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Abstract: 

 

 Song production in birds requires planning on two different time-frames: the 

immediate muscle program for the vocal effectors (vocal and respiratory musculature), as 

well as the more temporally extended control of sequencing the shorter vocal elements 

(syllables) into longer vocalizations.  The songs of the Bengalese finch exhibit variability 

in both dimensions: syllables are produced with a small amount of variability from 

rendition to rendition, and the syllables themselves can be used in a variety of sequences.   

The following research examines three question in regards to variability in Bengalese 

finch song.   

1. Does a syllable’s sequence affect its phonology? 

2. Are changes in phonology are a result of differences in brain activity? 

3. Is there a correlation between changes in brain activity and changes in 

phonology? 

 

 In analyzing the songs of Bengalese finches, we find that syllable structure is 

altered by sequence in two different ways: syllable production is modified by the 

immediate history of the system, as well as long time-scale patterns in the sequencing of 

syllables.  These sequence effects upon syllable production are not the result of purely 

peripheral influences, however.  There are multiple ways in which changes to central 

neural activity correlate with changes in syllable phonology.  Changes in the activity of 

the robust nucleus of the arcopallium (RA) neurons were correlated with mean changes in 

syllable production, as well as with changes to syllable production around the mean.  The 
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correlation between mean changes in RA activity and syllable structure implies that the 

RA motor program is phonological in nature.   We also find that RA activity correlates 

specifically with changes in syllable features such as pitch, amplitude and entropy.  In 

taking these results together, a more complete model of syllable control by RA can be 

constructed.  The data suggest that general patterns in RA activity relate to the identity of 

individual syllables, and that changes in syllable structure are made by increasing or 

decreasing that activity of specific pools of RA neurons.  The results of this research are 

the first demonstration of phonological encoding by RA neurons. 
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GENERAL INTRODUCTION 

 

 Maintaining a social system requires communication between its constituents.  

The methods of communication are quite variable, with many different motor and 

sensory modalities being employed to convey and receive information (Bradbury and 

Vehrencamp, 1998).  Although there is much to be learned from each method of 

communication, we, as humans, are particularly interested in those organisms that use 

learned vocalizations in maintaining their social relationships.  Understanding how 

humans learn and maintain language is of great interest, considering the importance of 

vocal behaviors in our social interactions.  As a result, the learned vocalizations of 

passerine birds have been studied extensively as a model for human language acquisition 

and maintenance (Doupe and Kuhl, 1999). 

 

Young birds learn their songs from adult tutors (Catchpole and Slater, 1995).  The 

song development process is very similar to the ontogeny of language in humans (Doupe 

and Kuhl, 1999).  Young birds first go through a sensory acquisition phase where most of 

their efforts are spent listening to their tutor.  It is during this stage that they memorize 

their tutor’s song to serve as a ‘template’ (Catchpole and Slater, 1995).  This template 

serves as a target vocalization throughout the process of song learning (Catchpole and 

Slater, 1995).  The next phase of song learning is typically termed sensory-motor 

integration.  As the name suggests, this stage involves refining the motor control 

necessary to produce an accurate copy of the tutor song (Catchpole and Slater, 1995).  

Auditory feedback is the birds’ primary way of judging the similarity of the acoustic 
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output to their memorized template (Nottebohm 1968), with proprioception used to a 

lesser degree (Wild et al, 2002).  Exactly how audition and proprioception drive song 

development is still an unresolved issue.  The final phase of song learning, termed 

crystallization, is essentially the endpoint of song learning.  Once song crystallization 

commences, young birds have typically mastered the production of their own songs, and 

little to no changes are made to songs afterwards (Catchpole and Slater, 1995).  There are 

some birds, called open-learners, that retain the ability to learn new vocalizations 

throughout life (e.g. parrots and mockingbirds); however, the following research is 

focused on birds that are closed learners, and make few changes to their songs after 

crystallization (Catchpole and Slater, 1995).  The three stages of song learning described 

here mimic the process of language acquisition in humans.  In human language 

development, babies first listen to their parents, followed by a phase dominated by 

babbling as they develop the ability to vocalize; and eventually as we age, adjustments to 

vocalizations (e.g. like learning a new language) become increasingly more difficult 

(Bishop, 1999).  It is because of these similarities between birdsong and human language 

that the songbird system is so beneficial in furthering our understanding of speech 

development, and motor learning in general. 

 

The process of vocal motor learning follows a trajectory similar to other motor 

behaviors: early attempts are often quite variable, but over time, and with practice, motor 

control is refined and competency is reached (Mitra et al, 1998).  When a bird is learning 

its song, it must master motor control on two temporal levels: the phonation of individual 

syllables, as well as the ordering of those syllables into songs.  Both syllable phonation 
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and sequencing are honed over time, but even in the adult behavior, a small amount of 

variability remains (Sakata et al, 2008; Kao and Brainard, 2006).  An interesting question 

is whether that residual variability has any purpose, or is just an indication of the limits of 

motor control.  One way to address this question is to determine if the source of this 

variability is outside of the central nervous system (CNS), or if it is in fact under the 

control of the CNS.  If this variability is being generated in the CNS, the brain may be 

able to use it to make changes to song. 

 

Control of song in the avian CNS is accomplished by a specialized set of nuclei 

that are responsible for the acquisition, production and maintenance of song (Figure 

1.1c).  These nuclei can be loosely divided into two, interconnected circuits: the motor 

pathway and the anterior forebrain pathway (AFP).  Constituting the motor pathway are 

two main nuclei, HVC (used as a proper name), and the robust nucleus of the arcopallium 

(RA) (Figure I.1).   

 

Figure I.1: Saggital view of the avian song system.  In red is the motor pathway, in green 
is the anterior forebrain pathway (AFP).  Neural recordings for the following study were 
performed in RA.   
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Because these brain areas are responsible for the motor commands for song, lesions of 

either structure in young or adult birds will almost completely ablate normal song 

behavior (Catchpole and Slater, 1995).  In terms of basic anatomy, RA sits ‘downstream’ 

from HVC, with most neuronal projections originating in HVC and synapsing onto RA 

neurons (Wild, 2004).  Recently, however, a projection back from RA to HVC has been 

identified (Roberts et al, 2008), opening up the possibility that RA can directly influence 

ongoing motor commands in HVC.  Previous research on HVC and RA has alluded to 

different functional roles for these two nuclei in song production.  Recordings in HVC 

have demonstrated that neurons in this structure tend to fire at only one time point during 

song production (Hahnloser et al, 2002; Yu and Margoliash, 1996).  The nature of this 

encoding seems to be a temporal one, with different neurons in HVC controlling the 

timing of song production.  RA neurons on the other hand, fire at multiple time points 

during song (Leonardo and Fee, 2005; Yu and Margoliash, 1996), and synapse directly 

onto brainstem motoneurons controlling the syrinx and respiration during song 

production (Wild, 1993).  The anatomical connections and firing properties of RA 

neurons suggest that this structure is responsible for taking timing commands from HVC 

and translating them into continuous motor commands for song.  In this way, the song 

sequence is imposed upon RA by HVC, and RA then takes this information and produces 

muscle activation patterns for syllable phonation. 

 

Unlike the motor pathway, the AFP is not directly required for adult song 

production, but it is necessary for song learning and maintenance.  The main nuclei of the 

AFP include Area X, the dorsolateral thalamus (DLM), and the lateral magnocellular 
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nucleus (lMAN) (Figure 1.1c).  HVC sends projections to both RA and Area X, and the 

AFP reconnects to the motor pathway with lMAN sending projections to RA (Figure 

1.1c).  Lesions to AFP structures disrupt the normal song learning process in young birds 

(Bottjer, 1994; Scharff, 1991; Sohrabji, 1990), but removal of AFP input in adults only 

has modest effects upon song (Bottjer, 1994).  The role of the AFP in adulthood is 

believed to be more important for song maintenance than song production.  As a result, 

lesions to AFP nuclei inhibit changes to song (Brainard and Doupe, 2000), but not 

singing in general (Bottjer, 1994).  The anatomy of the connections between the AFP and 

motor pathway suggests that these two pathways work in concert for song production and 

maintenance.  More specifically, the interaction of these two circuits may play a critical 

role in how the birdbrain utilizes auditory information in order to develop and adapt vocal 

motor behaviors. 

 

Neurons in lMAN and HVC both synapse onto neurons in RA.  This site of 

convergence is thought to mediate the integration of auditory and motor information 

(Konishi, 2004).  lMAN’s projection onto RA is mostly mediated by NMDA receptors, 

whereas those from HVC are composed of a mixture of NMDA and AMPA receptors 

(Mooney and Konishi, 1991; Stark and Perkel, 1999).  Because of this difference in 

receptors, the influence of lMAN upon RA is quite different than that from HVC.  In the 

adult bird, HVC can directly excite neurons in RA, but the cells in RA must already be 

depolarized in order for lMAN neurons to excite RA.  In this way, the NMDA receptor, 

and the neurons in lMAN, act as “coincidence detectors,” because their influence is 

dependent on the occurrence of prior events (Duquid and Sjostrom, 2006; Yuste et al, 
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1999).  One property of connected neurons is that the more they are activated, the 

stronger the connection between them becomes (Voronin, 1983).  As a result, 

coincidence detection in the lMAN-RA synapse can drive a potentiation in the 

connections between neurons in lMAN and RA, as well as between neurons in HVC and 

RA.  One plausible model of the process of sensory-motor integration for song involves 

the strengthening and weakening of synapses between lMAN, RA and HVC; those 

patterns of activity in RA that result in accurate copies of song are strengthened, and 

those that result in more errors are weakened. 

 

The direct and immediate influence of lMAN upon song behavior has been 

assessed in several previous reports.  Many of these studies have found a relationship 

between lMAN activity and the variability of song.  In juvenile birds, temporary 

inactivation of lMAN increases the stereotypy of the song (Olveczky et al, 2005); and 

lesions lead to premature crystallization of song (Bottjer, 1994; Scharff, 1991).  Similar 

results have been found in adult birds, with lMAN removal resulting in increases in song 

stereotypy (Kao and Brainard, 2006; Brainard, 2004).  Chronic neural recordings in 

lMAN have also demonstrated a direct relationship between variability in the firing of 

lMAN neurons and variability in song (Hessler and Doupe, 1999).  In terms of specific 

effects of lMAN upon song, an interesting result was found when lMAN was electrically 

stimulated during singing.  Exogenous activation of neurons in lMAN caused reliable 

changes in the pitch and amplitude of the ongoing syllables (Kao et al, 2005).  This 

experiment shows that lMAN can induce specific changes, on a moment-by-moment 

basis to song structure.  Considering the role the lMAN has in both song variability and 
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spectral parameters, its influence upon RA most likely includes an instructive role.  It is 

unclear if the variability impressed upon RA by lMAN can bias the song in one particular 

direction, but it is clear that lMAN can influence song structure in reliable ways.  In view 

of the anatomy of the song circuit, the influence of lMAN upon song production is most 

likely mediated through its affects upon the firing properties of RA neurons.   

 

The research discussed below addresses the question of how changes in the 

patterns of brain activity drive changes in song.  The basic anatomy of the song circuit, as 

well as previous research on the motor pathway, suggests that RA is the most likely 

structure in which changes in neural activity correlate with changes in the behavior.  As a 

result, the experiments discussed are dedicated to elucidating the role that RA may have 

in changing song features. 

 

CHAPTER 1 HYPOTHESIS 

We have studied the songs of the Bengalese finch because, much like human 

language, there is variability in both phonology and sequence.  A variably sequenced 

song is advantageous when attempting to disambiguate control signals for phonology and 

sequence.  Bengalese finch song has two different types of sequence varieties: 

convergence points and divergence points.  Convergent syllables are syllables that can be 

preceded by more than one other syllable, and divergent syllables are those syllables that 

are followed by more than one syllable.  There are analogous features of human 

language, and the production of the phonemes involved in these vocal sequences is 

reliably altered depending upon context (Daniloff and Hammarberg, 1973).  It is believed 
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that the differences between phonemes found in different sequences result from the 

influence of different motor transitions (Öhman, 1966).  The first chapter deals with the 

following hypothesis about the interactions of syllables and sequence in birds: 

 

The same syllable found in different sequences will have consistent 

changes in production across those different sequences.   

 

The above hypothesis was tested by making very precise measurements of spectro-

temporal properties of syllables, and then determining how these properties change as a 

syllable’s sequence changes.  This can be accomplished at two levels of sequence 

changes.  At convergence and divergence points, we can relate changes in the syllable 

structure to the structures of the immediately preceding and following syllables, 

respectively.  Any reliable changes as a result of the immediately adjacent syllable are 

most likely a result of the carry over of, or the preparation for, different motor acts.  We 

can also assess the effects of sequence across broader portions of song.  There are long-

range differences in the incidence of certain syllable sequences.  Because the local motor 

contexts are the same for these broad changes, any modifications in syllable structure 

must be through a different mechanism than those observed as a result of adjacent 

syllable differences.  This mechanism may instead be the result of differences in motor 

planning, rather than compensations for changing motor contexts. 
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CHAPTER 2 HYPOTHESIS 

An open area of research in the field of birdsong is the level of interaction 

between phonology and sequence during song learning and production.  Of specific 

interest is how RA encodes the same syllable found in different sequences.  Previous 

research on RA encoding of repeated syllables in zebra finch song suggested that these 

syllables might be encoded identically in RA, but the data set was not extensive enough 

for a thorough analysis.  Because the Bengalese finch often uses the same syllable in 

multiple sequences, there is a greater opportunity to look more closely at the issue of 

syllable versus sequence encoding in RA.  A complicating layer on top of this issue may 

be any significant differences in phonology found for the same syllable found in different 

sequences (Chapter 2).  If sequence does reliably alter phonology, how will RA encode 

each syllable?  The second chapter will explore this question by addressing the following 

hypothesis about syllable encoding in RA: 

 

Differences in syllable phonology as a result of sequencing are 

proportional to differences in neural activity in RA. 

 

There are multiple ways in which RA may encode the same syllable found in different 

contexts, but we predict that syllable structure has the largest influence upon patterns of 

activity in RA.  This hypothesis will be addressed by comparing the similarity of 

syllables to the similarity of the underlying neural activity in RA. 
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CHAPTER 3 HYPOTHESIS 

A prevailing hypothesis about the role of motor variability in adult behaviors is 

that it serves to make fine scale adjustments to a behavior.  There is measurable 

variability in the adult songs of birds, and it is a likely that a portion of that variability is 

driven by the avian CNS.   The overall amount of variability in lMAN has been 

correlated with song variability, but there has yet to be a direct relationship identified 

between specific changes in brain activity and specific changes in the song.  As 

mentioned earlier, RA neurons are the most likely cells in the avian CNS to be correlated 

with song structure.  The third chapter is focused on the following hypothesis about RA: 

 

The measurable variability in pitch, amplitude, and entropy of syllables is 

correlated with specific changes in the firing properties of RA neurons. 

 

In order to address this issue, we made chronic neural recordings in the RA of adult 

Bengalese finches during singing.  On each successive iteration of a syllable, the overall 

amount of activity in RA was compared to specific changes in the spectral properties of 

syllables.  Through this experiment, we will attempt to identify a direct relationship 

between changes in brain activity and changes in song.   

 

Through the exploration of the three hypotheses outlined above, we hope to 

elucidate the role RA plays in generating song structure.  These results will fill be 

informative on how lMAN might influence patterns of activity in RA to drive specific 
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changes in song.  Although these conclusions will be primarily applicable to the 

maintenance of adult song, they will also be informative about how the song system can 

generally make changes to song throughout a bird’s life. 
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CHAPTER 1 

THE EFFECTS OF VARIABLE SEQUENCING UPON 
SYLLABLE STRUCTURE 
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Abstract 

For both human language and the songs of passerine birds, vocal complexity is 

generated through variable sequencing of shorter, more elemental vocalizations.  The 

motor planning for this task involves controlling the muscles for each elemental unit 

(phonemes for humans, and syllables for birds), as well as the program for sequencing 

these elemental units in multiple ways.  There are two general varieties of vocal sequence 

variability in bird song: convergence points, where at least two different syllables precede 

the same syllable; and divergence points, where at least two different syllables follow the 

same syllable.  For both convergence points and divergence points, the birds learn how to 

vocalize the same syllable in multiple motor contexts.  We are interested in the effects of 

variable sequencing upon syllable structure, and what these effects might tell us about the 

control of syllable production.  We found that syllable phonology was modified on two 

different time-scales: at convergence points, the production of the common syllables were 

modified by the structure of the immediately preceding syllables; and for both 

convergence and divergence points, we found that syllable structure covaried with song 

structure on an extended time-scale.  The short-term effects upon convergent syllables 

may be a result of constraints of the song system, whereas the more temporally extended 

correlations between syllable phonology and sequence suggest that these song features 

are not completely independent during song production.   
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Introduction 

 The muscle control for complex motor behaviors occurs on two different time-

scales: the immediate control of muscle position for each discrete movement, as well as 

the sequencing of these elemental acts into longer, more complicated motor patterns.  A 

classic example of such a behavior is human speech.  Our languages are composed of 

individual motor units, or phonemes, that are variably sequenced in order to produce 

complicated arrangements of vocalizations.  The production of human speech requires 

planning for each individual phoneme (the basic unit of speech), as well as the 

sequencing of phonemes into words and sentences (Bishop, 1999).  In an effort to 

understand how variably sequenced vocal behaviors are generated, we have analyzed the 

songs of the Bengalese finch (Lonchura domestica).  In a fashion similar to human 

language, Bengalese finches learn their songs from other individuals (Catchpole and 

Slater, 1995), and these learned vocalizations involved shorter vocal elements, or 

syllables, arranged into variable sequences (Okanoya 2004).   

There are two different varieties of sequence variability in Bengalese finch song: 

convergence points and divergence points.  These are places in song that can be 

considered transition points because syllable sequencing can follow multiple trajectories.  

A convergence point (or convergent syllable) is defined as a syllable that can be preceded 

by at least two different syllables.  The term convergence is used because the vocal 

musculature is transitioning to the same position from multiple, different positions.  

Conversely, divergence points (or divergent syllables) are song syllables that can be 

followed by at least two different syllables, reflecting a change in muscle position starting 

from a single, common position.  For human language, similarly sequenced vocalizations 
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exhibit differences in phonation. There are left-to-right effects, where past vocalizations 

alter the current one (convergence); and right-to-left effects, where future vocalizations 

influence the ongoing utterance (divergence) (Daniloff and Hammarberg, 1973).  We are 

interested in whether convergent and divergent syllables in Bengalese finch song are 

similarly modified by adjacent vocalizations. 

 

 Not only are we interested in the differences adjacent syllables may cause, it is 

also important to understand how patterns in the sequencing of syllables affect their 

production.  Throughout Bengalese finch song, some syllable sequences are more 

common than others at various time points (Figure 1.1a).  This results in a bias for the 

production of one particular convergent or divergent sequence over another at different 

time points in song.  An unanswered question is whether these biases in sequencing affect 

the phonology of syllables.  If differences in sequencing do drive consistent and extended 

(across multiple syllables) effects upon syllable structure, it suggests that the production 

of these sequences may involve different motor plans.  In order to provide a more 

complete description of song control, it is important to disambiguate any effects of 

adjacent syllables from those that may result from temporally extended biases in syllable 

sequencing. 

 

 The songs of the Bengalese finch exhibit variable sequencing of shorter, more 

elementary vocalizations.  The songs of this species therefore require planning on two 

different time-scales: for phonology and sequence.  Knowledge about the interaction of 

phonology and sequence during song production may provide insight into the hierarchical 
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structuring of a Bengalese finch song.  In previous work on the songs of Bengalese 

finches, sequence and phonology were assumed to be independent entities (Nakamura 

and Okanoya, 2008; Sakata and Brainard, 2006).  Sequencing information is generated in 

HVC (Hahnloser et al, 2002), while phonology is thought to be controlled by the robust 

nucleus of the arcopallium (RA, Leonard and Fee, 2005).  These data suggest that the 

same syllable found in different sequences would have very similar patterns of RA 

activity, but different HVC activity.  If convergent or divergent sequences exhibit 

differences in production, the source of those differences may be peripheral, central, or 

both.  Understanding the nature of sequence effects upon phonology on both short and 

long time-scales can serve to appropriately orient research on the neural control of 

variably sequenced vocalizations. 
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Methods 

The songs of 14 adult male Bengalese finches (Lonchura domestica), ages 4 

months to 2 years old, were recorded (labeled BF1 through BF14 in the text).  Omni-

directional, lavalier microphones (Countryman™) were used to record the songs, after 

which they were bandpass filtered between 50 and 10000 Hz before being digitized at 32 

kHz (National Instruments™ BNC-2090 A/D board).  Customized acquisition software 

(LabView™) was used for identifying and saving songs.  Many songs over the course of 

many weeks were recorded, but a random selection of 40 songs from each bird was used 

for the final analysis.  These songs were taken from multiple days and always from 

morning hours in order to avoid any diurnal effects upon syllable phonology and 

sequencing (before 12:00 PM, which is 5 hours after the lights are turned on in a 14 hour 

day). 

 

Once the 40 songs were randomly selected from the entire data set, they were 

imported into Matlab™ 7.1 for analysis.  Songs were segmented into syllables using both 

amplitude and temporal thresholds.  Syllables were then visually labeled using a different 

letter for each unique syllable in the bird’s songs, and eight different spectro-temporal 

measurements were made for each syllable.  The eight measurements used were: 

duration, pitch, time to half-peak amplitude, frequency slope, amplitude slope, entropy of 

the spectral density, entropy of loudness versus time, and entropy of the full spectrum.   
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Absolute measurements were made for duration (milliseconds), pitch (hertz), time 

to half-peak amplitude (milliseconds), and frequency slope (hertz/millisecond).  Pitch 

was measured by performing an autocorrelation of the analog amplitude trace.  The peak 

offset of the autocorrelation vector was then divided by the sampling rate in order to 

calculate the fundamental frequency.  For syllables with flat frequency profiles, the pitch 

measurement was made over a 16 millisecond window centered on the middle of the 

syllable.  For frequency modulated syllables, the pitch measurement was made across a 

16 millisecond window starting 5 milliseconds after onset of the syllable.  The 

fundamental frequency (equivalent to the spacing of harmonics) was used as the pitch 

measurement.  The time to half-peak amplitude measurement was made in milliseconds 

by determining when the volume had reached half its maximum over the course of its 

duration.  Frequency slope was calculated through a number of steps.  First, a fast-fourier 

transformation was performed on the syllable oscillogram, producing a spectrogram of 

the syllable.  A cross-correlation was successively performed between 1 millisecond bins, 

separated by 3 milliseconds, across the time axis of the spectrogram.  The slope of a 

regression line was calculated for the cumulative sum of the peaks of the cross correlation 

across measurement time.  This slope was then used as the frequency slope measurement. 

 

Unlike the above measurements, amplitude slope and the three entropy features, 

measurements were normalized across all birds to values between 0 and 100.  For 

amplitude slope, a value of 0 equates to a completely flat amplitude profile, while a value 

of 100 assigned to a syllable with maximal temporal modulation.  Amplitude slope was 

first calculated by dividing the spectrogram of each syllable into two halves (across time).  
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The sum of the absolute value of each half was then calculated.  Using the sum of each 

half of the syllable, amplitude slope was calculated as follows: 

 Amplitude Slope = 50 + 50*((sum1-sum2)/(sum1+sum2)) 

The entropy of the spectral density measurement was also scaled between 0 and 100.  

Higher entropy values represent noisy syllables, and lower values are those syllables with 

only one defined peak.  Entropy of the spectral density is calculated as follows: 

  Entropy S.D. = 100*sum(spec*log2(spec))/(log2(length(spec)) 

where spec represents the absolute value of the power at each frequency (below 8000 Hz) 

collapsed across all time bins.  Entropy of loudness over time describes how many peaks 

the oscillogram contains, with low values for one very sharp peak, and high values for 

flat amplitude profiles.  Loudness was calculated by first smoothing the oscillogram of a 

syllable with a 5 millisecond Gaussian window.  These values were then normalized by 

dividing by the maximum of the smoothed waveform.  The entropy of loudness over time 

was then calculated as follows: 

  Entropy L v. T = -100*sum(loud.*log2(loud))/log2(length(loud)) 

where loud is the previously calculated loudness waveform.  Lastly, the entropy of the 

full spectrum measurement was used to estimate the consistency of spectro-temporal 

features of a syllable from one time bin to the next.  Tonal and harmonic syllables have 

values closer to zero, and noisiest syllables have values closer to 100.  Entropy of the full 

spectrum was calculated by first measuring the absolute value of every point in the 

spectrogram, and then vectorizing the values.  The values in this vector were sorted from 

lowest to highest, and then normalized by dividing by the maximum value.  The entropy 

of the full spectrum was then calculated by the following equation: 



20 

Entropy F.S. = 100*(-sum(sort_spec*log2(sort_spec))/  

log2(length(sort_spec)) 

where sort_spec is the vectored, sorted and normalized spectrogram.   

