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According to the Polarity Hypothesis, the presence or absence of a processing cost for Scalar 
Inferences (SIs) depends on their polarity. This hypothesis predicts, among other things, that the 
processing of lower-bounding SIs should not be affected by cognitive load the same way upper-
bounding SIs are. To date, evidence in support of this prediction comes from the comparison 
between upper-bounding and lower-bounding SIs elicited by disparate scalar words. In this 
paper, we report on two dual-task experiments testing this prediction in a more controlled way 
by comparing upper-bounding and lower-bounding SIs arising from the same scalar words or 
scale-mates operating over the same dimension. Results show that, for these more minimal 
comparisons, lower-bounding SIs involve comparable cognitive demands as their upper-
bounding counterparts. These findings challenge the idea that load effects are consistently 
modulated by SI polarity and suggest instead that these effects are relatively consistent across 
different types of SIs.
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1 Introduction
An utterance of (1-a) commonly conveys the Scalar Inference (SI) in (1-c). On most accounts of 
SIs, this pragmatic enrichment is assumed to involve the generation and negation of alternatives, 
that is, sentences which were not uttered, but would have been equally relevant and more 
informative in the given context (for an overview, see Chemla & Singh, 2014; Gotzner & Romoli, 
2022; Sauerland, 2012). In our example, the relevant SI corresponds to the negation of the 
alternative to (1-a) in (1-b), where the weak scalar word some has been replaced with its stronger 
scale-mate, all.

(1) a. Some of the apples are red. WeakPos
b. All of the apples are red. Alternative
c. ↝ Not all the apples are red Upper-bounding SI

There is concurring experimental evidence that processing the interpretation with SI of a 
sentence like (1-a) can be cognitively demanding (for response delay effects, see Bott & Noveck, 
2004; Bott et al., 2012; Breheny et al., 2006; Chemla & Bott, 2014; Chevallier et al., 2008; 
Cremers & Chemla, 2014; Huang & Snedeker, 2009; Noveck & Posada, 2003; Tomlinson et al., 
2013; for cognitive load effects, see De Neys & Schaeken, 2007; Dieussaert et al., 2011; Marty & 
Chemla, 2013; Marty et al., 2013). The apparent ‘cost’ of SIs is one of the most replicated effects 
in truth-value judgement studies and it is often thought to be an important marker of this sort of 
meaning-strengthening operations. To date, however, there has not been wide consensus as to 
the source of this extra cognitive cost (for an overview, see Khorsheed et al., 2022; Khorsheed & 
Gotzner, 2023), especially as it is absent from the comprehension and evaluation of semantically 
equivalent sentences with ‘only’ (Bott et al., 2012; Marty & Chemla, 2013).

A promising account has recently emerged. Investigating whether the response delay and 
cognitive load effects observed for some generalise to other scalars, van Tiel, Pankratz, and 
Sun (2019) tested the processing of 7 scalar words differing, inter alia, in their scalarity. Their 
studies included 5 positive scalars with a literal lower-bound meaning (i.e., some, most, or, might 
and try), giving rise to upper-bounding SIs (e.g., ‘some of the food’ implicates ‘not all of the 
food’), and 2 negative scalars with a literal upper-bound meaning (i.e., scarce and low), giving 
rise to lower-bounding SIs (e.g., ‘low on food’ implicates ‘some food’). Their results show that, 
while all scalars from the first category displayed the classical effects, neither of those from 
the second category did (see also van Tiel, Marty, Pankratz, & Sun, 2019; van Tiel & Pankratz, 
2021). The authors explain these findings by hypothesising that only upper-bounding SIs are 
cognitively demanding and that the extra processing cost they incur stems from the fact that, 
unlike lower-bounding SIs, these SIs introduce negative propositions into the meaning of the 
sentence, the processing of which is independently known to be cognitively effortful (a.o., 
Clark & Chase, 1972; Geurts et al., 2010; Deschamps et al., 2015). This hypothesis, dubbed the 
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Polarity Hypothesis (van Tiel & Pankratz, 2021; also referred to as the Scalarity hypothesis in 
van Tiel, Pankratz, & Sun, 2019; van Tiel, Marty, Pankratz, and Sun, 2019), is stated in (2). The 
polarity-based explanation departs from the former explanation in Marty et al. (2013) where 
the extra cognitive cost associated with SI interpretations is linked to ambiguity resolution and 
located in the processing stage involving the decision to derive or not the SI (see Gotzner, 2019 
for a similar proposal).

