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Combining the complementary capabilities of two of the most powerful modern

computational methods, we find superconductivity in both the electron- and

hole-doped regimes of the two-dimensional Hubbard model (with next nearest

neighbor hopping). In the electron-doped regime, superconductivity is weaker

and is accompanied by antiferromagnetic Néel correlations at low doping. The

strong superconductivity on the hole-doped side coexists with stripe order,

which persists into the overdoped region with weaker hole density modula-
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tion. These stripe orders , neither filled as in the pure Hubbard model (no

next nearest neighbor hopping) Hubbard model with only nearest neighbor

hopping (the so-called pure Hubbard model) nor half-filled as seen in previous

state-of-the-art calculations, vary in fillings between 0.6 and 0.8. The resolution

of the tiny energy scales separating competing orders requires exceedingly

high accuracy combined with averaging and extrapolating with a wide range

of system sizes and boundary conditions. These results validate suggest the

applicability of this iconic model Hubbard model with next nearest doping for

describing cuprate high-Tc superconductivity.

Introduction

Does the Hubbard model qualitatively capture the essential physics of the high temperature

superconducting cuprates? This question has been debated since shortly after these materials

were discovered (1–10). As the decades have passed it has become clearer that the answer has

to come from simulations powerful enough to give definitive results on the properties of the

model, so that one can see whether these properties match those observed experimentally. This

Answering it has proved to be especially difficult because the ground states of the models have

been shown to be exceptionally sensitive to small changes in the model terms and parameters,

with competing (11) or cooperating (12) charge, spin (13), and superconducting (SC) orders

(14–18). The relevant model parameters are in the most difficult regime – moderately strongly-

coupled – where most approaches struggle. The frequent presence of stripes in the ground states

increases the sizes of the clusters needed to extrapolate to the thermodynamic limit.

A powerful tool has emerged to help overcome these difficulties: the use of combinations

of simulation methods with complementary strengths and weaknesses (19). The density matrix
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renormalization group (DMRG) (20–22) provides the most accurate and reliable results when

applied on fairly narrow cylinders (23). Other methods work either directly in the thermody-

namic limit (24, 25) or at least on much wider clusters (26), but have approximations tied to

unit cell size (24, 27, 28), coupling strength, etc (25, 29, 30). The constrained path (CP) auxil-

iary field quantum Monte Carlo (AFQMC) method (26, 31, 32) is particularly complementary

to DMRG: it can be used on much wider systems it can be applied to both wider cylinders and

toruses (supercells periodic in both directions); the errors from CP to control the sign problem

have been consistently modest (19); and the underlying approximation of CP is unrelated to the

low entanglement approximation of DMRG. AFQMC is based on a wave picture of superposi-

tion of Slater determinants, while whereas DMRG is rooted in the particle picture with strong

coupling. Their quantitative handshake proved to be crucial for uncovering the delicate nature

of the stripe correlations as we discuss below. Previously, we used this combination was used,

by extrapolating to the two-dimensional thermodynamic limit, to find that superconductivity is

absent in the pure (i.e., with no next nearest-neighbor hopping) Hubbard model (11). In that

case, the lack of superconductivity was tied to the occurrence of filled striped states (33).

Here, we apply this approach, with new developments, redefine this approach to tackle the

Hubbard model with a non-zero next nearest-neighbor hopping, t′. In connection to the typical

phase diagram of cuprates, a nonzero t′ is necessary to account for the particle-hole asymmetry

and the band structures. The t′ ̸= 0 model is significantly more difficult computationally,

with challenges for both DMRG and AFQMC. Where both methods apply, We used DMRG

certifies to certify the high accuracy and reliability of our AFQMC calculations as used here.

As discussed below, in cases of ambiguity (e.g., in some width-6 cylinders), resolving the dis-

crepancies has often createdcontributed to new growing synergy between the two methods, and

led to new insights. We have found the The phase diagram with finite t′ also turns out to be is

significantly more complicated than the pure Hubbard model, with and features partially filled
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stripes coexisting with superconductivity on the hole-doped side, and uniform antiferromagnetic

order coexisting with superconductivity on the electron side. The final results for superconduc-

tivity, extrapolated to the thermodynamic limit, are impressively similar to the properties of

cuprates, with both electron and holed doped SC “domes”, but with the hole doped side dome

being significantly stronger taller.

