye)]2, (3.5)

where we is the statistical weight and ye is the experimental measurement of the e-th QOI.
The model parameter that minimizes this objective, i.e., min

x∈F
φLS, is called the LS-F

parameter. A non-linear optimization solver (MATLAB’s fmincon [64]) can be used to
obtain a solution to Eq. 3.5.

Another optimization method, named 1N-F [57] seeks the model parameter x ∈ F that
is in an `1 sense nearest to the nominal parameter value xnom. This criterion might be
chosen because, in some examples, the nominal parameter value has a special meaning. The
nominal value could be associated with a scientific community’s agreed-upon value. If the
nominal value is infeasible, then the smallest deviation from this value would be of interest.
The 1N-F method uses the following objective function,

φ1N = ||x− xnom||1 =
n∑
i=1

|xi − xnom,i|, (3.6)

where xi is the i-th component of the model parameter vector x. The model parameter that
minimizes this objective, min

x∈F
φ1N is the 1N-F parameter.
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3.5 Validation Workflow

The PrIMe Data Warehouse and the B2BDC methodology can be integrated into an end-to-
end validation workflow. This workflow provides a semi-automated and systematic procedure
for determining the validity of an underlying model. Domain scientists determine the choice
of the underlying model and QOIs from the PrIMe Data Warehouse; therefore, the process
is semi-automated. A collection of validation data from the PrIMe Data Warehouse is used
to first develop and then constrain surrogate representations of QOIs from an underlying
model. The B2BDC methodology then assesses the validity, i.e., consistency, of the models
and data. This process is shown in Figure 3.1 and can be described in the following steps:

Figure 3.1: Model validation workflow that combines B2BDC methodology with the PrIMe
Data Warehouse.

1. Domain science proposes an underlying computational model and a set of validation
data, stored in the PrIMe Data Warehouse

2. For each QOI, the underlying model is evaluated using a scenario parameter obtained
from the PrIMe Data Warehouse, and a polynomial surrogate model is developed

3. Each surrogate model is then constrained by the associated experimental bounds taken
again from the Data Warehouse

4. The scalar consistency measure is calculated for the dataset

5. If the measure is consistent, then the model and data are in agreement
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6. If the measure is inconsistent, feedback is returned to domain scientists to examine the
source of the model-data disagreement (e.g., employing sensitivity to the consistency
measure [56])

a) Alternatively, the vector consistency measure can be evaluated to provide more
refined feedback

The presented workflow is an end-to-end cycle to determine the validity of a model. An
inadequate model can help inform scientists of the potential deficiencies or incompatibilities
with the experimental data by following the feedback loop. The validation workflow then
repeats with a new and improved model. This application of feedback is illustrated in
Chapters 5 and 6, which helped identify incompatible data and guide the addition of new
physics to a model. The validation workflow is central to the analysis conducted in this
dissertation as it brings together tools for UQ analysis with access to an organized database
of validation data.

3.6 Summary

The Bound-to-Bound Data Collaboration methodology was examined in this chapter for
determining the consistency of an underlying model with experimental data. The scalar
consistency measure determines if a feasible set of model parameters is empty or not. If the
feasible set is empty, then there is disagreement between the model, experimental bounds,
and the prior domain. Alternatively, if the feasible set is non-empty, the models and data
agree over the domain. The B2BDC validation workflow is an end-to-end procedure for
systematically determining and quantifying the agreement (or disagreement) between
models and data. Three systems will be examined in this dissertation that use the
validation workflow: an H2/O2 system, a reduced char oxidation model, and a
semi-empirical quantum chemistry model, wherein all cases, experimental data comes from
the PrIMe Data Warehouse. Before considering these examples, in the next chapter, I will
develop a novel strategy for surrogate modeling that harnesses the scalar consistency
measure.



24

Chapter 4

Developing piecewise surrogate
models

The B2BDC methodology uses polynomial surrogate models in order to obtain provable
optimization bounds. However, not all QOIs can be accurately characterized by a
polynomial model. To improve the accuracy of a fixed-degree polynomial model, the prior
domain will be decomposed into multiple disjoint partitions, each of which is represented
by a polynomial model. This approach, known as piecewise modeling, can become
computationally demanding if the underlying model is costly to assess. In this chapter, a
novel strategy is developed using experimental data during the fitting procedure. The
performance of this strategy is demonstrated in two examples, where the total number of
function evaluations necessary to develop a piecewise surrogate model is reduced.

4.1 Introduction

The B2BDC methodology, as discussed in Chapter 3, employs polynomial surrogate models
as an approximation of the underlying model for UQ. In previous studies [34, 63, 65, 66], the
selected QOIs could be accurately represented by a quadratic surrogate model within their
respective domains. Unfortunately, more recent applications of the B2BDC methodology [67,
68], which are discussed in Chapters 6 and 7, had encountered difficulties using a quadratic
surrogate model. Non-polynomial QOIs and large prior domains resulted in substantial
surrogate model fitting error, as defined in Appendix B.2. If a surrogate model has a large
fitting error, then the surrogate is an inadequate representation of the underlying model over
the specified domain. Any subsequent analysis is questionable, as the fitting error, which
is propagated forward, is non-negligible. Ideally, the fitting error should be small enough
that the UQ analysis will not change, regardless of whether or not it is propagated forward.
However, when the fitting error is large, the analysis can be greatly affected.

An accurate representation of the underlying model may not be possible with a single
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polynomial model. We will consider developing piecewise surrogate models to approximate
f(x, xs,e), as initially described by Feeley [60]. Piecewise surrogate models are a collection
of models that are developed on non-intersecting partitions of the prior domain.
Collectively, these surrogate models can evaluate any value of the prior domain. Each
subdomain (i.e., a single partition of the domain) is defined by a polynomial model. The
collection of polynomial models can more accurately represent an underlying model over
the prior domain by partitioning the domain into multiple disjoint subdomains. In the
following section, the general strategy for piecewise modeling is outlined.

4.2 General strategy for piecewise modeling

Building a piecewise surrogate model can be a computationally demanding task, given the
necessity for enough samples in each subdomain to construct a polynomial surrogate
model. The general strategy for constructing piecewise surrogate models is described in
Algorithm 1. In effect, the recursive algorithm will continue to partition a domain until
each subdomain contains a polynomial surrogate model that has a fitting error less than a
specified error tolerance. Algorithm 1 has a function, fitOnDomain, which handles many of
the computational tasks; specifically, generating training samples in the domain, evaluating
the underlying model for the training samples, fitting the surrogate model, and estimating
the error. In most real-world applications, the bulk of the computational time is spent
evaluating the underlying model for a set of training samples. On Line 4 of Algorithm 1,
the function partition takes as input a domain, D, and returns two disjoint subdomains,
where D = D1 ∪ D2 and D1 ∩ D2 = ∅. In Section 4.3, we discuss the details of this
partitioning.

Constructing piecewise surrogate models is an effective strategy for developing models
that fit within some specified error tolerance through domain partitioning. An accurate
representation over the entire prior domain, D, can be obtained. However, in the B2BDC
framework the region of interest is the feasible set, which is only a subset of the prior
domain. In practice, the feasible set is much smaller in volume compared to the prior
domain. Therefore, significant computational effort is spent developing surrogates over the
prior domain when only a fraction of volume is used in the analysis.

A new strategy for piecewise modeling can be formulated by incorporating each QOI’s
associated set of experimental bounds and the B2BDC’s scalar consistency measure. The
general piecewise modeling algorithm can be revised such that it focuses its computational
efforts on developing accurate surrogate models for the feasible set. In other words, the new
strategy will no longer partition a domain once it is proven incompatible with the data. This
strategy unifies both the fitting procedure and experimental data through B2BDC’s scalar
consistency measure. In the following section, the details of this new strategy are described.
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Algorithm 1 General strategy for constructing piecewise surrogate models

1: procedure tree = piecewise(tree, @functionHandle, errTol,, D);
. tree: array containing surrogate models objects (initially empty)
. @functionHandle: handle to underlying QOI model
. errTol: maximum tolerance for the surrogate model error
. D: prior domain

2: [model, error] = fitOnDomain(@functionHandle, D);
. Returns a polynomial surrogate model object and the estimated error over the

domain D
3: if error > errTol then
4: [D1, D2] = partition(D);

. Partition D into two disjoint subdomains following a heuristic
5: tree = piecewise(tree, @functionHandle, errTol, D1);
6: tree = piecewise(tree, @functionHandle, errTol, D2);
7: else
8: tree = [tree; model]; . Save model object
9: end if
10: end procedure

4.3 Novel strategy for piecewise modeling

In the B2BDC framework, each QOI model is constrained by an associated set of
experimental bounds. The general strategy for piecewise modeling, shown in Section 4.2,
made no use of the available experimental data during its fitting strategy. Here, the general
piecewise modeling strategy and experimental data are combined to create a more efficient
fitting strategy for sampling regions of interest.

This novel strategy is outlined in Algorithm 2, where the code (highlighted in red) has
been added from the general piecewise modeling strategy. In Line 3, the function
checkScalarConsistency is called after a surrogate model is constructed. This function
calculates the scalar consistency measure (Eq. 3.3) to determine if the model and
experimental bounds are in agreement across the model’s domain. If the model and data
are consistent, the boolean variable consistent is set to TRUE. On Line 4, the algorithm
checks if the error is greater than the specified tolerance; if the domain is consistent, and if
both statements are true, then the algorithm will continue to partition the current domain.
This procedure will terminate once the surrogate model fitting error is less than the
specified tolerance or once a subdomain is proven inconsistent.

The goal of this novel strategy is to obtain an accurate representation of the feasible
set utilizing the fewest possible subdomains. Each subdomain requires a set of training
samples to fit a polynomial surrogate model; few subdomains implies fewer evaluations of
the (often computationally expensive) underlying model. It is challenging to determine the
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optimal partitioning of a domain such that the fewest number of subdomains are accurately
characterized by a polynomial model. Initially, a coarse representation of the underlying
model is available through the finite training samples. As additional training samples are
evaluated, a more refined representation of the underlying model is obtained, which can help
to identify polynomial behaved regions in the parameter space. Two partitioning strategies
are discussed in the following section.

Algorithm 2 Novel strategy for constructing piecewise surrogate models

1: procedure tree = piecewise(tree, @functionHandle, errTol,, D, [L,U ]);
. tree: array containing surrogate models (initially empty)
. @functionHandle: handle to underlying QOI model
. errTol: maximum tolerance for the surrogate model error
. D: prior domain
. [L,U ] are experimental bounds of the @functionHandle

2: [model, error] = fitOnDomain(@functionHandle, D);
. Returns a polynomial surrogate model object and the estimated error over the

domain D.

3: consistent = checkScalarConsistency(model, error, [L,U ])

4: if error > errTol && consistent then
5: [D1, D2] = partition(D);

. Partition D into two disjoint subdomains following a heuristic
6: tree = piecewise(tree, @functionHandle, errTol, D1, [L,U ]);
7: tree = piecewise(tree, @functionHandle, errTol, D2, [L,U ]);
8: else
9: tree = [tree; newModel];

10: end if
11: end procedure

Partitioning

A priori, is it not evident where a domain should be partitioned such that the resulting
subdomains can be adequately represented by the given fidelity of a surrogate model. One
of the simplest approaches is to decompose a domain following coordinate-aligned (axis-
aligned) splits. Domains could also be decomposed using a multivariate hyperplane. For
this dissertation, however, we will only consider coordinate-aligned partitions.

The process of partitioning a domain into two disjoint subdomains can be represented
as a binary tree (shown in Fig. 4.1). The root node is the prior domain. It is decomposed
into two child nodes. The general and novel strategies for piecewise surrogate modeling
traverse the binary tree following a depth-first search [69]. A depth-first search builds out
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(and traverses) the left-most nodes of the binary tree first before considering the rightward
nodes. This approach is illustrated in Figure 4.1. At iteration 0, Node 1 (i.e., the prior
domain) is partitioned into two domains: Node 2 and Node 3. As the algorithm progresses,
it begins by partitioning domains under Node 2. The domain associated with Node 3 is not
considered until all subdomains of Node 2 are resolved.

The choice of which coordinate (model parameter) to split and where the partition occurs
is dictated by a partitioning rule. A poorly chosen partitioning rule can lead to numerous
subdomains which, as discussed before, requires many evaluations of the underlying model.
A simple, albeit näıve, partitioning rule is to take the model parameter with the largest
uncertainty range and partition it in half. This rule is referred to as the uncertainty-based
partitioning rule. To illustrate, consider the following example where D is the prior domain
and x = [x1;x2],

D = {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 0.5}. (4.1)

Since x1 has a larger uncertainty range than x2, x1 is selected as the parameter to partition.
The selected model parameter will be divided in half, resulting in two disjoint subdomains,
D1 and D2, where,

D1 = {x ∈ R2 : 0 ≤ x1 ≤ 0.5, 0 ≤ x2 ≤ 0.5}
D2 = {x ∈ R2 : 0.5 < x1 ≤ 1, 0 ≤ x2 ≤ 0.5}.

We demonstrate the performance of the uncertainty-based partitioning rule on two
examples in Section 4.4. A less näıve rule has been proposed by Feeley [60], which begins
by hypothetically splitting a model parameter in half, forming two subdomains, D1 and D2.
A quadratic surrogate model is constructed for each of the two hypothetical subdomains.
Coefficients for the quadratic model were obtained by minimizing the 2-norm of the
training error. The test error was then estimated for each quadratic model. This process is
then repeated for all model parameters. The hypothetical partition that yielded the
smallest fitting error is selected as the model parameter by which the domain will be
partitioned. This rule will be referred to as the error-based partitioning rule.

The error-based partitioning rule considers all possible model parameters and selects the
best partition at the current iteration. We define “best” as the partition that yields the
smallest estimated fitting error. This parameter is chosen because one of its two subdomains
has the smallest fitting error compared to all other partitions. The motivation for selecting
a model parameter based on the smallest fitting error is as follows. Subdomains with the
smallest error may be less than the specified threshold; therefore, no further partitions would
be necessary. If the fitting error is still above the threshold, potentially a fewer number of
additional partitions would be required before a surrogate model is below the error threshold.
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(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4

Figure 4.1: Example of a two-dimensional prior domain being partitioned into multiple,
disjoint subdomains. Multiple iterations of the decomposition are shown with the associated
binary tree. Each node of the tree corresponds with a domain. Parent nodes are partitioned
into two children nodes. Based on Algorithm 1, if a surrogate model fits within the specified
error tolerance, the domain will not be partitioned. The algorithm and tree traversal follows
a depth-first search. In Figure 4.1(e), Node 3 will be considered by the algorithm after Node
9 is assessed.

Other parameter choices, by contrast, could require a larger number of partitions, as the error
was larger.
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Combined information

The novel strategy for piecewise modeling integrates experimental data during the fitting
procedure through B2BDC’s scalar consistency measure. When considering a single QOI
model, the consistency measure verifies that a single QOI model is in agreement with its
experimental data, i.e., self-consistency. In other words, are there model parameters in the
domain, such that a single QOI model can predict within the specified uncertainty bounds?
If there are parameters that satisfy these constraints, then the subdomain is consistent.

In practice, the feasible set Fe, formed by an individual model-data constraint, can be
large in volume. It could take a considerable number of partitions before a subdomain does
not contain part of the feasible set. The scalar consistency measure, as it was formulated
in Eq. 3.3, is used to determine if a set of model parameters exists in the prior domain,
where all QOI models and data are in agreement. The volume of the feasible set in the prior
parameter space is significantly reduced when taking into account an increasing number of
QOI models. Considering an arbitrary subdomain, a feasible set with a smaller volume is
less likely to intersect the subdomain than a feasible set with a larger volume.

In many physical models, a single model evaluation can produce multiple model outputs.
Each output can be associated with a different QOI, e.g., a species concentration profile. For
such cases, it is recommended to construct all QOI models on the same subdomain and then
evaluate the scalar consistency measure using all model-data constraints. There are various
degrees in which one can validate a domain. The scalar consistency measure can be assessed
for a single QOI, all available QOIs, or a particular batch of QOIs, e.g., only QOI models
that have a fitting error of less than 10%. In this dissertation, we will determine the validity
of a subdomain by using all available QOI models.

In this section, we discussed a few partitioning rules that are used to divide a domain.
The error-based partitioning rule was based on the error assessment of a single QOI. When
considering multiple QOI models, it is unclear how to select the “best” model parameter
to partition. Each QOI may determine that a different model parameter is best to split.
To clarify any ambiguity in this assessment, a single QOI will be assigned as the template
QOI. The partitioning rule will follow the assigned template QOI to determine which model
parameter to split. A subdomain will no longer be partitioned if the domain is inconsistent,
or the template QOI’s error (and all other QOI models) are less than the specified threshold.

The choice of template QOI and partitioning rule is problem-specific. We aim to reduce
surrogate model fitting error; therefore, a natural choice for the template QOI is to use the
QOI model that has the minimum fitting error over the prior domain. In the following
section, a few examples are provided to demonstrate the novel piecewise modeling strategy.
The piecewise modeling code used in this dissertation is available at
https://github.com/oreluk/B2BDC-PiecewiseModels, which uses the B2BDC toolbox [70].
This code is also available in Appendix C.

https://github.com/oreluk/B2BDC-PiecewiseModels
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4.4 Toy examples

In this section, two toy examples are used to illustrate the efficacy of the novel strategy for
piecewise modeling and how the choice of partitioning rule affects the total number of
subdomains. In the first example, a non-polynomial behaved test function is represented
using piecewise quadratic surrogate models. The second example considers a chemical
kinetics model with two QOIs to demonstrate how multiple QOIs can reduce the overall
number of required subdomains. Both examples are demonstrations of how the piecewise
modeling strategy can be applied in practice. This strategy is later applied in Chapter 6 to
evaluate the validity of a coal combustion model.

Branin function example

The Branin function [2] is a two-dimensional, non-quadratic test function, that will serve
as a simple example for visualizing the piecewise modeling approach. We will show how a
domain can be partitioned and how the proposed piecewise modeling strategy can efficiently
develop surrogate models on consistent subdomains. The Branin function, M(x1, x2), will
be defined as:

M(x1, x2) = (x2 − bx21 + cx1 − 6)2 + 10(1− t) cos(x1) + 10, (4.2)

where b = 5.1
4π2 , c = 5π, and t = 1

8π
. There are two uncertain model parameters, x1 and

x2, that are part of the prior domain, H, where x1, x2 ∈ [1, 10]. Figure 4.2 shows the
Branin function over H. The Branin function is constrained by the experimental bounds,
M(x1, x2) ∈ [9, 15]. The resulting feasible set is shown in red.

A single quadratic model is insufficient in adequately representing M(x1, x2) over the
entire specified domain. Figure 4.3 shows a quadratic surrogate model in light-red compared
to the Branin function in solid-blue. The maximum relative error was estimated via 10-fold
cross validation, and was 440%. The maximum relative error is defined in Eq. B.2. In an
effort to reduce this fitting error, the prior domain will be partitioned following one of the
proposed partitioning rules.

Choice of partitioning rule

A partitioning rule dictates which model parameter to split at each iteration of the
piecewise modeling algorithm. This directly affects the total number of subdomains
required to fit a quadratic surrogate model within a specified error tolerance. One of the
proposed partitioning rules had been based on the uncertainty length of the model
parameters. This rule, named the uncertainty-based partition rule, would divide a model
parameter with the largest uncertainty range in half, creating two subdomains.

For this example, the error tolerance will be set to 0.5% of the maximum relative error.
Using the general strategy for piecewise modeling, shown in Algorithm 1, a subdomain will
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Figure 4.2: Transparent surface is the Branin function over the prior domain x1, x2 ∈ [1, 10].
The solid black lines are the experimental bounds [9, 15]. The solid blue region is where the
model, M(x1, x2) evaluates within experimental bounds. The red region is the feasible set,
F .

cease being partitioned when the estimated error is less than the tolerance. Figure 4.4(a)
shows the 128 subdomains created using the general strategy. Each of the 128 subdomains
was defined by a quadratic surrogate model by generating eight times more training samples
than the number of coefficients. For a quadratic model, the number of coefficients, ncoef =
(nparam + 2)(nparam + 1)/2, where the number of uncertainty model parameters, nparam is
equal to 2. Each of the 128 quadratic surrogate models has a maximum relative test error
of less than 0.5%.

This result can be compared to the novel strategy for piecewise modeling, shown in Figure
4.4(b). A subdomain will cease being partitioned when the estimated error is less than the
specified tolerance or the domain is proven incompatible with the experimental data. Using
this strategy required only 71 subdomains to be developed. Subdomains that were proven
inconsistent with the experimental data are shown in grey. Superimposed in Figure 4.4(b)
is the feasible set (shown in red) from Figure 4.2. Each of the subdomains in white still
fit within the specified error tolerance and collectively contain the feasible set. The novel
strategy for piecewise modeling greatly reduced the total number of subdomains required
when using the uncertainty-based partitioning rule.
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Figure 4.3: The Branin function (shown in blue) compared to a quadratic surrogate model
(shown in light-red). The quadratic surrogate model was trained by minimizing the least-
squares error across 120 training samples. The test error was estimated by 10-fold cross-
validation, where the maximum relative error across the folds was 440%.

The uncertainty-based partitioning rule is easy to implement; however, it is not a
well-motivated rule. To illustrate, consider the error-based partitioning rule for the Branin
function. The error-based rule chooses a model parameter that yields the smallest
estimated surrogate model error, details of which are discussed in Section 4.3. Figure 4.5
compares both the general and novel strategies for piecewise modeling following the
error-based partitioning rule. Figure 4.5(a) shows the general strategy, where 44
subdomains were created. For each partition, the model parameter x1 was selected to split,
as it would result in subdomains with smaller fitting errors than x2. This decision to
always split x1 can be better understood by considering Figure 4.2. For any constant x2,
the Branin function has an oscillatory behavior, due to the term, cos(x1) in Eq. 4.2.
Subdomains are fit with a quadratic surrogate model; therefore, any partition
perpendicular to the x2 coordinate would likely result in large errors due to the
non-quadratic model response. Visualization of the quadratic surrogate models, fit over all
subdomains at various iterations of the piecewise algorithm, are seen in Figure 4.6.

The novel strategy for piecewise modeling using an error-based partitioning rule is
shown in Figure 4.5(b), where 43 subdomains were developed. A fewer number of
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(a) (b)

Figure 4.4: Comparing strategies for piecewise modeling using an uncertainty-based
partitioning rule for the Branin function. Panel a: The general strategy for piecewise
modeling resulted in 128 subdomains. Each subdomain has an associated quadratic surrogate
model with less than 0.5% maximum relative error. Panel b: The novel strategy for
piecewise modeling utilizing B2BDC’s scalar consistency measure. Domains that are proven
inconsistent are shown in grey. In total, only 71 subdomains were constructed. All consistent
domains (shown in white) have an associated quadratic surrogate model with less than 0.5%
maximum relative error.

Table 4.1: Number of subdomains for each partitioning rule and strategy to represent the
Branin function with quadratic surrogate models

Partitioning rule General strategy Novel strategy
Uncertainty-based 128 71
Error-based 44 43

subdomains were necessary when using the novel strategy, as compared to the general
strategy; however, the reduction in the number of subdomains was minimal (44 vs. 43).
Both strategies and partitioning rules are summarized in Table 4.1. The error-based
partitioning rule resulted in far fewer subdomains for both piecewise modeling strategies.
Exploring the various partitioning rules is outside the scope of this dissertation; however,
we have demonstrated that choice of partitioning rule can greatly affect the overall number
of subdomains required. In the following section, we examine a simple chemical kinetics
system and show how multiple QOIs are used to further reduce the number of subdomains.
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(a) (b)

Figure 4.5: Comparing piecewise modeling strategies using an error-based partitioning rule
on the Branin function. Panel a: The general strategy for piecewise modeling resulted in
44 subdomains. Panel b: The novel strategy for piecewise modeling utilizing B2BDC’s
scalar consistency measure resulted in 43 subdomains. Domains that are proven inconsistent
are shown in grey. All consistent domains (shown in white) have an associated quadratic
surrogate model with less than 0.5% maximum relative error.
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(a) Branin function (b) 2 subdomains

(c) 4 subdomains (d) 16 subdomains

(e) 32 subdomains

Figure 4.6: Visualization of the various iterations of the piecewise modeling strategy on the
Branin function using an error-based partitioning rule. Each subdomain is represented by a
quadratic surrogate model shown with a different color. Panel a: the Branin function. Panel
b: 2 subdomains with a maximum relative error of 480%. Panel c: 4 subdomains with a
maximum relative error of 320%. Panel d: 16 subdomains with a maximum relative error of
10%. Panel e: 32 subdomains with a maximum relative error of 2.8%.
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Chemical kinetics example

A simple chemical kinetics system composed of two consecutive, irreversible reactions is
considered. This chemical kinetics example serves to illustrate how the combined information
of multiple QOIs can be applied to reduce the size of the feasible set and thus, reduce the
overall number of subdomains. Let us begin by considering the following chemical reactions,

A
k1−−→ B

k2−−→ C (4.3)

where A is the initial compound, which is converted into B at a rate of k1. B is then converted
into compound C at a rate of k2. The rate of change in compounds are modeled by:

d[A]

dt
=− k1[A]

d[B]

dt
=k1[A]− k2[B]

d[C]

dt
=k2[B]

(4.4)

where [A], [B], and [C] are the concentrations of A, B, and C, respectively, at time t. k1 and
k2 are the rate constants shown in Eq. 4.3. In the present example, k1 and k2 will be the
uncertain model parameters, where k1 ∈ [0.5, 4] and k2 ∈ [0.2, 4] define the prior domain.
There are two QOIs measured from the chemical kinetics system which will ultimately be
compared to experimental data. The first QOI is the maximum concentration of compound
B, which can be expressed as M1(k1, k2) = max([B]) = k1

k2
e−k1tmax . Experimental data

for the first QOI is the interval [0.45, 0.55]. The second QOI, M2, is the time to reach
the maximum concentration of B, denoted as tmax. The second QOI can be expressed by
M2(k1, k2) = 1

k2−k1 lnk2
k1

, which is constrained by experimental bounds to [0.55, 0.83]. Figure
4.7 shows an example of the concentration profiles of [A], [B], and [C] as functions of time.
The two QOIs, M1 and M2, are marked by the black cross, where M1 is the value of the
maximum concentration of [B] and M2 is the time to reach the maximum concentration of
[B].

Figure 4.8 shows a visualization of both QOIs across the prior parameter space. The
feasible set associated with each QOI is highlighted in red. A single quadratic surrogate
model is inadequate with respect to an error tolerance of 0.5% for representing either M1 or
M2, where the maximum relative error was 6% and 18%, respectively. The feasible set F ,
which is the intersection of parameters consistent with constraints for M1 and M2, is seen
in Figure 4.9. Strategies for piecewise modeling were implemented on both M1 and M2 to
evaluate the number of subdomains required to reach the goal of accurate surrogate models,
i.e., less than 0.5% of the maximum relative error, on regions where the model and data
agree.
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Figure 4.7: Concentration profiles of [A], [B], and [C] as a function of time. Initial
concentration of [A]t=0 = 1 and [B]t=0 = [C]t=0 = 0. Rate constants where set as k1 = 2 and
k2 = 1. The black cross is set at the maximum concentration of [B], where M1(2, 1) = 0.5
and M2(2, 1) = 0.693.

Error-based partitioning rule

In Section 4.4, the error-based partitioning rule led to a fewer number of subdomains
compared to the uncertainty-based rule. Based on this result, we expect that the
error-based partition rule will also provide fewer subdomains in the chemical kinetics
example. The first QOI, M1, using the general strategy for piecewise modeling, with a
maximum relative error threshold of 0.5%, led to the construction of 16 subdomains.
Recall that, the general strategy for piecewise modeling does not make use of the
experimental data. The exact partitioning of the prior domain can be seen in Figure
4.10(a). The novel strategy for piecewise modeling, which uses the experimental data by
calculating B2BDC’s consistency measure, is shown in Figure 4.10(b), where the grey
regions are provably inconsistent. In Figures 4.10(a) and 4.10(b), the white regions are
defined by a quadratic surrogate model, which has a maximum relative error of less than
0.5%. For this example, using the novel strategy yielded two fewer subdomains.

The second QOI, M2, is shown in Figure 4.11(a), where 41 subdomains were constructed
using the general strategy for piecewise modeling. The novel strategy is shown in Figure
4.11(b), where only 29 subdomains were necessary — a reduction by twelve subdomains.
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(a) (b)

Figure 4.8: Response of M1 and M2 over the prior domain k1 ∈ [0.5, 4] and k2 ∈ [0.2, 4]. Panel
a: Surface shown is the maximum concentration of B, M1. The black lines shown are the
experimental bounds [0.45, 0.55]. The blue region is where the model, M1(k1, k2) evaluates
within experimental bounds. The red region is the feasible set of parameters associated with
M1. Panel b: Surface shown is the time to reach a maximum concentration of B, M2. The
black lines shown are the experimental bounds [0.55, 0.83]. The blue region is where the
model, M2(k1, k2) evaluates within experimental bounds. The red region is the feasible set
associated with M2.

Each subdomain was defined by a quadratic surrogate model by generating eight times more
training samples than the number of coefficients in the surrogate model. When using the
novel strategy, 576 evaluations of the underlying model were saved. In this example, each
evaluation of the simulation was inexpensive. Thus, saving 576 runs was not that meaningful;
however, when this strategy is applied to a larger-scale simulation, where each simulation
takes many CPU-hours, these savings can be significant. Table 4.2 compares both strategies
for piecewise modeling and partitioning rules.

Table 4.2: Number of subdomains for each partitioning rule and strategy to represent the
two QOIs in the chemical kinetics example

Partitioning rule General strategy Novel strategy
M1(k1, k2) Uncertainty-based 20 16
M1(k1, k2) Error-based 16 14

M2(k1, k2) Uncertainty-based 43 29
M2(k1, k2) Error-based 41 29
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Figure 4.9: Feasible set of model parameters for the chemical kinetics example. Model
parameters consistent with either M1 or M2 is shown in light red. The intersection of the
light red regions is the feasible set, F , shown in dark red.

Consistency of a subdomain for all QOIs

When considering a single QOI, the scalar consistency measure only evaluates the
compatibility of a single surrogate model with its associated experimental bounds, i.e.,
self-consistency [66]. Subdomains are consistent if there are model parameters that satisfy
the imposed constraints (experimental bounds) on the QOI model, subject to the model
parameters being in the subdomain. In practice, self-consistency is a weak constraint. The
feasible set Fe is a large fraction of the prior domain H; therefore, self-consistency is
incapable of invalidating large volumes of the parameter space. The scalar consistency
measure in its original formulation uses all QOI models. By adding additional constraints
(in the form of more QOI models), the size of the feasible set is significantly reduced, as
seen in Figure 4.9.

A model response for both M1 and M2 is obtained for each evaluation of the chemical
kinetics model. Therefore, surrogate models for M1 and M2 can be built simultaneously
without any additional model evaluations. With two QOI models, the strategies for piecewise
modeling — specifically, the partitioning rule — become difficult to interpret. For this
example, we will conduct the analysis twice, with M1 and M2 as the template QOI to
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(a) (b)

Figure 4.10: Comparing strategies for piecewise modeling of the first QOI, M1, in the
chemical kinetics example. The boundary for each subdomain is shown as the black lines
where each subdomain was fit with a quadratic surrogate model. Each subdomain (shown
in white) has an associated quadratic surrogate model with a maximum relative error of less
than 0.5%. Panel a: The general strategy for piecewise modeling resulted in 16 subdomains.
Panel b: The novel strategy for piecewise modeling resulted in 14 subdomains. Domains
that are proven inconsistent are shown in grey. Shown in red is the feasible set associated
with the experimental data for M1.

examine its effect. Recall that, in the error-based partitioning rule, a model parameter is
split based on a single QOI’s error assessment. Therefore, for multiple QOIs, we designate
one QOI as a “template” for all partitioning decisions.

First, M1 was used as the template QOI to determine which model parameter to partition
at each iteration. A quadratic surrogate model was developed for both QOIs over each
subdomain, following the novel strategy in Algorithm 2. The scalar consistency measure was
evaluated for all QOIs over each subdomain, and resulted in 11 subdomains. This result is
illustrated in Figure 4.12(a), where, for each subdomain, there is a surrogate model for M1

and M2 that fits within the specified error tolerance. If we were to build a piecewise surrogate
model for M1 independently, it would require 16 subdomains. To exemplify this with regard
to the number of samples, 4(nparam+1)(nparam+2) samples were used in each subdomain; thus,
768 samples are required to construct the 16 subdomains of M1. Considering the approach
described above, where the scalar consistency measure of the subdomain is calculated for all
QOI models, only 528 samples were needed, a reduction of 31%. If we consider changing
the template QOI from M1 to M2, 12 subdomains would be required, as shown in Figure
4.12(b). Building a piecewise model for M2 independently required 41 subdomains to achieve
a maximum relative error of less than 0.5% (Figure 4.11(a)). If we were to use 4(nparam +
1)(nparam+2) samples per subdomain, 1,968 samples would be required for the 41 subdomains
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(a) (b)

Figure 4.11: Comparing strategies for piecewise modeling of the second QOI, M2, in the
chemical kinetics example. The boundary for each subdomain is shown as the black lines
where each subdomain was fit with a quadratic surrogate model. Each subdomain (shown
in white) has an associated quadratic surrogate model with a maximum relative error of less
than 0.5%. Panel a: The general strategy for piecewise modeling resulted in 41 subdomains.
Panel b: The novel strategy for piecewise modeling resulted in 29 subdomains. Domains
that are proven inconsistent are shown in grey. Shown in red is the feasible set associated
with the experimental data for M2.

of M2. For the combined information approach described above, only 576 samples were
needed, a reduction of 71%.

These results show that M1 was a better choice for the template QOI. M1 required fewer
subdomains, therefore, fewer samples to obtain the same level of accuracy compared to M2.
However, in practice, it is not possible to compare these template QOI results. For this
example, the maximum relative error over the prior domain was 6% for M1 and 18% for M2.
We recommend that the template QOI is chosen based on the smallest fitting error over the
prior domain, as discussed in Section 4.3.

4.5 Conclusion

The B2BDC methodology, discussed in Chapter 3, uses polynomial surrogate models in order
to attain provable optimization bounds on prediction and consistency. Using such surrogate
models to represent complex functions may lead to significant fitting errors. In this chapter,
the discussed strategies for piecewise modeling retain these provable bounds from B2BDC,
while widening the type of QOI models that can be accurately represented. In order to
develop a more accurate surrogate model, however, more samples of the underlying model
are required for either piecewise modeling strategy.
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(a) (b)

Figure 4.12: Novel strategy for piecewise modeling using multiple QOIs in the chemical
kinetics example. Both QOI models were constructed on each subdomain. Domains shown
in grey are proven inconsistent with the data. The feasible set was replotted on the domain
in red. All consistent domains (shown in white) have a maximum relative error of less than
0.5% for both M1 and M2. Panel a: M1 is used as the template QOI to guide the partitioning
of the parameter space, resulting in 11 subdomains. Panel b: M2 is used as the template
QOI and 12 subdomains are constructed.

The general strategy for piecewise modeling was less efficient than the new strategy,
creating many subdomains in regions of the parameter space that are not of interest to the
analysis. A novel strategy was proposed, which develops an accurate representation in regions
where the feasible set resides. If a subdomain is proven incompatible with the experimental
data, the subdomain is neglected and no longer considered for partitioning by the algorithm.
This novel strategy allows samples (i.e., computational effort) to be guided towards these
regions of interest. Two toy examples were explored to demonstrate that the choice of
partitioning rule and use of multiple QOI models to evaluate the scalar consistency measure
can reduce the overall number of subdomains constructed. Increasing the dimensionality in
both the uncertain model parameters and QOIs should demonstrate the efficacy of the novel
strategy for piecewise modeling, where large portions of the prior domain can be proven
inconsistent with the data, assuming the surrogate model fitting errors are accurate. In
Chapter 6, a higher-dimensional example is examined that uses the developed piecewise
modeling strategy.
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Chapter 5

Validating an H2/O2 reaction model

This chapter shows an application of the validation workflow (described in Chapter 3)
using an H2/O2 kinetics mechanism. Shock-tube and laminar flame speed data from the
PrIMe Data Warehouse are used with the B2BDC methodology to validate and optimize
an elementary-reaction model. We focus on how the tools and analysis can improve our
understanding of complex reaction models. The B2BDC analysis revealed a set of
experiments inconsistent with a larger body of evidence from the community. The study
also identified the importance of the H2 + O2(1∆)=H + HO2 pathway in high-pressure
flames.

