UC Davis
UC Davis Previously Published Works

Title
A model for repeated clustered data with informative cluster sizes

Permalink
https://escholarship.org/uc/item/1x55b1zf

Journal
Statistics in Medicine, 33(5)

ISSN
0277-6715

Authors

losif, Ana-Maria
Sampson, Allan R

Publication Date
2014-02-28

DOI
10.1002/sim.5988

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1x55b1zf
https://escholarship.org
http://www.cdlib.org/

fg)%
S

O

,NS

N4

NIH Public Access

Author Manuscript

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

2 Hepst

Published in final edited form as:
Stat Med. 2014 February 28; 33(5): 738-759. d0i:10.1002/sim.5988.

A model for repeated clustered data with informative cluster
sizes

Ana-Maria losif2" T and Allan R. SampsonP
aDivision of Biostatistics, Department of Public Health Sciences, University of California Davis,
Davis, CA 95616, U.S.A

bDepartment of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A

Abstract

Many chronic diseases or health conditions manifest with recurring episodes, each of which can be
characterized by a measure of intensity or severity. Both the number of episodes and the severity
of each episode can depend on the latent severity of an individual's underlying condition. Data
such as this are commonly gathered repeatedly at fixed follow-up intervals. An example is a study
of the association between stressful life events and the onset of depression. Stress exposure is
assessed through the frequency and intensity of stressful life events occurring each month. Both
the number of events and the intensity of each event at each measurement occasion are
informative about the underlying severity of stress over time. One might hypothesize that people
that approach the onset of a depressive episode have worse stress profiles than the controls,
reflected by both more frequent and more intense stressors. We propose models to analyze data
collected repeatedly on both the frequency of an event and its severity when both of these are
informative about the underlying latent severity. Maximum likelihood estimators are developed,
and simulations with small to moderate sample sizes show that the estimators also have good finite
sample properties, and they are robust against misspecification of the model. This method is
applied to a psychiatric data set.

Keywords
clustered data; repeated measures; informative cluster size; joint modeling; recurring episodes

1. Introduction

Cluster correlated data are often collected in medical research. For example, in some clinical
trials, the response to treatment may be assessed repeatedly over time and an individual's
observations are likely to be dependent; similarly, in a dental study, the teeth from the same
person are clustered together. In recent years, there has been an increasing interest in
modeling clustered data and a number of statistical techniques that account for the
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dependence between the members of the same cluster have been developed. Generalized
estimating equations (GEE), proposed in the 1986 landmark papers by Liang and Zeger [1,
2], are among the most widely used methods of this type.

Traditional techniques for analyzing clustered data assume that the sizes of the clusters are
not statistically related to the outcome of interest. However, in some contexts, this
assumption may not be true, and the cluster size may be informative. For example, in the
dental study described in Hoffman et al. [3], if the outcome of interest is the periodontal
disease status of each tooth, more advanced disease status may be correlated with having
fewer teeth. This phenomenon, where the response across the members of a cluster is related
to the size of that cluster, is known as informative (or nonignorable) cluster size and failure
to account for it may lead to biased inference. Recent literature has introduced models more
appropriate for handling the possible informativeness of the cluster size. Hoffman et al. [3]
proposed within-cluster resampling (WCR) as an approach for generalized linear models
when the cluster size is informative. Their straightforward but computationally intensive
strategy is to randomly sample (with replacement) one observation from each cluster to
generate a subsample of independent observations and analyze it via standard univariate
techniques. This procedure is repeated a large number of times to produce a series of data
sets, and the WCR parameter estimates are obtained by averaging the resampled estimates.
WCR vyields consistent and asymptotically normal estimators, and a consistent estimator for
the variance is provided. Williamson et al. [4] introduced an alternative to WCR using a
GEE that is weighted inversely with the cluster size, and Wang et al. [5] showed it to be
preferable to WCR and GEE for clustered longitudinal data. Further improvements were
proposed when the correlation matrix is available, and the minimum cluster size is greater
than one [6]. Chen et al. investigated robustness to misspecification of the cluster size
distribution in the context of linear mixed models, when the cluster size is informative [7].
Follmann et al. [8] generalized WCR to broader types of clustered data when a method for
analyzing independent data is available and termed their method multiple outputation and
later introduced exact inference for these settings when within-cluster correlation is not of
direct interest [9]. More recently, Cong et al. [10] and Williamson et al. [11] modeled
correlated survival data when cluster sizes may be informative to the risk of the outcome.

A different way of conceptualizing clustered data with informative cluster size is to treat the
measurements at the cluster level as exchangeable entries in a multivariate vector with a
random length given by the number of members in the cluster. In a clinical trial of a
migraine drug, the number of migraine episodes and the severity of each episode are
collected over a follow-up period. Both the number of migraine episodes and their severity
may be informative about the drug efficacy. In this approach, termed random length data by
Barnhart and Sampson [12], one jointly models the size of the cluster (the number of
episodes) and the potential dependent continuous outcomes (the severity of the episodes),
which they assume to follow a multivariate normal distribution. One of the advantages of
this technique is the ability to include clusters of size zero in the analysis. A traditional
analysis, taking into account just the migraine severity, would exclude the clusters with no
members and might lead to zero-length bias. However, having no migraines is highly
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informative about the effectiveness of the drug. This likelihood-based method was later
extended to include covariates [13] and to accommodate ordinal severity measures [14].

In this paper, we consider clustered data that are collected repeatedly (over conditions or
over time) and model repeated measures clustered data when the cluster size is informative.
This type of data can arise in a variety of settings, when information is gathered repeatedly
on both the frequency of an event and its severity. In our experience, when data are collected
longitudinally, the exact time of events may not have been obtained, and the information
about the events is collected at fixed follow-up intervals. A change in the underlying
condition severity is reflected in simultaneous changes in both the number of events and the
severity of each event. Because both the frequency and the severity are important, in order to
appropriately determine the treatment effect, one needs to jointly model the number of
events and their associated severity measures. An example of where this model is effective
is a clinical trial of a migraine drug where the data are recorded monthly. In addition to the
total number of migraine episodes occurring during the respective month, the pain levels
corresponding to each migraine are reported as well. Both the number of migraine episodes
and the pain level of each migraine at each measurement occasion are informative about the
treatment effect over time. If the drug is efficacious, the patients who received the active
treatment are expected to have better pain profiles than the placebo patients; in time, they
will have fewer and less severe migraines as compared with placebo.