 

These eight spectro-temporal measurements were made for every syllable from 

the 40 songs of each bird.  There were 113 different syllables identified in the songs of 

the birds recorded, with 41995 total syllables used for analysis.  Bengalese finches 

usually start their songs with introductory syllables that are low amplitude, noisy 

syllables.    Introductory syllables are also some of the more variable syllables, and 

skewed the results of the principal components analysis discussed below (analysis not 

shown).  Because of our interest specifically in the sequencing of song syllables, as well 

as the variable nature of introductory syllables, introductory syllables were excluded from 

our analysis.   

 

Once these measurements were made for all song syllables, a z-score 

transformation was performed across all syllables, for all birds, within each different 

measurement.  This was done to normalize the values for all measurements in order to 

weigh relative differences in each parameter more heavily than absolute differences.  A 

principal components analysis (PCA) was then performed on all z-score values from all 

birds.  The PCA was performed on the entire data set for two reasons: first, we wanted to 

ensure that any differences in recording technique within each bird were not a factor in 

differentiating syllables; and second, we wanted to summarize the results from all birds, 

and performing a PCA within each bird would prevent us from combining data across 
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individual birds.  After the PCA was calculated, we plotted the variance explained versus 

number of principal components in order to determine how many components to use for 

our final analysis.  We found that the first six principal components explained 95% of the 

variability in the data set (Appendix 1, Figure 2b), and therefore used only these six 

principal components for subsequent analyses.  

 

The distance between syllables in PCA space was used as a measure of similarity.  

As mentioned previously, only the first six principal components were used.  We used the 

Euclidean distance between the center of mass of two syllables in six-dimensional space 

as our similarity measurement (referred to as COM distance in the rest of the paper).  

Syllables that are more spectrally different have larger COM values than those that are 

more similar to each other.  We are most interested in how, on average, syllable structure 

changes depending on sequence.  Because of this, we looked at the mean changes in 

syllable production, and therefore used COM distance rather than a measure like 

Mahalanobis distance, which also takes into account the variability of the clusters.  We 

used the COM distance in two ways: first, it was used as a method to quantitatively 

justify our syllable-labeling scheme; and secondly, it was used as a way to judge the 

similarity of two different syllables.   

 

To confirm the accuracy of our syllable labeling with respect to spectro-temporal 

feature calculations, we measured the COM distances between every syllable in a bird’s 

repertoire.  Distances were calculated between different iterations of the same syllable in 

the same sequence, the same syllable within different sequences, and completely different 
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syllables.   Plotting all syllable distances from all birds yielded a bimodal, but continuous 

distribution of values (Supplemental Figure 1.3a).  If the values did in fact fall into two, 

separate distributions, it would be evidence that COM distances for syllables with the 

same label were non-overlapping with those between differently labeled syllables.  In 

order to determine the extent of overlap, values for syllables in each category were 

plotted separately (Appendix 1, Figure 1.3b; same syllable (SAME), different sequence 

(SEQ), and different label (DIF) in green, blue and black, respectively).  The values for 

the same syllable in the same sequence and differently labeled syllables are non-

overlapping, but there is a small amount of overlap in the COM values for the same 

syllable in different sequences and differently labeled syllables (red highlighted area in 

Appendix 1, Figure 1.3b).  This overlap is most likely caused by our labeling 

methodology.  Syllables are labeled within each bird, and then the values from all birds 

were combined for this analysis.  As a result, two different syllables labeled within one 

bird may be more similar to each other than a highly variable single syllable in another 

bird.   

 

In order to determine if combining data across birds was contributing to the 

overlap of SEQ and DIF syllable values, we developed a system of ranking syllable 

similarity within each bird.  The question we wished to answer was how often two SEQ 

syllables within a single bird’s repertoire are quantitatively more similar to each other 

than they are to any other syllable.  If they were more similar to each other than to any 

other labeled syllable, they would receive a rank of one (1); but, if one other syllable was 

more similar to either sequentially unique syllable, it would be ranked as a two (2).  A 
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rank of three (3) results when two other syllables are more similar to the SEQ syllable, 

and then a rank of four (4), five (5), and so on for each additional syllable that is more 

similar.  This analysis was performed for all syllables across all birds, and the results are 

summarized in Appendix 1, Figure 1.3c.  Approximately 90% of the same syllables found 

in multiple sequences were more similar to each other than to any other syllable, but there 

were some sequentially different syllables that received ranks of two (10), and four (1).  

We wanted to determine if our original labeling was inaccurate, or if our PCA analysis of 

syllable similarity was imprecise.  In the majority of greater than one-ranked syllables (7 

out of 11), the quantification of syllable features fell short of our visual labeling method.  

The syllables where our PCA approach failed were generally low amplitude, noisy 

syllables. As a result, we took the conservative approach and excluded these syllables 

from the analyses discussed below.   

 

As mentioned above, we also used COM distances as a way to measure the 

similarity of two syllables.  This measurement was made for syllables with the same label 

in the same sequence, the same syllable in different sequences, and for two differently 

labeled syllables.  For the same syllable found in the same sequence, the entire data set 

was randomly split into two groups, and the distance between each half was calculated.  

This was repeated 1000 times, and the mean of all 1000 comparisons was used for 

analysis.  The differences in COM value distributions for these three syllable types were 

then tested for significance using a Kolmogorov-Smirnov test.  COM distances were also 

calculated between syllables adjacent to transition points in song.  For convergent 

sequences, these are the syllables before the convergent syllable, and for divergent 



24 

sequences, these are the syllables after divergence.  Correlation coefficients were then 

calculated between the convergent/divergent syllable and the adjacent syllables in order 

to determine if any significant relationship existed between them.   

 

In order to determine the temporal relationship of syllable similarity and song 

sequencing, we calculated the similarities of the syllables after convergence and before 

divergence and measured any trends between syllable similarity and the distance from the 

transition point.  We also wanted to investigate how syllable production varied over even 

longer time-scales.  We looked at this issue by measuring changes to syllable structure 

depending upon the next transition.  In the example shown in Figure 1.7, consider a 

syllable A that can precede either syllable B or syllable F.  In this bird’s song, there are 

instances where an A-B transition is followed by another A-B, but there are also 

instances where it is followed by an A-F transition.  We compared the distance between 

the A’s in the sequence A-B, when the next syllable A transition is A-B or A-F (Ab-ab 

versus Ab-af).  These syllables are termed successive transition syllables, and the analysis 

was performed for both convergence and divergence points.  Two control analyses were 

used to put upper and lower boundaries on the COM distances for successive transition 

syllables.  The lower bound was calculated by randomly selecting two groups of syllable 

A iterations in sequence A-B and calculating the distance between them (SS control).  

Because of the random selection, the groups being compared will contain syllable A in 

both Ab-ab and Ab-af sequences.  This was done 1000 times, and a mean distance was 

derived from those trials.  This analysis estimates how likely the successive transition 

syllables distances are within the pool of all syllable A’s in sequence A-B.  The upper 
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boundary control was defined as the distance between syllable A’s in each convergent or 

divergent sequence (i.e., A-b versus A-f).  All of these comparisons were paired, and a 

Wilcoxon signed-rank test was therefore used to test for significance between each 

category of syllables. 

 

We also looked at the differences in convergent point similarity before and after 

deafening.  The songs of four birds from previous experiments were analyzed.  Forty 

songs before deafening were compared to forty songs after deafening.  Convergence 

points were identified in the pre-deafening songs, and only those convergence points 

were analyzed in the post-deafening songs.  All of the post-deafening songs used were 

recorded within one week of the deafening surgery to limit any long-term effects of 

deafening.  These again were paired comparisons, and a Wilcoxon signed-rank test was 

used to test for any significant effects of deafening. 
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Results 

Bengalese finch song is composed of acoustically continuous segments (50 to 100 

milliseconds) that are termed ‘syllables’, surrounded by short (~10 milliseconds) periods 

of silence  (see song of BF2 in Figure 1.1).  Song syllables are labeled with a different 

letter for each discreet syllable in the bird’s song.   

 
 

Figure 1.1:  (a)  Spectrogram of the song of BF1.  Syllables are visually labeled with 
unique letters. Note that some syllables are found embedded in multiple sequences.(b) 
syllable transition diagram for the song shown in A and B.  The directions of the arrows 
represent possible transitions from one syllable to another.  For instance, syllable A may 
follow syllables C, B, or A.  These transitions can be seen in the labeled song in Figure 
1B. 
 

The song shown in Figure 1.1 contains six (6) different syllables, labeled: A, B, 

C, D, E, and F.  Syllable A can be found in multiple sequences of syllables: syllable A is 

repeated several times in a row, as well as sung before syllables C and B.  The complex 

sequencing of Bengalese finch song can be more readily appreciated through the 
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construction of a “transition diagram” (Figure 1.1b).  In the transition diagram for the 

song shown, it is apparent that the sequencing of Bengalese finch song is not linear: the 

same syllable is sung in multiple sequences of syllables.  The example song has four 

different transition points (syllables A, B, D and F), or places in song where the 

sequencing is probabilistic rather than deterministic.  This behavioral feature is 

ubiquitous across Bengalese finches, with all recorded birds (14 out of 14) having at least 

one syllable used in multiple sequences. 

 

JUSTIFICATION OF SYLLABLE SIMILARITY MEASUREMENTS 

Unique syllables were initially identified visually, but it is important to show that our 

visual labeling scheme can be justified quantitatively.  We measured eight different 

acoustic features for each syllable as a way of assessing similarity.  A PCA was 

performed on these eight spectral measurements for each syllable sung in forty songs 

collected from each bird (41995 syllables in 479 songs from 14 birds).  For three example 

syllables from BF11, average spectrograms and smoothed, rectified amplitude waveforms 

are shown in Figures 1.2a through 1.2c.  Examples of the clustering of these syllables by 

PCA are shown in Figures 1.2d through 1.2e; shown are ellipsoids, centered at the mean 

of the first three principal components, with radii that are one standard deviation.  By 

plotting the first three principal components of each syllable, we can compare the 

clustering of syllables by PCA to our initial visual labeling of syllables.  The ten syllable 

clouds segregate in PCA space, supporting the original categorization of syllables by 

visual labeling.   
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Figure 1.2 (a) spectrogram and smoothed, rectified amplitude waveforms for syllable J of 
BF12.  Black arrow marks measured pitch of syllable.  (b) spectrogram and smoothed, 
rectified amplitude waveforms for syllable C of BF12.  Black arrow marks measured 
pitch of syllable.  (c) spectrogram and smoothed, rectified amplitude waveforms for 
syllable I of BF12.  Black arrow marks measured pitch of syllable.  (d) example of 
syllable clustering after PCA.  Potted are mean +/- one standard deviation ellipsoids for 
the first three principal components of ten differently labeled syllables in the song of 
BF12.  (e) center of mass distances (COM) between syllable clouds.  Syllables J, C, and I 
are all distinct syllables from the song of BF12.  The COM distance between syllable J 
and C is larger than it is from syllable J to I (COM = 5.77 and 3.09, respectively).  These 
COM distances are then used as a measure of syllable similarity, with lower values for 
more similar syllables.  (f) clusters for the same syllable in different sequences are closer 
than for differently labeled syllables.  Syllable J of BF12 is found after syllables C (dark 
blue ellipsoid) and H (lighter blue ellipsoid).  The clusters for syllable J in each sequence 
are overlapping, whereas clusters for syllables with different labels are non-overlapping 
(e.g. syllable I in brown) 
  

Calculating the distances between clusters in PCA space provides a quantitative measure 

of syllable identity.  We have used the center-of-mass distance (COM distance) between 

the means as a measure of syllable similarity.  In our data, the distances are smaller for 

‘spectrally similar’ syllables, whereas more disparate syllable types have greater distance 

measures.  Shown in Figure 1.2e are the syllable clusters and COM distances for the three 

example syllables of BF11 shown previously (Figure 1.2a, b, and c).  Our PCA of 

syllable features places syllable J further from syllable C than it does from syllable I (J-

to-I COM distance is 3.09, and J-to-C distance is 5.77).   
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We systematically analyzed each labeled syllable and determined quantitatively 

whether it was the most appropriate label for that particular syllable (Appendix 1, Figure 

1.3 and accompanying text).  In ninety percent of the cases, the original visual labeling 

system was substantiated by our quantification of spectral structure.  For the other 10%, 

there was an unresolved discrepancy between the visual and quantitative labeling of 

syllables.  Because of the inherent variability of syllable production, it is difficult to find 

a perfect measure of syllable similarity.  In order to avoid any shortcomings of our 

quantification, syllables where visual and quantitative labeling did not match were not 

included in the final analysis.    

 

SIMILARITY OF CONVERGENT AND DIVERGENT SYLLABLES 

There are two main varieties of sequence variation in the songs of Bengalese 

finches: sequence convergence and sequence divergence.  Although we have labeled 

syllables with the same letter when found in different sequences, it is important that we 

quantitatively demonstrate that these syllables are indeed the same acoustic output.  In 

Figure 1.2f is an example of the clusters for a syllable found in two different sequences.  

Shown are the syllable clouds for syllable J in the sequences H-J (in light blue) and C-J 

(in dark blue), as well as the cloud for the next most similar syllable, syllable I (brown).  

The two ellipsoids (mean +/- one S.D.) for syllable J are overlapping, but they are both 

distinct from syllable I.  The COM distances provide quantitative evidence for this 

outcome: the distance between HJ and CJ is only 0.75, whereas the COM distance 

between either example of syllable J and syllable I is approximately 3.10.  This is just one 
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of many examples demonstrating the similarity of convergent and divergent syllables as 

compared to differently labeled syllables.  While there are subtle differences in the 

production of syllables found in different sequences, these differences are not large 

enough for them to be classified as categorically unique. 

 

As was shown above, when the same syllable is found in different sequences, 

there are subtle but significant differences in its production.  In Figure 1.3 are two 

example syllables that demonstrate this phenomenon.   

 
Figure 1.3: (a) Spectrogram of approximately 1.5 seconds of song, with syllable labels in 
white.  The convergence on syllable B is highlighted: E-B in green, and A-B in red.  (b) 
Average spectrograms of 10 examples of syllable B in each sequence, note the shorter 
duration of syllable B when it follows E.  (c) Histogram of the durations of approximately 
150 renditions of syllable B in each sequence (colors as in the rest of the figure). (d) 
Mean +/- one standard deviation ellipses for the first two principal components of 
syllable B found in each sequence, as well as all other syllables (in gray) for comparison 
from the bird’s repertoire.  (e) Spectrogram of approximately 1.5 seconds of song, with 
syllable labels in white.  The divergence from syllable B is highlighted: B-B in green, and 
B-C in red.  (f) Average spectrograms of 10 examples of syllable B in each sequence, 
note the higher frequency of syllable B when it precedes another B.  (g) Histogram of the 
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Figure 1.3 continued pitch of syllable B in each sequence (colors as in the rest of the 
figure). (h) Mean +/- one standard deviation ellipses for the first two principal 
components of syllable B found in each sequence, as well as all other syllables (in gray) 
for comparison from the bird’s repertoire.      
 

The first instance is from the song of BF8 (Figure 1.3a), and it illustrates the two 

convergent sequences for syllable B: E-B and A-B.  The duration of syllable B is 

different depending upon whether it follows an E or an A: cases of B following an E are 

significantly shorter than if they follow an A (average spectrograms in Figures 1.3b, 

quantification of duration in Figure 1.3c).  Although the length of syllable B is different 

depending upon the sequence, the two instances of syllable B are still more similar to 

each other than to any other syllable in the bird’s repertoire.  Shown in Figure 1.3d are 

the mean +/- 1 S.D. ellipses (EB in green, AB in red) for the first two principal 

components of each rendition of syllable B, as well as those for the other syllables in the 

bird’s repertoire (in grey).   

 

Spectral modifications can also go in the reverse direction (right-to-left).  The 

song of BF10 is shown in Figure 1.3e.  This bird’s song contains the divergent syllable B, 

which precedes either another B, or a C.  For this divergence point, an alteration in pitch 

is observed between the two sequences: syllable B before a C is lower in pitch than it is 

before syllable B (average spectrograms in Figure 1.3f, quantification of pitch in Figure 

1.3g).  As in the above example, there are significant differences in one particular 

syllable feature (pitch), but if many spectral features are measured, the two examples of 

syllable B in each sequence are quantitatively more similar to each other than they are to 

another syllable in the bird’s repertoire.  Shown in Figure 1.3h are the mean +/- 1 S.D. 

ellipses for the PCA values for syllables BB and BC, as well as for the other syllables in 
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the bird’s songs.  The ellipses for syllable B in each sequence are overlapping and distinct 

from the PCA values for other syllables.  The examples for convergent and divergent 

syllables demonstrate the efficacy of using PCA to measure syllable similarity, and the 

degree of similarity between these syllables as compared to differently labeled syllables. 

 

When the same syllable is found in different sequences, we found subtle but 

significant differences in production.  We wanted to determine how large these 

differences are with respect to the underlying variability of song production (Figure 1.4).   

 
Figure 1.4: (a) Example spectrogram of a song from BF3, with the syllable labels along 
the x-axis.  Highlighted in green, red, blue, and black, respectively, are the four different 
relationships among syllables: same syllable same sequence (SS), divergent syllable 
(DIV), convergent syllable (CONV), and different syllables (DIF).  (b) Cumulative 
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Figure 1.4 continued distribution plots of the C.O.M. distances for each syllable 
relationship outlined in A (color convention the same).  All distributions are significantly 
different from each other (p < 0.05 KS-test).  (c) Distribution of COM values for CONV 
syllables and DIV syllables.  COM distances for CONV syllables are significantly higher 
than between DIV syllables (p = 0.003, KS-test). 

 
 

In order to do so, it was necessary to analytically determine the upper and lower 

boundaries on COM distances for our similarity analysis.  The lower boundary is 

designed to estimate the maximum similarity between two syllables.  Data from the same 

syllable in the same sequence was randomly split into two groups, and the COM 

distances between these random groups were calculated.  From this analysis, it is possible 

to put a lower limit on the COM distances between two syllables (Figure 1.4b, green 

line).  The upper boundary was used to estimate the maximum difference between two 

syllables (or the upper limit on COM distance).  The upper boundary was defined as the 

COM distances between syllables that were labeled with different letters (Figure 1.4b, 

black line).  With these two analyses, we can determine how significant the production 

differences are for convergent and divergent syllables.  

 

The COM distances for the same syllable in the same sequence, and for 

differently labeled syllables, were compared to those for syllables at convergent and 

divergent points in song (example song in Figure 1.4a).  COM distance values for 

convergent and divergent syllables are significantly greater than those of same syllables 

found in the same sequences (Figure 4b, both are p < 0.0001, KS-test), and are 

significantly less than the distances between differently labeled syllables (Figure 1.4b, 

both are p < 0.0001, KS-test). Interestingly, the COM distances for convergent syllables 

are greater than those between divergent syllables (Figure 1.4c, p < 0.003, KS-test).  



34 

These results demonstrate that sequence can cause subtle but consistent effects upon 

phonation. 

 

DETERMINING THE CAUSES OF CONVERGENT AND DIVERGENT SYLLABLE 

DIFFERENCES 

In an effort to understand the causes of spectral differences between sequences, 

we asked whether the local motor context is predictive of convergent and divergent 

syllable similarity.  In terms of left-to-right effects at convergence points, the prediction 

is that greater differences between the prior syllables will result in a greater difference 

between the convergent syllables.  Similarly, at divergence points, sequencing effects 

should cause divergent syllables to be less similar when transitioning to more similar 

syllables.  We analyzed both convergent and divergent syllables for any effects of 

adjacent syllable similarity (Figure 1.5).  For convergence points, we compared the 

similarity of the two syllables preceding convergence to the similarity of the two 

convergent syllables; and for divergent sequences, we compared the similarity of the two 

syllables following divergence to the similarity of the two divergent syllables.   
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Figure 1.5: (a) Demonstration of how pre-note similarity is compared to convergence 
point similarity.  Syllable B is found after either syllable A or D in the songs of BF6.  The 
COM distance between syllables A and D is compared to the COM distances between BA 
and BD.  This data point is in green in the 6b.  (b) Pre-note similarity and its effects upon 
convergence point similarity.  There is a significant, positive relationship between pre-
note similarity and convergence point similarity (r = 0.40, p 0.001).  (c) Demonstration of 
how post-note similarity is compared to divergence point similarity.  Syllable A is found 
preceding either syllable D or E in the songs of BF13.  The COM distance between 
syllables AB and AA is compared to the COM distances between A and B.  This data point 
is in green in the 6d.  (d) Post-note similarity and its effects upon divergence point 
similarity.  There is a no measured relationship between post-note similarity and 
divergence point similarity (r = -0.03, p 0.86). 
 

Our data show that the distance between convergent syllables is correlated with the 

similarity of the two preceding syllables (Figure 1.5b).  We find a significant, positive 

relationship between the COM distance of the two syllables occurring before 

convergence, and the COM distance of the following convergent syllables (Figure 1.5b, r 

= 0.40, p = 0.001).  Although there are differences in structure for divergence points, the 
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predictive relationship found for convergent syllables was not found for divergent 

syllables (Figure 1.5d). 

 

We have found that syllables immediately adjacent to transition points in song 

(after convergence and before divergence) have differences in production.  In an effort to 

determine the temporal extent of sequence effects upon syllable structure, we analyzed 

syllable similarity multiple positions away from transition points (i.e. the syllables 

occurring after convergence, and those before divergence, see Figure 1.6a for schematic).  

For convergent sequences, we found that increases in the distance from convergence 

corresponded with increases in syllable similarity (Figure 1.6b, blue line).  There is a 

significant decrease in COM distances from the first syllable after convergence to the 

second (p = 0.003, Wilcoxon signed-rank test), but no such decrease in similarity was 

found between the second to the third syllable (p = 0.56, Wilcoxon signed-rank test).    

For divergence points, distance from divergence did not correlate with any change in 

syllable similarity; the COM distances were statistically indistinguishable for syllables 

three positions leading up to divergence (p > 0.25 for all combinations, Figure 1.6b, red 

line).   
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Figure 1.6: (a) Schematic of what is meant by 1st, 2nd and 3rd positions after convergence 
(blue) and before divergence (red).  (b) Extent of effects upon syllable phonology at 
convergence and divergence points.  Shown are mean +/- standard error values for 
syllables one, two, three positions removed from transition points (convergence, notes 
following transition; divergence, notes before transition).  Significant differences in 
C.O.M. distances are numbered (1: p = 0.003, Wilcoxon signed-rank test; 2: p = 0.008, 
all KS-test).  The green-dotted line denotes the mean COM distance value between SS 
syllables. 

 

Although COM distances were similar for convergent and divergent syllables multiple 

positions away from the transition point (p = 0.81, KS-test), they were still significantly 

greater than distances between control syllables (same syllable, same sequence; Figure 

1.6b, green line, p < 0.0001 for convergent and divergent syllables, KS-test).  The 

residual differences in structure for syllables multiple positions away from the transition 

suggests that the motor program for song might also vary over a longer time-scale around 

convergence and divergence points.  Adjacent syllable effects gradually diminish for 

convergence points, but the syllables never fully converged.  From these data, we can say 
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that the local effects of adjacent syllable structure at convergence points diminish with 

distance from the transition point, but that syllables maintain some phonological 

discrepancies that seem to be driven by more temporally extended song features. 

 

EXTENDED PATTERNS IN SYLLABLE SEQUENCING AND PHONOLOGY 

The results above (Figure 1.6) suggest that phonology and sequence might co-

vary over extended time-scales.  In order to evaluate the relationship between syllable 

structure and sequence over longer time-scales, we looked at the effects of successive 

instances of convergence and divergence points upon syllable phonology.  Our reasoning 

is that if syllable production and sequence are correlated with one another, extended 

patterns in the sequencing of syllables will affect their phonology.  As an example, a 

segment of song is displayed in Figure 1.7a.  The convergent syllable D is shown in two 

different sequences: C-D and G-D; and the divergent syllable A is shown in two 

sequences: A-B and A-F.  For convergence, we asked if production of syllable D in the 

sequence C-D was different depending upon whether the next syllable D transition was 

C-D or G-D (Figure 1.7a, blue highlighted syllables).  An example for divergence is also 

displayed in Figure 1.7a.  Syllable A is found in the divergent sequences of A-B and A-F.  