5.1 Introduction

The kinetics of H2/O2 combustion has been used as an important scientific and technological
subject. We consider H2/O2 reaction mechanisms because of their accumulated knowledge
and ongoing research [38, 71–76]. These mechanisms represent a fundamental component of
any hydrocarbon reaction model. As scientific inquiry improves our understanding of the
kinetics, it has become clear that a systematic procedure to develop predictive models that
can readily incorporate new information and provide feedback, is necessary.

Here, we apply the validation workflow on three H2/O2 reaction models. A reaction model
is a collection of elementary chemical reactions, thermodynamic properties, and transport
properties that adequately describes the transformation, energetics, and transport of a group
of molecules and species. Throughout this chapter, the terms reaction model and reaction

mechanism are used synonymously. The chemical reaction, H + O2
k1−−→ OH + O, is an

example of an elementary reaction, which converts atomic hydrogen and molecular oxygen
to products at the rate k1. The reaction rate, k1, and its dependency on temperature can
be expressed through the modified Arrhenius equation [77, 78],

k1 = A1T
ne

E1
RT (5.1)
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where A1 is the pre-exponential factor, E1 is the activation energy for the reaction, R is the
universal gas constant, T is the temperature, and n is the temperature dependence. When
n is zero, the original Arrhenius equation is recovered [77]. The point here is to emphasize
the pre-exponential term A1, which will encompass the rate-coefficient uncertainty in the
present study. Each H2/O2 reaction mechanism has a set of uncertain model parameters
that are the pre-exponential terms for the elementary reactions. Additional uncertain
kinetic parameters can be incorporated into the B2BDC analysis, e.g., the activation
energy (Chapter 6), collision efficiencies, transport properties; however, it is important for
the experimental data (and selected QOIs) to have some sensitivity to these parameters,
otherwise no information will be learned through the analysis.

Reaction models

To test different aspects of the H2/O2 kinetics, three models were created from literature
sources. The reaction model data (thermo, transport, rate constants) were archived in the
PrIMe Data Warehouse and are available through the Warehouse API. The base reaction
mechanism (Mechanism1) was taken from Burke et al. [72]. Reaction rates, thermodynamic,
and transport properties for Mechanism1 can be found in Appendix D.1. In total, there are
27 elementary reaction rates; therefore, 27 uncertain model parameters for Mechanism1. This
mechanism was chosen because of its high-quality performance when compared to shock-tube
and flame data. Mechanism1 was primary used for code verification [6] of the validation
workflow, ensuring that the numerical results shown in the original publication [72] could be
replicated with PrIMe and the PrIMe Workflow Application components [38].

Mechanism2 consisted of Mechanism1 with a few critical parameter updates from Burke et
al. [79] and Sellev̊ag et al. [80]. Mechanism2 is shown in Appendix D.2, which consists of 29
uncertain parameters. Lastly, Mechanism3 built on Mechanism2 by including chemistry for
ozone, O(1D), O2(a

1∆g), and OH* whose reaction rates came from Konnov [75]. Mechanism3
has 58 uncertain model parameters.

A set of shock-tube and flame data are used to determine the validity of Mechanism3. The
results shown in Section 5.5 are a proof-of-concept that the validation workflow can identify
well-recognized inconsistencies (e.g., modeling low-temperature shock-tube ignition using a
homogeneous, adiabatic, constant-volume reactor) and identify yet-unrecognized scientific
interpretations (e.g., O2(a

1∆g) pathways in high-pressure flames).

5.2 Selection of QOIs and experimental data

QOIs are carefully selected to summarize a critical feature of an experiment. Some common
examples include the ignition delay time, the peak value of a species profile, laminar flame
speed, and time/location of a property. In the present study, we store QOIs in the PrIMe
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Data Warehouse as Data Attribute XML files, which fully describe the experimental feature,
conditions, uncertainty bounds, and transformations required to obtain the QOI value.

Selecting appropriate QOIs for analysis is not a trivial task. Let us consider a shock-
tube experiment conducted by Herzler and Naumann [81]. Figure 5.1(a) shows a plot of
the ignition delay time (τign) vs. temperature (T ) from an experimental with an initial
mixture of hydrogen, oxygen, and argon at 1 atm. Each experimental measurement could
be used as a QOI; however, this would require constructing a surrogate model for each data
point. Using every data point as a QOI can be inefficient due to correlated or dependent
measurements. Alternatively, Frenklach et al. [82, 83] proposed using a few representative
QOIs to summarize the behavior from a set of data (shown in Figure 5.1).

In this study, three QOIs will summarize each set of shock-tube data. First, a linear model
is fit to the experimental data on a log(τign)-vs.-1000/T plot by minimizing the least-squared
error. Figure 5.1(b) shows the linear model as a blue line and the representative QOIs are
the blue points at the quarter, half, and three-quarter temperatures. These points are the
representative QOIs that summarize the shock-tube data set. The uncertainty associated
with each of these QOIs was estimated by the standard error,

s =

√√√√ 1

n− 2

n∑
i=1

(yi − ŷi)2 (5.2)

where yi is the experimental measurement, ŷi is the linear model estimate, and n is the total
number of data points in a given experimental data series. Figure 5.1(c) shows the estimated
uncertainty, where ±2s is the initial estimated experimental bounds. This procedure was
used to derive 114 shock-tube QOIs across 38 conditions in 12 published studies. Two flame
studies were also included in the validation data, accounting for ten QOIs (124 QOIs in total).
The uncertainty bounds prescribed to the flame QOIs were based on expert opinion. The
shock-tube and laminar flame speed QOIs are presented in Tables E.1 and E.2 of Appendix E.
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(a) (b)

(c)

Figure 5.1: Selecting representative QOIs for shock-tube experiments. A shock-tube
experiment conducted by Herzler and Naumann [81] is used for illustration, where the initial
composition of the gaseous mixture are described by mole fractions. The experiment was
conducted at an initial pressure of 1 atm and an initial gas composition of 0.06 H2, 0.03
O2, and 0.90 Ar. Panel a: experimental data are plotted on a log ignition-delay time vs.
1000/T plot. Panel b: A linear model is fit to the experimental data, shown in blue. Three
blue points are the QOIs selected to represent the experiment. These QOIs were selected
at the quarter, half, and three-quarters temperature. Panel c: Error bars are the estimated
experimental uncertainty (Eq. 5.2) shown as a light-blue region.
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5.3 Selecting active variables

Each combustion mechanism has a different number of uncertain model parameters. In this
study, the number of uncertain model parameters are equal to the number of elementary
reactions. For example, Mechanism3 has 58 uncertain model parameters; however, a
particular model response (QOI) will not be significantly affected by all model parameters.
A sensitivity analysis can help identify the subset of model parameters that are most
influential to the response. There are many approaches to sensitivity analysis [84]; e.g.,
local, variance-based [85], regression, etc. In this chapter, a global, regression-based
sensitivity analysis will be performed [86]. For each QOI, a linear surrogate model is fit to
the model response by using a fractional factorial design, specifically a Hadamard matrix
[87, 88]. The regression coefficients from the linear model represent a measure of the
sensitivity,

Si =
∂f(x, xs,e)

∂xi
(5.3)

where f(x, xs,e) is the underlying model for the e-th QOI. Coefficients with the largest
magnitude have the highest sensitivity over the parameter space. We can normalize Eq. 5.3
by the following relation:

S̃i = Si
xi

f(x, xs,e)
=
∂f(x, xs,e)

∂xi

xi
f(x, xs,e)

(5.4)

In some physical systems, the most sensitive model parameter is known a priori. For example,
in combustion, the H + O2=OH + O reaction rate has one of the highest sensitivities, but
it is also the reaction rate with the least uncertainty. To account for the prior parameter
uncertainty, an impact factor [82] is defined as the sensitivity, Si, times the uncertainty.
Model parameters that have large uncertainty and sensitivity may also have a significant
impact on the QOI response. Parameters with large impact factors are selected as the active
variables for a surrogate model. Each surrogate model will only depend on its associated set
of active variables.

5.4 Evaluating shock-tube and flame QOIs

Simulations of shock-tube QOIs were performed with the PrIMe Plug Flow Reactor (PFR)
component [38], available online via the ReactionLab toolbox [89]. Shock-tube experiments
were modeled as a homogeneous, adiabatic, constant-volume reactor [90–92]. Input
conditions for the simulation were passed from the PrIMe Data Warehouse to the PFR
component.

Laminar flame speed simulations were performed using the online-based infrastructure,
CloudFlame [51, 52, 93] that communicates with the PrIMe Workflow Application (PWA).
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Simulation inputs are packaged in a PrIMe interface file (HDF5 file) that is passed to
CloudFlame via a web-services application. CloudFlame then executes a Python script
upon receipt and parses the HDF5 into appropriate input files. The script executes Cantera
[94], an open-source combustion software, to run an isobaric, steady, one-dimensional,
laminar premixed flame [90, 92]. After a simulation is complete, the Cantera output is
parsed and saved into an HDF5 file that is passed back to the PWA. Approximately 4,700
premixed laminar flame speed simulations were conducted using this workflow module.
Simulations were performed in parallel using 64 compute nodes on a cluster at KAUST.

5.5 Results and Discussion

For all mechanisms, the prior reaction rates were directly adopted from rate assessments
and/or fundamental studies and either lie within the literature, reviewed uncertainties
(e.g., O + H2=OH + H [95]), or are based on more recent studies [79, 80, 96, 97]. The
following analysis will focus on the assessment (and feedback) of the validation workflow
for Mechanism3.

Each QOI was first analyzed for self-inconsistency before evaluating the scalar consistency
measure for all 124 QOIs. A QOI is self-inconsistent when no point x in H can produce an
output value that falls within the associated uncertainty bounds. The e-th QOI is self-
inconsistent if,

Fe = {x ∈ H : Le ≤Me(x) ≤ Ue} = ∅.

Thirty-six of the shock-tube QOIs were self-inconsistent upon first analysis.

All uncertainty bounds for the shock-tube QOIs had followed the procedure described in
Section 5.2. This method caused ten QOIs to have implausibly narrow uncertainty bounds
(below 5%). After expanding the experimental uncertainty bounds of the self-inconsistent
QOIs by a factor of 2, ten of the thirty-six QOIs became self-consistent. The remaining self-
inconsistent QOIs were removed from the analysis, leaving them for future investigations.

Evaluating the scalar consistency measure for all remaining QOIs led to a consistency
measure of CD = [−0.10,−0.02]. To interpret, expanding all QOIs bounds by at least 2%
to is necessary to resolve the model-data disagreement. Following the validation workflow
(in Figure 3.1), the sensitivity of the consistency measure [56] was assessed for each QOI
and parameter bound. Figure 5.2 shows the sensitivity of the consistency measure due to
QOI bounds (indexed by the PrIMe ID). QOIs a00000370 and a00000460 have the highest
sensitivity and are shock-tube experiments. Comparing this result to the sensitivity from the
model parameters, shown in Figure 5.3, we observe that the sensitivities are nearly an order of
magnitude smaller for the model parameters. A relative change greater than 5% was required
to the upper or lower bound of 25 shock-tube QOIs to resolve the inconsistency. These
QOIs were withheld from the analysis and present a future opportunity to re-evaluate their
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uncertainty bounds, surrogate approximations, and model-form uncertainty. The shock-tube
QOIs that were removed from the final dataset are listed in Table E.1 with asterisks.

The scalar consistency measure was calculated on the final dataset and had a measure
of [0.03, 0.12]. The LS-F optimization point, Eq. 3.5, was calculated using the consistent
dataset. A new, optimized mechanism, called DynamicMech151203, was created using the
LS-F point. The name “DynamicMech151203” was selected to show the reaction mechanism
is merely a revision of Mechanism3 that can be improved by the combustion community
through collaborative science. All mechanisms are provided in Appendix D as PrIMe XML
files, HDF5 files, and Cantera input files.

Figure 5.2: Normalized sensitivity of the consistency measure due to the QOI bounds. Blue
bars indicate sensitivity to a QOI lower bound (Le), and red bars are the upper bounds
(Ue), where e is the QOI index. The ten most sensitive QOIs are shock-tube data except
a00000483, which is a flame speed experiment. Each experiment is indexed by its PrIMe
ID, which is detailed in Appendix E.

Discussion

The validation workflow, specifically the B2BDC analysis in the workflow, could determine
a set of shock-tube experiments were at odds with a collection of experimental data. We
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Figure 5.3: Normalized sensitivity of the consistency measure due to the parameter bounds.
Blue bars indicate sensitivity to a parameter’s lower bound (li), and red bars are the upper
bounds (ui), where i is the parameter index. Sensitivities to the consistency measure for
the experimental bounds (shown in Figure 5.2) are an order of magnitude larger than those
of the parameter bounds. Therefore, we examined the experimental bounds to resolve the
inconsistency.

had also observed an unexpected role of O2(a
1∆g) chemistry in high-pressure flames, both

are discussed below.

The role of O2(a
1∆g) chemistry

The validation workflow could reveal chemistry or kinetics, during the selection of active
variables, which are potentially important considering the inclusion of excited species in
H2/O2 combustion. Comparing Mechanism3 vs. Mechanism2, revealed significant differences
in flame speed predictions for high-pressure, fuel-rich flames. Numerical results for the flame
speed can be found in Table 5.1. The only difference between these mechanisms is the
inclusion of electronically excited state chemistry from Konnov [75].

Figure 5.4 shows a ranked ordering of impact factors for the laminar flame speed QOI
(a00000484). This flame experiment was conducted at a pressure of 15 atm with an
equivalence ratio of 2.5, i.e., fuel-rich. It can be seen that H2 + O2(1∆)=H + HO2 has
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Table 5.1: Comparison of laminar flame speed (multicomponent transport with Soret effect)
for Mechanism1, Mechanism2, Mechanism3, and DynamicMech151203 at their nominal
parameter values.

Target
PrIMe ID

Preferred Key
Pressure

[atm]
Φ

Measured
[cm/s]

Mech1
[cm/s]

Mech2
[cm/s]

Mech3
[cm/s]

DynamicMech
[cm/s]

a00000476 H2 F - 476 1 0.6 81.88 83.94 88.87 86.39 97.95
a00000477 H2 F - 477 1 1.65 280.21 280.28 284.83 280.84 286.38
a00000478 H2 F - 478 1 4 165.29 162.10 165.37 160.18 173.27
a00000479 H2 F - 479 20 1.5 80.9 76.84 81.72 75.67 106.17
a00000480 H2 F - 480 20 2 64.05 59.42 63.17 56.14 90.05
a00000481 H2 F - 481 20 0.85 18.35 24.29 27.91 26.28 43.49
a00000482 H2 F - 482 15 0.85 26.9 33.30 37.23 35.32 53.22
a00000483 H2 F - 483 10 0.85 45.3 46.28 50.34 48.08 65.91
a00000484 H2 F - 484 14 2.5 28.7 30.32 32.14 27.84 48.31
a00000485 H2 F - 485 25 2.5 27.7 32.04 34.16 29.28 53.54

amongst the largest impact factors. This reaction, precisely its reverse reaction, has been
shown to inhibit high-pressure flames [98]. This inhibition is consistent with the numerical
results in Table 5.1 showing a slower flame speed for Mechanism3 compared to
Mechanism2.

Additional simulations were conducted to examine the effect of the
H + HO2=H2 + O2(1∆) pathway in high-pressure flames. A modified version of
Mechanism2 was created that scaled the reaction rate for the ground-state reaction,
H + HO2=H2 + O2, by the additional flux from the excited-state reaction. Simulations of
high-pressure flames using the modified Mechanism2 yielded prediction within 1% to
Mechanism3, confirming that the inhibition in flame speed of Mechanism3 was due to the
excited-O2 pathway. This result stems from the validation workflow that offers tools and
feedback to domain experts. A more thorough investigation into the role of excited species
in the H2/O2 mechanism is required; nevertheless, the B2BDC analysis could suggest an
unexpected pathway in high-pressure flames.

Shock-tube inconsistencies

Consistency analysis of the dataset revealed that several low-temperature (less than 1000
K), high-pressure (approximately 3 − 4 atm) shock-tube ignition-delay times were
self-inconsistent. In these experiments, the maximum concentration of OH was used as an
indicator of ignition. Simulations of the shock-tube experiments were conducted using an
idealized reactor (i.e., homogeneous, adiabatic, constant-volume) where it was found that
the calculated ignition-delay time was more than 2.5 times larger than the experimental
measurement. However, it is most likely that this disagreement does not originate from the
data; rather, it stems from the assumptions in the reactor model. Studies have shown
[99–102] that under these conditions a more sophisticated reactor model that incorporates
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Figure 5.4: Sensitivity and ranked impact factor results for a laminar flame speed QOI
(a00000484). The top 20 reactions are ranked by impact factor, defined as absolute
sensitivity multiplied by uncertainty length.

heterogenous gas dynamics and heat-release effects should be implemented. The identified
self-inconsistent QOIs should not be discarded as “bad data,” instead they become
valuable to the analysis, requiring a more complex reactor model.

Performance of the optimized mechanism

A new optimized reaction mechanism (DynamicMech) was developed by finding the LS-F
optimal model parameter (Eq. 3.5) from the feasible set of Mechanism3. The LS-F parameter
minimizes the weighted least-squares error between model prediction and experimental data.
In this study, the weights were set to unity.

All 114 shock-tube QOIs were calculated using the nominal reaction rate for all
mechanisms. Table 5.2 shows the `2-norm difference between model prediction M(xnom),
and the experimental data for the shock-tube QOIs, τign. Both M(xnom) and τign are
vectors of length 114. DynamicMech outperforms the other mechanisms with a `2-norm
difference of 15.80; however, this result requires careful interpretation. Although
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DynamicMech performed best in the prediction of shock-tubes, it was the worst in flame
speed predictions (Table 5.1 and E.5). This bias in prediction towards the shock-tube
experiments can be explained by the equal weights used in the LS-F parameter
optimization and approximately ten times more shock-tube QOIs. Re-assessment of the
weights in the LS-F optimization and their impact on the prediction of flame speed QOIs
are subjects for future study.

Table 5.2: Comparison of the four reaction mechanisms prediction of the shock-tube QOIs.
`2-norm difference between model prediction (using the nominal model parameter) to the
experimental data. The nominal model parameter for DynamicMech is the LS-F optimization
point from Mechanism3.

||M(xnom)− τign||2
Mechanism 1 29.40
Mechanism 2 28.78
Mechanism 3 29.09
DynamicMech151203 15.80

5.6 Conclusion

The validation workflow was applied to an H2/O2 reaction mechanism by using an
extensive combustion data set with the UQ tools of B2BDC. Through this process,
O2(a

1∆g) was identified as of potential importance in premixed laminar flame speed
experiments. The B2BDC analysis also discovered a collection of shock-tube experiments
that were self-inconsistent, requiring simulations beyond the idealized reactor model used
in this study. The PrIMe cloud-infrastructure could easily add (or remove) QOIs from the
analysis, in part from the integrated PrIMe Data Warehouse. The optimized reaction
mechanism, DynamicMech, represents the first iteration of this process and is available on
PrIMe. DynamicMech was created to be updated (much like a version of software) as new
experimental data, prior knowledge, or new simulation codes are available. A manuscript
has been written based on this material [66].
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Chapter 6

Validating a reduced char oxidation
model

A reduced char oxidation model is examined by applying the validation workflow of Chapter
3 and the piecewise modeling strategy of Chapter 4. Initial evaluation of the validation
workflow determined that the reduced char oxidation model was consistent with a collection
of validation data. However, the char particle temperature, the QOI, was challenging to
accurately represent with a quadratic surrogate model, due to unphysically wide uncertainty
ranges and large fitting errors. The latter, in turn, led to a consistent dataset; however,
the surrogate models greatly deviated from the underlying model. To obtain more accurate
fits, the piecewise modeling strategy was employed. This strategy, by fitting QOIs more
accurately, was able to uncover the incompatibility of the char oxidation model and the
experimental data. The physical reason turned out to be a widely used assumption of the
initial particle diameter. Reconsidering the initial particle diameter as a distribution led
to the opposite conclusion, that the model was consistent with the data. Thus, further
examination of the input particle diameter is warranted.

6.1 Introduction

Improving our understanding of coal combustion is essential towards the development of
cleaner, more efficient industrial boilers. Higher efficiency boilers can greatly increase
thermal energy output compared to existing power plants, while also reducing harmful
emissions (e.g., CO2, SO2, NOx, particulate matter, volatile organic compounds).
Development of a new boiler design demands accurate (i.e., predictive) Computational
Fluid Dynamics (CFD) simulations. Unfortunately, CFD simulations are often
computationally expensive to evaluate. This can hinder any optimal design or UQ analysis
for a new boiler design. Each CFD simulation is composed of various submodels. The
multiphase flow, devolatilization, char oxidation, soot formation, ash transformation, and
radiation heat transfer are each controlled by their own submodel. Selecting suitable
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submodels that can mitigate much of the computational effort, remains a challenge.
Development of reduced-order submodels, which have been validated against a broad range
of experiments, are necessary to lessen the computational effort while remaining predictive.

Although coal combustion models have been studied for years [103–108], it remains an
ongoing challenge in engineering. The inhomogeneity in coal composition, outgassing of the
volatile matter, pore structure, and annealing of the carbonaceous particle, are a few of
the reasons this process remains difficult to investigate. Coal combustion [108, 109] can be
simplified into the following steps: a coal particle first heats up, undergoes devolatilization,
and then char oxidation.

This chapter focuses on the analysis and validation of the last step, char oxidation. The
char oxidation model was developed by the Carbon-Capture Multidisciplinary Simulation
Center (CCMSC) at the University of Utah [110]. This char oxidation model describes the
mass transport and chemical reactions that occur between char carbon and three oxidizers:
O2, H2O, and CO2. A collection of experimental data stored in the PrIMe Data Warehouse
(Chapter 2) is used with the B2BDC analysis (Chapter 3) to quantify the validity of the
reduced-order char oxidation model. The validation data used throughout this study is
described in Section 6.2. Section 6.4 describes the assigned prior uncertainty for the model
parameters and QOIs. The results found by the B2BDC analysis and piecewise modeling
strategy are explored in Section 6.7.

6.2 Experimental data

The reduced char oxidation model that is being analyzed is expected to be predictive in both
conventional and oxy-fuel gas conditions. The CCMSC Coal Database, discussed in Section
2.5, was used to filter through the 2,710 solid-fuel experiments to determine a suitable set
of validation data for these conditions. A collection of experiments were found from Hecht’s
thesis [111], which was carried out in a laminar-entrained flow reactor for three different coal
types: Black Thunder, Illinois-6, and Utah Skyline. The ultimate and proximate analysis
of these coals can be found in [111]. In this study, I will only focus on the analysis of a
single coal type; namely Utah Skyline. The laminar-entrained flow reactor used for these
experiments is shown in Figure 6.1 and is operated by Sandia National Laboratories (which
is described in previous works [112–114]).

The particle temperature, size, and velocity were simultaneously measured at various
heights above the burner, as detailed in [112]. Char particle temperature was measured by
using a two-color pyrometry at 550 and 770 nm. The particle temperature will be used as
the QOI in this study. Particle size was determined by a coded aperture approach discussed
in [114]. Char particles were initially prepared by sieving the particles into six size bins:
53 − 63 µm, 63 − 75 µm, 75 − 90 µm, 90 − 106 µm, 106 − 125 µm, and 125 − 150 µm.
An experiment was then conducted across twelve different gas environments for each of the
initial particle bins.
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Figure 6.1: Optically accessible laminar entrained flow reactor. Char particles are fed into
the center of a flat-flame Hencken burner. Char particles react as they travel upwards in a
quartz chimney that is accessible by optical instrumentation.

Table F.1 lists the 72 experimental cases with their corresponding gas flow
compositions, initial particle size bins, sampling heights, and associated PrIMe IDs. For
each experimental case, there are various heights above the burner where a measurement
had occurred. Approximately 100 char particles are reported as measured for each height
[111]. There are a total of 399 gas conditions and heights with temperature measurements.
These measurements are used to constrain the char oxidation model output.

6.3 Char oxidation physics and instrument models

The char oxidation model is composed of two submodels: the physics and instrument
models [65, 115]. Figure 6.2 shows a block diagram of their relation, where the instrument
model emulates the apparatus; i.e., a laminar entrained flow reactor and optical
measurement process. The flow reactor and measurement process are detailed in Section
6.2. The physics model computes the reaction rate of the char reactions r′′H , and is a
submodel of the instrument model. Calculated char kinetics are fed back into the
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instrument model to evaluate the following energy balance:

dpρpcpvp
6

dTp
dz

= −SEXT εσ(T 4
p − T 4

w)− SEXTh•(Tp − Tg) + fpr
′′
H∆hrxn (6.1)

where Tp is the char particle temperature, dp is the char particle diameter, ρp the char particle
density, cp the particle specific heat, and vp the velocity of the particle. The first term on
the right-hand side accounts for radiative heat transfer, the second term for convective heat
transfer, and the third term for the heat release due to heterogeneous char reactions.

Physics
Model

Instrument
Model

xm r′′H

xs xim

v

Tp

Figure 6.2: Block diagram of the char oxidation physics and instrument models. The output
Tp is used as the QOI for comparison with the experimental data. The model parameters
xs, xim, and xm are the scenario, instrument, and physics model parameters, respectively.
The char oxidation model has two internal parameters, the calculated char reaction rate r′′H
and the instrument state vector v.

The emissivity ε of the char particle is an uncertain model parameter whose prior bounds
are listed in Table 6.1. SEXT , σ, and Tw are the external surface area of the particle, the
Stefan-Boltzmann constant, and the temperature of the reactor wall, respectively. These are
known quantities; i.e., without any uncertainty. In the convective heat transfer term, h• is the
heat transfer coefficient corrected for mass transfer effects [116] and Tg is the temperature of
ambient gas; both are known parameters. In the final term, fp is the fraction of heat release
that remains within the char particle, an uncertain model parameter. ∆hrxn is the heat of
reaction from the char gasification reaction and r′′H is the reaction rate of char computed by
the physics model, the details of which are discussed in [67].

Solving the ODE in Eq. 6.1 requires a realization of the uncertain model parameters x
and the scenario parameters xs. The scenario parameter is assumed to have no uncertainty
and its values are found in Table F.1; specifically, the gas condition, measurement height
above the burner, and the initial particle size bin. Following the recommendation of domain
scientists [117], the initial particle diameter was taken to be the average of the reported bin.
The char oxidation model returns as an output the particle temperature at the specified
measurement height.
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6.4 Prior uncertainty on model parameters

The prior uncertainty for all uncertain model parameters is shown in Table 6.1. The uncertain
model parameter vector x can be divided into two groups, the physics model parameters xm
and the instrument model parameters xim, where, x = [xm;xim]. fp, ε, and ρp0, the initial
density of the char particle are instrument model parameters. The pre-exponential and
activation energies for the three Arrhenius oxidation reactions are physics model parameters.
Both Sg0 and τ are physics model parameters that evaluate the diffusion through the porous
char particle. Sg0 is the initial specific internal surface area of the particle and τ is the
tortuosity of the particle [118].

The three char oxidation reactions are each defined by an Arrhenius expression (Eq. 5.1),
where the temperature exponent, n is equal to zero. Prior knowledge of the O2 and CO2

oxidation rates enabled domain scientists to define a prior correlated region. This correlated
region is between the pre-exponential and activation energy of the O2 reaction and another
correlated region for the CO2 reaction. These reactions are expressed by a rotated coordinate
system, ξ1 and ξ2. This rotation can be described by:

AO2
= exp(1.54ξ1,O2

− 0.308ξ2,O2
+ 3.86)

θO2
= 2.89E3 ξ1,O2

+ 579ξ2,O2
+ 1.03E4

ACO2
= exp(0.326ξ1,CO2

− 0.0814ξ2,CO2
+ 6.96)

θCO2
= 4.04E3 ξ1,CO2

+ 1.01E3 ξ2,CO2
+ 2.42E4

where θ ≡ E/R in the Arrhenius equation (Eq. 5.1).

Table 6.1: Uncertain model parameters and their associated prior bounds for the char
oxidation model. The hypercube formed by the interval bounds is the prior parameter
space H.

Parameter li ui
ε 0.5 1.0
ρp0 200 800
fp 0.4 1.0

ξ1,O2
−
√

2
√

2

ξ2,O2
−
√

2
√

2
log(AH2O) 4.61 9.21
EH2O 40000 100000

ξ1,CO2
−
√

2
√

2

ξ2,CO2
−
√

2
√

2
log(Sg0) 6.91 13.82
τ 1.0 5.0
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6.5 Estimating the QOI bounds

In this analysis, a conservative estimation of the experimental bounds will be taken due to
multiple sources of poorly understood or characterized uncertainty. In the energy balance
shown in Eq. 6.1, the wall temperature Tw was not experimentally measured and was set to
500 K in this analysis [114, 119]. Further, the wall temperature is most-likely a function of
height Tw(z), where the temperature is higher the closer to the burner. We also assume in
the derivation of the energy balance that all char particles are spherical in morphology.

Within the instrument model, there is significant uncertainty that is unaccounted for;
e.g., the particle velocity, sieving of the char particles, surrounding gas temperature, particle
spectral emissivity, etc. There are also potentially unaccounted for errors in the instrumental
model [115], which converts the measured voltage as a light intensity into a derived quantity
(e.g., a particle temperature or diameter). Recent work by Xu et al. [120] had shown that
there is significant variability in the emissivity of char within the visible light region (390−
710nm), which would introduce larger than expected uncertainty in the two-color pyrometer
measurement; and thus, larger uncertainty in the particle temperature measurements. Each
char particle measured is inhomogeneous in its composition. The fraction of ash deposition
on the char particle, or the amount of maceral matter, varies; thus, it is an additional sources
of uncertainty. For these reasons, a conservative estimate of the uncertainty in the particle
temperature was taken, which is defined by:

µe = mean(Te,data) (6.2)

[Le, Ue] = [µe −max(200, 2σe,data) µe + max(200, 2σe,data)] (6.3)

where µe and σe,data are the mean and standard deviation of the experimental measured
particle temperature data (Te,data) for the e-th QOI.

6.6 Iterative model development

The validation workflow was employed to develop a char oxidation model consistent with
the experimental measurements. We begin by considering a single-film char oxidation model
[114], which is widely used in modeling pulverized coal. The char oxidation model was
developed by the CCMSC [110]. An initial application of the validation workflow determined
that the proposed reduced char oxidation model was inconsistent with the experimental
measurements described in Section 6.2.

Following the validation workflow, domain scientists at CCMSC have received feedback
from the B2BDC analysis to assist in the development of the next reduced char oxidation
model. The following char oxidation model was built upon the previous iteration and
included additional physics (e.g., ash effects, annealing, porosity model, internal mass
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transfer) or modifications to the instrument model. The newly developed char oxidation
model was then analyzed through another iteration of the validation workflow. Each
iteration of the validation workflow amounts to changing the underlying model component;
i.e., a function handle, as shown in Figure 3.1. Ultimately, after more than ten iterations of
the workflow, a reduced char oxidation model was arrived at, and will be analyzed in the
following sections. This reduced char oxidation model simulates the char particle as a
porous medium, with both internal and external reactions and mass transfer. Derivation of
the reduced char oxidation model are discussed in [67, 121].

6.7 Results

Analysis with a fixed initial diameter

We begin our analysis by constructing quadratic surrogate models over the prior parameter
space H, whose bounds are shown in Table 6.1. A surrogate model was built for each QOI
by employing a space-filling Latin Hypercube design [122] of 624 samples. The maximum
estimated fitting error was calculated for each of the 399 QOIs, as defined in Eq. B.6.
Figure 6.3 shows the estimated errors, where nearly all QOIs have an error larger than the
experimentally reported uncertainty (200 K).

Figure 6.3: Histogram of the estimated surrogate model fitting error for each of the 399 QOIs.
For each QOI, the estimated maximum error was evaluated by 10-fold cross-validation.
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A dataset is formed after the surrogate models are developed over H by combining the
surrogate models with the associated experimental bounds. Recall, the experimental
bounds also carry the uncertainty from the estimated fitting error (Section 3.1). The
dataset was found to be consistent with a scalar consistency measure of CD = [0.06, 0.15].
However, this result does not instill much confidence, due to the significant fitting errors
shown in Figure 6.3. The B2BDC analysis accounts for the fitting error by propagating
forward the uncertainty, expanding the corresponding QOI bound, as described in Eq. B.4.
Developing more accurate surrogate models would reduce this expansion and its effect on
the UQ analysis.

In Chapter 4, a strategy for piecewise modeling was developed in order to construct
accurate polynomial surrogate models on feasible regions of the parameter space. The scalar
consistency measure was evaluated on each subdomain using all 399 QOIs. An error tolerance
of 50 K was set in the analysis. The prior parameter space H was partitioned into 27 disjoint
subdomains, requiring 12,655 evaluations of the char oxidation model. All 27 subdomains
were proven inconsistent with the experimental data. As the surrogate model fitting error
was improved, the scalar consistency analysis determined that the char oxidation model was
at odds with the prior and experimental data.

Ideally, the general strategy for piecewise modeling (see Section 4.2) would be
implemented, where the prior domain H is partitioned until all subdomains have a fitting
error less than the specified error tolerance. This procedure, however, requires too many
evaluations of the underlying model. Hence, the novel piecewise modeling strategy (see
Section 4.3) was employed. In order to prove the underlying char oxidation model is
inconsistent, it must be assumed that the estimated surrogate model fitting error is equal
to or larger than the maximum error. Invalidating an underlying model using a surrogate
model is described in Appendix B.1.

When constructing a surrogate model over a subdomain, all samples in the domain are
used; therefore, the maximum estimated error, ε̂e,max, via 10-fold cross validation is larger
(and more conservative) than the training error. However, while ε̂e,max may be conservative,
it still may not be larger than the maximum error, εe,max, which is unknown. Computing the
absolute maximum error εe,max is often intractable (discussed in Appendix B.2). Here, we
will introduce an expansion factor, K, which increases our estimation of the surrogate model
fitting error. This factor is aiming to achieve K ε̂e,max ≥ εe,max. The estimated error ε̂e,max
is increased by K > 1. However, there is no guarantee that a chosen value of K will satisfy
the inequality; rather, it illustrates the motivation for its inclusion. Employing the piecewise
modeling strategy with a factor of 1.25 resulted in a larger number of subdomains, 43; yet,
all subdomains were still inconsistent. Despite increasing the estimated fitting error, the
char oxidation model and the experimental data were incompatible over the prior domain.
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Reexamining the initial particle diameter

One of the modeling assumptions given to us (discussed in Section 6.3) was that the char
oxidation was evaluated with a fixed particle diameter set to the average sieved bin. Let us
consider the experimental measurement for one QOI shown in Figure 6.4. Here, the initial
sieved bin is shaded in grey, [53, 63] µm. When evaluating this QOI, an initial particle
diameter of 58 µm was used; however, the vast majority of the measured particle diameters
were larger than the initial diameter. Char particles were measured larger in diameter after
burning.

Figure 6.4: Measurement data for prepared Utah Skyline char from Hecht [111]. In a gas
environment of 60% O2, 16% H2O, and 24% CO2 both the particle temperature and diameter
were measured at a height of 6.99 cm above the burner. The grey shaded region indicates
the initial sieved particle bin of 58± 5 µm.

There are a few potential causes for an increase in the particle size. Coal particles
undergo a swelling process when heated [123]; however, for this experiment, the coal
particles were prepared chars, which would have minimal swelling [124]. Small particles can
aggregate, which could explain a larger perceived size [125], but due to the low feed rate in
terms of density (grams of coal per minute) with which char particles were fed into the flow
reactor, potential aggregation of char particles would have been minimized. For these
reasons, the char oxidation model should strictly decrease the particle diameter while
burning. Nevertheless, the measurement data provides conflicting information, indicating
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larger than initial particle diameters. In the following section, we reassess the assumption
of the initial diameter by considering an initial distribution of char particles.

