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A model for repeated clustered data with informative cluster
sizes

Ana-Maria Iosifa,*,† and Allan R. Sampsonb

aDivision of Biostatistics, Department of Public Health Sciences, University of California Davis,
Davis, CA 95616, U.S.A

bDepartment of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A

Abstract

Many chronic diseases or health conditions manifest with recurring episodes, each of which can be

characterized by a measure of intensity or severity. Both the number of episodes and the severity

of each episode can depend on the latent severity of an individual's underlying condition. Data

such as this are commonly gathered repeatedly at fixed follow-up intervals. An example is a study

of the association between stressful life events and the onset of depression. Stress exposure is

assessed through the frequency and intensity of stressful life events occurring each month. Both

the number of events and the intensity of each event at each measurement occasion are

informative about the underlying severity of stress over time. One might hypothesize that people

that approach the onset of a depressive episode have worse stress profiles than the controls,

reflected by both more frequent and more intense stressors. We propose models to analyze data

collected repeatedly on both the frequency of an event and its severity when both of these are

informative about the underlying latent severity. Maximum likelihood estimators are developed,

and simulations with small to moderate sample sizes show that the estimators also have good finite

sample properties, and they are robust against misspecification of the model. This method is

applied to a psychiatric data set.
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1. Introduction

Cluster correlated data are often collected in medical research. For example, in some clinical

trials, the response to treatment may be assessed repeatedly over time and an individual's

observations are likely to be dependent; similarly, in a dental study, the teeth from the same

person are clustered together. In recent years, there has been an increasing interest in

modeling clustered data and a number of statistical techniques that account for the
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dependence between the members of the same cluster have been developed. Generalized

estimating equations (GEE), proposed in the 1986 landmark papers by Liang and Zeger [1,

2], are among the most widely used methods of this type.

Traditional techniques for analyzing clustered data assume that the sizes of the clusters are

not statistically related to the outcome of interest. However, in some contexts, this

assumption may not be true, and the cluster size may be informative. For example, in the

dental study described in Hoffman et al. [3], if the outcome of interest is the periodontal

disease status of each tooth, more advanced disease status may be correlated with having

fewer teeth. This phenomenon, where the response across the members of a cluster is related

to the size of that cluster, is known as informative (or nonignorable) cluster size and failure

to account for it may lead to biased inference. Recent literature has introduced models more

appropriate for handling the possible informativeness of the cluster size. Hoffman et al. [3]

proposed within-cluster resampling (WCR) as an approach for generalized linear models

when the cluster size is informative. Their straightforward but computationally intensive

strategy is to randomly sample (with replacement) one observation from each cluster to

generate a subsample of independent observations and analyze it via standard univariate

techniques. This procedure is repeated a large number of times to produce a series of data

sets, and the WCR parameter estimates are obtained by averaging the resampled estimates.

WCR yields consistent and asymptotically normal estimators, and a consistent estimator for

the variance is provided. Williamson et al. [4] introduced an alternative to WCR using a

GEE that is weighted inversely with the cluster size, and Wang et al. [5] showed it to be

preferable to WCR and GEE for clustered longitudinal data. Further improvements were

proposed when the correlation matrix is available, and the minimum cluster size is greater

than one [6]. Chen et al. investigated robustness to misspecification of the cluster size

distribution in the context of linear mixed models, when the cluster size is informative [7].

Follmann et al. [8] generalized WCR to broader types of clustered data when a method for

analyzing independent data is available and termed their method multiple outputation and

later introduced exact inference for these settings when within-cluster correlation is not of

direct interest [9]. More recently, Cong et al. [10] and Williamson et al. [11] modeled

correlated survival data when cluster sizes may be informative to the risk of the outcome.

A different way of conceptualizing clustered data with informative cluster size is to treat the

measurements at the cluster level as exchangeable entries in a multivariate vector with a

random length given by the number of members in the cluster. In a clinical trial of a

migraine drug, the number of migraine episodes and the severity of each episode are

collected over a follow-up period. Both the number of migraine episodes and their severity

may be informative about the drug efficacy. In this approach, termed random length data by

Barnhart and Sampson [12], one jointly models the size of the cluster (the number of

episodes) and the potential dependent continuous outcomes (the severity of the episodes),

which they assume to follow a multivariate normal distribution. One of the advantages of

this technique is the ability to include clusters of size zero in the analysis. A traditional

analysis, taking into account just the migraine severity, would exclude the clusters with no

members and might lead to zero-length bias. However, having no migraines is highly
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informative about the effectiveness of the drug. This likelihood-based method was later

extended to include covariates [13] and to accommodate ordinal severity measures [14].

In this paper, we consider clustered data that are collected repeatedly (over conditions or

over time) and model repeated measures clustered data when the cluster size is informative.

This type of data can arise in a variety of settings, when information is gathered repeatedly

on both the frequency of an event and its severity. In our experience, when data are collected

longitudinally, the exact time of events may not have been obtained, and the information

about the events is collected at fixed follow-up intervals. A change in the underlying

condition severity is reflected in simultaneous changes in both the number of events and the

severity of each event. Because both the frequency and the severity are important, in order to

appropriately determine the treatment effect, one needs to jointly model the number of

events and their associated severity measures. An example of where this model is effective

is a clinical trial of a migraine drug where the data are recorded monthly. In addition to the

total number of migraine episodes occurring during the respective month, the pain levels

corresponding to each migraine are reported as well. Both the number of migraine episodes

and the pain level of each migraine at each measurement occasion are informative about the

treatment effect over time. If the drug is efficacious, the patients who received the active

treatment are expected to have better pain profiles than the placebo patients; in time, they

will have fewer and less severe migraines as compared with placebo.

