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Abstract 

We outline and test a Bayesian model of the effects of evidence 
sampling on property induction. Our model assumes that 
people are sensitive to the effects of different sampling frames 
applied to sampled evidence. Two studies tested the model by 
comparing property generalization following exposure to 
samples selected because they belong to the same taxonomic 
category or because they share a salient property. Both studies 
found that category-based sampling led to broader 
generalization than property-based sampling. In line with 
model predictions, these differences were attenuated when a 
mixture of positive and negative evidence was presented 
(Experiment 1) and when category-property relations were 
probabilistic rather than deterministic (Experiment 2). 

Keywords: Inductive reasoning; Sampling; Hypothesis 
testing; Bayesian models; Categorization 

Introduction 
Inductive reasoning – the ability to make plausible guesses 
given inconclusive evidence – is one of the central topics in 
cognitive science. Much of the traditional work on the topic 
has emphasized the importance of similarity between premise 
and conclusion categories (see Hayes & Heit, 2013, for a 
review). While undoubtedly useful, the similarity-based 
approach overlooks a crucial component of induction: 
people’s inductive inferences are strongly influenced by their 
beliefs about how the evidence was sampled (e.g., Xu & 
Tenenbaum, 2007). This phenomenon is referred to as 
sensitivity to sampling, and there is considerable evidence 
that human reasoners show exactly this sensitivity. 

One form of sampling sensitivity occurs when an argument 
assembled by a knowledgeable and helpful teacher is 
evaluated quite differently than a set of random facts, even if 
– by chance – the random process happens to have sampled 
the same set of facts. In the reasoning literature, this was first 
discussed by Medin, Coley, Storms and Hayes (2003) in their 
relevance theory of induction. They suggested that reasoners 
often make the pragmatic assumption that premise categories 
are selected to highlight a salient relation, which is then used 
to guide inference. For example, on learning that zebras and 
skunks share a novel property, people may infer that the 
property involves “having stripes” and generalize 
accordingly. More recently, the formal foundations for 
pragmatic inference have been established using Bayesian 
pedagogical sampling models, that model human inductive 
reasoning by assuming that helpful teachers select 
informative evidence (Voorspoels, Navarro, Perfors, 
Ransom, & Storms, 2015; Ransom, Perfors & Navarro, 2016; 

Shafto & Bonawitz, 2015). This account is supported by 
empirical work showing that many inductive phenomena 
(e.g., premise non-monotonicity, integration of positive and 
negative evidence) depend on the assumption of a helpful 
teacher (Ransom et al., 2016; Voorspoels, Navarro, Perfors, 
Ransom, & Storms, 2015).  

A second kind of sensitivity arises from the so-called 
“strong versus weak” sampling distinction. Under strong 
sampling, the learner observes a set of exemplars (e.g., 
premise categories) that are constrained to possess property 
p. Under weak sampling, no such constraint exists. Early 
work highlighted the fact that even this simple constraint can 
produce substantial changes to how a Bayesian reasoner 
make inferences (Tenenbaum & Griffiths, 2001), but many 
applications of the strong/weak distinction have tended to 
conflate it with helpful/random sampling (e.g., Xu & 
Tenenbaum, 2007), and those that do not have found mixed 
evidence (e.g., Navarro, Dry & Lee, 2012). Although there 
are good reasons to expect helpfully sampled evidence to be 
similar to strongly-sampled evidence (e.g., Ransom et al., 
2016), it is not obvious whether (or when) people are 
sensitive to sampling assumptions if no helpful teacher is 
available. Perhaps people are capable of taking a hint from a 
helpful teacher, but otherwise are largely insensitive to 
sampling assumptions. Given other evidence that people 
struggle with conditional probability (e.g, Fiedler, 2012) this 
is not an implausible idea. 

How sampling frames shape induction 
In this paper, we approach the problem from a different 

perspective, and consider other ways in which data can be 
sampled in a constrained way. The statistics literature, for 
instance, emphasizes the importance of a sampling frame 
(Jessen, 1978): when designing a survey, the researcher may 
not be able to sample uniformly at random from the entire 
population of interest, but is instead forced to sample from a 
restricted subset. When interpreting such data, those 
properties of the observed data that are attributable to the 
sampling frame do not require theoretical explanation, as they 
are deemed an artifact of the sampling process.  
The effect of a sampling frame can be substantial. Imagine 
that you want to learn what plants make you sneeze. The 
potential search space is large so we apply a sampling frame 
– we first test a particular category of plant (e.g., sunflowers) 
– and find that most sunflowers cause us to sneeze. In this 
situation, the fact that we have never sneezed at a daisy is 
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irrelevant: it can be attributed to the sampling frame. In this 
context, absence of evidence is not evidence of absence.  

