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Lord-Wingersky Algorithm Version 2.0 for Hierarchical Item 
Factor Models with Applications in Test Scoring, Scale 
Alignment, and Model Fit Testing

Li Cai
University of California, Los Angeles

Abstract

Lord and Wingersky’s (1984) recursive algorithm for creating summed score based likelihoods 

and posteriors has a proven track record in unidimensional item response theory (IRT) 

applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, 

especially with fixed quadrature because the recursions can be defined on a grid formed by direct 

products of quadrature points. However, the increase in computational burden remains exponential 

in the number of dimensions, making the implementation of the recursive algorithm cumbersome 

for truly high dimensional models. In this paper, a dimension reduction method that is specific to 

the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions 

implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-

tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a 

dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of 

integration is always equal to 2, regardless of the number of factors. The new algorithm not only 

provides an effective mechanism to produce summed score to IRT scaled score translation tables 

properly adjusted for residual dependence, but leads to new applications in test scoring, linking, 

and model fit checking as well. Simulated and empirical examples are used to illustrate the new 

applications.

Keywords

multidimensional item response theory; bifactor model; testlet; linking; scale alignment; test 
equating; goodness-of-fit testing; summed score

1 Introduction

The paper by Lord and Wingersky (1984) contains a terse description of a remarkably 

elegant recursive algorithm for computing summed score based likelihoods from the 

perspective of item response theory (IRT). According to Google Scholar, the paper has only 

been a moderate success in terms of citation counts (over 160 times as of this writing). 

However, the Lord-Wingersky algorithm motivated a number of important developments in 

educational and psychological measurement. For example, Thissen, Pommerich, Billeaud, & 
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Williams (1995) extended the algorithm to test scoring with ordered polytomous IRT 

models. Thissen and Wainer (2001) presented a detailed account of related summed score 

based methods for test scoring using IRT, including methods for mixed-format tests 

involving a combination of multiple-choice and constructed response items. Orlando, 

Sherbourne, & Thissen (2000) applied the Lord-Wingersky algorithm to summed score 

based test linking. Chen & Thissen (1999) derived an item parameter calibration method 

based on summed scores. Orlando & Thissen (2000) proposed a solution to the item fit 

testing problem with a slight alteration of the original Lord-Wingersky algorithm.

Multidimensional IRT has flourished in recent years (see, e.g., Reckase, 2009). In particular, 

full-information item factor analysis (Bock, Gibbons, and Muraki, 1988) has become one of 

the central methodological pillars in educational and psychological measurement research 

(Wirth & Edwards, 2007). As IRT becomes adopted in new fields such as health-related 

patient reported outcomes measurement (see Reeve et al., 2007), new item parameter 

estimation algorithms (e.g., Cai, 2010a; Edwards, 2010; Schilling & Bock, 2005) and 

flexible software implementations (e.g., Cai, 2013; Cai, Thissen, & du Toit, 2011; Wu & 

Bentler, 2011) have emerged. The present paper is situated within this broad context.

One particular kind of confirmatory item factor analysis, full-information item bifactor 

analysis, has caught special attention among psychometric researchers (Gibbons & Hedeker, 

1992). In an item bifactor model, all items load on a general dimension, and an item is 

permitted to load on at most one specific dimension. The specific dimensions are in essence 

group factors that account for residual dependence above and beyond the general dimension. 

The factor pattern in a bifactor analysis is an example of the hierarchical factor solution 

(Holzinger & Swineford, 1937; Schmid & Leiman, 1957).

The popularity of the item bifactor model has been, in no small part, due to Gibbons and 

Hedeker’s (1992) discovery of a dimension reduction method. With dimension reduction, 

maximum marginal likelihood estimation of item bifactor models requires at most 2-

dimensional numerical quadrature, irrespective of the number of factors in the model. Thus, 

truly high-dimensional confirmatory factor models may be fitted to item response data with 

reasonable numerical accuracy, computational stability, and most importantly, within a 

reasonable amount of time. Gibbons and Hedeker’s (1992) dimension reduction method did 

much to free item factor analysis from the “curse” of dimensionality.

The computational efficiency of the hierarchical item factor formulation prompted a flurry 

of recent activities in the technical literature (e.g., Gibbons et al., 2007; Jeon, Rijmen, & 

Rabe-Hesketh, 2013; Rijmen, Vansteelandt, & De Boeck, 2008; Rijmen, 2009), where new 

computational methods and extensions of the basic bifactor model are presented (see, e.g., 

Cai, 2010b; Cai, Yang, & Hansen, 2011). Within educational measurement, the closely 

related testlet response theory model (Wainer, Bradlow, & Wang, 2007) also garnered much 

attention. The testlet response theory model is a second-order item factor analysis model, but 

it is typically shown as a constrained version of item bifactor model (Glas, Wainer, & 

Bradlow, 2000; Li, Bolt, & Fu, 2006; Rijmen, 2010; Yung, McLeod, & Thissen, 1999).
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Renewed interest in the hierarchical item factor model brings new methodological questions. 

As Reise (2012) noted, the bifactor model is appealing because it offers a convenient 

mechanism to accommodate nuisance multidimensionality without sacrificing the 

interpretability of the general dimension, which ultimately represents the target latent 

construct being measured, in contrast to other multidimensional IRT models (e.g. with 

multiple correlated latent variables). The existence of unequivocal general dimension(s) and 

the continued prevalence of summed scoring of assessment instruments imply that there is 

much theoretical and applied interest in a characterization of the relation between an 

observed summed score and its position on the latent general dimension(s), which calls for 

an extension of the classical Lord-Wingersky algorithm to the case of hierarchical item 

factor analysis models.