Hubbard model and lattice geometry

The Hamiltonian of the Hubbard model is

Ĥ = −t
∑
⟨ij⟩, σ

ĉ†iσ ĉjσ − t′
∑

⟨⟨ij⟩⟩, σ
ĉ†iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µ
∑
iσ

n̂iσ, (1)

where i or j labels a site on a square lattice, ĉ†iσ is the electron creation operator, σ = {↑, ↓}

denotes spin, n̂iσ = ĉ†iσ ĉiσ is the particle-number operator, and ⟨ij⟩ and ⟨⟨ij⟩⟩ indicate nearest-

and next-nearest-neighbors, respectively. We set t as the energy unit. In cuprates t′ < 0 (34);

however, using a particle-hole transformation to map fillings 1+δ → 1−δ, we can study electron

doping by changing the sign of t′. We use t′ = −0.2 for hole-doping and t′ = +0.2 for electron-

doping, appropriate values for based on cuprates based on band structure calculations (35, 36).

The onsite repulsion U is fixed at U = 8, again a representative value for cuprates. We scan a

range of doping (denoted by δ) by varying µ.

Our study focuses on the ground state, which we obtain in either cylindrical or fully periodic

toric systems. The use of cylinders serves two purposes. First they allow direct comparisons

between AFQMC and DMRG, which is highly accurate in narrow cylinders. Second, they are

convenient for studying spin and charge orders, in which we apply spin-symmetry-breaking

pinning fields on the edges of the cylinder to help detect ordering from the resulting local spin

and charge densities. The fully periodic simulation cells calculations in toruses allow AFQMC

to better approach the thermodynamic limit (TDL). As shown below, it turns out to be crucial
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Figure 1: The d-wave pairing order parameter versus doping δ in the ground state for the hole-
doped (t′ = −0.2) and electron-doped (t′ = +0.2) regimes. Representative spin and charge
correlations are also shown for three parameter sets a, b, and c. ∆d are the spontaneous pairing
order in the thermodynamic limit, while the spin and charge (hole) patterns are drawn from the
middle of 28 × 8 (a), 24 × 8 (b), and 40 × 8 (c) cylinders with antiferromagnetic spin pinning
fields applied to the two edges. Note that hole densities start the vertical scale for the hole
density plots (top of panels a, b, and c) starts at 0.1. Grey shadows for spins are to aid the eye.

5



to systematically average over different boundary conditions. To compute the pairing order

parameter, we apply twist averaged boundary conditions (TABC) over a large number of ran-

dom twists, in systems with up to 500 lattice sites. The computations presented in this work

became possible only with new algorithmic developments in both our methods, which improved

capability and increased accuracy, as we discuss further We discuss the improvements to the ca-

pacity and accuracy of the two methods that enabled this study in the Method Section.

Results

Overview of pairing and coexisting spin/charge orders

Figure 1 presents an overview of our results, a “phase diagram” of the computed pairing order

parameter, together with representative spin and charge correlations. The pairing order param-

eter ∆d we compute is the expectation value of the operator
∑

⟨ij⟩ [bij (∆̂ij + ∆̂†
ij)/2], where

∆̂ij ≡ (ĉi↑ĉj↓ − ĉi↓ĉj↑)/
√
2, and bij = +1 if the bond ⟨ij⟩ is in the x-direction and bij = −1 if

⟨ij⟩ is in the y-direction. The pairing order parameters have been extrapolated to the TDL, us-

ing full TABC in large simulation cells (see Method and SM). We expect this zero-temperature

property to be loosely connected to the transition temperature Tc most readily observed experi-

mentally (however, see (37,38)). On both the electron- and hole-doped sides, we find dome-like

d-wave pairing orders which resemble the Tc domes in the typical phase diagram of cuprates.

The pairing order parameter is significantly larger in the hole-doped region than in the electron-

doped region, which is also consistent with the phase diagram of cuprates (39).

Spin and hole densities are shown for the three representative systems marked as a, b, and

c. These calculations were performed with AFM pinning fields on the edges of the cylindrical

simulation cells (details in SM). The spin and hole densities thus provide a simple and conve-

nient way to visualize the spin and charge correlations. We have taken care to ensure that the
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results are drawn from very large systems and the spin and charge patterns are representative

of different boundary conditions. In the electron-doped region, the spins show single-domain

antiferromagnetism with nearly uniform hole densities in the bulk. In the hole-doped region,

stripe and spin-density wave (SDW) correlations are observed, with modulated antiferromag-

netic domains separated by phase flip lines where holes are more concentrated. In contrast

with the pure Hubbard model, we find that the wavelength of the modulation is not an integer

multiple of 1/δ (filled stripes). Nor are the stripes half-filled as seen in previous state-of-the-

art calculations (40). Rather, they are best described as partially filled, with fractional fillings

which that vary with δ as well as system size and boundary conditions. These behaviors of spin

and charge are again consistent with the phase diagram of the cuprates (39), where uniform AF

correlations persist with substantial doping on the electron-doped side, but short or long-ranged

incommensurate magnetism and stripes are observed starting at small doping on the hole-doped

side (41, 42).

