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Critical temperatures and pressures for hydrocarbon mixtures from an 

equation of state with renormalization-group-theory corrections 

Jianwen Jiang and John M. Prausnitz * 

Department of Chemical Engineering, University of California, Berkeley, California 94720 

and Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 

Abstract 

A recently developed crossover equation of state incorporates contributions from long-wavelength 

density fluctuations by renormalization-group theory. This equation of state can satisfactorily describe the 

thermodynamic properties of chain fluids both far-from and near-to the critical region; it is used here to 

calculate the critical locus of a mixture. Because the calculations require much computation time, 

especially for ternary (any higher) mixture.~), an interpolation method is used as suggested by Redlich over 

30 years ago. For a binary mixture, along the critical line that gives the critical temperature or critical . 

pressure as a function of composition, the limiting slopes at the critical points of the pure components are 

explicitly derived from the criteria for a critical point. Logarithmic-hyperbolic interpolation equations are 

selected to calculate the entire critical line of the binary mixtures; this procedure is then generalized to 

multicomponent mixtures. Upon comparison with experimental critical data, the interpolation equations 

give good critical lines for binary and multi component Type I mixtures of n-alkanes. 

Keywords: Critical point; Equation of state; Density fluctuation; Renonnalization-group theory; n-Alkane mixtures 
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1. Introduction 

Since the early 1980s, industrial applications of supercritical fluids (SCF) have become useful for a 

number of processes, for example, for coffee decaffeination, production of natural-flavor and dyeing 

materials, separation ofinvolati1e mixtures, waste treatment [1] and fermentations [2]. Supercritical fluids 

are also useful for devolatilizing polymer solutions to remove unreacted monomers and polymerization 

solvents [3]. 

SCF can be used as reaction media [4,5] and as solvents in polymerization processes [6,7]. A mixture 

of SCF and specialty surfactants has been developed for dry cleaning and paint spraying [8]. Some of 

these industrial applications of SCF are attractive as promising "green". processes [8,9] that protect the 

natural environment. 

Design of processes using SCF requires quantitative information of the critical loci of fluid mixtures. 

The critical locus defines the limiting condition where the system can exist in two coexisting phases; near 

the critical point, the density-dependent properties change dramatically with small changes in temperature 

or pressure. 

Many studies are concerned with empirical correlations for critical properties [ 1 0-19] and several 

popular equations of states (EOS) like RK [20], SRK [21], PR [22] and SAFT [23-25] have been used to 

determine critical points. It has been long recognized, however, that although these EOSs can describe 

fluid properties fairly well far away from the critical point, because they are mean-field based, they 

cannot yield the correct limiting properties at the critical point. The mean-field theories assume that the 

immediate environment of each particle in a fluid has the same composition and density as those of the 

bulk fluid. Mean-field theories neglect density fluctuations that become large near the critical point [26]. 

A detailed historical review on the weaknesses and strengths of mean-field theories has been given by 

Levelt-Sengers [27]. 

Upon incorporation of contributions from long-wavelength density fluctuations by renormalization

group (RG) theory, we have developed [28] a crossover EOS for chain fluids (EOSCF+RG). This EOS 

correctly represents phase equilibria and pVT properties of pure chain fluids near-to and far-from the 

critical point. Good agreement is obtained upon comparison with computer simulations for square-well 

chain fluids and with experimental data for n-alkanes. It appears to be a promising EOS for describing 

thermodynamic properties of chain fluids both near-to and far-from the critical region. In this work, using 

this EOS, we calculate the critical points of hydrocarbon mixtures. 
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2. Critical-Point Calculations 

The thermodynamic basis for critical-point calculation was provided by Gibbs [29]. For a 

multicomponent mixture, the critical point is obtain from two equations in the form of two determinants: 

(l.a) 

(l.b) 

where G is Gibbs energy; X; is composition of component i; k is a fixed number; the difference between 

determinants D 2 and D1 is that the kth column of D1 is replaced by aD1 I ax j. Eqs. (1.a) and (1.b) can also 

be represented in terms of other thermodynamic variables [30]. 