We refer to this type of data, when individuals are observed repeatedly and their multivariate
random length measurements are recorded as a series of observations as repeated clustered
data with informative cluster size. We use the term repeated to indicate that each individual
is measured repeatedly (under different conditions, at different assessment times, etc.). The
term clustered data implies that the outcome for an individual recorded at a measurement
occasion is in fact a cluster of severities, and the size of this cluster is a random variable
determined by the number of events experienced during that follow-up interval. Finally, we
use the term informative cluster size to point out the relatedness of the number of events to
the severity measures experienced within a measurement interval.

Models for repeated clustered data are necessarily complex because they must consider
three types of dependence within a subject: first, between continuous severity measures at a
single measurement occasion; second, between severities at different measurement
occasions; and third, between the number of events experienced at different measurement
occasions. We provide a general likelihood-based framework for modeling repeated
measures clustered data with informative cluster size.

Our research was motivated in part by the life events and difficulties schedule (LEDS) data
set, collected as part of a larger study at the University of Pittsburgh Western Psychiatric
Institute and Clinic. This data set contains information about stressful life events
experienced by adolescents prior to a depressive episode, assessed using structured
instruments [15]. In addition to the number of life events experienced over a 1-year period
before the onset of the depressive episode, the degree of severity of each event was
recorded. A detailed description of this study is provided in Section 2.

Stat Med. Author manuscript; available in PMC 2015 February 28.
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This remainder of the paper is organized as follows. In Sections 2 and 3, respectively, we
detail our motivating problem and introduce our notation and formally describe the model.
In Section 3.3, we develop an estimation strategy and derive the asymptotic properties for
the proposed estimators. Simulations examine the finite sample behavior of the estimators in
Section 4 and their robustness in Section 5. Our method is applied to the motivating
psychiatric data in Section 6, and a brief discussion is in Section 7. Proofs of the asymptotic
properties of our estimators are presented in the Appendix.

2. Motivating data

The data that motivated this research were collected as part of a larger study at the
University of Pittsburgh's Western Psychiatric Institute and Clinic. These data contain
information about adverse life experiences in adolescents prior to a major depressive
episode. The objective of the larger study was to examine life events and long-term
difficulties occurring in adolescents prior to and during a recent depressive episode. Stress
exposure was assessed using the investigator-administrated LEDS [16], adapted for use with
adolescents [17]. Life events are acute in nature, typically unfolding over a short period
(e.g., fight with a boyfriend and death of a pet), whereas difficulties are chronic, being
present for at least 4 weeks (e.g., a tumultuous relationship, with frequent fighting and
arguing or serious ongoing problems with a parent). The severity of each stressor was rated
on a 4-point scale with higher values reflecting more stress (4-marked, 3-moderate, 2-some,
1-little, or none). In this paper, we focus only on the acute life events in the LEDS data,
treating their severity levels as continuous measurements because the literature on life stress
typically uses normal distribution to analyze ordinal life events measures, usually via
regression models [18,19].

Previous literature [20] has suggested a causal relationship between stressful life events and
the onset of a major depressive episode. Major depressive disorder (MDD) is a serious
psychiatric condition that afflicts millions of people each year and the leading cause of
disability worldwide, according to the World Health Organization [21]. The prevalence of
MDD in US youth (ages 12 to 17 years) is about 5% [22]. Given the personal, social, and
economic costs associated with this condition, there is a tremendous clinical interest in
understanding the role that stressful life events may play in the onset of depression.
Traditional life events analyses would run two separate analyses for the number of events
and their severities. We hypothesize that the underlying stress ‘severity’ over time drives
both the number of events reported and also their severity; and this group severity differs
between people with MDD and controls. Thus, we develop methodology that models jointly
the two outcomes longitudinally and obviates the need for separation of information. The
data set we consider contains 32 women between the ages of 13 and 18 years who have
become diagnosed with MDD and 30 group matched (on age and ethnicity) normal control
(NC) women. We examine the occurrence of the acute life events collected over four 3-
month intervals (quarters) in the year prior to the onset of the depressive episode in
adolescents with MDD episodes and during a comparable “linked’ period in NCs. The
expectation is that in comparison with NCs, adolescents approaching the onset of an MDD
episode would have reported progressively more acute life events in the year prior to the
diagnosis and that these life events would be more severe.

Stat Med. Author manuscript; available in PMC 2015 February 28.
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3. Model description and estimation

3.1. Notation

In this section, we develop a methodology to model and analyze repeated clustered data
where there are multiple experimental groups. Assume that group i is characterized by the
parameters Wi1,..., KiT, reflecting the underlying condition severity at measurement occasions
1, 2,..., T. Individuals are observed repeatedly, and at each measurement occasion, the data
for a person consist of the number of events he/she experienced and the cluster of
corresponding event severities. The underlying condition severity drives both the number of
events and their severities, and thus, the distributions of the cluster sizes and multivariate
severities share parameters. The proposed model defines parametric structures for the joint
distribution of the cluster sizes and event severities for individuals in multiple groups (e.g.,
treatments) observed at repeated intervals and for within-individual covariance structure.
The shared parametrization exploits this notion, improving efficiency over separate
parameterizations. We use a log-linear functional dependence between the two mean
structures and allow all groups to share scaling parameters, whereas y's, reflecting the
underlying condition severity, are group specific. The model is motivated by our belief that
these scaling parameters are parameters of the process linking the underlying condition to
the number of events. Treatment (or group) does not affect the relationship between number
and intensity of events, just the severity of the underlying condition producing events, and
therefore, the scaling parameters should remain the same, regardless of group. We then
obtain maximum likelihood estimates for all parameters and derive their asymptotic
properties.

This model is appropriate for studies involving multiple treatments or groups. Each
individual j, j = 1,...,n;, from group i, i = 1,...,m is observed on T different occasions. At
each measurement occasiont = 1,..., T, individual j from group i reports a random number
of events Kjj, and the severities of these Kjj; events can be recorded as a vector with

T

exchangeable entries Xjj. Thus, all the data for individual i can be condensed into a ;Kiﬁ—
dimensional vector Xij, Xfj = (Xfj1,..., Xfjr) and the corresponding T-dimensional vector of
random numbers of events Kjj = (Kijj,..., Kjjr), withi=1,...,m, j = 1,..., nj. Let kjj = (Kjj1,
..., kijr) be a realization of the T-dimensional vector Kj;.