(2) Polarity Hypothesis
SIs are cognitively demanding insofar as they introduce an upper-bound on the 
dimension over which the scalar word quantifies.

As van Tiel, Pankratz, and Sun (2019) acknowledge, however, the scalar words in their sample 
differ in more respects than just the polarity of the SI they can give rise to, such as the type 
of dimension over which they quantify or the parts of speech they come from (e.g., only the 
negative scalars were adjectival). In the absence of more minimal comparisons, van Tiel et al.’s 
results leave open the possibility that the contrasts they observed reflect idiosyncrasies of the 
negative scalars they tested, rather than a general difference in the processing signature of upper-
bounding and lower-bounding SIs.1

In this paper, we focus on the cognitive load effects associated with the derivation of SIs and 
offer a direct test of the predictions of the Polarity Hypothesis by comparing the upper-bounding 
and lower-bounding SIs arising (i) from the same scalars and (ii) from different scalars belonging 
to the same scale. Crucially, these SIs differ in terms of polarity but otherwise involve the same 
words and concepts, e.g., ‘some’ implicates not all while ‘some not’ and ‘not all’ implicate some. 
Our results demonstrate that, for such comparisons, lower-bounding SIs involve comparable 
cognitive demands as their upper-bounding counterparts.

2 Experiments
We conducted two experiments, both based on the same method and procedure as in van Tiel, 
Pankratz, and Sun (2019, Experiment 2). In both experiments, participants had to perform 
a sentence-picture verification task. In the target conditions, sentences were presented with 
a picture that made them false if the relevant SI is derived, but true otherwise. Participant’s 
cognitive resources during sentence verification were experimentally burdened by adding a 

 1 It should also be noted that the Polarity Hypothesis only offers a partial explanation of previous findings on SI costs. 
For instance, it does not explain why there is an extra cost to the SI interpretation of ‘some’-sentences compared 
to the literal interpretation of their ‘only’-variants (Bott et al., 2012; Marty & Chemla, 2013). Similarly, it does not 
explain the findings in Bott and Frisson (2022) that SI interpretations of ‘some’-sentences are faster to come about 
when preceded by their canonical ‘all’-alternative. Findings like the above suggest that the cost of (upper-bounding) 
SIs is not reducible to the processing of negative propositions.
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secondary memory task and by modulating further the complexity of the visual pattens to be 
memorised (see also De Neys & Schaeken, 2007; Marty & Chemla, 2013; van Tiel, Marty, et 
al., 2019). If the derivation of a given SI requires additional processing resources, then that 
SI should become less available under higher cognitive load, i.e., in situations where these 
resources are impaired by the concurrent memory task, resulting in higher acceptance rates in 
the target conditions.

Experiment 1 tested WeakPos sentences like (1-a), where a weak scalar term appears in 
a positive sentence, and compared them to their WeakNeg variants, where negation is added 
below the same scalar term, as in (3-a). The latter give rise to lower-bounding SIs conveying 
what is literally expressed by their WeakPos counterparts. All theories of SIs explain the SI in 
(3-c) as arising from the alternative in (3-b).

(3) a. Some of the apples are not red. WeakNeg
b. All of the apples are not red. Alternative
c. ↝ Some of the apples are red Lower-bounding SI

Experiment 2 tested the same WeakPos sentences as in Experiment 1, but compared them to 
their NegStrong variants, where the stronger scale-mate of the weaker term is embedded under 
negation, as in (4). The latter give rise to the same lower-bounding SIs as the WeakNeg sentences 
above. All theories of SIs explain the SI in (4-c) as arising from the alternative in (4-b).

(4) a. Not all of the apples are red. NegStrong
b. Not some (=none) of the apples are red. Alternative
c. ↝ Some of the apples are red Lower-bounding SI

WeakPos sentences were expected to exhibit the load effects previously reported in the 
literature. Their negative variants provided us with novel and more minimal comparison points 
for testing the predictions of the Polarity Hypothesis. If the relevant effects are specific to upper-
bounding SIs, responses to WeakNeg and NegStrong sentences should be left unaffected by 
our manipulation of the cognitive load; consequently, these sentences should pattern distinctly 
from their WeakPos counterparts across load conditions.

2.1 Participants
For each experiment, 150 participants were recruited online through Prolific (first language: 
English; country of residence: UK, USA; minimum prior approval rate: 90%) and paid for their 
participation (£9.5/hr).