The critical point can be determined by computational techniques for solving these two equations 

simultaneously, as discussed previously for binary and ternary systems [31-37], and for multicomponent 

mixtures [38-39]. These techniques, however, have to evaluate a large number of determinants and are 

computationally expensive, especially for mixtures with many components. To simplify the calculations, 

using a Taylor expansion of Helmholtz energy A, Heidemann and Khalil [40] use these criteria: 

a2 A :L:L L1n;L1nj =0 
; j an;anj 

(2.a) 

(2.b) 

where l:l.n; = n; - n~ is a small perturbation from the original state n~; here n; is the number of moles of 

components. This algorithm finds the critical state by nested one-dimensional iterations of the Newton

Raphson method, requires evaluation of only one determinant and avoids differentiation of determinants. 

The method of Heidemann and Khalil is reliable for critical-point calculations [ 41-42] and has also been 

used to calculate tricritical points [43]. Michelsen [44] used an alternate efficient technique that does not 

use any determinants but depends on an eigenvalue method. Another efficient algorithm was proposed by 

Hicks and Young [45] and extended by Sadus [46-47]; first, eq. (l.a) is solved separately and then D 2 is 

evaluated using the solution of eq. (l.a). This procedure is repeated until D 2 changes sign. The purpose is 

to guarantee that all roots are found. 

All of these computational methods for critical-point calculation are mathematically effective but, in 

practice, they always use a mean-field EOS. Because a mean-field EOS cannot reproduce the global 
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phase behavior of fluids, it follows that, to obtain good results in the critical region, the adjustable 

parameters are different from those needed to obtain good results away from the critical region [34-36]. 

3. EOS with RG correction 

The inability of mean-field theories to describe critical behavior was known many years ago but a 

method for corrections became available only relatively recently. Taking long-range density fluctuations 

into account, scaling and crossover theory can correct the mean-field theory [48-55]. The theory 

developed by Sengers et al. [51-53] and Kiselev et al. [54,55] incorporates a crossover from singular 

thermodynamic behavior at the critical point to regular thermodynamic behavior far away from the 

critical point. In this way the common engineering EOS can be used near the critical point and yield 

correct critical behavior. However, the physical meaning of the many crossover parameters is not clear in 

terms of molecular properties. 

White and coworkers [56-58] developed a global renormalization-group (RG) theory based on the 

phase-space cell approximation; when extended beyond the range of the original RG theory, White's 

theory can be applied beyond the critical region. The few parameters in this theory have a molecular 

basis. 

Lue and Prausnitz [59-60] extended the accuracy and range of White's RG transformation through an 

improved Hamiltonian. Good representations of thermodynamic properties and phase equilibria were 

obtained for square-well (SW) model fluids and their mixtures. Tang [61], and White and Zhang [62] 

have also studied the properties of Lennard-Jones fluids. However, these publications were directed to 

fluids containing simple spherical molecules although they were applied also to non-spherical molecules 

using a cubic EOS [63]. 

Based on the work of Lue and Prausnitz, we [28] developed a crossover EOS for pure chain fluids 

(EOSCF+RG) by incorporating of contributions from long-wavelength density fluctuations using RG 

theory. Outside the critical region, the crossover EOSCF+RG reduces to the classical EOS [23-25, 

64-66]; inside the critical region, it gives non-classical universal critical exponents. 
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For a binary mixture, we model each fluid as a homosegmented chain with chain length m1 or m2 , and 

segment diameter a
1 

or a 2 • Interaction between chain segments is given by a square-well (SW) 

potential: 

r<aij 

aij < r < AijO"ij 

r > A..ijaij 

(i,j = 1, 2) 

where a ij is an additive hard-sphere diameter given by 

(3) 

(4) 

Parameters 8ij and .A.,ij, denoting the reduced width and depth of the SW interaction potential for pair ij, 

respectively, are related to those parameters for pure components by 

(5) 

(6) 

If the cross parameter kij is set to zero, equations (4) and (5) are the so-called Lorentz (energy)-Berthelot 

(size) approximation [67]. 

Without loss of generality, but with a view towards fitting experimental data, we assume that 8; 

depends on temperature T as proposed by Chen and Kreglewski [ 68] 

8; =8?(1+elk8 T) (7) 

where k8 is Boltzmann's constant; e/ k8 is a constant equal to 5K. Following Barker-Henderson (BH) 

theory [ 69-70], the temperature dependence of the effective diameter a; is 

a; =a? [1- C exp( -38? I k8 T)] (8) 

where a~ is a temperature-independent diameter. C is an integration constant; following Chen and 

Kreglewski [68], we set C = 0.12. 