We refer to this type of data, when individuals are observed repeatedly and their multivariate

random length measurements are recorded as a series of observations as repeated clustered

data with informative cluster size. We use the term repeated to indicate that each individual

is measured repeatedly (under different conditions, at different assessment times, etc.). The

term clustered data implies that the outcome for an individual recorded at a measurement

occasion is in fact a cluster of severities, and the size of this cluster is a random variable

determined by the number of events experienced during that follow-up interval. Finally, we

use the term informative cluster size to point out the relatedness of the number of events to

the severity measures experienced within a measurement interval.

Models for repeated clustered data are necessarily complex because they must consider

three types of dependence within a subject: first, between continuous severity measures at a

single measurement occasion; second, between severities at different measurement

occasions; and third, between the number of events experienced at different measurement

occasions. We provide a general likelihood-based framework for modeling repeated

measures clustered data with informative cluster size.

Our research was motivated in part by the life events and difficulties schedule (LEDS) data

set, collected as part of a larger study at the University of Pittsburgh Western Psychiatric

Institute and Clinic. This data set contains information about stressful life events

experienced by adolescents prior to a depressive episode, assessed using structured

instruments [15]. In addition to the number of life events experienced over a 1-year period

before the onset of the depressive episode, the degree of severity of each event was

recorded. A detailed description of this study is provided in Section 2.
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This remainder of the paper is organized as follows. In Sections 2 and 3, respectively, we

detail our motivating problem and introduce our notation and formally describe the model.

In Section 3.3, we develop an estimation strategy and derive the asymptotic properties for

the proposed estimators. Simulations examine the finite sample behavior of the estimators in

Section 4 and their robustness in Section 5. Our method is applied to the motivating

psychiatric data in Section 6, and a brief discussion is in Section 7. Proofs of the asymptotic

properties of our estimators are presented in the Appendix.

2. Motivating data

The data that motivated this research were collected as part of a larger study at the

University of Pittsburgh's Western Psychiatric Institute and Clinic. These data contain

information about adverse life experiences in adolescents prior to a major depressive

episode. The objective of the larger study was to examine life events and long-term

difficulties occurring in adolescents prior to and during a recent depressive episode. Stress

exposure was assessed using the investigator-administrated LEDS [16], adapted for use with

adolescents [17]. Life events are acute in nature, typically unfolding over a short period

(e.g., fight with a boyfriend and death of a pet), whereas difficulties are chronic, being

present for at least 4 weeks (e.g., a tumultuous relationship, with frequent fighting and

arguing or serious ongoing problems with a parent). The severity of each stressor was rated

on a 4-point scale with higher values reflecting more stress (4-marked, 3-moderate, 2-some,

1-little, or none). In this paper, we focus only on the acute life events in the LEDS data,

treating their severity levels as continuous measurements because the literature on life stress

typically uses normal distribution to analyze ordinal life events measures, usually via

regression models [18,19].

Previous literature [20] has suggested a causal relationship between stressful life events and

the onset of a major depressive episode. Major depressive disorder (MDD) is a serious

psychiatric condition that afflicts millions of people each year and the leading cause of

disability worldwide, according to the World Health Organization [21]. The prevalence of

MDD in US youth (ages 12 to 17 years) is about 5% [22]. Given the personal, social, and

economic costs associated with this condition, there is a tremendous clinical interest in

understanding the role that stressful life events may play in the onset of depression.

Traditional life events analyses would run two separate analyses for the number of events

and their severities. We hypothesize that the underlying stress ‘severity’ over time drives

both the number of events reported and also their severity; and this group severity differs

between people with MDD and controls. Thus, we develop methodology that models jointly

the two outcomes longitudinally and obviates the need for separation of information. The

data set we consider contains 32 women between the ages of 13 and 18 years who have

become diagnosed with MDD and 30 group matched (on age and ethnicity) normal control

(NC) women. We examine the occurrence of the acute life events collected over four 3-

month intervals (quarters) in the year prior to the onset of the depressive episode in

adolescents with MDD episodes and during a comparable ‘linked’ period in NCs. The

expectation is that in comparison with NCs, adolescents approaching the onset of an MDD

episode would have reported progressively more acute life events in the year prior to the

diagnosis and that these life events would be more severe.
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3. Model description and estimation

In this section, we develop a methodology to model and analyze repeated clustered data

where there are multiple experimental groups. Assume that group i is characterized by the

parameters μi1,…, μiT, reflecting the underlying condition severity at measurement occasions

1, 2,…, T. Individuals are observed repeatedly, and at each measurement occasion, the data

for a person consist of the number of events he/she experienced and the cluster of

corresponding event severities. The underlying condition severity drives both the number of

events and their severities, and thus, the distributions of the cluster sizes and multivariate

severities share parameters. The proposed model defines parametric structures for the joint

distribution of the cluster sizes and event severities for individuals in multiple groups (e.g.,

treatments) observed at repeated intervals and for within-individual covariance structure.

The shared parametrization exploits this notion, improving efficiency over separate

parameterizations. We use a log-linear functional dependence between the two mean

structures and allow all groups to share scaling parameters, whereas μ's, reflecting the

underlying condition severity, are group specific. The model is motivated by our belief that

these scaling parameters are parameters of the process linking the underlying condition to

the number of events. Treatment (or group) does not affect the relationship between number

and intensity of events, just the severity of the underlying condition producing events, and

therefore, the scaling parameters should remain the same, regardless of group. We then

obtain maximum likelihood estimates for all parameters and derive their asymptotic

properties.