2.2 Design and Materials
Building upon the materials and method in van Tiel, Pankratz, and Sun (2019), we constructed, 
for each experiment, three tasks that manipulated the cognitive load on participants’ executive 
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resources during sentence comprehension: one sentence-picture verification task (NoLoad), 
and two dual-tasks in which participants had to perform that verification task while trying to 
remember either a simple square pattern (LowLoad) or a more complex one (HighLoad), as 
exemplified in Figure 1. Each participant in our studies only ever completed one of these tasks.

The verification task tested three scales: ⟨some, all⟩, ⟨or, and⟩ and ⟨possible, certain⟩. For 
each scale, we constructed one positive sentence with the weaker term (WeakPos), one negative 
sentence where negation takes scope below the weaker term (WeakNeg), and one negative 
sentence where negation takes scope above the stronger term (NegStrong). Each sentence 
was paired with three types of pictures depicting a situation in which it was unambiguously 
true (True), unambiguously false (False), or in which its truth-value depended on whether the 
relevant SI was computed (Target). Both Exp 1 and Exp 2 tested WeakPos sentences along with 
one of their negative variants, WeakNeg in Exp 1 and NegStrong in Exp 2. Figure 2 shows 
example sentences and pictures for each scale.2

Crossing sentence and picture types gave rise, in each experiment, to 18 conditions 
(3 scales × 2 sentence types × 3 picture types), each of which was instantiated 3 times by 
varying the contents of the pictures, resulting in 54 test trials. Following the suggestion in 
Marty and Chemla (2013), we added in both experiments 3 true and 3 false instances of the 
only-variants to the WeakPos some-sentences (e.g., Only some of the socks are pink) to serve as 
additional controls. The mean acceptance rate for these sentences was above 97.5% in their true 
conditions and below 11.5% in their false conditions in all three tasks of both experiments. 
These results are in line with the findings from Marty and Chemla (2013) in showing that the 
interpretation of only-sentences was largely unaffected by load manipulations. These items can 
be thus set aside in the following.

 2 The NegStrong sentence for ⟨or, and⟩ involved a clausal conjunction embedded under a sentence-internal negation 
(i.e., Not both the apple and the pepper is red). We chose this construction because it was structurally closer to the 
WeakPos and other NegStrong sentences than other candidates involving external negation (e.g., It is not the case 
that both the apple and the pepper are red) or nominal conjunction (e.g., The apple and the pepper are not both red). 
We note, however, that this construction is marked and that its use is felicitous in fewer contexts than the other 
candidates we just mentioned. The results for these NegStrong conditions should be thus interpreted with caution.

Figure 1: Examples of (a) low-load and (b) high-load patterns used in Exp 1 and Exp 2.
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2.3 Procedure
Participants were pseudo-randomly assigned one of the three tasks so as to reach a balanced 
number of subjects per task. They were presented with the instructions corresponding to the 
relevant task and were given one example trial. Each survey started with 4 unannounced practice 
trials and then continued with the test trials, presented in random order. In the NoLoad task, 
each trial consisted of the presentation of a sentence-picture item. Participants had to decide 
whether or not the sentence was a good description of the depicted situation by pressing one of 
two response keys on their keyboard. In the LowLoad and HighLoad tasks, each trial started 
with the brief presentation of a pattern of squares (1200 ms for low-load patterns and 1500 ms 

Figure 2: Sentences and example displays for each scale tested in Exp 1 and Exp 2.
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for high-load patterns). Afterwards, a sentence-picture item was displayed on the screen, exactly 
as in the NoLoad task. Once participants had entered their answer, they were presented with 
an empty matrix and asked to recreate the pattern of squares presented at the start of the trial. 
Participants could fill or unfill squares in the matrix by clicking on them.

2.4 Data treatment
4 participants in Exp 1 and 5 participants in Exp 2 were excluded either for failing to complete 
the whole survey or for making mistakes in more than 25% of the control sentence-picture items. 
The mean accuracy rate on control items of the remaining participants was above 93% across all 
load conditions in both experiments, indicating that these participants had no problem judging 
the test sentences in their True and False conditions, even under high cognitive load. The 
mean number of correctly localised squares was above .92 for the simple 1-square patterns and 
above 2.85 for the complex 4-square patterns in both experiments, indicating that participants 
performed the memory tasks appropriately.

2.5 Data analysis
To analyse the effects of cognitive load and determine whether they differ across upper-
bounding and lower-bounding SIs, we fitted a Bayesian mixed effects logistic regression model 
to the results of the experiments using the brms package (Bürkner, 2017, 2018, 2021) in R 
version 4.1.2 (R Core Team, 2021). The model predicted responses in the target conditions 
on the basis of three categorical predictors, each with three levels – Polarity (WeakPos, 
WeakNeg, NegStrong), Load (No, Low, High) and Scale (⟨some, all⟩, ⟨or, and⟩ and ⟨possible, 
certain⟩) – and the interactions among them. These predictor variables were all sum-coded. The 
mixed effects structure of the model consisted of by-item random intercepts and by-participant 
random intercepts and slopes for Polarity and Scale, and their interactions with all correlations 
among them.