Even as one may extend the Lord-Wingersky algorithm to standard multidimensional IRT 

models using direct product quadrature rules, the computational complexity increases 

exponentially as more factors are added into the model. Therefore a different strategy is 

required – one that efficiently utilizes the restrictions implied by the hierarchical item factor 

analysis model to achieve dimension reduction analytically. The combination of Lord-

Wingersky recursions with analytical dimension reduction results in what amounts to 

version 2.0 of the Lord-Wingersky algorithm. Its details will be the one of the foci of this 

paper.

With the availability of such an algorithm, a number of technical issues can be resolved. 

First, when multidimensional bifactor or testlet structures demonstrate superior fit to 

calibration data than the single-factor model, one can now construct summed score to IRT 

scaled score translation tables properly adjusted for residual dependence. Second, in terms 

of test linking, one can also achieve more than an extension of Orlando et al.’s (2000) 

summed-score based method for linking distinct groups. Thissen, Varni, Stucky, Liu, Irwin, 

& DeWalt’s (2011) calibrated projection method utilized two correlated general dimensions 

in a two-tier item factor model (Cai, 2010b) to produce the summed score to scaled score 

conversion table so that two closely related (yet not identical) instruments can be linked 

together with the method of projection. Third, the score combination methods for mixed 

format tests described by Rosa, Swygert, Nelson, & Thissen (2001) can be obtained as a by-

product of the Lord-Wingersky 2.0 algorithm, with no specialized computation required. 

Last but not the least, summed score computations can be useful for model fit checking. For 

instance, Orlando & Thissen’s (2000) highly successful summed score based item fit 

statistic (S-X2) can be extended to test item fit for bifactor models. The model-implied and 

observed summed score probabilities can also form diagnostic indices to check the 

ubiquitous latent variable normality assumption. The remainder of this paper will discuss 

each of the above applications in turn.

2 The Original Lord-Wingersky Algorithm

2.1 Summed Score Likelihoods

Let there be a total of i = 1, … I ordinal items. Let Ti(k|θ) be the ith item’s traceline for 

category k = 0, 1, …, Ki − 1. The summed scores range from 0 to . From 
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the perspective of IRT, the likelihood for the response pattern u = (u1, … uI) can be 

expressed as

(1)

due to the assumption of independence of item responses conditional on the latent trait θ. 

Define  as a notational shorthand for the summed score associated with 

response pattern u. The likelihood for summed score s = 0, …, S is defined as

(2)

where the summation in Equation (2) is over all such response patterns that lead to a 

summed score equal to s. Given a population (prior) distribution g(θ), the unnormalized 

posterior for summed score s is

(3)

and the (marginal) probability for summed score s is

(4)

which implies that the normalized posterior of summed score s is

(5)

Therefore, the posterior mean is

(6)

and the posterior variance is

(7)

The posterior mean and the square root of the posterior variance may be taken as the point 

estimate and the standard error of measurement for θ. The marginal probability, posterior 

mean, and posterior variance for the summed scores are key estimands that the IRT model 
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can generate as long as the categories are ordered to allow for an approximate monotonic 

relationship between summed scores and scaled scores.

2.2 Dichotomous Item Responses

It is more convenient to introduce the Lord-Wingersky algorithm for the case of 

dichotomously scored items. The extension to polytomous data is straightforward (as shown 

in Section 2.5). For now, all Ki’s are taken to be identically equal to 2. In this case, the 

maximum summed score S is equal to the number of items I. The definition in Equation (2) 

requires evaluating all 2I response pattern likelihoods, which becomes computationally 

intractable when I is large. On the other hand, Lord and Wingersky’s (1984) algorithm 

builds the summed score likelihoods recursively, one item at a time. Let Li(s|θ) denote the 

likelihood for summed score s, after item i has been added into the computation.

The algorithm starts by initializing the summed score likelihoods from item 1. As such, 

there are two possibilities L1(0|θ) = T1(0|θ) and L1(1|θ) = T1(1|θ) at the end of Step 1. Next, 

the second item is added. Note that at the end of the second step there will be three summed 

scores. The likelihood for summed score 0 is L2(0|θ) = L1(0|θ)T2(0|θ). The likelihood for 

summed score 1 is a combination of two distinct possibilities: L2(1|θ) = L1(1|θ)T2(0|θ) + 

L1(0|θ)T2(1|θ). The likelihood for summed score 2 is L2(2|θ) = L1(1|θ)T2(1|θ). Then, in Step 

3, item 3 is added. The likelihood for summed score 0 is L3(0|θ) = L2(0|θ)T3(0|θ). The 

likelihood for summed score 1 is: L3(1|θ) = L2(1|θ)T3(0|θ) + L2(0|θ)T3(1|θ). The likelihood 

for summed score 2 is: L3(2|θ) = L2(2|θ)T3(0|θ) + L2(1|θ)T3(1|θ). Finally, the likelihood for 

summed score 3 is L3(3|θ) = L2(2|θ)T3(1|θ). More generally, after initialization at item 1, in 

Step i of the recursive algorithm, item i = 2, …, I is added into the existing summed score 

likelihoods according to the following rules:

(8)

The recursion is repeated until all I items have been added. At the end of the recursions, 

each accumulated LI(s|θ) will be equal to the summed score likelihood L(s|θ) defined earlier 

in Equation (2). As one can see, the recursive algorithm does not require explicitly 

enumerating all 2I response pattern likelihoods.