 
    Now consider the effect of shifting the sampling frame. 
Suppose instances are selected because they share the 
property of interest (e.g., they give positive result on an 
allergy test). If most of this sample was sunflowers then the 
absence of daisies might be seen as inductively informative: 
it suggests that the allergic reaction is limited to the observed 
category. Despite the fact that neither scenario involves a 
helpful teacher, the mere presence of a sampling frame allows 

the same data to lead to different generalizations (cf. Hsu, 
Horng, Griffiths, & Chater, 2016). 

There is evidence that people are sensitive to the sampling 
frame. Lawson and Kalish (2009) presented participants with 
samples of animals (small birds) that shared a novel property 
(“has plaxium blood”) and manipulated the way exemplars 
were sampled. In the “category sampling” condition they 
were told that items were sampled from a taxonomic category 
(i.e., the frame selects small birds). In the “property 
sampling” condition people were told that exemplars with 
plaxium blood were selected. People in the property sampling 
condition were less likely to generalize the property to other 
animals. Lawson and Kalish (2009) noted that this result was 
inconsistent with similarity-based accounts of induction, but 
they did not explain why the differences occurred. 

As it happens, this pattern of results is exactly what one 
would expect from a probabilistic reasoner who is sensitive 
to the sampling frame. Later we present a formal model, but 
the qualitative intuition is simple. Suppose the learner has 
observed small birds (S) with plaxium blood (P+), and is 
trying to determine whether large birds (L) also possess 
plaxium blood. Subject to the constraint that large and small 
birds both exist, there are six hypotheses consistent with the 
observations, as shown in Figure 1, and three that are not.  

Now consider the plausibility of these six hypotheses under 
different sampling frames, illustrated by the red rectangles in 
Figures 2. In category sampling, it is plausible to assume that 
if any small birds did not have plaxium blood, the SP- case 
would have been observed. The lack of such observations 
strengthens three hypotheses and weakens three others. 
Notably, two remaining hypotheses allow large birds to have 
plaxium blood (LP+). By contrast, in property sampling it is 
reasonable to assume that if any large birds had plaxium 
blood we should have seen the LP+ case. The fact that they 
were not leaves only two viable hypotheses, both of which 
restrict property P to the target category. Accordingly, 
generalization is more restricted under property sampling. 
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Figure 2. The effect of sampling frame. When the data consist solely of small birds with plaxium (SP+), plausible hypotheses 
are those for which only SP+ is allowed by the sampling frame and the hypothesis. Consequently, LP+ is less plausible 
under property sampling and the learner does not generalize beyond the observed SP+ case. 
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Figure 1. Schematic of the hypothesis space about the 
distribution of property P+ and its absence (P-). Dark 
quadrants show the hypothesized extension of P across 
the target category (S) and non-targets (L). Dots 
represent observation of a sample of small birds that has 
the property SP+. For a hypothesis to be plausible it 
must allow the SP+ case to exist. 
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Experiment 1 
Our experimental work replicates the findings of Lawson and 
Kalish (2009), and extends them in a way that tests our 
“sampling frames” explanation. In the first experiment, we 
considered the impact of explicit negative evidence. If a 
learner encounters non-target category members that lack 
property P, the differences between the two sampling 
conditions should attenuate. Explicit negative evidence 
should have a large effect in the category sampling condition, 
but only a modest effect under property sampling. We expect 
this difference because property sampling already provides 
implicit negative evidence, so the added value of the explicit 
negative evidence is diminished.  

Experiment 1 tested these predictions by presenting 
participants with identical evidence samples obtained via 
category or property sampling. Half the participants received 
positive evidence about members of a target category, as per 
Lawson and Kalish (2009), and half received additional 
negative evidence about non-target category members. All 
participants were then asked to judge whether the novel 
property generalized to other categories. 

Method 
Participants. 92 UNSW students (63 female), participated 
for course credit or payment. The mean age was 20.9 years. 
Design and Procedure. The experiment used a 2 x 2 between 
subjects design with equal numbers in each condition.  