The priors were weakly informative priors, which we constructed based on the results of van 
Tiel, Marty, et al. (2019). Their experiment is identical to the ones reported here, except that no 
linguistic stimuli contained overt negation. We fitted a logistic mixed effect regression model to 
the data from their target conditions using the glmer function from the lme4 package, which 
predicted responses on the basis of two sum-coded categorical variables, Load and Scale, and 
their interaction. The mixed effects were by-item random intercepts and by-participant random 
intercepts and slopes for Scale and their correlation. We took the estimates βi of this model and used 
N(βi, 1) as the priors for the respective fixed effect parameters. For the missing fixed effects, all of 
which have to do with Polarity, we assumed a fairly broad prior distribution N(1, 1). For mixed 
effects, the standard deviations were all assumed to come from the Half-Cauchy distribution with 
σ = 2 and the variance-covariance matrix from the Lewandowski-Kurowicka-Joe distribution 
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with η = 1.3 The posterior distributions reported below were estimated using four Hamilton 
Monte Carlo Markov Chains implemented in Stan. Each of these chains consisted of 10,000 
samples, of which 1,000 were used for warm-up. Both the trace plots (omitted here) and the R ̂ 
values indicated convergence.

2.6 Results
Figure 3 shows the observed mean acceptance rates in the verification task. Overall, results 
replicate previous findings that people derive fewer upper-bound SIs when their executive 
cognitive resources are burdened. Responses to the WeakPos sentences were as expected in 
showing that, in the target conditions, participants accepted these sentences more often 
under higher cognitive load, both in Exp 1 (No: M = 52, 95% CI [47,57]; Low: M = 58, 
95% CI [53,62]; High: M = 69, 95% CI [64,73]) and Exp 2 (No: M = 47, 95% CI [42,51]; 
Low: M = 65, 95% CI [60,69]; High: M = 68, 95% CI [63,72]).4 Moreover, WeakNeg and 
NegStrong sentences were found to pattern similarly with their WeakPos counterparts, as 
shown by the posterior predictions of the Polarity × Load coefficient in Figure 4.

The prediction of the Polarity Hypothesis that Load should affect WeakPos more robustly 
than the other Polarity levels was tested by determining if, compared to their negative 
variants, WeakPos sentences gave rise to reliably larger differences between the Low and No 
conditions (Hypothesis 1), and between the High and No conditions (Hypothesis 2), using the 
hypothesis() function of brms.5 For the Low-No comparisons, the posterior probabilities of 
WeakPos having larger differences than WeakNeg and NegStrong were 37% and 32% with 
evidence ratios of 0.60 and 0.47, respectively, and the differences between the differences were 
estimated to be –0.13 and –0.24 with 90% quantiles being [–0.82, 0.56] and [–1.11, 0.63]. 
For the High-No comparisons, the corresponding posterior probabilities were both 80% with 
evidence ratios of 3.98 and 4.03, respectively, and the differences between the differences were 
estimated to be 0.37 and 0.45 with 90% quantiles being [–0.34, 1.11] and [–0.42, 1.35]. Thus, 
our data provides evidence against Hypothesis 1 and weak evidence for Hypothesis 2.

 3 We follow here the recommendations of Gelman (2006), Gelman, Carlin, Stern, and Rubin (2013) and McElreath 
(2015). In particular, the motivation for using (Half-)Cauchy distributions as priors for variance parameters is that 
Cauchy distributions have relatively long and even tails, especially compared to normal distributions, which make 
them good candidates for weakly informative priors. Other commonly used priors for variance parameters include 
Half-Normal (Schad, Betancourt, & Vasishth, 2021; Vasishth, Yadav, Schad, & Nicenboim, 2023) and Exponential 
(McElreath, 2020). All the sources cited above recommend Lewandowski-Kurowicka-Joe distributions for weakly 
informative priors for correlation matrices.

 4 M stands for mean acceptance rate and CI for (binomial proportion) confidence intervals. 95% CIs were calculated 
from participants’ binary responses using Wilson’s method and transformed into percentages.