We first specify the model for the cluster sizes Kjj, choosing a Poisson distribution as a
natural model for count data. We assume, for simplicity, that the mean cluster size is fully
determined by the severity of the underlying condition at time t for treatment i, pj;, and the
scaling parameters dand y. Specifically, we assume that for each group i = 1,2,..., m, and
for each individual j, j = 1,..., nj, the cluster sizes Kjjy, Kijz, .., Kjjt are independent and
distributed Poisson (4;;), where i = exp (&+ ¥ Wip), t = 1,...,T. This log-linear model
provides a flexible and meaningful way to model the relationship between the number of
events and their severities. The parameters pj; directly characterize the mean severity in
group i at measurement occasion t. yacts as a scaling parameter and also controls the
association of p's with the cluster sizes. Because the Poisson (4;;) distribution is
stochastically increasing in Aj;, the previous model describes the following clinical
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phenomena: y> 0 implies both more severe and more frequent events. Parameter y< 0
implies that the larger the underlying parameter p is, the smaller the expected number of
events (fewer but worse events). If y =0, then underlying condition severities yj; have no
effect on the distribution of the cluster sizes.

We then specify a multivariate normal distribution for the intensity of symptoms at each
event. We use a patterned exchangeable correlation structure to describe the association of
severities within-person, allowing severities recorded at the same measurement occasion to
be more highly correlated than severities recorded at two different measurement occasions.
This within-person dependence in the severities is modeled using the same parameters o2, p,
and p*, regardless of group. Clusters with kjj; = 0 will contribute no events to the vector of
observed intensities. They will, however, contribute information about treatment efficacy
through the cluster sizes. To keep the notation simple, we write the model for nonzero
components, but we keep in mind that if some of these components are zero, we have to
account for this. The random vector of severities Xij, with cluster sizes Kjj = (Kjjy, -, Kijr)
for the j-th individual in the i-th group, has the conditional distribution

Xi]"(Kij:(kijla ceey ki‘jT)) ~MVN (u’k” 3 0-2Sk5ij (pa p*)) )

T
D kije @
t=1
with mean
l"’kij :uki:jl)_""k“T = (/‘Lileki_jl ﬂizekijz M luiTekijT) (2)
and covariance
Rkijl (p) p*Jkijl,kijz s p* kijiokgr
p*Jkijz,kiﬂ Rkijz (p)
* *
U2Skij (p7 p )20-2 p Jkij2’k,]’T ’ (3)
P P . R,_(p)

ki kit ki kij2

where ey denotes the k dimensional vector with all entries equal to 1, Ji, k, denotes the ky x
ko dimensional matrix with all entries equal to 1, and Ry(p) is the intraclass correlation
matrix of dimension k. To ensure that the matrix S, ,...,kt (o, 0*) is positive definite for all
possible values (ky,...,kT), we assume that 0 < p* < p< 1.

For entries corresponding to nonzero kijt, the mean is given by ;. For instance, an
individual from group i who reports two events at each measurement occasion has a 2T-
dimensional mean severity vector (i1, K1, Mi2» Hi2s ---» KiT,» MiT)- But if he reports no events
at time 2, but two events at all the other measurement occasions, the mean is given by the
(2T — 2)-dimensional vector (Wi1, Mi1, Ki3s ---» Hi3s ---» KiTs KiT)- The covariance matrix Skij (o,
©*) has diagonal elements R(p) for entries corresponding to the nonzero components of kj;

Stat Med. Author manuscript; available in PMC 2015 February 28.
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and off diagonal components corresponding to entries with both kit and kjjt-nonzero equal to
p*. For example, an individual who reports two events at each of the first two measurements
and zero events at the rest of the measurements would have a 4 x 4 covariance matrix equal
to

o2 Ra(p) p*J22 .
p*Ja22 Ral(p)

We finally assume that data from different individuals are independent. Thus, (Kij;, Xigjq)
and (Kipjp, Xij,) for individual j; from group iy and j, from group iy, respectively, are
independent for (iy, j1) # (i, jo).

3.2. Model features

Denoting the (mT +5) parameters collectively by 8= (6, 7, 11, H1T,+++» Hmis---» HmT» 0% 2,
0*)', the parameter space for the previous model is © = {6l — 00 < &, % P11, M mT < 00, 02
>0,0<sp*<p<1}.

The support of the cluster sizes includes zero. Any of the components of the vector Kj; may
be zero. Note that, to account for observation times with Kjj = 0 (no observed events), the
vector W and covariance matrix S will have corresponding structural empty cells (no
corresponding entry for that time point in both the mean vector and the covariance matrix).
Thus, the actual working dimension of p and S will reflect only the nonzero clusters, but the
linkage to Kjj by time of observation is preserved. Consider that the individuals described
previously reports the same number of events, but this time, he has 0 events recorded at the
first time measurement and two events recorded at each of the next two time points.
Conditional on the number of events experienced during all measurement occasions, the
covariance for the multivariate severities looks the same, being equal to

o2 Ra(p) p*J22
pJaa Ra(p) )7

but one needs to take into account the fact that this structure corresponds to the first two
time measurements for the first case and to the measurements occasions 2 and 3 in the
second case.

This is one of the main difficulties in handling the model, because not only the number of
events but also the number of blocks that constitute the mean and covariance structures in
(2) and (3) can change from person to person. Thus, strict attentiveness and a significant
amount of bookkeeping need to be conveyed in working with the conditional density
functions for the multivariate severity measurements.

Stat Med. Author manuscript; available in PMC 2015 February 28.
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3.3. Likelihood framework and estimation

We can write the joint density for the j -th individual's data in the i -th group as f(xij, kijj) =

T
. kij-zzkijt >1
P(Kij1 = Kij1,---Kij = kijT)f(Xj | Kij1,- .-, KijT), provided that = . We denote by
f(-[kij1,---.Kijr) = f(-|kij) the density of the kjj.-dimensional multivariate normal variable from
MVNkij, (ukij, 028kij (o, £¥)). If a person does not have any events at any of the

measurement occasions, the likelihood reduces to the first term in the previous expression.

Then the log-likelihood of the entire data can be written as

m n;

l(9)22210gp(Kljlzkl]1, . ’KijT:kijT)+Z Z logf(mlj|k‘”1, caey kijT)’

i=17=1 1,J kij.>1

where the parameter vector is 8= (8, 7, H11,..., U mT» 0%, o, P~)-

Estimation will be carried out by maximum likelihood, under the assumption that the
appropriate number and distribution of events are observed. For instance, if no events,
across all people and all measurement periods are observed (i.e., no kijt > 0), then none of
the parameters are estimable. If all the people in the sample experience at most one event,
then the parameter p is not estimable. If all the people in the sample experience events only
at the same measurement occasion, then the parameter o* is not estimable. For large sample
sizes, these difficult cases become increasingly rare. As expected, there is no closed form
solution for the maximum likelihood estimator (MLE) 6}1Afor 6, and its exact distribution is
not available. We derive the asymptotic distribution for HnAin Section 3.4. Numerical
methods for maximization are discussed in Section 4.2.