We are interested in whether syllable A in the sequence A-B varied depending upon 

whether the next syllable A transition was A-B or A-F (Figure 1.7a, red highlighted 

syllables).   
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Figure 1.7: (a) Schematic of how successive sequence syllables are defined.  In red are 
two different DIV syllable transitions (A-B and A-F) separated by several other syllables.  
This is an example of a successive divergence relationship between syllables.  In blue is 
an example of two successive convergence syllables: two convergence points involving 
the same convergent syllable separated by other unrelated syllables.  (b) Successive 
sequence similarity compared to SS control values in a pair-wise fashion.  Convergent 
and divergent successive sequence syllable similarities were significantly greater than 
paired SS control values (convergence, p < 0.001; divergence p = 0.009, Wilcoxon 
signed-rank test).  Inset is a zoom for COM values less than 1.  (c) Successive sequence 
similarity compared to convergent and divergent syllable control values in a pair-wise 
fashion.  Convergent and divergent successive sequence syllable similarities were 
significantly less than paired convergent/divergent syllable values (p < 0.001 for 
convergence, and p = 0.002 for divergence, Wilcoxon signed-rank test).   

 

We call these syllables ‘successive transition points’ (successive convergent syllables or 

successive divergent syllables), and they were analyzed for the temporally extended 

correlations between sequence and phonology discussed above.   

 

Two analyses were performed to estimate upper and lower bounds on COM 

distances for successive transition syllables.  A random sampling method was used to 

determine a lower boundary (same syllable, same sequence control, or SS Control), and 
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COM distances from convergent and divergent syllables were used as an upper boundary.  

We find that for both convergence and divergence points, the distances between 

successive transition syllables are larger than the same syllable, same sequence control 

distances (Figure 1.7b, p < 0.0001 for both, Wilcoxon signed-rank test); and that they are 

smaller than distances between convergent and divergent syllables (Figure 1.7c, p < 

0.001 for convergence, and p = 0.004 for divergence, Wilcoxon signed-rank test).  These 

results are consistent with the hypothesis that long time-scale correlations exist between 

syllable phonology and sequence transition.  If no extended correlation existed between 

phonology and sequence, syllables in transition points would not vary depending upon 

future transitions, and would be as similar as the same syllable found in the same 

sequence.  Instead, we have found that phonology does indeed fluctuate depending long-

range patterns in sequence.   

 

The results above on successive transition points provide more insight into some 

of the previously discussed results.  The successive transition data lends further support 

to the claim that the component of syllable similarity gained between the 1st and 2nd 

positions of convergent sequences (Figure 1.6b, blue line) is caused by a change in the 

current motor history, not the more extended relationship between syllables and 

sequence.  With regards to the degree of dissimilarity in COM values for divergent 

syllables multiple positions away from divergence (Figure 1.6b, red line), the successive 

transition analysis suggests that this phenomenon is the result of long-range correlations 

between sequence and phonology, and not caused by differences in the immediate 

positioning of the vocal musculature.  If there had been any significant change in 
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similarity as the bird approached the divergence point, it would have shown some local 

modifications are made.  The implication of no significant increase or decrease in syllable 

similarity leading up to divergence is that the differences in syllable structure preceding 

divergence are instead a result of long-range correlations between sequence and 

phonology, and not immediate motor planning.  And lastly, the findings presented above 

also explain why residual differences in syllable production remain up to three positions 

removed from a transition point (Figure 1.6b, 3rd position, red and blue lines).  The 

successive transition results suggest that the bird is on slightly different motor trajectories 

when singing one sequence versus another.  Because of these long-range correlations, 

syllables multiple positions away from convergence and divergence are altered as a result 

of song patterning. 

 

The differences in convergent and divergent syllables similarity immediately 

allow us to disambiguate the short versus long-range effects of sequencing.  The average 

COM distance for convergent syllables is 0.66, divergent syllables are 0.37, and for the 

same syllable in the same sequence, the average COM distance is 0.12.  From these 

numbers, we have calculated that 54% of the difference in phonation at convergence 

points is due to adjacent syllable production, and the other 46% is a result of correlations 

between sequence and phonology.   
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MOTOR VERSUS AUDITORY CONTRIBUTIONS 

Convergence points are different from divergence points in that differences in both prior 

motor and auditory history can affect syllable production.  We have shown that 

convergence point COM values are higher than divergence point values (Figure 1.4c).  It 

is possible that a portion of convergent syllable differences can also be attributed to 

differences in auditory history.  Song nuclei in the bird brain have been shown to be 

responsive to a bird’s own song (Katz and Gurney, 1981; Williams and Nottebohm, 

1985; Margoliash, 1986; Doupe and Konishi, 1991; Vicario and Yohay, 1993), and 

differences in auditory feedback could affect the descending motor program.  In order to 

assess the effects of auditory input upon syllable phonation, we analyzed the songs of 

Bengalese finches before and after deafening.  We assessed the similarity of convergent 

syllables in the songs before deafening, and then compared their similarity to the 

similarity of the same convergent syllables in post-deafening songs (Figure 1.8).    

 

Figure 1.8 C.O.M. distances for convergence points before and after deafening.  Data are 
from 4 birds, no significant difference is found between paired convergence points 
syllable similarities after before and deafening (p = 0.31, Wilcoxon signed-rank test). 
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We found no significant change in the similarity of individual convergence points 

as a result of deafening (p = 0.31, Wilcoxon signed-rank test).  These data imply that 

differences in convergent syllable production are more influenced by differences in motor 

and/or proprioceptive history than past auditory discrepancies.   
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Discussion 

Our results demonstrate that the production of syllables is modified by events 

occurring on two different time-scales: the left-to-right effects of immediately adjacent 

syllables (convergent syllable analysis, Figure 1.5b), and the long-range correlations 

between syllable sequence and phonology (successive sequence analysis, Figure 1.7).  

We have also shown how the influence of adjacent syllables gradually decreases as the 

distance from the transition point increases.  Some spectral differences in syllable 

structure remained well after convergence, however, and these residual differences are 

most likely the result of the long-range correlation between phonology and sequence.  

Unlike convergent syllables, divergent syllables were not affected by the structure of 

adjacent syllables.  This finding suggests that syllable production is more associated with 

the history of the system than with upcoming differences in motor control.  Finally, as a 

result of the limited effects of deafening upon convergence point similarity, we believe 

motor and/or proprioceptive contributions are more dominant than auditory differences in 

driving the short-term effects on phonology observed at convergence points. 

 

In regard to differences in divergent and convergent syllable phonation, we would 

like to be able to disambiguate the short-term effects of adjacent syllables from those that 

are a result of long time-scale correlations between phonology and sequence.  Previous 

research studying syllable motor control suggests that when the same syllable is found in 

different sequences, it is treated as the same motor gesture.  In brown-headed cowbirds, 

the control of bronchial airflow and air sac pressure during renditions of similar song 
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phrases is highly correlated both within and between birds (Allan and Suthers, 1994), and 

similar results have been found for syringeal control in brown thrashers (Goller and 

Suthers, 1996).  Furthermore, research on mockingbirds has demonstrated that mimicry 

of another bird’s vocalization involves of very similar set of syringeal muscle patterns 

(Zollinger and Suthers, 2004).  These data suggest that the neural activity controlling the 

musculature for sequentially unique syllables may also be comparable across sequences.  

Muscle activation patterns used to control syllable structure arise from neural activity in 

the robust nucleus of the arcopallium (RA), and this activity has been shown to be very 

similar for the same syllable in different sequences (Leonardo and Fee, 2005).  The 

implications of these findings are that any differences in phonation between sequences 

for the same syllable are not the result of central motor planning, and that there is no 

relationship between sequence and phonology at the periphery.    These results, taken 

together with those of the current study, indicate the following: first, the short time-scale 

changes to convergent syllables may not be the result of differences in muscle activation 

patterns arising from the central nervous system; and secondly, the long-time scale 

correlations may relate to a shared control between sequence and phonology.  The 

contribution of short and long time-scale affects can be disentangled by comparing the 

results of convergent and divergent syllables.  Convergent syllables are not as similar as 

divergent syllables (Figure 1.4c), and this is most likely the result of the left-to-right 

effects of adjacent syllables we have discussed.  Divergent syllables have similar motor 

histories, and any differences between them would not be from differences in prior state.  

The difference in similarity between convergent and divergent syllables would therefore 

be a result of the short-term effects of adjacent syllables, and not the long-time scale 
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correlations between sequence and phonology.  Using the mean differences in similarity 

(Figure 1.6) allowed us to calculate the contribution of each of these effects upon 

phonology.  From this analysis, we conclude that about half of the difference in 

phonation at convergence points is due to adjacent syllable production, and the other half 

is a result of correlations between sequence and phonology.   

 

We have shown that syllable structure is modified on two different time-scales: 

there are long-range correlations between syllable phonology and song patterning, as well 

as the more local effects of adjacent syllables at convergence points.  In order to gain an 

understanding of the extended relationship between syllable sequence and phonology, we 

determined the temporal extent of vocal changes in production associated with changes in 

motor behavior.  We found that syllable phonology was correlated with temporally 

distant syllable transitions.  Long-term correlations between phonology and sequence 

suggest that the ‘state’ of the bird may have an effect upon syllable production.  The term 

‘state’ can be defined as any number of possibilities: differences in neurotransmitter 

levels could bias one sequence over another and in turn modify syllable structure; the 

drive of the bird to sing can have far reaching effects; and/or variation in the circuit 

properties of the song system could cause prolonged differences in syllable production.  

Previous work on singing behaviors in male birds has shown that songs can be modified 

on an extended time basis.  The differences in song structure when males sing to a female 

(directed song) rather than singing alone (undirected song) are one example of a 

temporally extended effect upon phonology.  Male Bengalese finches sing a more 

stereotyped version of their song when they are singing to female, and these changes 



47 

occur over the length of the song (Sakata, Hampton and Brainard, 2008), and these 

alterations occur at both the phonological and sequential level of song organization.  

Differences in directed and undirected song are likely to be mediated by a circuit 

property-type phenomenon (Jarvis et al, 1998; Hessler and Doupe, 1999), and the same 

may be true of the temporally extended correlations between sequence and phonology.    

 

The circuit properties responsible for sequence generation are thought to arise in 

the motor nucleus HVC, which are then imposed upon RA (Yu and Margoliash, 1996; 

Hahnloser et al, 2002).  This connection was until recently thought to be entirely feed-

forward, but recent work has found a projection from RA back to HVC (Roberts et al, 

2008).  Although the effects we have measured on syllable production could arise entirely 

in RA, this recently discovered connection may also mediate the circuit phenomenon that 

combines phonological and song sequence information.  Conclusions based upon all of 

these results suggest that the control of phonology and sequence are more intimately 

linked during song production, and that a hierarchical model of song assembly is not an 

accurate description of Bengalese finch song generation. 

 

With respect to the more local effect on sequencing syllables, the relationship 

between the similarities of adjacent syllables at convergence points suggests that the 

limitations of the song system have a component that is more peripheral than central. We 

found that when the bird is transitioning from two very different syllables to the same 

syllable, the two convergent syllable variants are less similar to one another.  Consider 

this phenomenon in terms of the syringeal muscles: if two especially disparate muscle 



48 

states precede the same syllable, it may be more complicated for the syrinx to reach the 

same final muscle configuration during syllable production.  If instead a sequence 

transition involves more similar syllables, the musculature may more easily achieve 

motor convergence.  Parallel results have been found for left-to-right effects during 

human speech production.  In spoken sequences of the form vowel-consonant-vowel 

(VCV), the amount of change of the final vowel as a result of carry-over effects from the 

preceding utterances is proportional to the differences in articulator positions throughout 

the sequence (Recansens, 1984; Öhman, 1966).  Research on human language is pertinent 

to our results on the sequencing of Bengalese finch song because we also see carry-over 

effects of previous motor acts.  Considering our results in the context of human 

coarticulation, we propose that song production is also modified by local limitations of 

the avian song system. 

 

Bearing in mind the importance of history for vocal motor behaviors, we wanted 

to know if previous differences in audition could influence motor planning.  It has been 

found that the motor nuclei of the song system are responsive to presentations of the 

bird’s own song (Katz and Gurney, 1981; Williams and Nottebohm, 1985; Margoliash, 

1986; Vicario and Yohay, 1993).  Differences in auditory feedback percolating through 

this pathway could therefore alter the motor program during convergent syllable 

production.  In order to assess the influence of auditory information on convergence point 

similarity, we analyzed songs from Bengalese finches before and after deafening.   

Removing auditory feedback had little effect upon convergence point similarity, implying 

that audition is not intimately involved in the online control of syllable phonology at 
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transition points.  Research testing non-hearing humans has shown reduced effects of 

coarticulation in these individuals as compared to those who can hear (Rothman, 1976).  

These studies were confounded by the fact that the deaf individuals had not recently lost 

their hearing.  There was sufficient time for central rearrangements to occur, so it is 

difficult to determine what short-term changes deafening has upon vocal coarticulation.  

From the results of our experiment, we conclude that the effects of syllable sequencing 

are relatively similar before and after deafening.  These data imply that the control of 

syllable phonology for variably sequenced syllables is not significantly influenced by 

auditory input on a moment-by-moment basis. 

 

The effects of sequence upon syllable structure are analogous to human 

coarticulation, but they are also more generally related to issues of motor sequencing.  

Many different motor systems exhibit variably sequenced motor acts.  For instance, 

during finger spelling for sign language, the joint and hand positions for one sign can 

have carry-over effects that are similar to vocal coarticulation (Jerde et al, 2003).  Similar 

results are seen for joint positions during piano playing (Engel, Flanders and Soechting, 

1997).  Each of these sequential motor acts, including birdsong, requires both the 

momentary control of muscles for the current behavior, as well as the more long-term 

control of transitioning between muscle states.  The control for actions such as speaking, 

piano playing and finger spelling is refined with practice.  We know that the control of 

phonology for sequentially variable syllables also goes through a similar refinement 

process.  Understanding how birds maintain phonetic consistency for the same syllable 
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across sequences is generally informative for studies on motor sequencing, and is of 

specific relevance to the understanding of sequencing in human language. 
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CHAPTER 2 

THE RELATIONSHIP BETWEEN RA ACTIVITY AND 
SYLLABLE STRUCTURE 
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Abstract  

Previous research has suggested that the control of syllable sequencing and 

syllable production are independent in the bird brain, with sequence being encoded by the 

motor nucleus HVC, and syllables encoded by the robust nucleus of the arcopallium 

(RA).  The current model of song production proposes that timing signals from HVC are 

sent to RA, and then RA translates these signals into continuous motor commands for the 

vocal musculature.  The model was derived from research on the zebra finch, a bird with 

highly stereotyped syllable sequencing.  We have analyzed the songs of the Bengalese 

finch, a bird with variability in syllable sequencing, in order to more explicitly 

disambiguate activity in RA responsible for sequence from activity responsible for 

syllable phonology.  We have found that mean changes in patterns of RA activity 

correlate with mean changes in syllable structure, suggesting that there is a phonological 

relationship between the firing of RA neurons and the structure of resultant syllables.  

These results are complementary to those found previously by correlating variability in 

RA with variability in syllable structure.  In prior studies, syllable variability around the 

mean was analyzed with respect to RA activity; in the current study, we have found that 

mean changes in syllable structure syllables correlate with mean changes in RA activity.  

This is the first demonstration of a relationship between patterns of RA activity and then 

general phonology of syllables. 
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Introduction 

 The vocalizations of birds are composed of individual vocal units called syllables, 

arranged into longer sequences called motifs and songs.  For all songs, and especially 

those with variable sequencing, motor planning involves both the phonation of individual 

syllables, as well as the ordering of those syllables throughout songs.  Previous birdsong 

research suggested that the control of syllable sequencing is independent of the control of 

syllable phonology (Vu et al. 1994; Yu and Margoliash, 1996).  Song sequence is thought 

to be controlled by the motor nucleus HVC (Vu et al, 1994; Hahnloser et al, 2002); while 

phonological encoding occurs in the robust nucleus of the arcopallium (RA) (Vu et al, 

1994; Leonardo and Fee, 2005).  In current model of song production, timing signals are 

sent from HVC to RA, and RA translates the timing commands into a continuous stream 

of motor commands for the vocal and respiratory muscles (Hahnloser et al, 2002; 

Leonardo and Fee, 2005).  Each syllable in song is thought to be controlled by a different 

ensemble of neurons in RA, with little to no relationship between patterns of RA activity 

and the spectral properties of syllables (Leonardo and Fee, 2005).  These studies were 

conducted in zebra finches (Taeniopygia guttata), a bird with very little variability in 

syllable sequencing (Catchpole and Slater, 1995).  In order to more clearly disambiguate 

signals controlling sequence from those involved in phonology, it is helpful to study a 

birdsong that has variable sequencing of song syllables.  We have therefore used the 

Bengalese finch, a bird with syllables that are often found in different sequences 

(Okanoya, 2004; Sakata et al, 2008), in an effort to understand the influence of sequence 

and phonology on the activity of RA neurons. 
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We have shown in the previous chapter the relationship between sequence and 

phonology on a behavioral level (Chapter 2).  We found that syllable phonology is subtly 

but consistently modified if the same syllable is found in different sequences.  These are 

different changes than those observed between iterations of the same syllable in the same 

sequences of syllables (Sakata et al, 2008; Kao and Brainard, 2006; Sober et al, 2008).  

The effects of sequence upon syllable structure result in differences in the mean spectral 

parameters, whereas changes across iterations of a syllable in the same sequence result in 

variability around mean spectral parameters.  We are interested in how RA activity is 

affected by these mean changes in syllable structure across sequences. 

 

Previous work on the effects of variably sequenced vocalizations in humans has 

shown that there is both a central and peripheral component to changes in phonology 

(Daniloff and Hammarberg, 1973).   At the peripheral level, the rapid changes in muscle 

position can result in adjacent vocalizations influencing one another.  An example of this 

type of phenomenon is seen in the pronunciation of ‘s’ in cats and dogs.  The position of 

the tongue for the letters ‘t’ and ‘g’ is different, and the ‘s’ in dogs is pronounced more 

like a ‘z’ than an ‘s.’  There are also instances where the language commands originating 

in the central nervous system (CNS) are different (Daniloff and Hammarberg, 1973), 

resulting in differences in phonation for the same vocalization found in different 

sequences.  Song syllables of the Bengalese finch also show consistent modifications 

when found in different sequences.  Are these differences a result of differences in neural 

activity in RA? Or, is RA activity the same during each rendition of a syllable, and the 

changes in syllable production are a result of peripheral effects? 
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We have three predictions for how RA may encode the same syllable found in 

different sequences:  

1. RA activity is identical for the same syllable in different sequences. 

2. RA activity is completely different for the same syllable found in different 

sequences. 

3. Differences in RA activity scale with the differences in phonology for the 

same syllable found in different sequences. 

If the first prediction is true, it suggests that all the changes in the phonation of syllables 

across sequences originate in the periphery.  Prediction 2, on the other hand, would 

suggest that these changes are controlled by the CNS.  If the third prediction is true, there 

are several conclusions that can be made.  First, it would imply that the differences in 

syllable structure are at least partially correlated with changes in CNS activity; and 

secondly, Prediction 3 is consistent with a phonological relationship between RA activity 

and syllable structure.   

 

Research on RA activity during zebra finch song suggested that there is no 

relationship between syllable phonology and activity patterns in RA (Leonardo and Fee, 

2005).   A previous study found a relationship between RA activity and spectral 

variability at specific time points during the production of a syllable (Sober et al, 2008; 

Chapter 3).  The current report is different in that mean differences in syllable phonology 

were analyzed with respect to RA activity, not the spectral variability around the mean.   

The current study also examines the structure of the entire syllable in an effort to 
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understand how broader patterns in RA activity relate to syllable structure.  Our 

hypothesis is that Prediction 3 is the most accurate description of syllable encoding in 

RA.  If substantiated, the results of this study would be informative about how patterns of 

RA activity related to syllable production.   
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Methods 

 

Thirteen adult (>100 days), male Bengalese finches were used in the following study 

(labeled BF1 through BF13 in the rest of the text).  The males were reared in the colony 

until the time of experimentation.  They were then housed in individual cages in 

soundproof chambers.  During recording sessions, the birds were isolated in a soundproof 

box where neural and acoustic recordings were made.  Undirected songs (songs sung in 

isolation) were collected while we concurrently recorded single and multi-unit brain 

activity in the Robust Nucleus of the Arcopallium (RA, Figure 1a).  Food and water were 

provided ad libitum throughout the course of the experiment.  All procedures were 

performed in accordance with established animal care protocols approved by the 

University of California, San Francisco Institutional Animal Care and Use Committee. 

 

Electrophysiology: After a period of food and water restriction (>1.5 hours), the birds 

were anaesthetized (20 mg/kg ketamine and 1.5 mg/kg midazolam; followed by 1.0 to 

2.0% isoflurane), and an electrode microdrive was affixed to their skull.  A small 

craniotomy was opened above RA in one hemisphere (10 over the right hemisphere, and 

3 over the left hemisphere), and an array of 3 to 5 electrodes was implanted several 

hundred micrometers above RA.  The birds were left to recover for several days before 

any further experimentation was conducted.  The birds were then isolated in the 

experimental soundproof box, and neural recordings from RA were collected while 

simultaneously recording the bird’s acoustic output.  At the end of an experiment, 
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electrolytic lesions were made at several depths in order to reconstruct the electrode 

trajectory. 

 

An analytical technique described previously was used to classify single versus 

multi-unit recordings (Chapter 1).  Briefly, a principal components analysis was 

performed (PCA) on the collected spike waveforms, and the extent of overlap across the 

first two principal components was measured.  Distributions with an overlap less than 

0.01 were classified as single units, and those with larger overlaps were classified as 

multi-unit recordings.  In total, we recorded from 25 single neurons and from 120 multi-

unit sites.  For the most part, the results discussed below were quite similar for single and 

multi-unit recordings, but we did find a few important differences. 

 

The majority of cells (both single and multi-unit) fired tonically before song, 

transitioned to a more bursty mode during song, and then returned to tonic firing after a 

brief period of inhibition after song (Figure 2.1b).  Infrequently, another variety of cell 

was recorded that was mostly inactive before and after song, but fired vigorously during 

singing.  It is generally accepted in the literature that these cells represent interneurons, 

and the cells that fire tonically between song bouts are projection neurons (Spiro et al. 

1999; Leonardo and Fee, 2005).  Unfortunately, the distributions of spike characteristics 

for each qualitative variety of neuron (rise time, slope, time to half-peak width, time of 

firing) were not distinct, and we could not reliably categorize cells as either one class or 

the other (data not shown).  Because of the few numbers of recordings from putative 



59 

interneurons, and the overlap of distributions for spiking characteristics, we only included 

those cells which we could reliably classify as putative projection neurons.   

 

The bursts of activity during singing were generally associated with song features 

(Figure 2.1c and 2.1d).  Cells fired at multiple times points across the duration of a 

syllable or its interval.  Average activity patterns were analyzed for all cells recorded in 

order to make a qualitative assessment of the neuron’s functional relationship to the song.  

Only those recording sites that were anatomically localized in RA (through histological 

examination of electrode tracts), and modulated by song (through qualitative assessment 

of spike rasters), were used for analysis. 

 

Data Analysis for neural recordings:  Once each recording site was categorized as either 

a single-unit recording or a multi-unit recording (see Appendix 3 for a complete 

description of classifying a recording site as single or mulit-unit), a series of analyses 

were used to measure the similarity of two different spike trains.  The first analysis was 

performed to determine the relevant window of neural activity to be analyzed.  The songs 

of Bengalese finches are composed of short vocalizations (syllables) surrounded by brief 

periods of silence (intervals).  As a first measure of the premotor window in RA 

responsible specifically for syllable production, we measured the covariation of neural 

activity with the timing of syllable production.  A cross-covariance analysis was 

performed between the spike times of RA neural traces with the onsets of syllable 

production.  The second measure of the premotor window was calculated by using call 

notes.  Call notes are unlearned vocalizations that both male and females use that are 
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sung in relative isolation compared with the syllables of songs.  Because of this acoustic 

isolation, we can measure both the start and size of a syllable’s premotor window.   