Analysis using a distribution of particles

The piecewise modeling strategy was able to reveal the disagreement between the char
oxidation model, the prior, and experimental data. Reassessment of the initial modeling
assumptions suggested that a fixed initial particle diameter could be the source of the
inconsistency. Hence, we replace the input scenario parameter of a fixed initial particle
diameter with an initial particle size distribution function (PSDF). The model response
then becomes a distribution of particle temperatures, where the QOI is redefined as the
average particle temperature response.

The initial PSDF had not been experimentally measured and is an unknown quantity.
The initial probability density function can be characterized by introducing additional
uncertain model parameters; e.g., specifying an uncertain mean and standard deviation.
However, with the challenges in fitting a quadratic surrogate model to the QOI response,
we chose not to increase the dimensionality of the problem.

This analysis is approximated by assuming one realization of the uncertain PSDF,
specifying a mean and standard deviation value for a log-normal distribution. These values
are obtained from the distribution of particle diameters that were measured at various
heights in the burner [111]. These measurements occur after burning and are smaller than
the true (but unknown) initial PSDF. The difference between the measured particle
distribution and the initial distribution is controlled by the chemical reaction rates, which
are uncertain. Another potential difficulty when considering a distribution is that not all
particles are seen by the instrumentation, which is discussed in the following section.

Modeling the measurement apparatus

Char particles were measured in the laminar-entrained flow reactor following an in situ
method where the size, temperature, and velocity are recorded [112]. Particle size and
temperature are measured by observing the transmitted light from the particle. The
published experimental data, however, does not represent the entire distribution of char
particles that entered the laminar-entrained flow reactor [114]. A subset of the particles
that pass by the instrumentation are unmeasured or rejected due to an
irregular/overlapping particle signals. The unmeasured particles are a consequence of the
calibration process, which chooses an aperture in which bright burning particles are in
focus. Futhermore, additional post-processing is used by experimenters where only
approximately 100 particles are published as measured.

The particle temperature (or any particle property) can be attained at any height when
evaluating a computational model; however, in order to mimic the measurement process,
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we will only consider simulated particles which emit enough light to be “seen” by the
instrumentation. The light intensity of a char particle is calculated by:

I = CdpT
4
p (6.4)

where C is a calibration constant (set to unity), dp is the diameter of the spherical char
particle, and Tp is the particle temperature. A minimum light intensity was found by
calculating Eq. 6.4 using the reported measurement data.

The average particle temperature, our new QOI, was calculated by taking the average
temperature of particles whose light intensity is greater than the calculated minimum
measured value. Particles that have a light intensity less than the minimum value are not
included in the calculation. Figure 6.5 illustrates the type of constraint imposed by the
minimum light intensity, which results in a subset of the simulated particles being
unobserved.

Surrogate modeling and results

Quadratic surrogate models were developed over H using the modified char oxidation model,
which includes an assumed initial PSDF and light intensity model. Compared to the previous
study, the QOI has changed from a single particle temperature to that of an average particle
temperature. A histogram of the maximum estimated fitting error for all 399 gas conditions
and measurement heights is shown in Figure 6.6. Comparing these results with the previous
analysis in Figure 6.3 (using a fixed particle diameter) suggests that quadratic surrogate
models better represent the average temperature QOI; however, the errors remain larger
than the experimental uncertainty.

To attain more accurate surrogate models, the piecewise modeling strategy was employed,
with an error tolerance of 100 K. Coefficients for the quadratic surrogate models were found
by minimizing the 2-norm of the training sample error. Surrogate models were developed
for each of the 187 subdomains, using 624 training samples in each subdomain. The scalar
consistency measure found that 67 of the subdomains were consistent with the experimental
data. The char oxidation model and the experimental data are consistent over the prior
domain when using a distribution of particle diameters.

With the model and data consistent, the feasible set F is non-empty. A posterior analysis
of the uncertain model parameters or the char oxidation model can then be conducted; e.g.,
sampling the feasible set or model prediction. A hit-and-run algorithm [126, 127] was used
to obtain samples from the feasible set. Details of the sampling algorithm as it is applied
for nonconvex quadratically constrained sets can be found in Algorithm 9.1 of Russi’s thesis
[57]. For each consistent subdomain, a sample of the feasible set was obtained. The union
of all samples is shown in Figure 6.7. Each subplot has been rescaled to represent the prior
uncertainty in the model parameters. Samples that are non-uniformly dispersed through the
subplot indicate the learning that occurs from prior knowledge to posterior knowledge. The
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Figure 6.5: Visualization of the light intensity model enforcing a constraint on simulated
particle temperature and size. Experimental data was acquired at a gas condition of 24% O2,
14% H2O, and 62% N2 at a height of 3.81 cm above the burner. Experimental measurements
are shown as red circles and the simulated char particles are shown (for one realization of
x) as blue triangles. The grey shaded region is the constraint enforced by the light intensity
model (Eq. 6.4). Particles in this region go “unseen” by the simulation model.

char oxidation model was used for blind prediction (described in Appendix B.3) for all 399
QOIs in the dataset. Prediction results for a single gas condition is shown in Figure 6.8.
The black intervals are the prior experimental bounds and the red intervals are the blind
model prediction from Eq. 3.4. Prediction results for all 12 gas conditions are reported in
Appendix F.1.

6.8 Conclusion

This chapter examined a reduced char oxidation model by using the piecewise modeling
strategy and B2BDC analysis. The validation workflow was applied in an iterative fashion
to guide the development of the char oxidation model, which was ultimately found to be
consistent with the prior knowledge and experimental measurements. However, the poor
accuracy of the quadratic surrogate models introduced large uncertainty in the results.
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Figure 6.6: Histogram of the estimated surrogate model fitting error for each of the 399
QOIs. For each QOI, the estimated maximum error is shown, estimated by 10-fold cross
validation.

Piecewise modeling was employed to refine the surrogate models and revealed the
incompatibility between the char model and data, while also identifying a potential issue
with the initial particle diameters.

A realization of the uncertain initial PSDF was selected and analyzed to evaluate the
compatibility between the char oxidation model and the experimental data. The char
oxidation model, using an initial PSDF and average temperature QOI, was found to be
consistent with the experimental data. Different realizations of the uncertain initial PSDF,
however, could lead to differing conclusions; i.e., the model and data are incompatible. The
B2BDC analysis and piecewise modeling reached consistency, but doubts about the
certainty of that conclusion persist. The results suggest that more work is necessary for
characterizing the initial PSDF.
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Figure 6.7: Pair-wise projection of the feasible model parameters. Each blue point is a model
parameter vector x ∈ F ⊂ R11. Shown on the diagonal is the marginal histogram of feasible
samples from the corresponding parameter. Each sub-plot has been rescaled to the prior
bounds listed in Table 6.1.
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Figure 6.8: Blind prediction of QOIs at 60% O2, 14% H2O, and 26 % CO2. Black interval
is the experimental bounds. Red interval is the prediction of the e-th QOI (Eq. 3.4) using
the feasible set excluding the e-th (Eq. B.7). Appendix F.1 contains similar figures for all
12 gas conditions.
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Chapter 7

Validating a semi-empirical quantum
chemistry model PM7

This chapter applies the B2BDC methodology to a semi-empirical quantum chemistry
model PM7. The consistency of a homologous series of linear alkanes are examined, where
the training data are chemically accurate, i.e., they have low uncertainty by the standards
of computational chemistry. Potential difficulties using the developed piecewise modeling
strategy from Chapter 4 are highlighted. Unlike the previous applications, the
experimental data here are believed to be accurate, but there remains a great deal of
uncertainty about the adequacy of the computational model itself. An additive model
discrepancy is introduced as a potential means of rectifying the model-data inconsistency,
diagnosing potential scenario dependencies, and providing additional feedback to domain
scientists. The additive model discrepancy is tested on a set of cycloalkanes, that are
energetically dissimilar to the training data.

7.1 Semi-empirical quantum chemistry

Quantum chemistry methods are the primary theoretical tools for analyzing energies,
structures, and properties of molecules. Often quantum chemical methods are divided into
two classes, molecular orbital (ab initio or semi-empirical) and density functional theory
[128]. For molecular orbitals, and specifically ab initio methods (which means “from first
principles”), one can determine the property for any molecule and state by the solution of
the time-independent Schrödinger equation,

ĤΨA = EAΨA (7.1)

where A is the state of interest. To solve Eq 7.1, the energy, E and the wave function Ψ, based
on the Hamiltonian operator Ĥ, needs to be found for the molecule of interest. However,
accurate ab initio calculations are only possible for atoms and small molecules due to the



CHAPTER 7. VALIDATING A SEMI-EMPIRICAL MODEL 71

considerable computational costs and knowledge of Ψ [129]. To make the computation more
tractable, the Born-Oppenheimer [130] and orbital [131] approximations make assumptions
on the dynamics of the electron motion and form of Ψ. Following these assumptions, the
Schrödinger equation can be simplified into the Hartree-Fock (HF) equations [132, 133],
where an electron experiences a field of charge instead of many individual charges. The
HF equations are solved through an iterative method called the self-consistent field method
(SCF) [134]. SCF can calculate the energy of a molecule by the following procedure: one
chooses an initial set of orbitals and calculates all the required electron overlap integrals,
these results are used in the HF equations to compute a new set of orbitals. This process is
repeated until the solution has converged [135]. For large molecules, the SCF procedure can
still be too computationally demanding.

Further simplifications could be made by approximating the electron overlap integrals.
These integrals can be fit to experimental data or, sometimes, are neglected [136]. Methods
that follow these sets of approximations are known as semi-empirical [136, 137]. One of the
lead developers in semi-empirical research was Michael Dewar [138, 139] whose work
influences much of the computational software available today [140]. Semi-empirical
quantum chemistry methods are similar to the ab initio methods but are computationally
less demanding. The speed and straight-forward manner in which empirical data are
incorporated into these methods are reasons why semi-empirical quantum chemistry finds a
wide range of ubiquitous applications and sees ongoing development [141, 142].

Published alongside a semi-empirical method is a recommend (nominal) model parameter
[139, 143, 144]. The nominal model parameter is found by minimizing the average prediction
error across a diverse set of molecular data [144]. In this chapter, we go beyond an average
prediction error analysis by accounting for both parametric and experimental uncertainties.

The semi-empirical quantum chemistry model PM7 [144] is investigated to determine
its compatibility with a set of linear alkane training data, whose heats of formation are
known to high precision. We will quantify the uncertainty in the model by using the B2BDC
analysis. There are 27 adjustable model parameters in PM7 that are used to parameterize
the interactions of carbon and hydrogen atoms. Our objective is to determine if there exists
a set of PM7 parameter values that satisfies the uncertainty bounds of the training data,
and if such a set exists, then quantify the uncertainty in model predictions.

7.2 Selection of QOIs and experimental data

Many approaches can be used to validate a computer model [6, 7]. Two key factors are the
choice of validation data and the specific experimental feature to use as the QOI. A single
homologous series, namely linear alkanes, will be considered in this chapter. This series
was chosen due to its simplicity, accumulated knowledge, and that the number of uncertain
model parameters does not change with the size of the molecule.
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For a given parameterization, PM7 as a model provides many output responses; e.g.,
vibrational frequencies, ionization potential, HOMO-LUMO energies, the heat of
formation, etc. The primary output value of PM7 is the standard heat of formation, which
is denoted by ∆fH

◦
298. A thermochemical network approach by Ruscic et al. [145] combines

theory and experimental data to develop accurate thermochemical values for molecular
properties, including members of linear alkanes. Table 7.1 shows the heats of formation of
the homogeneous series, methane to octane, obtained from the thermochemical network
approach. Table 7.1 also includes several large linear alkanes, specifically, decane,
dodecane, tetradecane, and octadecane, whose heats of formation were obtained
experimentally [146].

The heats of formation of linear alkanes will be used as our QOIs. The experimental
bounds are taken as the reported heat of formation ± the uncertainty. Table 7.1 lists the
training data, namely the heat of formation of methane, ethane to octane. Experimentally
measured alkanes, i.e., decane, dodecane, tetradecane, and octadecane, are only used for
prediction. For the sake of simplicity, each QOI model is indexed by the number of carbon
atoms.

Table 7.1: List of the linear alkane QOIs, the associated index e (equivalent to the number of
carbon atoms in the linear alkane), the reported heat of formation, uncertainty, and reference

e fe ∆fH
◦
298 (kcal/mol) 2σ Ref

1 ∆fH
◦
298(CH4) -17.81 ±0.01 [145]

2 ∆fH
◦
298(C2H6) -20.06 ±0.03 [145]

3 ∆fH
◦
298(C3H8) -25.10 ±0.05 [145]

4 ∆fH
◦
298(C4H10) -30.10 ±0.06 [145]

5 ∆fH
◦
298(C5H12) -34.98 ±0.07 [145]

6 ∆fH
◦
298(C6H14) -39.90 ±0.08 [145]

7 ∆fH
◦
298(C7H16) -44.82 ±0.11 [145]

8 ∆fH
◦
298(C8H18) -49.78 ±0.16 [145]

10 ∆fH
◦
298(C10H22) -59.68 ±0.26 [146]

12 ∆fH
◦
298(C12H26) -69.53 ±0.33 [146]

14 ∆fH
◦
298(C14H30) -79.37 ±0.43 [146]

18 ∆fH
◦
298(C18H38) -99.09 ±0.65 [146]

7.3 Challenges in surrogate modeling

As aforementioned, the B2BDC methodology uses polynomial surrogate models to
represent the response from an underlying simulation model. Using surrogate models
makes tasks like optimization and sensitivity analysis much more efficient due to
inexpensive evaluations. However, constructing surrogates models for the PM7 model was
challenging with ∆fH

◦
298(C4H10) serving as our example.
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Experience has shown that surrogate models are only accurate (to within the
experimental uncertainty) on small domains of the parameter space for the PM7 model. To
illustrate, we compare the surrogate model fitting error of a quadratic polynomial and
Gaussian process surrogate on a shrinking domain Hk = [xnom ± k × ρ] where k ∈ [0, 1],
shown in Figure 7.1. The model parameter value, xnom is the nominal (pre-calibrated) set
of model parameters for the PM7 model [144], ρ was determined by changing the i-th
component of the model parameter xnom, with all other parameters remained fixed, such
that the interval defined by xnom,i + ρi produced a 10 kcal/mol change in ∆fH

◦
298(C4H10).

The nominal model parameter and ρ are shown in Table 7.2.
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Figure 7.1: Surrogate model fitting error for the heat of formation of C4H10 evaluated on
a shrinking domain Hk = [xnom ± k × ρ], with k ∈ [0, 1]. The nominal PM7 value, xnom,
and ρ are reported in Table 7.2. As the domain shrinks, by reducing k, the surrogate model
fitting error decreases to a point where the error falls below the experimental uncertainty
(shown in grey) of 0.06 kcal/mol. Comparison between a quadratic surrogate (black dots)
and a Gaussian process model (red crosses) with a constant mean and a squared exponential
covariance function is shown. 10-fold cross-validation was used to estimate the fitting error.

For each k, 7,500 Latin Hypercube samples [122] were generated in Hk to construct both
surrogate models. The Gaussian process was implemented using MATLAB’s fitrgp function
[64]. To attain fitting error below our target, the experimental uncertainty of ±0.06 kcal/mol,
the initial region needed to be reduced by the factor of k = 0.4. The reduced domain H0.4
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Table 7.2: PM7 nominal parameter vector and the ρ associated with a 10 kcal/mol change
in the heat of formation of C4H10, where each parameter value was perturbed, one-at-a-time
from its nominal value.

Parameter xnom ρ
USSH -11.07 0.29033
BETASH -8.3897 0.069276
ZSH 1.2602 0.017434
GSSH 14.15 0.36839
FN11H 0.17785 0.009959
FN21H 1.4287 0.33716
FN31H 0.99132 0.077376
ALPBH 4.0512 0.54877
XFACH 2.8456 4.875
USSC -51.373 0.11427
UPPC -40.135 0.084482
BETASC -14.415 0.12922
BETAPC -7.8937 0.067632
ZSC 1.9422 0.012886
ZPC 1.7087 0.007471
GSSC 12.347 0.13671
GSPC 11.933 0.18749
GPPC 10.452 0.8254
GP2C 9.3855 0.031369
HSPC 0.80263 0.11697
FN11C 0.045888 0.005604
FN21C 5.0371 1.5601
FN31C 1.5887 0.12723
ALPBHC 1.0387 0.007624
XFACHC 0.20458 0.002002
ALPCC 2.6557 0.024061
XFACC 0.93782 0.034605

is 5.5 × 1010 times smaller by volume as compared to the original domain H1. Based on
this result, I concluded that it would require an intractable number of surrogate models to
explain the behavior of PM7 over H within the desired accuracy.

Piecewise surrogate modeling

The developed piecewise modeling strategy (discussed in Chapter 4) can efficiently develop
polynomial surrogate models on disjoint domains of the parameter space. This strategy is
more efficient than traditional piecewise modeling by taking advantage of the experimental
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data. However, the piecewise modeling strategy was ineffective for the PM7 model.

The piecewise modeling strategy begins by fitting a quadratic surrogate model over each
subdomain. As shown in Figure 7.1, quadratic surrogate models are only accurate on small
domains; therefore, a significant amount of fitting error is propagated forward by expanding
the associated experimental bounds. Evaluation of the scalar consistency measure then (in
almost all cases) identifies the subdomain as consistent with the expanded experimental
bounds. Constraints imposed by the experimental bounds are significantly relaxed when
adding a fitting error which is nearly an order of magnitude larger than the experimental
uncertainty. This result emphasizes that the developed piecewise modeling strategy can have
difficulties invalidating large volumes of the prior domain when the fitting error is significant.

7.4 Direct sampling for consistency

Considering the challenges discussed in the preceding section, and due to the speed of PM7,
this analysis will forgo the development of surrogate models. Both consistency and prediction
will be assessed by directly sampling H. A sample-based approach can only approximate the
feasible set and provide an inner estimate to the model prediction. Proofs of inconsistency,
as described in Chapter 3.2, are lost when using a sample-based approach.

The computational chemistry program MOPAC [147] was used to evaluate the PM7
model and associated model parameters. The input molecular geometries were obtained via
optimization with the PM7 nominal parameter vector (Table 7.2), which remained frozen
afterward, during the subsequent direct sampling. The freezing of the molecules geometries
was done to avoid any unphysical reorganization or distortion. The consequences of
freezing the molecular geometries with the nominal PM7 parameter vector are two-fold.
First, using geometry optimization for a given parameter vector can (and usually does)
result in different heats of formation as compared to the fixed geometry. Second, parameter
vectors that are feasible with respect to the heats of formation, do not guarantee reaching a
physically meaningful geometry. All feasible parameter vectors, which would produce
unphysical geometries, should ultimately be removed from the feasible set.

The choice of the prior parameter domain, H, determines all subsequent analysis and
hence it needs to be well motivated. Our goal is to assess the predictivity of PM7 for large
linear alkanes while being consistent with experimental data for small alkanes. Due to limited
high-accuracy data from Ruscic et al. [145], heptane and octane (C7H16 and C8H18), the
two largest alkanes from the training data, were set aside to assess predictivity. Although
the physical properties of methane and ethane may represent the homologous series, the
chemical properties, i.e., the energetics, are very different as seen through group additivity
[148]. For this reason, methane and ethane were set aside from the analysis to not bias the
result. Propane and butane were also not included in the initial region search since a priori
it was not known if a feasible set exists. Based on these considerations, the determination
of H was prioritized on feasible samples for pentane and hexane, which will be denoted as
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F5:6. The subscript 5:6 is used to indicate a feasible set was formed with the 5th through
the 6th QOIs; i.e., pentane and hexane.

To begin our search, a non-linear programming solver, fmincon [64], was used to minimize
the following objective function, ‖f5:6(x)− y5:6‖22, where, f5:6(x) are the heats of formation of
pentane and hexane computed by PM7 at the parameter vector x. y5:6 are the reported heats
of formation for pentane and hexane from Table 7.1. The local optimal parameter vector
found, xopt, was feasible for pentane and hexane; therefore, xopt ∈ F5:6. A volume was taken
around xopt to collect samples of F5:6. For each sampled point, the heats of formation of
pentane and hexane were computed by PM7. 2×105 samples were generated by employing a
space-filling Latin Hypercube design from the volume [xopt±xopt×1×10−3] and 65 samples
were found to be within F5:6.

Principal component analysis (PCA) [149] was conducted to identify a rotated
coordinate system around the samples of F5:6, where all principal components were
preserved. Considering the arbitrary choice of the volume used in the sampling of F5:6,
each PCA direction was extended by ten times that of the F5:6 samples enabling a larger
sample region to be considered. A Latin Hypercube design was taken to generate uniform
samples in the rotated and extended space.

In total, 5.76 million samples were generated uniformly within the PCA-rotated volume.
PM7 was used to evaluate the heats of formation of 9 linear alkanes, CH4 to C9H20. Shown in
Table 7.3 are the extreme parameter values from the generated samples. Rejection sampling
was used to determine if a sample was feasible for each set of experimental bounds.

From the 5.76 million samples, there were 164,569 samples that were feasible for at least
one alkane in the training set. The number of feasible samples found quickly dropped when
considering feasibility with multiple alkanes. For example, 19,167 samples were feasible with
at least two alkanes, 6,193 samples feasible with at least three alkanes, 3,110 samples feasible
with at least four alkanes, 1,989 samples feasible with at least five alkanes, and 169 samples
feasible with at least six alkanes.

7.5 Samples of the feasible sets

For each of the eight alkanes, a feasible parameter vector could be found that would predict
its heat of formation within the experimental bounds. Feasible parameters were also found
for all pairwise combinations of alkanes, i.e., a parameter vector could be found that would
predict the heat of formation for any two alkanes within their respective experimental bounds.
The percentage of feasible samples found for each pair of alkanes in the training data set
is reported in Table 7.4. Methane had the smallest percentage of feasible samples, and the
largest was for octane. This difference in proportions of feasible samples could be due to
the uncertainty bounds associated to octane being nearly an order of magnitude larger than
methane and the difference in the molecular structure of methane compared to all others



CHAPTER 7. VALIDATING A SEMI-EMPIRICAL MODEL 77

Table 7.3: Extreme parameter values from the search region and parameter vector of F2:8

found via global optimization with a genetic algorithm.

Parameter min(x) max(x) xga
USSH -14.815 -9.5475 -14.577
BETASH -10.444 -6.383 -7.3947
ZSH 0.85244 1.5053 1.1558
GSSH 10.953 15.822 15.096
FN11H 0.14962 0.23173 0.21973
FN21H 1.2161 1.4849 1.3555
FN31H 0.83875 1.0458 0.89818
ALPBH 3.9629 4.8467 4.0908
XFACH 2.3077 2.7852 2.6264
USSC -52.553 -45.61 -50.896
UPPC -43.679 -37.301 -42.679
BETASC -15.285 -11.804 -12.204
BETAPC -9.2246 -6.7715 -8.0123
ZSC 1.5914 2.2229 1.9807
ZPC 1.501 2.0466 1.5976
GSSC 10.314 13.662 12.653
GSPC 9.7585 13.092 10.104
GPPC 9.3945 12.464 9.8942
GP2C 8.6452 11.014 9.8562
HSPC 0.66956 0.77601 0.77597
FN11C 0.045528 0.055036 0.051751
FN21C 4.3632 5.1283 4.8582
FN31C 1.4298 1.7154 1.6624
ALPBHC 0.76974 1.1501 1.0878
XFACHC 0.15181 0.21488 0.17728
ALPCC 2.3296 3.0615 2.5316
XFACC 0.71959 0.96953 0.75887

in the homologous series. Table 7.4 shows the largest fraction of feasible samples were for
C8H16, which is counterintuitive as the sampling efforts were focused on the feasible sets of
C5H12 and C6H14.

From the generated samples, there was no single parameter vector that was able to
simultaneously satisfy the uncertainty bounds of all the training data; i.e., F1:8 = ∅. Thus,
the PM7 model and the training data were found to be mutually inconsistent. The inability
to find a parameter vector feasible for all alkanes does not prove the non-existence of such a
point.

There were 4,020 samples of F5:6, the alkanes which we had focused our search on.
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Table 7.4: Percentage of feasible points found (out of 5.76 million samples) for each alkane
and pair of alkanes. Cells are colored corresponding to the numerical value, red indicating a
larger value and green for a smaller value.

Prediction using the found feasible sets are shown in the following section. No samples were
found from F2:8 from direct sampling. However, using a genetic algorithm via MATLAB’s
ga function (and nearly 750+ CPU hours), a single parameter vector xga, was obtained from
F2:8 and is shown in Table 7.3. A similar approach was taken to obtain a sample from F1:8,
although, none could be found.

7.6 Uncertainty in model predictions

In this section, we examine the uncertainty of predictions for larger alkanes using samples
consistent with experimental data for smaller alkanes. Samples consistent with the
experimental data for smaller alkanes were used for prediction of the larger alkane forming
the histograms shown in Figure 7.2. The width of the histograms constitutes the prediction
uncertainty. The predictions are only inner approximations as samples were only generated
from a portion of the parameter space. Thus, the predicted uncertainty can be no smaller
than what is presented.

Figure 7.2(a) depicts the prediction of the heat of formation of decane. In blue are samples
from F5:6, i.e, parameter vectors that were feasible for both C5H12 and C6H14. The width of
the distribution is 1.6 kcal/mol, which is larger than that of the experimental uncertainty of
0.52 kcal/mol (shown in grey) and larger than the chemical accuracy (1 kcal/mol). To further
reduce the prediction uncertainty, additional constraints can be imposed by considering
samples that are also feasible with smaller alkanes. Samples of F4:6 and F3:6, shown in red
and yellow, respectively, are indeed capable of reducing the predicted uncertainty, and in the
case of F3:6 producing a prediction 68% smaller than that of F5:6. Figures 7.2(b) and 7.2(c)
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show similar predictions for the heats of formation of dodecane and octadecane.

(a) (b)

(c)

Figure 7.2: Heat of formation of a larger alkane, predicted from the feasible parameters
of smaller alkanes. The grey shaded region is the experimental interval for the respective
alkane from Table 7.1. The black vertical dashed line is the PM7 model prediction using the
nominal model parameter, Table 7.2. In each panel, samples of F5:6, F4:6 and F3:6 are used.
Panel a: the heat of formation of decane, Panel b: heat of formation of dodecane, and Panel
c: the heat of formation of octadecane.

7.7 Classification of feasible points

The B2BDC feasible set is defined by polynomial surrogate models and constraints;
however, because of the sample-based approach, the feasible set could not be represented
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with polynomial models and constraints. This well-defined representation of the feasible set
was lost due to the inability to develop accurate surrogate models. An alternative approach
is proposed to approximate the feasible set by using a model, trained on the sampled data.

In this section, the data collected via direct sampling are used to train a binary classifier
that distinguishes a “feasible” class of parameter values from the “infeasible” ones. A feasible
point could be associated with a specific feasibility label, such as F5:6, or any feasibility label.
Given the unbalanced nature of the feasible and infeasible classes, i.e., over 5× 106 samples
with an infeasible label and only a few thousand samples belonging to any specific feasibility
label, we choose the latter option and constructed the “feasible” class from all points that
are feasible for at least one alkane in the training set.

A Random Forest classifier was selected as it can emulate the decision boundary for
non-convex and even non-contiguous feasible sets. The classification was performed using
the implementation in the Scikit-learn library [150], with equal misclassification costs. It
is easy for one to verify that the PM7 feasible set is non-convex, a line segment between
two feasible samples is not entirely feasible; however, non-contiguous feasible sets were not
confirmed for PM7 as it is more challenging to prove. Both “feasible” and “infeasible” classes
were down-sampled to 105 to handle the class imbalance. Down-sampling was performed by
using a randomly drawn 105 samples from each class [151]. Performance of the classifier was
evaluated by 5-fold cross-validation via the construction of the Receiver Operating Curve
(ROC) and computation of the Area Under Curve (AUC), shown in Figure 7.3.

With an AUC value of 0.68, there is indeed a non-random structure in the feasible set
recovered via direct sampling. Therefore, it is possible to train a classifier that fulfills the
same function as the inequality constraints which defines the feasible set. Of course, this
is only an approximation to the feasible set. A better performance metric of the classifier
should be achieved for this classification-based feasible set to be practical. One route toward
this goal is to obtain a sample in the parameter space that conveys a better representation of
the spatial extents of the non-convex feasible set found via sampling on a Latin Hypercube.
Samples near the boundary or surface of the feasible set (i.e., samples that straddle the
decision boundary) are more informative for classification than a collection of samples from
the interior of the set.

7.8 Diagnosing inconsistency with model discrepancy

The previous analysis did not provide evidence that the semi-empirical quantum chemistry
model PM7 was consistent with a homologous series of linear alkanes; i.e., no model
parameter could simultaneously predict the heat of formation of methane to octane within
the accuracy of the training data. This result is not surprising given the empirical nature
of PM7 discussed in Section 7.1. Given the high accuracy of the training data, one
potential source of the inconsistency is the computational model itself.
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Figure 7.3: ROC and AUC for the binary classification (Random Forest model) of the
feasibility of the points from the PM7 parameter space obtained via direct sampling.
“Feasible” class includes points that are feasible for at least one training data point,
“Infeasible” class includes points that are not feasible for any training data point. Equal
misclassification costs were used. Both classes were down-sampled to 105 samples.
Classification performance was assessed by 5-fold cross-validation using 5 × 103 ensemble
of random trees.

When a computational model differs from the physical process that generated the
experimental data, a discrepancy or error exists. This difference can be compensated for by
including a model discrepancy [22]. A model discrepancy function, δ, also referred to in the
literature as a model error [152] or model inadequacy [153], is a means of quantifying the
observed disagreement between models and data. By far the most popular strategy for
modeling a discrepancy is the Kennedy-O’Hagan (KO) approach [22], which adds a model
discrepancy function to the model output. In the classical KO approach, the discrepancy
function takes the form of a non-parametric model, e.g., a Gaussian process, and is a
function of the scenario parameters.

More recent approaches to model discrepancy have gone beyond the additive KO
approach. An embedded model discrepancy changes the input model parameters by
incorporating a probabilistic model [154]. Intrusive embedding of the model discrepancy
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alters the underlying computational model [153]. Nevertheless, with compiled codes, e.g.,
MOPAC, invasive approaches are not amenable. Irrespective of how model discrepancy is
accounted for, prediction outside of the validation data will always be risky.

Implementation

Ideas from the KO approach, which are suitable for the B2BDC methodology, are
implemented for the PM7 model. An additive model discrepancy will act as a diagnostic
tool for identifying if a dependency in the scenario parameters could rectify the a priori
model-data inconsistency. The model discrepancy will adjust the model output, fe(x), by,

fe(x) + δ(x, xs,e) (7.2)

where δ(x, xs,e) is a model of the discrepancy depending on the scenario parameters xs,e,
and in some instances the model parameter x. In this example, the scenario parameter xs,e
is the geometry of the molecule, where each scenario is a different molecule. δ(x, xs,e) will

be represented as a linear combination of basis functions; i.e., δ(x, xs,e) =
m∑
i=1

ciφ(x, xs,e),

where φ are basis functions and ci are unknown coefficients to the discrepancy function. This
form of the δ(x, xs,e) is chosen, specifically a deterministic function with a linear dependence
in ci, such that it can be incorporated within the B2BDC framework with no additional
modifications.

One known issue with the KO approach is its difficulty in identifying the correct
calibrating model parameters without realistic prior information on the model discrepancy
[155]. Modifying the computational model output by adding a model discrepancy often
destroys essential physical properties of the model, leading to unphysical behavior in the
output [154–156]. Introducing constraints on the discrepancy function might prevent
unphysical behavior; however, the various types of constraints and their respective
influence is outside the scope of this analysis.

We will use the model discrepancy function to determine if additional structured
dependence, through δ(x, xs,e), could resolve the prior inconsistency in PM7 for predicting
a set of linear alkanes. The following modifications are necessary to integrate the model
discrepancy into the definition of a feasible set:

F̃ =
N⋂
e=1

F̃e = {(x, c) ∈ D : Le ≤ fe(x) +
m∑
i=1

ciφ(x, xs,e) ≤ Ue, for e = 1, 2, . . . , N.} (7.3)

where the model discrepancy parameter c ∈ Rm, such that the prior, D ⊂ Rn+m, is for all
uncertain model parameters and discrepancy parameters. We denote, F̃ , as the feasible set
including model discrepancy to differentiate it from the feasible set without discrepancy, F .
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7.9 Charge-based group correction

Choosing the basis functions φ(x, xs,e) to incorporate into the model discrepancy function
is up to the modeler. The discrepancy function should be well-motivated and physically
meaningful. We follow the work of Wang and Frenklach [157] which investigated the
prediction of the standard heats of formation for benzenoid aromatics using the
semi-empirical quantum chemistry model AM1 [139]. In their work, the semi-empirical
quantum chemistry predictions deviated from the experimental measurements. A constant
multiplier was introduced to each functional group [148] to account for the observed
deviation between quantum chemistry prediction and data. A recent study by Allison et al.
[158] had followed this approach by correcting for the systematic deviations in the
prediction of polycyclic aromatic hydrocarbons by density functional theory and
Gaussian-3 model chemistry methods.

Building on this logic, the discrepancy function will be based on a group correction.
However, instead of a constant multiplier to each functional group, we will use another output
from the PM7 model, namely the atomic charges. The electric charge of the carbon atoms
will form the a vector of basis functions φ(x, xs,e) for the model discrepancy function. For
straight-chained alkanes, there are two functional groups: methyl (C/C/H3) and methylene
(C/C2/H2). We refer to these groups by the electric charge of the carbon atoms, denoted as
QC3,j(x) or QC2,k(x). Figure 7.4 shows QC3,j(x), the electric charge for the carbon atom in
the methyl group. This charge was calculated by PM7 for the parameter vector x. Similarly,
the electric charge associated with the carbon atom of a methylene group is shown in Figure
7.5, denoted as QC2,k(x).

Figure 7.4: Illustration of ethane with the QC3,j electric charges labeled.

The model discrepancy function based on group corrections of the electric charges will
be:

δ(x, xs,e) =
m∑
i=1

ciφi(x, xs,e) = c0(x) + c2(x)

nk∑
k=1

QC2,k(x) + c3(x)

nj∑
j=1

QC3,j(x) (7.4)
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Figure 7.5: Illustration of n-hexane with all carbon atoms labeled with their associated
electric charges, QC2,k and QC3,j.

where nj is the total number of methyl (C/C/H3) groups, nk is the total number of methylene
(C/C2/H2) groups in a molecule. Therefore,

φ(x, xs,e) =

[
1,

nk∑
k=1

QC2,k(x),

nj∑
j=1

QC3,j(x)

]
.

Since the scenario parameter xs,e is the molecular structure, both nj and nk depends on xs,e.
To clarify the values taken by nk and nj, all linear alkanes have two methyl groups, thus
nj = 2; whereas for cycloalkanes molecules that have no methyl groups, nj = 0.

The model discrepancy parameter, c0, enables the model discrepancy function to correct
for a systematic bias; i.e., if the computational model under or overpredicts all QOIs by
a fixed amount. Incorporating additional parameters to the discrepancy function increases
its complexity and flexibility, enabling the model discrepancy to correct for more irregular
differences. In the following section, we apply the additive model discrepancy function to a
set of parameter vectors infeasible with PM7 for ethane to octane.

7.10 Model discrepancy results

The analysis begins by determining if the proposed model discrepancy function can resolve
the prior model-data disagreement. Samples that are feasible with at least one alkane were
used. If the parameter vector x and the proposed model discrepancy function δ(x, xs,e) are
consistent with the experimental data from Eq. 7.3, then there is a parameter c = [c0, c2, c3]
such that, fe(x) +

∑3
i=1 ciφi(x, xs,e) evaluates the heat of formation within the experimental

bounds for the training data. Calculation of the heat of formation from PM7 for the e-th
QOI is denoted by fe(x). 5×103 samples were randomly drawn from the collection of 164,569
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samples feasible with at least one alkane (Section 7.4). For each model parameter x, the
following feasibility problem was evaluated:

find c ∈ Rm s.t. Le ≤ fe(x) +
m∑
i=1

ciφi(x, xs,e) ≤ Ue for e = 2, . . . 8. (7.5)

If Eq. 7.5 is feasible then there are coefficients c such that the feasible set, F̃ is non-
empty. From the 5 × 103 samples, 4,215 samples (84.3%) were feasible for some value of
c = [c0, c2, c3]. In other words, 84.3% of the model parameters considered, there exists a
discrepancy coefficient c that can correct the PM7 model output to within the uncertainty
of the training data for ethane to octane. Methane was not included in the training set
as it does not share any functional groups with the larger linear alkanes. Methane would
require its own functional group for correction, which can be investigated in a later study.
The additional flexibility from the model discrepancy function successfully brought the PM7
model to consistency with a set of linear alkane training data.