3.4. Asymptotic distribution of the maximum likelihood estimators

Using a generalization of the principle of adding the information in [12], the information
1(6) about the parameter &contained in a single observation Xj; with cluster sizes Kjj = (Kijy,
..., Kjjr) from group i can be written as the sum of the information about & contained in the
cluster sizes and the information about @ contributed by the vectors of severities, over all
possible cluster sizes (under the assumption that at least one event is observed, i.e.,

T
k=> ki >1
= )-

19(0)=I7(0)+ > Po(Kij=k)I;(0|k),
k>1

where 17 (9) is the information matrix about &contained in the cluster sizes Kjj = (Kjjy, ...,
Kijr) and Ii(fK) is the information matrix contained in X;;|Kjj = k = (Kg,..., kr).

Stat Med. Author manuscript; available in PMC 2015 February 28.
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m

n=)>» n;.
Let us denote by 1,(6) the information matrix for @contained in the ; independent
observations from the multiple group model, Xjj with cluster sizes Kjj = (Kjjy, ..., Kjj), i =1
..,m,j = ,...,ni.

Then the information matrix I, (6) contained in these n independent observations from the
multiple group model is

+)

5+'wLe t(0+
1,(0)= Zmz*<e>+2nzz [[e" kt.” L(0]k).

i=1 k.>1 Lt=1

We show in the Appendix that I, (6) has a block diagonal form

In(5, Yy K115 - - - hu’mT) O(mT+2)><3

I,(0)= m .
( ) 03><(mT+2) _;nikz;lpe(Kij:k)Ik(OQapap )

where Onxm denotes the n x m-dimensional matrix of zeros and the components on the main
diagonal are defined by (A14) and (A3) — (A8) in the Appendix, respectively.

Applying a general result on the efficiency of MLEs for random length data (Theorem A.3.2
in [23]), we can derive the asymptotic distribution for &,, the MLE. The asymptotic
covariance matrix of the MLE 4, is obtained as the inverse of the previous information

matrix and is estimated by 1,(8,,).

Let 0 =5, A 1o 50, g, ) An,pn,pn) be the MLEs for a sample of
size n from the multiple group model. If nj/n — 7; with 0 < 73 < 1 as n — oo, then

1. 611Ais consistent.

2.
Vi (8, —0) HMNV, . (0,11(9)),
where
(5,7, p1,--- mumT) O(mT+2)><3
I1(0)= m . ,
©) O3><(nLT+2) Z)lmkgng (KijZk:)Ik(UQ, P, P)
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1(5377#117 cee ’,umT)

(@) (@)
Gll 02><(i—l)T G12 O2><(1n—i)T
m
_Zﬂ' O(i—l)][‘x2 O(i—l)Tx(i—l)T O(i—l)TxT O(i—l)Tx(m—i)T
o ! (4) (@)
=1 G12 OTx(i—l)T G22 OTX('m—i)T
O(m,—i)TX2 O(m—i)Tx(i—l)T O(m,—i)TxT O(m,—i)’T‘x(-m,—i)T
T k T k,
1 Agpt =1 At t =1
. -\ 1t At ¥t
+— Diag ngg,mZHe ”—‘ ,...,anHe = ,
g k;t~ k k)t. k
k> 1t=1 k> 1t=1

the elements of the matrix Iy (02, p, p*) are defined earlier, and the elements in 1(5,
% M11,---,» UmT) @re given in the Appendix by (A10) and (A2).

4. Simulation study

In this section, we report the results of a simulation study conducted to evaluate the finite
sample properties of our estimators in realistic situations with sample sizes in a small to
medium range. Motivated by our LEDS data set, we simulated data that closely resemble its
structure. Several different scenarios and sample size configurations are analyzed, with data
generated according to the multiple group model described in Section 3.

We evaluate the performance of the proposed estimators by examining three properties:
accuracy, precision, and ability to make valid inference. Varying the sample sizes allows us
to tackle the question of how many subjects are necessary in order for the large-sample
theory to produce the desired results.

4.1. General framework and quantities computed

Four different scenarios were created to explore various parameter configurations,
representing a 2x2 factorial design. The first factor involves the relationship between the
severities and the number of events. We believe the two interesting levels for this factor are
those reflecting contradictory information from the number of events and severities. In the
first level, Wj;, the expected severities are similar for the two groups, but the differences
between mean number of events are exaggerated by a large yand small &'In the second
level, the W's are set to be spread out across groups, but small yand large Syield very similar
mean numbers of events. The second factor refers to the pattern of group differences over
time. The first level has parallel time trajectories for severity in the two groups, whereas in
the second level, mean severity trajectories have different slopes: one increasing and one
decreasing over time.

As in the LEDS setup, we mimic a study with two different treatment groups and the same
number of subjects per treatment group. All subjects are followed four measurement
periods. We keep the same values for o2, p, and p* across all scenarios, and we specify the
remaining parameters reflecting the four different circumstances over a range of plausible
values. The complete choices of parameters for simulations are given in Table I. For each
simulated scenario, 1000 data sets were generated, with n = 20, 50, and 100 subjects per

group.
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The number of events kjj; experienced by individual j = 1,..., ningroup i = 1, 2 at
measurement occasion t = 1,..., 4 was generated using independent Poisson (4it)
probabilities, with Aj; = e¥* #it. If all the components of the vector of cluster sizes kij = (kij1,
Kij2:---» Kij4) are zero, we have an empty cluster of severities. Otherwise, we generate the
severities Xjj using a multivariate normal distribution with mean and variance given by (2)
and (3), respectively. We analyze each data set using our multiple group model and compute
the ML estimator of the parameter 8= (5, , H11,--., H14, K21,---, Hoa, 0%, p, p¥) and its
theoretical asymptotic variance as described in Section 3.3. We report the average of the
bias, the standard error (SE), and the coverage probabilities of the 95% confidence intervals
for each parameter setup. Specifically, we evaluate the accuracy of the proposed estimators
by computing their empirical bias and the precision by reporting their SE. The asymptotic
covariance matrix of the MLE @is obtained as the inverse of the information matrix and is

estimated by its plug-in estimator, Igl(é). Using the estimated variance, we construct 95%
confidence intervals for all the parameters. To evaluate the ability to make valid inference
using the proposed estimators, we report the percentage of 95% confidence intervals that
contained the true value of the parameter.

4.2. Considerations for numerical maximization

Using a shared parameter model in both the specification of the distribution of the cluster
sizes and the conditional distribution of the vectors of severities given the cluster sizes
increases the efficiency, by pooling information from both outcomes. The cost is an increase
in the computational burden, because the shared parameters need to be estimated
simultaneously from the two models.