 

We also made a functional determination of the premotor window using the 

sequence variability inherent to Bengalese finch song syllables.  Sequence variability 

comes in two varieties: convergence points and divergence points.  Convergence points 

are syllables in song that can be preceded by at least two different syllables, and 

divergence points are syllables in song that can be followed by at least two different 

syllables.  At convergence points, the motor plan for vocal production has to transition 

from two different plans to the same one in order to produce the common, convergent 

syllables.  It is at that point of neural convergence that the RA activity is in fact 

controlling production of the convergent syllable.  The point of RA neural convergence 

between two syllable iterations was measured by the use of a d-prime statistic.  The d-

prime statistic describes the discernability of two neural traces.  The equation is as 

follows: 

 

  D’ = (mean(a) – mean(b))/(sqrt(var(a)/var(b))/2) 

 

where a and b represent matrices of neural traces (spike times smoothed with a 5 

millisecond window).  This analysis results in a point-by-point estimate of similarity.  We 

used the absolute value of the d-prime numbers as a measure of similarity between two 

neural matrices.   Larger d-prime numbers indicate an increase in the difference between 

two neural traces, and smaller d-prime values represent more similar neural traces.  We 
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aligned the neural traces for all convergent sequences at the onset of the convergent 

syllables (100 milliseconds before onset, and 100 milliseconds after).  In order to 

determine when the premotor activity was responsible for the convergent syllable 

production, we compared the d-prime values after syllable onset to those before syllable 

onset.  We have made the assumption that the premotor activity in RA immediately after 

syllable onset can only be responsible for the production of the convergent syllable.  As a 

result, this portion of the d-prime trace represents a control value for how similar two 

neural activity traces can be for convergent syllable production.  To perform this analysis, 

the d-prime values in a 30 millisecond window after syllable onset were compared to the 

d-prime values in successive 5 millisecond bins before syllable onset.  A Kolomogrov-

Smirnov test was used to determine when the 5 milliseconds bins before onset were 

significantly different than the d-prime values after syllable onset.  Because there is some 

fluctuation of the neural trace, we used the time when two consecutive 5 millisecond bins 

were significantly above (p < 0.05, KS-test) the post-onset d-prime values as the 

premotor start time.  This was done for both single and multi-unit recordings. 

 

Once a premotor window was determined, we compared the similarity of RA 

neural activity to the spectral similarity of the syllables produced.  For this analysis, we 

took the average of the point-by-point d-prime numbers in a window of equal length to 

the syllable in question (and starting a set amount of time before syllable onset).  By 

averaging across the entire pre-motor window, we generated a single numerical value to 

describe the similarity of two neural matrices.  The similarity of convergent and divergent 

syllables was calculated and compared to the similarity of two other syllable categories: 
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syllables that are always found in the same sequence (same syllable, same sequence), and 

differently labeled syllables.  These two syllable categories were used as lower and upper 

boundary (respectively) estimates for the similarity of convergent and divergent syllables.  

The lower boundary control was calculated by taking the data from the same syllable in 

the same sequence, randomly splitting it into two groups, and calculating the d-prime 

value between the two halves.   For all of the analyses mentioned, only data sets with at 

least thirty iterations were used.  The d-prime numbers for neural activity were then 

compared to the similarity values calculated for the resultant syllables.   

 

Data analysis for acoustic recordings: The acoustic analysis of syllable similarity was 

described at length in a previous chapter (Chapter 2).  Briefly, 40 songs were randomly 

selected from the data set of each bird, and segmented into syllables using both amplitude 

and temporal thresholds.  Syllables were then visually labeled using a different letter for 

each unique syllable in the bird’s songs, and eight different spectro-temporal 

measurements were made for each syllable.  The eight measurements used were: 

duration, pitch, time to half-peak amplitude, frequency slope, amplitude slope, entropy of 

the spectral density, entropy of amplitude versus time, and entropy of the full spectrum.  

Once these measurements were made for all song syllables, a principal components 

analysis (PCA) was then performed on all values from all birds.  The distance between 

syllables in PCA space was used as a measure of similarity.  We used the Euclidean 

distance between the centers-of-mass of two syllables in six-dimensional space (the first 

six principal components accounted for 95% of the variability in the data set after the 

PCA was performed) as our similarity measurement (referred to as COM distance in the 
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rest of the paper).  Syllables that are more spectrally different have larger COM values 

than those that are more similar to each other.  COM values assigned a single numerical 

value to the similarity of two syllables, and could therefore be used in comparisons of 

neural and acoustic similarity.   
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Results 

Thirteen (13) adult (> 100 days), male Bengalese finches were used for the study.  

Neural activity in the robust nucleus of the arcopallium (RA) was recorded 

simultaneously with the songs of the bird (Figure 2.1a).  Songs and the corresponding RA 

activity were then analyzed for any correlations between syllable sequencing and changes 

in brain activity.  

 

 
Figure 2.1: (a) Saggital view of the avian song system.  In red is the motor pathway.  
Chronic neural recordings were made from the robust nucleus of the arcopallium (RA).  
(b) Song oscillogram (top) and corresponding neural activity in RA (bottom) during song 
from BF1.  (c) Spectrogram (top) of a repeated syllable in BF1, and the neural activity in 
RA during that syllable (bottom).  (d) Spike raster (blue tick marks) of 20 iterations of the 
repeated syllable shown in C, as well as the average spiking behavior (in pink). 
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DESCRIPTION OF BEHAVIORAL VARIABILITY 

In Bengalese finch song, there are two varieties of sequence variability that affect 

syllable phonology.  We will use the terminology local effects and global effects in 

reference to each type of change in sequence because they can be differentiated based 

upon temporal characteristics.  These effects have been described in a previous chapter 

(Chapter 1).  Briefly, local effects are those that describe the influence of adjacent 

syllables upon one another.  These effects were most pronounced for convergence points, 

suggesting that motor history influences current vocalizations.   An example of the 

differences in convergent syllable production, as well as the underlying RA neural 

activity is shown in Figure 2.2a and 2.2b, respectively.   

 
Figure 2.2: (a) Segment of song from BF2 (spectrogram, top; raw RA neural trace, 
bottom) showing the convergent sequences of syllable A.  (b) Zoom of the convergent 
sequences H-A (left) and C-A (right).  Shown are spectrograms (top), RA activity 
(middle), and spikes rasters (bottom) for each syllable sequence.  (c) Song of BF3 
showing the ordering of divergent sequences A-B and A-C throughout song (top, 
spectrogram; bottom, RA activity).  (d) Zoom of the divergent sequences A-B when 
another A-B follows (left), and A-B when A-C follows (right).  Shown are spectrograms 
(top), RA activity (middle), and spikes rasters (bottom) for each syllable sequence. 
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Shown are the two convergent sequences H-A and C-A (syllable A being the 

‘convergent’ syllable).  The differences in RA neural activity are immediately apparent 

for this syllable, with a robust increase in firing for syllable A in the C-A sequence 

(Figure 2.2b, middle).  Each example of convergent and divergent syllables was analyzed 

with respect to the patterns of premotor activity in RA as a way of quantitatively 

demonstrating the relationship between RA activity and syllable phonology.   

 

Whereas ‘local effects’ describes the influence of immediately adjacent syllables, 

‘global effects’ are those associated with patterns across many more syllables (mean = 8 

syllables, max = 25 syllables).  Global effects relate to the ordering of specific convergent 

and divergent syllables throughout song.  An example of global sequence effects is 

shown in Figure 2.2c.  In this example song, there are two different divergent sequences: 

A-B and A-C.  The analysis on global effects only evaluates syllable A in the sequence 

A-B, but focuses on whether the next syllable A divergent sequence is A-B or A-C.  If 

the next divergent sequence is A-B, then successive instances of this divergence point are 

considered the same.  If, on the other hand, the next divergent sequence is A-C, then 

successive instances are considered to be different.  Instances of A-B where the next 

divergent sequence is the same are compared to instances of A-B where the next 

divergent sequence is different.  For these syllables, the ‘local effects’ are the same 

(because the immediate sequences are identical), but extended patterning of sequences in 

song are different.  In the example shown in Figure 2.2c and 2.2d, the burst of RA 
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activity preceding A-B is slightly broader when the next transition is A-B instead of A-C.  

The local and global effects of sequence upon RA activity will be discussed at length 

below. 

 

DETERMINING THE RA PRE-MOTOR WINDOW 

In order to compare the neural activity associated specifically with syllable 

production, it was necessary to determine the temporal boundaries of a syllable’s 

premotor window (Figure 2.3).   

 
Figure 2.3: (a) Cross covariance of single (red) and multi-unit recordings (blue) in RA 
and the onset times of syllables.  (b) Cross covariance of multi-unit recordings in RA and 
the calls.  (c) Alignment of all point-by-point d-prime statistics for single (red) and multi-
unit (blue) convergence point syllable onsets. 
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Bursts of activity in RA occur at multiple time points throughout a syllable’s duration, as 

well as during inter-syllable intervals, and it is therefore not straight-forward to determine 

exactly what burst of RA activity is responsible for syllable production.  As a result, we 

have employed multiple methods in order to accurately determine the start and size of the 

RA premotor window.  First, we performed a cross covariance analysis between the 

traces of RA neural activity during songs, and the onset times of the syllables (Figure 

2.3a).  This analysis works under the assumption that syllable production requires activity 

in RA, and that the initiation of a syllable should correlate with an increase in activity in 

RA.  By cross-covarying spike times with syllable onsets, we determined a start time for 

the premotor window of approximately fifty (50) milliseconds before the beginning of a 

syllable.   

 

We also analyzed the covariance of premotor activity in RA with the timing of 

calls.  By using calls, it is possible to provide an estimation of both the size and start of 

the premotor window because of the relative temporal isolation of these vocalizations.  

The average analyzed call was 200 milliseconds, and the width of the correlation peak 

was approximately 250 milliseconds (the start of the rise of the covariation peak was 

again at 50 milliseconds prior to syllable onset, Figure 2.3b).  These data support a 

window length size that is at least as long as the length of the syllable being analyzed, 

and further substantiate the premotor window start time of 50 milliseconds prior to 

syllable onset.   
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As a final method of defining the premotor window, we analyzed neural 

convergence for convergent syllables as a way of functionally determining the premotor 

window.  If neural convergence does indeed occur at behavioral convergence points, then 

the time at which that occurs can be used as a functional determination of the premotor 

start time.  The rationale is that for two convergent syllables, the moment when neural 

activity is indistinguishable across each sequence is an indication of the time when RA 

activity has shifted to the control of the common syllable.  We compared the similarity of 

the neural traces (using the d-prime statistic) after syllable onset to the similarity before 

onset.  This analysis was designed to determine if and when the two convergent syllable 

neural traces become as similar as two neural traces responsible for the same acoustic 

output.  We have found that RA activity for convergent syllables does become very 

similar prior to syllable onset, at a time approximately 25 milliseconds before syllable 

onset (Figure 2.3c).  Combining the results of three analyses discussed above (with a bias 

toward being conservative and not choosing the extremes of the analysis), leads us to 

conclude that an appropriate premotor window for RA activity begins 30 milliseconds 

prior to syllable onset, and extends for the length of the syllable being analyzed. 

 

RA ACTIVITY FOR THE SAME SYLLABLE IN MULTIPLE SEQUENCES 

Now that we have a good estimate of the start and length of the RA premotor 

window for syllable production, we can begin to analyze patterns of neural activity 

associated with song behavior.   Our initial question was how RA activity compared for 

the same syllable found in different sequences, and we proposed three possibilities for 

how this may occur (see Introduction).  In an attempt to address the first possibility (RA 
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encodes the same syllable in different sequences identically), we compared the similarity 

of neural activity for convergent and divergent syllable production to the similarity of RA 

activity responsible for the same syllable in the same sequences (lower boundary 

control).  We found, for both single and multi-unit data, that RA activity for convergent 

and divergent syllables was less similar than RA activity during production of the same 

syllable in the same sequence (Figure 2.4b and 2.4c, green, red and blue lines, KS-Test, p 

< 0.0001).   

 
Figure 2.4: (a) Cumulative distribution function (CDF) of d-prime statistics of multi-unit 
activity for each syllable category: same syllable, same sequence (green); divergent 
syllables (red); convergent syllables (blue); and differently labeled syllables (black).  All 
syllable categories are significantly different from one another (KS-Test, p <0.0001).  (b) 
CDF of d-prime statistics of single unit activity for each syllable category: same syllable, 
same sequence (green); divergent syllables (red); convergent syllables (blue); and 
differently labeled syllables (black).  All syllable categories are significantly different 
from one another (KS-Test, p <0.0001). 

 

From this result, we conclude that the first possibility for how RA may encode the same 

syllable in different sequences is incorrect: the activity is not identical across sequences.  

 

The second possibility previously outlined for RA may encoding of the same 

syllable in different sequences states that the activity will be completely different across 

sequences.  To examine this option, neural activity for convergent and divergent syllables 
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was compared to the RA activity for differently labeled syllables (upper boundary 

control).  The RA activity responsible for convergent and divergent syllables was 

significantly more similar than that for differently labeled syllables (Figure 2.4b and 2.4c, 

red, blue and black lines, KS-Test, p < 0.0001).  This result rules out the second 

prediction on RA encoding of syllables in different sequence: RA activity is not 

completely different for convergent and divergent syllable production.   

 

In broad strokes, the results of the analysis above illustrate that the similarity 

across categories of syllables scales with the similarity of the underlying RA activity.  

We found that neural activity in RA is most similar when producing the same syllable in 

the same sequence, followed by divergent syllables, convergent syllables and differently 

labeled syllables.  The order of neural similarity across these four syllable categories is 

identical to progression of syllable similarities at the behavioral level (see Appendix 2, 

Figure 2.2 for syllable similarity analysis).  This conclusion lends support to a 

phonological component to the RA code (Prediction 3). 

 

PHONOLOGICAL ENCODING IN RA 

In the above analysis, we found that neural and syllable similarity scale with one 

another across syllable categories.  In order to look at the issue of phonological encoding 

on a finer scale we compared the acoustic similarity of each convergent or divergent 

syllable to the similarity of the neural activity responsible for its production.  Syllable 

similarity was measured as described previously by using PCA of eight different syllable 
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features (Chapter 2).  These similarity values were plotted against the corresponding 

neural d-prime numbers for each recording site from each bird (Figures 2.5a and 2.5b).   

 
Figure 2.5:  (a) Syllable similarity versus multi-unit neural similarity for convergent 
(blue) and divergent syllables (red).  There is a significant, positive relationship between 
divergent syllable similarity and RA similarity (r = 0.47, p < 0.0001), as well as between 
convergent syllable similarity and RA similarity (r = 0.23, p < 0.0001). The green dot is 
the mean +/- 1 standard error ellipse for the same syllable in the same sequence as 
comparison.  (b) Syllable similarity versus single unit neural similarity for convergent 
(blue) and divergent syllables (red).  There is a significant, positive relationship between 
divergent syllable similarity and RA similarity (r = 0.56, p < 0.0001), but not between 
convergent syllable similarity and RA similarity (r = 0.07, p = 0.53). The green dot is the 
mean +/- 1 standard error ellipse for the same syllable in the same sequence as 
comparison.  (c) Comparison of 95% confidence intervals for the single and multi-unit 
analysis of convergent (blue) and divergent (red) syllables.  The 95% confidence 
intervals are overlapping for single and multi-unit data.  (d) Data from convergent and 
divergent syllables less than the mean +2 S.D. of the same syllable, same sequence COM 
distance.  Divergent syllables values (red) for neural activity are not significantly 
different than neural similarity values of the same syllable in the same sequence (green) 
(p = 0.38, t-test). Convergent syllable (blue) neural similarity is significantly greater than 
same syllable, same sequence similarity (p < 0.0001); 

 

We compared multi-unit and single unit data separately in order to determine if there 

were any differences in encoding when more or less neurons were recorded.  For multi-
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unit sites, we found a significant positive relationship between convergent and divergent 

syllable similarity and the similarity of neural activity in RA (Figure 2.5a, divergent in 

red, r = 0.47, p < 0.0001; convergent in blue, r = 0.23, p < 0.0001).  The same was true 

for divergent syllable single unit recordings (Figure 2.5b, red line, r = 0.56, p <0.0001), 

but for convergent syllables, no relationship was found between single-unit neural 

activity and syllable similarity (Figure 2.5b, blue line, r = 0.07, p = 0.53).  The 95% 

confidence intervals for the correlation coefficients of single and multi-unit recordings 

were overlapping (Figure 2.5c), however, suggesting that the relationship between RA 

activity and syllable structure is similar for single unit and multi-unit recordings.  These 

results imply that phonology is indeed encoded in RA, with the underlying activity for 

more disparate syllables being less comparable than that for spectrally similar syllables.  

Changes in neural activity are therefore correlated with proportional changes in syllable 

phonology, lending further evidence in support of phonological code in RA (Prediction 

3). 

 

In order to test whether the relationship between syllable phonology and RA 

activity holds for more disparate syllable types, we analyzed the RA activity responsible 

for differently labeled syllables.  In analyzing both multi and single unit sites for 

differently labeled syllables, we found a significant, but weak (low r2) relationship 

between syllable similarity and neural similarity (Figure 2.6a, multi-units, r = -0.05, p = 

0.007; Figure 2.6b, single units, r = 0.15, p = 0.0001).   
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Figure 2.6:  (a) Syllable versus multi-unit neural similarity for differently labeled 
syllables.  There is a small, but significant relationship (r = -0.05, p = 0.007).  (b) Syllable 
versus single unit neural similarity for differently labeled syllables.  There is a small, but 
significant relationship (r = 0.15, p = 0.0001). 

 

These results suggest that although a significant correlation exists between 

convergent/divergent syllable phonology and RA activity, extrapolating to more disparate 

syllable types attenuates this relationship, especially for multi-unit sites. 

 

SEQUENCE VS. PHONOLOGY IN RA ACTIVITY 

The analysis on convergent and divergent syllable encoding in RA implies that 

syllable phonology differs, so to does the neural activity in RA responsible for 

production.  We were interested in whether the patterns of RA activity are only 

influenced by phonology, or if other factors, such as sequence, may influence neurons in 

RA.  In order to examine whether RA activity was solely controlling phonology, we 

compared the convergent and divergent syllables analyses to that of the same syllable in 

the same sequence.  The mean plus one standard error ellipses for syllable and neural 

similarity of the same syllables in the same sequences are plotted in Figure 2.5a and 2.5b 

(green ellipses near the origin).  By examining whether the linear regressions for 
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convergent and divergent syllables (single and multi-units) intersect with the values for 

the same syllables in the same sequences, we can determine the contribution of 

phonology to RA activity.  This analysis allows us to extrapolate from the convergent and 

divergent syllable data to down to similarity values that are equivalent to the same 

syllable in the same sequence.  If the linear regression intersects the values for the same 

syllable in same sequence, it suggests that RA is mostly involved in phonology.  On the 

other hand, if the linear regression does not intersect those values, it suggests that some 

other song feature beyond phonology is causing differences in RA activity.  In other 

words, if the extrapolated d-prime values for low COM convergent and divergent 

syllables are still higher than d-prime values for the same syllable in the same sequence, 

it suggests that there is some residual difference in RA activity even when all differences 

in production have been accounted for.  After taking into account the 95% confidence 

intervals for the linear regression (Figure 2.5c), we find that the regression lines for 

convergent and divergent syllables do intersect the values for the same syllable found in 

the same sequence.  These results imply that RA activity is primarily controlling syllable 

phonology, providing additional support for Prediction 3. 

 

As a further test of the influence of phonology and sequence upon RA activity, we 

compared the data from the same syllable in the same sequence to restricted data sets of 

convergent and divergent syllables.  These data sets were restricted to those divergent or 

convergent syllables that were as similar as the same syllable in the same sequence.  This 

was accomplished by only including divergent and convergent syllables with COM 

distances less than the 2 standard deviations above the mean of the same syllable in the 
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same sequence.  By comparing only very similar renditions of divergent syllables, we 

found that the underlying neural activity was as similar as RA activity responsible for the 

same syllable in the same sequence (Figure 2.5d, red versus green, p > 0.05, t-test).  The 

differences in neural activity responsible for similar renditions of convergent syllables, on 

the other hand, was significantly greater than that for the same syllable in the same 

sequence (Figure 2.5d, blue versus green, p < 0.0001, t-test).  The source of these 

differences between convergent and divergent syllable encoding will be discussed below.  

From this analysis, we can conclude when divergent syllable phonology is controlled for, 

differences in RA neural activity do not pertain to sequence.    

 

GLOBAL EFFECTS OF SEQUENCE UPON RA ACTIVITY 

The global effects upon syllable structure discussed above imply that sequence 

and phonology interact in multiple ways.  In order to address whether any correlation can 

be found between sequence and the premotor activity of RA, the global effects of 

sequence upon phonology were analyzed with reference to changes in RA activity.  We 

analyzed RA firing for any effects of global song sequencing, and found that premotor 

activity for convergent and divergent syllables was modified by these temporally distant 

patterns in sequencing.  This result was true for both multi-unit and single unit sites 

(Figure 2.7b and 2.7c; in blue, convergences > same syllable same sequence, p < 0.0001; 

in red, divergences > same syllable same sequence, p < 0.0001).   
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Figure 2.7: (a) Schematic of how successive sequence syllables are defined.  In red are 
two different DIV syllable transitions (A-B and A-F) separated by several other syllables.  
This is an example of a successive divergence relationship between syllables.  In blue is 
an example of two successive convergence syllables: two convergence points involving 
the same convergent syllable separated by other unrelated syllables.  (b) CDF of d-prime 
statistics of multi-unit activity for each successive syllable category: same syllable, same 
sequence (green); divergent syllables (red); convergent syllables (blue); and differently 
labeled syllables (black).  All syllable categories are significantly different from one 
another (KS-Test, p <0.0001), except for successive divergence points and divergence 
point (p > 0.05).  (c) CDF of d-prime statistics of single unit activity for each successive 
syllable category: same syllable, same sequence (green); divergent syllables (red); 
convergent syllables (blue); and differently labeled syllables (black).  All syllable 
categories are significantly different from one another (KS-Test, p <0.0001), except for 
successive divergence points and divergence point (p > 0.05). 

 

Remember that syllable phonology is also altered by distant patterns in sequencing, and 

as such, the analysis of global effects upon RA activity does not necessarily imply that 

sequence influences neurons in RA.  Therefore, the global effects of sequence on RA 

activity lend further evidence to Prediction 3 being the most accurate description of how 

RA encodes the same syllable in different sequences. 
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Discussion 

 Previous work on the song motor pathway in birds has suggested that syllable 

sequence and phonology are controlled independently: HVC encodes sequence, and RA 

is involved in syllable production (Vu et al, 1994, Yu and Margoliash, 1996; Leonardo 

and Fee, 2005).  These experiments were performed in zebra finches, a bird with highly 

stereotyped syllable sequencing.  By studying the variable songs of Bengalese finch, we 

had more opportunities to disambiguate sequence from phonological encoding in the 

motor pathway.  We focused on RA, and found further evidence that RA is primarily 

involved in syllable production.  Unlike previous reports, however, we found a 

phonological relationship between different patterns of activity in RA: as neural activity 

in RA becomes more different, so to does the phonology of the resultant syllable.  These 

results substantiated Prediction 3 (see Introduction), which states that the similarity of 

RA encoding for the same syllable in different sequences is proportional to the similarity 

of the syllables. 

 

 We were able to find a relationship between RA activity and phonology for 

several reasons.  We found that in ‘neighborhoods’ of similar syllables (convergent and 

divergent syllables), that there is a relationship between syllable structure and RA 

activity.  By making our measurements across similar syllables, we increased the 

likelihood of finding a phonological relationship across RA activity patterns.  This is 

because similar pools of neurons are most likely active in RA for these syllables.  If the 

same pool of neurons is active in RA, a similar pattern of activity is being sent to the 

motoneurons in the brainstem.  Subtle changes in the activity of the same populations of 
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neurons may not drastically alter motoneuron firing as much as the interactions of 

different populations of neurons.  On the behavior side, the changes between the same 

syllable in different sequences are much smaller than that between differently labeled 

syllables.  The actual real difference in muscle activations at the motor periphery may 

just be the alteration of a few aspects of the vocal apparatus (expiratory pressure, tension 

on one muscle, etc).  We are measuring features of the spectrogram as proxy for motor 

commands to the syrinx and respiratory centers, and this transformation may introduce 

some non-linearities to our analysis.  When similar pools of neurons are active, on the 

other hand, we may be in a more linear range of the relationship between neuronal firing 

and the spectrogram.  Because of the simple changes to both RA and the syllables at 

convergent and divergent syllables, the restricted range of our measurements increases 

our ability to find a relationship between neural activity and behavior.   

 

The production of more disparate syllable types, on the other hand, may result in 

different pools of neurons being active, along with more complex changes at the 

periphery for syllable production.  This results in several non-linearities being introduced 

into our neuronal and behavioral measurements.  First, because of the great convergence 

of RA inputs onto the brainstem, the interactions between different pools of neurons may 

have more complicated effects on motoneuron firing than similar pools of neurons.  

Secondly, the differences in muscle and respiratory control for different syllables involve 

the interaction of many vocal effectors, and their interactions may further obscure our 

ability to correlate brain and behavior.  The result of these added layers of effects may be 

that it is difficult to find a relationship between RA activity and syllable phonology for 
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disparate syllables.  This effect is evident in our analysis of differently labeled syllables, 

as well as in previous studies correlating RA activity with spectrograms of songs 

(Leonardo and Fee, 2005). 