3.1. Notation

This model is appropriate for studies involving multiple treatments or groups. Each

individual j, j = 1,…,ni, from group i, i = 1,…,m is observed on T different occasions. At

each measurement occasion t = 1,…, T, individual j from group i reports a random number

of events Kijt, and the severities of these Kijt events can be recorded as a vector with

exchangeable entries Xijt. Thus, all the data for individual i can be condensed into a -

dimensional vector Xij, X′ij = (X′ij1,…, X′ijT) and the corresponding T-dimensional vector of

random numbers of events Kij = (Kij1,…, KijT), with i = 1,…, m, j = 1,…, ni. Let kij = (kij1,

…, kijT) be a realization of the T-dimensional vector Kij.

We first specify the model for the cluster sizes Kij, choosing a Poisson distribution as a

natural model for count data. We assume, for simplicity, that the mean cluster size is fully

determined by the severity of the underlying condition at time t for treatment i, μit, and the

scaling parameters δ and γ. Specifically, we assume that for each group i = 1,2,…, m, and

for each individual j, j = 1,…, ni, the cluster sizes Kij1, Kij2, …, KijT are independent and

distributed Poisson (λit), where λit = exp (δ+ γ μit), t = 1,…,T. This log-linear model

provides a flexible and meaningful way to model the relationship between the number of

events and their severities. The parameters μit directly characterize the mean severity in

group i at measurement occasion t. γ acts as a scaling parameter and also controls the

association of μ's with the cluster sizes. Because the Poisson (λit) distribution is

stochastically increasing in λit, the previous model describes the following clinical
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phenomena: γ > 0 implies both more severe and more frequent events. Parameter γ < 0

implies that the larger the underlying parameter μ is, the smaller the expected number of

events (fewer but worse events). If γ = 0, then underlying condition severities μit have no

effect on the distribution of the cluster sizes.

We then specify a multivariate normal distribution for the intensity of symptoms at each

event. We use a patterned exchangeable correlation structure to describe the association of

severities within-person, allowing severities recorded at the same measurement occasion to

be more highly correlated than severities recorded at two different measurement occasions.

This within-person dependence in the severities is modeled using the same parameters σ2, ρ,

and ρ*, regardless of group. Clusters with kijt = 0 will contribute no events to the vector of

observed intensities. They will, however, contribute information about treatment efficacy

through the cluster sizes. To keep the notation simple, we write the model for nonzero

components, but we keep in mind that if some of these components are zero, we have to

account for this. The random vector of severities Xij, with cluster sizes Kij = (Kij1, …, KijT)

for the j-th individual in the i-th group, has the conditional distribution

(1)

with mean

(2)

and covariance

(3)

where ek denotes the k dimensional vector with all entries equal to 1, Jk1,k2 denotes the k1 ×

k2 dimensional matrix with all entries equal to 1, and Rk(ρ) is the intraclass correlation

matrix of dimension k. To ensure that the matrix Sk1,…,kT (ρ, ρ*) is positive definite for all

possible values (k1,…,kT), we assume that 0 ≤ ρ* ≤ ρ < 1.

For entries corresponding to nonzero kijt, the mean is given by μit. For instance, an

individual from group i who reports two events at each measurement occasion has a 2T-

dimensional mean severity vector (μi1, μi1, μi2, μi2, …, μiT, μiT). But if he reports no events

at time 2, but two events at all the other measurement occasions, the mean is given by the

(2T – 2)-dimensional vector (μi1, μi1, μi3, …, μi3, …, μiT, μiT). The covariance matrix Skij (ρ,

ρ*) has diagonal elements R(ρ) for entries corresponding to the nonzero components of kij
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and off diagonal components corresponding to entries with both kijt and kijt′ nonzero equal to

ρ*. For example, an individual who reports two events at each of the first two measurements

and zero events at the rest of the measurements would have a 4 × 4 covariance matrix equal

to

We finally assume that data from different individuals are independent. Thus, (Ki1j1, Xi1j1)

and (Ki2j2, Xi2j2) for individual j1 from group i1 and j2 from group i2, respectively, are

independent for (i1, j1) ≠ (i2, j2).

3.2. Model features

Denoting the (mT +5) parameters collectively by θ = (δ, γ, μ11,…, μ1T,…, μm1,…, μmT, σ2, ρ,

ρ*)′, the parameter space for the previous model is Θ = {θ| – ∞ < δ, γ, μ11,…, μ mT < ∞, σ2

> 0, 0 ≤ ρ* ≤ ρ < 1}.

The support of the cluster sizes includes zero. Any of the components of the vector Kij may

be zero. Note that, to account for observation times with Kijt = 0 (no observed events), the

vector μ and covariance matrix S will have corresponding structural empty cells (no

corresponding entry for that time point in both the mean vector and the covariance matrix).

Thus, the actual working dimension of μ and S will reflect only the nonzero clusters, but the

linkage to Kijt by time of observation is preserved. Consider that the individuals described

previously reports the same number of events, but this time, he has 0 events recorded at the

first time measurement and two events recorded at each of the next two time points.

Conditional on the number of events experienced during all measurement occasions, the

covariance for the multivariate severities looks the same, being equal to

but one needs to take into account the fact that this structure corresponds to the first two

time measurements for the first case and to the measurements occasions 2 and 3 in the

second case.

This is one of the main difficulties in handling the model, because not only the number of

events but also the number of blocks that constitute the mean and covariance structures in

(2) and (3) can change from person to person. Thus, strict attentiveness and a significant

amount of bookkeeping need to be conveyed in working with the conditional density

functions for the multivariate severity measurements.
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3.3. Likelihood framework and estimation

We can write the joint density for the j -th individual's data in the i -th group as f(xij, kij) =

P(Kij1 = kij1,…,KijT = kijT)f(xij | kij1,…, kijT), provided that . We denote by

f(·|kij1,…,kijT) = f(·|kij) the density of the kij.-dimensional multivariate normal variable from

MVNkij. (μkij, σ
2Skij (ρ, ρ*)). If a person does not have any events at any of the

measurement occasions, the likelihood reduces to the first term in the previous expression.