Specifically, there are several difficulties that arise in modeling repeated clustered data with
informative size. First, the full likelihood approach is computationally complex when the
number of events is large, because higher dimension matrices are involved in the conditional
distribution of the multivariate severity measures. Second, the complexity increases as the
number of repeated measurements becomes larger and the number of parameters to be
estimated increases. Because the number of time points with quantitative measures changes
with every person, the mean and covariance structures for the distribution of the severities
change. Moreover, numerical computation of the information matrix involves summation
over all possible values of the cluster sizes. For T measurement times that means summation
of matrices over all the possible values of a T-dimensional vector of cluster sizes. If the
average number of events is large, in numerically computing the information matrix, one
needs to set the maximum values that the cluster size can have quite high to ensure that the
corresponding probabilities in the right tails of the Poisson distributions are zero.

Finally, a third difficulty relates to modeling of slopes. If all the p's are equal, the parameters
dand yare not identifiable. When data are generated from groups with means not well
separated, the likelihood can be flat over certain regions and the function used to
numerically maximize the log-likelihood converges to strange solutions for the parameters &
and y. However, even in these cases, the average severity and number of events are
estimated correctly (Section 4.3).
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All the simulations were implemented in R statistical programming language [24], using its
function nlm to carry out the maximization of the log-likelihood. This function minimizes
the negative log-likelihood using a Newton-type algorithm and requires specification of
initial values for the parameters. We obtain good initial estimates for the parameters Lj;
reflecting the underlying disease status in group i at measurement occasion t using

0_N"% y g
i _;xml(km>0)/j§l(km>0). We then find the starting values for §and y by fitting
a Poisson regression model, log(Aijt):5+w§?> i=1,2j=1,2,...,nt=1,.., 4, where 4j; =
E(kijt). We solve for o2 in the corresponding likelihood equation to get 0%(p, p*) and
substitute this value in the formula for the conditional likelihood to get an expression that
depends only on the unknown p and p* Maximizing this likelihood with respect to p and p*
by using nlm with 0 as starting values for both parameters yields the initial values 5© and
). Plugging these values into the expression of ¢?(p, p*) gives the initial value 62(©. If
any of the initial values for o2, p, or p* are negative, they are assigned the value zero. With

these initial estimates, the optimization proceeds using nim.

4.3. Simulation results

Results for the simulations across the four different scenarios and three sample sizes choices
are summarized in Table Il (bias), Table 1l (SE), and Table IV (coverage of the 95%
confidence intervals). The main parameters of interest are [yy1,..., Hoa, reflecting the
underlying condition severity in the two groups over time. Also of interest are the
parameters that model the number of the events Aq4,..., A24. The results of the simulations
indicate that the estimates of the true u's and A's are unbiased even for small sample sizes,
under all four different scenarios. The variance components o2, p, and p* are also nearly
unbiased. For small sample size, the bias of the parameter closer to the boundary (0*) is
slightly higher. As shown by Table I1, some of the estimates for 5and y have large bias for
small sample sizes. For n = 20, the estimates for and y are biased in both scenarios 1 and 2,
but the bias tends to wash out even with a sample size as small as 50. In scenarios 3 and 4,
the estimation for small sample sizes works as well as in the cases with n large. The main
source of this difference in results across scenarios is the disproportion between the average
severities and the variance 2. In the first two scenarios, the theoretical severities are not
well separated across time and treatment group with respect to o2, as they are in the latter
scenarios. In addition, in scenario 2, the severities for the two groups intersect across time,
making estimation more difficult. It is important to note that even in cases where the scaling
parameters dand y are not closely estimated, estimation for the key parameters, p11,..., Ho4
and 4 11,..., 4 24, have practically insignificant bias, even for sample sizes as small as 20.

We evaluate the efficiency of the MLESs in our proposed method and contrast it with WCR, a
commonly used method for clustered data. To obtain the WCR estimates, we used 5000
resamples and a linear model with group, time, and their interaction. We present in Table 111
the empirical standard errors for the parameters that are meaningful in both methods (the
severities) and the relative efficiency (defined as the ratio of the calculated variance of )
under our model relative to WRC). As expected, the relative efficiency is always greater
than 1, and the gain in efficiency is substantial in the scenarios in which the cluster sizes

Stat Med. Author manuscript; available in PMC 2015 February 28.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

losif and Sampson

Page 13

provide more information (1 and 2). For all three sample sizes under consideration, the
efficiency gains are major in both scenario 1 (range 36% to 222% across all sample sizes)
and scenario 2 (range 131% to 305% across all sample sizes) and more modest in scenario 3
(range 2% to 8% across all sample sizes) and scenario 4 (range 3% to 16% across all sample
sizes).

Table IV shows the empirical coverage of the 95% confidence intervals based on the large
sample variance of the proposed estimators. Paralleling the results for the bias, our method
yields satisfactory coverage for all the key parameters of interest, the mean severities and
numbers of events, even for choices of n as small as 20 (with the smallest coverage 92%).
For the scaling parameters 5and y, the coverages are below 95% when the sample sizes are
small, due to the bias. Unsurprisingly, the normal approximation is not as good for the
variance components, with our small to medium sample sizes and the coverage of their
confidence intervals, although reasonable, is not improving as fast with the sample size.
Much larger samples than those we consider here are needed before the asymptotics apply
for these parameters. However, the estimation of the primary parameters is robust and does
not seem to be affected by the secondary parameters.

5. Robustness of the model

Our methodology involves explicit modeling of both the severities and the cluster sizes. In
this section, we examine, through simulations, the robustness of our model. We consider
three different types of model misspecification and for each of these, we simulate 1000 data
sets under each scenario and sample size combination used in the simulation study described
in Section 4. We report in Tables V=VIII the bias and coverage of the 95% confidence
intervals of the MLEs computed using the model-based SEs described in Section 3 for the
parameters Ji1,..., H14 reflecting the underlying condition severity (representing the primary
interest to investigators), parameters A11,..., 114, and the scaling parameters sand y, for n =
50. The Supporting information® contains complete information for all three sample sizes
under consideration.