 

The relationship between syllable phonology and RA activity was stronger for 

divergent syllables than it was for convergent syllables (Figure 2.5).  Beyond these 

syllables having differences in similarity, another source of RA differences can be 

understood by looking at the motor history of convergent and divergent syllables.  

Through our functional determination of the RA premotor window using convergent 

syllables (Figure 2.4c), we found that complete neural convergence did not occur until 25 

milliseconds before syllable onset in some cases.  The premotor window used for analysis 

started 30 milliseconds before onset, which may include some time when the song system 

musculature is still transitioning from two different states to the same muscle state.  The 

premotor window therefore included some time when different control signals were being 

employed.  The motor history leading up to divergent syllables is very similar, however, 

meaning that the muscle configurations are already the same well before production 

initiates.  At convergence points, our premotor window necessarily has some component 

that is involved in different muscle activations, whereas the pattern of muscle activations 

before divergent points is the same.  The result of this phenomenon is that the 

relationship between RA activity and divergent syllable phonology should be stronger 

than the relationship between RA activity and convergent syllables.  Throughout our 

analysis, divergent syllable/neural relationships were stronger than those for convergent 

syllables. 
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The discussion thus far has been concerned with identifying the phonological 

component of premotor activity in RA.  We are also interested in determining if any 

signature of syllable sequence can be found in the RA code.  We found in a prior chapter 

that phonology can be altered by the way specific sequences of syllables are ordered 

throughout song (Chapter 1).  In this situation, the same syllable found in the same 

sequence (identical motor contexts) can vary significantly in structure due to the 

influence of syllables many syllable positions away (global effects).  We believe that 

these effects are due to some underlying long term change in the circuit properties of 

song system, possibly comparable to changes such as those associated with female-

directed versus undirected song (Sakata, Hampton, and Brainard, 2008).  We found that 

RA activity was influenced by the global effects of sequencing, but because the syllable 

themselves are also different, it is not possible to determine if there are any changes 

specific to sequence.  The phonological relationship between RA activity and the 

structure of convergent and divergent syllables leads us to believe that the differences in 

RA as a result of global sequence effects are primarily driven by changes in phonology 

(not sequence).  This implies that the activity upstream of RA, possibly in HVC, is 

influenced by global sequence effects, and these differences in turn affect RA activity.  

 

By viewing the current results in the broader framework of previous studies on 

RA activity in singing birds, we can begin to make a more complete model of RA 

encoding during song production.  In a previous report, we found that trial-by-trial 

variability of acoustic structure for the same syllable found in the same sequence was 
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correlated with the firing of RA neurons (Sober, Wohlgemuth and Brainard, 2008, 

Chapter 3).  The current results add a new layer onto this earlier finding.  In this study, 

we found a correlation between mean changes in syllable structure and mean changes in 

RA activity, which is different than finding a correlation between variability in RA and 

variability in syllable parameters.  The current result indicates that the motor code in RA 

is strictly phonological, and that by measuring changes in RA activity, we should be able 

to predict changes in syllable structure. 

 

 The relationship between RA activity and phonology also speaks to whether the 

differences in syllable production across sequences were the result of central or 

peripheral effects.  Considering the phonological relationship between RA activity and 

syllable structure, we conclude that some portion of the changes in phonation due to 

sequence is driven by changes in RA activity.  While we cannot rule out the possibility of 

sequence interactions at the peripheral level, a CNS source of syllable changes suggests 

that birds can actively shape syllable transitions.  As with other song parameters, the fine 

motor control necessary for syllable transitioning must be learned and maintained.  Birds 

therefore retain the ability to make adjustments to their syllable transitions throughout 

life. 

 

The above results demonstrate two new findings about the control of syllable 

production in RA.  We found that there is a direct relationship between syllable 

phonology and the underlying patterns of neural activity for vocal production.  We also 

found evidence that similar pools of neurons are active when the same syllable is sung in 



83 

multiple sequences.  Our data delve deeper into the activity patterns of RA in an attempt 

to more fully describe the involvement of RA during song production.  With these results, 

we hope to provide new insights into how RA activity shapes syllable production on a 

moment-by-moment basis. 
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CHAPTER THREE 

CENTRAL CONTRIBUTIONS TO SYLLABLE 
VARIABILITY 
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Abstract: 
 
 Birdsong is a learned behavior remarkable for its high degree of stereotypy.  

Nevertheless, adult birds display substantial rendition-by-rendition variation in the 

structure of individual song elements or 'syllables.'  Previous work suggests that some of 

this variation is actively generated by the avian basal ganglia circuitry for purposes of 

motor exploration.  However, it is unknown whether and how natural variations in 

premotor activity drive variations in syllable structure.  Here, we recorded from the 

premotor nucleus RA (robust nucleus of the arcopallium) in Bengalese finches and 

measured whether neural activity co-varied with syllable structure across multiple 

renditions of individual syllables.  We found that variations in premotor activity were 

significantly correlated with variations in the acoustic features (pitch, amplitude, and 

spectral entropy) of syllables in roughly a quarter of all cases.  In these cases, individual 

neural recordings predicted 8.5 +/- 0.3% (mean +/- S.E.) of the behavioral variation, and 

in some cases accounted for 25% or more of trial-by-trial variations in acoustic output.  

The prevalence and strength of neuron-behavior correlations indicate that each acoustic 

feature is controlled by a large ensemble of neurons that vary their activity in a 

coordinated fashion. Additionally, we found that correlations with pitch (but not other 

features) were predominantly positive in sign, supporting a model of pitch production 

based on the anatomy and physiology of the vocal motor apparatus.  Collectively, our 

results indicate that trial-by-trial variations in spectral structure are indeed under central 

neural control at the level of RA, consistent with the idea that such variation reflects 

motor exploration. 
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Introduction:  

 The acquisition of any complex sensorimotor skill – whether learning to speak or 

to throw a curveball – is associated with a gradual decrease in motor variability.  Our 

initial attempts are usually variable and inaccurate, apparent in the babbling speech or 

wild pitches familiar to anyone who has observed motor learning in action.  With 

practice, however, we learn to control our motor system until we can reliably produce the 

desired output. 

 Despite these dramatic changes during learning, even well-practiced movements 

retain some variability.  This trial-by-trial variation might originate in the motor 

periphery, reflecting unreliability either at the neuromuscular junction or in the muscles 

themselves.  In this case, the central nervous system (CNS) might encode the same motor 

output during each rendition of a well-learned task, with behavioral variability resulting 

solely from downstream noise.  

 Alternately, variability might be generated centrally as variations in the motor 

command.  Recent studies in the oculomotor system have demonstrated that trial-by-trial 

variations in the activity of single neurons correlate with measurable variations in eye 

movement (Medina and Lisberger, 2007).  Furthermore, variation in the activity of 

cortical neurons can predict the kinematics of arm movements even before reaching 

movements begin (Churchland et al., 2006b).  These results suggest that some of the 

“residual” variation in well-learned skills is driven by the CNS. 

 Birdsong is an excellent model system for studying the neural processes 

underlying motor control and motor variation.  Song learning begins with exposure to the 

song of an adult male “tutor” and is characterized by a dramatic reduction in variation as 
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the developing song becomes more similar to the tutor’s (Arnold, 1975; Tchernichovski 

et al., 2001; Kittelberger and Mooney, 2005).  By adulthood, song in many species 

becomes highly stereotyped or “crystallized,” and remains so throughout the bird’s life.  

Three examples of crystallized song from a Bengalese finch are shown in Figure 3.1a to 

illustrate the consistency of vocal output across multiple renditions.  

 

Figure 3.1.  Acoustic variation in Bengalese finch song.  (a) Top, raw sound amplitude 
waveform of five syllables (labeled ABCDE) from the song of an adult Bengalese finch.  
Middle, smoothed rectified sound amplitude waveform.  Bottom, spectrograms of three 
different iterations of this motif.  Spectrograms show the power at each frequency (color 
scale) as a function of time.  The topmost spectrogram corresponds to the example sound 
waveform.  Acoustic features such as pitch and amplitude were measured at a fixed time 
(red dashed line for syllable “B”) relative to syllable onset (green dashed line).    (b)  
Distributions of the pitch (top) and amplitude (bottom) of syllable “B” across 1919 
renditions of the syllable.  (c) The song system is composed of a direct motor pathway 
consisting of nuclei HVC and RA and an anterior forebrain pathway (AFP) containing 
Area X, the medial portion of the dorsolateral thalamus (DLM) and lMAN.  RA sends 
projections to motor neurons in the tracheosyringeal portion of the twelfth motor nucleus 
(nXIIts), which innervates the muscles of the syrinx, and to motor nuclei retroambigualis 
(RAm) and paraambigualis (PAm), which innervate the respiratory musculature (Vicario 
and Nottebohm, 1988; Wild, 1993; Reinke and Wild, 1998) 

 

However, despite the stereotypy of crystallized song, adult birds still demonstrate 

significant variation in acoustic output across multiple renditions of the same syllable 

(Tchernichovski et al., 2001; Kao et al., 2005; Olveczky et al., 2005; Kao and Brainard, 

2006; Sakata et al., 2008).  We refer to such cross-rendition variation in syllable structure 
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as "trial-by-trial" variation.  Figure 3.1b shows the trial-by-trial variation of two acoustic 

parameters (pitch and amplitude) for one syllable of crystallized song. 

Recent work in the zebra finch has suggested that a significant component of trial-

by-trial variation in syllable structure is central in origin.  The anterior forebrain pathway 

(AFP), via its output nucleus lMAN (lateral magnocellular nucleus of the anterior 

nidopallium), sends input to the motor pathway nucleus RA (Figure 3.1c).  Several lines 

of evidence implicate lMAN as a source of trial-by-trial variation: lesions or inactivation 

of lMAN dramatically reduce variation (Kao et al., 2005; Olveczky et al., 2005; Kao and 

Brainard, 2006), stimulation in lMAN affects the pitch and amplitude of individual 

syllables, and the level of variation in lMAN activity correlates with the level of variation 

in behavior (Kao et al., 2005).  An intriguing implication of these findings is that lMAN 

might contribute to behavioral variation by injecting neural variation into RA, and that 

the role of the AFP in the adult bird might include adding variation to song for purposes 

of motor exploration during learning (Doya and Sejnowski, 2000; Kao and Brainard, 

2006; Fiete et al., 2007; Tumer and Brainard, 2007).   

 It is unclear, however, how variation generated by the AFP passes through RA 

and into the motor periphery, or indeed whether trial-by-trial neural variation in RA has 

any behavioral consequences at all.  The activity of RA neurons is distinguished by an 

extremely low level of variability and is far more precise than that observed in neurons of 

the primate motor cortex (Chi and Margoliash, 2001; Leonardo and Fee, 2005). 

Individual RA neurons fire stereotyped patterns of bursts during stereotyped sequences of 

song syllables. Moreover, variations in the timing of these RA bursts covary with 

differences in the timing of syllable features (Chi and Margoliash, 2001).  The result of 
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this temporal covariation is that each syllable is consistently preceded by the same pattern 

of RA bursts, regardless of whether it occurs slightly earlier or later than average.  This 

precise temporal alignment, however, begs the question of whether and how trial-by-trial 

variations in the number of spikes in each burst leads to trial-by-trial variations in the 

acoustic structure of syllables. 

If RA and upstream areas are to drive trial-by-trial changes in behavior, then RA 

activity must vary from trial to trial and these variations must in turn drive variations in 

song.  Such variation in neural activity might be distributed across RA in several different 

ways.  In one model, variation might be restricted to a small subpopulation of RA 

neurons, which exert powerful control over trial-by-trial variations in behavior (Figure 

3.2a).   

 

Figure 3.2:  Three models of how RA might drive trial-by-trial variation in song.  Circles 
represent populations of RA projection neurons and wavy arrows represent their 
contribution to variations in syllable structure (pitch in this case).  In one model (a), a 
small number of independently varying RA neurons each drive a substantial amount of 
pitch variation (heavy arrows).  In this case, a small proportion of RA neurons would 
exhibit correlations with pitch, and these correlations would be quite strong (indicated by 
filled black circles), reflecting the substantial influence of each neuron.  In a second 
model (b), large numbers of independently varying RA neurons each make small 
contributions to pitch variation (thin arrows), with pitch variations resulting from the sum 
of independent modulations in firing.  In this case, the activity of many neurons would be 
correlated with pitch, but these correlations would be weak (indicated by the lightly 
shaded circles), since each neuron is responsible for only a small fraction of behavioral 
variation.  In a third model (c), large numbers of RA neurons generate correlated activity 
(curved arrows), driving pitch modulations with coordinated changes in activity.  In this 
case, many neurons might exhibit correlations with each acoustic feature, and the strength 
of these correlations could be quite high (black circles), since variations in the firing of 
any one cell are correlated with variations in the entire population.  In the Discussion, we 
consider the implications of our results in discriminating between these models. 
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Alternately, every neuron in RA might vary its activity independently, influencing motor 

output with the sum of many independent fluctuations (Figure 3.2b).  In a third model, 

trial-by-trial variations across the RA population might be correlated such that variations 

in behavior result from coordinated changes in firing across many neurons (Figure 3.2c). 

We hypothesized that a component of the acoustic variability observed across 

multiple iterations of the same syllable is indeed the consequence of trial-by-trial 

variations in RA activity. To test this, we recorded from RA neurons during singing in 

adult Bengalese finches and asked whether variations in spiking activity across multiple 

renditions of individual syllables could account for variations in the pitch, amplitude, and 

spectral entropy of those syllables.  Furthermore, by examining the prevalence, signs, and 

strengths of correlations between premotor activity and acoustic output we investigated 

how variation is distributed across the population of RA neurons and compared how 

pitch, amplitude, and spectral entropy are encoded in RA. 
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Methods: 

 Adult (>100 days old) Bengalese finches (Lonchura striata var. domestica) were 

bred in our colony and housed with their parents until at least 60 days of age.  Following 

electrode implantation, birds were isolated and housed individually in sound-attenuating 

chambers (Acoustic Systems, Austin, Texas) with food and water provided ad libitum.  

Unless otherwise specified, all recordings presented here are from undirected song (i.e. 

no female was present).  All procedures were performed in accordance with established 

animal care protocols approved by the University of California, San Francisco 

Institutional Animal Care and Use Committee (IACUC). 

 

Electrophysiological data collection: 

 Birds were anesthetized (induction with 20 mg/kg ketamine and 1.5 mg/kg 

midazolam, maintained with 0.5-2.0 % isoflurane) and a lightweight microdrive (Hessler 

and Doupe, 1999) was positioned stereotactically over RA in one hemisphere (10 

implants over right RA, 3 over left RA) and secured to the skull with epoxy.  Each 

microdrive carried a custom-made array of 3-5 high-impedance microelectrodes 

(Microprobe WE1.5QT35.0A3) with all electrode tips grouped within 300 µm of each 

other.  After recovery from surgery, birds resumed singing within 1-3 days.  After singing 

resumed, electrode arrays were lowered into RA.  Extracellular spike waveforms as large 

as 4.5 mV were recorded during and between bouts of singing.  RA recording sites were 

identified by the presence of characteristic changes in activity associated with the 

production of songs and calls and by post hoc histological confirmation of trajectory of 
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each electrode array.  In a subset of birds (which contributed ~31% of all recorded units), 

we were able to estimate the dorsal-ventral position of the array on each recording.  We 

observed no significant differences between dorsal and ventral RA with respect to the 

prevalence or sign of correlations between neural activity and acoustic output.  

 We used a quantitative technique (see “Quantifying unit isolation” in Appendix 3) 

to measure the isolation of spike waveforms.  Briefly, we performed principal 

components analysis (PCA) on recorded voltage waveforms, examined their projections 

along the first two components, and quantified the extent of overlap between waveform 

clusters.  Recordings yielding clusters with overlaps of less than 0.01 were classified as 

single units, and recordings with larger overlaps were classified as multiunit clusters, 

reflecting the potential contribution of several neurons to each recording.  This technique 

yielded isolation estimates that agreed well with both qualitative assessments of isolation 

and estimates based on spike refractory periods.  As described below, data from single- 

and multiunit recordings yielded nearly identical results.  In total we collected 145 RA 

recordings (25 single-unit, 120 multiunit) from 13 birds.  Unless the level of isolation is 

specified, the term “unit” in this paper refers to either a single unit or to one multiunit 

cluster. 

 

Spiking statistics: 

In quantifying the firing statistics of single units (n=25) in the Bengalese finch, 

we performed analyses similar to those in a prior study of zebra finch RA (Leonardo and 

Fee, 2005) to facilitate comparison between the two species.  Instantaneous firing rate 

was defined as the inverse of the interspike interval (ISI) and computed for all single 
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units using only data recorded during singing.  Based on the bimodal distribution of 

instantaneous firing rate shown in Figure 3.3c, we selected a 50 Hz threshold dividing 

bursting intervals (with higher firing rates) from nonbursting intervals (with lower rates).  

Using this criterion, we assigned every ISI either to an ongoing burst or to an inter-burst 

pause based on its instantaneous firing rate. Instantaneous firing rate distributions from 

individual single units resembled the pooled distribution shown in Figure 3.3c, with 

thresholds distributed around 54.0 +/- 19.9 Hz (mean +/- SD). 

Only single units were used in the analyses shown in Figure 3.3c.  However, the 

distributions of burst durations from single-unit and multiunit recordings were highly 

overlapping (29 +/- 25 msec for single-unit, 33 +/- 37 msec for multiunit, mean +/- S.D.).  

While the true number of neurons contributing to a multiunit signal is difficult to 

ascertain, these results suggest that many of our multiunit recordings reflect the activity 

of a relatively small number of neurons. 

 

Acoustic features: 

 To characterize the relationship between neural and behavioral variation, we 

measured the acoustic properties of each syllable rendition as well as the premotor 

spiking activity before each syllable.  Because of the complex acoustic structure of song, 

we must take care that the acoustic parameters being quantified reflect important 

dimensions of behavioral variation, since failing to do so could cause us to underestimate 

the contributions of RA activity to behavioral variation.  Previous work on the song 

system has identified fundamental frequency (pitch), amplitude, and spectral entropy as 

potentially important axes of behavioral variation, since they are refined during song 



94 

learning, vary from trial to trial in the adult, and can be perturbed by electrical 

stimulation of the song system during singing (Tchernichovski et al., 2001; Fee et al., 

2004; Kao et al., 2005).  To address this issue quantitatively, we performed a separate 

analysis in which we used principal components analysis (PCA) to ask which dimensions 

of spectral variation capture the greatest fraction of the total spectral variability of each 

syllable.  As described in detail in Appendix 3 (see "Quantitative analysis of spectral 

variability" and Appendix 3, Figures 3.2-3.4), the PCA-based analysis revealed that in 

most cases, variations in pitch, amplitude, or entropy indeed captured the greatest fraction 

of the total behavioral variation.   These acoustic features therefore dominate behavioral 

variability and as such constitute a reasonable choice of behavioral parameters that might 

reveal the influence of trial-by-trial variations in RA firing. 

 For each syllable, we defined a measurement time relative to syllable onset that 

corresponded to a well-defined spectral feature (e.g. the band of spectral power at ~5.3 

kHz in syllable “B” shown in Figure 3.1a).  Syllable onsets were defined based on 

amplitude threshold crossings.  Pitch was defined as the fundamental frequency at the 

measurement time and was quantified by finding peaks in spectral power.  Amplitude 

was defined as the value of the smoothed rectified amplitude trace at the measurement 

time.  Spectral entropy was defined as the entropy of spectral power at the measurement 

time within one octave centered on the peak power.  Entropy was quantified according to 

the equation E = -Σ(p log10 p), where p is the probability distribution of spectral power. 
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Premotor neural activity: 

Premotor activity was quantified by measuring the number of spikes occurring in 

a “premotor window” prior to the time at which the acoustic properties of each syllable 

were measured.  The timing of this window was chosen to reflect the latency at which 

RA activity influences the acoustic structure of song.  Stimulation studies have shown 

that disrupting ongoing activity in RA during song perturbs motor output, although 

different groups have produced varying assessments of the nature and latency of these 

effects (Vu et al., 1994; Ashmore et al., 2005).  Stimulation with a single pulse, however, 

has been shown to disrupt the pitch of an ongoing syllable at a short (~15 msec) latency 

without altering the sequence of syllables being produced (Fee et al., 2004).  To allow for 

some uncertainty about the premotor latency (and for the possibility that different 

acoustic parameters may have different latencies), we measured premotor neural activity 

in a 40 msec wide window that ended at the time when acoustic parameters were 

measured.  Premotor neural activity was measured by counting the number of spikes in 

this window.  We validated this approach to quantifying neural activity by comparing 

several models of premotor encoding in which spiking activity is quantified on different 

timescales (see "Testing the timescale of premotor encoding" in Appendix 3). 

 

Correlation analyses: 

 To examine the relationship between premotor activity and acoustic output, we 

computed the linear correlation between each acoustic feature and the number of spikes 

in the premotor window.  Prior to computing correlations, we discarded outliers with 

acoustic feature measurements lying more than 4 standard deviations from the mean.  
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Inspection of audio recordings revealed that these outliers usually resulted from noise 

artifacts unrelated to vocal production.  Additionally, we performed a partial correlation 

analysis in which the relationship between each acoustic parameter and neural activity 

was considered while controlling for correlations between neural activity and the other 

two acoustic parameters. 

 

Proportion of cases correlated: 

 We define the prevalence with which neural activity is correlated with a given 

acoustic feature in terms of the proportion of cases with significant correlations.  One 

“case” is defined as one unit (that is, one single unit or one multiunit cluster) being active 

before one syllable.  A unit is defined as active prior to a syllable if it fires on average at 

least one spike in the 40 msec premotor window, corresponding to a mean rate of ≥ 25 

Hz.  For a given acoustic parameter, therefore, one unit will contribute multiple cases if it 

is active before more than one syllable.  For each acoustic parameter, we found the 

proportion correlated by dividing the number of cases in which the acoustic parameter 

was significantly correlated (at p<0.05) with neural activity by the total number of cases.   

 

Multiple comparisons: 

We expect that even if no relationship between premotor neural activity and song 

existed, some correlations would be significant by chance (~5% of all correlations, 

corresponding to our significance criterion of p<0.05).  We used a permutation technique 

to quantify whether the observed proportion of correlations between neural activity and 

acoustic output was significantly greater than chance.  Briefly, we created an artificial 
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dataset in which all correlations of interest (those between premotor activity and acoustic 

features) are broken, but all other correlations (such as those between different acoustic 

measures and between neural activity on consecutive syllables) are preserved.  We then 

performed correlation tests on the artificial dataset and noted the proportion of cases with 

significant correlations.  By performing this procedure 1000 times, we estimated the 

distribution of proportions of significant correlations under the null hypothesis, and then 

asked whether the proportion of significant correlations in the real dataset exceeded the 

95th percentile of this distribution.  See "Multiple comparisons" in Appendix 3 for a 

detailed explanation of this technique and a discussion of related issues. 

 

Fraction of units active: 

 To quantify the fraction of the population active at a given time during song, we 

considered only birds from which we had recorded at least 10 units (n=7).  The mean 

neural activity of each unit was quantified in 1 msec bins across the duration of a 

frequently occurring syllable sequence (motif).  Repeating this analysis for each recorded 

unit allowed us to infer the mean activity across the population. The fraction active at a 

given time was defined as the percentage of recorded units with mean rate greater than 25 

Hz.  For the plot shown in Figure 3.4b, the fraction active is averaged over a sliding 5 

msec time bin.  
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Timewarping: 

Piecewise-linear timewarping (Leonardo, 2004) was used to create Figure 3.4a.  

Briefly, spike times were aligned to the mean durations of syllables and inter-syllable 

pauses by “stretching” them linearly.  These small adjustments allow for easy comparison 

of neural activity across trials and units by eliminating small (typically 1-6% in our data) 

variations in song tempo.  Note however that timewarping was used only for display 

purposes and was not applied as part of any of the analyses described above, in which the 

40 msec premotor window was applied on a syllable-by-syllable basis. 
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Results: 

Our recordings revealed that neurons in Bengalese finch RA fire distinct patterns of 

activity for distinct syllables (as previously observed in the zebra finch), consistent with 

the accepted role of RA in controlling syllable structure (Yu and Margoliash, 1996; 

Leonardo and Fee, 2005).  Close inspection of firing patterns, however, revealed trial-by-

trial variations in the number of spikes in each burst (Figure 3.3b).  The analyses 

described below investigate whether this neural variation results in trial-by-trial variation 

in the acoustic structure of individual syllable. 

 

Neural activity in Bengalese finch RA:  

 Neurons in RA exhibited characteristic patterns of activity before, during, and 

after song. The majority of RA units displayed regular tonic activity of 20-50 Hz during 

rest (Figure 3.3a) and fired syllable-locked bursts during singing (Figure 3.3b).  