In practice, because the integrals in Equations (4), (6), and (7) cannot be solved analytically, 

it is necessary to evaluate the summed score likelihoods over a set of quadrature points so 

that numerical summaries of the posterior can be computed. For instance, the marginal 

probability can be approximated to arbitrary precision using a Q-point rule:

(9)

where Xq is a quadrature node and W(Xq) is the corresponding quadrature weight. Gauss-

Hermite quadrature is used extensively in the literature because the prior distribution of θ is 

typically assumed to be Gaussian. However, for simplicity, rectangular quadrature may be 
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used, where W(Xq) is a set of normalized ordinates of the prior density, i.e., 

, and the quadrature nodes are chosen to represent a 

sufficiently fine grid over an interval that captures most of the probability mass of the 

posterior, e.g., from −4 to +4, for a standard Gaussian prior.

2.3 An Illustrative Example

It is instructive to consider a simple test with 3 dichotomous items. The item tracelines are 

characterized by the 2-parameter logistic model:

(10)

for the correct/endorsement response (k = 1), where ci and ai are the item intercept and slope 

parameters. The incorrect/non-endorsement response (k = 0) has a traceline that is equal to 

Ti(0|θ) = 1.0 − Ti(1|θ). The intercept parameters for the 3 items are −1.0, −0.2, and 0.6, 

respectively. The slope parameters are 1.2, 1.0, and 0.8, respectively.

Table 1 shows the values of the tracelines evaluated at 5 equally-spaced quadrature points at 

θ levels −2, −1, 0, 1, and 2, as well as the corresponding quadrature weights at each point. 

The quadrature weights are normalized ordinates of a standard Gaussian prior density for θ. 

Based on the item tracelines and weights in Table 1, one can apply the Lord-Wingersky 

algorithm to recursively accumulate the 4 summed score likelihoods (0, 1, 2, 3) for the 3 

dichotomously scored items. Table 2 shows the recursive computations in some detail. As 

one can see, after the initializations in Step 1, the recursive algorithm follows Equation (8) 

until all items have been added. The set of 4 summed score likelihoods at the end of Step 3 

are represented numerically at the specified quadrature points. Of course, in practice, many 

more quadrature points are used for better precision. Table 2 merely serves as an illustration 

similar to Thissen and Wainer’s (2001) Table 3.8 (p. 124).

With the quadrature weights in Table 1 and the summed score likelihoods in Table 2, one 

may directly compute the unnormalized summed score posteriors according to Equation (3) 

by multiplying the summed score likelihood L(s|θ) with the prior weight W(θ) at each of the 

chosen quadrature points. Table 3 shows the posterior computations in detail. The 

unnormalized summed score posteriors are found by multiplying (point-by-point) the values 

of the summed score likelihoods (the second panel) with the corresponding quadrature 

weights (the first panel). Summing over the quadrature representation of the unnormalized 

summed score posterior, as per Equation (9), the marginal probabilities of the summed 

scores are shown in Table 3 under the column heading p(s). These are the IRT model-

implied probabilities for each of the summed scores. The posterior means E(θ|s) and 

posterior variances V(θ|s) are also presented in Table 3, essentially in the form of a summed 

score to IRT scaled score translation table. For instance, a summed score of 0 can be 

translated to an IRT scaled score of −.85 with standard error equal to the square root of .67. 

The probabilities can be used to construct percentile tables. Tables such as this facilitate the 

adoption of IRT scoring in practical situations.
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2.4 Marginal Reliability of Scaled Scores

With the summed score to scaled score conversion table, a kind of marginal reliability 

coefficient can be computed for the scaled scores. Let V̄(θ) denote the average error variance 

associated with θ. It may be obtained from the conversion table as a weighted sum

(11)

The marginal reliability of the scaled score conversions is defined as

(12)

where σ2(θ) is the total (prior) variance of θ. From the results in Table 3, the average error 

variance is equal to 0.64. Since the latent trait θ has an assumed standard normal prior 

distribution, the total variance is 1.0. The marginal reliability of the scaled scores based on 

the summed scores is therefore equal to 0.36.

2.5 Polytomous Item Responses

Recall that Ti(k|θ) is the ith item’s traceline for category k = 0, 1, …, Ki − 1, and the number 

of categories (Ki ≥ 2) may be different across items. Define  as a 

notational shorthand for the maximum summed score after item i has been included. Clearly 

the maximum summed score is S = SI.

The first step of the algorithm still involves the initialization of the K1 summed score 

likelihoods at the category tracelines of item 1 so that L1(s|θ) = T1(s|θ) for s = 0, …, S1. In 

Step i = 2, …, I, the category tracelines of item i are added into the Si−1 available summed 

score likelihoods from the previous step, similar to the dichotomous case, but more complex 

book-keeping is required since the number of combinations leading up to the same summed 

score increases as the number of categories increases. For item i with Ki categories, and 

summed score s = 0, …, Si, the summed score likelihood can be written as

(13)

where 1s(s* + k) is an indicator function that takes on a value of 1 if and only if s is equal to 

s* + k, and 0 otherwise. The summation in Equation (13) is over the existing summed score 

likelihoods and Ki categories of item i, while preserving the restriction that the combination 

must lead to a summed score equal to s. Equation (13) reduces to the recursions in Equation 