The Helmholtz energy density f, i.e., the Helmholtz energy per unit of volume V, is obtained from the 

general form of the EOSCF, 

/EOSCF = /id + /hs + Jsw +/chain • {9) 

Contributions from ideal-gas, hard-sphere, attractive SW and chain formation are given explicitly in 

Appendix A. 
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The equations above constitute the EOSCF (without RG corrections) for a binary mixture. However, 

EOSCF performs well only far from the critical region where ·density fluctuations are very small. 

Following the work of White [56-58], and Lue and Prausnitz [59-60], incorporation of the contributions 

from density fluctuations with longer and longer wavelengths leads to EOSCF+RG. Recursion relations 

are used to evaluate the Helmholtz energy density (see ref. 28 for details): 

f,(p) = fn-1 (p) + 8 f,(p) (10) 

8 fn (p) =-K n In ~j i; ~ , 0 5. P < Pmax I 2 (ll.a) 

8 fn (p) = 0, Pmax I 2 5. P < Pmax (1l.b) 

where .Q~ and n; refer to density fluctuations for long-range attraction and for short-range attraction, 

respectively; Pmax is the maximum possible number density, and 

n:(p) = r dz1 r dz 2 exp[-E:(p,z)l Kn], 

2Ena (p,z) = lna (p + z) + lna (p- z)- 2jna (p), 

2 2 

J:<p)=fn-l<p)+ 'L'Lbijpipj 
i=l j=l 

-. ~~ rpij;/ 
fn (p) = fn-1 (p) + {:tf;tbijpipj 

2
2n+l L/ · 

(12) 

a= s,l (13) 

a=s,l (14) 

(15) 

(16) 

where bij is the interaction volume and ;ij refers to the range of the attractive potential. They are related 

to the SW potential by 

2tr 3 
b-- =-e--(A--a--) 

I} 3 I} I} I} 
(17) 

2 1 2 
;ij =s(A.ijaij) (18) 

Parameter Lij is the cut-off length; we use the same L for all components. f/Jij is the average gradient of 

the wavelet function, given by 

(19) 
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The above recursion procedure can be interpreted as calculation of the ratio of non-mean-field 

contributions to mean-field contributions at gradually increasing long wavelengths. We perform the 

calculations numerically with a density step 6 l(7!m;ai 500) for each component, and smooth the resulting 

Helmholtz energy density by a two-dimensional cubic spline function [74]. In principle, the recursion 

should be performed until index n approaches infinity; however, in our calculation we find that n = 5 IS 

sufficient. 

After we calculate the Helmholtz energy of the system, pressure is obtained by 

P=-f + P(OJJ ap T,N 

(20) 

where N is the total number of molecules. 

In his review of the legacy of Otto Redlich [7 5], Prausnitz recalled that, if the effect of composition on 

the thermodynamic properties of a binary mixture can be determined at the boundary conditions ( x1 = 0 

and x1 = 1, where x is mole fraction), then an interpolation can be used to estimate properties at 

intermediate mole fractions. In the present work, we use Redlich's interpolation function to calculate the 

critical points of a mixture. 

For a binary mixture, Redlich and coworkers [76-77] found that along the critical line, the limiting 

slopes at the critical points of two pure components can be explicitly derived from the critical criteria, as 

shown in Appendix B. They obtained fairly good results using classical EOS such as those by Redlich

Kwong and Benedict-Webb-Rubin. However, a classical phenomenological EOS is not suitable to 

describe critical points because they neglect density fluctuations. In the present work, we use 

EOSCF+RG. Following the work of Redlich, we adopt logarithmic-hyperbolic interpolation functions to 

estimate the critical temperatures and pressures for a binary mixture: 

1 T
c lnTc lnTc (lnT~-lnT~-t / T~)x1 (lnT~-lnT~- t 1 I T~)x2 n = X · + X + ---'----=----=----=--=--..:......;_---=----=--__:_-:..:...._-=..__ 

1 
. 

1 2 2 (lnT~-lnT~-t 21T~)x1 - (InT~-lnT~-t / T~)x2 
(21) 

(22) 

where Tt and P/ are the critical temperature and pressure, respectively, for pure component i; the 

composition of the mixture is given by mole fraction X;. When Tc and pc are plotted versus X;, t; and 

P; are the limiting slopes of critical temperature and pressure, respectively, when x; = 1 as shown in eqs. 