The procedure for the positive evidence only groups was 
patterned after Lawson and Kalish (2009). Participants were 
told they were investigating the properties of animals on a 
novel island. In the category sampling condition, participants 
were told that only small birds were sampled from the island. 
In the property sampling conditions, they were told that only 
animals with plaxium blood were sampled from the island. 
Exemplars were revealed as follows: on each of 20 trials, 
participants could click on one of a large number of on-screen 
boxes to see an exemplar (each depicted by a unique picture 
of a small bird), and to learn if the animal had plaxium blood. 
In the positive evidence condition, all 20 exemplars sampled 
had plaxium blood.  

For the positive+negative evidence groups the procedure 
was identical, except that there were five trials at the end in 
which “new” samples from the island were presented. Each 
of these revealed a single instance from other animal 
categories (crow, seagull, eagle, squirrel, frog) that did not 
have plaxium blood. These five trials were always presented, 
in random order, at the end of sampling phase. 

After the learning phase, all participants proceeded to a 
generalization test. On each of six trials, participants were 
shown a picture of an animal and asked to estimate the 
number of such animals from a sample of ten that would have 
plaxium blood (0-10). The test categories included a member 
of the same target category that was presented during 
sampling (a novel picture of a sparrow) and five categories 
that varied in similarity to the target (pigeon, owl, ostrich, 
mouse, lizard). Test item order was randomized. 

Results and Discussion 
Generalization scores (out of 10) for all conditions are 

shown in Figure 3. Visual inspection suggests that the 
positive-only condition people generalized more narrowly 
under property sampling (black squares) than under category 
sampling (black circles). Moreover, this difference is less 
pronounced when explicit negative evidence is provided (in 
grey).  

More formally, a mixed effects ANOVA revealed that 
people were less willing to generalize as similarity decreased 
(left to right in Figure 3; linear trend contrast: F(1,84) = 
420.07, p<.001). Generalization to non-target categories was 
greater following category than property sampling, F(1,84) = 
12.36, p =.001, and when only positive evidence was 
encountered during sampling, F(1,84) = 39.54, p<.001. The 
critical finding, however is the interaction:  the difference in 
generalization between category and property sampling was 
larger in the positive evidence only condition than in the 
positive + negative condition, F(1,84) = 5.81, p =.02. 

These results are exactly what we expected: despite the fact 
that participants in the category and property sampling 
groups saw exactly the same information, generalization of 
the novel property was narrower following property 
sampling. This replicates the main finding of Lawson and 
Kalish (2009), showing that people’s inductive inferences are 
sensitive to the sampling frame. Moreover, the data supported 
a novel prediction of our sampling explanation: presentation 
of negative evidence had greater impact on generalization 
following category sampling than property sampling.  
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Experiment 2 
In the next experiment we consider a second manipulation 
that should – according to the sampling account – attenuate 
the difference between category and property sampling: 
ambiguous evidence. In Experiment 1, every member of the 
target category had the novel property. In Experiment 2, we 
considered cases where some of the evidence is ambiguous, 
by including some observations where the plaxium status of 
the entity was unknown. The qualitative intuition here is that 
this should introduce uncertainty about the distribution of the 
property within the target category. Accordingly, the 
evidentiary value of the data should decrease, leading to a less 
pronounced difference between the two sampling conditions. 

Method 
Participants. 80 UNSW students (76 female), participated 
for course credit or payment. The mean age was 19.4 years. 
Design & procedure. The experiment used a 2 x 2 between 
subjects design, with equal numbers in each condition. The 
procedure for the deterministic evidence conditions was 
identical to the positive evidence only conditions in 
Experiment 1. The procedure for the probabilistic evidence 
conditions was similar, except that during the sampling phase 
participants saw an additional five category or property 
sampling trials. On these trials, additional small birds were 
presented whose blood type was unknown due to a “machine 
error”. These trials were randomly interspersed with the other 
trials. The generalization test was the same as Experiment 1. 

Results and Discussion 
Generalization scores are shown in Figure 4. As in 

Experiment 1, generalization of the novel property decreased 
as similarity to the target category decreased (linear trend 
contrast: F(1,76) = 117.94, p<.001. Overall, generalization to 
non-target categories was greater following category than 
property sampling, F(1,76) = 8.88, p=.004. Notably, there 
was a significant interaction between sampling condition and 
evidence certainty, F(1,76) = 5.25, p =.03. Figure 4 shows 
that the differences in generalization between category and 
property sampling were relatively large when the evidence 
was deterministic, but decreased when the observed evidence 
was probabilistic.  