In the first type of distributional form misspecification, we consider that the true covariance
for the severities is of a more complicated and realistic structure while assuming that the
distribution of the cluster sizes was correctly specified. To explore how violations of each of
the between-measurement and within-measurement occasion exchangeability assumptions
affect estimation, we include two models for the covariance structure. Under the first model,
we simulate data assuming that severities collected during the same observation period are
correlated with p = 0.5 and allow severities from different measurement occasions to be
correlated using an AR (p*) structure, with p* = 0.2. Under the second model, we maintain
the exchangeability structure across measurement occasions (o* = 0.2) but allow severities
from the same measurement occasions to be correlated using an autoregressive (AR) (0.5)+
O~ structure.

iSupporting information may be found in the online version of this article.
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The second type of model misspecification focuses on the assumption of independence of
the cluster sizes across measurement occasions while assuming that the distribution of the
severities was correctly specified. We simulate cluster sizes reflecting the number of events
experienced by a person across measurement occasions from a multivariate Poisson
distribution and allow the cluster sizes to be correlated across measurement occasions. We
use a simplified model with just one covariance term for all pairs of cluster sizes [25].
Marginally, each of the cluster sizes follows a Poisson distribution with parameter (1;;), and
the covariance between all pairs of random cluster sizes across measurement occasions is Ag.
Table VI presents the results of the simulations for Ao =1 and n = 50.

The third misspecification incorporates extra-Poisson variation in the distribution of cluster
sizes. Specifically, we are interested in the behavior of the MLE when the true cluster size
model is negative binomial (NB), whereas the working model is Poisson (4;;). The mean and

Ai )
variance of NB (a, i) are Ay and Ai(1+ ;t), respectively. Thus, a controls how
overdispersed the NB distribution is compared with «a Poisson distribution with mean A;;.
Table VIII presents the results of the simulations for @ = 10 and n = 50.

The results displayed in Tables V=VI1I show that when our proposed model is applied to
data generated from these misspecified models, there are very small biases in the estimates
of the mean severities for n = 50. The relative bias (absolute bias divided by the true value)
for these parameters was less than 1%. Similarly, there was very little loss of accuracy in
estimating the mean number of events (the relative bias for A's was smaller than 2%). This
pattern was consistent across sample sizes (Tables A1-A4 in the Supporting information).
Parameters 5and y have larger bias and lower coverage in scenarios 1 and 2, as in the
original simulation study.

When the covariance structures (of either the severities or cluster sizes) was misspecified
(Tables V-VII, A1-A3), the coverage probabilities of the key parameters (u and 1) are close
to 95%. As shown in Table VIII, the extra-Poisson variation considered does not seem to
impact the coverage of the mean severities, but as expected (because the asymptotic
variance estimates used to construct the confidence intervals for the cluster sizes are based
on the Poisson assumption), the coverage for the A's is not as good, and it can be as low as
80%.

For the three types of violation of the assumption considered, we found that there is little
loss of accuracy in estimating the mean severities and cluster sizes, even for small sample
sizes. Both misspecification of the cluster size distributions and ignoring the within-person
dependence for the severities or cluster sizes yield estimates with good coverage
probabilities for the severities. When substantial extra-Poisson variation is incorporated in
the distribution of cluster sizes, the bias in A's is still very small, but there is undercoverage
of the confidence intervals. For investigators whose primary interest is in estimating the
main severities, the results of the simulation suggest that even though our model makes
structural assumptions, the three types of departure from the model assumption considered
in this section may not have a major influence in the estimation. If the main focus is on
estimating the number of events, then misspecifications of the covariance structures will also
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have little impact on estimation, but the Poisson distribution assumption needs to be verified
using diagnostic tools before using this model.

6. Application to life events and difficulties schedule data

For the 32 MDD adolescents, the number of life events experienced in a quarter ranged from
70 to 92, which amounted to a range of 2.2 to 2.9 events per person. The corresponding
range for the NC group was 41 to 64 (1.4 to 2.1 events per person). During the year, 20% of
the clusters of severities in the MDD group and 30% in the NC group had size 0. The
number of life events reported during a quarter by a single person ranged from none to 11 in
the MDD group and from none to six in the NC group. As detailed in Table 1X, acute life
events were common in the year prior to depression onset, with 75% of the MDD and 57%
of the NC adolescents reporting at least one stressful event at every assessment time. In
general, a greater percent of the MDD adolescents reported at least two acute events, and
this was consistent across the four assessments. The right panel of Figure 1 depicts the
average severity for the events experienced by the two groups during the year preceding the
onset of depression. The left panel shows the average number of events reported. More than
50% of the life events reported by the NC group at any of the assessment times had severity
1, whereas the majority of the life events reported by the MDD group had severity 2 or
higher.

The two outcomes recorded for each subject are the number of acute life events and the
severity of each of them. These outcomes are assessed quarterly, over a year. Each quarter,
the data for an individual participant are a cluster of event severities with the size given by
the number of events the participant experienced during that quarter of year. We denote by
U11,-.-, H14 the parameters reflecting the underlying stress severity during the four quarters
of the year before the onset of depression in the MDD group. Similarly, we denote by py1,
..., Mo the means in the NC group. The model introduced in Section 3 is applicable now to
this data set. We have nq = 32 and n, = 30. The question we consider here is whether the
underlying stress severity for the adolescents in the MDD group is escalating as they draw
closer to the onset of their MDD episode.

Table X reports the solution 6 of the maximization procedure implemented in R using nlm

and the estimated standard deviations based on Irjl(é), as well as the initial values for the
maximization procedure.

The estimated parameter y has a positive sign indicating a positive relationship between the
average number of events and the average severity (larger severities and higher number of
events). Its estimated standard deviation is large, indicating that y is not significantly
different than zero.

Another question of interest is testing if the severity profiles of the two groups are parallel.
A Wald test of this composite hypothesis yields a test statistic 2 = 0.34, which is not
significant with respect to a chi-square distribution with 3 degrees of freedom. Similar
results were obtained for testing whether the profiles were also coincident and equal
response effects.
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Using a shared parameter model allowed us to gain clinical insight into this complicated
matter. We expected that both the severity and the number of events were driven by the
underlying stress. Contrary to our predictions, the number of the adverse life events did not
provide information about their severity. The joint distribution of the cluster sizes and
severities of two groups looked similar, with the MDD group experiencing more events, but
not more severe than the NC group.

7. Discussion

Many diseases may manifest with recurring episodes. The number of episodes and each
episode's severity are collected repeatedly, over assessment intervals. A naive approach
would be to analyze the number of episodes and their severities separately. In this paper, we
propose models that allow us to analyze data gathered repeatedly on both the frequency of
an event and its severity when both the frequency and the severity are important. Our shared
parameter approach obviates the need for this separation of information. We propose a
general ML framework and derive estimators with good asymptotic properties. Our
simulations under scenarios with sample sizes in a small to moderate range show that the
estimators also have good finite sample properties. We implement this method to a real life
data set.