Following song offset, the resting tonic activity of most units was transiently inhibited 

(see Appendix 3, Figure 3.7).  Additionally, a small subset of recordings (1 single-unit, 3 

multiunit) had very low or no spiking activity when the bird was at rest, displayed bursty 

spiking activity during song, and had narrower spike widths than the rest of the 

population.  Based on these criteria (Spiro et al., 1999; Leonardo and Fee, 2005), these 4 

units (representing 3% of the total dataset) were classified as putative interneurons and 

were excluded from further analysis (see “Putative interneurons vs. putative projection 

neurons” in Appendix 3).  The results that follow describe the properties of putative 

projection neurons. 
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Figure 3.3.  Neural activity in Bengalese finch RA.  (a) Extracellular recording of an RA 
single unit in a nonsinging, awake bird.  (b) Firing of the same unit during singing.  
Neural recordings are shown for five repetitions of the song motif “ABCDE,” shown in 
the spectrogram at top.  The five neural traces are aligned to the onset of syllable “C” 
(white dots).  Onsets of the other syllables are shown as well (red dots).  Data in (a) and 
(b) are plotted with the same time scale.  (c) Left, instantaneous firing rates (1/ISI) during 
song for all single units.  A 50 Hz rate threshold (dashed red line) was used to segregate 
bursting from nonbursting epochs in order to compute the distribution of burst durations 
during singing (right).  
 

The qualitative impression that RA neurons fire in bursts during singing was 

confirmed by the bimodal distribution of instantaneous firing rates (Figure 3.3c, left), 

defined here as the inverse of interspike intervals (ISI).  The peaks of the firing rate 

distribution (at approximately 12 and 110 Hz) correspond to periods between and within 

bursts, respectively. The trough between these peaks, which was centered at 50 Hz (red 

line in Figure 3.3c, left), suggested a criterion for assigning ISIs either to an ongoing 
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burst (if they were less than 1/50 Hz = 20 msec long) or to an inter-burst pause.  Using 

this criterion, we computed the distribution of burst durations shown at right in Figure 

3.3c.   

 Serially recording from many units in the same bird allowed us to investigate how 

premotor activity is distributed across the population of RA neurons.  Figure 3.4a shows 

examples of spiking activity recorded from 25 units in a single bird.   

 

Figure 3.4.  (a) Population activity and unit isolation estimates of 25 units recorded from 
Bird 1.  Each tick mark represents one spike, each row represents the activity during one 
iteration of the song motif “ABCDE,” and 20 iterations from each unit are shown.  Colors 
differentiate recordings from the 25 units.  Mean syllable durations are shown as gray 
boxes.  The unit shown in Figure 3a,b is unit 2 (* at left), and the unit shown in Figure 5a 
is unit 8 (arrow at left).  Plot at far right shows the estimated isolation error  
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Figure 3.4 continued (see Methods).  Units with isolation errors of less than 0.01 (red 
line) were classified as single units.  (b) Fraction of units active (mean rate ≥ 25Hz) as a 
function of time. 

 

Spike times (colored tick marks) are aligned relative to the mean duration of syllables 

(gray boxes) and inter-syllable pauses using piecewise-linear timewarping.  Both single- 

and multiunit recordings displayed bursts of spikes throughout the song.  As described in 

Methods, we computed the proportion of units active at each time during song.  Figure 

3.4b shows that this proportion varied considerably over time.  Averaging across time 

and combining data across birds, we found that 58 +/- 19% (mean +/- SD) of the recorded 

population was active at any given time during singing. 

 Due to the temporally sparse nature of RA activity, not all units were active 

preceding all syllables.  For example, unit 2 in Figure 3.4a (indicated by an asterisk at left 

and also shown in Figure 3.3b) was not active prior to syllable “B”.  When comparing 

neural variability to acoustic variability, we therefore restricted our analysis to cases in 

which the recorded unit was active prior to the syllable in question.  

 

Prevalence and strength of neuron-behavior correlations: 

 We quantified premotor spiking activity and three acoustic measures (pitch, 

amplitude, and spectral entropy; see Methods) for each recorded unit and syllable. 

Previous studies have shown these three acoustic parameters to be under the control of 

the song system (Tchernichovski et al., 2001; Fee, 2002; Fee et al., 2004; Kao et al., 

2005), and our PCA-based analysis shows that in most cases these features dominate the 

trial-by-trial spectral variation of each syllable (see "Quantitative analysis of spectral 

variability" in Appendix 3).  Premotor neural activity was quantified by counting the 
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number of spikes in a 40 msec premotor window (Figure 3.5a).  Figure 3.5b shows the 

distribution of pitches of syllable “E” in Bird 1.   

 

  

Figure 3.5.  Correlation between neural and behavioral (pitch) variation.  (a) 
Spectrogram of a song motif from Bird 1.  Below the spectrogram are five neural traces 
showing the activity of unit 8 from this bird (see arrow in Figure 4a).  Premotor neural 
activity for this unit was quantified in a 40 msec window (red box) preceding the time of 
pitch measurement (dashed red line).  White arrow indicates the measured pitch of 
syllable “E”.  Neural traces are aligned on the onset of syllable “E”.  (b) Distribution of 
pitches measured from syllable “E” while recording from the unit shown in (a).  (c) 
Distribution of the number of spikes within the premotor window preceding syllable “E”.  
(d) Plot showing the relationship between pitch and the number of spikes in the premotor 
window for each rendition of syllable “E” (n=371), along with the correlation coefficient 
(r) and p-value of the correlation. 

 

The insets in Figure 3.5b and c quantify pitch and neural variation using the coefficient of 

variation (CV, equal to S.D./mean) and Fano factor (variance/mean).  The fundamental 

question we address in this study is whether some of the observed behavioral variation 

can be explained by the variation in premotor neural activity illustrated in Figure 3.5a and 

quantified in Figure 3.5c.  To do this, we measured the correlation between pitch and 

premotor neural activity (Figure 3.5d).  The example shown here yielded a highly 
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significant (p<10-13) positive correlation with an r2 value of 0.15 (indicating that premotor 

neural activity could account for approximately 15% of the behavioral variation). 

  We repeated this analysis for each acoustic parameter and for each case in which 

a recorded unit was active prior to a given syllable.  The distributions of CVs and Fano 

factors across all syllables and neurons are summarized in Table 3.1.   

Measure    Mean +/- SD 
CV, spike #, single units:  0.46 +/- 0.23 (across recording sites and 
syllables) 
CV, spike #, multiunits:  0.60 +/- 0.21  
Fano factor, spike #, single units: 0.66 +/- 0.55  
Fano factor, spike #, multiunits: 0.98 +/- 0.41  
 
CV, pitch:    0.053 +/- 0.052 (across syllables) 
CV, amplitude:   0.056 +/- 0.026     
CV, entropy:    0.22 +/- 0.14  
Table 3.1:  Quantification of the degree of neural and behavioral variation.  Measures of 

spiking variation were calculated from the distribution of spike counts in the 40 msec 

premotor window.  A separate CV (SD/mean) and Fano factor (variance/mean) was 

computed for each case in which a unit was active (mean rate ≥ 25 Hz, see Methods) 

prior to a syllable (n = 705 cases; the mean +/- SD of each distribution is reported).  

Measures of behavioral variation were calculated by pooling measurements of pitch, 

amplitude, or entropy from all recorded renditions of each syllable (n = 83 syllables). 

 

 

Figure 3.6 shows the distribution of significant correlations in Bird 1 for each syllable, 

recorded unit, and acoustic feature (similar representations of data from the other 12 birds 

in our study are provided in Appendix 3, Figure 3.9).  In the example shown in Figure 

3.6a, there were 91 cases (the total number of dots) in which units were active before a 

syllable.   Of these 91 cases, significant correlations were found in 17.6% (16/91) of 
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cases.  These are indicated here as green dots for cases with significant positive 

correlations and red dots for cases with significant negative correlations. 

 

Figure 3.6:  Significant correlations of premotor neural activity with acoustic structure 
across a population of RA units.  (a) Correlations with pitch for all units recorded in Bird 
1.  Each row represents data from one single- or multiunit recording (see Figure 4), and 
each column represents firing in the premotor window before one of the six syllables 
produced by the bird (as indicated at bottom: ABCDEF).  A dot indicates that the unit in 
question was active (mean rate ≥ 25 Hz in the premotor window preceding a syllable).  
Dot color indicates whether neural activity was positively correlated (green), negatively 
correlated (red), or uncorrelated (white) with pitch.  Black, gray, and white arrows 
indicate units 8, 9, and 19, respectively, as referred to in text.  (b,c) Same conventions as 
(a), but dot color signifies correlations between premotor neural activity and amplitude 
(b) or spectral entropy (c).   

 

Since we expect that some comparisons would yield significant correlations by chance, 

we used a resampling-based technique (see Methods and "Multiple comparisons" in 

Appendix 3) to ask whether the proportion of significant correlations was itself 
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significantly greater than chance.   Applying this test to the example of pitch in Bird 1, 

we found that the proportion of significant correlations was highly significant (p<0.001). 

When data from all birds were combined, the proportion of correlated cases was 

significantly different from chance for all measured acoustic parameters (p<0.001 in all 

three cases).  As shown in Figure 3.7a, premotor activity was correlated with pitch and 

amplitude in 26.1 and 26.6% of cases, respectively.  Both of these parameters were 

correlated with premotor neural activity significantly more frequently than was entropy 

(20.8% of cases).   

 

Figure 3.7.  Prevalence and explanatory power of neuron-behavior correlations.  (a) Bar 
plot of the proportion of cases in which neural activity was significantly (p<0.05) 
correlated with each of the three acoustic parameters measured.  Note that one “case” 
corresponds to a unit’s being active in the premotor window before a single syllable, and 
that one unit can therefore contribute several cases to each acoustic feature.  Black lines 
above bars indicate that the proportions for pitch and amplitude were both significantly 
greater than the proportion for entropy (p<0.05, Z-test for proportions).  The dashed line 
shows the significance threshold for the proportion of cases correlated exceeding chance 
at p<0.05, as determined by a permutation test (see Appendix 3).  All three acoustic 
parameters were correlated with premotor activity significantly more often than chance.  
(b) Probability density functions and (c) cumulative distributions of r2 values for the three 
acoustic parameters, corresponding to the fraction of behavioral variability in each case 
that can be accounted for by neural activity.  Color conventions are the same as in (a). 
 

In principle, a given unit might have a consistent relationship to an acoustic 

feature (such as pitch) across all syllables for which it was active.  This was not the case.  

Firing rates were typically correlated with an acoustic parameter in some contexts but not 

others.  For example, unit 8 (black arrow in Figure 3.6a) was positively correlated with 
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pitch during syllable “B” and “E,” but not during other syllables.  Also, neural activity 

was sometimes correlated with different acoustic parameters in different contexts.  This 

pattern can be seen in unit 9 (gray arrow in Figure 3.6a), which was positively correlated 

with pitch during syllable “E” and negatively correlated with amplitude during syllable 

“F.”  Finally, for a single acoustic parameter, some units displayed correlations of 

opposite signs during different syllables.  For example, unit 19 (white arrow in Figure 

3.6a) was positively correlated with pitch during syllable “B” but negatively correlated 

during syllable “C”.  Across the entire dataset, the sign of a significant correlation 

between premotor activity and an acoustic parameter during one syllable was not 

predictive of the sign of significant correlations during other syllables.  See "Sparse 

distribution of significant correlations" in Appendix 3 for a fuller discussion of these 

issues. 

The r2 values for significant correlations showed that appreciable amounts of 

behavioral variability could be predicted from the activity of individual units.  Figure 

3.7b and c show the probability density functions and cumulative distributions of r2 

values from significantly correlated cases.  For all acoustic parameters, r2 values were 

distributed densely below 0.15 and had a long tail of larger values extending beyond 

0.25.  Mean r2 values for pitch, amplitude, and entropy were 0.08, 0.09, and 0.07, 

respectively. The prevalence (proportion of cases correlated) and explanatory power (r2 

values) of correlations with pitch, amplitude, and entropy show that variations in the 

activity of individual units can predict a substantial amount of trial-by-trial behavioral 

variation across a range of acoustic features.  Together, these data indicate that a 

component of motor variation is centrally generated at the level of RA. 
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Additionally, we collected a small amount of data during female-directed song in 

order to compare the overall level of neural variation across social contexts (see "RA 

activity in directed vs. undirected song" in Appendix 3).   Previous studies have 

established that directed song is less variable than undirected song (Sossinka and Bohner, 

1980; Kao et al., 2005; Kao and Brainard, 2006; Sakata et al., 2008), suggesting that trial-

by-trial variability in RA activity might similarly be reduced in the directed condition.  

As shown in Appendix 3, Figure 3.10, neural variability was indeed significantly lower 

during directed song.  While preliminary, these results suggest that not only do trial-by-

trial variations in RA activity drive variations in song (the main finding in our study), but 

also that modulations in the overall level of RA variability can account for social context-

dependent changes in song. 

The analyses presented here examine correlations between acoustic features and 

the amount of neural activity in an immediately preceding 40 msec premotor window.  

This window was chosen based on previous studies to reflect the likely causal delay 

between RA activity and the acoustic structure of song (see Methods).  However, in 

principle correlations between activity and behavior could extend across neighboring 

syllables.  For example, if the pitches of successive syllables were serially correlated, 

then RA activity correlated with the pitch of one syllable would also be expected to 

correlate with the pitch of neighboring syllables.  We found that serial correlations in 

behavior were indeed common in Bengalese finch song, and correspondingly we 

sometimes found significant correlations between premotor activity measured for one 

syllable and the acoustic features of neighboring syllables.  However, the prevalence of 

significant neuron-behavior correlations was sharply peaked for the neural activity 
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occurring in the 40 msec window immediately preceding measured acoustic features (see 

“Correlations extend across time” in Appendix 3), indicating that neural activity in the 

premotor window used in this study had significantly more predictive power than neural 

activity preceding adjacent syllables. 

Despite differences in unit isolation, single-unit and multiunit recordings were 

correlated with acoustic parameters in roughly equal proportions and yielded correlations 

with similar explanatory power.  Across the entire dataset, the proportions of cases from 

single-unit and multiunit recordings with significant correlations (27.9 and 24.1%, 

respectively) were not significantly different (Z-test for proportions, p=0.24).  Also, 

distributions of r2 values for the two classes of recordings were not significantly different 

for any of the three acoustic parameters (2-tailed t-tests, smallest p-value = 0.44) or when 

all r2 values were pooled (p=0.60).   

 

Positive correlations with pitch: 

Inspection of data from both single-unit and multiunit recordings revealed a 

strong asymmetry in correlations with pitch but not with other acoustic parameters.  In 

the example shown in Figure 3.6a, positive correlations with pitch (green dots) were 

present in greater numbers than negative correlations (red dots).  In 5 out of 5 birds 

(including this one) where there was a significant difference in the number of positive 

and negative correlations with pitch, positive correlations outnumbered negative ones.  

When data were combined across all birds, this asymmetry was significant for data from 

both single-unit and multiunit recordings (Figure 3.8a).  This asymmetry in the sign of 
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correlations with pitch supports a model of pitch production based on recent anatomical 

and physiological studies (see Discussion).   

 

Figure 3.8.  Correlation signs.  Bars show the fraction of significant correlations with 
positive (green) and negative (red) slopes for single-unit (filled) and multiunit (empty) 
recordings.  Asterisks indicate a ratio of positive to negative correlations significantly 
different from equality (p<0.05, binomial test).  (a) shows results from the primary 
analysis, (b) shows results from the partial correlation analysis (see Methods).   
 

In the analyses presented thus far, the relationship between neural activity and 

each of three acoustic parameters was assessed in separate correlation tests.  However, 

examination of our behavioral data revealed that in many cases, the measured acoustic 

features were significantly correlated with each other (not shown).  Some of the neuron-

behavior correlations revealed in our initial analysis might therefore arise because of 

correlations between behavioral measures.  For example, a correlation between neural 

activity and syllable amplitude might result from the combined effects of a correlation 

between neural activity and pitch and a correlation between pitch and amplitude. To 

disambiguate the correlations between premotor activity and each acoustic parameter, we 

performed a partial correlation analysis, in which the relationships between neural 

activity and each behavioral measure was assessed while controlling for the influence of 

correlations with the other two acoustic parameters (see Methods).  This alternate 

analysis yielded nearly identical results as the primary analysis (Figure 3.8b). 
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Discussion:   

 Our results show that trial-by-trial variations in RA activity predict a significant 

component of acoustic variation in song syllables.  We found correlations between 

premotor activity and all three acoustic parameters examined, although correlations with 

pitch and amplitude were found significantly more often than correlations with spectral 

entropy.  Additionally, correlations with pitch had a positive sign in a significant majority 

of cases.  Together, these results provide strong evidence that trial-by-trial variations in 

syllable structure result in part from variations in the motor command. 

By exploiting trial-by-trial variability at particular times during song, our analysis 

provides the first description of covariation between RA activity and syllable structure.  

Using a contrasting approach, Leonardo and Fee (2005) found that mean population 

activity was on average uncorrelated with mean spectral output across different times in 

song, demonstrating that similar acoustic patterns can be produced by unrelated 

ensembles of RA cells.  Our results are complementary to these prior findings.  We show 

that within each ensemble of active neurons, trial-by-trial variations in activity can 

account for variations in behavior. 

Comparison of our results with recent studies in primates suggests similarities between 

the neural control of birdsong and primate reaching movements.  The activity of single 

neurons in motor, premotor, and parietal cortex is often correlated with multiple 

parameters describing reach kinematics (Fu et al., 1995; Buneo et al., 2002; Wang et al., 

2007), just as RA neurons often appear to encode multiple acoustic parameters.  

Furthermore, although correlations between cortical activity and kinematic parameters 
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(such as hand position or velocity) vary widely in strength, the r2 values we report in RA 

fall within the range reported for several areas of motor and premotor cortex (Carmena et 

al., 2005; Stark et al., 2007).  These similarities suggest that the generation of variable 

motor commands using populations of neurons each moderately correlated with several 

task parameters might be a general principle of skilled motor control. 

 Our results provide an initial characterization of RA in the Bengalese finch.  

Consistent with recordings in zebra finch RA (Yu and Margoliash, 1996; Leonardo and 

Fee, 2005), the neurons described here are tonically active at rest, fire syllable-locked 

bursts during song, and are transiently inhibited after song offset.  In contrast, RA 

neurons in the Bengalese finch have a lower peak firing rate during bursts and fire bursts 

of greater duration (Figure 3.3c) than their counterparts in the zebra finch (Leonardo and 

Fee, 2005). 

Our analysis describes correlations between RA activity and acoustic output.  

However, the strength of such a correlation does not necessarily reflect a neuron's causal 

influence.  Neurons in RA might covary such that an increase in one cell’s firing is often 

accompanied by an increase in the firing of other cells, which make their own 

contributions to acoustic output.  The measured correlation between neural activity and a 

behavioral parameter therefore depends both on the neuron’s ability to drive changes in 

behavior and on its correlation with other RA neurons. 

At one extreme, neural activity could vary independently across RA neurons.  In 

this case, the correlation between each neuron’s premotor activity and pitch (for example) 

would accurately reflect that cell’s contribution to the total behavioral variability.  If a 

small pool of independently varying neurons controlled pitch, these correlations would be 
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strong, reflecting the small number of neurons governing behavior (Figure 3.2a).  

Conversely, if pitch were controlled by a large number of independent neurons, 

correlations between activity and pitch would be weak (Figure 3.2b).  

At the other extreme, neural activity could be strongly correlated across many RA 

neurons.  In this case, the measured correlation between any one cell and pitch would 

include the contributions of the entire correlated ensemble.  These correlations could be 

quite strong, since they reflect the contributions of many neurons (Figure 3.2c). 

 We can distinguish between these possibilities (Figure3. 2a-c) by estimating the 

number of neurons that control acoustic variation. In the zebra finch, right and left RA 

each contain ~8,000 neurons that project to brainstem motor nuclei (Gurney, 1981).  

Assuming a similar figure for Bengalese finch RA, which is of comparable volume to 

zebra finch RA (Tobari et al., 2005), we can estimate the number of neurons controlling 

pitch during each syllable. Of 16,000 total projection neurons, our data indicate that about 

60% are active at any given time, and that of these approximately 25% make significant 

contributions to the control of pitch.  Assuming that our recordings represent a uniform 

sampling, we can therefore estimate that about 400,225.060.0000,16 =××  RA 

projection neurons control pitch at any given time. (A similar figure is obtained for the 

number of neurons controlling amplitude, and a smaller number for spectral entropy, 

reflecting the smaller proportion of cases with significant correlations.)  If each of these 

neurons contributed equally to pitch, then each would contribute 1/2,400 of the total 

behavioral variation (in the absence of downstream motor noise).   If the activity of all 

neurons were independent, the measured correlation between each unit’s activity and 

pitch would have an r2 value of 000417.0400,2/1 = .  Alternately, if RA neurons were 
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strongly correlated, recording from any one neuron could have as much predictive power 

as recording from the entire population, and r2 values would be far higher than those 

expected from an independent population. 

The measured distribution of r2 values (Figure 3.7b,c) suggests that covariation 

between RA neurons is common.  We found r2 values far larger than expected from a 

population of independent neurons, with a mean r2 value (0.08 for pitch) nearly 200 times 

larger than the value predicted by the independent-activity model (0.000417) shown in 

Figure 3.2b.  Put another way, only 13 independent RA neurons with r2 values at the 

mean of our observed distribution could in principle account for 100% of the behavioral 

variation.  Since the number of neurons correlated with each acoustic parameter is far 

larger than this (~2,400 neurons), some of the explanatory power of the measured 

correlations must arise from covariation between RA neurons (Figure 3.2c), ruling out a 

model in which a small number of independent neurons drive behavioral variation 

(Figure 3.2a). Covariation across RA might rely on networks of inhibitory interneurons 

that coordinate the activity of spatially separated projection neurons (Spiro et al., 1999).  

Although our calculations are based on rough estimates of neuron number and the 

prevalence of significant correlations, the difference between the empirical r2 values and 

those expected from independent neurons is large enough to allow robust conclusions. 

The prevalence and strengths of neuron-behavior correlations therefore point to a model 

of motor variation in which “cooperating” (that is, covarying) assemblies of a few 

thousand neurons produce trial-by-trial modulations of song (Figure 3.2c).  To the extent 

that acoustic variations are driven by the AFP (Kao et al., 2005; Olveczky et al., 2005), 
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our results also suggest that lMAN drives coherent modulation of a pool of RA neurons 

rather than injecting independent noise across RA.   

Although a single unit’s activity could account for as much as 40% of the 

variation in an acoustic parameter (Figure 3.7b,c), the fraction of behavioral variation 

controlled by the entire RA population is unknown.  While RA is the sole output nucleus 

of the motor pathway, the brainstem motor nuclei controlling song additionally receive 

inputs from other parts of the brain (Wild, 2004), which may also contribute to premotor 

variation.  Furthermore, peripheral motor noise presumably contributes to song variability 

as well.  Note that if RA drives less than 100% of the behavioral variation, the r2 value 

predicted by the independent-activity model would be even lower than 0.000417.   

The observed predominance of positive correlations with pitch (Figure 3.8) is 

consistent with the functional anatomy of the descending motor system.  As schematized 

in Figure 3.9, it is likely that increases in RA activity ultimately result in a net increase in 

the pitch of song.   

 

Figure 3.9.   Acoustic control in the descending motor pathway.  In our schematic, 
neurons are represented as white circles, synaptic connections are represented as lines 
connecting brain regions and muscles, and causal influences on acoustic structure are 
represented as arrows.  RA projection neurons excite motor neurons in brainstem nuclei 
nXIIts, RAm, and PAm, which in turn activate the muscles controlling the syrinx and 
respiratory apparatus (Sturdy et al., 2003).  Recordings from syringeal muscles reveal 
strong positive correlations between muscle activity and pitch, and one muscle in  
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Figure 3.9 continued: particular – the musculus syringealis ventralis (vS) – has been 
shown in the brown thrasher to have an exceptionally strong association with pitch 
production (Goller and Suthers, 1996).  Models of syringeal function suggest that 
increased muscular tension raises pitch by putting more tension on the syrinx’s vibrating 
structures, thereby  increasing their vibrational frequency when air is blown through the 
syrinx (Gardner et al., 2001; Laje et al., 2002; Suthers and Zollinger, 2004).  This string 
of excitatory relationships – between RA and nXIIts, nXIIts and muscle contraction in the 
syrinx, and between muscle contraction and pitch – likely results in a net excitatory 
relationship between RA activity and the pitch of song.  The excess of positive 
correlations with pitch in our data might therefore be due to a subpopulation of RA 
projection neurons (far left, dashed box) that activate the motor neurons innervating the 
vS muscle of the syrinx (middle, dashed box) or other muscles for which activation 
drives increases in pitch.  The roughly equal mixture of positive and negative correlations 
with other acoustic features might be due to the mix of positive (+) and negative (-) 
influences of other syringeal and respiratory muscles.  Relative neuron numbers in the 
four nuclei are not shown to scale.   
 