 5 Among other things, the hypothesis() function of brms computes an evidence ratio for each hypothesis. For a 
one-sided hypothesis of the form a > b, as in the present case, the evidence ratio is just the ratio of the posterior 
probability of a > b and the posterior probability of a < b, that is, the posterior probability under the hypothesis 
against the posterior probability under its alternative.
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Figure 3: Mean acceptance rates for each scale by sentence type, cognitive load and picture 
condition in Exp 1 and Exp 2. Error bars represent 95% binomial confidence intervals.

Figure 4: Posterior predictions of the Polarity × Load coefficient. The dotted horizontal line 
represents the predicted grand mean, and the error bars represent 95% quantiles.
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Finally, the same two hypotheses were tested for each level of Scale. The results are 
summarised in Table 1. Very little variation was found between positive and negative scalar 
sentences among the three scales regarding the Load effects. Specifically, none of the test 
cases had notable evidence for Hypothesis 1 and only two of them had notable evidence for 
Hypothesis 2: the High-No difference for WeakPos was larger than that for WeakNeg with 
⟨possible, certain⟩ and larger than that for NegStrong with ⟨or, and⟩. Hence, we conclude there 
is no across-the-board difference in the effect of Load depending on Polarity.

Table 1: Results of hypothesis testing about the Load effect at different Polarity levels for 
each Scale.

Scale Hypothesis Estimate 90%CI Evid. Ratio Prob.

⟨some, all⟩ Low–No WeakPos > 
WeakNeg

0.02 [–1.06, 1.10] 1.03 0.51

WeakPos > 
NegStrong

–0.35 [–1.56, 0.85] 0.45 0.31

High–No WeakPos > 
WeakNeg

–0.15 [–1.27, 0.94] 0.73 0.42

WeakPos > 
NegStrong

0.68 [–0.53, 1.86] 4.69 0.82

⟨or, and⟩ Low–No WeakPos > 
WeakNeg

–0.12 [–1.04, 0.79] 0.72 0.42

WeakPos > 
NegStrong

–0.48 [–1.62, 0.67] 0.32 0.24

High–No WeakPos > 
WeakNeg

0.02 [–0.95, 1.00] 1.05 0.51

WeakPos > 
NegStrong

0.94 [–0.26, 2.11] 9.26 0.90

⟨possible, 
certain⟩

Low–No WeakPos > 
WeakNeg

–0.30 [–1.41, 0.81] 0.49 0.33

WeakPos > 
NegStrong

0.11 [–1.47, 1.59] 1.24 0.55

High–No WeakPos > 
WeakNeg

1.25 [0.09, 2.47] 25.49 0.96

WeakPos > 
NegStrong

–0.25 [–1.83, 1.32] 0.66 0.40
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3 Discussion
We tested the predictions of the Polarity Hypothesis by comparing upper-bounding and lower-
bounding SIs arising from scalar words operating over the same dimension. Our results reproduce 
the load effects associated with upper-bounding SIs arising from positive sentences and show 
that comparable effects extend to the lower-bounding SIs associated with the negative variants 
of these sentences, whether they involve the same scalars or their stronger scale-mate. We take 
these results to show that load effects are not specific to upper-bounding SIs and to suggest 
instead that, for such minimal comparisons, these effects are relatively uniform across different 
types of SIs. These findings are challenging for the Polarity Hypothesis and for the idea that the 
polarity of an SI is the only or main explanation of the load effects. On the other hand, they 
remain compatible with Marty and Chemla (2013)’s proposal that executive cognitive resources 
are needed to entertain and decide among competing readings and that, when these resources 
are impaired, speakers default to the more readily accessible interpretation – for scalar sentences, 
their literal interpretation.

This study leaves us with two open issues. First, it remains to be understood why the SI 
interpretation of certain negatively scalar words like scarce and low appear to be immune from 
load effects, as per van Tiel, Pankratz, and Sun (2019)’s results. But we note that this pattern 
is not unattested: Marty et al. (2013) found a similar pattern with other scalar expressions, 
specifically numerals. Second, it remains the case that response time results reported so far in 
the literature largely line up with the Polarity Hypothesis, since the classical response delay 
effects do not appear to generalise to lower-bounding SIs, whether they arise from negatively 
scalar words (van Tiel, Pankratz, & Sun, 2019; van Tiel & Pankratz, 2021) or negated scalars 
(Cremers & Chemla, 2014; Romoli & Schwarz, 2015). This suggests that dual-task and response 
time results need not pattern together with SIs and, consequently, that both types of measures 
may reflect distinct cognitive effects (see Marty et al., 2020 for similar suggestions). More work 
is thus required to evaluate why this disparity emerges.
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