(8) when all items are dichotomous. After all I items have been added, LI(s|θ) will become 

the desired summed score likelihood L(s|θ) for summed score s = 0, …, S.
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3 Lord-Wingersky Algorithm Version 2.0

3.1 A General Hierarchical Item Factor Model

Cai’s (2010b) two-tier model represents a general hierarchical model that includes the 

standard (correlated-traits) multidimensional IRT model, item bifactor model, and testlet 

response theory models as special cases. In this model, two kinds of latent variables are 

considered, primary and specific. This creates a partitioning of θ into two mutually exclusive 

parts: θ = (η, ξ), where η is an M-dimensional vector of (potentially correlated) primary 

latent dimensions and ξ is an N-dimensional vector of (mutually orthogonal) specific latent 

dimensions that are orthogonal to the primary dimensions. In the two-tier model, an item is 

allowed to load on all M primary dimensions in any identified manner and at most 1 specific 

dimension. Using a path diagram, Figure 1 shows a hypothetical two-tier model with 20 

items (the rectangles) that load on M = 2 primary dimensions that are correlated, as well as 

N = 4 specific dimensions. Obviously, a two-tier model with only 1 primary dimension 

becomes a bifactor or a testlet model.

Without loss of generality, let Ti(k|θ) be the ith item’s traceline (or perhaps more properly 

referred to as trace-surface for multidimensional θ) for category k. In principle, the Lord-

Wingersky algorithm can be defined on a set of quadrature points that are formed by direct-

products of unidimensional quadrature points. This leads to an exponentially increasing 

amount of computation in the number of latent dimensions. Fortunately, the two-tier 

formulation leads to a computational short cut that circumvents the integration problem. 

This is the main result of the paper.

3.2 General Approach

In the two-tier model, the item trace-surface Ti(k|θ) can be redefined as 

 , for item i that loads on specific dimension n. The last equality 

comes from the fact that an item is permitted to load on at most one specific dimension, say, 

ξn in a two-tier model. If an item does not load on any specific dimension, it may be 

conveniently grouped with the first item cluster for the purposes of summed score 

computations and no generality is lost. Let there be In items that load on specific dimension 

ξn. As such, these In items form a testlet or item cluster that may be residually dependent 

after accounting for η. For a two-tier model, the likelihood for response pattern u can be 

expressed as

(14)

where  is the response to item i in item cluster n. Let gn(ξn) be the density function of the 

nth specific dimension. Integrating out the dependence on ξ, the likelihood of η based on 

pattern u can be written as
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(15)

where the second line in Equation (15) have utilized the two-tier model assumption of the 

independence of the specific dimensions, thereby transforming the original N-fold multiple 

integral on the first line into a product of N one-fold integrals. This is the same derivation as 

the dimension reduction procedure in maximum marginal likelihood item parameter 

estimation for two-tier or bifactor/testlet models (see, e.g., Cai, 2010b). Let

(16)

denote the likelihood of η based on the subset of responses  in the nth item 

cluster such that u = (u1, … un, …, uN). The likelihood of η for summed score s can be 

written as

(17)

which is entirely analogous to Equation (2). Integrating over η, the marginal probability is 

p(s) = ∫ L(s|η)h(η)dη (cf. Equation 4), where h(η) is the density of the primary dimensions, 

and the summed score posterior is p(η|s) = L(s|η)/p(s) (cf. Equation 5).

The dominating insight from Equation (17) is that conditional on the general dimension(s), 

the testlets or item clusters become the fungible units of model building and computation, 

just as items are the fungible units in the standard Lord-Wingersky recursions. All that is 

required is an extra stage of recursions. In the first stage, for the nth item cluster, likelihoods 

for the within-cluster summed scores are accumulated over the latent variable space spanned 

by (η, ξn). This is standard Lord-Wingersky algorithm as applied to the items in cluster n on 

a set of direct product quadrature points spanning the space of (η, ξn). For each within-

cluster summed score likelihood, the dependence on the specific dimension ξn is 

subsequently integrated out, leaving the within-cluster summed score likelihoods as 

functions of the general dimension(s) η alone. In the second stage, the N clusters are treated 

as N multiple-category items, and the within-cluster summed score likelihoods from the first 

stage are treated as if they are category tracelines defined on η. Standard Lord-Wingerksy 

algorithm for polytomous IRT is applied to accumulate the final summed score likelihoods.

3.3 Details of the Lord-Wingersky 2.0 Algorithm

To avoid notational clutter, it would be convenient to introduce the new Lord- Wingersky 

algorithm for hierarchical item factor models using one of the simplest two-tier models, 

namely, the logistic item bifactor model for dichotomous responses. In this case, 
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reduces further to , and η represents the single general dimension. The IRT 

model for the correct/endorsement response can be written as

(18)

Note that there are two slope parameters per item in the bifactor model (cf. Equation 10). 

The slope for the general dimension is  and the slope for the nth specific dimension is . 

The item intercept continues to be denoted as ci.

With no loss of generality, consider the nth item cluster. The first stage of Lord- Wingersky 

algorithm 2.0 starts with the initialization of the within-cluster summed score likelihood: 

 and . Then, each of the remaining items 

within the cluster is added to the likelihoods according to the following set of recursions for 

1 < i ≤ In (cf. Equation 8):

(19)

At the end of the recursions the within-cluster summed score likelihoods will have been 

accumulated as  for s = 0, …, rn, where  is the 

maximum within-cluster summed score for item cluster n. Integrating out the dependence on 

ξn, the summed score likelihood as a function of η can be approximated with quadrature as

(20)

where Xq is a set of Q rectangular quadrature points with weights 

. At the end of the first stage, each of the N item clusters is 

characterized by a set of summed score likelihoods in terms of η.