It is instructive to consider this This phase diagram contrasts sharply with that in the context

of the t-t′-J model (43, 44), which can be derived as an approximate strong-coupling Hubbard

model at low doping. In the t-t′-J model, recent DMRG studies all point to strong d-wave su-

perconductivity on the electron-doped side (43–45), which coexists with antiferromagnetic cor-

relations with increasing strength as t′ increases; some differences remain concerning whether

long-range AF order occurs (46). No superconductivity, only stripes, have been found To date

indications are that superconductivity is weak/marginal on the hole-doped side (43, 47). It

has been an open question whether this failure of the t-t′-J model to qualitatively explain the

cuprates Is the difference between was Is this difference due to caused by the strong-coupling

approximations of that model, or to other flaws or missing terms affecting both the Hubbard

and t-t′-J (single band) models? Our results Here the strong differences in the phase diagrams

of the two models point to the former. These differences have not been clear in previous studies
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Figure 2: Evolution of the stripe patterns with system size (δ = 1/8, hole-doped). The staggered
spin densities are shown as linecuts in periodic cylinders. The length of the cylinder (Lx) is
varied across the three columns and the width (Ly) across rows. AFM pinning fields are applied
at the two edges of the cylinder (x = 1 and x = Lx), either in phase or with a π-phase shift
(marked by an asterisk); the one with lower energy is shown. The filling fraction f of each
stripe pattern is indicated, with NIPS denoting non integer-pair stripes. DMRG results (red) are
shown for width-4 and 6 systems and AFQMC results (black) are in good agreement with them.

on narrower cylinders, which are impacted by strong finite-size effects (48, 49).

Underdoped region: 1/8 hole doping

A relatively large pairing order parameter is found here, in coexistence with stripe correlations,

as shown in Fig. 1. To better understand the nature of the spin and charge correlations, we sys-

tematically study their evolution with system sizes in Fig. 2. The computations were performed

in Lx × Ly cells, with periodic (PBC) or anti-periodic boundary condition (APBC) in the ŷ-
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direction and open BC along x̂ (i.e., cylinders). AFM pinning fields (along ẑ) were applied at

x = 1 and Lx to break the SU(2) symmetry and induce local spin orders, such that the local spin

density Sz(x, y) becomes a proxy of spin-spin correlations away from the edges of the cylinder.

Modulated AFM patterns are clearly seen in all the systems. Correspondingly, hole den-

sities are enhanced at the nodes of the spin modulation, as illustrated in Fig. 1 (results on the

corresponding hole densities for Fig. 2 can be found in SM). The characteristic wavelength

of the modulation, λSDW, varies with system size. We define a filling fraction of the stripe:

f ≡ δ λSDW/2, i.e., the number of holes per lattice spacing along a stripe. In the pure Hubbard

model, f = 1 since because λSDW = 2/δ (50,51). Then, nominally the number of electron pairs

per stripe is np ≡ f Ly/2. If np is an integer, we refer to the state as integer-pair stripe (IPS);

otherwise the state is labeled as non-IPS (NIPS).

Previous studies in width-4 cylinders have found that the ground state in this system has

half-filled stripes (40, 43, 44). Our results confirm this picture, with good agreement between

AFQMC and DMRG, but also show that the half-filled stripe turns out to be special to width-4.

As the system size increases, the stripe filling fluctuates between 3/5 and 3/4. ; NIPS states

appear frequently, which have not been observed before. Previous calculations (11, 52) show

that states with IPS are favored, which was taken as an indication of the existence of local

pairing of electrons in the stripe state. Here, with the inclusion of t′, the electron is more mobile

and pairs of electrons become coherent to display displaying long-range pairing order. This is

further discussed and contrasted with the over-doped region next.