Prediction with an additive model discrepancy

Predicting the heats of formation of large straight-chain alkanes using the model
discrepancy function are shown in Figure 7.6. These prediction molecules are similar to
that of the training data, although much longer. Prediction amounts to establishing the
following interval,[

min
(x,c)∈F̃

fp(x) +
m∑
i=1

ciφi(x, xs,p), max
(x,c)∈F̃

fp(x) +
m∑
i=1

ciφi(x, xs,e)

]
, (7.6)

where x is a random sample of 5 × 103. Eq 7.6 is solved for each feasible model parameter
x, thus, 4,215 intervals are found. The black intervals shown in Figure 7.6 represent the
extrema across all 4,215 intervals.

Figure 7.6(a) shows the prediction of decane. The prediction interval is approximately
0.6 kcal/mol and overlaps with the experimental bounds from Table 7.1 shown in grey.
Prediction using the nominal PM7 model parameter is shown as a black vertical dashed
line that is at odds with the predicted interval and experimental bounds. In the cases
considered, the prediction interval produced by PM7 and the charged-based discrepancy
function was in agreement with the experimental bounds. As one may expect, the predicted
uncertainty increases as we consider alkanes further from the training data. For example,
octadecane (C18H38) has a prediction interval of approximately 2 kcal/mol, double that of
the experimental bounds. These prediction results show that the PM7 model with a charge-
based model discrepancy agrees qualitatively with the experimental data.
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(a) (b)

(c) (d)

Figure 7.6: Prediction of the heat of formation using the PM7 model and an additive model
discrepancy i.e., fp(x) + δ(x, xs,p), for large straight-chained alkanes. The feasible set of
model parameters were constrained by data for linear alkanes, ethane to octane. The black
interval is the extrema of the prediction intervals from Eq. 7.6. Grey shaded regions are
the experimental bounds reported in Table 7.1. The vertical black dashed line is the heat of
formation evaluated by the nominal PM7 parameter value, fp(xnom).

Prediction of cycloalkanes

In this section, we investigate if the learned discrepancy function can be transferred to a
broader class of molecules; i.e., to make predictions of molecules dissimilar to the training
data. In the previous section, we showed that model prediction with the learned model
discrepancy produced intervals that were physically meaningful and coincided with the
experimental bounds for large linear alkanes. In this section, the discrepancy function is
tested on a set of small cycloalkanes that are different, specifically the strain energy, as
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compared to the training data.

Table 7.5: List of the cycloalkane QOIs, the reported heat of formation, and uncertainty
[145]

fe ∆fH
◦
298 (kcal/mol) 2σ

∆fH
◦
298(C3H6) 12.82 ±0.11

∆fH
◦
298(C4H8) 6.65 ±0.10

∆fH
◦
298(C5H10) -18.55 ±0.11

∆fH
◦
298(C6H12) -29.45 ±0.09

We begin by considering a set of cycloalkanes shown in Table 7.5. Due to the geometric
and energetic differences between straight-chain alkanes and cycloalkanes, cyclohexane was
included in the training data for F̃ . Therefore, the feasible model parameters, (x, c) must
produce the heat of formation within the uncertainty bounds for linear alkanes (ethane to
octane) and cyclohexane.

The same 5 × 103 samples of x are used to evaluate the consistency of the model
discrepancy function. Only 749 (14.98%) of the samples were feasible for the training data
that included cyclohexane. Figure 7.7 shows the prediction interval for cyclopropane,
cyclobutane, and cyclopentane using the feasible samples. Figures 7.7(a) and 7.7(b) show
the prediction interval for both cyclopropane and cyclobutane that spans both positive and
negative heats of formation, which is not physically meaningful. The predicted interval for
these cycloalkanes spanned over 20 kcal/mol. This result illustrates that the learned model
discrepancy was incapable of making predictions for small cycloalkane rings, which is to be
expected.

The discrepancy function had no means to learn about (or account for) strain energy
that is present in the small cycloalkanes. Applying the discrepancy function on molecules
dissimilar to the training data, unphysical results could occur. Investigating additional basis
functions to account for the molecular strain that is present in cycloalkanes and including
additional training data are topics for a future study.

7.11 Conclusion

Uncertainty quantification of a semi-empirical quantum chemical model PM7 was
performed by using a sample-based approach. The obtained results did not show evidence
of model consistency, even in the “best-case” scenario, where we considered heats of
formation of a small family of linear alkanes. The lack of evidence of model consistency
with experimental data may imply that either the experimental data has some bias or the
model has a deficiency. Given the quality of the experimental data, we tend to think the
source of the model inconsistency resides with the PM7 model itself.
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Figure 7.7: Prediction of the heat of formation using the PM7 model and an additive model
discrepancy i.e., fp(x)+δ(x, xs,p), for small cycloalkanes. The feasible set of model parameters
was constrained by data for linear alkanes, ethane to octane, and cyclohexane. Grey shaded
regions are experimental bounds reported in Table 7.5 and only serve for comparison. The
horizontal black interval is the extrema of the predicted intervals from Eq. 7.6. The vertical
black dashed line is the heat of formation evaluated by the nominal PM7 parameter value,
fp(xnom).

One clear challenge in this study was the inability to accurately represent a significant
volume of the parameter space with a polynomial surrogate model. This difficulty motivated
the development of a tool-set for uncertainty quantification of models with high-dimensional
parameter spaces that can have non-convex and, potentially, non-contiguous feasible sets.
Incorporation of machine learning techniques with the B2BDC methodology was a viable
strategy for efficiently tackling cases of this type. Attempts to learn the geometric structure
of the identified feasible sets showed promising results. The possibility of accurate binary
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classification of feasible or infeasible classes suggests a route to sampling strategies that are
more efficient than uniform, brute-force sampling and could rely on a semi-supervised model
to search for feasible points.

Including a well-motivated, charge-based model discrepancy function could resolve the
inconsistency between the PM7 model and a family of linear alkanes. Model discrepancy was
demonstrated as a tool for providing additional feedback in the model validation workflow.
However, solely addressing the model-data inconsistency was shown to be inadequate for
making predictions. Additional basis functions (and data) are necessary when considering
model predictions outside of the training data. A paper was published based on some work
presented in this chapter [68].
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation demonstrates that tools that utilize both UQ methodology and automated
access to validation data are increasingly important for improving our understanding of
complex physics-based models. The validation workflow shown was general in the sense it
could be applied to any predictive model, using the cloud-based platform of PrIMe and the
B2BDC UQ methodology. The presented workflow was effective in systematically evaluating
the consistency of potential models, which was used in three cases: an H2/O2 system, a char
oxidation model, and a semi-empirical quantum chemistry model.

The B2BDC analysis of an H2/O2 system revealed that a set of shock-tube
measurements, spanning high-pressure and low-temperature scenarios, were incompatible
with the reaction mechanism and experimental data. Here, the H2/O2 reaction mechanism
was known with high certainty; however, the idealized reactor model, which emulates the
shock-tube experiments, was judged as potentially inadequate for these scenarios.

During the investigation of a reduced char oxidation model, the validation workflow was
applied in an iterative fashion which helped guide the development of a reduced-order
model. In this analysis, both the experimental data and char oxidation model had
significant uncertainty. The B2BDC analysis was able to uncover the importance of the
initial particle diameter, specifically how a fixed initial particle diameter was inconsistent
with the experimental data, whereas an initial distribution of particle diameters was
consistent. This result suggested that additional work is necessary to characterize the
initial particle diameters.

A semi-empirical quantum chemistry model, which is empirically based and uncertain,
was incompatible with a set of experimental data known to high precision. The sample-based
approach was shown to be effective in approximating the feasible set. Samples were then
used to develop a binary classifier that constructed a decision boundary between feasible
and infeasible samples in the parameter space. Since the semi-empirical quantum chemistry
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model was incompatible with a set of linear alkane data, an additive model discrepancy
was explored to provide feedback to domain scientists and diagnose potential routes towards
consistency.

For QOIs that were not well-represented with a single polynomial surrogate model, a novel
strategy for piecewise modeling was presented that combines B2BDC’s scalar consistency
measure with piecewise modeling. This novel strategy was developed to eliminate domains of
the parameter space that are incompatible with the experimental evidence. This strategy was
successfully applied in several examples, reducing the total number of function evaluations
necessary by refining only domains that contained the feasible set.

These cases served as examples of how the developed workflow and piecewise modeling
strategy could provide analysis and feedback in situations where the amount of uncertainty
present in the model and/or data varied. Our understanding of the world will always be
limited by data and knowledge of the data-generating process. By developing tools that
combine available experimental data with uncertainty quantification methods, we can
improve our knowledge of complex physical models and assist in the development of
predictive models.

8.2 Future Work

In Chapter 4, the piecewise modeling strategy developed multiple polynomial surrogate
models, with each defined over a disjoint partition of the parameter space. This strategy
could lead to numerous evaluations of an expensive computational model depending on the
behavior of the model output and the specified error tolerance. Potentially a more flexible
surrogate model, e.g., a Gaussian process, could accurately reproduce the model output over
a partition. In such cases, the piecewise modeling strategy would then replace the expensive
computational model with the Gaussian process model, where the Gaussian process will act
as an intermediate surrogate model. The piecewise modeling strategy could also benefit from
the exploration of more advanced partitioning schemes, specifically considering multivariate
hyperplanes or Voronoi tessellations, which has been successfully applied by Rushdi et al.
[159]. Currently, the piecewise modeling strategy partitions a domain following a greedy
heuristic-based algorithm. This means for each partition, the optimal decision is made
based on a heuristic. Non-greedy approaches, e.g., a look-ahead with k iterations [160],
could potentially reduce the total number of partitions required by taking a non-optimal
decision at the current iteration. A partition decision is made that is optimal over the next
k iterations. Implementing these strategies would require many hypothetical partitions to
be made, thus requiring numerous samples of the computational model, which would further
necessitate the need for an intermediate surrogate model as discussed above.

Chapter 6 examined a reduced char oxidation model which included 399 QOIs. Many
of the QOIs were poorly represented by quadratic surrogate models over the prior domain,
which is why the piecewise modeling was employed. Potentially an iterative or wave-based
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approach, as described in the Bayesian History Matching literature [161, 162], could be used
with the B2BDC methodology. In Chapter 7, a semi-empirical quantum chemistry model
was investigated using uniform samples drawn from a rotated volume. Future research can
investigate the utility of adaptive sampling methods [163, 164] and a larger prior domain.
An additive charge-based model discrepancy was developed to account for the disagreement
between the quantum chemistry model and a collection of experimental data. Potentially
an embedded approach [154], which modifies the input parameters, could be of value as the
model parameters are empirically based.
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Appendix A

PrIMe Data Warehouse

A.1 Chemical Analysis XML Document

As discussed in Section 2.4, the chemical composition of a solid-fuel is specified by a secondary
chemical analysis document. Proximate and ultimate analyses of the solid-fuel are stored in
the chemical analysis XML document. Managing the format of this document is the XML
schema, shown in Source Code A.1. An example of a chemical analysis document can be
found in Source Code A.2.

Source Code A.1: Developed schema for chemical analysis XML documents

1 <xs:schema xmlns="http://purl.org/NET/prime/"

2 targetNamespace="http://purl.org/NET/prime/"

3 xmlns:xs="http://www.w3.org/2001/XMLSchema"

4 elementFormDefault="qualified">

5

6 <xs:annotation id="ID">

7 <xs:documentation xml:lang="en">PrIMe Chemical Analysis XML

schema</xs:documentation>↪→
8 </xs:annotation>

9

10 <xs:annotation id="copyright">

11 <xs:documentation xml:lang="en">primekinetics.org

2005-2018</xs:documentation>↪→
12 </xs:annotation>

13

14 <xs:annotation id="createdBy">

15 <xs:documentation xml:lang="en">Thomas C. Allison, NIST, December

2004</xs:documentation>↪→
16 </xs:annotation>

17

18 <xs:annotation id="authoredBy">

19 <xs:documentation xml:lang="en">Thomas C. Allison,

NIST</xs:documentation>↪→



APPENDIX A. PRIME DATA WAREHOUSE 94

20 <xs:documentation xml:lang="en">Michael Frenklach, University of

California at Berkeley</xs:documentation>↪→
21 <xs:documentation xml:lang="en">Zoran M. Djurisic, University of

California at Berkeley</xs:documentation>↪→
22 <xs:documentation xml:lang="en">Devin R. Yeates, University of California

at Berkeley</xs:documentation>↪→
23 <xs:documentation xml:lang="en">Jim Oreluk, University of California at

Berkeley</xs:documentation>↪→
24 </xs:annotation>

25

26 <xs:attributeGroup name="rootAttributes">

27 <xs:attribute name="primeID" type="primeChemicalAnalysisIDType"

use="required"/>↪→
28 </xs:attributeGroup>

29

30 <xs:element name="chemicalAnalysis">

31 <xs:complexType>

32 <xs:sequence>

33 <xs:element name="copyright" type="xs:string"

minOccurs="0" maxOccurs="1"/>↪→
34 <xs:element name="content" type="contentType"

minOccurs="0" maxOccurs="unbounded"/>↪→
35 <xs:element name="bibliographyLink" type="bibliographyLinkType"

minOccurs="0" maxOccurs="unbounded"/>↪→
36 <xs:element name="speciesLink" type="speciesLinkType"

minOccurs="1" maxOccurs="unbounded"/>↪→
37 <xs:element name="property" type="propertyType"

minOccurs="0" maxOccurs="unbounded"/>↪→
38 <xs:element name="additionalDataItem"

type="additionalDataItemType" minOccurs="0"

maxOccurs="unbounded"/>

↪→
↪→

39 </xs:sequence>

40 <xs:attributeGroup ref="rootAttributes"/>

41 </xs:complexType>

42 </xs:element>

43

44 <xs:simpleType name="primeBiblioIDType">

45 <xs:restriction base="xs:string">

46 <xs:pattern value="b\d{8}"/>

47 </xs:restriction>

48 </xs:simpleType>

49

50 <xs:simpleType name="primeSpeciesIDType">

51 <xs:restriction base="xs:string">

52 <xs:pattern value="s\d{8}"/>

53 </xs:restriction>

54 </xs:simpleType>

55

56 <xs:simpleType name="primeChemicalAnalysisIDType">

57 <xs:restriction base="xs:string">
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58 <xs:pattern value="ca\d{8}"/>

59 </xs:restriction>

60 </xs:simpleType>

61

62 <xs:complexType name="contentType">

63 <xs:simpleContent>

64 <xs:extension base="attributableString">

65 <xs:attribute name="copyrighted" type="xs:boolean"

use="optional"/>↪→
66 <xs:attribute name="bibliography"

type="primeBiblioIDType" use="optional"/>↪→
67 </xs:extension>

68 </xs:simpleContent>

69 </xs:complexType>

70

71 <xs:complexType name="attributableString">

72 <xs:simpleContent>

73 <xs:extension base="xs:string">

74 <xs:attribute name="source" type="xs:string"

use="optional"/>↪→
75 </xs:extension>

76 </xs:simpleContent>

77 </xs:complexType>

78

79 <xs:complexType name="speciesLinkType">

80 <xs:attribute name="preferredKey" type="xs:string"

use="required"/>↪→
81 <xs:attribute name="primeID" type="primeSpeciesIDType"

use="required"/>↪→
82 </xs:complexType>

83

84 <xs:complexType name="bibliographyLinkType">

85 <xs:attribute name="preferredKey" type="xs:string" use="optional"/>

86 <xs:attribute name="primeID" type="primeBiblioIDType" use="required"/>

87 </xs:complexType>

88

89 <xs:complexType name="propertyType">

90 <xs:sequence>

91 <xs:element name="value" type="xs:string" minOccurs="0" maxOccurs="1"/>

92 <xs:element name="uncertainty" type="uncertaintyType" minOccurs="0" maxOccurs="2"/>

93 <xs:element name="component" type="componentType" minOccurs="0"

maxOccurs="unbounded"/>↪→
94 <xs:element name="speciesLink" type="speciesLinkType" minOccurs="0"

maxOccurs="unbounded"/>↪→
95 <xs:element name="derivedProperty" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>↪→
96 </xs:sequence>

97 <xs:attribute name="id" type="xs:string" use="optional"/>

98 <xs:attribute name="label" type="xs:string" use="optional"/>

99 <xs:attribute name="name" type="xs:string" use="required"/>
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100 <xs:attribute name="units" type="xs:string" use="optional"/>

101 <xs:attribute name="description" type="xs:string" use="optional"/>

102 <xs:attribute name="derivedPropertyExists" type="xs:string" use="optional"/>

103 <xs:attribute name="kind" type="xs:string" use="optional"/>

104 </xs:complexType>

105

106 <xs:complexType name="uncertaintyType">

107 <xs:simpleContent>

108 <xs:extension base="xs:double">

109 <xs:attribute name="bound" type="xs:string" use="required"/>

110 <xs:attribute name="kind" type="xs:string" use="required"/>

111 <xs:attribute name="transformation" type="xs:string" use="required"/>

112 </xs:extension>

113 </xs:simpleContent>

114 </xs:complexType>

115

116 <xs:complexType name="componentType">

117 <xs:sequence>

118 <xs:element name="speciesLink" type="speciesLinkType" minOccurs="1" maxOccurs="1"/>

119 <xs:element name="amount" type="amountType" minOccurs="0" maxOccurs="1"/>

120 <xs:element name="uncertainty" type="uncertaintyType" minOccurs="0" maxOccurs="2"/>

121 </xs:sequence>

122 </xs:complexType>

123

124 <xs:complexType name="amountType">

125 <xs:simpleContent>

126 <xs:extension base="xs:double">

127 <xs:attribute name="units" type="xs:string" use="required"/>

128 </xs:extension>

129 </xs:simpleContent>

130 </xs:complexType>

131

132 <xs:complexType name="additionalDataItemType">

133 <xs:simpleContent>

134 <xs:extension base="xs:string">

135 <xs:attribute name="itemType" type="itemTypeTypes"

use="required"/>↪→
136 <xs:attribute name="description" type="xs:string"

use="optional"/>↪→
137 <xs:attribute name="MIME" type="xs:string"

use="optional"/>↪→
138 </xs:extension>

139 </xs:simpleContent>

140 </xs:complexType>

141

142 <xs:simpleType name="itemTypeTypes">

143 <xs:restriction base="xs:string">

144 <xs:enumeration value="URI"/>

145 <xs:enumeration value="file"/>

146 <xs:enumeration value="text"/>
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147 </xs:restriction>

148 </xs:simpleType>

149 </xs:schema>

Source Code A.2: Example of a chemical analysis document for Pittsburgh No. 8 coal

1 <chemicalAnalysis xmlns="http://purl.org/NET/prime/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" primeID="ca00000001"

xsi:schemaLocation="http://purl.org/NET/prime/

http://warehouse.primekinetics.org/schema/chemicalAnalysis.xsd">

↪→
↪→
↪→

2 <copyright>primekinetics.org 2005-2015</copyright>

3 <bibliographyLink preferredKey="Knill et al. 1988" primeID="b00019066" />

4 <speciesLink preferredKey="Pittsburgh No. 8" primeID="s00010922" />

5 <property description="Ultimate Analysis - daf C" name="fraction" label="C"

units="unitless" kind="daf">↪→
6 <value>0.81426</value>

7 </property>

8 <property description="Ultimate Analysis - daf H" name="fraction" label="H"

units="unitless" kind="daf">↪→
9 <value>0.05</value>

10 </property>

11 <property description="Ultimate Analysis - daf O" name="fraction" label="O"

units="unitless" kind="daf">↪→
12 <value>0.10542</value>

13 </property>

14 <property description="Ultimate Analysis - daf N" name="fraction" label="N"

units="unitless" kind="daf">↪→
15 <value>0.017068</value>

16 </property>

17 <property description="Ultimate Analysis - daf S" name="fraction" label="S"

units="unitless" kind="daf">↪→
18 <value>0.0131</value>

19 </property>

20 <property description="Ultimate Analysis - daf Cl" name="fraction" label="Cl"

units="unitless" kind="daf">↪→
21 <value>0.013052</value>

22 </property>

23 <property description="Proxmiate Analysis - dry Ash" name="fraction" label="ash"

units="unitless" kind="dry">↪→
24 <value>0.081</value>

25 </property>

26 <property description="Proxmiate Analysis - daf Volatile Matter" name="fraction"

label="VM_daf" units="unitless" kind="daf">↪→
27 <value>0.386</value>

28 </property>

29 <property description="High Volatile-Matter - daf" name="fraction" label="HVM_daf"

units="unitless" kind="daf">↪→
30 <value>0.62</value>

31 </property>



APPENDIX A. PRIME DATA WAREHOUSE 98

32 <property description="Lower Calorific Value - dry Measured" name="LCV" label="LCV_dry

Measured" kind="dry" units="MJ/kg">↪→
33 <value>29</value>

34 </property>

35 <property description="mass mean diamter" name="diameter" label="mass mean diamter"

units="m">↪→
36 <value>80</value>

37 </property>

38 </chemicalAnalysis>

A.2 PrIMe 3.0 Warehouse API

An API was written for remotely interacting with data archived in the PrIMe Data
Warehouse. The Warehouse API enables search queries, downloading particular
documents, and extracting QOI targets from the PrIMe Data Warehouse. The Warehouse
API was written in Python 3.6 can be found below and on
https://github.com/oreluk/Warehouse-API.

In the Source Code A.3, the class Warehouse outlines the main methods for creating
search queries. Queries in the PrIMe Data Warehouse are conducted via Elasticsearch that
can be executed by the Warehouse.search method. Search queries are generated into a
valid Elasticsearch message by generateMessage.py, shown in Source Code A.4.

Source Code A.3: PrIMe30.py

1 import hashlib

2 from urllib.request import Request, urlopen

3 import urllib.parse

4 import json

5 import warnings

6

7 from generateMessage import * # Builds Elasticsearch messages

8

9

10 class Warehouse:

11 def __init__(obj, user, password):

12 #obj.Url = 'http://52.88.176.152:8080/'

13 obj.Url = 'http://54.214.127.78:8080/'

14 obj.user = user

15 password = hashlib.md5(password.encode('utf-8')).hexdigest()

16

17 urlreq = {'grant_type': 'password',

18 'username': obj.user,

19 'password': password}

20

21 data = urllib.parse.urlencode(urlreq).encode('utf-8')

22

23 headers = {'Content-Type': 'application/x-www-form-urlencoded'}

https://github.com/oreluk/Warehouse-API
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24 request = Request(obj.Url + '/token', data=data, headers=headers)

25

26 try:

27 response_body = urlopen(request).read()

28 except:

29 print('Authentication failed.')

30 raise

31

32 obj.response_body = json.loads(bytes.decode(response_body))

33 obj.token = 'Bearer ' + obj.response_body['access_token']

34 print('User Authenticated')

35

36 def search(obj, category, field, query1, query2=''):

37 '''

38 Generate ElasticSearch Queries for PrIMe 3.0

39 SEARCH(OBJ, CATEGORY, FIELD, QUERY1, QUERY2)

40

41 CATEGORY is a character string specifying the collection

42 of the warehouse which will searched within. Default 'all'.

43 Other valid collections are listed below:

44

45 all

46 bibliography

47 dataAttribute

48 dataset

49 element

50 experiment

51 instrumentalModel

52 model

53 optimizationVariable

54 optimizationVariableBounds

55 reaction

56 reactionRate

57 species

58 surrogateModel

59 thermodynamicData

60 transportData

61

62 FIELD is a string specifying the field of the

63 category which will be queried. Each category has its own

64 unique fields but some fields, i.e. primeID , are shared

65 amongst all categories.

66

67 QUERY is a string containing a search query string.

68

69 '''

70

71 validCategories = ['all', 'bibliography', 'dataAttribute',

72 'dataset', 'element', 'experiment', 'instrumentalModel',

73 'model', 'optimizationVariable', 'optimizationVariableBounds',
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74 'reaction', 'reactionRate', 'species', 'surrogateModel',

75 'thermodynamicData', 'transportData']

76

77 s = [x.lower() for x in validCategories]

78 if not any(x in category.lower() for x in s):

79 warnings.warn(

80 'Input category is not valid. Using the default catagory "all".')

81 category = 'all'

82

83 if (field.lower() != 'rates') and (category.lower() !=

'optimizationVariable'.lower()):↪→
84 msg = generateMessage(category, field, query1)

85 else:

86 # optimizationVariable & rates take two inputs reactionID and rateID

(query1,query2) as inputs.↪→
87 msg = generateMessage(category, field, query1, query2)

88

89 searchUrl = obj.Url + 'api/v2/warehouse/search/raw/' + category

90 headers = {'Content-Type': 'text/plain', 'Authorization': obj.token}

91 jsonString = json.dumps(json.loads(msg))

92 data = jsonString.encode('utf-8')

93

94 request = Request(searchUrl, data=data, headers=headers)

95 response = urlopen(request).read()

96 return(json.loads(bytes.decode(response)))

97

98 def getXml(obj, pathTo):

99 # Accepts PATHTO as a string of the location of XML document in the PrIMe

Warehouse↪→
100 #

101 if isinstance(pathTo, str):

102 # Download XML from specified location

103 searchUrl = obj.Url + 'api/v2/warehouse/content?path=' + pathTo

104 headers = {'Authorization': obj.token}

105 request = Request(searchUrl, headers=headers)

106 response = urlopen(request).read()

107 return(bytes.decode(response))

108 else:

109 raise TypeError

110

111 def getFile(obj, pathTo):

112 # Saves file from Warehouse to current working directory(cwd)

113 # PATHTO is a string of the location of file on the PrIMe Warehouse

114 #

115 # Example: wh.getFile('depository/species/catalog/s00009193.xml')

116 #

117 #

118 import shutil

119

120 if isinstance(pathTo, str):



APPENDIX A. PRIME DATA WAREHOUSE 101

121 # Count number of entries in collection

122 fileName = pathTo[-13:]

123 searchUrl = obj.Url + 'api/v2/warehouse/content?path=' + pathTo

124 headers = {'Authorization': obj.token}

125 request = Request(searchUrl, headers=headers)

126 response = urlopen(request).read()

127 f = open(fileName, 'wb')

128 f.write(response)

129 print(fileName + ' was saved in the current working directory.')

130 else:

131 raise TypeError

132

133 def getCount(obj, collection):

134 # Returns the number of entries of a specified collection

135 #

136 # COLLECTION is a string of the location which will be counted.

137 # Examples:

138 #

139 # depository/species/catalog

140 # depository/bibliography/catalog

141 # depository/experiments/catalog

142 #

143

144 if isinstance(collection, str):

145 # Count number of entries in collection

146 searchUrl = obj.Url + 'api/v2/warehouse/search/all/count?path=' + collection

147 headers = {'Authorization': obj.token}

148 request = Request(searchUrl, headers=headers)

149 response = urlopen(request).read()

150 return(int(bytes.decode(response)))

151 else:

152 raise TypeError

153

154 def exist(obj, pathTo):

155 # Returns logical True or False depending if pathTo exists

156 # pathTo is a string of the location of file on the PrIMe Warehouse

157 #

158 # Example:

159 # wh.exist('depository/bibliography/catalog/b00000033.xml') File exists

160 # wh.exist('depository/bibliography/catalog/f99000000.xml') File does not

exist↪→
161 #

162 if isinstance(pathTo, str):

163 searchUrl = obj.Url + 'api/v2/warehouse/xml/exist?path=' + pathTo

164 headers = {'Authorization': obj.token}

165 request = Request(searchUrl, headers=headers)

166 try:

167 response = urlopen(request).read()

168 print('File exists.')

169 return(True)
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170 except:

171 print('File does not exist.')

172 return(False)

173 else:

174 raise TypeError

175

176 def getList(obj, collection):

177 # Returns a list of all files by the specified path

178 # COLLECTION is a string specifiying the collection of the warehouse

179 #

180 # Example:

181 # wh.getList('depository/bibliography/catalog')

182 # wh.getList('depository/reaction/catalog')

183 #

184 if isinstance(collection, str):

185 searchUrl = obj.Url + 'api/v2/warehouse/search/all?path=' + collection

186 headers = {'Authorization': obj.token}

187 request = Request(searchUrl, headers=headers)

188 response = urlopen(request).read()

189 return(json.loads(bytes.decode(response)))

190 else:

191 raise TypeError

192

193 def getProperty(obj, path, prop):

194 # Returns a property value from a document.

195 # PATH is the location of a document on the PrIMe Warehouse

196 # PROP is the field name of the property whose value will be returned

197 #

198 # Example:

199 # wh.findProp('depository/bibliography/catalog/b00000290.xml', 'year')

200 # wh.findProp('depository/experiments/catalog/x00001327.xml', 'kind')

201 # wh.findProp('depository/reactions/data/r00013869/rk00000036.xml', 'value')

202 #

203 if all(isinstance(item, str) for item in [path, prop]):

204 searchUrl = obj.Url + 'api/v2/warehouse/fields?path=' + path + '&field=' +

prop↪→
205 headers = {'Authorization': obj.token}

206 request = Request(searchUrl, headers=headers)

207 response = urlopen(request).read()

208 return(json.loads(bytes.decode(response)))

209 else:

210 raise TypeError

211

212 def getPropertyNames(obj, collection):

213 # Returns possible property names for a given collection

214 # COLLECTION is a string specifying the collection of the PrIMe Warehouse

215 #

216 # Example:

217 # wh.getPropertyNames('experiment')

218 # wh.getPropertyNames('bibliography')
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219 # wh.getPropertyNames('element')

220 #

221 if isinstance(collection, str):

222 searchUrl = obj.Url + 'api/v2/warehouse/fields?path=' + collection

223 headers = {'Authorization': obj.token}

224 request = Request(searchUrl, headers=headers)

225 response = urlopen(request).read()

226 return(json.loads(bytes.decode(response)))

227 else:

228 raise TypeError

229

230 def getJSON(obj, category, pathTo):

231 # GETJSON will match the pathTo with the ID of a JSON document and return the

document↪→
232 #

233 if isinstance(pathTo, str):

234 startString = '{ "ids": { "values": "'

235 endString = '" } }'

236 msg = startString + pathTo + endString

237

238 searchUrl = obj.Url + 'api/v2/warehouse/search/raw/details/' + category

239 headers = {'Content-Type': 'text/plain',

240 'Authorization': obj.token}

241 jsonString = json.dumps(json.loads(msg))

242 data = jsonString.encode('utf-8')

243 request = Request(searchUrl, data=data, headers=headers)

244 response = urlopen(request).read()

245 return(json.loads(bytes.decode(response)))

246 else:

247 raise TypeError

248

249 def getBoundsFromOptVar(obj, vbPath):

250 # Takes a optimization variable bounds path and returns upper and lower bounds

251 #

252 if isinstance(vbPath, str):

253 f = obj.getJSON('optimizationVariableBounds', vbPath)

254 vbDoc = f[0]

255

256 lower = float(vbDoc['optimizationVariableLink']

257 ['bounds']['lower']['#text'])

258 upper = float(vbDoc['optimizationVariableLink']

259 ['bounds']['upper']['#text'])

260 return((lower, upper))

261 else:

262 raise TypeError

263

264 def getModelBounds(obj, pathToModel):

265 # returns reactionNames and bounds from the PrIMe database

266 #

267 import numpy as np
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268 f = obj.getJSON('model', pathToModel)

269 modelDoc = f[0]

270

271 reactionKey = []

272 rL = modelDoc['reactionSet']['reactionLink']

273 reactionBounds = np.zeros((len(rL), 2))

274

275 for i in range(0, len(rL)):

276 reactionKey.append(rL[i]['reactionRateLink']['@preferredKey'])

277 rID = rL[i]['@primeID']

278 rkID = rL[i]['reactionRateLink']['@primeID']

279 vResults = obj.search('optimizationVariable', 'rates', rID, rkID)

280

281 if len(vResults) == 1:

282 # single matching optimizationVariable Found

283 variableID = vResults[0][-13:-4]

284 vbResults = obj.search(

285 'optimizationVariableBounds', 'varlinkid', variableID)

286

287 if len(vbResults) == 1:

288 # single results

289 reactionBounds[i, :] = obj.getBoundsFromOptVar(

290 vbResults[0])

291 elif len(vbResults) == 2 and vbResults[0][-13:-4] == "vb00000000":

292 # two results but one is the vb0 file.

293 reactionBounds[i, :] = obj.getBoundsFromOptVar(

294 vbResults[1])

295 else:

296 warnings.warn(

297 'Reaction :' + reactionKey[i] + ' has multiple bounds associated.

Setting bounds to (0,0).')↪→
298 reactionBounds[i, :] = (0, 0)

299

300 elif len(vResults) == 0:

301 # variable not found

302 reactionBounds[i, :] = (0.5, 2)

303 else:

304 raise ValueError(

305 'Results contain multiple matches. Unable to proceed.')