In the second stage, Ln(s|η) is treated as though it is a category traceline of a polytomous 

item (with rn + 1 categories), and the Lord-Wingersky algorithm for polytomous item 

responses introduced in Section 2.5 is directly applied. Let  be the maximum 

summed score after item cluster n has been included in the recursions. To initialize, set the 

step 1 summed score likelihood to the summed score likelihoods from the first cluster, i.e., 

L1(s|η) = L1(s|η) for . In step n = 2, …, N, the summed score likelihoods from 

cluster n are added into the  available summed score likelihoods from the previous step:
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(21)

where 1s(s* + k) is still an indicator function that takes on a value of 1 if and only if s is 

equal to s* + k, and 0 otherwise. Entirely analogous to Equation (13), the summation in 

Equation (21) is over the existing summed score likelihoods for scores  and 

the rn + 1 summed scores from item cluster n, while preserving the restriction that the 

combination must lead to a summed score of s.

At the conclusion of step N, the likelihoods LN(s|η) are equal to the desired summed score 

likelihoods L(s|η) for each s. Recall that h(η) is the density of the primary dimension. 

Posterior summaries for summed score s can be readily computed using quadrature from 

p(η|s) = L(s|η)h(η)/p(s), where the marginal probability p(s) = ∫ L(s|η)h(η)dη can be 

approximated with Q-point rectangular quadrature as , with 

weights given by . Posterior mean and variance can be 

obtained with similar quadrature computations.

If there are more than one primary dimensions in the model or if any of the items are 

polytomous, the core structure of the algorithm remains the same. One would only have to 

replace the first-stage recursions in Equation (19) by computations similar to those defined 

in Section 2.5, and use direct product quadrature rules for integrals over the vector-valued η.

3.4 An Illustrative Example

Consider 6 hypothetical dichotomous items arranged in 3 doublets. There are 4 latent 

variables in this model, one primary dimension η on which all items load and 3 specific 

dimensions ξ1, ξ2, ξ3. Table 4 shows the item parameters for these items, as well as the 

bifactor structure wherein items 1–2, 3–4, and 5–6 form into three doublets with nonzero 

loadings on the specific dimensions. The prior distributions of the latent variables are taken 

to be standard normal. Table 5 shows the ordinates of the item response functions as well as 

quadrature weights for the specific dimensions over a 5 × 5 grid defined by the direct 

product of equally spaced quadrature points at −2, −1, 0, 1, and 2. Due to space constraints, 

only values at a selected subset of the grid points are shown in Table 5. The weights for 

specific dimensions are normalized ordinates of standard normal densities as functions of ξ1, 

ξ2, and ξ3, and repeated over the quadrature points for η. W1(ξ1), W2(ξ2), and W3(ξ3) are the 

same in this example because the prior distributions of ξ1, ξ2, ξ3 are all standard normal (but 

they need not always be standardized, see e.g., Cai et al., 2011).

Table 6 illustrates the first stage of the new recursive algorithm. In this case, summed score 

likelihoods are accumulated for each of the 3 item clusters. Within each item cluster, there 

are only two dichotomously scored items, so the summed scores range from 0 to 2. The 

summed score likelihoods are represented over separate grids formed by the direct product 

of the quadrature points for the primary dimension η crossed with ξ1, ξ2, and ξ3, 
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respectively. In Table 7, the specific dimensions are integrated out for each item cluster. 

This leaves the summed score likelihoods as functions of the primary dimension η alone.

Finally, the accumulated summed score likelihoods in each item cluster are used in the 

second stage of the recursive algorithm, as shown in Table 8. The within-cluster summed 

scores are treated as though they are item scores for 3 polytomous items. At the end of the 

recursions the final summed score likelihoods for the primary dimension η are assembled 

and multiplied by the weights from the prior distribution of η, yielding posterior 

probabilities, expectations, and variances, as shown in Table 9. The entries under the 

heading Posterior Summaries form a summed score to IRT scaled score translation table 

(along with standard errors) for the primary dimension in an item bifactor model.

3.5 Some Additional Comparisons

Without the updated Lord-Wingersky algorithm, it may be tempting in practice to calibrate a 

test using a hierarchical item factor model (e.g., testlet model) to “handle” residual 

dependence, retain the general dimension slopes, and create a summed score to scaled score 

conversion table with the original unidimensional Lord-Wingersky algorithm. While this 

approach has a certain intuitive appeal, and the computation is simpler than the updated 

Lord- Wingersky algorithm, it is nevertheless going to lead to incorrect results. Failing to 

take into account the influence of residual dependence (as indicated by the presence of 

specific dimensions) in IRT scoring can still lead to an overstatement of the degree of 

reliability of the instrument. Recent work by Ip (2010a, 2010b), and Stucky, Thissen, and 

Edelen (2013) also highlight the effects residual dependence has on scaled scores and 

standard errors.

Notably, the marginal reliability coefficient can become substantially overestimated. In the 

case of the illustrative example presented in Section 3.4, σ2(η) is equal to 1 because the prior 

h(η) is standard normal. Applying Equation (12) to results in Table 9, the marginal 

reliability of the scaled scores for the primary dimension η is equal to 0.47. On the other 

hand, if only the general dimension slopes in Table 4 are retained and standard Lord-

Wingersky algorithm is applied to obtain a one-dimensional summed score conversion table 

(as shown in Table 10), the marginal reliability of the scaled scores for summed scores 

becomes 0.56, an almost 20% upward bias relative to the reliability estimate from the more 

appropriate scoring method.