Analysis of clustered data has been a rapidly growing field in recent years, but most of the
approaches do not account for the possible relationship between the outcome and the size of
the cluster. Our model is appropriate in scenarios when clustered data with informative
cluster size are collected repeatedly, and it has the advantage of accommodating clusters of
size zero. Our initial model is relatively simple but arises naturally and permits answering
more subtle questions about the relationship between frequency and severity of events.
Simulation suggests that even though our model makes structural assumptions, the three
types of departure from the model assumption considered may not have a major influence in
the estimation of the mean severities.

For the parametric distribution of the cluster size, our choice of the Poisson distribution was
based on its widespread use in modeling number of episodes and its simplicity. However,
our method is not limited to this choice and can be readily generalized to other families of
discrete distributions that might provide better fits, for example, the NB distribution or,
more generally, a family of discrete distribution with appropriate behavior.

Building models for repeated clustered data is a complex task. For instance, not only does
the number of events experienced by a subject change over time; the number of time points
with observed quantitative measures changes with every subject. Another complicating issue
is that the mean and covariance structures for the distribution of the severities change with
the change of the number of time points with observed quantitative measures. When the
number of repeated time measurements increases, the number of parameters that need to be
estimated increases. As the number of recorded events experienced by subjects and time
measurements with quantitative measure increases, the difficulty of numerically estimating
the parameters in the model increases, as well. We built a platform that handles this
computational challenge and can be used to generalize the models to more complex settings.
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Substantial challenges remain to be addressed, providing several interesting possible
directions to further this research. Our choice of the covariance structure was motivated in
part by its computational convenience. In cases of longitudinal studies, an AR structure
might be more appropriate. Thus, additional work is needed to accommodate data in settings
where the correlation structure is more complicated than a pattern exchangeable structure.
An even more general class of models would incorporate dependence between the cluster
sizes across measurement occasions. In the proposed models, we treat the severity measures
as continuous random variables. However, many of the severity measures encountered in
practice are categorical (e.g., in LEDS data, 1="little or none’, 2="some’, 3="moderate’, and
4="marked’), and there is interest in developing models for repeated clustered ordinal data.
Finally, one can imagine that the underlying condition severity might be impacted by
observed covariates, risk factors, or unobserved latent variables. Thus, incorporating
covariates, including time varying or shared random effects into the models, is another
potential generalization.

Although our motivation was drawn from a study examining stressful life events in
adolescents, the methods we propose are useful for a broad range of chronic conditions for
which repeated data are available on both the number of episodes and their severity. From a
clinical standpoint, it is important to assess both these outcomes, because they both might
inform about the condition severity.

These data are becoming increasingly more common, because recent health care policy
changes have made widespread use of electronic health records in the USA inevitable.
Electronic health records will make possible monitoring of patients with chronic conditions
with episodic manifestation and tracking these episodes and their related severities over
time. Methods such as ours will enable researchers to better understand differences in
incidence and severity of episodes.
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Appendix A: Information matrix

Consider one observation from the multiple group model introduced in Section 3. The log-
likelihood for this one observation is

logf (@, k) =logPg (K1=k1, ..., K, =k.)+I (k. > 1) logf (z|k).

For simplicity, we dropped the indices i and j from the expression of cluster sizes and
severities. Let k =(kq,..., kT) be a realization of the T-dimensional vector of cluster sizes K.
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Some of the components of k might be zero. Provided that k has at least one nonzero
component (i.e., k. = 1), the conditional distribution X |K =k, f(x |k), is a multivariate
normal. For now, assume that all the components of k are nonzero. We can use a result from
McCulloch et al. [26] who gave the expressions of the score function and information matrix
for the general model under the multivariate normality assumption, X ~ MVN(y, V) with
E(X) = pand Var(X) = V. Under a general parametrization, each element of p is a function
of elements of a parameter vector fand each element of V is a function of the elements of a
parameter vector ¢, unrelated to £ Following the notation in [26], we have #= (Ui1, Mi2,---»
i) and @ =.(c%, p, p*) where p = p(f) and V = V (¢). We show in [27] that the information
matrix about (8, @) = (Wi1,..., U iT, 0%, p, o)’ contained in X|K = Kk is given by

3%l 9%

7 an 1 -1
_ apos’ 0By _ ka Ors
o) ( O, Io*pp) ) Y
08B0y A0y
where
1 1 1 /
Z =Diag (——p o p*,---7——p*> +p'ere,, (A2
Tky Tk TkT
1 k
=T, P and Tk:—1+(k “1)p The elements of the matrix in the right lower corner in (Al)
are given by

1 1 k.
Ik(¢)11:§” (glk) =51 (A3

[k(‘i")lz:rig [”‘ (Z: (I Dlag< . ,%))) - Totr(Ik.fT)] (A9

1 -1 . 1 1 -1 . 1 1 i
Ik(90)227§tr (Zk (IT — Diag (k‘_l’ R E)) Zk (IT — Diag (k'_l’ KRR E))) +7tr(1k_ﬁT))

Ik(cp)%:%tr(z (eTe T)Z (eTeT ), (A8)
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where

V_l—i< lel OT><3 )

=)
o 03><T oL, _,

We assumed all components of k to be nonzero. However, our model allows for clusters of
size zero. In this instance, the corresponding entries in the matrix Xy are zero and all the
previous computations have to be carried out replacing k with its subvector containing only
nonzero components. The corresponding matrix X is actually obtained by applying the
equations earlier for the subvector of nonzero cluster sizes and filling in the corresponding
entries with zero so that we obtaina T x T matrix.

Let us denote @ = (6, 7, Hit,..-, W1, 0% 0, p*)'. Because the expression of f(x|k) involves
neither &nor y, it follows that the information about 8 contributed by the vector of severities
conditional on the observed cluster sizes for one individual is given by the expression

O2x2 O, Oax3
I(ol|k:): OT><2 %221;1 OT><3 ° (AQ)
Osx2 O, Ip(c? p,p")

T
log (k)= | =™ ¥t fhy (Sbypie) | .
Because ogf(k) t;[ ‘ Sl t)l it is straightforward to show that 17 (), the
information matrix about & contained in the random cluster sizs K=(K4,..., K1) for one
subject in group i has the expression

Gi O(T+2)><3
b)
sx(riz)  O3x3

U@#(O

where the upper left-corner (T + 2) x (T + 2) dimensional matrix is given by

T T
DAt D padie YA e YAr
i=1 =1
T T
| mada piAe ymaia oo YA

Gi=| & =1
YAl Ypadi YA ... 0
0 Y T W 0 ..