Overdoped region: 1/5 hole doping

A strong superconducting order parameter is found in the ground state of the hole overdoped

region of δ = 1/5, with strength comparable to δ = 1/8 (see Fig. 1). The behavior of spin

and charge correlations show common features but also significant differences between the two
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Figure 3: Partially filled stripe patterns on the hole-doped side, at δ = 1/8 and 1/5. The stripe
fillings are shown for a variety of system sizes, in cylindrical cells with width Ly = 4 up to 12,
and lengths ranging from 16 to 48 (shown as adjacent symbols at fixed Ly). Results for both
PBC and APBC are shown. Narrow cylinders favor integer-pair stripes (IPS, indicated by green
bars). Fluctuations are strong even in large systems.

regions. Figure 3 summarizes their stripe fillings side by side, based on computations in about

30 systems. Several trends are evident. In narrow cylinders, IPS states are favored at both dop-

ings. In over a dozen different width-4 and width-6 systems across the two dopings, AFQMC

and DMRG agree in each case on the stripe wavelength and filling fraction. In both regimes

the filling fraction varies widely with system sizes and boundary conditions, and fluctuations

continue through systems with over 500 lattice sites. As the size grows (wider cylinders), IPS

states are no longer favored, and both systems tend to fractional stripe fillings. These results

indicate that with t′, the stripe patterns — but not the existence of stripes — are much more
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Figure 4: Spin, charge, and pairing properties on the electron doped side (δ = 1/8), and their
variations with boundary conditions. (a) APBC along ŷ-direction in a 28 × 8 cylinder gives
nearly uniform Neel order (only a 16× 4 central region is shown). (b) Under PBC a modulated
AFM order with larger spatial variations in spin magnitude is seen. (c) The computed pairing
orders in 16 × 4 and 16 × 6 cylinders (at a fixed value hd = 0.021 of applied global d-wave
pairing fields) show opposite trends with PBC and APBC. The final pairing order, computed
from TABC with fully periodic supercells in large toruses of increasing Ly, is shown together
with the TDL extrapolation by the gray band.

fragile than in the pure Hubbard model.

Both the spin and charge modulations are weaker at 1/5 doping than at 1/8. Although

f is larger in the TDL, the holes are more mobile and spread out in the overdoped region.

The hole density is nearly uniform, with less than 5% of the holes contributing to the density

fluctuations. At 1/8 doping, the stripe order is more pronounced, as illustrated in Fig. 1. Still,

the peak density of holes, at the nodes of the spin correlation, is only ∼ 30% higher than the

average. The notion of stripe filling derives from a particle picture, most applicable to holes in

Wigner-crystal-like distributions. The holes here have a strong wave character (50), with which

the fractional fillings of stripes we observe are more readily compatible.
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Electron doped region

Experimentally, the electron-doped side is simpler, without the competing stripe state (41, 53)

or pseudogap phase in cuprates (39). The critical doping for the long-range AF order on the

electron-doped side is larger than that on the hole-doped side, the superconducting dome is

smaller, and the transition temperature is lower. The phase diagram in Fig. 1 and the spin and

hole densities in Fig. 4 are consistent with these features.

Our results reveal several other important features on the electron-doped side. There are

considerable variations of the spin and charge correlations with system sizes and boundary con-

ditions, even though the sensitivity is less compared to the hole-doped side. As illustrated in the

SM, two entirely different ground-state orders are obtained from width-4 and width-6 cylinders;

APBC and PBC also lead to opposite conclusions in each simulation cell. Even in the width-8

systems in Fig. 4, which display robust Néel order, different boundary conditions still show

variations in the charge correlation. Superconductivity manifests a more dramatic volatility.

Using PBC, the most common approach to date, calculations in width-4 and width-6 cylinders

would conclude yield a strong pairing order in the electron-doped regime. (Note that DMRG

and AFQMC give fully consistent results.) In contrast, under APBC the same calculations pre-

dict no pairing. The uncertainties with respect to finite size and boundary conditions are much

larger than the final signal at the TDL. Thus even a qualitative conclusion on superconductivity

would be challenging without our new approaches employing TABC, systematic extrapolation

to large sizes, and other methodological advances, which are discussed next.

Method

The physics of the Hubbard model has proved highly elusive and challenging to pin down. This

was magnified substantially with a non-zero t′. The difficulties include more sensitivity and
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stronger dependency on system size and BC, as we have illustrated. In addition, t′ turns out to

affect the interplay between low-lying states in significant ways. For instance, with t′ = 0, stripe

and superconductivity manifest as competing orders. Filled stripe states are particularly stable,

with nesting contributing a key factor. A non-zero t′ affects the nesting condition (frustrates the

Néel order) and alters the landscape of the low-lying states. This has demanded much higher

resolution from the numerical methods.