The results for the deterministic evidence condition 
replicate the earlier finding that property sampling leads to 
narrower generalization than category sampling. Consistent 
with the predictions of our model, the difference between 
sampling conditions was reduced when the relationship 
between the target property and category was probabilistic.  

Bayesian reasoning with sampling frames 
The sampling explanation outlined at the start of the paper 
provides an intuitive explanation of our results: in this section 
we provide a more formal account, introducing an inductive 
reasoning model that accommodates the effect of the 
sampling frame within the Bayesian framework introduced 
by Tenenbaum and Griffiths (2001). 

A Bayesian analysis of the inductive problem proceeds as 
follows. The test categories consist of items that belong to 
different taxonomic classes (birds, mammals, reptiles) and 
vary in size (small, medium, large, and huge). Given this, we 
define a hypothesis space H by combining these two 
characteristics. A hypothesis h is admissible if it includes 
only a single taxonomic class (e.g., birds only) or allows all 
animals to possess plaxium. Similarly, it is admissible if it 
specifies a “connected” region on the size dimension (e.g., 
small-or-medium is allowed, but small-or-huge is not). For 
simplicity, the Bayesian model assigns equal prior 
probability P(h) to all hypotheses, with one exception: to 
account for the fact that people are less willing to generalize 
across taxonomic classes than across animal sizes, 
hypotheses that allows all animals to have plaxium blood are 
only 1/5 as plausible as hypotheses restricted to a single class.  

When presented with a set of observations x, the learner 
updates the prior distribution to a posterior via Bayes’ rule:  

 

                   
  

In this expression, the likelihood term P(x|h,f) describes the 
probability of observing the data x if hypothesis h is true and 
the sampling frame f applies. When determining the 
probability that a test item y possesses plaxium blood, a 
Bayesian learner aggregates the posterior probability 
assigned to those hypotheses h that assign the test item y to 
the consequential set: 

P (h|x, f) = P (x|h, f)P (h)P
h02H P (x|h0

, f)P (h0)

0
1
2
3
4
5
6
7
8
9

10

Pr
op

er
ty
	G
en

er
al
iza

tio
n	
Sc
or
e

Test	phase	categories

Category	Sampling,		Deterministic	Evidence
Property	Sampling,		Deterministic	Evidence
Category	Sampling,		Probabilistic	Evidence
Property	Sampling,		Probabilistic	Evidence

Figure 4: Experiment 2. Test phase generalization in each 
experimental condition. 

 

491



                   
 

 The critical feature of this model is the fact that the 
likelihood term P(x|h,f) is sensitive to the sampling frame. 
Under category sampling, the fact that all observations 
happen to be small birds is of no evidentiary value: the 
sampling frame f only admits small birds, and no explanation 
for this is required. In this sampling regime, a good 
hypothesis is required to explain the fact that all observations 
are plaxium positive. If we assume a noisy relationship, 
where q >.5 denotes the probability that an animal that falls 
within the relevant category possesses plaxium blood, then 
the likelihood becomes: 
 

   
 

 Under property sampling, this pattern is reversed: the 
sampling frame admits only plaxium positive observations, 
and no explanation for this is required. Instead, the data x that 
the learner must explain is the fact that all the animals are 
small birds. Again assuming a noisy relationship,  
 

   
 

In this expression, the normalizing term |h| denotes the “size” 
of the hypothesis. For a hypothesis that predicts m species to 
be plaxium positive and n species to be plaxium negative, 
 

                                  
 

 Formal details notwithstanding, the main point of these 
equations is to highlight the fact that the different sampling 
frames involved ensures that property sampling imposes a 
size principle (Tenenbaum & Griffiths 2001) and category 
sampling does not. When a size principle applies, Bayesian 
learners will tend to assign more belief to smaller hypotheses, 
and as a consequence will generalize narrowly. This is 
illustrated in the top panel of Figure 5 which plots the 
generalizations made by the Bayesian model when presented 