(B.12) and (B.13). 
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For a multicomponent mixture with M components, we propose the following interpolation equations: 

In 
c _ ~ In c ~ ~( ) (lnT~-InTj-t~!Tj)x;(lnT~-lnTj-tYITDxj 

T - £...J X; T i + £...J £...J X; + X j .. .. 
;;1 ;;1 N+t (lnT~-lnTj-t)ITj)x; -(lnT~-lnT}-tYITDxj 

(23) 

M M-t M (lnP~-lnP~-p~/PC.)x-(lnP~-InPC.-p¥/P~)x. 
lnPc=L:x-lnP~+L:L:<x-+x-) 

1 

' •• ' '

1 1 1 1 
•• 

1
' 

;;1 
1 1 

j;Jj;i+t 
1 

' (lnP~-lnPj-p)IPj)x;-(lnP~-lnPj-pYIP~)xj 
(24) 

where tf and pf are limiting slopes for binary mixture i-j. When M = 2, eqs. (23) and (24) reduce to 

eqs. (21) and (22), respectively. 

4. Results and Discussion 

4.1. Segment-Segment Parameters 

To illustrate our procedure, we calculate the critical temperatures and pressures for n-alkane mixtures 

containing the major components ofliquefied natural gas (LNG), i.e. methane, ethane, propane, n-butane, 

n-pentane and n-hexane. 

The segment-segment parameters for each component have been correlated in our previous work [28]. 

The chain length of n-alkane is estimated from a simple empirical relation with carbon number C; by 

m; = 1 + (C;-1)/3. For each pure component, interaction potential &~, segment diameter a~ and 

interaction width A; are optimized to fit experimental data outside the critical region. To incorporate 

contributions from long-wavelength density fluctuations inside the critical region, we set the cut-off 

length L = 11.5 A and select a suitable parameter W; to fit the measured pure-component critical 

properties. Segment-segment parameters are given by Jiang and Prausnitz [28]. 

We fit cross parameter kij to measured vapor-liquid equilibrium data [81-82] outside the critical 

region for all binary pairs among methane, ethane, propane, n-butane, n-pentane and n-hexane. Table 1 

shows the optimized kij . Parameter kij in a binary series rises with carbon number of the second 

component, as observed previously [83]. 

4.2. Critical Lines for Binary Mixtures 

Fig.1(a) shows critical temperatures and pressures for binary mixtures of C1-C3 as a function of 

composition. Triangles denote the experimental critical temperatures [84]; circles refer to the 

experimental critical pressures [84]. Solid lines are calculated from the interpolation method based on 
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EOSCF+RG; dashed lines are calculated based on EOSCF. With increasing mole fraction of composition 

1 (C1), the critical temperature monotonically decreases; however, the critical pressure shows a 

maximum. While EOSCF+RG satisfactorily predicts the measured critical lines, EOSCF overestimates 

both critical temperatures and critical pressures. EOSCF+RG provides much improvement over EOSCF. 

Fig.l(b) shows P-Tloci for binary mixtures ofC1-C3. The left line is for pure C1; the right line is for 

pure C3; points C1 and C3 are critical points of the two pure components; the line connecting Ct and C3 

gives critical points for the mixture. Squares are experimental data [84]; diamonds are critical points of 

pure C1 and C3 calculated from EOSCF; solid lines are calculated from EOSCF+RG and the dashed lines 

are from EOSCF. There is a maximum in the continuous C1-C3 line; this system belongs to Type I as 

characterized by Scott and Konynenburg [85-87]. EOSCF+RG gives results consistent with experimental 

data. The need for RG corrections is evident. 

Fig.2 and 3 show critical lines for Cz-n-C4 and for n-C4-n-C6 binary mixtures, respectively. Results are 

similar to those shown in Fig. 1 for C1-C3. 

4.3. Critical Properties for Multicom~onent Mixtures 

To test our interpolation method by comparison with experiment, we calculate the critical temperatures 

and pressures for 23 multicomponent mixtures composed of methane, ethane, propane, n-butane, n

pentane or n-hexane. Table 2 gives the composition of each mixture. Table 3 gives the measured critical 

temperatures and pressures [88-93], and those calculated using EOSCF+RG and interpolations as 

indicated in eqs. (23) and (24). Calculated results agree well with experiment, especially if we consider 

probable experimental uncertainties in critical pressures. 