Furthermore, the estimates of scaled scores are also impacted. A comparison between Tables 

9 and 10 shows that the posterior means become more extreme in general when the specific 

dimension slopes are ignored and the unidimensional scoring algorithm used. This is natural 

since the item intercepts and slopes are unstandardized parameters. When the (typically 

positive) specific dimension slopes are ignored and the intercepts remain untouched, the 

implied standardized threshold parameters becomes more extreme, leading to posteriors that 

are positioned more toward the extreme ends of the latent trait scale.
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4 Additional Applications

Besides summed score based IRT scoring tables, the updated Lord-Wingersky algorithm can 

be applied creatively to solve a test linking problem (see Thissen et al., 2011), to create 

score combination tables for mixed format tests, and to construct model fit test statistics. 

Discussed in this section are only selections of the new possibilities opened up by the 

updated algorithm.

4.1 Calibrated Projection Linking

Thissen et al. (2011) described a novel test linking method called calibrated projection that 

fuses simultaneous calibration with projection linking. The main advantage of calibrated 

projection is its ability to link two closely related (though not conceptually identical) scales 

in a single step that is entirely based on multidimensional IRT calibration. Thissen et al. 

(2011) illustrated the application of calibrated projection in health outcomes research, 

wherein a legacy instrument (PedsQL™ Asthma Symtoms Module) was projection linked 

onto the scale of the new Pediatric Asthma Impact Scale (PAIS). PAIS was built with IRT 

methods, whereas PedsQL™ was built with classical test theory methods, thus requiring the 

use of summed scoring. Producing a scoring cross-walk would enable the clinicians and 

researchers who already use PedQL™ to report scaled scores comparable to PAIS.

As illustrated by Thissen et al.’s (2011) Tables 2 and 3, both instruments use 5-point ordered 

response scales suitable for the graded response model and each may be considered 

approximately unidimensional. PedsQL™ Asthma Symptoms Module contains 11 items and 

PAIS has 17. A multitude of additional differences between the two instruments implies that 

the more stringent requirements of concurrent calibration (e.g., equal construct) are probably 

not satisfied. Hence the weaker prediction/projection methods must be employed.

At the core of calibrated projection linking is a multidimensional IRT model that has at least 

2 correlated primary dimensions (η1 and η2), each measured by the respective instrument 

(PAIS and PedsQL™) with an independent cluster factor pattern. The correlation between η1 

and η2 is estimated simultaneously with the item parameters. The multidimensional IRT 

model then produces scores (projected through the correlation) on the scale of one 

instrument (PAIS in this case) using only the responses to items from the other instrument 

(PedsQL™ Asthma Symptoms Module). This model, when depicted in a graph, resembles 

the bottom half of the path diagram shown in Figure 2.

However, when the two instruments were considered together, strong local dependence 

emerged among 6 pairs of items. As it turns out, these 6 pairs of items have stem wording 

that are virtually identical. For example, item 13 of PAIS reads “I had asthma attacks,” and 

item 20 of PedsQL™ Asthma Symptoms Module reads “I have asthma attacks.” The 6 items 

in fact represent some of the best symptoms that are indicative of asthma’s impact. 

Consequently, Thissen et al. (2011) suggested including 6 orthogonal latent variables to 

account for the effects of local dependence. This model is depicted in Figure 2. It is formally 

a two-tier model with M = 2 primary dimensions and N = 6 specific dimensions. The two 

primary dimensions are assumed to be bivariate normal, standardized in each dimension, 

with an unknown correlation coefficient. Thissen et al. (2011) obtained a linking sample and 
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estimated the correlation coefficient (r = 0.96) as well as the item parameters for both 

instruments.

Retaining the item parameters for PedsQL™ reported in Thissen et al. (2011), it is 

straightforward to apply the updated Lord-Wingersky algorithm. Table 11 shows the item 

parameters for the 11 PedsQL™ items. The slopes on the first general dimension η1, 

representing PAIS, are all equal to zero here, indicating the absence of items that cross-load 

on both dimensions. The PAIS item slopes do not enter into the projection linking 

computations because only items from PedsQL™ are considered (along with the 0.96 prior 

correlation). The non-zero slopes for the 6 specific dimensions (ξ1 to ξ6) are what remain of 

the item doublet slopes after removing their counterparts among the PAIS items.

For each summed score (s = 0, …, 44) on PedsQL™, the recursive algorithm produces a 

bivariate posterior for η1 and η2. Figure 3 shows the bivariate normal approximations to 3 

selected posteriors, for summed scores 0, 20, and 44, overlaid on the gray contours 

representing the bivariate normal prior with an estimated correlation of 0.96. The x-axis of 

Figure 3 represents the PedsQL™ latent variable (η2), whereas the y-axis represents PAIS 

(η1), consistent with the notation in Figure 2. The marginal posteriors are also plotted, 

indicating that entire summed score posteriors are projected through the bivariate relation 

between η1 and η2. The marginal posteriors on the y-axis are of key interest. Their relative 

sizes indicate the modelimplied summed score proportions. Their means and variances 

become scores and error variances on the scale of PAIS for each PedsQL™ summed score, 

corrected for local dependence.