Then the log-likelihood of the entire data can be written as

where the parameter vector is θ = (δ, γ, μ11,…, μ mT, σ2, ρ, ρ*)′.

Estimation will be carried out by maximum likelihood, under the assumption that the

appropriate number and distribution of events are observed. For instance, if no events,

across all people and all measurement periods are observed (i.e., no kijt > 0), then none of

the parameters are estimable. If all the people in the sample experience at most one event,

then the parameter ρ is not estimable. If all the people in the sample experience events only

at the same measurement occasion, then the parameter ρ* is not estimable. For large sample

sizes, these difficult cases become increasingly rare. As expected, there is no closed form

solution for the maximum likelihood estimator (MLE) θ̂
n for θ, and its exact distribution is

not available. We derive the asymptotic distribution for θ̂
n in Section 3.4. Numerical

methods for maximization are discussed in Section 4.2.

3.4. Asymptotic distribution of the maximum likelihood estimators

Using a generalization of the principle of adding the information in [12], the information

I(θ) about the parameter θ contained in a single observation Xij with cluster sizes Kij = (Kij1,

…, KijT) from group i can be written as the sum of the information about θ contained in the

cluster sizes and the information about θ contributed by the vectors of severities, over all

possible cluster sizes (under the assumption that at least one event is observed, i.e.,

).

where  is the information matrix about θ contained in the cluster sizes Kij = (Kij1,…,

KijT) and Ii(θ|k) is the information matrix contained in Xij|Kij = k = (k1,…, kT).
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Let us denote by In(θ) the information matrix for θ contained in the  independent

observations from the multiple group model, Xij with cluster sizes Kij = (Kij1,…, KijT), i = 1,

…,m, j = 1,…,ni.

Then the information matrix In (θ) contained in these n independent observations from the

multiple group model is

We show in the Appendix that In (θ) has a block diagonal form

where On×m denotes the n × m-dimensional matrix of zeros and the components on the main

diagonal are defined by (A14) and (A3) – (A8) in the Appendix, respectively.

Applying a general result on the efficiency of MLEs for random length data (Theorem A.3.2

in [23]), we can derive the asymptotic distribution for θ̂
n, the MLE. The asymptotic

covariance matrix of the MLE θ̂
n is obtained as the inverse of the previous information

matrix and is estimated by .

Let  be the MLEs for a sample of

size n from the multiple group model. If ni/n → ηi with 0 < ηi < 1 as n → ∞, then

1. θ̂n is consistent.

2.

where
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the elements of the matrix Ik (σ2, ρ, ρ*) are defined earlier, and the elements in I(δ,

γ, μ11,…, μmT) are given in the Appendix by (A10) and (A2).

4. Simulation study

In this section, we report the results of a simulation study conducted to evaluate the finite

sample properties of our estimators in realistic situations with sample sizes in a small to

medium range. Motivated by our LEDS data set, we simulated data that closely resemble its

structure. Several different scenarios and sample size configurations are analyzed, with data

generated according to the multiple group model described in Section 3.

We evaluate the performance of the proposed estimators by examining three properties:

accuracy, precision, and ability to make valid inference. Varying the sample sizes allows us

to tackle the question of how many subjects are necessary in order for the large-sample

theory to produce the desired results.

4.1. General framework and quantities computed

Four different scenarios were created to explore various parameter configurations,

representing a 2×2 factorial design. The first factor involves the relationship between the

severities and the number of events. We believe the two interesting levels for this factor are

those reflecting contradictory information from the number of events and severities. In the

first level, μit, the expected severities are similar for the two groups, but the differences

between mean number of events are exaggerated by a large γ and small δ In the second

level, the μ's are set to be spread out across groups, but small γ and large δ yield very similar

mean numbers of events. The second factor refers to the pattern of group differences over

time. The first level has parallel time trajectories for severity in the two groups, whereas in

the second level, mean severity trajectories have different slopes: one increasing and one

decreasing over time.

As in the LEDS setup, we mimic a study with two different treatment groups and the same

number of subjects per treatment group. All subjects are followed four measurement

periods. We keep the same values for σ2, ρ, and ρ* across all scenarios, and we specify the

remaining parameters reflecting the four different circumstances over a range of plausible

values. The complete choices of parameters for simulations are given in Table I. For each

simulated scenario, 1000 data sets were generated, with n = 20, 50, and 100 subjects per

group.
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The number of events kijt experienced by individual j = 1,…, n in group i = 1, 2 at

measurement occasion t = 1,…, 4 was generated using independent Poisson (λit)

probabilities, with λit = eδ+γμit. If all the components of the vector of cluster sizes kij = (kij1,

kij2,…, kij4) are zero, we have an empty cluster of severities. Otherwise, we generate the

severities Xij using a multivariate normal distribution with mean and variance given by (2)

and (3), respectively. We analyze each data set using our multiple group model and compute

the ML estimator of the parameter θ = (δ, γ, μ11,…, μ14, μ21,…, μ24, σ2, ρ, ρ*) and its

theoretical asymptotic variance as described in Section 3.3. We report the average of the

bias, the standard error (SE), and the coverage probabilities of the 95% confidence intervals

for each parameter setup. Specifically, we evaluate the accuracy of the proposed estimators

by computing their empirical bias and the precision by reporting their SE. The asymptotic

covariance matrix of the MLE θ̂ is obtained as the inverse of the information matrix and is

estimated by its plug-in estimator, . Using the estimated variance, we construct 95%

confidence intervals for all the parameters. To evaluate the ability to make valid inference

using the proposed estimators, we report the percentage of 95% confidence intervals that

contained the true value of the parameter.