with 20 plaxium positive small birds, setting q = 0.6. As one 
might expect, the Bayesian model generalizes more narrowly 
under property sampling. 
 In Experiment 1, we found that the difference between the 
two sampling schemes attenuated when participants were 
presented with plaxium negative observations from non-
target categories, and generalizations narrowed in general. As 
shown in the middle panel of Figure 5, this is exactly what 
the Bayesian model does. Regardless of sampling scheme, 
the negative evidence serves to decrease the plausibility of 
larger hypotheses (as they are now somewhat inconsistent 
with the new data), but this has a much smaller effect in the 
property sampling condition simply by virtue of the fact that 
these hypotheses were already judged to be somewhat 
implausible. Accordingly, the Bayesian model produces 
narrower generalizations and the difference between the two 
conditions becomes smaller. 
 In Experiment 2, participants were presented with 
additional “ambiguous” observations (small birds that may or 
may not have been plaxium positive). This manipulation is 
expected to cause people to suspect a noisier relationship 
between the category and the observed plaxium status, which 
we operationalize by setting a lower value for q. When we set 
q = .55, we obtain the generalization gradients shown in the 
right panel of Figure 5. As expected, the Bayesian model 
produces an attenuated effect of sampling.  

General Discussion 
Traditionally, models of property induction (e.g., Osherson et 
al., 1990) have focused on the similarity between the 
categories known to possess a property and other categories 
to which the property might be generalized. Although 
category similarity is undoubtedly an important component 
of induction, the current work highlights the additional 
impact of beliefs about how observed data is sampled. In both 
experiments, identical sets of observations led to very 
different patterns of generalization depending on beliefs 
about how the observations were selected. In the positive 
evidence condition in Experiment 1 and the corresponding 

P (y 2 c|x, f) =
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Figure 5. Inductive inferences made by the Bayesian model plotted as a function of test category, sampling condition and 
evidence type. See main text for details. 
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deterministic condition in Experiment 2, evidence sampling 
based on shared category membership led to broader 
generalization of the target property than evidence sampling 
based on a shared property.  

This result shows that people are sensitive to the effects of 
particular constraints or sampling frames that are imposed on 
the observations. In category-based sampling, the absence of 
observations of members of other categories that share a 
target property is not necessarily seen as evidence of absence. 
In property-based sampling, the absence of such observations 
can be seen as evidence that the property does not project 
beyond the target category. This phenomenon is naturally 
accommodated by a Bayesian inductive reasoning model. 
Moreover, this theoretical perspective allowed us to generate 
two novel predictions. The effect of sampling frame 
attenuates when explicit negative evidence is added or when 
ambiguity is introduced to the sample. Both of these effects 
are captured by the Bayesian model. 

Our Bayesian approach suggests additional factors that 
should moderate the impact of sampling frames. For 
example, differences in generalization patterns between types 
of sampling is likely to depend on beliefs about category base 
rates. In property sampling for example, if members of both 
the target category (e.g., small birds) and non-target 
categories (e.g., various types of large birds) are believed to 
be relatively common, then the fact that the sample of animals 
with plaxium blood contains no large birds is highly 
informative. In contrast, if large birds were uncommon, then 
the absence of large birds with plaxium blood does not 
license strong conclusions about property generalization.  

Previous work (Ransom et al., 2015; Shafto & Bonawitz, 
2015) has shown that inductive inferences are sensitive to 
intentional factors associated with sample selection (e.g., 
whether the observations were chosen by a helpful agent to 
illustrate the breadth of a hypothesis). The current work, 
together with that of Lawson and Kalish (2009), highlights 
the importance of a novel factor in induction, namely 
sensitivity to different types of conditionalization or filtering 
of the evidence samples on which inferences are based. While 
this is a new finding in the domain of induction, it bears some 
resemblance to results observed in probability judgment tasks 
(see Fielder, 2012 for a review). Fiedler, Brinkman, Betsch 
and Wild (2000) for example, presented different groups with 
different types of conditionalized samples. One group saw 
instances of women who had received a positive breast scan 
result, and learned whether each woman had breast cancer. 
Another group saw instances of women with breast cancer 
and learned whether they had received a positive breast scan. 
As in the current work, people were sensitive to these 
different types of sample conditionalization, with the two 
groups generating very different estimates of the probability 
that a woman with a positive scan had cancer. In the Fiedler, 
et al. (2000) study however, the different types of 
conditionalization led to differences in the characteristics of 
the instances observed in each sample. The current work goes 
further, by showing that very different patterns of inference 

emerge when identical evidence samples are selected via 
different types of sampling frames. 
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