The methodologies employed in this work have a number of distinguishing features which

made it possible to achieve a qualitatively higher level of accuracy and reliability. Two com-

plementary, state-of-the-art computational methods are used synergistically. We implement

both U(1) (54) and SU(2) symmetry-adapted (55) DMRG calculations for different setups

and push them to the large bond-dimension limit. In AFQMC, we introduce a further ad-

vance in the optimization of the constraining trial wave function, which is determined fully

self-consistently (32), with no input parameter. Extensive and detailed comparisons between

AFQMC and DMRG are performed on width-4 and width-6 cylinders, under identical condi-

tions. The same AFQMC algorithm, which has no room for tuning, is applied to larger systems.

The formulation of systematic twist averaging for the computation of the pairing order param-

eters provides an effective way to sample the low-lying states.

Twist averaging as an effective means to sample low-lying states

The use of twist-averaging (56, 57) in this work has two crucial roles. First, systematically

averaging over twist angles, combined with the ability to reach large system sizes and careful

finite size extrapolation, enables us to approach the TDL reliably. Second, the random twist

angles provide an effective means to sample the low-lying states, and their averaging reduces

the impact of rare events of accidental degeneracy, and smoothes out the effect of level crossings

as a function of an applied pairing field (see SM).
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Figure 5: Importance of TABC for accurate determination of the pairing order. The main figure
shows the d-wave pairing order parameters in a 20× 4 cylindrical cell at 1/5 hole doping, after
full twist-averaging over ky. AFQMC and DMRG results agree across the entire range of hd,
the strength of the applied pairing fields. The inset focuses on hd = 0.205. ∆d computed from
DMRG and AFQMC are shown as a function of ky, for the ground state (connected by solid
line) and some of the lowest-lying excited states (open symbols). Averages of the solid symbols
lead to the TABC results in the main figure.

As shown in Fig. 4, different boundary conditions can result in variations in the pairing

order parameter which are many times larger than the signal, even in nominally rather large

sizes (width-6 cylinders). Both PBC and APBC are twist angles of special symmetry, and are

often particularly volatile. We apply TABC with quasi-random twist angles (57). The TBC

can be thought of as the electron gaining a phase when it crosses the boundary. Equivalently,

we can choose another gauge by distributing the phase evenly in each hopping term. When

a twist is applied, care must be taken in defining the pairing order parameter, whose form is
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gauge-dependent but the expectation value should be gauge-independent. TABC reduces the

fluctuations in the computed pairing order parameter, as seen in Fig. 4, and further discussed

below and in the SM. (In Ref. (58), TBC and twist averaging are shown to accelerate the ex-

trapolation with calculations on cylinders.)

With the inclusion of a non-zero t′, the perfect nesting in the Fermi surface at half-filling is

absent. Subtle variations near the Fermi level from finite size and boundary conditions can have

much larger effect on the formation of collective spin modes, hence there is more sensitivity

in the property of the low-lying states. These states can be very close in energy such that

any small finite temperature (e.g., under experimental conditions) would smear them out and

render them indistinguishable. TABC provides an effective sampling of such low-lying states

which can average out the fluctuations so as to more reliably capture the intrinsic properties.

An illustration is given in Fig. 5. The pairing order parameter exhibits large variations as a

function of the twist angle, both in the ground state and low-lying excited states, as seen in

the inset for one value of hd. The calculation can “hop” from one state to another among the

bundle of low-lying states, depending on the initial condition, convergence criterion, etc, even

under high-quality computational settings (e.g., large bond dimensions in DMRG). This is also

reflected in the modest level of agreement between the two methods for each particular state.

With TABC, however, their agreement is excellent across the entire range of hd (which spans

many level-crossings, see SM), and the two methods give fully consistent conclusions.

Extrapolation of pairing order

The spontaneous pairing order parameter in the TDL, ∆d, is obtained from a massive number

of computations. Each calculation is performed in the presence of a small but finite global

pairing field hd (see SM). At each parameter set (t′ and doping), ∆d(N, hd) is computed for

many different simulation cell sizes N , at tens of hd values, with each averaged over tens of
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Figure 6: Computation of the ground-state pairing order parameter at the thermodynamic limit.
(a) shows extrapolation to the TDL at a fixed hd, the strength of the d-wave pairing fields. (b)
shows extrapolation of the TDL result from (a) to hd → 0. Three representative systems are
shown. In (a), each data point is obtained by TABC over (kx, ky) in supercells of Lx × Ly, and
only results from large supercells are included. In (b) linear or quadratic fits are performed at
small values of hd, with extrapolated values marked as stars.