4.2. Considerations for numerical maximization

Using a shared parameter model in both the specification of the distribution of the cluster

sizes and the conditional distribution of the vectors of severities given the cluster sizes

increases the efficiency, by pooling information from both outcomes. The cost is an increase

in the computational burden, because the shared parameters need to be estimated

simultaneously from the two models.

Specifically, there are several difficulties that arise in modeling repeated clustered data with

informative size. First, the full likelihood approach is computationally complex when the

number of events is large, because higher dimension matrices are involved in the conditional

distribution of the multivariate severity measures. Second, the complexity increases as the

number of repeated measurements becomes larger and the number of parameters to be

estimated increases. Because the number of time points with quantitative measures changes

with every person, the mean and covariance structures for the distribution of the severities

change. Moreover, numerical computation of the information matrix involves summation

over all possible values of the cluster sizes. For T measurement times that means summation

of matrices over all the possible values of a T-dimensional vector of cluster sizes. If the

average number of events is large, in numerically computing the information matrix, one

needs to set the maximum values that the cluster size can have quite high to ensure that the

corresponding probabilities in the right tails of the Poisson distributions are zero.

Finally, a third difficulty relates to modeling of slopes. If all the μ's are equal, the parameters

δ and γ are not identifiable. When data are generated from groups with means not well

separated, the likelihood can be flat over certain regions and the function used to

numerically maximize the log-likelihood converges to strange solutions for the parameters δ

and γ. However, even in these cases, the average severity and number of events are

estimated correctly (Section 4.3).
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All the simulations were implemented in R statistical programming language [24], using its

function nlm to carry out the maximization of the log-likelihood. This function minimizes

the negative log-likelihood using a Newton-type algorithm and requires specification of

initial values for the parameters. We obtain good initial estimates for the parameters μit

reflecting the underlying disease status in group i at measurement occasion t using

. We then find the starting values for δ and γ by fitting

a Poisson regression model,  i = 1, 2 j = 1, 2,…, n t = 1,…, 4, where λijt =

E(kijt). We solve for σ2 in the corresponding likelihood equation to get σ2(ρ, ρ*) and

substitute this value in the formula for the conditional likelihood to get an expression that

depends only on the unknown ρ and ρ* Maximizing this likelihood with respect to ρ and ρ*

by using nlm with 0 as starting values for both parameters yields the initial values ρ(0) and

ρ*(0). Plugging these values into the expression of σ2(ρ, ρ*) gives the initial value σ2(0). If

any of the initial values for σ2, ρ, or ρ* are negative, they are assigned the value zero. With

these initial estimates, the optimization proceeds using nlm.

4.3. Simulation results

Results for the simulations across the four different scenarios and three sample sizes choices

are summarized in Table II (bias), Table III (SE), and Table IV (coverage of the 95%

confidence intervals). The main parameters of interest are μ11,…, μ24, reflecting the

underlying condition severity in the two groups over time. Also of interest are the

parameters that model the number of the events λ11,…, λ24. The results of the simulations

indicate that the estimates of the true μ's and λ's are unbiased even for small sample sizes,

under all four different scenarios. The variance components σ2, ρ, and ρ* are also nearly

unbiased. For small sample size, the bias of the parameter closer to the boundary (ρ*) is

slightly higher. As shown by Table II, some of the estimates for δ and γ have large bias for

small sample sizes. For n = 20, the estimates for δ and γ are biased in both scenarios 1 and 2,

but the bias tends to wash out even with a sample size as small as 50. In scenarios 3 and 4,

the estimation for small sample sizes works as well as in the cases with n large. The main

source of this difference in results across scenarios is the disproportion between the average

severities and the variance σ2. In the first two scenarios, the theoretical severities are not

well separated across time and treatment group with respect to σ2, as they are in the latter

scenarios. In addition, in scenario 2, the severities for the two groups intersect across time,

making estimation more difficult. It is important to note that even in cases where the scaling

parameters δ and γ are not closely estimated, estimation for the key parameters, μ11,…, μ24

and λ 11,…, λ 24, have practically insignificant bias, even for sample sizes as small as 20.

We evaluate the efficiency of the MLEs in our proposed method and contrast it with WCR, a

commonly used method for clustered data. To obtain the WCR estimates, we used 5000

resamples and a linear model with group, time, and their interaction. We present in Table III

the empirical standard errors for the parameters that are meaningful in both methods (the

severities) and the relative efficiency (defined as the ratio of the calculated variance of μ̂

under our model relative to WRC). As expected, the relative efficiency is always greater

than 1, and the gain in efficiency is substantial in the scenarios in which the cluster sizes
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provide more information (1 and 2). For all three sample sizes under consideration, the

efficiency gains are major in both scenario 1 (range 36% to 222% across all sample sizes)

and scenario 2 (range 131% to 305% across all sample sizes) and more modest in scenario 3

(range 2% to 8% across all sample sizes) and scenario 4 (range 3% to 16% across all sample

sizes).

Table IV shows the empirical coverage of the 95% confidence intervals based on the large

sample variance of the proposed estimators. Paralleling the results for the bias, our method

yields satisfactory coverage for all the key parameters of interest, the mean severities and

numbers of events, even for choices of n as small as 20 (with the smallest coverage 92%).

For the scaling parameters δ and γ, the coverages are below 95% when the sample sizes are

small, due to the bias. Unsurprisingly, the normal approximation is not as good for the

variance components, with our small to medium sample sizes and the coverage of their

confidence intervals, although reasonable, is not improving as fast with the sample size.