306

307 return(reactionKey, reactionBounds)

308

309 def getTarget(obj, pathToTarget):

310 # Returns a dictionary of property information from the specified target

311 #

312

313 def parseCommonProperties(commonPropNode):

314 # internal function for parsing common properties of experimental document

315 #

316 propNames = []
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317 propValues = []

318 propUnits = []

319

320 speciesName = []

321 speciesID = []

322 speciesUnits = []

323 molFrac = []

324

325 if isinstance(commonPropNode['property'], list):

326 for i in range(0, len(commonPropNode['property'])):

327 pName = commonPropNode['property'][i]['@name']

328 if pName == 'initial composition':

329 # fill-in initial composition

330 compNodes = commonPropNode['property'][i]['component']

331 for j in range(0, len(compNodes)):

332 speciesName.append(

333 compNodes[j]['speciesLink']['@preferredKey'])

334 speciesID.append(

335 compNodes[j]['speciesLink']['@primeID'])

336 try:

337 speciesUnits.append(

338 compNodes[j]['amount']['@units'])

339 except:

340 speciesUnits.append([])

341

342 try:

343 molFrac.append(

344 float(compNodes[j]['amount']['#text']))

345 except:

346 molFrac.append([])

347 else:

348 propNames.append(pName)

349 propValues.append(

350 float(commonPropNode['property'][i]['value']['#text']))

351 propUnits.append(

352 commonPropNode['property'][i]['@units'])

353 elif isinstance(commonPropNode['property'], dict):

354 if commonPropNode['property']['@name'] == 'initial composition':

355 compNodes = expDoc['commonProperties']['property']['component']

356 for i in range(0, len(compNodes)):

357 speciesUnits.append(compNodes[i]['amount']['@units'])

358 molFrac.append(float(compNodes[i]['amount']['#text']))

359 speciesName.append(

360 compNodes[i]['speciesLink']['@preferredKey'])

361 speciesID.append(

362 compNodes[i]['speciesLink']['@primeID'])

363

364 return(propNames, propValues, propUnits, speciesName, speciesID,

speciesUnits, molFrac)↪→
365



APPENDIX A. PRIME DATA WAREHOUSE 106

366 # Get Target function

367 if not isinstance(pathToTarget, str):

368 raise TypeError

369

370 f = obj.getJSON('dataAttribute', pathToTarget)

371 datastore = f[0]

372 #

373 # Take JSON and Organize Data into Python Dictionary (qoi)

374 qoi = {}

375

376 obsNodes = datastore['dataAttributeValue']['observable']

377 if isinstance(obsNodes, list):

378 targetType =

datastore['dataAttributeValue']['observable'][0]['property']['@name']↪→
379 elif isinstance(obsNodes, dict):

380 targetType =

datastore['dataAttributeValue']['observable']['property']['@name']↪→
381

382 if targetType == 'laminar flame speed' or targetType == 'flame speed':

383 qoiType = 'flame speed'

384 elif targetType == 'time' or targetType == 'ignition delay':

385 qoiType = 'time'

386

387 # Indicator Node

388 indicatorNode = datastore['dataAttributeValue']['indicator']

389 propNames = []

390 propValues = []

391 propUnits = []

392

393 if isinstance(indicatorNode, list):

394 for i in range(0, len(indicatorNode)):

395 propNames.append(indicatorNode[i]['property']['@name'])

396 propValues.append(

397 float(indicatorNode[i]['property']['value']['#text']))

398 propUnits.append(indicatorNode[i]['property']['@units'])

399

400 elif isinstance(indicatorNode, dict):

401 propNames.append(indicatorNode['property']['@name'])

402 propValues.append(

403 float(indicatorNode['property']['value']['#text']))

404 propUnits.append(indicatorNode['property']['@units'])

405

406 # Observable Node Uncertainty

407 obsNode = datastore['dataAttributeValue']['observable']

408 if isinstance(obsNode, list):

409 obsNode = datastore['dataAttributeValue']['observable'][0]

410 elif isinstance(obsNode, dict):

411 obsNode = datastore['dataAttributeValue']['observable']

412

413 lowerBound = float(obsNode['bounds']['lower']['#text'])
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414 upperBound = float(obsNode['bounds']['upper']['#text'])

415 uncKind = obsNode['bounds']['@kind']

416 uncBounds = [lowerBound, upperBound]

417

418 # Node information

419 obsValue = float(obsNode['property']['value']['#text'])

420 obsUnits = obsNode['property']['@units']

421 if qoiType == 'time':

422 obsInd = obsNode['@derivedBy']

423 obsIndSpecies = obsNode['@speciesName']

424 obsIndSpeciesID = obsNode['@speciesID']

425

426 # propertyLink

427 dataGroupID = datastore['propertyLink'][0]['@dataGroupID']

428

429 # Load expDoc

430 expID = datastore['propertyLink'][0]['@experimentPrimeID']

431 pathToExp = 'depository/experiments/catalog/' + expID + '.xml'

432 expF = obj.getJSON('experiment', pathToExp)

433 expDoc = expF[0]

434

435 # Experiment Information

436 expKind = expDoc['apparatus']['kind']['#text']

437 expID = expDoc['@primeID']

438

439 # Parse Common Properties

440 commonPropNode = expDoc['commonProperties']

441 [pNames, pValues, pUnits, speciesName, speciesID, speciesUnits,

442 molFrac] = parseCommonProperties(commonPropNode)

443

444 # Copy Common Properties Over Indicator Properties if name matches

445 for i in range(0, len(pNames)):

446 for j in range(0, len(propNames)):

447 if pNames[i] == propNames[j]:

448 propValues[j] = pValues[i]

449

450 # Check if molFrac from Parse Common Properties is empty

451 if not molFrac[0]:

452 # if empty go through datagroup of expDoc

453 # match obsValue with associated property name and

454 # get all property and information from that dataGroup/dataPoint

455 dpValues, dpUnits, dpNames = ([] for n in range(3))

456 sNames, sUnits, sID, mF = ([] for n in range(4))

457

458 # if multiple datagroups exist

459 if isinstance(expDoc['dataGroup'], list):

460 for k in range(0, len(expDoc['dataGroup'])):

461 if expDoc['dataGroup'][k]['@id'] == dataGroupID:

462 eDG = expDoc['dataGroup'][k]

463 elif isinstance(expDoc['dataGroup'], dict):
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464 eDG = expDoc['dataGroup']

465 else:

466 raise TypeError

467

468 for i in range(0, len(eDG['property'])):

469 if eDG['property'][i]['@name'] == qoiType:

470 matchingPropID = eDG['property'][i]['@id']

471

472 for j in range(0, len(eDG['dataPoint'])):

473 if float(eDG['dataPoint'][j][matchingPropID]['#text']) ==

obsValue:↪→
474 matchingDP = j

475

476 for i in range(0, len(eDG['property'])):

477 # get all information from dataPoint node

478 cList = ['composition', 'concentration']

479 s = [x.lower() for x in cList]

480 if any(x in eDG['property'][i]['@name'] for x in s):

481

482 if len(speciesID) != 0:

483 # match speciesID with sID

484 for j in range(0, len(speciesID)):

485 speLID = eDG['property'][i]['speciesLink']['@primeID']

486 if speLID == speciesID[j]:

487 matchingID = eDG['property'][i]['@id']

488 speciesUnits[j] = eDG['property'][i]['@units']

489 molFrac[j] = float(

490 eDG['dataPoint'][matchingDP][matchingID]['#text'])

491

492 else:

493 # no common property of composition

494 matchingID = eDG['property'][i]['@id']

495 sID.append(eDG['property'][i]

496 ['speciesLink']['@primeID'])

497 sUnits.append(eDG['property'][i]['@units'])

498 sNames.append(eDG['property'][i]['@name'])

499 mF.append(

500 float(eDG['dataPoint'][matchingDP][matchingID]['#text']))

501

502 else:

503 dpNames.append(eDG['property'][i]['@name'])

504 dpUnits.append(eDG['property'][i]['@units'])

505 pID = eDG['property'][i]['@id']

506 try:

507 dpValues.append(

508 float(eDG['dataPoint'][matchingDP][pID]['#text']))

509 except:

510 # if individual uncetainty is applied to a node there is a comma

delimination↪→
511 # Example: 0.07,0.002
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512 #

513 s = eDG['dataPoint'][matchingDP][pID]['#text'].split(

514 ',')

515 dpValues.append([float(s[0]), float(s[1])])

516

517 # extend list with common property values

518 propNames.extend(pNames)

519 propValues.extend(pValues)

520 propUnits.extend(pUnits)

521

522 # If dp property name matches one of the common properties names.

523 # Keep Common Property, Delete DataPoint information.

524 #

525 # Common example of this is the ambient temperature of the enviroment in a

flame experiment.↪→
526 # Common Properties has the temperature of enviroment while dataPoint may

contain flame temperature↪→
527 # which is unused by simulation

528 #

529 # Remove if statement if you want all properties returned, including

duplicate property names↪→
530 #

531 if len(dpNames) != 0:

532 for i in range(0, len(dpNames)):

533 for j in range(0, len(propNames)):

534 if dpNames[i] == propNames[j]:

535 dpNames.remove(dpNames[i])

536 dpUnits.remove(dpUnits[i])

537 dpValues.remove(dpValues[i])

538

539 try:

540 propNames.extend(dpNames)

541 propValues.extend(dpValues)

542 propUnits.extend(dpUnits)

543 except:

544 pass

545

546 # add species information to speciesLists

547 if len(sNames) != 0:

548 speciesName.append(sNames)

549 speciesID.append(sID)

550 speciesUnits.append(sUnits)

551 molFrac.append(mF)

552

553 # Create new dictionary of QOI information

554 qoi['indicator_name'] = propNames

555 qoi['indicator_value'] = propValues

556 qoi['indicator_units'] = propUnits

557 qoi['preferredKey'] = datastore['preferredKey']['#text']

558 qoi['observable_bounds'] = uncBounds
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559 qoi['observable_boundkind'] = uncKind

560 qoi['observable_value'] = obsValue

561 qoi['observable_units'] = obsUnits

562 if qoiType == 'time':

563 qoi['derivedBy'] = obsInd

564 qoi['derivedBy_speciesName'] = obsIndSpecies

565 qoi['derivedBy_speciesID'] = obsIndSpeciesID

566

567 qoi['experiment_ID'] = expID

568 qoi['experiment_type'] = expKind

569 qoi['species_key'] = speciesName

570 qoi['species_molFraction'] = molFrac

571 qoi['species_primeID'] = speciesID

572 qoi['species_units'] = speciesUnits

573

574 return(qoi)

Source Code A.4: Generate Elasticsearch query message

1 def generateMessage(category, field, term, term2=''):

2 # Generate Elasticsearch Message

3 #

4 # GENERATEMESSAGE(CATEGORY, FIELD, TERM) will take three character

5 # strings and return an elastic search query.

6 # CATEGORY is a character string specifying the type of

7 # catagory will searched. Default 'all'. Other available

8 # options are listed below:

9 #

10 # all

11 # bibliography

12 # dataAttribute

13 # dataset

14 # element

15 # experiment

16 # instrumentalModel

17 # model

18 # optimizationVariable

19 # reactions

20 # reactionRate

21 # species

22 # surrogateModel

23 # thermodynamicData

24 # transportData

25 #

26 # FIELD is a character string specifying the field to be searched for. This

27 # often is a node name or attribute name in the document.

28 #

29 # TERM is a character string of the term which a query message will be

30 # generated for.
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31 #

32

33 def generateDefaultMessage(field, term):

34 #

35 # INTERNAL FUNCTION which will generated a default message from

36 # MESSAGE = GENERATEDEFAULTMESSAGE(FIELD, TERM)

37 #

38

39 msg = ('[{ "query_string": { "fields": ["*' +

40 field + '*"], "query": "' +

41 term + '" }}]')

42 return(msg)

43

44 # Conditional Statements

45 if category.lower() == 'species':

46 if field.lower == 'preferredkey':

47 msg = '[{ "match": "preferredKey.#text": "' + term + '"} }]'

48

49 elif field.lower() == 'formula':

50 msg = ('[ { "nested": { "path": "chemicalIdentifier.name",' +

51 ' "query": { "bool": { "must": [ { "match": {' +

52 ' "chemicalIdentifier.name.@type": "formula" } },' +

53 ' { "match_phrase": { "chemicalIdentifier.name.#text": "' + term +

54 '" } } ] } } } } ]')

55

56 elif field.lower() == 'brutoformula':

57 msg = ('[ { "nested": { "path": "chemicalIdentifier.name",' +

58 ' "query": { "bool": { "must": [ { "match": {' +

59 ' "chemicalIdentifier.name.@type": "formula" } },' +

60 ' { "match_phrase": { "chemicalIdentifier.name.#text": "' + term +

61 '" } } ] } } } } ]')

62

63 elif field.lower() == 'caseregistrynumber':

64 msg = (' [ { "nested": { "path": "chemicalIdentifier.name",' +

65 ' "query": { "bool": { "must": [ { "match": {' +

66 ' "chemicalIdentifier.name.@type": "CASRegistryNumber"' +

67 ' } }, { "match_phrase": { "chemicalIdentifier.name.#text": "' + term

+↪→
68 '"} } ] } } } } ]')

69

70 elif field.lower() == 'inchi':

71 msg = ('[ { nested: { path: "chemicalIdentifier.name", query: ' +

72 ' { bool: { must: [ { match: { "chemicalIdentifier.name.@type":' +

73 ' "InChI" } }, { match_phrase: { "chemicalIdentifier.name.#text": "' +

term +↪→
74 '"} } ] } } } } ]')

75

76 elif field.lower() == 'composition':

77 # TODO LATER

78 msg = generateDefaultMessage(field, term)
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79

80 elif field.lower() == 'name':

81 msg = ('[ { "nested": { "path": "chemicalIdentifier.name", "query": ' +

82 ' { "bool": { "must": [ { "match_phrase": {

"chemicalIdentifier.name.#text": "' + term +↪→
83 '" } } ] } } } } ]')

84

85 else:

86 msg = generateDefaultMessage(field, term)

87

88 elif category.lower() == 'experiment':

89 if field.lower() == 'additionaldataitem':

90 msg = ('[ { "nested": { "path": "additionalDataItem", "query": {' +

91 ' "bool": { "must": [ { "query_string": { "fields": ' +

92 ' ["*additionalDataItem*"], "query": "' + term + '"} }' +

93 ' ] } } } } ]')

94

95 else:

96 msg = generateDefaultMessage(field, term)

97

98 elif category.lower() == 'optimizationvariable':

99 if field.lower() == 'rates':

100 msg = ('[ { "match_phrase": {' +

101 ' "variable.actualVariable.propertyLink.@reactionPrimeID": "' + term

+↪→
102 '" } }, { "match_phrase": {' +

103 '"variable.actualVariable.propertyLink.@reactionRatePrimeID": "' +

term2 +↪→
104 '" } } ]')

105 else:

106 msg = generateDefaultMessage(field, term)

107

108 elif category.lower() == 'optimizationvariablebounds':

109 if field.lower() == 'varlinkid':

110 msg = ('[ { "match": {' +

111 ' "optimizationVariableLink.@primeID": "' + term +

112 '" } } ]')

113

114 else:

115 msg = generateDefaultMessage(field, term)

116

117 else:

118 msg = generateDefaultMessage(field, term)

119

120 startString = '{ "bool": { "must": '

121 endString = '"must_not": { "match": { "PathTo": "*/_attic/*" } } } }'

122 msg = startString + msg + ',' + endString

123 return(msg)
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A.3 Comparison between databases

As discussed in Chapter 2.6, many new data formats had been developed in an effort to
create wider adoption. The ReSpecTh database was developed by taking the PrIMe Data
Models and remove all inter-linking between documents, in an attempt to condense all
information into a self-contained document. This type of database is problematic, which
will be highlighted in the following example.

One example of the interlinking between documents in the PrIMe Data Warehouse is
with the bibliography references. A single bibliography XML document is created for each
reference containing XML elements, e.g., title, year, author, DOI, journal. All experimental
data, chemical rates, or reaction models which were derived from this bibliography record
will link to the bibliography XML document, via its unique identifier. However, in the
ReSpecTh database, all bibliography information is embedded into a single tag element.
This tag contains the attributes, title and doi, and a long (unstructured) string containing
all other information. It is important to note is there is no explicit labeling of the authors,
journal, or year in this string.

Storing data in an unstructured string is inefficient for many reasons. First, all records
which have data coming from the same bibliography reference will now have duplicate
information for each bibliography record. Second, the storage of data in an unstructured
string provides no benefit for search. The necessity for a common, structured, data format
was to offer the ability to search and parse experimental data, which is destroyed if the
data is stored in an unstructured string. While condensing information into a single
document, the ReSpecTh format removed all capabilities to search for data by bibliography
other than DOI, which was already present in the PrIMe Data Models. If a user wanted to
find experiments by author, publication year, etc., searching through the ReSpecTh data
format, would require parsing an unstructured data string, which is highly susceptible to
errors. The ReSpecTh data format attempted to simplify the documentation of an
experiment; however, introduced repeated information and an increased difficulty to find
data.
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Appendix B

Assessing surrogate models

B.1 Invalidating the underlying model

Central to the B2BDC methodology is the notion of a feasible set. The scalar consistency
measure (Eq. 3.3) can provide provable statements if the feasible set is empty, i.e., models
and data are inconsistent over a particular domain [56, 60]. It is important to note that the
B2BDC methodology in Chapter 3 provides provable statements of the inconsistency of the
polynomial surrogate model Me(x), not the underlying model. To prove that the underlying
model is inconsistent with experimental evidence, the following assumption is made.

Assume that the maximum absolute error between the underlying model, f(x, xs,e), and
its surrogate model, Me(x) for the e-th QOI is known. For simplicity, we assume that
the model outputs and experimental bounds are positive real numbers, but in general, this
condition is not necessary. The maximum absolute error is defined as:

εe,max = max
x∈H

(|f(x, xs,e)−Me(x)|) , (B.1)

and the maximum absolute relative error can be defined as:

εe,rel = max
x∈H

(∣∣∣∣f(x, xs,e)−Me(x)

f(x, xs,e)

∣∣∣∣) . (B.2)

With εe,max known, the underlying model response can be bounded by:

Me(x)− εe,max ≤ f(x, xs,e) ≤Me(x) + εe,max. (B.3)

The scalar-valued response of f(x, xs,e) is contained within the interval
[Me(x)− εe,max,Me(x) + εe,max] which holds for x ∈ H.

During any UQ analysis, whether it be model validation or QOI prediction, it is crucial to
account and propagate forward all uncertainties in the analysis. This includes the uncertainty



APPENDIX B. ASSESSING SURROGATE MODELS 115

from representing the underlying model with a surrogate model. Ideally, the surrogate model
fitting error is significantly less than the experimental uncertainty. This would indicate that
including the fitting error is not expected to add a significant amount of uncertainty to the
analysis. Nevertheless, to propagate the surrogate model fitting error forward, the error is
incorporated into the respective experimental bounds,

[Le, Ue] = [L̃e − εe,max, Ũe + εe,max], (B.4)

where [L̃e, Ũe] are the reported experimental bounds.

If the calculation of the scalar consistency measure (Eq 3.3) results in γ < 0, it certifies
the feasible set, F = ∅. By incorporating εe,max into the experimental bounds, the feasible
set F can also be shown to be empty for the underlying model with the reported experimental
bounds. Substituting Eq. B.4 into the definition of the feasible set:

F = {x ∈ H : Le ≤Me(x) ≤ Ue, for e = 1, 2, . . . , N}
= {x ∈ H : L̃e − εe,max ≤Me(x) ≤ Ũe + εe,max, for e = 1, 2, . . . , N}
= {x ∈ H : L̃e ≤Me(x) + εe,max,

Me(x)− εe,max ≤ Ũe, for e = 1, 2, . . . , N}.

From Eq. B.3,

f(x, xs,e) ≤Me(x) + εe,max

Me(x)− εe,max ≤ f(x, xs,e)

with f(x, xs,e) contained within the interval of Me(x) ± εe,max, the set defined by the
underlying model and the reported experimental bounds,

{x ∈ H : L̃e ≤ f(x, xs,e) ≤ Ũe, for e = 1, 2, . . . , N} ⊂ F .

The feasible set for the underlying model with the reported bounds is a subset of F ,
the set defined by surrogate models with the maximum absolute error incorporated into the
experimental bounds. This means any domain found to be inconsistent for the surrogate
model is also inconsistent for the underlying model, assuming that the maximum absolute
error between the two models was known.

B.2 Estimating the surrogate model fitting error

Unfortunately, finding εe,max would often necessitate solving an optimization problem,
maximizing the absolute difference between fe(x) and Me(x). This procedure can be costly
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as each evaluation of fe(x) can be computationally expensive, making this calculation
intractable. However, one can estimate the maximum absolute error by using a sample
from the underlying model. Two common approaches for estimating a model’s error with
samples are by a hold-out set or through cross-validation. A hold-out set divides the
sample into two sets, one for training the other for testing. Samples in the training set are
used for fitting (also referred to as training) the model, and the samples in the test set are
for assessing the accuracy of the model.

In k-fold cross-validation[165, 166], samples used in training are reused for testing. The
sample data is represented as the following set, {(xi, ye,i)}i=1,...,P , where ye,i = fe(xi) is the
evaluation of the underlying model for the e-th QOI at sample xi. The sample data is then
divided into roughly K equal parts, where each part is termed a fold, i.e., k = 1, 2, . . . , K.
To evaluate the fitting error of the k-th fold, we set aside the sample data associated with
the k-th fold and construct a surrogate model, Q−k(x), from the remaining K−1 folds. The
fitting error of the k-th fold can then evaluated by ηe,i =

∣∣ye,i −Q−k(xi)∣∣i∈k-th fold
.

After repeating for all k-folds, a surrogate model is built from the entire set of sample
data {(xi, ye,i)}i=1,...,P and an estimate of the fitting error is made by,

ε̂e =
1

P

P∑
i=1

ηe,i (B.5)

In this dissertation, k-folds cross-validation will be used to estimate the surrogate model
fitting error. Instead of using the mean absolute error shown in Eq B.5, a more conservative
estimate of the fitting error is used by taking the maximum absolute error,

ε̂e,max = max
i=1,2,...,P

ηe,i (B.6)

To restate, it is preferable that the maximum absolute error, εe,max is negligibly small,
although it is not a quantity one can directly control. In some applications, discussed in
Chapter 6 & 7, ε̂e,max is much larger than the experimental uncertainty over the domain H.
For these examples, a new approach is necessary. Discussed in Chapter 4, a novel strategy
was developed using piecewise surrogate models to decompose the domain H into
subdomains that have a smaller fitting error.

B.3 Blind prediction

A blind prediction in B2BDC is conducted by first removing the j-th QOI model from
the collection of model-data constraints that defines the feasible set, forming the following
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feasible set:

F\j =
N⋂
e=1
e6=j

Fe = {x ∈ H : Le ≤Me(x) ≤ Ue, for e = 1, 2, . . . , N}. (B.7)

where the set F\j is the intersection of all individual feasible sets excluding the j-th. The
prediction of the j-th QOI model, Mj(x), is “blind” or has no information of the j-th
experimental measurement as it is was excluded from the set.

Blind prediction of the j-th QOI can be evaluated by Eq. 3.4 where x ∈ F\j. Often a
comparison is made between the blind prediction interval for the j-th QOI with the
corresponding experimental bounds. The predicted interval and the experimental bounds
will overlap if the set F 6= ∅, i.e., the dataset is consistent. Conversely, if the feasible set
with all QOIs is empty F = ∅ and the set is non-empty with the j-th QOI removed, then
the two intervals will appear disjoint.
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Appendix C

Piecewise modeling for B2BDC
Toolbox

The MATLAB based uncertainty quantification toolbox, Bound-to-Bound Data
Collaboration, was expanded to include piecewise surrogate models. The PiecewiseModel

class and the associated methods are listed below and are available at
https://github.com/oreluk/B2BDC-PiecewiseModels.

The B2BDC Toolbox can be found at https://github.com/B2BDC/B2BDC, where
commit e9d501a was used throughout the dissertation.

Source Code C.1: PiecewiseModel.m

1 classdef PiecewiseModel < B2BDC.B2Bmodels.Model

2

3 properties

4 ModelTree = []; % Array of submodels

5 Options = [];

6 FunctionHandle = []; % Used to build piecewise model

7 Type = [];

8 ModelConsistency = []; % Index of consistent models in ModelTree

9 % each model in ModelTree

10 ErrorFlag = 0; % Used to indicate a specific error in the

11 % construction of a pwm

12 end

13

14 properties (Hidden = true)

15 Depth = 0; % Used in treeBuilder to determine current depth of node

16 end

17

18 methods

19 function obj = PiecewiseModel(funcHandle, type, varList, data, option)

20 % PiecewiseModel constructs a binary tree of surrogate models

21 % where each leave is a new sub-domain of the original VARLIST.

https://github.com/oreluk/B2BDC-PiecewiseModels
https://github.com/B2BDC/B2BDC
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22 % Surrogate models are fit to FUNCHANDLE as specified by TYPE.

23 % FUNCHANDLE is a function handle which takes as an input a

24 % matrix of size nSamples-by-nVars and returns a vector of

25 % size nSamples-by-1 of responses. ERRTOL and DEPTHTOL both

26 % terminate branching of the binary tree. ERRTOL specifies an

27 % absolute maximum error tolerance to be satisfied. MAXDEPTH

28 % specifies how many branches from the root a node can span.

29 % VARLIST is a VariableList specifying the original domain.

30 % DATA is an optional structure input with fields of DATA.X and

31 % DATA.y if the function has been evaluated

32 % previous.

33

34 % User supplied data

35 if nargin > 3

36 if ~isempty(data)

37 if ~isstruct(data)

38 error('Data must be supplied as a structure with X and y

fields');↪→
39 end

40 else

41 data.X = [];

42 data.y = [];

43 end

44 end

45

46 if nargin > 4

47 if isstruct(option)

48 obj.Options = option;

49 else

50 error('Options for Piecewise model must be created by

piecewiseOptions()')↪→
51 end

52 else

53 obj.Options = piecewiseOptions;

54 end

55

56 if ~isa(funcHandle, 'function_handle')

57 error('Must provide a function_handle to construct a PiecewiseModel');

58 elseif ~ischar(type)

59 error('Must provide a string specifying the type of models to fit for a

PiecewiseModel (qinf/q2norm/rq)');↪→
60 elseif ~isa(varList, 'B2BDC.B2Bvariables.VariableList')

61 error('Must provide a B2BDC.B2Bvariables.VariableList for constructions

of a PiecewiseModel');↪→
62 end

63

64 obj.FunctionHandle = funcHandle;

65 obj.Type = type;

66 obj.Variables = varList;

67 obj.grow(varList, data);
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68

69 end

70

71 function idx = findModelIndex(obj, X)

72 % Takes in a matrix of design points X and returns a vector of

73 % indices idx for the relevant models in ModelTree

74

75 nSamples = size(X,1);

76 nModels = length(obj.ModelTree);

77 idx = zeros(nSamples,1);

78 for ii = 1:nSamples

79 for jj = 1:nModels

80 if obj.inDomain(obj.ModelTree(jj).Variables, X(ii,:))

81 idx(ii) = jj;

82 break;

83 end

84 end

85 end

86 end

87

88 function y = eval(obj, X)

89 % Takes in an matrix of points, finds the B2BDC.B2Bmodels in

90 % ModelTree associated with those points, and evaluates the

91 % relevant models to return a vector of output.

92

93 nSamples = size(X,1);

94 idx = obj.findModelIndex(X);

95 y = zeros(nSamples,1);

96

97 % Loop over models and evaluate the data points

98 modelIdx = unique(idx);

99 for ii = 1:length(modelIdx)

100 filter = idx == modelIdx(ii);

101 y(filter) = obj.ModelTree(modelIdx(ii)).eval(X(filter, :));

102 end

103 end

104

105 function y = length(obj)

106 % Return number of models in obj.ModelTree

107 y = length(obj.ModelTree);

108 end

109

110 end

111 end

Source Code C.2: grow.m

1 function obj = grow(obj, listOrIdx, data)

2 % OBJ = GROW(OBJ, LISTORIDX) will take a PiecewiseModel object OBJ and
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3 % grow the tree at a LISTORIDX, where LISTORIDX is either a

4 % B2BDC.B2Bvariables.VariableList or an index of a pre-existing model.

5 % This allows a user to build a tree specified by the

6 % B2BDC.B2Bvariable.VariableList. If LISTORIDX is a numerical value

7 % specifying the model index to grow from, then the

8 % B2BDC.B2Bvariable.VariableList will be taken from the specified model.

9 %

10 % Grow is recursively called by branch when error tolerance, max depth

11 % tolerance or maximum number of models is not met.

12 %

13

14 %% Check inputs

15 if nargin < 3

16 data.X = [];

17 data.y = [];

18 end

19

20 if isa(listOrIdx, 'B2BDC.B2Bvariables.VariableList')

21 if size(listOrIdx, 2) > 1

22 % Array of VariableLists

23 for ii = 1:size(listOrIdx, 2)

24 obj.grow(listOrIdx(ii), data);

25 end

26 return

27 else

28 varList = listOrIdx;

29 % TODO we should remove any model with this variable list

30 end

31 elseif isnumeric(listOrIdx)

32 % An index is only passed to grow when building/growing from an already

33 % completed PWM

34

35 if listOrIdx > length(obj.ModelTree)

36 error('Model Index exceeds number of Models in ModelTree.');

37 end

38 for ii = 1:numel(listOrIdx)

39 varList = obj.ModelTree(listOrIdx(ii)).Variables;

40 data = obj.ModelTree(listOrIdx(ii)).Data;

41

42 % Remove model from tree

43 obj.ModelTree(listOrIdx(ii)) = [];

44 obj.ModelConsistency(listOrIdx(ii)) = [];

45

46 obj.grow(varList, data);

47 end

48 return

49 end

50

51 %% Create output table

52
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53 if obj.Depth == 0 && obj.Options.Verbose

54 fprintf(['\n\t size(ModelTree) \t\t Tree Depth \t\t max(|Error|) \t\t Nodes Remaining

\n', ...↪→
55 '\t----------------- \t\t------------- \t\t-------------- \t\t-----------------

\n'])↪→
56 end

57

58 %% Fit model of OBJ.TYPE on domain of VARLIST

59

60 [newModel, data] = obj.fitSubDomain(varList, data);

61

62 if strcmpi(obj.Options.ErrorType, 'absolute')

63 modelError = newModel.ErrorStats.absMax;

64 elseif strcmpi(obj.Options.ErrorType, 'relative')

65 modelError = newModel.ErrorStats.relMax;

66 else

67 error('Option:ErrorType is unknown')

68 end

69

70 %% Check Self Consistency

71 if ~obj.ErrorFlag

72 selfConsistent = true;

73 if ~isempty(obj.Options.ExpBounds)

74 opt = generateOpt();

75 opt.Display = false;

76 opt.AddFitError = true;

77 dsTest = B2BDC.B2Bdataset.Dataset;

78 dsUnit = generateDSunit('test', newModel, obj.Options.ExpBounds);

79 dsTest.addDSunit(dsUnit);

80 dsTest.isConsistent(opt);

81

82

83 measure = dsTest.ConsistencyMeasure(2);

84 if measure < 0

85 selfConsistent = 0;

86 else

87 selfConsistent = 1;

88 end

89 end

90

91 % to be used with 'approach2' code which will construct a dataset for multiple QOIs

and↪→
92 % check for dataset consistency.

93 if obj.Options.jointConsistency

94 [selfConsistent, measure, modelError] = approach2(obj, newModel, data);

95 end

96

97

98 %% Decision to branch or save model

99
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100 s1 = modelError > obj.Options.ErrorTolerance;

101 s2 = obj.Depth < obj.Options.MaxDepth;

102 s3 = length(obj.ModelTree) < obj.Options.MaxNumberOfModels;

103

104 if s1 && s2 && s3 && selfConsistent

105 % Branch domain and increase depth

106 obj.Depth = obj.Depth+1;

107 printProgress(1);

108 obj.branch(varList, data);

109 else

110 % Save model to ModelTree

111 newModel.Data = data;

112 obj.ModelTree = [obj.ModelTree newModel];

113

114 if ~isempty(obj.Options.ExpBounds)

115 obj.ModelConsistency = [obj.ModelConsistency measure];

116 end

117 printProgress(2);

118

119 % Update PiecewiseModel error as maximum of error in ModelTree

120 errStruct = [obj.ModelTree.ErrorStats];

121 obj.ErrorStats.absMax = max([errStruct.absMax]);

122

123 d = obj.ModelTree;

124 save('currentPWM_progress', 'd');

125 end

126 else

127 % Error Occured in FitSubDomain

128 obj.ErrorFlag = 0;

129

130 % Save model to ModelTree

131 newModel.Data = data;

132 obj.ModelTree = [obj.ModelTree newModel];

133

134 if ~isempty(obj.Options.ExpBounds)

135 obj.ModelConsistency = [obj.ModelConsistency -Inf];

136 end

137 printProgress(2);

138

139 % Update PiecewiseModel error as maximum of error in ModelTree

140 try

141 errStruct = [obj.ModelTree.ErrorStats];

142 catch

143 keyboard

144 end

145 obj.ErrorStats.absMax = max([errStruct.absMax]);

146 obj.ErrorStats.relMax = max([errStruct.relMax]);

147

148 d = obj.ModelTree;

149 save('currentPWM_progress', 'd');
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150 end

151

152 %% Internal Function

153

154 function printProgress(flag)

155 % PRINTPROGRESS updates the progress of fitting the PiecewiseModel

156 if flag == 1 % update current line of progress

157 if obj.Options.Verbose

158 rev = repmat(sprintf('\b'), 1, length(obj.Options.OutputMessage));

159 obj.Options.OutputMessage = sprintf(['\t\t ', ...

160 num2str(length(obj.ModelTree)+1), '\t\t\t\t\t\t ', ...

161 num2str(obj.Depth), '/', num2str(obj.Options.MaxDepth), ...

162 '\t\t\t ', num2str(round(modelError,3)), '\t\t\t\t', ...

163 num2str(obj.Options.remainingNodes-1), '\n']);

164 fprintf([rev, obj.Options.OutputMessage]);

165 end

166

167 elseif flag == 2 % create a new line of progress

168 nodesBelow = 2^(obj.Options.MaxDepth-obj.Depth);

169 obj.Options.remainingNodes = obj.Options.remainingNodes - nodesBelow;

170

171 if obj.Options.Verbose

172 rev = repmat(sprintf('\b'), 1, length(obj.Options.OutputMessage));

173 obj.Options.OutputMessage = sprintf(['\t\t ', ...

174 num2str(length(obj.ModelTree)), '\t\t\t\t\t\t ', ...

175 num2str(obj.Depth), '/', num2str(obj.Options.MaxDepth), ...

176 '\t\t\t ', num2str(round(modelError,3)), '\t\t\t\t', ...

177 num2str(obj.Options.remainingNodes) ,'\n']);

178 fprintf([rev, obj.Options.OutputMessage]);

179 obj.Options.OutputMessage = '';

180 end

181 end

182 end

183 end

Source Code C.3: fitSubDomain.m

1 function [newModel, data] = fitSubDomain(obj, varList, data)

2 % NEWMODEL = fitSubDomain(OBJ, VARLIST, DATA)

3

4 % FITSUBDOMAIN will take in a PiecewiseModel OBJ and determine from TYPE

5 % how many samples are needed to fit on new sub-domain. TYPE is a string

6 % specifying the type of surrogate models used in GENERATEMODELBYFIT.

7 % Previous data coming from OBJ.DATA is recycled and only if new data is

8 % needed, FUNCHANDLE is evaluated on new X values to fit a model of TYPE.

9 % VARLIST is a B2BDC.B2Bvariables.VariableList specifying the new

10 % sub-domain to fit a surrogate model on.

11

12 if strcmpi(obj.Type, 'qinf') || strcmpi(obj.Type, 'q2norm')
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13 nSample = 4 * (length(varList) + 2) * (length(varList) + 1);

14 elseif strcmpi(obj.Type, 'rq')

15 nSample = 4 * (length(varList) + 2) * (length(varList) + 1);

16 else

17 error('Type not recognized.')

18 end

19

20 % Input Data is in Domain

21 if obj.Depth == 0

22 oldData = data;

23 inVarList = obj.inDomain(varList, oldData.X);

24 idx = find(inVarList == 1);

25 X = oldData.X(idx,:);

26 y = oldData.y(idx,:);

27 else

28 X = data.X;

29 y = data.y;

30 end

31

32 nX = size(X,1);

33

34 if nX < nSample

35 XNew = varList.makeLHSsample(nSample-nX);

36 [yNew, XNew] = obj.FunctionHandle(XNew);

37

38 X = [X; XNew];

39 y = [y; yNew];

40

41

42 %% If returned data is less than 75% of the samples we need

43 % repeat sampling 5 times

44

45 iter = 0;

46 while length(y) < 0.75 * nSample && iter < 10

47 iter = iter + 1;

48 nX = size(X,1);

49 XNew = varList.makeLHSsample(nSample-nX);

50 [yNew, XNew] = obj.FunctionHandle(XNew);

51

52 X = [X; XNew];

53 y = [y; yNew];

54 end

55

56 %% Check if enough data is returned

57 if length(y) < 0.75 * nSample

58 obj.ErrorFlag = 1;

59 nVar = length(varList);

60 coef = zeros(nVar+1, nVar+1);

61 coef(1,1) = Inf;

62 newModel = B2BDC.B2Bmodels.QModel(coef, varList);
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63 newModel.ErrorStats.absMax = -1;

64 newModel.ErrorStats.absAvg = -1;

65 newModel.ErrorStats.relMax = -1;

66 newModel.ErrorStats.relAvg = -1;

67 newModel.ErrorStats.PhysicalUnits.Absolute = -1;

68 newModel.ErrorStats.PhysicalUnits.Relative = -1;

69 data = [];

70 warning('Returned Data was less than 75% which was requested. Domain deemed

invalid due to insufficent data')↪→
71 return

72 end

73 end

74

75

76 %% for char oxidation we will only fit on qoi172 from y

77 if obj.Options.jointConsistency

78 yOriginal = y;

79 y = y(:,obj.Options.QOI);

80 end

81

82

83 %% Estimate Test Error: k-fold

84 % s = RandStream('mt19937ar','Seed',0);

85 % permIdx = randperm(s, size(X,1)); % Random ordering of X/y data

86

87 permIdx = randperm(size(X,1));

88

89 kFolds = 10;

90 nPerFold = floor(size(X,1)/kFolds); %

91 err = [];

92 relErr = [];

93

94 for k = 1:kFolds

95 % kRange is defines elements for each fold

96 if k == kFolds

97 kRange = (k*nPerFold + 1) - nPerFold : size(X, 1);

98 else

99 kRange = (k*nPerFold + 1) - nPerFold : k*nPerFold;

100 end

101

102 % k-fold index is zero for elements in k-th fold

103 kIndex = ones(length(y), 1);

104 kIndex(kRange) = 0;

105

106 % Filter X/y data for elements in k-fold index

107 Xtrain = X(permIdx(logical(kIndex)),:);

108 yTrain = y(permIdx(logical(kIndex)));

109

110 Xtest = X(permIdx(~logical(kIndex)),:);

111 yTest = y(permIdx(~logical(kIndex)));
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112

113 newModel = generateModelbyFit(Xtrain, yTrain, varList, obj.Type);

114 yPred = newModel.eval(Xtest);

115 e = abs(yPred - yTest);

116 relE = abs(e./yTest);

117 err = [err; e];

118 relErr = [relErr; relE];

119 end

120

121 maxError = max(err);

122 maxRelativeError = max(relErr);

123 newModel = generateModelbyFit(X, y, varList, obj.Type);

124 newModel.ErrorStats.absMax = maxError * obj.Options.SafetyFactor;

125 newModel.ErrorStats.relMax = maxRelativeError * obj.Options.SafetyFactor;

126

127 %% Estimate Test Error: Hold Out set 70/30 split (train/test)

128 % percTraining = 0.7;

129 % trainingIdx = randperm(size(y,1));

130 % nTraining = floor(percTraining*size(y,1));

131 %

132 % xTrain = X(trainingIdx(1:nTraining), :);

133 % xTest = X(trainingIdx(nTraining+1:end), :);

134 %

135 % yTrain = y(trainingIdx(1:nTraining), :);

136 % yTest = y(trainingIdx(nTraining+1:end), :);

137 %

138 % % Build Model

139 % newModel = generateModelbyFit(xTrain, yTrain, varList, obj.Type);

140 %

141 % % Evaluate Test Error

142 % ySurrogate = newModel.eval(xTest);

143 % absE = abs(ySurrogate - yTest);

144 %

145 % % Update Error

146 % newModel.ErrorStats.absMax = max(absE);

147 % newModel.ErrorStats.absAvg = mean(absE);

148 % relE = absE./yTest;

149 % newModel.ErrorStats.relMax = max(relE);

150 % newModel.ErrorStats.relAvg = mean(relE);

151

152

153

154

155 %% chemical kinetics example

156 if obj.Options.jointConsistency

157 y = yOriginal;

158 end

159

160

161 %% Update Data



APPENDIX C. PIECEWISE MODELING FOR B2BDC TOOLBOX 128

162

163

164 data.X = X;

165 data.y = y;

Source Code C.4: branch.m

1 function branch(obj, varList, data)

2 % BRANCH(OBJ, VARLIST) branches a binary tree into two sub-domains

3 % (children nodes) of VARLIST1 and VARLIST2. The VARLIST is divided by

4 % heuristics detailed in RULE.