5. Conclusion 

The interpolation method proposed by Redlich et al to predict the critical properties of Type 1 or Type 

2 binary mixtures is extended to multicomponent mixtures. Using a recently developed equation of state 

for chain fluids with renormalization-group-theory corrections (EOSCF+RG), the interpolation method 

gives critical temperatures and pressures in good agreement with experimental data for mixtures of n

alkanes. 

Because renormalization-group theory· corrections require extensive computations, the calculations 

for critical temperatures and pressures des9ribed here are more complex than those using conventional 

methods with a classical equation of state. The latter often give good results because they use 

experimental critical temperatures and pressures for pure components as input parameters and, in at least 
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some cases, because they use binary parameters ( kij) to fit experimental critical temperatures and 

pressures for binary mixtures. 

By contrast, the method described here uses adjustable binary parameters obtained only from binary 

data far removed from critical condition~. In other words, the method discussed here is predictive 

because, unlike those based on classical equation of state, in this RG-corrected work, the important role of 

density fluctuations in the critical region is taken into account. 

For typical contemporary practical engineering work, the classical methods are probably sufficient. 

But for cases when a more detailed description of critical phenomena is required, it will be necessary to 

replace a classical equation of state with one that includes RG corrections. 

6. List of symbols 

bij 

A 

c 
Di 

f 
gij(r) 

G 

ka 

kij 

L 

m; 

M 

n; 

N 

p 

pc 

pc 
I 

P; 

interaction volume for ij 

Helmholtz energy 

integration constant in BH theory 

determinant value in criteria for critical point (i = 1, 2) 

Helmholtz energy density 

pair correlation function 

Gibbs energy 

Boltzmann constant 

cross parameter for binary mixture ij 

cut-off length 

chain length of molecule i 

number of components 

mole number of component i 

total number of molecules 

pressure 

critical pressure of mixture 

critical pressure of component i 

limiting slope of critical-pressure line for a binary mixture when X; = 1 
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r 

sw 

u 

v 

Y!i(r) 

Greek letters 

(/Ji 

Superscripts 

c 

I 

s 

Subscript 

i 

center-to-center distance 

square-well potential 

critical temperature of mixture 

critical temperature of component i 

limiting slope of critical temperature for a binary mixture when X; = 1 

interaction potential 

total volume ofthe system 

partial molar volume of component i 

mole fraction of component i 

cavity correlation function 

number density of molecule i 

segment diameter of molecule i 

SW interaction well-depth of molecule i 

SW interaction range of molecule i 

de Broglie thermal wavelength of molecule i 

fugacity coefficient of component i 

chemical potential of component i 

average gradient of wavelet function for component i 

critical point 

long wavelength 

short wavelength 

component i 
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Appendix A Helmholtz energy for a binary mixture 

There are four contributions to the Helmholtz energy. 

fEOSCF =tid + fbs + /sw +/chain 

The contribution from the ideal gas is 

(A.1) 

(A.2) 

where P; is the number density for component i; and A; denotes the de Broglie thermal wavelength of 

molecule i. 

The hard-sphere interaction is given by Boublik and Mansoori et al, the so-called BMCSL equation 

[71-72] 

2 

where t;n = "J2m;p;a;n and Ll = 1-trt;3 I 6. 
i=l 

(A.3) 

The contribution from the SW attractive potential is estimated by the second-order Baker-Henderson 

perturbation theory [69-70] 

(A.4) 

The mean-attractive energy af is given by a compact expression from the mean-value theorem [73] 

af = -213Jr(0a~eii(A-t -1)g;5 (aii,(;tr) (A.5) 

where the pair correlation function of hard-spheres at contact is evaluated at an effective t;;ff, 

(A.6) 

with 

(A.7) 

Coefficients en are calculated by the matrix [73] 

[

c, J [ 2.25855 -1.50349 0.249434 J( 1 J 
c2 = - 0.669270 1.40049 - 0.827739 A,ii 

c3 10.1576 -15.0427 5.30827 A,~ 

(A.8) 
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The second perturbation term af describing fluctuations of the attractive energy is given by 

.. elj .. t;g L14 aa, 
a Y - ---=---"-------=----=---

2 - 2(t;oL12 +n-t;,t;2L1+n-2t;i /4) at;o. 
(A.9) 