4.2 Score Combination

Modern educational assessments are often made up of items of varying types. For instance, a 

test may consist of traditional multiple-choice (MC) items that are dichotomously scored, for 

which the classical 3-parameter IRT model may be useful, as well as items that require 

judge-rated constructed responses (CR) or performance tasks that are subsequently analyzed 

using the graded response model (Samejima, 1969) or the generalized partial credit model 

(Muraki, 1992). When the MC items and the CR items measure the same latent construct 

and the test is approximately unidimensional, reporting a single combined score is a sensible 

approach. Rosa et al. (2001) proposed a score combination method that is based on the 

pattern of summed scores from the MC and CR sections. This is a convenient and practical 

approximation to the optimal (but more involved) scoring with the full response pattern.

Specifically, let the summed score likelihoods for the MC section be LMC(s|θ), and s = 0, …, 

SMC, where SMC is the maximum summed score for the MC section. Similarly, let LCR(s|θ), 

s = 0, …, SCR denote the summed score likelihoods for the CR section. Rosa et al. (2001) 

states that following summed score pattern posterior provides a basis for combining MC 

section score s1 with CR section score s2:

(22)
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To compute the posterior, Rosa et al. (2001) noted that one would have to apply the standard 

Lord-Wingersky algorithm to the two sections separately and then explicitly use Equation 

(22) to construct a two-way look-up table for each of the summed score patterns.

If one regards the MC section as a testlet, and the CR section as another one, one may 

choose to rewrite Equation (22) as:

(23)

Note that the key condition for p(θ|s1, s2) in Equation (22) to be the same as Equation (23) 

is: LMC(s1|θ, ξ1) = LMC(s1|θ) and LCR(s2|θ, ξ2) = LCR(s2|θ). In other word, the two are the 

same when items in both MC and CR sections do not depend on the specific dimensions ξ1 

and ξ2; or, alternatively, when the item slopes on ξ1 and ξ2 are all equal to zero. The 

equivalence suggests that one does not need a specialized algorithm for implementing Rosa 

et al.’s (2001) scoring combination method. One would simply have to set up a special 

bifactor model wherein all specific dimension slopes are constrained to zero and apply 

Version 2.0 of the Lord-Wingersky algorithm outlined in Section 3 to this bifactor model. 

Although the specific dimension slopes may be zero, the presence of the testlet structure 

enables the first stage of the updated Lord- Wingersky algorithm to accumulate the within-

section summed score likelihoods separately. Instead of collapsing the section-specific 

summed scores as per Equation (21), the pattern of summed scores is used to compute a 

posterior for the primary dimension directly.

As a concrete example, consider the Wisconsin 3rd grade reading assessment items 

discussed in Rosa et al. (2001). There are altogether 20 items, 16 in the MC section (scored 

0–1) and 4 in the CR section (each has 4 score points). Using the item parameters reported 

by Thissen and Wainer (2001), one may set up a bifactor model with two empty specific 

dimensions (as shown in Table 12). Application of the updated Lord-Wingersky algorithm 

to the model in Table 12 leads to a two-way table (Table 13) that (almost) reproduces Table 

7.2 (p. 259) in Rosa et al. (2001) with any difference attributable to limited number of 

significant digits in the reported item parameters and numerical quadrature error. For 

instance, the summed score combination EAP score for a student who scored 14 items 

correct in the MC section and received a CR score of 7 is equal to .01. A byproduct of the 

computation of the summed score combination EAPs is the summed score pattern 

probabilities. With the variously shaded areas in Table 13, the probabilities associated with 

each of the two-way combinations are utilized to indicate the Highest Density Regions 

(HDR) of the summed score combination posterior. Detailed procedures for constructing 

these HDRs are described in Thissen and Wainer (2001, p. 260), which involves finding 

those summed score combinations that belong to the top x% of the cumulative probability 

distribution of the two-way combinations. The unshaded cells represent collectively the 99% 

HDR, and the lightly shaded ones are the 99.9% HDR. As Thissen and Wainer (2001) noted, 

the shaded cells represent those summed score combinations that occur very rarely, e.g., a 

perfect CR section score of 12 crossed with any MC section score of less than 11. Rather 
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than proceeding with scoring the “aberrant” pattern, the additional information contained in 

the table may provide useful diagnostics for the testing program.

While the foregoing may be deemed a convenient trick for tests that are unidimensional, it 

does offer a degree of generality that Rosa et al.’s (2001) original method did not possess. 

That is, when the MC or CR sections demonstrate departures from unidimensionality, e.g., 

when there is testing mode effect for the CR items, and the specific slopes may not be 

exactly zero, the new algorithm will properly adjust the combined scaled score for residual 

dependence, requiring no new specialized implementation.

4.3 Model Fit Evaluation

As soon as summed score probabilities can be evaluated for unidimensional IRT models, 

researchers have explored their use in model fit diagnosis. Orlando and Thissen’s (2000) 

summed score likelihood based item fit statistic is one prominent example. Described here is 

a generalized version of the summed score fit statistic implemented in flexMIRT® (Cai, 

2013). Consider polytomous items i = 1, …, I with Ki categories. Recall that the maximum 

summed score is . One may compute the “rest score” likelihoods, i.e., the 

summed score likelihoods based on all items except i. Let L(i)(s|θ), s = 0, …, S − (Ki − 1), 

denote the rest score likelihoods for item i. For this item, the probability for category k in 

rest score group s is

(24)

The probability for rest score group s is

(25)

Therefore the model-implied probability of endorsing category k if the rest score is s can be 

computed as Eik(s) = pik(s)/p(i)(s). The observed probability of endorsing category k if the 

rest score is s can be found by tabulating the calibration data. Let it be denoted as Oik(s). A 

Pearson-type statistic may be constructed as follows:

(26)

where O(i)(s) is the observed counterpart to p(i)(s). Orlando and Thissen (2000) presented 

simulation evidence that the large sample distribution of  (at least in the dichotomous 

case) can be approximated by a central chi-square distribution with S − (Ki − 1) − qi 

degrees-offreedom, where qi is the number of freely estimated item parameters for item i.