Much larger samples than those we consider here are needed before the asymptotics apply

for these parameters. However, the estimation of the primary parameters is robust and does

not seem to be affected by the secondary parameters.

5. Robustness of the model

Our methodology involves explicit modeling of both the severities and the cluster sizes. In

this section, we examine, through simulations, the robustness of our model. We consider

three different types of model misspecification and for each of these, we simulate 1000 data

sets under each scenario and sample size combination used in the simulation study described

in Section 4. We report in Tables V–VIII the bias and coverage of the 95% confidence

intervals of the MLEs computed using the model-based SEs described in Section 3 for the

parameters μ11,…, μ14 reflecting the underlying condition severity (representing the primary

interest to investigators), parameters λ11,…, λ14, and the scaling parameters δ and γ, for n =

50. The Supporting information‡ contains complete information for all three sample sizes

under consideration.

In the first type of distributional form misspecification, we consider that the true covariance

for the severities is of a more complicated and realistic structure while assuming that the

distribution of the cluster sizes was correctly specified. To explore how violations of each of

the between-measurement and within-measurement occasion exchangeability assumptions

affect estimation, we include two models for the covariance structure. Under the first model,

we simulate data assuming that severities collected during the same observation period are

correlated with ρ = 0.5 and allow severities from different measurement occasions to be

correlated using an AR (ρ*) structure, with ρ* = 0.2. Under the second model, we maintain

the exchangeability structure across measurement occasions (ρ* = 0.2) but allow severities

from the same measurement occasions to be correlated using an autoregressive (AR) (0.5)+

ρ* structure.

‡Supporting information may be found in the online version of this article.
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The second type of model misspecification focuses on the assumption of independence of

the cluster sizes across measurement occasions while assuming that the distribution of the

severities was correctly specified. We simulate cluster sizes reflecting the number of events

experienced by a person across measurement occasions from a multivariate Poisson

distribution and allow the cluster sizes to be correlated across measurement occasions. We

use a simplified model with just one covariance term for all pairs of cluster sizes [25].

Marginally, each of the cluster sizes follows a Poisson distribution with parameter (λit), and

the covariance between all pairs of random cluster sizes across measurement occasions is λ0.

Table VII presents the results of the simulations for λ0 = 1 and n = 50.

The third misspecification incorporates extra-Poisson variation in the distribution of cluster

sizes. Specifically, we are interested in the behavior of the MLE when the true cluster size

model is negative binomial (NB), whereas the working model is Poisson (λit). The mean and

variance of NB (α, λit) are λit and , respectively. Thus, a controls how

overdispersed the NB distribution is compared with α Poisson distribution with mean λit.

Table VIII presents the results of the simulations for α = 10 and n = 50.

The results displayed in Tables V–VIII show that when our proposed model is applied to

data generated from these misspecified models, there are very small biases in the estimates

of the mean severities for n = 50. The relative bias (absolute bias divided by the true value)

for these parameters was less than 1%. Similarly, there was very little loss of accuracy in

estimating the mean number of events (the relative bias for λ's was smaller than 2%). This

pattern was consistent across sample sizes (Tables A1–A4 in the Supporting information).

Parameters δ and γ have larger bias and lower coverage in scenarios 1 and 2, as in the

original simulation study.

When the covariance structures (of either the severities or cluster sizes) was misspecified

(Tables V–VII, A1–A3), the coverage probabilities of the key parameters (μ and λ) are close

to 95%. As shown in Table VIII, the extra-Poisson variation considered does not seem to

impact the coverage of the mean severities, but as expected (because the asymptotic

variance estimates used to construct the confidence intervals for the cluster sizes are based

on the Poisson assumption), the coverage for the λ's is not as good, and it can be as low as

80%.

For the three types of violation of the assumption considered, we found that there is little

loss of accuracy in estimating the mean severities and cluster sizes, even for small sample

sizes. Both misspecification of the cluster size distributions and ignoring the within-person

dependence for the severities or cluster sizes yield estimates with good coverage

probabilities for the severities. When substantial extra-Poisson variation is incorporated in

the distribution of cluster sizes, the bias in λ's is still very small, but there is undercoverage

of the confidence intervals. For investigators whose primary interest is in estimating the

main severities, the results of the simulation suggest that even though our model makes

structural assumptions, the three types of departure from the model assumption considered

in this section may not have a major influence in the estimation. If the main focus is on

estimating the number of events, then misspecifications of the covariance structures will also
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have little impact on estimation, but the Poisson distribution assumption needs to be verified

using diagnostic tools before using this model.

6. Application to life events and difficulties schedule data

For the 32 MDD adolescents, the number of life events experienced in a quarter ranged from

70 to 92, which amounted to a range of 2.2 to 2.9 events per person. The corresponding

range for the NC group was 41 to 64 (1.4 to 2.1 events per person). During the year, 20% of

the clusters of severities in the MDD group and 30% in the NC group had size 0. The

number of life events reported during a quarter by a single person ranged from none to 11 in

the MDD group and from none to six in the NC group. As detailed in Table IX, acute life

events were common in the year prior to depression onset, with 75% of the MDD and 57%

of the NC adolescents reporting at least one stressful event at every assessment time. In

general, a greater percent of the MDD adolescents reported at least two acute events, and

this was consistent across the four assessments. The right panel of Figure 1 depicts the

average severity for the events experienced by the two groups during the year preceding the

onset of depression. The left panel shows the average number of events reported. More than

50% of the life events reported by the NC group at any of the assessment times had severity

1, whereas the majority of the life events reported by the MDD group had severity 2 or

higher.