The contribution from chain formation is 

2 

/chain = kBTLP;(l-m;)lny~w (o";). (A.lO) 
i=l 

where cavity correlation function y~w (a ij) at contact is defined by 

(All) 

with 

(A.12) 
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Appendix B Critical line for a binary mixture 

The critical criteria for a binary mixture may be expressed by 

(B.l.a) 

(a
2 

flt J = 0 
axl2 T p 

(B.l.b) 

where J11 is the chemical potential of component 1 whose mole fraction is x1 • According to the relation 

between chemical potential and fugacity, we have, 

(
alnr/Jt J = 

ax! TP 

1 

1 

where r/Jt is the fugacity coefficient. Similar equations can also be written for component 2. Then 

On the other hand, the fugacity coefficient is defined using the partial molar volume by 

ln¢t = r (~I RT -11 P)dP 

Introducing the Gibbs-Duhem equation, 

v; - v2 = cav I ax! )T,P' 

we have 

ln(¢t I ¢2) = f[(aV I 8xth,P I RT]dP. 

Eq. ( 6) transforms into 

substitution of eq. (B.3.a) into the derivative of eq. (B.7) with respect to x1 , leads to 

20 

(B.2.a) 

(B.2.b) 

(B.3.a) 

(B.3.b) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 



[ {82 pI axl
2 

)T,V dV- [ (82 pI axlav)T (BV I BP)T,x, (BPI axl )T,V av 

- (8P I 8x1)
2 r,v (8V I 8P)r,x, = RT I x1x2 

(B.8) 

At the critical point of a pure component, i.e., x1 = 1 or x1 = 0, because (BPI BV)r,x, = 0, we obtain 

For a mixture, along the critical line indicated by c, 

[8(8PI8V)r,x, 18x1 ]c =(82PI8V8x1)r +(82PI8T8V)x,(8TI8x1 )c 

+ (8 2 PI 8V 2 )r,x, (8V I 8x1 )c 

(B.9) 

(B.10) 

Combining eq. (B.lO) with {8 2 PI 8V 2 )r x = 0 at the critical point of a pure component, we can derive 
'I 

the limit in the right side of eq. (B.9) as, 

lim[(8PI8V)rx lx1x2 ]=[(82PI8V8x1)r +(82PI8T8V)x (8TI8x1)JI(x2 -x1 ) 
Xt , I 1 

(B.ll) 

where x1 ~ 0 or x1 ~ 1. 

Eq. (B.9) can be rearranged into an explicit expression at the critical point of pure component 1 or 2: 

t
1 

=lim(aTJ =lim[(8PI8x1)
2
r.v1RT-(8

2
PI8V8x1)r] 

x,-+1 ax x,-+1 (8 2 PI BTBV) 
I c x1 

(B.12.a) 

(B.12.b) 

For slope of the critical-pressure line (BPI Bx1 t, we have 

(B.13.a) 

(B.13.b) 

Eqs. (B.12) and (B.13) give the limiting slopes at the ends of the critical lines for a binary mixture. 

Similar relations were used previously [78-80]. 
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Table 1 

Parameters kij for binary mixtures in this study+ 

c~ CzH6 C3Hs n-CJiw n-CsH12 n-C~14 

c~ 0 

CzH6 0.0048 0 

C3Hs 0.0150 0.0095 0 

n-CJiw 0.0255 0.0163 0.0040 0 

n-CsH12 0.0381 0.0220 0.0085 0.0029* 0 

n-C6HI4 0.0490 0.0263 0.0131 0.0049 0 0 

+:Data sources from Knapp et al. (1982). *from Knapp et al. (1982) and Kay et al. (1975). 
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Table 2 

Compositions of multi component mixtures in this study 

Mix. No. CRt C2H6 C3Hs n-C4H10 n-CsH12 n-C6Ht4 Data sources 

1 0.833 0.130 0.035 Price and Kobayashi (1959) 

2 0.800 0.039 0.161 Price and Kobayashi (1959) 
31. 0.4345 0.0835 0.4330 Yarborough and Smith (1970) 

4 0.193 0.470 0.337 Cota and Thodos (1962) 

5 0.391 0.354 0.255 Cota and Thodos (1962) 

6 0.040 0.821 0.139 Cota and Thodos (1962) 

7 0.007 0.879 0.114 Cota and Thodos (1962) 