5

6 [varList1, varList2, data] = obj.rule(varList, data); % Split VARLIST

7

8 % Divide data into two parts

9 inVarList = obj.inDomain(varList1, data.X);

10 data1.X = data.X(logical(inVarList), :);

11 data1.y = data.y(logical(inVarList), :);

12 data2.X = data.X(~inVarList, :);

13 data2.y = data.y(~inVarList, :);

14

15 obj.grow(varList1, data1); % Child Node 1

16 obj.grow(varList2, data2); % Child Node 2

17 obj.Depth = obj.Depth - 1;

Source Code C.5: rule.m

1 function [varList1, varList2, data] = rule(obj, varList, data)

2 % [VARLIST1, VARLIST2] = RULE(OBJ, VARLIST) heuristic rules for determining

3 % sub-domains of VARLIST.

4

5 % RULE is used to determine how and where to split VARLIST which is a

6 % B2BDC.B2Bvariables.VariableList into two sub-domains VARLIST1 and

7 % VARLIST2.

8

9 %% RULE: Split largest parameter uncertainty in half

10 %

11 % [varIdx, newBound1, newBound2, data] = obj.ruleSplitLargest(varList, data);

12

13 %% RULE: Split random variable in half

14 %

15 % [varIdx, newBound1, newBound2, data] = obj.ruleSplitRandom(varList, data);

16

17 %% RULE: Split each variable one at a time and fit with a 2norm quadratic

18 % model. Model with smallest 2norm error is the varIdx to be split in half.

19

20 % [varIdx, newBound1, newBound2, data] = obj.ruleSplitMinError(varList, data);

21
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22 %% RULE: Split each variable by the golden ratio one-at-a-time

23 %

24 % [varIdx, newBound1, newBound2, data] = obj.ruleSplitMinErrorGolden(varList, data);

25

26 %% RULE: Split each variable one-at-a-time and fit with a 2 norm quadratic model.

27 % Model with smallest 2 norma error is the var to split, splits can occur at

28 % (1/4, 1/3, 1/2, 2/3, 3/4)

29 %

30 %

31 % [varIdx, newBound1, newBound2, data] = obj.ruleSplitMinErrorVariousPartitions(varList,

data)↪→
32

33 %% Rule: Split each variable one-at-a-time and fit with a 2norm quadratic

34 % k-fold is used to estimate error.

35

36 [varIdx, newBound1, newBound2, data] = obj.ruleSplitMinErrorKfold(varList, data);

37

38 %%

39

40 varList1 = varList.changeBound(newBound1, varIdx(1));

41 varList2 = varList.changeBound(newBound2, varIdx(1));

Source Code C.6: ruleSplitMinErrorKfold.m

1 function [varIdx, newBound1, newBound2, data] = ruleSplitMinErrorKfold(obj, varList,

data)↪→
2 oldData = data;

3

4 %

5 % Change Template QOI if consistency & error of Template is less than Error

6 % Tolerance.

7 %

8

9 if obj.Options.ChangeTemplateQOI == 1

10 obj.Options.ChangeTemplateQOI = 0;

11 ds = obj.Options.Dataset{length(obj.ModelTree) + 1};

12

13 for i = 1:length(ds)

14 absErr(i) = ds.DatasetUnits.Values(i).SurrogateModel.ErrorStats.absMax;

15 relErr(i) = ds.DatasetUnits.Values(i).SurrogateModel.ErrorStats.relMax;

16 end

17

18 if strcmpi(obj.Options.ErrorType, 'absolute')

19 qoi = find(max(absErr) == absErr);

20 elseif strcmpi(obj.Options.ErrorType, 'relative')

21 qoi = find(max(relErr) == relErr);

22 end

23 else

24 qoi = obj.Options.QOI;
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25 end

26

27 %%

28

29 nVar = length(varList);

30 nSample = 2 * (nVar + 1) * (nVar + 2);

31 for i = 1:nVar

32 var2Split = varList.Values(i);

33 l = var2Split.LowerBound;

34 u = var2Split.UpperBound;

35 newBound1 = [l (u+l)/2];

36 newBound2 = [(u+l)/2 u];

37

38 % Fit Child 1

39 v1 = varList.changeBound(newBound1, i);

40 inVarList1 = obj.inDomain(v1, oldData.X);

41 idx1 = find(inVarList1 == 1);

42 X1 = oldData.X(idx1, :);

43 y1 = oldData.y(idx1, :);

44 nX = size(X1,1);

45

46

47 if nX < nSample

48 % do not have enough points...

49 % add diag noise (regularizer)

50 % warning('Required more Samples in Rule')

51

52 % for the time being...take a little more samples than required to be a

determined system.↪→
53 X1new = v1.makeLHSsample(floor(1.1*(nSample - nX)));

54 [y1New, X1new] = obj.FunctionHandle(X1new);

55

56 y1 = [y1; y1New];

57 X1 = [X1; X1new];

58

59 % save new data generated

60 oldData.X = [oldData.X; X1new];

61 oldData.y = [oldData.y; y1New];

62 end

63

64

65

66 %% Estimate Test Error: k-fold

67 kFolds = 10;

68 permIdx = randperm(size(X1,1));

69 nPerFold = floor(size(X1,1)/kFolds); %

70 err = [];

71 relErr = [];

72

73 for k = 1:kFolds
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74 % kRange is defines elements for each fold

75 if k == kFolds

76 kRange = (k*nPerFold + 1) - nPerFold : size(X1, 1);

77 else

78 kRange = (k*nPerFold + 1) - nPerFold : k*nPerFold;

79 end

80

81 % k-fold index is zero for elements in k-th fold

82 kIndex = ones(size(X1,1), 1);

83 kIndex(kRange) = 0;

84

85 % Filter X/y data for elements in k-fold index

86 try

87 Xtrain = X1(permIdx(logical(kIndex)),:);

88

89 yTrain = y1(permIdx(logical(kIndex)), qoi);

90

91 catch

92 keyboard

93 end

94

95

96 Xtest = X1(permIdx(~logical(kIndex)),:);

97 yTest = y1(permIdx(~logical(kIndex)), qoi);

98

99 newModel = generateModelbyFit(Xtrain, yTrain, v1, 'q2norm');

100 yPred = newModel.eval(Xtest);

101 e = abs(yPred - yTest);

102 relE = abs(e./yTest);

103 err = [err; e];

104 relErr = [relErr; relE];

105 end

106

107 maxError = max(err);

108 maxRelativeError = max(relErr);

109 newModel1 = generateModelbyFit(X1, y1(:,qoi), v1, 'q2norm');

110 newModel1.ErrorStats.absMax = maxError * obj.Options.SafetyFactor;

111 newModel1.ErrorStats.relMax = maxRelativeError * obj.Options.SafetyFactor;

112

113 %% Fit Child 2

114 v2 = varList.changeBound(newBound2, i);

115 inVarList2 = obj.inDomain(v2, oldData.X);

116 idx2 = find(inVarList2 == 1);

117 X2 = oldData.X(idx2,:);

118 y2 = oldData.y(idx2,:);

119 nX = size(X2,1);

120

121 if nX < nSample

122 % do not have enough points...

123 % add diag noise (regularizer)
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124 % warning('Required more samples in Rule')

125 % for the time being...take a little more samples than required to be a

determined system.↪→
126 X2new = v2.makeLHSsample(floor(1.1*(nSample - nX)));

127 [y2New, X2new] = obj.FunctionHandle(X2new);

128

129 y2 = [y2; y2New];

130 X2 = [X2; X2new];

131

132 % save new data generated

133 oldData.X = [oldData.X; X2new];

134 oldData.y = [oldData.y; y2New];

135 end

136

137

138

139 %% Estimate Test Error: k-fold

140 kFolds = 10;

141 permIdx = randperm(size(X2,1));

142 nPerFold = floor(size(X2,1)/kFolds); %

143 err = [];

144 relErr = [];

145

146 for k = 1:kFolds

147 % kRange is defines elements for each fold

148 if k == kFolds

149 kRange = (k*nPerFold + 1) - nPerFold : size(X2, 1);

150 else

151 kRange = (k*nPerFold + 1) - nPerFold : k*nPerFold;

152 end

153

154 % k-fold index is zero for elements in k-th fold

155 kIndex = ones(size(X2,1), 1);

156 kIndex(kRange) = 0;

157

158 % Filter X/y data for elements in k-fold index

159 try

160 Xtrain = X2(permIdx(logical(kIndex)),:);

161

162 yTrain = y2(permIdx(logical(kIndex)), qoi);

163 catch

164 keyboard

165 end

166

167 Xtest = X2(permIdx(~logical(kIndex)),:);

168 yTest = y2(permIdx(~logical(kIndex)), qoi);

169

170 newModel = generateModelbyFit(Xtrain, yTrain, v2, 'q2norm');

171 yPred = newModel.eval(Xtest);

172 e = abs(yPred - yTest);
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173 relE = abs(e./yTest);

174 err = [err; e];

175 relErr = [relErr; relE];

176 end

177

178 maxError = max(err);

179 maxRelativeError = max(relErr);

180 newModel2 = generateModelbyFit(X2, y2(:,qoi), v2, 'q2norm');

181 newModel2.ErrorStats.absMax = maxError * obj.Options.SafetyFactor;

182 newModel2.ErrorStats.relMax = maxRelativeError * obj.Options.SafetyFactor;

183

184 minError(i) = min(newModel1.ErrorStats.absMax, newModel2.ErrorStats.absMax);

185 end

186

187 varIdx = find(min(minError) == minError);

188

189 var2Split = varList.Values(varIdx(1));

190 l = var2Split.LowerBound;

191 u = var2Split.UpperBound;

192 newBound1 = [l (u+l)/2];

193 newBound2 = [(u+l)/2 u];

194

195 data = oldData;

Source Code C.7: inDomain.m

1 function inD = inDomain(obj, varList, X)

2 % IND = INDOMAIN(OBJ, VARLIST, X) checks to see if X is in the domain of

3 % VARLIST.

4 %

5 % THIS FUNCTION MAY BE UNNECESSARY, VARLIST HAS IT'S OWN ISFEASIBLEPOINT IN

6 % B2BDC v0.8.

7

8 if isempty(X)

9 inD = 0;

10 end

11

12 % This needs to change for linear constraints, also the function should be

13 % the equivalent of isFeasiblePoint but for variablesList objects rather

14 % than datasets.

15

16 H = varList.calBound;

17 nSamples = size(X,1);

18 inD = ones(nSamples,1);

19

20 for ii = 1:nSamples

21 if any(H(:,1) > X(ii,:)')

22 inD(ii) = 0;

23 elseif any(H(:,2) < X(ii,:)')
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24 inD(ii) = 0;

25 end

26 end



135

Appendix D

H2/O2 mechanisms

Cantera Input

All calculations were conducted using each of the respective mechanism’s HDF5 file found
in the PrIMe Data Warehouse. XML, HDF5, and MAT files for all mechanisms are
available online via the WarehouseAPI and at https://github.com/oreluk/h2o2 datasets/.
Unfortunately, the HDF5 file format does not lend itself to text documents; therefore, all
mechanisms were converted to CANTERA CTI files via CloudFlame’s HDF5 to CTI
converter [51].

D.1 Mechanism1 - m00000007.cti

Source Code D.1: m00000007.cti
1 #-------------------------------------------------------------------------------

2 #HDF5

3 # CTI Generated : 2017-12-02 01:04:44

4 #-------------------------------------------------------------------------------

5

6 units(length='cm', time='s', quantity='mol', act_energy='cal/mol')

7

8

9 ideal_gas(name='gas',

10 elements="Ar C H He N O",

11 species="""Ar He N2 C(GR) CO

12 CO2 H H2 O O2

13 OH H2O HO2 H2O2""",

14 reactions='all',

15 initial_state=state(temperature= 298.15, pressure= 100000.0))

16

17 #-------------------------------------------------------------------------------

https://github.com/oreluk/h2o2_datasets/
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18 #Species data

19 #-------------------------------------------------------------------------------

20

21 species(name='Ar',

22 atoms='Ar:1',

23 thermo=(NASA([300.0, 1000.0],

24 [2.5, 0.0, 0.0,

25 0.0, 0.0, -745.375,

26 4.366001]),

27 NASA([1000.0, 5000.0],

28 [2.5, 0.0, 0.0,

29 0.0, 0.0, -745.375,

30 4.366001])),

31 transport = gas_transport(

32 geom = "atom",

33 well_depth = 136.5,

34 diam = 3.33))

35

36 species(name='He',

37 atoms='He:1',

38 thermo=(NASA([300.0, 1000.0],

39 [2.5, 0.0, 0.0,

40 0.0, 0.0, -745.375,

41 0.9153488]),

42 NASA([1000.0, 5000.0],

43 [2.5, 0.0, 0.0,

44 0.0, 0.0, -745.375,

45 0.9153488])),

46 transport = gas_transport(

47 geom = "atom",

48 well_depth = 10.2,

49 diam = 2.576))

50

51 species(name='N2',

52 atoms='N:2',

53 thermo=(NASA([300.0, 1000.0],

54 [3.298677, 0.00140824, -3.96322e-06,

55 5.64152e-09, -2.44486e-12, -1020.9,

56 3.950372]),

57 NASA([1000.0, 5000.0],

58 [2.92664, 0.001487977, -5.68476e-07,

59 1.0097e-10, -6.75335e-15, -922.7977,

60 5.980528])),

61 transport = gas_transport(
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62 geom = "linear",

63 well_depth = 97.53,

64 diam = 3.621,

65 polar = 1.76,

66 rot_relax = 4.0))

67

68 species(name='C(GR)',

69 atoms='C:1',

70 thermo=(NASA([200.0, 1000.0],

71 [-0.31087, 0.0044035, 1.9039e-06,

72 -6.3855e-09, 2.9896e-12, -108.6508,

73 1.1138]),

74 NASA([1000.0, 5000.0],

75 [1.4557, 0.0017171, -6.9758e-07,

76 1.3528e-10, -9.6765e-15, -695.128,

77 -8.5257])),

78 transport = gas_transport(

79 geom = "atom",

80 well_depth = 71.4,

81 diam = 3.298))

82

83 species(name='CO',

84 atoms='C:1 O:1',

85 thermo=(NASA([300.0, 1000.0],

86 [3.262452, 0.001511941, -3.88176e-06,

87 5.58194e-09, -2.47495e-12, -14310.54,

88 4.848897]),

89 NASA([1000.0, 5000.0],

90 [3.025078, 0.001442689, -5.63083e-07,

91 1.01858e-10, -6.91095e-15, -14268.35,

92 6.108218])),

93 transport = gas_transport(

94 geom = "linear",

95 well_depth = 98.1,

96 diam = 3.65,

97 polar = 1.95,

98 rot_relax = 1.8))

99

100 species(name='CO2',

101 atoms='C:1 O:2',

102 thermo=(NASA([300.0, 1000.0],

103 [2.275725, 0.009922072, -1.04091e-05,

104 6.86669e-09, -2.11728e-12, -48373.14,

105 10.18849]),
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106 NASA([1000.0, 5000.0],

107 [4.453623, 0.003140169, -1.27841e-06,

108 2.394e-10, -1.66903e-14, -48966.96,

109 -0.9553959])),

110 transport = gas_transport(

111 geom = "linear",

112 well_depth = 244.0,

113 diam = 3.763,

114 polar = 2.65,

115 rot_relax = 2.1))

116

117 species(name='H',

118 atoms='H:1',

119 thermo=(NASA([300.0, 1000.0],

120 [2.5, 0.0, 0.0,

121 0.0, 0.0, 25471.63,

122 -0.4601176]),

123 NASA([1000.0, 5000.0],

124 [2.5, 0.0, 0.0,

125 0.0, 0.0, 25471.63,

126 -0.4601176])),

127 transport = gas_transport(

128 geom = "atom",

129 well_depth = 145.0,

130 diam = 2.05))

131

132 species(name='H2',

133 atoms='H:2',

134 thermo=(NASA([300.0, 1000.0],

135 [3.298124, 0.000824944, -8.14302e-07,

136 -9.47543e-11, 4.13487e-13, -1012.521,

137 -3.294094]),

138 NASA([1000.0, 5000.0],

139 [2.991423, 0.000700064, -5.63383e-08,

140 -9.23158e-12, 1.58275e-15, -835.034,

141 -1.35511])),

142 transport = gas_transport(

143 geom = "linear",

144 well_depth = 38.0,

145 diam = 2.92,

146 polar = 0.79,

147 rot_relax = 280.0))

148

149 species(name='O',
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150 atoms='O:1',

151 thermo=(NASA([300.0, 1000.0],

152 [2.946429, -0.001638166, 2.42103e-06,

153 -1.60284e-09, 3.8907e-13, 29147.64,

154 2.963995]),

155 NASA([1000.0, 5000.0],

156 [2.54206, -2.75506e-05, -3.1028e-09,

157 4.55107e-12, -4.36805e-16, 29230.8,

158 4.920308])),

159 transport = gas_transport(

160 geom = "atom",

161 well_depth = 80.0,

162 diam = 2.75))

163

164 species(name='O2',

165 atoms='O:2',

166 thermo=(NASA([300.0, 1000.0],

167 [3.212936, 0.001127486, -5.75615e-07,

168 1.31388e-09, -8.76855e-13, -1005.249,

169 6.034738]),

170 NASA([1000.0, 5000.0],

171 [3.697578, 0.00061352, -1.25884e-07,

172 1.77528e-11, -1.13644e-15, -1233.93,

173 3.189166])),

174 transport = gas_transport(

175 geom = "linear",

176 well_depth = 107.4,

177 diam = 3.458,

178 polar = 1.6,

179 rot_relax = 3.8))

180

181 species(name='OH',

182 atoms='H:1 O:1',

183 thermo=(NASA([200.0, 1000.0],

184 [4.12530561, -0.003225449, 6.52765e-06,

185 -5.79854e-09, 2.06237e-12, 3346.30913,

186 -0.69043296]),

187 NASA([1000.0, 6000.0],

188 [2.86472886, 0.001056504, -2.59083e-07,

189 3.05219e-11, -1.33196e-15, 3683.62875,

190 5.70164073])),

191 transport = gas_transport(

192 geom = "linear",

193 well_depth = 80.0,
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194 diam = 2.75))

195

196 species(name='H2O',

197 atoms='H:2 O:1',

198 thermo=(NASA([300.0, 1000.0],

199 [3.386842, 0.003474982, -6.3547e-06,

200 6.96858e-09, -2.50659e-12, -30208.11,

201 2.590233]),

202 NASA([1000.0, 5000.0],

203 [2.672146, 0.003056293, -8.73026e-07,

204 1.201e-10, -6.39162e-15, -29899.21,

205 6.862817])),

206 transport = gas_transport(

207 geom = "nonlinear",

208 well_depth = 572.4,

209 diam = 2.605,

210 dipole = 1.844,

211 rot_relax = 4.0))

212

213 species(name='HO2',

214 atoms='H:1 O:2',

215 thermo=(NASA([200.0, 1000.0],

216 [4.30179801, -0.004749121, 2.11583e-05,

217 -2.42764e-08, 9.29225e-12, 294.80804,

218 3.71666245]),

219 NASA([1000.0, 3500.0],

220 [4.0172109, 0.00223982, -6.33658e-07,

221 1.14246e-10, -1.07909e-14, 111.856713,

222 3.78510215])),

223 transport = gas_transport(

224 geom = "nonlinear",

225 well_depth = 107.4,

226 diam = 3.458,

227 rot_relax = 1.0))

228

229 species(name='H2O2',

230 atoms='H:2 O:2',

231 thermo=(NASA([300.0, 1000.0],

232 [3.388754, 0.006569226, -1.48501e-07,

233 -4.62581e-09, 2.47152e-12, -17663.15,

234 6.785363]),

235 NASA([1000.0, 5000.0],

236 [4.573167, 0.004336136, -1.47469e-06,

237 2.3489e-10, -1.43165e-14, -18006.96,
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238 0.501137])),

239 transport = gas_transport(

240 geom = "nonlinear",

241 well_depth = 107.4,

242 diam = 3.458,

243 rot_relax = 3.8))

244

245

246 #-------------------------------------------------------------------------------

247 #Reaction data

248 #-------------------------------------------------------------------------------

249

250 #Reaction 1:

251 reaction('O2 + H <=> OH + O', [1.04e+14, 0.0, 15309.835])

252

253 #Reaction 2:

254 reaction('H2 + O <=> OH + H', [8.7923244e+14, 0.0, 19174.55],

255 options='duplicate')

256

257 #Reaction 3:

258 reaction('H2 + O <=> OH + H', [3.81803676e+12, 0.0, 7948.0],

259 options='duplicate')

260

261 #Reaction 4:

262 reaction('H2 + OH <=> H2O + H', [216194826.0, 1.51, 3429.562])

263

264 #Reaction 5:

265 reaction('OH + OH <=> H2O + O', [33483.0984, 2.42, -1927.39])

266

267 #Reaction 6:

268 three_body_reaction('H + H + M <=> H2 + M', [3.143e+20, -1.806, 982.555066967],

269 efficiencies='H2:2.5 H2O:12.0 CO:1.9 CO2:3.8 Ar:0.0 He:0.0 ')

270

271 #Reaction 7:

272 reaction('H + H + Ar <=> H2 + Ar', [4.011e+19, -1.506, 982.555066967])

273

274 #Reaction 8:

275 reaction('H + H + He <=> H2 + He', [4.011e+19, -1.506, 982.555066967])

276

277 #Reaction 9:

278 three_body_reaction('O + O + M <=> O2 + M', [6.16524893053e+15, -0.5, 0.0],

279 efficiencies='H2:2.53 H2O:11.76 CO:1.88 CO2:3.82 Ar:0.0 He:0.0 ')

280

281 #Reaction 10:
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282 reaction('O + O + Ar <=> O2 + Ar', [1.88584084934e+13, 0.0, -1788.3])

283

284 #Reaction 11:

285 reaction('O + O + He <=> O2 + He', [1.88584084934e+13, 0.0, -1788.3])

286

287 #Reaction 12:

288 three_body_reaction('H + O + M <=> OH + M', [4.71460212335e+18, -1.0, 0.0],

289 efficiencies='H2:2.54 H2O:12.31 CO:1.92 CO2:3.77 He:0.75 Ar:0.75 ')

290

291 #Reaction 13:

292 three_body_reaction('OH + H + M <=> H2O + M', [1.483e+28, -3.798, 2706.52897774],

293 efficiencies='H2:3.0 O2:1.5 N2:2.0 He:1.1 CO:1.9 CO2:3.8 H2O:0.0 ')

294

295 #Reaction 14:

296 reaction('OH + H + H2O <=> H2O + H2O', [2.46e+26, -2.916, 2096.18418054])

297

298 #Reaction 15:

299 falloff_reaction('O2 + H (+ M) <=> HO2 (+ M)',

300 kf=[4.65e+12, 0.44, 0.0],

301 kf0=[6.37e+20, -1.72, 524.568],

302 efficiencies='H2:1.99 O2:0.78 H2O:14.0 CO:1.9 CO2:3.8 Ar:0.67

He:0.8 ',↪→
303 falloff = Troe(A = 0.5, T3 = 1e-30, T1 = 1e+30, T2 = 0))

304

305 #Reaction 16:

306 reaction('O2 + H2 <=> HO2 + H', [1341000.0, 2.314, 53420.1782336])

307

308 #Reaction 17:

309 reaction('HO2 + H <=> OH + OH', [7.08e+13, 0.0, 300.169572393])

310

311 #Reaction 18:

312 reaction('HO2 + O <=> OH + O2', [28500000000.0, 1.0, -724.309178184])

313

314 #Reaction 19:

315 reaction('O2 + H2O <=> HO2 + OH', [3.956e+13, 0.294, 69070.0191729])

316

317 #Reaction 20:

318 reaction('HO2 + HO2 <=> H2O2 + O2', [4.2e+14, 0.0, 11981.61],

319 options='duplicate')

320

321 #Reaction 21:

322 reaction('HO2 + HO2 <=> H2O2 + O2', [130000000000.0, 0.0, -1629.34],

323 options='duplicate')

324
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325 #Reaction 22:

326 falloff_reaction('OH + OH (+ M) <=> H2O2 (+ M)',

327 kf=[45280000.0, 1.657, -1818.02704346],

328 kf0=[5.637e+19, -1.543, -1818.02704346],

329 efficiencies='H2:3.7 H2O:7.5 O2:1.2 H2O2:7.7 N2:1.5 He:0.65

CO:2.8 CO2:1.6 ',↪→
330 falloff = Troe(A = 0.43, T3 = 1e-30, T1 = 1e+30, T2 = 0))

331

332 #Reaction 23:

333 reaction('H2O2 + H <=> OH + H2O', [2.408856e+13, 0.0, 3974.0])

334

335 #Reaction 24:

336 reaction('H2O2 + H <=> H2 + HO2', [4.817712e+13, 0.0, 7948.0])

337

338 #Reaction 25:

339 reaction('O + H2O2 <=> HO2 + OH', [9635424.0, 2.0, 3974.0])

340

341 #Reaction 26:

342 reaction('OH + H2O2 <=> HO2 + H2O', [1.7378e+12, 0.0, 317.92],

343 options='duplicate')

344

345 #Reaction 27:

346 reaction('OH + H2O2 <=> HO2 + H2O', [7.5858e+13, 0.0, 7272.42],

347 options='duplicate')
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D.2 Mechanism2 - m00000008.cti

Source Code D.2: m00000008.cti
1 #-------------------------------------------------------------------------------

2 #HDF5

3 # CTI Generated : 2017-12-02 01:05:27

4 #-------------------------------------------------------------------------------

5

6 units(length='cm', time='s', quantity='mol', act_energy='cal/mol')

7

8

9 ideal_gas(name='gas',

10 elements="Ar C H He N O",

11 species="""Ar He N2 C(GR) CO

12 CO2 H H2 O O2

13 OH H2O HO2 H2O2""",

14 reactions='all',

15 initial_state=state(temperature= 298.15, pressure= 100000.0))

16

17 #-------------------------------------------------------------------------------

18 #Species data

19 #-------------------------------------------------------------------------------

20

21 species(name='Ar',

22 atoms='Ar:1',

23 thermo=(NASA([300.0, 1000.0],

24 [2.5, 0.0, 0.0,

25 0.0, 0.0, -745.375,

26 4.366001]),

27 NASA([1000.0, 5000.0],

28 [2.5, 0.0, 0.0,

29 0.0, 0.0, -745.375,

30 4.366001])),

31 transport = gas_transport(

32 geom = "atom",

33 well_depth = 136.5,

34 diam = 3.33))

35

36 species(name='He',

37 atoms='He:1',

38 thermo=(NASA([300.0, 1000.0],

39 [2.5, 0.0, 0.0,

40 0.0, 0.0, -745.375,

41 0.9153488]),
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42 NASA([1000.0, 5000.0],

43 [2.5, 0.0, 0.0,

44 0.0, 0.0, -745.375,

45 0.9153488])),

46 transport = gas_transport(

47 geom = "atom",

48 well_depth = 10.2,

49 diam = 2.576))

50

51 species(name='N2',

52 atoms='N:2',

53 thermo=(NASA([300.0, 1000.0],

54 [3.298677, 0.00140824, -3.96322e-06,

55 5.64152e-09, -2.44486e-12, -1020.9,

56 3.950372]),

57 NASA([1000.0, 5000.0],

58 [2.92664, 0.001487977, -5.68476e-07,

59 1.0097e-10, -6.75335e-15, -922.7977,

60 5.980528])),

61 transport = gas_transport(

62 geom = "linear",

63 well_depth = 97.53,

64 diam = 3.621,

65 polar = 1.76,

66 rot_relax = 4.0))

67

68 species(name='C(GR)',

69 atoms='C:1',

70 thermo=(NASA([200.0, 1000.0],

71 [-0.31087, 0.0044035, 1.9039e-06,

72 -6.3855e-09, 2.9896e-12, -108.6508,

73 1.1138]),

74 NASA([1000.0, 5000.0],

75 [1.4557, 0.0017171, -6.9758e-07,

76 1.3528e-10, -9.6765e-15, -695.128,

77 -8.5257])),

78 transport = gas_transport(

79 geom = "atom",

80 well_depth = 71.4,

81 diam = 3.298))

82

83 species(name='CO',

84 atoms='C:1 O:1',

85 thermo=(NASA([300.0, 1000.0],
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86 [3.262452, 0.001511941, -3.88176e-06,

87 5.58194e-09, -2.47495e-12, -14310.54,

88 4.848897]),

89 NASA([1000.0, 5000.0],

90 [3.025078, 0.001442689, -5.63083e-07,

91 1.01858e-10, -6.91095e-15, -14268.35,

92 6.108218])),

93 transport = gas_transport(

94 geom = "linear",

95 well_depth = 98.1,

96 diam = 3.65,

97 polar = 1.95,

98 rot_relax = 1.8))

99

100 species(name='CO2',

101 atoms='C:1 O:2',

102 thermo=(NASA([300.0, 1000.0],

103 [2.275725, 0.009922072, -1.04091e-05,

104 6.86669e-09, -2.11728e-12, -48373.14,

105 10.18849]),

106 NASA([1000.0, 5000.0],

107 [4.453623, 0.003140169, -1.27841e-06,

108 2.394e-10, -1.66903e-14, -48966.96,

109 -0.9553959])),

110 transport = gas_transport(

111 geom = "linear",

112 well_depth = 244.0,

113 diam = 3.763,

114 polar = 2.65,

115 rot_relax = 2.1))

116

117 species(name='H',

118 atoms='H:1',

119 thermo=(NASA([300.0, 1000.0],

120 [2.5, 0.0, 0.0,

121 0.0, 0.0, 25471.63,

122 -0.4601176]),

123 NASA([1000.0, 5000.0],

124 [2.5, 0.0, 0.0,

125 0.0, 0.0, 25471.63,

126 -0.4601176])),

127 transport = gas_transport(

128 geom = "atom",

129 well_depth = 145.0,
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130 diam = 2.05))

131

132 species(name='H2',

133 atoms='H:2',

134 thermo=(NASA([300.0, 1000.0],

135 [3.298124, 0.000824944, -8.14302e-07,

136 -9.47543e-11, 4.13487e-13, -1012.521,

137 -3.294094]),

138 NASA([1000.0, 5000.0],

139 [2.991423, 0.000700064, -5.63383e-08,

140 -9.23158e-12, 1.58275e-15, -835.034,

141 -1.35511])),

142 transport = gas_transport(

143 geom = "linear",

144 well_depth = 38.0,

145 diam = 2.92,

146 polar = 0.79,

147 rot_relax = 280.0))

148

149 species(name='O',

150 atoms='O:1',

151 thermo=(NASA([300.0, 1000.0],

152 [2.946429, -0.001638166, 2.42103e-06,

153 -1.60284e-09, 3.8907e-13, 29147.64,

154 2.963995]),

155 NASA([1000.0, 5000.0],

156 [2.54206, -2.75506e-05, -3.1028e-09,

157 4.55107e-12, -4.36805e-16, 29230.8,

158 4.920308])),

159 transport = gas_transport(

160 geom = "atom",

161 well_depth = 80.0,

162 diam = 2.75))

163

164 species(name='O2',

165 atoms='O:2',

166 thermo=(NASA([300.0, 1000.0],

167 [3.212936, 0.001127486, -5.75615e-07,

168 1.31388e-09, -8.76855e-13, -1005.249,

169 6.034738]),

170 NASA([1000.0, 5000.0],

171 [3.697578, 0.00061352, -1.25884e-07,

172 1.77528e-11, -1.13644e-15, -1233.93,

173 3.189166])),
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174 transport = gas_transport(

175 geom = "linear",

176 well_depth = 107.4,

177 diam = 3.458,

178 polar = 1.6,

179 rot_relax = 3.8))

180

181 species(name='OH',

182 atoms='H:1 O:1',

183 thermo=(NASA([200.0, 1000.0],

184 [4.12530561, -0.003225449, 6.52765e-06,

185 -5.79854e-09, 2.06237e-12, 3346.30913,

186 -0.69043296]),

187 NASA([1000.0, 6000.0],

188 [2.86472886, 0.001056504, -2.59083e-07,

189 3.05219e-11, -1.33196e-15, 3683.62875,

190 5.70164073])),

191 transport = gas_transport(

192 geom = "linear",

193 well_depth = 80.0,

194 diam = 2.75))

195

196 species(name='H2O',

197 atoms='H:2 O:1',

198 thermo=(NASA([300.0, 1000.0],

199 [3.386842, 0.003474982, -6.3547e-06,

200 6.96858e-09, -2.50659e-12, -30208.11,

201 2.590233]),

202 NASA([1000.0, 5000.0],

203 [2.672146, 0.003056293, -8.73026e-07,

204 1.201e-10, -6.39162e-15, -29899.21,

205 6.862817])),

206 transport = gas_transport(

207 geom = "nonlinear",

208 well_depth = 572.4,

209 diam = 2.605,

210 dipole = 1.844,

211 rot_relax = 4.0))

212

213 species(name='HO2',

214 atoms='H:1 O:2',

215 thermo=(NASA([200.0, 1000.0],

216 [4.30179801, -0.004749121, 2.11583e-05,

217 -2.42764e-08, 9.29225e-12, 294.80804,
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218 3.71666245]),

219 NASA([1000.0, 3500.0],

220 [4.0172109, 0.00223982, -6.33658e-07,

221 1.14246e-10, -1.07909e-14, 111.856713,

222 3.78510215])),

223 transport = gas_transport(

224 geom = "nonlinear",

225 well_depth = 107.4,

226 diam = 3.458,

227 rot_relax = 1.0))

228

229 species(name='H2O2',

230 atoms='H:2 O:2',

231 thermo=(NASA([300.0, 1000.0],

232 [3.388754, 0.006569226, -1.48501e-07,

233 -4.62581e-09, 2.47152e-12, -17663.15,

234 6.785363]),

235 NASA([1000.0, 5000.0],

236 [4.573167, 0.004336136, -1.47469e-06,

237 2.3489e-10, -1.43165e-14, -18006.96,

238 0.501137])),

239 transport = gas_transport(

240 geom = "nonlinear",

241 well_depth = 107.4,

242 diam = 3.458,

243 rot_relax = 3.8))

244

245

246 #-------------------------------------------------------------------------------

247 #Reaction data

248 #-------------------------------------------------------------------------------

249

250 #Reaction 1:

251 reaction('O2 + H <=> OH + O', [1.04e+14, 0.0, 15309.835])

252

253 #Reaction 2:

254 reaction('H2 + O <=> OH + H', [8.7923244e+14, 0.0, 19174.55],

255 options='duplicate')

256

257 #Reaction 3:

258 reaction('H2 + O <=> OH + H', [3.81803676e+12, 0.0, 7948.0],

259 options='duplicate')

260

261 #Reaction 4:
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262 reaction('H2 + OH <=> H2O + H', [216194826.0, 1.51, 3429.562])

263

264 #Reaction 5:

265 reaction('OH + OH <=> H2O + O', [2.83e+13, -0.764, -460.560180575],

266 options='duplicate')

267

268 #Reaction 6:

269 reaction('OH + OH <=> H2O + O', [12600.0, 2.5308, -1622.91682141],

270 options='duplicate')

271

272 #Reaction 7:

273 three_body_reaction('H + H + M <=> H2 + M', [3.143e+20, -1.806, 982.555066967],

274 efficiencies='H2:2.5 H2O:12.0 CO:1.9 CO2:3.8 Ar:0.0 He:0.0 ')

275

276 #Reaction 8:

277 reaction('H + H + Ar <=> H2 + Ar', [4.011e+19, -1.506, 982.555066967])

278

279 #Reaction 9:

280 reaction('H + H + He <=> H2 + He', [4.011e+19, -1.506, 982.555066967])

281

282 #Reaction 10:

283 three_body_reaction('O + O + M <=> O2 + M', [6.16524893053e+15, -0.5, 0.0],

284 efficiencies='H2:2.53 H2O:11.76 CO:1.88 CO2:3.82 Ar:0.0 He:0.0 ')

285

286 #Reaction 11:

287 reaction('O + O + Ar <=> O2 + Ar', [1.88584084934e+13, 0.0, -1788.3])

288

289 #Reaction 12:

290 reaction('O + O + He <=> O2 + He', [1.88584084934e+13, 0.0, -1788.3])

291

292 #Reaction 13:

293 three_body_reaction('H + O + M <=> OH + M', [4.71460212335e+18, -1.0, 0.0],

294 efficiencies='H2:2.54 H2O:12.31 CO:1.92 CO2:3.77 He:0.75 Ar:0.75 ')

295

296 #Reaction 14:

297 three_body_reaction('OH + H + M <=> H2O + M', [1.483e+28, -3.798, 2706.52897774],

298 efficiencies='H2:3.0 O2:1.5 N2:2.0 He:1.1 CO:1.9 CO2:3.8 H2O:0.0 ')

299

300 #Reaction 15:

301 reaction('OH + H + H2O <=> H2O + H2O', [2.46e+26, -2.916, 2096.18418054])

302

303 #Reaction 16:

304 falloff_reaction('O2 + H (+ M) <=> HO2 (+ M)',

305 kf=[4.65e+12, 0.44, 0.0],
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306 kf0=[6.37e+20, -1.72, 524.568],

307 efficiencies='H2:1.99 O2:0.78 H2O:14.0 CO:1.9 CO2:3.8 Ar:0.67

He:0.8 ',↪→
308 falloff = Troe(A = 0.5, T3 = 1e-30, T1 = 1e+30, T2 = 0))

309

310 #Reaction 17:

311 reaction('O2 + H2 <=> HO2 + H', [1341000.0, 2.314, 53420.1782336])

312

313 #Reaction 18:

314 reaction('HO2 + H <=> OH + OH', [7.08e+13, 0.0, 300.169572393])

315

316 #Reaction 19:

317 reaction('HO2 + O <=> OH + O2', [28500000000.0, 1.0, -724.309178184])

318

319 #Reaction 20:

320 reaction('O2 + H2O <=> HO2 + OH', [2.642e+20, -2.194, 70150.6296335],

321 options='duplicate')

322

323 #Reaction 21:

324 reaction('O2 + H2O <=> HO2 + OH', [1656000000.0, 1.533, 68259.5613274],

325 options='duplicate')

326

327 #Reaction 22:

328 reaction('HO2 + HO2 <=> H2O2 + O2', [1510.0, 2.6969, -3866.702],

329 options='duplicate')

330

331 #Reaction 23:

332 reaction('HO2 + HO2 <=> H2O2 + O2', [2.5e+15, -1.461, -1469.7839],

333 options='duplicate')

334

335 #Reaction 24:

336 falloff_reaction('OH + OH (+ M) <=> H2O2 (+ M)',

337 kf=[5.03e+12, 0.058, -634.68854952],

338 kf0=[5.68e+25, -3.358, 576.325578995],

339 efficiencies='CO2:2.99 N2:2.01 He:0.4 H2O:10.0 ',

340 falloff = Troe(A = 0.55, T3 = 1e-30, T1 = 1e+30, T2 = 0))

341

342 #Reaction 25:

343 reaction('H2O2 + H <=> OH + H2O', [2.408856e+13, 0.0, 3974.0])

344

345 #Reaction 26:

346 reaction('H2O2 + H <=> H2 + HO2', [4.817712e+13, 0.0, 7948.0])

347

348 #Reaction 27:
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349 reaction('O + H2O2 <=> HO2 + OH', [9635424.0, 2.0, 3974.0])

350

351 #Reaction 28:

352 reaction('OH + H2O2 <=> HO2 + H2O', [1.51e+14, -1.0553, -760.929866016],

353 options='duplicate')

354

355 #Reaction 29:

356 reaction('OH + H2O2 <=> HO2 + H2O', [2100.0, 2.9565, -1358.7675977],

357 options='duplicate')
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D.3 Mechanism3 - m00000009.cti

Source Code D.3: m00000009.cti
1 #-------------------------------------------------------------------------------

2 #HDF5

3 # CTI Generated : 2017-12-02 01:01:14

4 #-------------------------------------------------------------------------------

5

6 units(length='cm', time='s', quantity='mol', act_energy='cal/mol')

7

8

9 ideal_gas(name='gas',

10 elements="Ar C H He N O",

11 species="""Ar He N2 C(GR) CO

12 CO2 H H2 O O2

13 OH H2O HO2 H2O2 O2(^1Delta)

14 O(1D) O3 OH*""",

15 reactions='all',

16 initial_state=state(temperature= 298.15, pressure= 100000.0))

17

18 #-------------------------------------------------------------------------------

19 #Species data

20 #-------------------------------------------------------------------------------

21

22 species(name='Ar',

23 atoms='Ar:1',

24 thermo=(NASA([300.0, 1000.0],

25 [2.5, 0.0, 0.0,

26 0.0, 0.0, -745.375,

27 4.366001]),

28 NASA([1000.0, 5000.0],

29 [2.5, 0.0, 0.0,

30 0.0, 0.0, -745.375,

31 4.366001])),

32 transport = gas_transport(

33 geom = "atom",

34 well_depth = 136.5,

35 diam = 3.33))

36

37 species(name='He',

38 atoms='He:1',

39 thermo=(NASA([300.0, 1000.0],

40 [2.5, 0.0, 0.0,

41 0.0, 0.0, -745.375,
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42 0.9153488]),

43 NASA([1000.0, 5000.0],

44 [2.5, 0.0, 0.0,

45 0.0, 0.0, -745.375,

46 0.9153488])),

47 transport = gas_transport(

48 geom = "atom",

49 well_depth = 10.2,

50 diam = 2.576))

51

52 species(name='N2',

53 atoms='N:2',

54 thermo=(NASA([300.0, 1000.0],

55 [3.298677, 0.00140824, -3.96322e-06,

56 5.64152e-09, -2.44486e-12, -1020.9,

57 3.950372]),

58 NASA([1000.0, 5000.0],

59 [2.92664, 0.001487977, -5.68476e-07,

60 1.0097e-10, -6.75335e-15, -922.7977,

61 5.980528])),

62 transport = gas_transport(

63 geom = "linear",

64 well_depth = 97.53,

65 diam = 3.621,

66 polar = 1.76,

67 rot_relax = 4.0))

68

69 species(name='C(GR)',

70 atoms='C:1',

71 thermo=(NASA([200.0, 1000.0],

72 [-0.31087, 0.0044035, 1.9039e-06,

73 -6.3855e-09, 2.9896e-12, -108.6508,

74 1.1138]),

75 NASA([1000.0, 5000.0],

76 [1.4557, 0.0017171, -6.9758e-07,

77 1.3528e-10, -9.6765e-15, -695.128,

78 -8.5257])),

79 transport = gas_transport(

80 geom = "atom",

81 well_depth = 71.4,

82 diam = 3.298))

83

84 species(name='CO',

85 atoms='C:1 O:1',
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86 thermo=(NASA([300.0, 1000.0],

87 [3.262452, 0.001511941, -3.88176e-06,

88 5.58194e-09, -2.47495e-12, -14310.54,

89 4.848897]),

90 NASA([1000.0, 5000.0],

91 [3.025078, 0.001442689, -5.63083e-07,

92 1.01858e-10, -6.91095e-15, -14268.35,

93 6.108218])),

94 transport = gas_transport(

95 geom = "linear",

96 well_depth = 98.1,

97 diam = 3.65,

98 polar = 1.95,

99 rot_relax = 1.8))

100

101 species(name='CO2',

102 atoms='C:1 O:2',

103 thermo=(NASA([300.0, 1000.0],

104 [2.275725, 0.009922072, -1.04091e-05,

105 6.86669e-09, -2.11728e-12, -48373.14,

106 10.18849]),

107 NASA([1000.0, 5000.0],

108 [4.453623, 0.003140169, -1.27841e-06,

109 2.394e-10, -1.66903e-14, -48966.96,

110 -0.9553959])),

111 transport = gas_transport(

112 geom = "linear",

113 well_depth = 244.0,

114 diam = 3.763,

115 polar = 2.65,

116 rot_relax = 2.1))

117

118 species(name='H',

119 atoms='H:1',

120 thermo=(NASA([300.0, 1000.0],

121 [2.5, 0.0, 0.0,

122 0.0, 0.0, 25471.63,

123 -0.4601176]),

124 NASA([1000.0, 5000.0],

125 [2.5, 0.0, 0.0,

126 0.0, 0.0, 25471.63,

127 -0.4601176])),

128 transport = gas_transport(

129 geom = "atom",



APPENDIX D. H2/O2 MECHANISMS 156

130 well_depth = 145.0,

131 diam = 2.05))

132

133 species(name='H2',

134 atoms='H:2',

135 thermo=(NASA([300.0, 1000.0],

136 [3.298124, 0.000824944, -8.14302e-07,

137 -9.47543e-11, 4.13487e-13, -1012.521,

138 -3.294094]),

139 NASA([1000.0, 5000.0],

140 [2.991423, 0.000700064, -5.63383e-08,

141 -9.23158e-12, 1.58275e-15, -835.034,

142 -1.35511])),

143 transport = gas_transport(

144 geom = "linear",

145 well_depth = 38.0,

146 diam = 2.92,

147 polar = 0.79,

148 rot_relax = 280.0))

149

150 species(name='O',

151 atoms='O:1',

152 thermo=(NASA([300.0, 1000.0],

153 [2.946429, -0.001638166, 2.42103e-06,

154 -1.60284e-09, 3.8907e-13, 29147.64,

155 2.963995]),

156 NASA([1000.0, 5000.0],

157 [2.54206, -2.75506e-05, -3.1028e-09,

158 4.55107e-12, -4.36805e-16, 29230.8,

159 4.920308])),

160 transport = gas_transport(

161 geom = "atom",

162 well_depth = 80.0,

163 diam = 2.75))

164

165 species(name='O2',

166 atoms='O:2',

167 thermo=(NASA([300.0, 1000.0],

168 [3.212936, 0.001127486, -5.75615e-07,

169 1.31388e-09, -8.76855e-13, -1005.249,

170 6.034738]),

171 NASA([1000.0, 5000.0],

172 [3.697578, 0.00061352, -1.25884e-07,

173 1.77528e-11, -1.13644e-15, -1233.93,
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174 3.189166])),

175 transport = gas_transport(

176 geom = "linear",

177 well_depth = 107.4,

178 diam = 3.458,

179 polar = 1.6,

180 rot_relax = 3.8))

181

182 species(name='OH',

183 atoms='H:1 O:1',

184 thermo=(NASA([200.0, 1000.0],

185 [4.12530561, -0.003225449, 6.52765e-06,

186 -5.79854e-09, 2.06237e-12, 3346.30913,

187 -0.69043296]),

188 NASA([1000.0, 6000.0],

189 [2.86472886, 0.001056504, -2.59083e-07,

190 3.05219e-11, -1.33196e-15, 3683.62875,

191 5.70164073])),

192 transport = gas_transport(

193 geom = "linear",

194 well_depth = 80.0,

195 diam = 2.75))

196

197 species(name='H2O',

198 atoms='H:2 O:1',

199 thermo=(NASA([300.0, 1000.0],

200 [3.386842, 0.003474982, -6.3547e-06,

201 6.96858e-09, -2.50659e-12, -30208.11,

202 2.590233]),

203 NASA([1000.0, 5000.0],

204 [2.672146, 0.003056293, -8.73026e-07,

205 1.201e-10, -6.39162e-15, -29899.21,

206 6.862817])),

207 transport = gas_transport(

208 geom = "nonlinear",

209 well_depth = 572.4,

210 diam = 2.605,

211 dipole = 1.844,

212 rot_relax = 4.0))

213

214 species(name='HO2',

215 atoms='H:1 O:2',

216 thermo=(NASA([200.0, 1000.0],

217 [4.30179801, -0.004749121, 2.11583e-05,
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218 -2.42764e-08, 9.29225e-12, 294.80804,

219 3.71666245]),

220 NASA([1000.0, 3500.0],

221 [4.0172109, 0.00223982, -6.33658e-07,

222 1.14246e-10, -1.07909e-14, 111.856713,

223 3.78510215])),

224 transport = gas_transport(

225 geom = "nonlinear",

226 well_depth = 107.4,

227 diam = 3.458,

228 rot_relax = 1.0))

229

230 species(name='H2O2',

231 atoms='H:2 O:2',

232 thermo=(NASA([300.0, 1000.0],

233 [3.388754, 0.006569226, -1.48501e-07,

234 -4.62581e-09, 2.47152e-12, -17663.15,

235 6.785363]),

236 NASA([1000.0, 5000.0],

237 [4.573167, 0.004336136, -1.47469e-06,

238 2.3489e-10, -1.43165e-14, -18006.96,

239 0.501137])),

240 transport = gas_transport(

241 geom = "nonlinear",

242 well_depth = 107.4,

243 diam = 3.458,

244 rot_relax = 3.8))

245

246 species(name='O2(^1Delta)',

247 atoms='O:2',

248 thermo=(NASA([200.0, 1000.0],

249 [3.78535371, -0.0032192854, 1.12323443e-05,

250 -1.17254068e-08, 4.17659585e-12, 10292.2572,

251 3.27320239]),

252 NASA([1000.0, 6000.0],

253 [3.45852381, 0.00104045351, -2.79664041e-07,

254 3.11439672e-11, -8.55656058e-16, 10222.9063,

255 4.15264119])),

256 transport = gas_transport(

257 geom = "linear",

258 well_depth = 107.4,

259 diam = 3.458,

260 polar = 1.6,

261 rot_relax = 3.8))
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262

263 species(name='O(1D)',

264 atoms='O:1',

265 thermo=(NASA([200.0, 1000.0],

266 [2.49993786, 1.71935346e-07, -3.45215267e-10,

267 3.71342028e-13, -1.70964494e-16, 51996.5317,

268 4.61684555]),

269 NASA([1000.0, 6000.0],

270 [2.49368475, 1.37617903e-05, -1.00401058e-08,

271 2.76012182e-12, -2.01597513e-16, 51998.6304,

272 4.6505095])),

273 transport = gas_transport(

274 geom = "atom",

275 well_depth = 80.0,

276 diam = 2.75))

277

278 species(name='O3',

279 atoms='O:3',

280 thermo=(NASA([200.0, 1000.0],

281 [3.4074, 0.0020538, 1.3849e-05,

282 -2.2331e-08, 9.7607e-12, 15864.4979,

283 8.2825]),

284 NASA([1000.0, 6000.0],

285 [12.3303, -0.011932, 7.9874e-06,

286 -1.7719e-09, 1.2608e-13, 12675.5831,

287 -40.8823])),

288 transport = gas_transport(

289 geom = "nonlinear",

290 well_depth = 180.0,

291 diam = 4.1,

292 rot_relax = 2.0))

293

294 species(name='OH*',

295 atoms='H:1 O:1',

296 thermo=(NASA([300.0, 1000.0],

297 [3.46084428, 0.000501872172, -2.00254474e-06,

298 3.18901984e-09, -1.35451838e-12, 50734.9466,

299 1.73976415]),

300 NASA([1000.0, 6000.0],

301 [2.7558292, 0.00139848756, -4.19428493e-07,

302 6.33453282e-11, -3.56042218e-15, 50975.1756,

303 5.62581429])),

304 transport = gas_transport(

305 geom = "linear",
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306 well_depth = 80.0,

307 diam = 2.75))

308

309

310 #-------------------------------------------------------------------------------

311 #Reaction data

312 #-------------------------------------------------------------------------------

313

314 #Reaction 1:

315 reaction('O2 + H <=> OH + O', [1.04e+14, 0.0, 15309.835])

316

317 #Reaction 2:

318 reaction('H2 + O <=> OH + H', [8.7923244e+14, 0.0, 19174.55],

319 options='duplicate')

320

321 #Reaction 3:

322 reaction('H2 + O <=> OH + H', [3.81803676e+12, 0.0, 7948.0],

323 options='duplicate')

324

325 #Reaction 4:

326 reaction('H2 + OH <=> H2O + H', [216194826.0, 1.51, 3429.562])

327

328 #Reaction 5:

329 reaction('OH + OH <=> H2O + O', [2.83e+13, -0.764, -460.560180575],

330 options='duplicate')

331

332 #Reaction 6:

333 reaction('OH + OH <=> H2O + O', [12600.0, 2.5308, -1622.91682141],

334 options='duplicate')

335

336 #Reaction 7:

337 three_body_reaction('H + H + M <=> H2 + M', [3.143e+20, -1.806, 982.555066967],

338 efficiencies='H2:2.5 H2O:12.0 CO:1.9 CO2:3.8 Ar:0.0 He:0.0 ')

339

340 #Reaction 8:

341 reaction('H + H + Ar <=> H2 + Ar', [4.011e+19, -1.506, 982.555066967])

342

343 #Reaction 9:

344 reaction('H + H + He <=> H2 + He', [4.011e+19, -1.506, 982.555066967])

345

346 #Reaction 10:

347 three_body_reaction('O + O + M <=> O2 + M', [6.16524893053e+15, -0.5, 0.0],

348 efficiencies='H2:2.53 H2O:11.76 CO:1.88 CO2:3.82 Ar:0.0 He:0.0 ')

349
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350 #Reaction 11:

351 reaction('O + O + Ar <=> O2 + Ar', [1.88584084934e+13, 0.0, -1788.3])

352

353 #Reaction 12:

354 reaction('O + O + He <=> O2 + He', [1.88584084934e+13, 0.0, -1788.3])

355

356 #Reaction 13:

357 three_body_reaction('H + O + M <=> OH + M', [4.71460212335e+18, -1.0, 0.0],

358 efficiencies='H2:2.54 H2O:12.31 CO:1.92 CO2:3.77 He:0.75 Ar:0.75 ')

359

360 #Reaction 14:

361 three_body_reaction('OH + H + M <=> H2O + M', [1.483e+28, -3.798, 2706.52897774],

362 efficiencies='H2:3.0 O2:1.5 N2:2.0 He:1.1 CO:1.9 CO2:3.8 H2O:0.0 ')

363

364 #Reaction 15:

365 reaction('OH + H + H2O <=> H2O + H2O', [2.46e+26, -2.916, 2096.18418054])

366

367 #Reaction 16:

368 falloff_reaction('O2 + H (+ M) <=> HO2 (+ M)',

369 kf=[4.65e+12, 0.44, 0.0],

370 kf0=[6.37e+20, -1.72, 524.568],

371 efficiencies='H2:1.99 O2:0.78 H2O:14.0 CO:1.9 CO2:3.8 Ar:0.67

He:0.8 ',↪→
372 falloff = Troe(A = 0.5, T3 = 1e-30, T1 = 1e+30, T2 = 0))

373

374 #Reaction 17:

375 reaction('O2 + H2 <=> HO2 + H', [1341000.0, 2.314, 53420.1782336])

376

377 #Reaction 18:

378 reaction('HO2 + H <=> OH + OH', [7.08e+13, 0.0, 300.169572393])

379

380 #Reaction 19:

381 reaction('HO2 + O <=> OH + O2', [28500000000.0, 1.0, -724.309178184])

382

383 #Reaction 20:

384 reaction('O2 + H2O <=> HO2 + OH', [2.642e+20, -2.194, 70150.6296335],

385 options='duplicate')

386

387 #Reaction 21:

388 reaction('O2 + H2O <=> HO2 + OH', [1656000000.0, 1.533, 68259.5613274],

389 options='duplicate')

390

391 #Reaction 22:

392 reaction('HO2 + HO2 <=> H2O2 + O2', [1510.0, 2.6969, -3866.702],
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393 options='duplicate')

394

395 #Reaction 23:

396 reaction('HO2 + HO2 <=> H2O2 + O2', [2.5e+15, -1.461, -1469.7839],

397 options='duplicate')

398

399 #Reaction 24:

400 falloff_reaction('OH + OH (+ M) <=> H2O2 (+ M)',

401 kf=[5.03e+12, 0.058, -634.68854952],

402 kf0=[5.68e+25, -3.358, 576.325578995],

403 efficiencies='CO2:2.99 N2:2.01 He:0.4 H2O:10.0 ',

404 falloff = Troe(A = 0.55, T3 = 1e-30, T1 = 1e+30, T2 = 0))

405

406 #Reaction 25:

407 reaction('H2O2 + H <=> OH + H2O', [2.408856e+13, 0.0, 3974.0])

408

409 #Reaction 26:

410 reaction('H2O2 + H <=> H2 + HO2', [4.817712e+13, 0.0, 7948.0])

411

412 #Reaction 27:

413 reaction('O + H2O2 <=> HO2 + OH', [9635424.0, 2.0, 3974.0])

414

415 #Reaction 28:

416 reaction('OH + H2O2 <=> HO2 + H2O', [1.51e+14, -1.0553, -760.929866016],

417 options='duplicate')

418

419 #Reaction 29:

420 reaction('OH + H2O2 <=> HO2 + H2O', [2100.0, 2.9565, -1358.7675977],

421 options='duplicate')

422

423 #Reaction 30:

424 three_body_reaction('O3 + M <=> O2 + O + M', [4054000.0, 0.0, 24416.256],

425 efficiencies='Ar:0.51 O2:0.95 O3:2.5 O:4.0 ')

426

427 #Reaction 31:

428 reaction('O3 + O <=> O2 + O2', [4.817712e+12, 0.0, 4093.22])

429

430 #Reaction 32:

431 reaction('O3 + O <=> O2(^1Delta) + O2', [144531360000.0, 0.0, 4093.22])

432

433 #Reaction 33:

434 three_body_reaction('O + O + M <=> O2(^1Delta) + M', [7e+15, -1.0, 0.0],

435 efficiencies='O:28.86 O2:8.0 H2O:5.0 O3:8.0 N2:2.0 ')

436
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437 #Reaction 34:

438 three_body_reaction('O2(^1Delta) + M <=> O2 + M', [1806642.0, 0.0, 397.4],

439 efficiencies='Ar:0.01 He:0.01 CO2:0.01 H2O:3.3 H2:2.5 CO:5.67 O:43.33

H:21833333.33 N2:0.0 ')↪→
440

441 #Reaction 35:

442 three_body_reaction('O2(^1Delta) + O + M <=> O2 + O + M', [3.62661701796e+15,

0.0, 0.0],↪→
443 efficiencies='Ar:0.63 ')

444

445 #Reaction 36:

446 reaction('O2(^1Delta) + O3 <=> O2 + O2 + O', [3.1315128e+13, 0.0, 5643.08])

447

448 #Reaction 37:

449 reaction('O2(^1Delta) + O(1D) <=> O2 + O', [6.03e+12, 0.0, 0.0])

450

451 #Reaction 38:

452 reaction('O2 + O(1D) <=> O2(^1Delta) + O', [1.9270848e+13, 0.0, -133.129])

453

454 #Reaction 39:

455 three_body_reaction('O(1D) + M <=> O + M', [481771200000.0, 0.0, 0.0],

456 efficiencies='O2:5.83 O:10.0 H2O:3.0 N2:26.15 ')

457

458 #Reaction 40:

459 reaction('O(1D) + O3 <=> O2 + O + O', [7.226568e+13, 0.0, 0.0])

460

461 #Reaction 41:

462 reaction('O(1D) + O3 <=> O2 + O2', [7.226568e+13, 0.0, 0.0])

463

464 #Reaction 42:

465 reaction('H2 + O2(^1Delta) <=> H + HO2', [616000.0, 2.335, 31097.5676999])

466

467 #Reaction 43:

468 reaction('O2(^1Delta) + H <=> OH + O', [349886334.0, 1.45, 4510.49])

469

470 #Reaction 44:

471 three_body_reaction('H + O2(^1Delta) + M <=> HO2 + M', [9890000000.0, 2.03,

3360.017],↪→
472 efficiencies='')

473

474 #Reaction 45:

475 reaction('HO2 + OH <=> H2O + O2(^1Delta)', [109300.0, 1.707, 12542.0852998])

476

477 #Reaction 46:
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478 reaction('OH + O2(^1Delta) <=> O + HO2', [1.3e+13, 0.0, 34019.2182045])

479

480 #Reaction 47:

481 reaction('O3 + H <=> OH + O2', [8.430996e+13, 0.0, 933.89])

482

483 #Reaction 48:

484 reaction('OH + O3 <=> HO2 + O2', [1.7e-12, 0.0, 1867.78])

485

486 #Reaction 49:

487 reaction('HO2 + O3 <=> OH + O2 + O2', [0.000584749794, 4.57, -1376.991])

488

489 #Reaction 50:

490 reaction('H + HO2 <=> H2O + O(1D)', [2.5e+12, 0.0, 300.169572393])

491

492 #Reaction 51:

493 reaction('O(1D) + H2 <=> OH + H', [8.129889e+13, 0.0, 0.0])

494

495 #Reaction 52:

496 reaction('O(1D) + H2O <=> OH + OH', [1.0237638e+14, 0.0, -71.532])

497

498 #Reaction 53:

499 three_body_reaction('O + H + M <=> OH* + M', [1.5e+13, 0.0, 5974.52960908],

500 efficiencies='O2:0.4 Ar:0.35 N2:0.4 H2O:6.5 ')

501

502 #Reaction 54:

503 three_body_reaction('OH* + M <=> OH + M', [21470000000.0, 0.5, 2061.1643971],

504 efficiencies='O2:39.12 N2:5.03 H2O:137.87 H2:16.49 OH:69.86 H:69.86

O:69.86 ')↪→
505

506 #Reaction 55:

507 reaction('OH* + H2 <=> H2O + H', [2.6e+12, 0.5, -444.250967142])

508

509 #Reaction 56:

510 reaction('OH* + O2 <=> O3 + H', [252000000000.0, 0.5, -482.272446312])

511

512 #Reaction 57:

513 reaction('OH* + O2 <=> HO2 + O', [1.008e+12, 0.5, -482.272446312])

514

515 #Reaction 58:

516 reaction('OH* + H2O <=> H2O2 + H', [2.96e+12, 0.5, -861.486672768])
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D.4 DynamicMech151203 - m00000010.cti

Source Code D.4: m00000010.cti
1 #-------------------------------------------------------------------------------

2 #HDF5

3 # CTI Generated : 2017-12-02 01:06:32

4 #-------------------------------------------------------------------------------

5

6 units(length='cm', time='s', quantity='mol', act_energy='cal/mol')

7

8

9 ideal_gas(name='gas',

10 elements="Ar C H He N O",

11 species="""Ar He N2 C(GR) CO

12 CO2 H H2 O O2

13 OH H2O HO2 H2O2 O2(^1Delta)

14 O(1D) O3 OH*""",

15 reactions='all',

16 initial_state=state(temperature= 298.15, pressure= 100000.0))

17

18 #-------------------------------------------------------------------------------

19 #Species data

20 #-------------------------------------------------------------------------------

21

22 species(name='Ar',

23 atoms='Ar:1',

24 thermo=(NASA([300.0, 1000.0],

25 [2.5, 0.0, 0.0,

26 0.0, 0.0, -745.375,

27 4.366001]),

28 NASA([1000.0, 5000.0],

29 [2.5, 0.0, 0.0,

30 0.0, 0.0, -745.375,

31 4.366001])),

32 transport = gas_transport(

33 geom = "atom",

34 well_depth = 136.5,

35 diam = 3.33))

36

37 species(name='He',

38 atoms='He:1',

39 thermo=(NASA([300.0, 1000.0],

40 [2.5, 0.0, 0.0,

41 0.0, 0.0, -745.375,
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42 0.9153488]),

43 NASA([1000.0, 5000.0],

44 [2.5, 0.0, 0.0,

45 0.0, 0.0, -745.375,

46 0.9153488])),

47 transport = gas_transport(

48 geom = "atom",

49 well_depth = 10.2,

50 diam = 2.576))

51

52 species(name='N2',

53 atoms='N:2',

54 thermo=(NASA([300.0, 1000.0],

55 [3.298677, 0.00140824, -3.96322e-06,

56 5.64152e-09, -2.44486e-12, -1020.9,

57 3.950372]),

58 NASA([1000.0, 5000.0],

59 [2.92664, 0.001487977, -5.68476e-07,

60 1.0097e-10, -6.75335e-15, -922.7977,

61 5.980528])),

62 transport = gas_transport(

63 geom = "linear",

64 well_depth = 97.53,

65 diam = 3.621,

66 polar = 1.76,

67 rot_relax = 4.0))

68

69 species(name='C(GR)',

70 atoms='C:1',

71 thermo=(NASA([200.0, 1000.0],

72 [-0.31087, 0.0044035, 1.9039e-06,

73 -6.3855e-09, 2.9896e-12, -108.6508,

74 1.1138]),

75 NASA([1000.0, 5000.0],

76 [1.4557, 0.0017171, -6.9758e-07,

77 1.3528e-10, -9.6765e-15, -695.128,

78 -8.5257])),

79 transport = gas_transport(

80 geom = "atom",

81 well_depth = 71.4,

82 diam = 3.298))

83

84 species(name='CO',

85 atoms='C:1 O:1',
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86 thermo=(NASA([300.0, 1000.0],

87 [3.262452, 0.001511941, -3.88176e-06,

88 5.58194e-09, -2.47495e-12, -14310.54,

89 4.848897]),

90 NASA([1000.0, 5000.0],

91 [3.025078, 0.001442689, -5.63083e-07,

92 1.01858e-10, -6.91095e-15, -14268.35,

93 6.108218])),

94 transport = gas_transport(

95 geom = "linear",

96 well_depth = 98.1,

97 diam = 3.65,

98 polar = 1.95,

99 rot_relax = 1.8))

100

101 species(name='CO2',

102 atoms='C:1 O:2',

103 thermo=(NASA([300.0, 1000.0],

104 [2.275725, 0.009922072, -1.04091e-05,

105 6.86669e-09, -2.11728e-12, -48373.14,

106 10.18849]),

107 NASA([1000.0, 5000.0],

108 [4.453623, 0.003140169, -1.27841e-06,

109 2.394e-10, -1.66903e-14, -48966.96,

110 -0.9553959])),

111 transport = gas_transport(

112 geom = "linear",

113 well_depth = 244.0,

114 diam = 3.763,

115 polar = 2.65,

116 rot_relax = 2.1))

117

118 species(name='H',

119 atoms='H:1',

120 thermo=(NASA([300.0, 1000.0],

121 [2.5, 0.0, 0.0,

122 0.0, 0.0, 25471.63,

123 -0.4601176]),

124 NASA([1000.0, 5000.0],

125 [2.5, 0.0, 0.0,

126 0.0, 0.0, 25471.63,

127 -0.4601176])),

128 transport = gas_transport(

129 geom = "atom",
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130 well_depth = 145.0,

131 diam = 2.05))

132

133 species(name='H2',

134 atoms='H:2',

135 thermo=(NASA([300.0, 1000.0],

136 [3.298124, 0.000824944, -8.14302e-07,

137 -9.47543e-11, 4.13487e-13, -1012.521,

138 -3.294094]),

139 NASA([1000.0, 5000.0],

140 [2.991423, 0.000700064, -5.63383e-08,

141 -9.23158e-12, 1.58275e-15, -835.034,

142 -1.35511])),

143 transport = gas_transport(

144 geom = "linear",

145 well_depth = 38.0,

146 diam = 2.92,

147 polar = 0.79,

148 rot_relax = 280.0))

149

150 species(name='O',

151 atoms='O:1',

152 thermo=(NASA([300.0, 1000.0],

153 [2.946429, -0.001638166, 2.42103e-06,

154 -1.60284e-09, 3.8907e-13, 29147.64,

155 2.963995]),

156 NASA([1000.0, 5000.0],

157 [2.54206, -2.75506e-05, -3.1028e-09,

158 4.55107e-12, -4.36805e-16, 29230.8,

159 4.920308])),

160 transport = gas_transport(

161 geom = "atom",

162 well_depth = 80.0,

163 diam = 2.75))

164

165 species(name='O2',

166 atoms='O:2',

167 thermo=(NASA([300.0, 1000.0],

168 [3.212936, 0.001127486, -5.75615e-07,

169 1.31388e-09, -8.76855e-13, -1005.249,

170 6.034738]),

171 NASA([1000.0, 5000.0],

172 [3.697578, 0.00061352, -1.25884e-07,

173 1.77528e-11, -1.13644e-15, -1233.93,
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174 3.189166])),

175 transport = gas_transport(

176 geom = "linear",

177 well_depth = 107.4,

178 diam = 3.458,

179 polar = 1.6,

180 rot_relax = 3.8))

181

182 species(name='OH',

183 atoms='H:1 O:1',

184 thermo=(NASA([200.0, 1000.0],

185 [4.12530561, -0.003225449, 6.52765e-06,

186 -5.79854e-09, 2.06237e-12, 3346.30913,

187 -0.69043296]),

188 NASA([1000.0, 6000.0],

189 [2.86472886, 0.001056504, -2.59083e-07,

190 3.05219e-11, -1.33196e-15, 3683.62875,

191 5.70164073])),

192 transport = gas_transport(

193 geom = "linear",

194 well_depth = 80.0,

195 diam = 2.75))

196

197 species(name='H2O',

198 atoms='H:2 O:1',

199 thermo=(NASA([300.0, 1000.0],

200 [3.386842, 0.003474982, -6.3547e-06,

201 6.96858e-09, -2.50659e-12, -30208.11,

202 2.590233]),

203 NASA([1000.0, 5000.0],

204 [2.672146, 0.003056293, -8.73026e-07,

205 1.201e-10, -6.39162e-15, -29899.21,

206 6.862817])),

207 transport = gas_transport(

208 geom = "nonlinear",

209 well_depth = 572.4,

210 diam = 2.605,

211 dipole = 1.844,

212 rot_relax = 4.0))

213

214 species(name='HO2',

215 atoms='H:1 O:2',

216 thermo=(NASA([200.0, 1000.0],

217 [4.30179801, -0.004749121, 2.11583e-05,
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218 -2.42764e-08, 9.29225e-12, 294.80804,

219 3.71666245]),

220 NASA([1000.0, 3500.0],

221 [4.0172109, 0.00223982, -6.33658e-07,

222 1.14246e-10, -1.07909e-14, 111.856713,

223 3.78510215])),

224 transport = gas_transport(

225 geom = "nonlinear",

226 well_depth = 107.4,

227 diam = 3.458,

228 rot_relax = 1.0))

229

230 species(name='H2O2',

231 atoms='H:2 O:2',

232 thermo=(NASA([300.0, 1000.0],

233 [3.388754, 0.006569226, -1.48501e-07,

234 -4.62581e-09, 2.47152e-12, -17663.15,

235 6.785363]),

236 NASA([1000.0, 5000.0],

237 [4.573167, 0.004336136, -1.47469e-06,

238 2.3489e-10, -1.43165e-14, -18006.96,

239 0.501137])),

240 transport = gas_transport(

241 geom = "nonlinear",

242 well_depth = 107.4,

243 diam = 3.458,

244 rot_relax = 3.8))