quasi-random twist angles. We then take the limit ∆d(N → ∞, hd) at each hd, followed by

the extrapolation ∆d(∞, hd → 0). The procedure is illustrated in Fig. 6. Panel (a) shows the

first step, where we use fully periodic N = Lx × Ly systems supercells (toruses) with quasi-

random twist angles (kx, ky) applied to both directions. We verify that Lx is sufficiently large

such that the results have converged within our statistical accuracy. We then extrapolate the

TABC results with respect to 1/Ly, excluding small sizes. (Deviations are visible from width-4

systems, which can have different pairing symmetry from ordinary d-wave (49).) In Panel (b)

extrapolations are then performed using small hd values (< 0.05 for linear and last 10 or so

points for quadratic fits), yielding the final spontaneous pairing order parameter ∆d at hd → 0.
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As can be seen, the quality of the fits is excellent; in each case, the linear and quadratic fits give

consistent values within statistical errors. The pairing order parameters shown in Fig. 1 are the

final ∆d after extrapolations to the TDL, and then to the zero pairing field limit.

Conclusion

Can the single band Hubbard model capture the qualitative physics, particularly the supercon-

ductivity, of the cuprates? Here, more than 35 years after the discovery of the first cuprate

superconductor (1), we conclude that the answer is yes, that the Hubbard model with a next

near-neighbor hopping t′ distinguishing between electron- and hole-doping captures the essen-

tial features of the charge, magnetic, and pairing orders.

The computed pairing order parameter in the ground state displays dome-like structures

versus doping, resembling the Tc domes of the cuprates. On the hole-doped side, we find the

coexistence of superconductivity with fractionally filled stripe correlations, with nominal stripe

fillings in the range 0.6-0.8 in sufficiently large sizes. On the electron-doped side, at lower dop-

ings, uniform or weakly modulated antiferromagnetism, along with uniform or weakly mod-

ulated doping, coexists with somewhat weaker superconductivity. The general appearance of

stripe orders on the larger systems with non-integral numbers of pairs indicates that pairs fluc-

tuate between stripes, promoting long-distance phase coherence and thus superconductivity; in

contrast, for t′ = 0 the stripes were filled, and superconductivity was absent (11).

This picture is in contrast to that of the t-t′-J model, once thought to be interchangeable

with the Hubbard model, but which does not appear to exhibit superconductivity which appears

to only exhibit weak or marginal superconductivity on the hole-doped side (43,45). The ground

states of the models are not universal, and to capture the subtle interaction of the various in-

tertwined orders requires both very careful finite size extrapolation and very high accuracy and

reliability in the simulation methods. Even within the single-band t-t′ Hubbard model, an enor-
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mous body of works exists, with widely varying and often conflicting results. Our results also

explain why this has been the case — the model shows extreme sensitivity of the properties to

finite sizes and boundary conditions, and to any biases of approximate methods.

Here we have used the combination of DMRG and AFQMC, with DMRG benchmarking

and validating the CP approximation in AFQMC on narrower systems and the AFQMC used

to reach much larger systems. We have greatly improved the finite size extrapolations by using

TABC. These together with methodological advances within each approach provided a powerful

tool to address the question with a new level of capability and resolution.

In the models or parameter regimes on the hole-doped side where superconductivity is not

present, one still finds strong indications of paired holes. For example, if holes within stripes

were not paired, one would expect to find single stripes having an odd number of holes in about

half the systems, but instead only even numbers of holes in each stripe are found. Whether there

is superconductivity or not seems tied to the properties of a pair, e.g., its effective mass, which is

strongly influenced by model parameters such as t′. A heavy pair or one which interacts strongly

with the magnetic degrees of freedom of the region around it is more likely to be locked up in

a stripe, suppressing phase coherence. This model-specificity and non-universality raises the

question: is there any simple analytic theory of cuprate superconductivity in the style of BCS,

or must we always resort to simulation?

Our study still leaves much to do in connecting the models quantitatively to experiments. We

have not predicted transition temperatures, only order parameters. We have not studied trans-

port and dynamical properties of the models. Many other properties of the one-band Hubbard

model remain to be determined and understood. Other terms (59, 60) and effects not present

in the Hubbard model may still play important quantitative roles. Nevertheless, it appears that

qualitatively, the t-t′-U Hubbard model has “the right stuff”.
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