8 0.461 0.443 0.095 Billman et al. {1948) 

9 0.196 0.758 0.045 Billman et al. (1948) 

10 0.996 0.001 0.003 Uchytil and Wichterle (1983) 

11 0.990 0.004 0.006 Uchytil and Wichterle (1983) 

12 0.980 0.016 0.004 Uchytil and Wichterle (1983) 

13 0.970 0.027 0.003 Uchytil and Wichterle (1983) 

14 0.3414 0.3421 0.3165 Etter and Kay (1961) 

15 0.3276 0.3398 0.3326 Etter and Kay (1961) 

16 0.201 0.399 0.400 Nelson and Holcomb (1953) 

17 0.201 0.298 0.501 Nelson and Holcomb (1953) 
18 0.198 0.106 0.696 Nelson and Holcomb (1953) 
19 0.6449 0.2359 0.1192 Etter and Kay (1961) 

20 0.2542 0.2547 0.2554 0.2357 Etter and Kay ( 1961) 
21 0.4858 0.3316 0.1213 0.0613 Etter and Kay (1961) 

22 0.2019 0.2029 0.2033 0.2038 0.1881 Etter and Kay (1961) 
23 0.3977 0.2926 0.1997 0.0713 0.0369 Etter and Kay (1961) 

_l: Mixture also contains a small amount of nitrogen. 
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Table 3 

Experimental and calculated critical temperatures and pressures 

Mixture r(K) Pc(MPa) 

Exp. Cal. Dev.% Exp. Cal. Dev.% 

1 227.6 230.8 1.43 6.89 7.20 4.50 

2 255.4 260.6 2.03 8.96 9.43 5.25 

3 313.7 321.7 2.55 8.96 8.87 -1.00 

4 354.3 350.7 -0.99 7.64 7.21 -5.63 

5 331.5 333.3 0.53 9.72 9.49 -2.37 

6 323.7 328.4 1.46 5.79 5.83 0.69 

7 324.5 326.4 0.63 5.48 5.57 1.64 

8 310.9 313.6 0.87 10.34 10.55 2.03 

9 310.9 307.4 -1.15 6.89 6.67 -3.19 

10 306.3 306.2 -0.03 4.90 4.92 0.41 

11 307.3 307.1 -0.06 4.93 4.95 0.41 

12 307.6 307.8 0.06 4.96 4.97 0.20 

13 308.6 308.5 -0.03 4.96 4.99 0.60 

14 397.2 399.9 0.71 5.60 5.77 3.04 

15 428.8 428.0 -0.19 4.19 4.25 1.43 

16 436.3 435.3 -0.23 3.85 3.98 3.37 

17 442.6 440.1 -0.56 3.90 3.94 1.03 

18 449.4 449.4 0.00 3.81 3.85 1.05 

19 450.2 450.8 0.14 3.88 3.88 0.00 

20 405.9 408.1 0.54 5.11 5.36 4.89 

21 417.9 420.3 0.58 4.51 4.66 3.33 

22 387.0 391.2 1.07 7.22 7.65 5.96 

23 385.4 388.0 0.67 5.62 6.04 7.47 
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Figure Captions: 

Fig.l(a) Critical lines for binary mixtures of methane and propane(C1-C3). Triangles: experimental 

critical temperatures; Circles: experimental critical pressures; Solid lines: EOSCF+RG. Dashed 

lines: EOSCF. 

Fig.l(b) P-Tloci for binary mixtures of methane and propane (C1-C3). Left line is for pure C1; right line 

is for pure C3; the line connecting C1 and C3 is the critical locus for the mixture. Squares: 

experimental data; dark circles: critical points of pure C1 and C3 calculated from EOSCF+RG; 

dark diamonds: critical points of pure C1 and C3 calculated from EOSCF; Solid lines: 

EOSCF+RG. Dashed lines: EOSCF. 

Fig.2(a) Critical lines for binary mixture of ethane and n-butane (C2-C4). Legend as in Fig.l(a). 

Fig.2(b) P-T loci for binary mixtures of ethane and n-butane (C2-C4). Legend as in Fig.l (b). 

Fig.3(a) Critical lines for binary mixtures of n-butane and n-hexane (C4-C6). Legend as in Fig.l(a). 

Fig.3(b) P-Tloci for binary mixtures ofn-butane and n-hexane (C4-C6). Legend as in Fig.l(b). 
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