245

246 species(name='O2(^1Delta)',

247 atoms='O:2',

248 thermo=(NASA([200.0, 1000.0],

249 [3.78535371, -0.0032192854, 1.12323443e-05,

250 -1.17254068e-08, 4.17659585e-12, 10292.2572,

251 3.27320239]),

252 NASA([1000.0, 6000.0],

253 [3.45852381, 0.00104045351, -2.79664041e-07,

254 3.11439672e-11, -8.55656058e-16, 10222.9063,

255 4.15264119])),

256 transport = gas_transport(

257 geom = "linear",

258 well_depth = 107.4,

259 diam = 3.458,

260 polar = 1.6,

261 rot_relax = 3.8))
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262

263 species(name='O(1D)',

264 atoms='O:1',

265 thermo=(NASA([200.0, 1000.0],

266 [2.49993786, 1.71935346e-07, -3.45215267e-10,

267 3.71342028e-13, -1.70964494e-16, 51996.5317,

268 4.61684555]),

269 NASA([1000.0, 6000.0],

270 [2.49368475, 1.37617903e-05, -1.00401058e-08,

271 2.76012182e-12, -2.01597513e-16, 51998.6304,

272 4.6505095])),

273 transport = gas_transport(

274 geom = "atom",

275 well_depth = 80.0,

276 diam = 2.75))

277

278 species(name='O3',

279 atoms='O:3',

280 thermo=(NASA([200.0, 1000.0],

281 [3.4074, 0.0020538, 1.3849e-05,

282 -2.2331e-08, 9.7607e-12, 15864.4979,

283 8.2825]),

284 NASA([1000.0, 6000.0],

285 [12.3303, -0.011932, 7.9874e-06,

286 -1.7719e-09, 1.2608e-13, 12675.5831,

287 -40.8823])),

288 transport = gas_transport(

289 geom = "nonlinear",

290 well_depth = 180.0,

291 diam = 4.1,

292 rot_relax = 2.0))

293

294 species(name='OH*',

295 atoms='H:1 O:1',

296 thermo=(NASA([300.0, 1000.0],

297 [3.46084428, 0.000501872172, -2.00254474e-06,

298 3.18901984e-09, -1.35451838e-12, 50734.9466,

299 1.73976415]),

300 NASA([1000.0, 6000.0],

301 [2.7558292, 0.00139848756, -4.19428493e-07,

302 6.33453282e-11, -3.56042218e-15, 50975.1756,

303 5.62581429])),

304 transport = gas_transport(

305 geom = "linear",
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306 well_depth = 80.0,

307 diam = 2.75))

308

309

310 #-------------------------------------------------------------------------------

311 #Reaction data

312 #-------------------------------------------------------------------------------

313

314 #Reaction 1:

315 reaction('O2 + H <=> OH + O', [1.0426e+14, 0.0, 15309.835])

316

317 #Reaction 2:

318 reaction('H2 + O <=> OH + H', [1.1163843132e+15, 0.0, 19174.55],

319 options='duplicate')

320

321 #Reaction 3:

322 reaction('H2 + O <=> OH + H', [4.8478829214e+12, 0.0, 7948.0],

323 options='duplicate')

324

325 #Reaction 4:

326 reaction('H2 + OH <=> H2O + H', [189661277.16, 1.51, 3429.562])

327

328 #Reaction 5:

329 reaction('OH + OH <=> H2O + O', [2.83e+13, -0.764, -460.560180575],

330 options='duplicate')

331

332 #Reaction 6:

333 reaction('OH + OH <=> H2O + O', [12600.0, 2.5308, -1622.91682141],

334 options='duplicate')

335

336 #Reaction 7:

337 three_body_reaction('H + H + M <=> H2 + M', [3.143e+20, -1.806, 982.555066967],

338 efficiencies='H2:2.5 H2O:12.0 CO:1.9 CO2:3.8 Ar:0.0 He:0.0 ')

339

340 #Reaction 8:

341 reaction('H + H + Ar <=> H2 + Ar', [4.011e+19, -1.506, 982.555066967])

342

343 #Reaction 9:

344 reaction('H + H + He <=> H2 + He', [4.011e+19, -1.506, 982.555066967])

345

346 #Reaction 10:

347 three_body_reaction('O + O + M <=> O2 + M', [3.56641517546e+15, -0.5, 0.0],

348 efficiencies='H2:2.53 H2O:11.76 CO:1.88 CO2:3.82 Ar:0.0 He:0.0 ')

349



APPENDIX D. H2/O2 MECHANISMS 173

350 #Reaction 11:

351 reaction('O + O + Ar <=> O2 + Ar', [1.090886399e+13, 0.0, -1788.3])

352

353 #Reaction 12:

354 reaction('O + O + He <=> O2 + He', [1.090886399e+13, 0.0, -1788.3])

355

356 #Reaction 13:

357 three_body_reaction('H + O + M <=> OH + M', [1.56619082538e+18, -1.0, 0.0],

358 efficiencies='H2:2.54 H2O:12.31 CO:1.92 CO2:3.77 He:0.75 Ar:0.75 ')

359

360 #Reaction 14:

361 three_body_reaction('OH + H + M <=> H2O + M', [1.483e+28, -3.798, 2706.52897774],

362 efficiencies='H2:3.0 O2:1.5 N2:2.0 He:1.1 CO:1.9 CO2:3.8 H2O:0.0 ')

363

364 #Reaction 15:

365 reaction('OH + H + H2O <=> H2O + H2O', [2.46e+26, -2.916, 2096.18418054])

366

367 #Reaction 16:

368 falloff_reaction('O2 + H (+ M) <=> HO2 (+ M)',

369 kf=[3.6934e+12, 0.44, 0.0],

370 kf0=[5.0595e+20, -1.72, 524.568],

371 efficiencies='H2:1.99 O2:0.78 H2O:14.0 CO:1.9 CO2:3.8 Ar:0.67

He:0.8 ',↪→
372 falloff = Troe(A = 0.5, T3 = 1e-30, T1 = 1e+30, T2 = 0))

373

374 #Reaction 17:

375 reaction('O2 + H2 <=> HO2 + H', [823890.0, 2.314, 53420.1782336])

376

377 #Reaction 18:

378 reaction('HO2 + H <=> OH + OH', [1.1333e+14, 0.0, 300.169572393])

379

380 #Reaction 19:

381 reaction('HO2 + O <=> OH + O2', [24613000000.0, 1.0, -724.309178184])

382

383 #Reaction 20:

384 reaction('O2 + H2O <=> HO2 + OH', [2.642e+20, -2.194, 70150.6296335],

385 options='duplicate')

386

387 #Reaction 21:

388 reaction('O2 + H2O <=> HO2 + OH', [1656000000.0, 1.533, 68259.5613274],

389 options='duplicate')

390

391 #Reaction 22:

392 reaction('HO2 + HO2 <=> H2O2 + O2', [1510.0, 2.6969, -3866.702],



APPENDIX D. H2/O2 MECHANISMS 174

393 options='duplicate')

394

395 #Reaction 23:

396 reaction('HO2 + HO2 <=> H2O2 + O2', [2.5e+15, -1.461, -1469.7839],

397 options='duplicate')

398

399 #Reaction 24:

400 falloff_reaction('OH + OH (+ M) <=> H2O2 (+ M)',

401 kf=[5.03e+12, 0.058, -634.68854952],

402 kf0=[5.68e+25, -3.358, 576.325578995],

403 efficiencies='CO2:2.99 N2:2.01 He:0.4 H2O:10.0 ',

404 falloff = Troe(A = 0.55, T3 = 1e-30, T1 = 1e+30, T2 = 0))

405

406 #Reaction 25:

407 reaction('H2O2 + H <=> OH + H2O', [3.9240866454e+13, 0.0, 3974.0])

408

409 #Reaction 26:

410 reaction('H2O2 + H <=> H2 + HO2', [9.801635064e+13, 0.0, 7948.0])

411

412 #Reaction 27:

413 reaction('O + H2O2 <=> HO2 + OH', [5728380.0108, 2.0, 3974.0])

414

415 #Reaction 28:

416 reaction('OH + H2O2 <=> HO2 + H2O', [1.51e+14, -1.0553, -760.929866016],

417 options='duplicate')

418

419 #Reaction 29:

420 reaction('OH + H2O2 <=> HO2 + H2O', [2100.0, 2.9565, -1358.7675977],

421 options='duplicate')

422

423 #Reaction 30:

424 three_body_reaction('O3 + M <=> O2 + O + M', [3332100.0, 0.0, 24416.256],

425 efficiencies='Ar:0.51 O2:0.95 O3:2.5 O:4.0 ')

426

427 #Reaction 31:

428 reaction('O3 + O <=> O2 + O2', [5.5400074716e+12, 0.0, 4093.22])

429

430 #Reaction 32:

431 reaction('O3 + O <=> O2(^1Delta) + O2', [433594080000.0, 0.0, 4093.22])

432

433 #Reaction 33:

434 three_body_reaction('O + O + M <=> O2(^1Delta) + M', [2.331e+15, -1.0, 0.0],

435 efficiencies='O:28.86 O2:8.0 H2O:5.0 O3:8.0 N2:2.0 ')

436
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437 #Reaction 34:

438 three_body_reaction('O2(^1Delta) + M <=> O2 + M', [1400809.9854, 0.0, 397.4],

439 efficiencies='Ar:0.0 He:0.0 CO2:0.01 H2O:3.3 H2:2.5 CO:5.67 O:43.33

H:21830531.79 N2:0.0 ')↪→
440

441 #Reaction 35:

442 three_body_reaction('O2(^1Delta) + O + M <=> O2 + O + M', [3.62661701796e+15,

0.0, 0.0],↪→
443 efficiencies='Ar:0.63 ')

444

445 #Reaction 36:

446 reaction('O2(^1Delta) + O3 <=> O2 + O2 + O', [3.1315128e+13, 0.0, 5643.08])

447

448 #Reaction 37:

449 reaction('O2(^1Delta) + O(1D) <=> O2 + O', [6.03e+13, 0.0, 0.0])

450

451 #Reaction 38:

452 reaction('O2 + O(1D) <=> O2(^1Delta) + O', [1.9270848e+13, 0.0, -133.129])

453

454 #Reaction 39:

455 three_body_reaction('O(1D) + M <=> O + M', [96354240000.0, 0.0, 0.0],

456 efficiencies='O2:5.83 O:10.0 H2O:3.0 N2:26.15 ')

457

458 #Reaction 40:

459 reaction('O(1D) + O3 <=> O2 + O + O', [7.226568e+13, 0.0, 0.0])

460

461 #Reaction 41:

462 reaction('O(1D) + O3 <=> O2 + O2', [7.226568e+13, 0.0, 0.0])

463

464 #Reaction 42:

465 reaction('H2 + O2(^1Delta) <=> H + HO2', [616000.0, 2.335, 31097.5676999])

466

467 #Reaction 43:

468 reaction('O2(^1Delta) + H <=> OH + O', [146277780.6, 1.45, 4510.49])

469

470 #Reaction 44:

471 three_body_reaction('H + O2(^1Delta) + M <=> HO2 + M', [95016000000.0, 2.03,

3360.017],↪→
472 efficiencies='')

473

474 #Reaction 45:

475 reaction('HO2 + OH <=> H2O + O2(^1Delta)', [327900.0, 1.707, 12542.0852998])

476

477 #Reaction 46:
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478 reaction('OH + O2(^1Delta) <=> O + HO2', [5.8552e+12, 0.0, 34019.2182045])

479

480 #Reaction 47:

481 reaction('O3 + H <=> OH + O2', [8.430996e+13, 0.0, 933.89])

482

483 #Reaction 48:

484 reaction('OH + O3 <=> HO2 + O2', [1.7e-12, 0.0, 1867.78])

485

486 #Reaction 49:

487 reaction('HO2 + O3 <=> OH + O2 + O2', [0.00036547163232, 4.57, -1376.991])

488

489 #Reaction 50:

490 reaction('H + HO2 <=> H2O + O(1D)', [1.9532e+12, 0.0, 300.169572393])

491

492 #Reaction 51:

493 reaction('O(1D) + H2 <=> OH + H', [8.129889e+13, 0.0, 0.0])

494

495 #Reaction 52:

496 reaction('O(1D) + H2O <=> OH + OH', [1.0237638e+14, 0.0, -71.532])

497

498 #Reaction 53:

499 three_body_reaction('O + H + M <=> OH* + M', [1.2566e+13, 0.0, 5974.52960908],

500 efficiencies='O2:0.4 Ar:0.35 N2:0.4 H2O:6.5 ')

501

502 #Reaction 54:

503 three_body_reaction('OH* + M <=> OH + M', [21470000000.0, 0.5, 2061.1643971],

504 efficiencies='O2:39.12 N2:5.03 H2O:137.87 H2:16.49 OH:69.86 H:69.86

O:69.86 ')↪→
505

506 #Reaction 55:

507 reaction('OH* + H2 <=> H2O + H', [2.6e+12, 0.5, -444.250967142])

508

509 #Reaction 56:

510 reaction('OH* + O2 <=> O3 + H', [361410000000.0, 0.5, -482.272446312])

511

512 #Reaction 57:

513 reaction('OH* + O2 <=> HO2 + O', [672310000000.0, 0.5, -482.272446312])

514

515 #Reaction 58:

516 reaction('OH* + H2O <=> H2O2 + H', [6.5803e+12, 0.5, -861.486672768])
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Appendix E

H2/O2 QOIs and simulation results

H2/O2 QOIs

Table E.1 - Experimental shock-tube ignition-delay QOIs.

Table E.2 - Experimental flame-speed QOIs.

Ignition-delay simulations

Table E.3 Comparison of ignition-delay results for Mechanism1, Mechanism2, Mechanism3,
and DynamicMech151203.

Flame simulations

Table E.4 Comparison of flame-speed results (mixture-averaged transport) with
CloudFlame-Cantera and CHEMKIN-PRO for Mechanism1.

Table E.5 Comparison of the four reaction mechanisms prediction of the flame-speed QOIs
vs. experimental data.
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E.1 H2/O2 QOIs

Table E.1: Experimental shock-tube ignition-delay QOIs.

2007 0.0426 0.0201 0.0903 a00000451*
0.17 0.32 1768 0.0756 0.0365 0.1565 a00000452* [167]

1580 0.1341 0.0637 0.2825 a00000453*
2224 0.0662 0.0460 0.0951 a00000448*

0.50 0.34 1969 0.1063 0.0750 0.1507 a00000449* [167]
1767 0.1709 0.1184 0.2466 a00000450*
2090 0.0461 0.0276 0.0768 a00000445*

1.50 0.33 1838 0.0829 0.0511 0.1346 a00000446* [167]
1640 0.1493 0.0912 0.2444 a00000447*
1412 0.1392 0.0840 0.2306 a00000382*

0.39 2.18 1318 0.2096 0.1280 0.3433 a00000383* [168]
1237 0.3157 0.1916 0.5201 a00000384*
1311 0.2494 0.1131 0.5500 a00000385

0.75 2.10 1266 0.3113 0.1423 0.6808 a00000386* [168]
1223 0.3885 0.1740 0.8676 a00000387*
1299 0.3125 0.1338 0.7296 a00000454*

1.00 2.04 1257 0.3659 0.1626 0.8234 a00000455* [168]
1218 0.4284 0.1916 0.9579 a00000456*
1454 0.0273 0.0192 0.0390 a00000370*

1.00 1.94 1269 0.0616 0.0438 0.0866 a00000371* [169]
1126 0.1386 0.0988 0.1946 a00000372*
1352 0.0498 0.0308 0.0806 a00000373

1.00 0.71 1180 0.0992 0.0621 0.1585 a00000374 [170]
1047 0.1977 0.1234 0.3168 a00000375

1161 0.2021 0.0880 0.4637 a00000460*
1.00 1.45 1027 0.4783 0.2087 1.0961 a00000461* [171]

921 1.1324 0.4753 2.6977 a00000462*
1023 0.2167 0.0997 0.4711 a00000463*

1.00 2.35 974 0.4857 0.2323 1.0156 a00000464 [171]
930 1.0888 0.5212 2.2747 a00000465

999 1.0014 0.7424 1.3508 a00000388

0.50 1.05 972 1.4996 1.1135 2.0195 a00000389 [81]
947 2.2456 1.6521 3.0525 a00000390

1015 0.7533 0.4799 1.1826 a00000391

0.50 3.99 995 1.4457 0.9244 2.2609 a00000392* [81]
976 2.7743 1.7571 4.3804 a00000393*
1093 0.8912 0.7036 1.1288 a00000394

0.50 15.86 1067 1.5758 1.2490 1.9882 a00000395 [81]
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Equiv ratio Φ P [atm] T [K] τign [ms]
Uncertainty

Bounds of τign
PrIMe ID Ref

1042 2.7864 2.1811 3.5596 a00000396

1411 0.1112 0.0760 0.1628 a00000415*
1.00 1.01 1197 0.2988 0.2062 0.4329 a00000416 [81]

1039 0.8025 0.5445 1.1829 a00000417

1103 0.1333 0.0563 0.3153 a00000418

1.00 3.96 1052 0.3919 0.1708 0.8992 a00000419 [81]
1005 1.1528 0.4936 2.6926 a00000420

1174 0.0505 0.0359 0.0711 a00000421

1.00 16.39 1115 0.2506 0.1786 0.3517 a00000422 [81]
1063 1.2436 0.8793 1.7590 a00000423*
1221 0.0739 0.0204 0.2675 a00000439*

0.10 3.69 1108 0.3037 0.0866 1.0650 a00000440 [172]
1014 1.2486 0.3554 4.3863 a00000441*
1372 0.0410 0.0300 0.0560 a00000427

0.10 1.01 1162 0.1455 0.1085 0.1950 a00000428 [172]
1007 0.5158 0.3859 0.6894 a00000429

1074 0.1147 0.0471 0.2792 a00000430

0.10 4.17 1022 0.4968 0.2112 1.1687 a00000431* [172]
975 2.1530 0.9012 5.1438 a00000432*
1113 0.3755 0.1473 0.9572 a00000433*

0.10 17.78 1055 1.0493 0.4138 2.6609 a00000434 [172]
1003 2.9324 1.1114 7.7368 a00000435

1608 0.0810 0.0279 0.2350 a00000436

0.10 0.94 1299 0.2626 0.0930 0.7416 a00000437* [172]
1090 0.8520 0.3000 2.4195 a00000438

1192 0.1241 0.0579 0.2660 a00000442

0.10 16.31 1136 0.5109 0.2456 1.0629 a00000443* [172]
1084 2.1028 1.0091 4.3820 a00000444*
1534 0.0811 0.0509 0.1292 a00000397

0.50 0.99 1262 0.2668 0.1709 0.4167 a00000398 [172]
1072 0.8779 0.5654 1.3630 a00000399

1183 0.0939 0.0417 0.2116 a00000400

0.50 4.08 1118 0.3172 0.1446 0.6960 a00000401* [172]
1059 1.0718 0.4861 2.3631 a00000402*
1192 0.1853 0.1101 0.3117 a00000403

0.50 15.57 1144 0.5729 0.3427 0.9576 a00000404 [172]
1101 1.7710 1.0402 3.0153 a00000405

1623 0.0849 0.0280 0.2577 a00000406*
3.99 1.06 1308 0.2522 0.0883 0.7208 a00000407 [172]
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Equiv ratio Φ P [atm] T [K] τign [ms]
Uncertainty

Bounds of τign
PrIMe ID Ref

1096 0.7491 0.2651 2.1165 a00000408

1297 0.0565 0.0136 0.2351 a00000409

3.99 3.98 1164 0.1954 0.0483 0.7897 a00000410 [172]
1057 0.6756 0.1623 2.8127 a00000411*
1143 0.1697 0.0979 0.2941 a00000412

3.99 14.87 1069 0.7237 0.4231 1.2381 a00000413 [172]
1004 3.0870 1.7975 5.3016 a00000414

1009 0.2344 0.1048 0.5244 a00000457

0.42 3.28 972 0.8252 0.3762 1.8102 a00000458* [100]
938 2.9051 1.2947 6.5184 a00000459*
1062 0.3217 0.1535 0.6742 a00000376

1.00 3.56 1012 1.0194 0.4931 2.1072 a00000377* [100]
966 3.2307 1.5479 6.7428 a00000378*
1296 0.2278 0.1284 0.4041 a00000466

1.00 1.00 1184 0.3902 0.2287 0.6657 a00000467 [173]
1089 0.6685 0.3927 1.1379 a00000468

1564 0.1707 0.1630 0.1787 a00000472

1.03 1.00 1411 0.3018 0.2893 0.3149 a00000473 [173]
1286 0.5337 0.5118 0.5566 a00000474*
1386 0.1634 0.1407 0.1898 a00000469*

1.47 1.00 1280 0.2403 0.2089 0.2763 a00000470* [173]
1190 0.3532 0.3071 0.4062 a00000471*
1270 0.0263 0.0230 0.0300 a00000361

1.00 33.00 1242 0.0592 0.0519 0.0676 a00000362 [174]
1215 0.1337 0.1168 0.1529 a00000363

1714 0.0235 0.0176 0.0315 a00000364

1.00 64.00 1578 0.0423 0.0320 0.0558 a00000365 [174]
1461 0.0760 0.0569 0.1013 a00000366

1327 0.1031 0.0866 0.1226 a00000367

1.00 64.00 1311 0.1438 0.1220 0.1695 a00000368* [174]
1295 0.2007 0.1695 0.2376 a00000369*
1566 0.0668 0.0283 0.1576 a00000424

0.25 1.32 1365 0.1137 0.0502 0.2575 a00000425 [175]
1210 0.1933 0.0856 0.4366 a00000426*
1045 0.5000 0.3152 0.7931 a00000379

2.00 5.00 1016 1.3800 0.8768 2.1720 a00000380 [176]
990 3.8100 2.3867 6.0823 a00000381

* Indicates target was not included in final, reduced dataset.
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Table E.2: Experimental flame-speed QOIs.

Φ
Pressure

[atm]
Flame speed

[cm/s]
PrIMe ID Ref

0.6 1 81.88 a00000476

0.85 10 45.3 a00000483

0.85 15 26.9 a00000482

0.85 20 18.35 a00000481

1.5 20 80.9 a00000479 [177]
1.65 1 280.21 a00000477

2 20 64.05 a00000480

4 1 165.29 a00000478

2.5 15 28.7 a00000484

2.5 25 27.7 a00000485
[98]

E.2 Ignition-delay Simulations
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E.3 Flame Simulations

Table E.4: Comparison of flame speed results (mixture-averaged transport) with
CloudFlame-Cantera and CHEMKIN-PRO for Mechanism1.

Target
PrIMe ID

Preferred Key
Pressure

[atm]
Φ

Mechanism1
CLOUDFLAME-CANTERA

[cm/s]

Mechanism1
CHEMKIN PRO

[cm/s]
a00000476 H2 F - 476 1 0.6 117.41 117.86
a00000477 H2 F - 477 1 1.65 324.76 329.36
a00000478 H2 F - 478 1 4 125.08 126.03
a00000479 H2 F - 479 20 1.5 94.83 94.59
a00000480 H2 F - 480 20 2 73.74 73.29
a00000481 H2 F - 481 20 0.85 36.76 36.79
a00000482 H2 F - 482 15 0.85 47.32 47.30
a00000483 H2 F - 483 10 0.85 61.58 61.57
a00000484 H2 F - 484 14 2.5 38.16 37.95
a00000485 H2 F - 485 25 2.5 37.84 37.61

Table E.5: Comparison of the four reaction mechanisms prediction of the flame-speed QOIs
vs. experimental data. `2-norm difference between model prediction (using the nominal
model parameter) to the experimental data.

||M(xnom)− Sl||2
Mechanism 1 12.29
Mechanism 2 18.67
Mechanism 3 16.78
DynamicMech151203 67.30
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Appendix F

Char oxidation QOIs and predictions

Experiments conducted in a laminar-entrained flow reactor at Sandia National Laboratories
[111] were used as QOIs for the char oxidation study of Chapter 6). Gas temperature profiles
and gas velocity profiles used to guide simulations are available in [67]. Proximate analysis
of the prepared chars used in the following experimental cases are found in Table F.2.

Table F.1 reports a list of the experimental cases investigated in this work, along with
corresponding gas flow compositions, initial particle size bins, sampling heights, and PrIMe
database IDs. Heights which were sampled more than once are identified by a repeated
height above the burner value.

Table F.1: List of experimental cases with corresponding gas flow compositions, initial
particle size bins, sampling heights (above the burner) and PrIMe database IDs

Gas flow composition
Exp case

yO2
yH2O

yCO2
yN2

Particle size
bin [µm]

Height above Burner [cm] PrIMe ID

1 0.24 0.14 0.62 0.00 53-63
3.81, 5.08, 6.35, 7.62,

8.89, 10.16, 11.43
x00001418

2 0.24 0.14 0.62 0.00 63-75
3.81, 5.08, 6.35, 7.62,

8.89, 10.16, 11.43
x00001419

3 0.24 0.14 0.62 0.00 75-90
5.08, 7.62, 10.16, 12.7,

15.24
x00001420

4 0.24 0.14 0.62 0.00 90-106
5.08, 7.62, 10.16, 12.7,

15.24, 17.78
x00001421

5 0.24 0.14 0.62 0.00 106-125
7.62, 10.16, 12.7, 15.24,

17.78, 20.32
x00001422

6 0.24 0.14 0.62 0.00 125-150 7.62, 12.7, 17.78, 22.86 x00001423

7 0.36 0.10 0.54 0.00 53-63
2.54, 3.81, 5.08, 6.35,

7.62
x00001436

8 0.36 0.10 0.54 0.00 63-75
3.81, 5.08, 6.35, 7.62,

8.89
x00001437
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Table F.1 Continued From Previous Page
Gas flow composition

Exp case
yO2

yH2O
yCO2

yN2

Particle size
bin [µm]

Height above Burner [cm] PrIMe ID

9 0.36 0.10 0.54 0.00 75-90
3.81, 5.08, 6.35, 7.62,

8.89, 10.16
x00001438

10 0.36 0.10 0.54 0.00 90-106 5.08, 7.62, 10.16, 12.7 x00001439

11 0.36 0.10 0.54 0.00 106-125
7.62, 10.16, 12.7, 15.24,

17.78
x00001440

12 0.36 0.10 0.54 0.00 125-150
7.62, 10.16, 12.7, 15.24,

17.78
x00001441

13 0.36 0.14 0.50 0.00 53-63
2.54, 3.81, 5.08, 6.35,

7.62
x00001454

14 0.36 0.14 0.50 0.00 63-75
3.81, 5.08, 6.35, 7.62,

8.89
x00001455

15 0.36 0.14 0.50 0.00 75-90
5.08, 6.35, 7.62, 8.89,

10.16, 11.43
x00001456

16 0.36 0.14 0.50 0.00 90-106 5.08, 7.62, 10.16, 12.7 x00001457

17 0.36 0.14 0.50 0.00 106-125
5.08, 7.62, 10.16, 12.7,

12.7, 15.24
x00001458

18 0.36 0.14 0.50 0.00 125-150
5.08, 7.62, 10.16, 12.7,

15.24, 17.78
x00001459

19 0.60 0.10 0.30 0.00 53-63
2.54, 3.175, 3.81, 4.445,

5.08, 5.715
x00001472

20 0.60 0.10 0.30 0.00 63-75
3.81, 4.445, 5.08, 5.715,

6.35, 6.985
x00001473

21 0.60 0.10 0.30 0.00 75-90
3.81, 5.08, 6.35, 7.62,

8.89
x00001474

22 0.60 0.10 0.30 0.00 90-106
5.08, 6.35, 7.62, 8.89,

10.16
x00001475

23 0.60 0.10 0.30 0.00 106-125
6.35, 7.62, 8.89, 10.16,

11.43
x00001476

24 0.60 0.10 0.30 0.00 125-150
6.35, 7.62, 8.89, 10.16,

11.43, 12.7
x00001477

25 0.60 0.14 0.26 0.00 53-63
3.175, 3.81, 4.445, 5.08,

5.715, 6.35
x00001490

26 0.60 0.14 0.26 0.00 63-75
3.175, 3.81, 4.445, 5.08,

5.715, 6.35, 6.985
x00001491

27 0.60 0.14 0.26 0.00 75-90
3.81, 5.08, 6.35, 7.62,

8.89
x00001492

28 0.60 0.14 0.26 0.00 90-106
5.08, 6.35, 7.62, 8.89,

10.16
x00001493
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Table F.1 Continued From Previous Page
Gas flow composition

Exp case
yO2

yH2O
yCO2

yN2

Particle size
bin [µm]

Height above Burner [cm] PrIMe ID

29 0.60 0.14 0.26 0.00 106-125
5.08, 6.35, 7.62, 8.89,

10.16, 11.43
x00001494

30 0.60 0.14 0.26 0.00 125-150
6.35, 7.62, 8.89, 10.16,

11.43, 12.7
x00001495

31 0.60 0.16 0.24 0.00 53-63
3.175, 3.81, 4.445, 5.08,

5.715, 6.35, 6.985
x00001508

32 0.60 0.16 0.24 0.00 63-75
3.81, 4.445, 5.08, 5.715,

6.35, 6.985, 7.62
x00001509

33 0.60 0.16 0.24 0.00 75-90
3.81, 5.08, 6.35, 7.62,

8.89
x00001510

34 0.60 0.16 0.24 0.00 90-106
5.08, 6.35, 7.62, 8.89,

10.16
x00001511

35 0.60 0.16 0.24 0.00 106-125
5.08, 6.35, 7.62, 8.89,

10.16, 11.43
x00001512

36 0.60 0.16 0.24 0.00 125-150
5.08, 6.35, 7.62, 8.89,

10.16, 11.43
x00001513

37 0.24 0.14 0.00 0.62 53-63
2.54, 2.54, 3.81, 5.08,

6.35
x00001526

38 0.24 0.14 0.00 0.62 63-75
2.54, 3.81, 5.08, 6.35,

7.62, 8.89, 10.16, 11.43
x00001527

39 0.24 0.14 0.00 0.62 75-90
5.08, 7.62, 10.16, 12.7,

15.24
x00001528

40 0.24 0.14 0.00 0.62 90-106
5.08, 7.62, 10.16, 12.7,

15.24, 17.78
x00001529

41 0.24 0.14 0.00 0.62 106-125
7.62, 10.16, 12.7, 15.24,

17.78, 20.32
x00001530

42 0.24 0.14 0.00 0.62 125-150
7.62, 10.16, 10.16, 12.7,

15.24, 17.78, 20.32, 22.86
x00001531

43 0.36 0.10 0.00 0.54 53-63
2.54, 3.81, 5.08, 6.35,

7.62
x00001544

44 0.36 0.10 0.00 0.54 63-75
3.81, 5.08, 6.35, 7.62,

8.89
x00001545

45 0.36 0.10 0.00 0.54 75-90
3.81, 5.08, 6.35, 7.62,

8.89, 10.16
x00001546

46 0.36 0.10 0.00 0.54 90-106 5.08, 7.62, 10.16, 12.7 x00001547

47 0.36 0.10 0.00 0.54 106-125
5.08, 7.62, 10.16, 12.7,

15.24
x00001548

48 0.36 0.10 0.00 0.54 125-150
5.08, 5.08, 7.62, 10.16,

12.7, 15.24, 17.78
x00001549
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Table F.1 Continued From Previous Page
Gas flow composition

Exp case
yO2

yH2O
yCO2

yN2

Particle size
bin [µm]

Height above Burner [cm] PrIMe ID

49 0.36 0.14 0.00 0.50 53-63
2.54, 3.81, 5.08, 6.35,

7.62
x00001562

50 0.36 0.14 0.00 0.50 63-75
2.54, 3.81, 5.08, 6.35,

7.62, 8.89
x00001563

51 0.36 0.14 0.00 0.50 75-90
3.81, 5.08, 6.35, 7.62,

8.89, 10.16
x00001564

52 0.36 0.14 0.00 0.50 90-106 5.08, 7.62, 10.16, 12.7 x00001565

53 0.36 0.14 0.00 0.50 106-125
5.08, 7.62, 10.16, 12.7,

15.24
x00001566

54 0.36 0.14 0.00 0.50 125-150
5.08, 5.08, 7.62, 7.62,

10.16, 12.7, 15.24
x00001567

55 0.60 0.10 0.00 0.30 53-63
1.905, 2.54, 3.175, 3.81,

4.445, 5.08
x00001580

56 0.60 0.10 0.00 0.30 63-75
3.175, 3.81, 4.445, 5.08,

5.715, 6.35
x00001581

57 0.60 0.10 0.00 0.30 75-90
5.08, 5.715, 6.35, 6.985,

7.62, 8.255
x00001582

58 0.60 0.10 0.00 0.30 90-106 5.08, 6.35, 7.62, 8.89 x00001583

59 0.60 0.10 0.00 0.30 106-125 5.08, 6.35, 7.62, 8.89 x00001584

60 0.60 0.10 0.00 0.30 125-150
5.08, 6.35, 7.62, 8.89,

10.16
x00001585

61 0.60 0.14 0.00 0.26 53-63
1.27, 1.905, 3.175, 3.81,

2.54
x00001598

62 0.60 0.14 0.00 0.26 63-75
3.175, 3.81, 4.445, 4.445,

2.54, 5.08
x00001599

63 0.60 0.14 0.00 0.26 75-90
3.81, 4.445, 5.715, 6.35,

6.985, 5.08
x00001600

64 0.60 0.14 0.00 0.26 90-106
5.715, 6.35, 6.985, 8.255,

8.89, 7.62
x00001601

65 0.60 0.14 0.00 0.26 106-125
6.35, 5.08, 8.89, 7.62,

10.16
x00001602

66 0.60 0.14 0.00 0.26 125-150
6.35, 5.08, 8.89, 7.62,

10.16
x00001603

67 0.60 0.16 0.00 0.24 53-63
1.905, 2.54, 3.175, 3.81,

4.445, 5.08
x00001616

68 0.60 0.16 0.00 0.24 63-75
2.54, 3.175, 3.81, 4.445,

5.08, 5.715
x00001617

69 0.60 0.16 0.00 0.24 75-90
4.445, 5.08, 5.715, 6.35,

6.985
x00001618
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Table F.1 Continued From Previous Page
Gas flow composition

Exp case
yO2

yH2O
yCO2

yN2

Particle size
bin [µm]

Height above Burner [cm] PrIMe ID

70 0.60 0.16 0.00 0.24 90-106
3.81, 5.08, 6.35, 7.62,

8.89
x00001619

71 0.60 0.16 0.00 0.24 106-125 6.35, 7.62, 8.89, 10.16 x00001620

72 0.60 0.16 0.00 0.24 125-150
5.08, 6.35, 7.62, 8.89,

10.16
x00001621

Table F.2: Proximate analysis of the prepared chars. TGA measurements were made after
the sieving and before injection of the chars in the entrained flow reactor. All measurements
are wt.% db

53-63 µm 63-75 µm 75-90 µm 90-106 µm 106-125 µm 125-150 µm
Volatiles 6.83 6.35 4.61 4.82 3.05 3.53
Fixed C 71.62 76.59 73.86 78.50 64.86 67.32
Ash 21.55 17.07 21.53 16.68 32.09 29.15

F.1 Interval prediction results

Figures F.1 - F.3 are the model predictions using a reduced char oxidation model with an
initial particle size distribution function and light intensity model from Section 6.7.
Surrogate model errors have not been applied to the experimental bounds, thus a few
prediction intervals appear disjoint from the experimental data, despite the dataset being
consistent when the experimental data is included.
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Figure F.1: Blind prediction of QOIs at gas conditions 1-4. The black intervals are the
experimental bounds. The red intervals are the prediction of the j-th QOI (Eq. 3.4) using
the feasible set excluding the j-th (Eq. B.7).
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Figure F.2: Blind prediction of QOIs at gas conditions 5-8. The black intervals are the
experimental bounds. The red intervals are the prediction of the j-th QOI (Eq. 3.4) using
the feasible set excluding the j-th (Eq. B.7).
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Figure F.3: Blind prediction of QOIs at gas conditions 9-12. The black intervals are the
experimental bounds. The red intervals are the prediction of the j-th QOI (Eq. 3.4) using
the feasible set excluding the j-th (Eq. B.7).
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