With the updated Lord-Wingersky algorithm, it is straightforward to generalize S − X2 to 

hierarchical item factor models. Some additional book-keeping is necessary, however, to 

fully utilize dimension reduction. Consider item i in cluster/testlet n. Let L(n)(s|η) denote the 

summed score likelihoods in terms of the primary dimensions η, accumulated over all item 
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clusters other than cluster n. L(n)(s|η) is straightforward to compute by ignoring cluster n 

after stage 1 of the recursions is completed. Recall that rn is the maximum within cluster 

score for cluster n. Thus L(n)(s|η) is defined for s = 0, …, S − rn. Within cluster n, let the 

summed score likelihoods without item i be . Note that the dependence on 

specific dimension is not yet integrated out of the likelihood, and  is defined for 

s = 0, … rn − (Ki − 1).

The posterior probability for category k in rest score group s is

(27)

where 1s(s1 + s2) is an indicator function that is equal to 1 if and only if s = s1 + s2, and 0 

otherwise. The inner summation is needed because it combines likelihoods from cluster n 

while enforcing the constraint that the rest score must be s, before the dependence on 

specific dimension n is integrated out. By analogy, the posterior probability for rest score 

group s is

(28)

Once the posterior probabilities are computed, they can be inserted into Equation (26) to 

evaluate a chi-square test statistic for item i. Li and Rupp (2011) examined a version of this 

index by simulation but did not discuss the recursive algorithm that is needed to compute S 

− X2 for hierarchical item factor models in full generality.

Finally, the model implied summed score probabilities themselves, when compared against 

the observed probabilities, may be useful for diagnosing the ubiquitous latent variable 

normality assumption for the primary dimension in a testlet or bifactor model. While the 

idea itself is not new (see Ferrando & Lorenzo-seva, 2001; Hambleton & Traub, 1973; Lord, 

1953; Ross, 1966; Sinharay, Johnson, & Stern, 2006), its use in hierarchical item factor 

models requires the new Lord-Wingersky algorithm (Li & Cai, 2012).

5 Discussion

Hierarchical item factor models can relax some of the restrictive assumptions of 

unidimensional IRT models. They have been suggested as useful tools for educational and 

psychological measurement research and practice in that they may better reflect the structure 

of measurement instruments (Reise, 2012). They respect the fact that many constructs have 

multi-faceted manifestations and yet it remains desirable to report on a single composite 

scale. This is especially true with measurement in mental health (e.g., depression 

symptoms), but also true in educational assessment (e.g., language testing). The multitude of 

group/specific factors in hierarchical item factor models can appropriately accommodate the 

inherent multidimensionality without altering the interpretability of the general dimension.
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The mathematical complexity of hierarchical item factor models, however, makes their 

routine use unrealistic. Importantly, scoring tests with bifactor/testlet/two-tier models can be 

computational involving and specialized software programs are required if response pattern 

scores are needed. Utilizing dimension reduction, an updated Lord-Wingerksy algorithm is 

presented in this paper. This algorithm is computationally efficient even under a large 

number of latent factors.

With the updated Lord-Wingersky algorithm, one may adopt a hierarchical item factor 

model in the test design and item calibration stage and produce summed score conversions 

that are as convenient to use in practical settings as the original Lord-Wingersky method. 

The conversion tables are properly adjusted for the effects of residual dependence. To the 

end-user, the conversion tables eliminated the scoring complexities associated with the 

adoption of a multidimensional measurement model. Once the table is assembled, no 

specialized software is necessary for the end-user to reap the benefits of hierarchical 

multidimensional IRT modeling, thereby eliminating one of the key barriers to more wide-

spread applications of hierarchical item factor models. In addition, the new algorithm serves 

as the basis of new test linking methods (calibrated projection), encompass traditional score 

combination approaches, and lead to new model fit diagnostic statistics. The new algorithm 

is fully implemented in IRTPRO (Cai, et al., 2011) and flexMIRT® (Cai, 2013).
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Figure 1. 
Path diagram of a two-tier model with 2 correlated primary dimensions and 4 specific 

dimensions.
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Figure 2. 
Path diagram of a two-tier model for calibrated projection linking. The two primary 

dimensions are correlated at .96 and there are 6 item doublets.
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Figure 3. 
Bivariate contour plots showing 3 selected summed score posteriors for PedsQL™ Asthma 

Symptoms Module as well as the projected posteriors on the PAIS scale.
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Table 10

Summed score to scaled score conversions based on primary dimension slopes only

Summed Scores

Posterior Summaries

p(s) E(η|s) V(η|s)

s = 0 .05 −1.29 .40

s = 1 .13 −.90 .46

s = 2 .20 −.47 .46

s = 3 .22 −.03 .44

s = 4 .20 .42 .44

s = 5 .14 .89 .43

s = 6 .06 1.33 .37
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