The two outcomes recorded for each subject are the number of acute life events and the

severity of each of them. These outcomes are assessed quarterly, over a year. Each quarter,

the data for an individual participant are a cluster of event severities with the size given by

the number of events the participant experienced during that quarter of year. We denote by

μ11,…, μ14 the parameters reflecting the underlying stress severity during the four quarters

of the year before the onset of depression in the MDD group. Similarly, we denote by μ21,

…, μ24 the means in the NC group. The model introduced in Section 3 is applicable now to

this data set. We have n1 = 32 and n2 = 30. The question we consider here is whether the

underlying stress severity for the adolescents in the MDD group is escalating as they draw

closer to the onset of their MDD episode.

Table X reports the solution θ̂ of the maximization procedure implemented in R using nlm

and the estimated standard deviations based on , as well as the initial values for the

maximization procedure.

The estimated parameter γ has a positive sign indicating a positive relationship between the

average number of events and the average severity (larger severities and higher number of

events). Its estimated standard deviation is large, indicating that γ is not significantly

different than zero.

Another question of interest is testing if the severity profiles of the two groups are parallel.

A Wald test of this composite hypothesis yields a test statistic χ2 = 0.34, which is not

significant with respect to a chi-square distribution with 3 degrees of freedom. Similar

results were obtained for testing whether the profiles were also coincident and equal

response effects.
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Using a shared parameter model allowed us to gain clinical insight into this complicated

matter. We expected that both the severity and the number of events were driven by the

underlying stress. Contrary to our predictions, the number of the adverse life events did not

provide information about their severity. The joint distribution of the cluster sizes and

severities of two groups looked similar, with the MDD group experiencing more events, but

not more severe than the NC group.

7. Discussion

Many diseases may manifest with recurring episodes. The number of episodes and each

episode's severity are collected repeatedly, over assessment intervals. A naive approach

would be to analyze the number of episodes and their severities separately. In this paper, we

propose models that allow us to analyze data gathered repeatedly on both the frequency of

an event and its severity when both the frequency and the severity are important. Our shared

parameter approach obviates the need for this separation of information. We propose a

general ML framework and derive estimators with good asymptotic properties. Our

simulations under scenarios with sample sizes in a small to moderate range show that the

estimators also have good finite sample properties. We implement this method to a real life

data set.

Analysis of clustered data has been a rapidly growing field in recent years, but most of the

approaches do not account for the possible relationship between the outcome and the size of

the cluster. Our model is appropriate in scenarios when clustered data with informative

cluster size are collected repeatedly, and it has the advantage of accommodating clusters of

size zero. Our initial model is relatively simple but arises naturally and permits answering

more subtle questions about the relationship between frequency and severity of events.

Simulation suggests that even though our model makes structural assumptions, the three

types of departure from the model assumption considered may not have a major influence in

the estimation of the mean severities.

For the parametric distribution of the cluster size, our choice of the Poisson distribution was

based on its widespread use in modeling number of episodes and its simplicity. However,

our method is not limited to this choice and can be readily generalized to other families of

discrete distributions that might provide better fits, for example, the NB distribution or,

more generally, a family of discrete distribution with appropriate behavior.

Building models for repeated clustered data is a complex task. For instance, not only does

the number of events experienced by a subject change over time; the number of time points

with observed quantitative measures changes with every subject. Another complicating issue

is that the mean and covariance structures for the distribution of the severities change with

the change of the number of time points with observed quantitative measures. When the

number of repeated time measurements increases, the number of parameters that need to be

estimated increases. As the number of recorded events experienced by subjects and time

measurements with quantitative measure increases, the difficulty of numerically estimating

the parameters in the model increases, as well. We built a platform that handles this

computational challenge and can be used to generalize the models to more complex settings.
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Substantial challenges remain to be addressed, providing several interesting possible

directions to further this research. Our choice of the covariance structure was motivated in

part by its computational convenience. In cases of longitudinal studies, an AR structure

might be more appropriate. Thus, additional work is needed to accommodate data in settings

where the correlation structure is more complicated than a pattern exchangeable structure.

An even more general class of models would incorporate dependence between the cluster

sizes across measurement occasions. In the proposed models, we treat the severity measures

as continuous random variables. However, many of the severity measures encountered in

practice are categorical (e.g., in LEDS data, 1=‘little or none’, 2=‘some’, 3=‘moderate’, and

4=‘marked’), and there is interest in developing models for repeated clustered ordinal data.

Finally, one can imagine that the underlying condition severity might be impacted by

observed covariates, risk factors, or unobserved latent variables. Thus, incorporating

covariates, including time varying or shared random effects into the models, is another

potential generalization.

Although our motivation was drawn from a study examining stressful life events in

adolescents, the methods we propose are useful for a broad range of chronic conditions for

which repeated data are available on both the number of episodes and their severity. From a

clinical standpoint, it is important to assess both these outcomes, because they both might

inform about the condition severity.

These data are becoming increasingly more common, because recent health care policy

changes have made widespread use of electronic health records in the USA inevitable.