The observed surplus of positive correlations may therefore reflect a 

subpopulation of RA cells responsible for activating (via the brainstem) muscles that 

drive increases in pitch.  Our data suggest that birds modulate song by distributing 

variation across a few thousand neurons, thereby allowing them to explore the sensory 

consequences of varying the motor command.  This motor exploration might be guided 

by differential reinforcement signals related to overall song quality (Tumer and Brainard, 

2007).  Alternately, by listening to these variations, adult birds could monitor the 

relationship between small changes in neural activity and small changes in acoustic 

structure.  Knowing this relationship constitutes a local (that is, local to a single syllable) 

model of motor production.  Maintenance of such a model might be necessary for the 

animal to adapt to changes in the strength of motor effectors as the bird ages or to 

changes in synaptic strength or connectivity over time. Song deteriorates dramatically 

when auditory feedback is removed in adulthood (Nordeen and Nordeen, 1992; Okanoya 

and Yamaguchi, 1997).  Such deterioration might result from the inability of the bird to 

hear the consequences of motor exploration and thus maintain motor performance in 

adulthood.  
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General Discussion 

 

The focus of the current study was to explore the generation of variability in adult 

birdsong.  We used the songs of the Bengalese finch because they exhibit variability on 

two levels: individual syllables exhibit variability in production from iteration-to-

iteration, and the syllables themselves are variably sequenced during song production 

(Okanoya, 2004).  The occurence of both sources of variability in Bengalese finch song 

provides us with a particularly good model for studying the production of human 

language: they are constructed of elemental vocal units, called phonemes, which are used 

in a variety of sequences to produce words and sentences (Daniloff and Hammarberg, 

1973).  We have examined the song motor nucleus RA in an effort to understand the 

influences of both varieties of variability upon neuronal activity in the avian CNS. 

 

Implications of Chapter 1: 

 

 We chose to focus our research on the Bengalese finch because of the variable 

nature of its song.  As in human language, the Bengalese finch sequences elemental vocal 

units (syllables) into long, variable strings of vocalizations (songs).  The effects of 

variable sequencing in human vocalizations have been studied extensively, but it was 

unknown if syllables in the songs of birds were similarly modified by sequence.  In the 

variably sequence songs of the Bengalese finch, we found left-to-right ‘carry-over’ 

effects of sequence,  but not any right-to-left ‘anticipatory’ effects.   
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 The results of our behavioral analysis of Bengalese finch song suggest that 

syllables are modified by the history of the song system.  The lack of any anticipatory 

effects at divergence points implies that the birds are not actively planning for upcoming 

motor transitions.  It is still unclear whether our birds are actively controlling convergent 

syllable transitions, or if the effects upon syllable production are completely the result of 

a lack of control at these song junctions.  For either scenario, we can assume that 

syllables are affected by those syllables that preceded them, and the rules governing these 

transitions must therefore be learned throughout song development. 

 

 It would be interesting to probe these local effects of syllable sequence further by 

manipulating song feedback during singing.  We found that the removal of auditory input 

did not change the local effects of sequencing.  This suggests that proprioception may be 

more involved in syllable transitions than audition.  By modifying proprioceptive 

feedback (changing air sack pressure, beak gape, syringeal tensions, etc.), we may be able 

to determine if and how birds make compensations for syllable sequencing.  If birds do 

compensate for exogenous manipulation of proprioceptive feedback, it suggests that the 

vocal musculature is actively shaping convergent syllable transitions.  Bengalese finches 

may therefore be very useful in developing behavioral manipulations designed to modify 

vocal sequencing in other systems (i.e. human language and other variable sequenced 

behaviors). 

 

We also found that syllable structure covaried with sequence over much longer 

time frames than a single syllable.  These ‘global effects’ encompassed upwards of 25 



119 

syllables at times.  We believe that the global effects upon syllable production are the 

result of different motor plans.  Although the syllables analyzed for global effects were 

found in the same immediate sequences, the fact that their structure is still significantly 

different suggests that at some level in the CNS the encoding is different.  Considering 

the hypothesized role HVC plays in sequence generation (Hahnloser et al, 2002), neural 

recordings from this motor nucleus would be informative about the source of global 

sequence effects. 

 

 Future experiments may be able to look more explicitly at the control of syllable 

transitions by analyzing HVC activity in light of the global sequence effects upon 

syllable production.  We predict that HVC activity will be subtly different for these 

syllables that are essentially in the same motor context.  If HVC activity is different, it 

suggests that birds have a way of keeping track of long-range patterning in syllable 

sequence.  This information may be used by the bird to know what sequences have been 

sung, and what sequences should be sung. 
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Implications of Chapter 2: 

 The second chapter investigated the relationship between RA activity and syllable 

phonology.  We examined mean changes in the patterns of RA activity and syllable 

structure, and asked if there was a general relationship between RA activity and syllable 

structure.  We found that general patterns in RA activity did correlate with changes in 

spectral structure, suggesting phonological encoding at the level of RA.   

 

 Previous research on the role of RA during syllable production concluded that RA 

activity has no relationship to syllable structure (Leonardo and Fee, 2005).  The current 

study suggests that there is a relationship, and these results in combination with those of 

the first chapter provide a more complete picture of syllable phonation during song 

production.  In the first chapter, we found that RA could change syllable features by 

modifying the firing rate of neurons.  This analysis was performed in restricted windows 

for both the neural activity and the syllable.  In the third chapter, we instead measured 

patterns of neural activity and spectral structure over the duration of the syllable.  From 

this analysis, we were able to provide a more general perspective on syllable production.  

Our interpretation of the results of Chapter 1 and 3 is that at any time point in song, RA 

activity can manipulate specific features of the acoustic output, and these changes are 

then tiled across time to produce the appropriate syllable.   

 

There are different ensembles of neurons active in RA for each time point, and 

they work in concert to produce all of the command signals necessary for the syrinx and 
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respiratory centers.  In Chapter 1 we found that the effects of any one neuron might 

change from syllable to syllable, so for each time point in song, each neuron in the active 

ensemble will make a different contribution to the spectral output.  These ensembles of 

neurons are temporally arranged in order to provide a continuous command for the vocal 

musculature.  When we record from one particular neuron, or collection of neurons, we 

are recording an ever-evolving program for muscle activations.  In our analysis 

examining the entire premotor window and the entire syllable, we are measuring these 

evolving global patterns in RA activity.  Our extended analysis of neural and behavior in 

Chapter 3 found a relationship between the changing actions of a single pool of RA 

neurons and the changes in vocal output. 

 

The influence of any one pool of neurons is altered by the activity of other pools 

of neurons at different time points.  RA neurons encode muscle tensions and respiratory 

pressure and not spectral features; but at one specific time point the activity of a given 

ensemble of neurons has a reliable effect upon spectral features.  We were able to 

extrapolate to broader patterns of neural and syllable structure in Chapter 3 because we 

restricted our analysis to syllables with relatively small mean changes in production 

(convergent and divergent syllables).  For these syllable varieties, we believe that the 

same ensemble of RA neurons is active.  The mean changes in syllable structure for these 

syllables are produced by a correlated amount of change in the activity of that specific 

ensemble of neurons.  For more disparate syllable varieties, the many different 

interactions downstream of RA complicate the neural-behavior relationship.   
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We were able to find a weak relationship between single neuron activity and more 

disparate syllable types, but not for the multi-unit recordings.  We believe this is the case 

for several reasons.  In the multi-unit recordings, each neuron that is contributing to the 

summed signal has a different influence upon the vocal musculature at any given time 

point.  If one recording includes the activity from 5 neurons and another is a single unit 

recording, at each time point in song the multi-unit signal is going to have at least five-

times as many different downstream interactions as the single-unit recording.  As a result, 

we can still measure a weakened relationship for a single unit across different syllables, 

but not for multi-unit recordings.   

 

The results of Chapter 2 could be expanded upon by making recordings from the 

vocal musculature and RA during song.  By using a known model of the syrinx (Suthers 

and Sollinger, 2004), simultaneous recordings in RA and the periphery may reveal a 

relationship between ensembles of RA activity and syllable structure at every time point 

in song.  These results would be useful in furthering our understanding on how the bird 

brain directs specific changes to song throughout life.  A bird is constantly integrating 

sensory and motor information, and understanding how motor changes are made may 

bring to light how auditory information can drive those changes.   

 

 

Implications of Chapter 3: 

Understanding the sources and effects of variability in adult songs reveals two 

different facets of avian song control: the online control of song features, as well as 
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possible mechanisms for changing those song features.  In order to look at the control of 

syllable structure, we examined the relationship between the activity of neurons in RA 

and specific changes to the spectral parameters of song (Chapter 3).  In a significant 

proportion of the RA neurons assayed, we found a direct relationship between the 

magnitude of neural activity and specific changes in the pitch, amplitude and entropy of 

syllables.  These results demonstrated a central source of the iteration-to-iteration 

variability of syllables.  As mentioned previously, if the residual variability in adult song 

has some central component to it, it can then be used to modify syllable features.  The 

discovery of RA’s involvement in adjusting syllable features provided the first 

information on how a bird can make specific changes to a syllable by manipulating neural 

activity in the CNS.   

 

In previous research, the AFP nucleus lMAN has been investigated for its role in 

generating song variability.  It has been shown in both juvenile and adult birds that lMAN 

is important to syllable variability (Brainard, 2006; Bottjer, 1994; Scharff, 1991).  lMAN 

activity in turn affects RA, and it is believed that most of its effects upon song are 

mediated through this interaction (Wild, 2004).  The results of Chapter 3 provide the first 

demonstration of how differences in lMAN activity may act to change song features.  Our 

results on the activity of RA neurons represent a method by which changes in lMAN 

firing can affect syllable production.  Patterns of variable activity in lMAN can increase 

or decrease the amount of activity in RA.  We now have an understanding of how RA 

neurons can directly change song features, and have the first components of a model for 

how lMAN and RA cooperate to modify syllables.  Also informative to this model are the 
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effects of microstimulation of lMAN during song.  Stimulation of lMAN causes both 

increases and decreases in the magnitude of syllable features (Kao et al, 2005).  Our own 

research on RA implies that the excitation or inhibition caused by lMAN’s input can 

affect syllable structure by simply adjusting the firing rate of RA neurons.  The results of 

these studies propose the following model: changes in lMAN activity directly influence 

the excitability of RA neurons, and RA activity then drives specific changes in syllable 

spectral features.   

 

The interactions between lMAN and RA that serve to maintain adult song fidelity 

may have a more instructive role during song development.  Recent work has shown a 

greater influence of the AFP during early song production than the motor pathway 

(Aronov et al, 2008).  These results imply that the AFP may be the primary instructor to 

the motor pathway during song learning.  The influence of lMAN upon RA would 

therefore be extremely important during the process of honing juvenile song into adult 

song.  The results of Chapter 3 suggest that lMAN makes adjustments to the firing of 

individual neurons in RA, thereby altering features such as pitch, entropy, and amplitude 

of the syllables.  Over time, adjustments by lMAN become less and less necessary as the 

bird practices his song.  The motor pathway eventually takes over as the primary circuit 

for song production.  lMAN still retains the ability to make changes to song throughout 

life, but the influence of the AFP is reduced with age.  In this way, the interactions of 

lMAN and RA serve two different, but related functions in song generation for juvenile 

and adult birds. 
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In order to further explore the interactions of lMAN and RA during song 

production, there are several possible experiments that could be performed.  As a first 

experiment, it would be interesting to record from RA while temporarily inactivating 

lMAN.  These technologies have already been utilized separately (current study and 

Olveczky et al, 2005), but the combination of both would elucidate the general influences 

of lMAN onto RA neurons.  We predict that the immediate effect of lMAN inactivation 

upon RA would be to globally decrease the variability in firing of RA neurons.  It has 

been shown that lMAN inactivation decreases syllable variability, and our results suggest 

that this is mediated by changing the firing of RA neurons.  An experimental 

demonstration of this hypothesis would expand our understanding of the AFP’s influence 

on the motor pathway. 

 

A logical next step after inactivation studies would be to make simultaneous 

recordings in lMAN and RA during song production.  For this experiment, it would be 

particularly beneficial to record from connected areas of lMAN and RA.  Utilizing the 

topography of the connection between these two nuclei (Lou et al, 2001), along with 

antidromic stimulation, would aid in the localization of both recording electrodes.  The 

results of this experiment would expand our understanding of how lMAN neurons shape 

the excitability of RA neurons on a moment-by-moment basis.  Analysis of the 

contribution of lMAN to RA firing will also help disambiguate the input from HVC.  

With these experiments we could provide a more complete picture of song control by the 

motor and anterior forebrain pathways. 
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General Implications 

 The results presented above demonstrate that syllable production is affected by 

syllable sequencing, that these differences in production correlate with differences in 

activity in RA, and that specific changes to syllable structure correlate with specific 

changes in RA activity.  The general interpretation of these data is that RA is implicitly 

involved in the generation of spectral features of song syllables.  The results of Chapter 3 

indicate a method by which the song system can make subtle adjustments to syllable 

structure, and Chapter 2 demonstrates the broader relationship between RA similarity and 

syllable structure.  The way in which syllable are modified around the mean in Chapter 3 

may therefore be indicative of how more drastic changes in syllable structure can be 

made like those observed in Chapter 1.  The rules governing spectral modifications in 

adulthood are also a likely parallel to the sensory-motor refinement seen in juvenile birds. 
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Appendix 1 

 

 
 
Appendix 1, Figure 1.1: Controlling for differences in data set size 
 
(a) Average COM distance +/- standard deviation for different sized data sets of the SS 
syllables.  Highlighted in red is the n=30 cutoff used for all analysis.  Any syllables with 
fewer than 30 replicates were not used for analysis.  (b) The relationship between data set 
size and COM distance for convergence points.  Unlike as in S1A, there is no relationship 
between COM distance and data set size.  (c) Cumulative distribution of COM distances 
for 30 randomly selected trials of SS, CONV, DIV, and DIF syllables.  All syllable 
categories are significantly different from one another (p < 0.05, KS-test).  (d) Effect of 
pre-note similarity upon convergence point similarity for a random selection of 30 
replicates of each syllable sequence.  A similar analysis to Figure 6b, but using only a 
random selection of 30 trials from each syllable.  There remains a significant positive 
relationship for a random selection of 30 trials (r = 0.24, p = 0.02). 
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Appendix 1, Figure 1.2: Details of the PCA for syllable similarity 
 
(a) The contributed proportion of each syllable feature to the first three principal 
components (black, red, green, respectively).  (b) Percent variance explained by the 
addition of each principal component.  95% of the variance of the data set is explained 
with 6 principal components. 
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Appendix 1, Figure 1.3: Quantitative justification of visually labeled syllables 
 
(a) Histogram of the COM distances from all birds, with the following types of 
relationships: the same syllable in the same sequence (SS), the same syllable in different 
sequences (SEQ), and differently labeled syllables (DIF). (b) The histogram in Figure 
3A, color-coded for the three syllables combinations: green for SS, blue for SEQ, and 
black for DIF syllables.  These three distributions are all significantly different from one 
another (p < 0.05, KS-test).  The red highlights the proportion of SEQ distribution that 
overlaps with the DIF distribution.  (c) Syllable similarity rankings from the label 
justification analysis.  A rank of 1 means that two SEQ syllables were more similar to 
each other than they were to any other syllable in that bird’s song.  A rank of 2 means 
that there was one DIF syllable that was more similar to the SEQ syllable, and so on for 
ranks of 3 and 4.  The graph shows that approximately 90% (116/128) of all SEQ syllable 
were more similar to each other than they were to any other syllable in that bird’s 
repertoire. 
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Appendix 2 
 

 
 
 
Appendix 2, Figure 2.1: Schematic of RA analysis 
 
(a) Raw neural waveforms aligned at syllable onset (0 milliseconds). (b) Spike times 
aligned at syllable onset (0 milliseconds).  (c) Spike times smoothed with 5 millisecond 
window aligned at syllable onset (0 milliseconds).  (d) Mean +/- standard error for many 
trials aligned at syllable onset (0 milliseconds).  (e) Comparison of two mean activity 
traces aligned at syllable onset (0 milliseconds).  (f) Point-by-point d-prime between 
traces in E aligned at syllable onset (0 milliseconds). 
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Appendix 2, Figure 2.2: Syllable similarity across categories 
 
(a) Example spectrogram of a song from BF4, with the syllable labels along the x-axis.  
Highlighted in green, red, blue, and black, respectively, are the four different 
relationships among syllables: same syllable same sequence (SS), divergent syllable 
(DIV), convergent syllable (CONV), and different syllables (DIF).  (b) Cumulative 
distribution plots of the C.O.M. distances for each syllable relationship outlined in A 
(color convention the same).  All distributions are significantly different from each other 
(p < 0.05 KS-test).  (c) Distribution of COM values for CONV syllables and DIV 
syllables.  COM distances for CONV syllables are significantly higher than between DIV 
syllables (p = 0.003, KS-test). 
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APPENDIX THREE 

Quantifying unit isolation.   

 In order to make our criterion for classifying recordings explicit, we used a simple 

method for quantifying the isolation of action potential waveforms.  This technique is 

based on principal components analysis (PCA), a mathematical technique commonly 

used for waveform classification. As shown in Appendix 3, Figure 3.1a, a threshold (red 

line) was used to select both spike and noise waveforms from singing-related activity.  

These waveforms (Appendix 3, Figure 3.1b) were then analyzed using PCA, which 

identifies the dimensions of variability (or principal components) that account for the 

greatest amount of total waveform variability.  By projecting each neural waveform onto 

each of the two components that account for the most variability (PC1 and PC2), we 

obtained a 2-dimensional representation of the distribution of waveforms (Appendix 3, 

Figure 3.1c).  Across the entire dataset, the first two components captured 64.0 +/- 7.2% 

(mean +/- SD) of the total variance of waveforms in each recording (70.6 +/- 8.9% for 

single units, 62.7 +/- 6.0% for multiunit sites, see below).  An automated nearest-

neighbor clustering algorithm (kmeans.m in MATLAB, The MathWorks, Natick, MA) 

was then applied to the 2-dimensional data to assign each waveform to a cluster.  The 

number of clusters used by the algorithm was set by hand.  In the majority of cases, two 

clusters (a "spike" cluster and a "noise" cluster) were selected.  In a small number of 

cases, three clusters were selected to capture waveforms belonging to two distinct spikes 

in addition to the noise cluster.  In these cases, only the waveforms belonging to the 

larger spike were used.  This cluster classification is represented by the colors of the 
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datapoints in Appendix 3, Figure 3.1d.  Each cluster was then fit with a 2-D gaussian 

(ellipses in Appendix 3, Figure 3.1d) in order to estimate its mean and variance.   

The goal of this analysis was to establish a scalar measurement of unit isolation. 

We found that the extent of overlap between the gaussian cluster fits served as a reliable 

indicator of unit isolation.  Overlap was quantified by computing the probability with 

which a point from one cluster would be miscategorized by the nearest-neighbor 

algorithm as belonging to the other cluster.  We generated 10,000 points from each 

cluster (according to that cluster’s gaussian fit), reran the nearest-neighbor algorithm, and 

measured the frequency with which synthetic points were miscategorized. In the example 

shown in Appendix 3, Figure 3.1 a-e, the gaussian fits had an overlap (or “isolation 

error”) of 0.0013.  Examination of our data suggested that an isolation error of 0.01 was a 

reasonable threshold for classifying a recording as single-unit.  Accordingly, clusters with 

isolation errors of less than 0.01 were classified as single-unit, and clusters with errors of 

greater than 0.01 were classified as multiunit.  Two additional examples of isolation 

measurement are shown in Appendix 3, Figure 3.1 f and g.   
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Appendix 3, Figure 3.1.  Isolation quantification technique.  (a)   One second of 
neural data from Bird 1, Unit 8. A threshold (red line) was used to collect voltage 
waveforms.  (b)  Collected waveforms.  Times are relative to the peak of the negative 
excursion that crossed the voltage threshold.  (c)  Principal components representation of 
waveforms using the first two components.  (d)  A nearest-neighbor algorithm classified 
waveforms into two clusters, corresponding to “spike” (green) and “noise” waveforms 
(red).  These clusters were fit with 2-D gaussians (ellipses show 2 S.D.) and cluster 
overlap (isolation error) was estimated.  Since the isolation error is less than the threshold 
value of 0.01, this recording is classified as single-unit. (e) Waveforms colored by cluster 
assignment.  Here the waveforms plotted in (b) are color-coded according to their cluster 
assignment.  Note that while some “noise” traces (red) do contain spikes, these spikes 
were not responsible for the threshold crossing. and are separately represented as green 
traces with spikes centered at time zero.  For clarity only 300 waveforms from each 
cluster are plotted in (b) and (e).  Neural data and isolation errors for an additional single 
unit and one multiunit recording are shown in (f) and (g), respectively. 
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Quantitative analysis of spectral variability 

 In our analysis of RA's contribution to trial-by-trial variations in the acoustic 

structure of song syllables, it is important that we choose acoustic measures that capture a 

significant portion of behavioral variability.  Failing to do so could cause us to 

underestimate RA's influence on behavior, since a correlation test requires the presence 

of both neural and behavioral variability in order to be meaningful. The spectral structure 

of song is extremely complex, offering many potential measures of vocal output 

(Tchernichovski et al., 2001).  Although behavioral studies, stimulation experiments, and 

in vitro measurements of the syrinx have suggested that pitch, amplitude, and spectral 

entropy are tightly controlled song parameters (and therefore likely to be under RA's 

influence), we wanted to investigate explicitly the nature of spectral variation within each 

syllable. 

With these issues in mind, we performed principal components analysis (PCA) on 

the power spectrum of each syllable in our dataset in order to characterize the important 

dimensions of behavioral variability.  PCA identifies the axes of variation in a data set 

that account for the greatest amount variability.  By performing PCA on the power 

spectra recorded from all renditions of a single syllable, we identify the axes of variation 

(that is, the deviations from the syllable's mean spectrum) that make the greatest 

contributions to the total spectral variation. 

 Appendix 3, Figure 3.2 (a) and (b) illustrate PCA as performed on two example 

syllables.  For each syllable in our dataset, we measured the power spectrum at the same 

measurement time (dashed black lines at left) used to compute pitch, amplitude, 
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and entropy in the original analysis (see Methods).  Power spectra were sampled at 71 

evenly-spaced frequencies between 1-10 kHz.  Mean spectra for the two example 

syllables are shown in the middle panels of (a) and (b).  For each syllable, this procedure 

resulted in an n x 71 matrix, where n is the number of instances of the syllable in 

question.  We then performed PCA on each matrix to derive a set of 71 orthogonal basis 

vectors (the principal components) in which PC1 is the direction along which spectral 

variance is maximized, PC2 is the second-most variable direction, and so on.  The 

fraction of the total variance explained by each of the 71 principal components for the 

example syllables is shown at right in (a) and (b). 

 

Identification of dominant axes of spectral variation: 

 These two examples are typical of our dataset in that the first 1-3 principal 

components accounted for much more of the total variance than did any of the remaining 

components (group data are shown in Appendix 3, Figure 3.2 c and d).  These data 

indicate that while spectral variations were not easily reduced to a compact representation 

(as would have been the case if, for example, 95% or more of the cumulative variance 

had been accounted for by a small number of components), in each syllable a few 

dimensions of variability accounted for a relatively large amount of the total variability.   

 

Quantifying similarity between PCs and changes in pitch, amplitude, and entropy: 

 We often found that the dominant principal components (those describing the 

greatest fraction of behavioral variation) resembled changes in pitch, amplitude, or 
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entropy.  Below, we show components for which this was the case and illustrate how we 

quantified the similarity between principal components and these three acoustic features. 

Appendix 3, Figure 3.3a shows and example in which the dominant principal 

component resembled a change in pitch.  This can be seen by noting that positive weights 

along this component correspond to a downward shift in the spectral peaks of the syllable 

(red trace in the bottom panel, representing the mean spectrum + 2*PC1).  Conversely, 

negative weights along this component reflect an upward shift in pitch (blue line in 

bottom panel).   