We can partition the previous matrix into
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(4) (1)
Gll G12

G;= ( G(i)/ c |’ (A10)
12 22

Where Gg? is the upper left-corner 2 x 2 submatrix of G;. Because there is no information in
these cluster sizes about the y's from other groups, the information about 8= (6, y, Y11,.--,
H1Tse o, Hmts--» HmT, 02, p, p*)' contained in the random cluster sizes for one subject in group
i has the expression

T T , ,
> At > it it ) YAi1 .. YA, ) 0 0
=1 =1 (—1)T T (m—i)T
T T o, , ,
tzlum tzlﬂit/\it 0, \r YHi1Ait Vhir Air (m—iyT 0 0
0(%1)7" O(i—l)T O(i—l/)Tx(i—l)T 0(371)1" ce 0(@'71)1" O(i—l/)Tx(m—i)T 0
0 YAl YA oyt YA - 0 - 0
,7 iT IYlLLzT T G—-1)T st 7 iT (m—i)T
O(m_m" 0<m_7;)7" (m=i)Tx(i=1)T 0<m_7;)7" (m—i)T O(m,—,i)Tx(m,—i)T 0 0
0 0 O;i_m 0 e 0 " 0 O
0 0 O;i_l)T 0 e 0 my 0 0
0 0 O(FI)T 0 e 0 (miyT 0 O
A simpler way of writing the previous matrix is
(@) (@)
Gi{ O2><(i—1)T Giy OQX(m—i)T O2xs3
O(i—1)1;><2 O(i—l)Tx(i—l)T O(i—l)TxT O(i—l)Tx(m—i)T O(i—l)TXE»
I (6)= (4) (@)
7’( ) G12 OTx(i—l)T G22 OTX('rn—i)T OT><3
(m—i)Tx2 (m—i)Tx(i—1)T (m—i)TxT (m—i)Tx(m—i)T (m—i)Tx3
O3x2 3x(i—1)T 3T 3x (m—i)T Osxs

Using the expression of 1(6;k) from (A9), the information contributed by the clusters of
severities given the clusters sizes, I; (6|k), can be computed as

O2x2 OQx(i—l)T 02><T O2><(m—i)T O2xs
O(i—l)TxQ O(i—l)Tx(i—l)T O(i—l)TxT O(i—l)Tx(m—i)T O(i—l)T><3
Ii(0|k): OT><2 OTx(i—l)T ;1221;1 Tx (m—:)T OT><3
(m—i)Tx2 (m—i)Tx (i=1)T O(m—i)TXT O(m—i)Tx (m—i)T O(m—i)Tx?x
Osx2 3% (i—1)T 3XT O3><(m—i)T Ik,(a'Q,p, )

So, adding the corresponding pieces gives us
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T k
— it )\zt ¢

[[e kt] I(0lk). (A1)

m

;ni independent observations from the multiple group model

introduced in Section 3. Adding all the corresponding pieces gives us the information matrix
for the multiple group model,

T .
I,(0)= ZmI*(ﬂ)ﬂLZmZ {H _A”A,; }I(ﬂlk) (A12)

i=1 k.>1 Lt=1

It can easily be shown that the information matrix 1,,(6) about the parameter vector 6,

n—
contained in the

m

n
; * independent observations from the multiple group model, has a

block diagonal form

In(57 Y K11y - - - >/U'mT) O(mT+2)><3
In(o): m T
it A 2t 1 (AL3)
O, rio) 2omni . | [Te™ ™ o | I(0%, p, o)
i=1 k.>1|t=1
where
(4) (4)
Gll Ozx(i—l)T G12 OQX(m—i)T
- O(' 1)Tx2 (i—1)Tx(i—1)T (i—1)TXT (G—1)Tx(m—d)T
11— X 72— X(z2— 71— X 71— X(m—12
In(a’ Vs K1ty - a/U'mT):Zni (z)/ @)
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A Azt A At e~
—Art —Amt
+ Dzag ngz,nJZH kt' k ,...,anH(B ' Z
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The matrices G s (k, 1 = 1,2) are given in (A10), and the elements of the matrix (A2, p, p
*) are defined by (A3) - (A8).
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Figure 1.

Number and severity of stressful life events (mean * standard error) for depressed (major
depressive disorder (MDD)) and normal control (NC) adolescents. Events were recorded
quarterly during the year before the onset of depression.
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Choice of parameters for simulation study.

Table |

W's similar and A's disparate

W's disparate and A's similar

My and i, parallel

W1 and , intersecting

My =(10,1.1,12,1.3)
U = (1.5, 1.6, 1.7, 1.8)
A1=(2.7,34,43,54)
Ap=(8.6,10.8, 13.6, 17.1)
(67) = (-1.3,23)
(% p, p*)=(1,05,0.2)
g = (1.3,1.2,1.1, 1.0)
Mp=(1.0,1.1,12,1.3)
A1=(9.5,7.4,58,45)
Ap=(45,5.8,7.4,95)
(6, 7)=(-1,25)
(A p, %) =(1,05,02)

M1=(123,4)
1y = (15, 2.5, 3.5, 4.5)
A1 =(12.3,12.4,12.6,12.7)
A, =(12.4,125,12.6,12.7)
(67 (25,0.01)

(% p, p*¥)=(1,0.5,0.2)
W=04321)
H=(1,2,3,4)

A1=(55,5.2,5.0,4.7)

Jp = (47,50,5.2,55)
(8 7) = (L5, 0.05)
(2 p, ) = (1,05, 0.2)
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losif and Sampson

Maximum likelihood estimates for life events and difficulties schedule data.

Table X

Parameter @~ Estimated SD of 8~ Initial value
5 -16:6291 27.91 —0:1986

y 9.4031 15.08 0.5683
MDD M1 1.8563 0.04 1.8605
H12 1.8515 0.04 1.8917

H13 1.8804 0.06 1.7364

H14 1.8799 0.06 1.8039

A 2.2848 0.27 2.3599

A2 2.1839 0.26 2.4021

M3 2.8653 0.30 2.1992

Aa 2.8524 0.30 2.2853

NC Ha1 1.8034 0.09 1.6814
H22 1.8271 0.06 1.4430

o3 1.8481 0.04 1.4479

o4 1.8287 0.06 1.6917

o1 1.3891 0.21 2.1315

Ao 1.7351 0.24 1.8615

A3 2.1148 0.26 1.8667

Ao 1.7622 0.24 2.1440

7 0.5250 0.03 0.5324

P 0.1702 0.05 0.1846

Youl 0.0689 0.04 0.0787

MDD, major depressive disorder; NC, normal control; SD, standard deviation.
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