Electronic health records will make possible monitoring of patients with chronic conditions

with episodic manifestation and tracking these episodes and their related severities over

time. Methods such as ours will enable researchers to better understand differences in

incidence and severity of episodes.
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Appendix A: Information matrix

Consider one observation from the multiple group model introduced in Section 3. The log-

likelihood for this one observation is

For simplicity, we dropped the indices i and j from the expression of cluster sizes and

severities. Let k =(k1,…, kT) be a realization of the T-dimensional vector of cluster sizes K.
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Some of the components of k might be zero. Provided that k has at least one nonzero

component (i.e., k. ≥ 1), the conditional distribution X |K = k, f(x |k), is a multivariate

normal. For now, assume that all the components of k are nonzero. We can use a result from

McCulloch et al. [26] who gave the expressions of the score function and information matrix

for the general model under the multivariate normality assumption, X ∼ MVN(μ, V) with

E(X) = μ and Var(X) = V. Under a general parametrization, each element of μ is a function

of elements of a parameter vector β and each element of V is a function of the elements of a

parameter vector φ, unrelated to β. Following the notation in [26], we have β = (μi1, μi2,…,

μiT) and φ =.(σ2, ρ, ρ *) where μ = μ(β) and V = V (φ). We show in [27] that the information

matrix about (β, φ) ≡ (μi1,…, μ iT, σ2, ρ, ρ*)' contained in X|K = k is given by

(A1)

where

(A2)

, and . The elements of the matrix in the right lower corner in (A1)

are given by

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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where

We assumed all components of k to be nonzero. However, our model allows for clusters of

size zero. In this instance, the corresponding entries in the matrix Σk are zero and all the

previous computations have to be carried out replacing k with its subvector containing only

nonzero components. The corresponding matrix Σk is actually obtained by applying the

equations earlier for the subvector of nonzero cluster sizes and filling in the corresponding

entries with zero so that we obtain a T × T matrix.

Let us denote θi = (δ, γ, μi1,…, μiT, σ2, ρ, ρ*)'. Because the expression of f(x|k) involves

neither δ nor γ, it follows that the information about θi contributed by the vector of severities

conditional on the observed cluster sizes for one individual is given by the expression

(A9)

Because , it is straightforward to show that , the

information matrix about θi contained in the random cluster sizs K=(K1,…, KT) for one

subject in group i has the expression

where the upper left-corner (T + 2) × (T + 2) dimensional matrix is given by

We can partition the previous matrix into
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(A10)

Where  is the upper left-corner 2 × 2 submatrix of Gi. Because there is no information in

these cluster sizes about the μ's from other groups, the information about θ = (δ, γ, μ11,…,

μ1T,…, μm1,…, μmT, σ2, ρ, ρ*)' contained in the random cluster sizes for one subject in group

i has the expression

A simpler way of writing the previous matrix is

Using the expression of I(θi|k) from (A9), the information contributed by the clusters of

severities given the clusters sizes, Ii (θ|k), can be computed as

So, adding the corresponding pieces gives us
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(A11)

Let us now consider  independent observations from the multiple group model

introduced in Section 3. Adding all the corresponding pieces gives us the information matrix

for the multiple group model,

(A12)

It can easily be shown that the information matrix In(θ) about the parameter vector θ,

contained in the  independent observations from the multiple group model, has a

block diagonal form

(A13)

where

(A14)

The matrices 's (k, l = 1,2) are given in (A10), and the elements of the matrix Ik(σ2, ρ, ρ

*) are defined by (A3) – (A8).
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Figure 1.
Number and severity of stressful life events (mean ± standard error) for depressed (major

depressive disorder (MDD)) and normal control (NC) adolescents. Events were recorded

quarterly during the year before the onset of depression.
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Table I

Choice of parameters for simulation study.

μ's similar and λ's disparate μ's disparate and λ's similar

μ1 and μ2 parallel

μ1 = (1.0, 1.1, 1.2, 1.3) μ1 = (1, 2, 3, 4)

μ2 = (1.5, 1.6, 1.7, 1.8) μ2 = (1.5, 2.5, 3.5, 4.5)

λ1 = (2.7, 3.4, 4.3, 5.4) λ1 = (12.3, 12.4, 12.6, 12.7)

λ2 = (8.6, 10.8, 13.6, 17.1) λ2 = (12.4, 12.5, 12.6, 12.7)

(δ,γ) = (–1.3, 2.3) (δ, γ) (2.5, 0.01)

(σ2, ρ, ρ*) = (1, 0.5, 0.2) (σ2, ρ, ρ*) = (1, 0.5, 0.2)

μ1 and μ2 intersecting

μ1 = (1.3, 1.2, 1.1, 1.0) μ1 = (4, 3, 2, 1)

μ2 = (1.0, 1.1, 1.2, 1.3) μ2 = (1, 2, 3, 4)

λ1 = (9.5, 7.4, 5.8, 4.5) λ1 = (5.5, 5.2, 5.0, 4.7)

λ2 = (4.5, 5.8, 7.4, 9.5) λ2 = (4.7, 5.0, 5.2, 5.5)

(δ, γ) = (–1, 2.5) (δ, γ) = (1.5, 0.05)

(σ2, ρ, ρ*) = (1, 0.5, 0.2) (σ2, ρ, ρ*) = (1, 0.5, 0.2)
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Table X

Maximum likelihood estimates for life events and difficulties schedule data.

Parameter θ̂ Estimated SD of θ̂ Initial value

δ −16:6291 27.91 −0:1986

γ 9.4031 15.08 0.5683

MDD μ11 1.8563 0.04 1.8605

μ12 1.8515 0.04 1.8917

μ13 1.8804 0.06 1.7364

μ14 1.8799 0.06 1.8039

λ11 2.2848 0.27 2.3599

λ12 2.1839 0.26 2.4021

λ13 2.8653 0.30 2.1992

λ14 2.8524 0.30 2.2853

NC μ21 1.8034 0.09 1.6814

μ22 1.8271 0.06 1.4430

μ23 1.8481 0.04 1.4479

μ24 1.8287 0.06 1.6917

λ21 1.3891 0.21 2.1315

λ22 1.7351 0.24 1.8615

λ23 2.1148 0.26 1.8667

λ24 1.7622 0.24 2.1440

σ2 0.5250 0.03 0.5324

ρ 0.1702 0.05 0.1846

ρ* 0.0689 0.04 0.0787

MDD, major depressive disorder; NC, normal control; SD, standard deviation.
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