 To quantify the degree to which this principal component described a pitch shift, 

we measured its similarity to a “synthetic component” generated by explicitly varying the 

pitch of the mean power spectrum.    Synthetic pitch components were generated by first 

linearly stretching (or contracting) the mean power spectrum across the frequency axis to 

simulate an increase (or decrease) in pitch.  The mean spectrum was then subtracted from 

the pitch-shifted spectrum to generate a synthetic component representing the change in 

power at each frequency resulting from the pitch shift. The best-fit synthetic component 

(red dashed line in middle panel of Appendix 3, Figure 3.3b) was found by varying the 

stretching factor (pitch shift) until the closest possible match to the real component was 

achieved.  The similarity between real and synthetic components was then computed 

using the cosine-similarity measure, which measures the cosine of the angle between the 

two vectors in 71-dimensional space (and ranges from –1.0 to 1.0).  In the case illustrated 

in Appendix 3, Figure 3.3b, PC1 and the synthetic amplitude change have a cosine-

similarity score of 0.99. 
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Appendix 3, Figure 3.3b illustrates the power spectrum (top) and first principal 

component (middle) for a case in which PC1 described a change in amplitude.  Positive 

weights along this component reflect a subtraction of power at each frequency (red line in 

bottom panel).  Conversely, negative weights along this component reflect an increase in 

amplitude (blue line in bottom panel).   The blue dashed line in the middle panel of 

Appendix 3, Figure 3.3a shows the synthetic component explicitly simulating a change in 

amplitude that best fits PC1.  Synthetic amplitude components were generated by 

simulating a constant amplitude offset at each frequency.  The best-fit synthetic 

component was found by varying the offset until the closest possible match to the real 

component was achieved. In the case illustrated in Appendix 3, Figure 3.3a, PC1 and the 

synthetic amplitude change have a cosine-similarity score of 0.96. 

Appendix 3, Figure 3.3c illustrates the power spectrum (top) and second principal 

component (middle) for a case in which PC2 described a change in spectral entropy.  

Positive weights along this component reduce the power at the spectral peaks (dotted 

vertical lines) and increase the power in the troughs between the peaks, as shown in the 

bottom panel.  Although changes in spectral entropy (defined as  Σ p log(p), see Methods) 

could in principle be achieved by many different changes to spectral structure, we 

consistently found principle components of the form shown in Appendix 3, Figure 3.3c.   

Synthetic entropy components were therefore generated by summing a scalar offset with 

gaussian distributions centered on each harmonic peak present in the spectrum: 
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Where PCsynthetic entropy(f) is the value of the synthetic component at a given frequency and 

hx are the x harmonics of the syllable.  The parameters of this equation are constrained 

such that (1) |α| < .66* |β| and (2) α and β are of opposite sign.  These constraints are 

necessary to ensure that the gaussian components contribute to the overall shape of the 

synthetic component (i.e. they ensure that synthetic entropy components are not allowed 

to approximate synthetic amplitude components, which have the form PCsynthetic amplitude = 

α).  In the case illustrated in Appendix 3, Figure 3.3c, the real and synthetic components 

had a cosine similarity score of 0.93. 

 

Classification of the dominant components: 

 We then asked how frequently the principal components explaining the greatest 

amount of behavioral variation were well-described by a synthetic pitch, amplitude, or 

entropy component.  To do this, we restricted our analysis to PCs that explained at least 

10% of the total variance of the syllable (PC>10%).  For each PC>10%, we found the best-fit 

synthetic components describing changes in pitch, amplitude, and entropy and computed 

the cosine-similarity for each.  If cosine-similarity exceeded a threshold of 0.8, the 

PC>10% was classified as “congruent” to the relevant synthetic component.   
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 To verify that our categorization of principal components as “congruent” with 

pitch, amplitude, or entropy is meaningful, we compared the amount of behavioral 

variation along the direction of each PC>10% with the amount of behavioral variation 

along the direction of the best-fit congruent synthetic component. We found that the 

fraction of the total variability explained by the congruent synthetic components was not 

significantly different from the fraction explained by the corresponding PC>10% (p=0.35, 

Wilcoxon signed-rank test). 

If a PC>10% was congruent with more than one best-fit synthetic component, then 

the component with the greater cosine-similarity score was selected.  This occurred in 

22% of cases and almost always resulted from a PC>10% being found congruent with both 

amplitude and entropy.  Using this criterion, we found that the majority (70.2%) of 

PC>10% were congruent with either pitch, amplitude, or entropy (Appendix 3, Figure 4a), 

showing that the most dominant dimensions of behavioral variability usually reflect 

variations in one of these parameters. Moreover, in cases where PC>10% were not 

congruent with pitch, amplitude, or entropy, the PC>10% often resembled a linear 

combination of two of these features (not shown). 

Conversely, Appendix 3, Figure 3.4b shows that when all PCs (not just those 

explaining more than 10% of the total variance) are classified by cosine-similarity, 

components congruent with pitch, amplitude, and entropy explain a much larger 

proportion of behavioral variation than do components that are not congruent with these 

parameters.  This result demonstrates that among all dimensions of spectral variation 

yielded by PCA, the components describing changes in these three parameters had much 

more explanatory power than other components.  Together, these results suggest that 
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pitch, amplitude, and entropy are indeed important components of behavioral variability, 

and therefore are reasonable features to use in characterizing the contributions of RA 

activity to behavioral variation. 

 

Primary and PCA-based behavioral analysis yield similar results: 

 Finally, we wanted to ensure that our decision to quantify correlations between 

neural activity and the measured values of pitch, amplitude, and entropy (rather than 

correlations between neural activity and loadings along the PC>10%) did not result in our 

underestimating the strength of neural-behavioral correlations.  Appendix 3, Figure 3.4c 

shows that the r2 values of correlations between neural activity and the measured 

behavioral parameters are not significantly different from the strength of correlations 

between neural activity and loadings along the PC>10%. 
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Appendix 3, Figure 3.2: PCA-based analysis.  (a) and (b) show the spectra of two 
example syllables.  Note that the syllable shown in (a) is syllable "E" from Bird 1, also 
illustrated in Figure 5 in the main text.  For each syllable, we computed the power 
spectrum at the same measurement time used for the primary analysis (of pitch, 
amplitude, and entropy) in the main text (dashed lines in spectrograms at left).  Each 
power spectrum consisted of measurements of the log spectral power at each of 71 
equally-spaced frequencies between 1-10 kHz.  The mean power spectra for the two 
example syllables are shown in the middle panels of (a) and (b).  PCA was then used to 
find the dimensions of variation (or "components") that captured the greatest, second 
greatest, etc. fraction of the total variation of each syllable.  The fractions of the total 
variance accounted for by each component of the two example syllables is shown in the 
right panels of (a) and (b).  (c) shows the mean +/- SD of this measure for all 83 syllables 
in our dataset.  Inset shows the first 5 components in greater detail.  (d) shows the same 
data as (c) expressed as a cumulative fraction. 
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Appendix 3, Figure 3.3:  PCs approximating changes in pitch, amplitude, and entropy.  
(a) shows the mean power spectrum (top), first principal component (middle, black 
trace), and deviations from the mean spectrum along the first principal component 
(bottom) for the syllable shown in Appendix 3, Figure 2a.  The dashed red line in the 
center panel shows the synthetic pitch component that best fits the principal component 
(see text). Vertical dashed lines indicate spectral peaks at the first and second harmonics.  
(b) shows the same measures for the first principal component of the syllable shown in 
Appendix 3, Figure 2b.  The dashed blue line shows the synthetic amplitude component 
that best fits the principal component.  Other conventions as in (a).  (c) shows the same 
measures from the second principal component of the syllable shown in Appendix 3, 
Figure 2a.    The dashed green line shows the synthetic entropy component that best fits 
the principal component. 
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Appendix 3, Figure 3.4 (a) Distribution and classification of principal components 
explaining at least 10% of spectral variation (PC>10%).  Blue shading indicates a PC>10% 
classified as congruent with pitch, red indicates a PC>10% congruent with amplitude, green 
indicates a PC>10% congruent with entropy, and black indicates PC>10% that were not 
congruent with any of the three parameters.  (b) Cumulative distributions of the fraction 
of the total variance explained by all principal components.  Data shown are for all 
principal components, regardless of how much spectral variance they explain.  
Components are divided into those congruent with pitch (blue), amplitude (red), entropy 
(green), and those not congruent with any of these three parameters (black).  (c) 
Cumulative distributions of r2 values for significant correlations between neural activity 
and acoustic output for each acoustic feature.  In each plot, r2 values are shown for two 
different methods of quantifying acoustic output on each trial.  Solid lines show the 
correlation strengths resulting from measuring pitch, amplitude, or entropy as described 
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in the main text.  Dotted lines show the r2 values resulting from using the loadings along 
the PC>10% congruent with the relevant acoustic measure. 
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Testing the timescale of premotor encoding 

 Work in diverse sensory and motor systems has shown that spike trains can carry 

information on multiple time scales (Theunissen and Miller, 1995; Tiesinga et al., 2008).  

At one extreme, sensory input or motor output might be encoded by the total number of 

spikes produced on a given trial (rate coding).  At the other extreme, millisecond-scale 

differences in spike timing might encode important task parameters.    

 Here, we compare the predictive power of premotor encoding at a range of 

timescales.  For each instance where a single unit was active prior to a syllable (one 

"case," see Methods), we fit the data with five different linear models that range from a 

simple rate coding scheme (counting the total number of spikes in the 40 msec premotor 

window) to a model that divides the premotor window into 1 msec-wide bins in order to 

ask whether fine temporal structure encodes motor output.  The models take the form 

 

csab i

n

i
i +=∑
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where b  is the behavioral parameter to be fit (pitch, amplitude, or entropy), s  is the 

number of spikes falling in each of n consecutive bins spanning the 40 msec premotor 

window, and ][ ...1 ca n  are the fit parameters of the model.  The five models tested have 

[ ]40,8,4,2,1=n , corresponding to bins with widths of 40, 20, 10, 5, and 1 msec 

respectively, as illustrated in Appendix 3, Figure 3.5a.   

 For each case and behavioral parameter, we used cross-validation to assess which 

model has the most predictive power while protecting against overfitting.  We randomly 
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split the data into a training set consisting of 80% of the data used to fit the model 

parameters, which were then used to predict the data in a testing set consisting of the 

remaining 20% of the data.  Repeating the procedure 1000 times for each model (splitting 

the data randomly on each iteration) yielded a distribution of error (mean squared error).  

The "best" model was defined as the model with the lowest mean error. 

 Appendix 3, Figure 3.5 shows that for all three behavioral parameters, counting 

the number of spikes in a single 40 msec-wide bin ( 1=n  in the above equation) is the 

best predictor of the neural-behavioral relationship in a majority of cases, and represents 

the best model more than twice as frequently as any of the other tested encoding schemes.  

These results suggest that in most cases the fine temporal structure of spikes does not 

encode the acoustic structure of song (at least not in the linear fashion described by the 

above equation).  Consequently, models that use fine temporal structure to predict 

behavior presumably produce higher cross-validation error because free parameters are fit 

to non-informative features of spike trains.  Based on these results, we used spike count 

in a single 40 msec window – the tested model with the most predictive power in the 

majority of cases– to examine correlations between neural activity and song.   
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Appendix 3, Figure 3.5.  Cross-validation analysis.  (a)  Five models with different bin 
sizes.  Each model divides the 40 msec-long premotor window (horizontal red line) into a 
different number of bins.  Song output is modeled as a linear function of the number of 
spikes falling within each bin (see text).   For the example spike train (vertical red lines), 
the model with a single bin would count four spikes.  For the model with two 20 msec-
long bins, three spikes fall in the first bin, and one spike falls in the second bin, and so 
on.  (b)  Performance of the five models.  As described in the text, we used a cross-
validation approach to determine which model is best able to predict the neural-
behavioral relationship in each case where a neuron is active prior to a syllable.  Bar plots 
show the fraction of cases in which each model is the best predictor of pitch, amplitude, 
and entropy. 
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Multiple comparisons: 

 Our goal is to determine whether trial-by-trial variations in premotor neural 

activity are correlated with behavioral variations in a significant number of cases. This 

presents a multiple comparison problem:  as the number of tests increases, so will the 

number of false positives (cases in which a significant correlation is found but none 

exists).  For example, if we are performing k independent correlation tests (at p<0.05) on 

data in which no correlations exist, the odds of finding at least one spuriously significant 

correlation are [1-0.95k].  Put another way (in terms of the expectation value for the 

number of false positives), for k=100 tests, we would expect to find 5 false positives. 

There are several approaches to dealing with this problem.  One approach 

(employed by the Bonferroni correction and related techniques) is to control the 

probability that any test is found to be significant.  More formally, for k tests, these 

techniques control the probability of rejecting at least one of k null hypotheses when all k 

null hypotheses are true (Westfall and Young, 1993).  With this type of correction, 

finding any test significant provides evidence (at a confidence level determined by the 

controlled false-positive rate) of a relationship between the variables in question.   

An alternate technique is to test whether the proportion of significant correlations 

is greater than that expected by chance.  As mentioned above, 100 independent tests of 

uncorrelated variables will on average yield 5 false positives.  We could then use a 

binomial test to determine whether the proportion of significant correlations in the 

empirical data is significantly greater than the proportion expected by chance.  

While both techniques are in principle correct (provided that all tests are 

independent, a topic discussed at length below), they answer slightly different questions 
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about our dataset.  Applying the Bonferroni correction by reducing each p-value 

threshold within each neuron (e.g. by a factor of 18 if a neuron is subjected to 18 tests) 

still results in many significant correlations with pitch, amplitude, and entropy (76, 76, 

and 47, respectively).  Furthermore, in the Bonferroni-corrected dataset significant 

correlations with pitch have a positive sign in 68% of cases (the asymmetry is significant 

at p=0.001), whereas no significant asymmetry is found in correlations with entropy and 

amplitude.  Similar results are obtained from an even more conservative version of the 

Bonferroni correction, in which the threshold p-value for every test is reduced by a factor 

of 2115 (the total number of tests performed on all 145 neurons). These results indicate 

that at least some significant correlations are present in our data. 

Because one goal of our paper is to estimate the proportion of RA units encoding 

the acoustic output at any given time, we also employed a proportion-based technique, 

since it tells us about the fraction of the neural population encoding behavioral variation.  

This approach is detailed below. 

 

Non-independent tests: 

 While the proportion-based (binomial) test describe above is applicable when all 

tests being performed are independent, our analysis is potentially complicated by 

correlations among the three acoustic parameters measured from each syllable 

(behavioral-behavioral correlations) and by correlations between neural activity during 

consecutive syllables (neural-neural correlations) (see Results).  Correlations of this sort 

raise the possibility that our tests for correlations between premotor activity and acoustic 

output (neural-behavioral correlations) might not be independent.  In the extreme case, if 
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the pitch, amplitude, and entropy of each syllable (for example) were perfectly correlated, 

then the three correlations between neural activity and each parameter only truly 

constitute a single independent test.  The apparent statistical power of a binomial test (to 

determine whether the proportion of correlations is significantly greater than 5%) might 

therefore be artificially inflated. 

To illustrate this, consider a hypothetical case in which 20 correlation tests are 

performed, where all 20 tests are independent, and of which 2 are found to be significant.  

Although 2/20 > 5%, this proportion fails the binomial test (p=0.08).  Now, imagine that 

for each of the 20 original tests, 9 other tests are performed with outcomes that are 

perfectly correlated with the corresponding test from the original 20.  In this case, 

although there are only 20 truly independent cases, we would find that 20/200 tests were 

significant, a proportion that easily passes the binomial test (p=0.001). 

 

Estimating the null distribution: 

 It is therefore necessary to correct for the consequences of neural-neural and 

behavioral-behavioral correlations.  Our approach is to use a resampling technique to 

create an artificial dataset in which all neural-behavioral (NB) correlations are broken, 

but all neural-neural (NN) and behavioral-behavioral (BB) correlations are preserved.  

We then perform correlation tests on these resampled datasets and note the proportion of 

cases with significant correlations.  By performing this procedure many times, we can 

estimate the distribution of proportions of significant correlations under the null 

hypothesis, and then ask whether the proportion of significant correlations in the real 

dataset is beyond the 95th percentile of the null distribution.   
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Details of the resampling-based approach: 

 First, consider a bird that sings only one syllable, from which we have recorded 

10 neurons.  For one of these neurons, let N and B be matrices of neural and behavioral 

data, respectively.  The rows of N and B correspond to trials, and the columns correspond 

to the tests being performed.  Nk,i is therefore the premotor neural activity (# spikes) 

during trial k of test i, and Bk,i is the value of the appropriate acoustic parameter during 

trial k.  If there are n examples of the syllable, N and B will each have n rows and 3 

columns, representing the three acoustic measurements (pitch, amplitude, and entropy).  

(Note that if the bird sings only one syllable, the columns of N are identical: Nk,i = Nk,j for 

all k, since the three different behavioral measures are being compared to the same 

premotor neural activity.)   

 Our goal is to create a dataset in which any neural-behavioral correlation between 

columns Ni and Bi are broken, but correlations between columns Ni, Nj, i≠ j (NN 

correlations) and Bi, Bj, i≠ j (BB correlations) are preserved.  To accomplish this, we 

permute (shuffle) the rows of N, resulting in Np.  (The same results could be achieved by 

permuting the rows of B.)  We then compute correlations between the three paired 

columns Np
i and Bi and count the number of tests that achieve significance (at p<0.05). 

 Since our hypothetical datasest consists of ten such neurons, running the above-

described procedure on each neuron would yield 30 tests, of which some subset will 

achieve significance.  We then record this proportion and repeat the procedure many 

times to generate a distribution of proportions of significant correlations under the null 
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hypothesis.  We can then reject the null hypothesis if the proportion of significant cases 

in the original dataset lies beyond the 95th percentile of the null distribution. 

 

Multiple syllables: 

 Now we consider how to perform this procedure when a bird's repertoire consists 

of more than one syllable, as is the case in our data (Bengalese finch song typically 

contains 5-10 distinct syllables).  Consider a case in which a bird's song contains 5 

syllables, labeled "ABCDE".  If the bird always sings these syllables in this order, an 

example song might be "ABCDE-ABCDE-ABCDE" (hyphens are inserted for visual 

clarity and do not represent syllables) and adapting the above procedure is 

straightforward.  Both the N and B matrices, rather than having 3 columns (3 acoustic 

measurements of 1 syllable), will have 15 columns (3 acoustic measurements x 5 

syllables).  Each row of N and B will correspond to one rendition of the motif "ABCDE."  

Permuting the rows of N will remove NB correlations, while preserving BB and NN 

correlations.  Note that when multiple syllables are analyzed, NN and BB correlations 

describe neural and acoustic correlations across, as well as within, syllables. 

 Our analysis is complicated, however, by the fact that syllable order in Bengalese 

finch song, while highly patterned, is seldom as stereotyped as in the above example.  A 

more typical syllable order for a Bengalese finch song bout is "AB-AB-ABC-ABCDE-

ABCDE-AB" (again, hyphens inserted for visual clarity only).  Because of 

inconsistencies in the order and prevalence of syllables, it is not possible to gather all 

neural data into one neural matrix and one behavioral matrix.  Instead, data from each 

syllable must be collected into a separate pair of matrices.  Then, in each run of the 
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resampling algorithm, we permute the rows of all neural matrices.  However, it would be 

incorrect to permute the neural matrices independently: to do so would destroy any NN 

and BB correlations between, for example, syllable "A" and syllable "B".  Rather, we 

permute the neural matrices in a manner that, as closely as possible, preserves 

relationships between consecutive syllables in the original data. 

 

Row permutation for complex syllable patterns: 

For each recorded neuron, we divide the recorded syllables into "segments," 

where each segment is the longest possible sequence of syllables in which no syllable is 

repeated.  Here, segment # is indicated with subscript for an example sequence: 

 

A1B1 -A2B2 -A3B3C3 -A4B4C4D4E4 -A5B5C5D5E5 -A6B6 –A7B7C7D7E7 

 

Then, on each resampling trial, we randomly permute the order of segments.  For 

example, the segment reordering on one resampling trial might be: [6 2 5 7 4 3 1].  The 

reordered (permuted) song would look like this: 

 

A6B6 - A2B2 - A5B5C5D5E5 - A7B7C7D7E7-A4B4C4D4E4- A3B3C3 -A1B1  

 

Note that while the order of the segments has been permuted, local adjacencies (that is, 

the order of consecutive syllables within segments) are preserved. 
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We then use this reordering of segment sequence to shuffle the rows of the neural 

matrices: 

 

Permuted order for each syllable: 

A6 A2 A5 A7 A4 A3 A1   Reorder the 7 rows of NA by [6257431] 
B6 B2 B5 B7 B4 B3 B1   Reorder the 7 rows of NB by [6257431] 
C5 C7 C4 C3    Reorder the 4 rows of NC by [3421] 
D5 D7 D4    Reorder the 3 rows of ND by [231] 
E5 E7 E4    Reorder the 3 rows of NE by [231] 
 

The procedure allows us to permute the matrices of neural data in as consistent a fashion 

as possible given that not every syllable is included in every song segment  Note that in 

cases where all segments are identical, as in 

 

A1B1C1D1E1- A2B2C2D2E2- A3B3C3D3E3 - … 

 

this method is equivalent to collecting all data into one neural matrix and one behavioral 

matrix, and permuting the rows of the neural matrix. 

 

Results of resampling analysis: 

 Using the above-described techniques, we permuted our entire dataset 1000 times, 

creating a distribution of the number of significant correlations (out of the total of 2115 

cases) expected under the null hypothesis.  When tests for pitch, amplitude, and entropy 

were combined, the 95th percentile of this distribution fell at 122 cases, (or 122/2115 = 

5.8% of the total number of tests), as shown by the dashed black line in Appendix 3, 

Figure 6a.  When the combined resampled distribution was separated into tests for pitch, 
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amplitude, and entropy, the critical values were at 46, 44, and 45 significant tests out of 

705 (6.5%, 6.2%, and 6.4%, respectively; dashed black lines in Appendix 3, Figure 6b,c, 

and d).  Since these values are quite similar, we used the most conservative of these 

figures (6.5%) as the significance threshold in Figure 7a in the main text.   

The number of significant correlations in our dataset exceeded the relevant 

significance threshold in all cases (169, 175, and 137 for pitch, amplitude, and entropy 

respectively; dashed red lines in Appendix 3, Figure 3.6b,c, and d).  Furthermore, the 

number of significant correlations not only exceeded significance thresholds but fell 

beyond the range of all 1000 resampled datasets, whether tests for pitch, amplitude, and 

entropy were considered either together or separately.  The observed proportions were 

thus significantly (p<0.001) greater than those expected by chance. 

 

 

Appendix 3, Figure 3.6:  Results of resampling analysis.  Each plot shows the 
distribution of the number of significant correlations in each of the 1000 permutations of 
the empirical data.  The 95th percentile of this distribution (dashed black lines) is the 
threshold for significance.  In all cases, the number of significant correlations in the 
empirical data (dashed red lines) was beyond this threshold.  Permutation tests were 
conducted using the full dataset, combining tests for pitch, amplitude, and entropy, as 
described in the text and shown in (a).  (b), (c), and (d) show the results of separating the 
empirical and resampled data into separate distributions for each acoustic parameter. 



168 

 

Appendix 3, Figure 3.7.  Post-song inhibition.  (a)  Rasters show the activity of a 
single unit from Bird 4 aligned to the onset (left) and offset (right) of song.  As was 
typical in our data, this unit switched from regular tonic activity (far left) to bursty firing 
several seconds prior to song onset.  Following song offset, spiking was inhibited for 
approximately 500 msec, after which regular tonic firing resumed.  (b)  Mean firing rate 
for the unit shown in (a).  Before song-related bursting begins, this unit had a baseline 
rate of 34 Hz (dashed red line).  We quantified post-song inhibition by comparing the 
baseline rate to the mean firing rate in a window 100-400 msec after song offset (blue 
box).  (c)  Group data.  We included only those units for which we collected at least 10 
song offsets after which song did not resume for at least 3 seconds (n=43).  Of these, 36 
units (red dots) had significantly lower mean firing rates in the post-offset window, 1 unit 
(blue dot) had greater activity, and 6 units (white dots) were not significantly different (2-
tailed t-test, p<0.05).  An arrowhead indicates the unit shown in (a) and (b). 
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Putative interneurons vs. putative projection neurons 

In contrast to the tonic activity characteristic of the majority of units (Figure 3.3a 

in the main text), a small subset of recordings (1 single-unit, 3 multiunit) had very low or 

no spiking activity when the bird was at rest and displayed bursty spiking activity during 

song.  The spike width-at-half-height of the sole single unit of this type (103 µsec) was 

narrower than spike widths of all other single units (164 +/- 31 µsec, mean +/- S.D.).    

The similarity of the spike widths and activity patterns in this subset of units to a similar 

class in the zebra finch (Spiro et al., 1999; Leonardo and Fee, 2005) suggests that these 

four units are interneurons, and that the main body of our recordings are from projection 

neurons.  The four putative interneurons were not included in further analysis. See 

Appendix 3, Figure 3.8b for an example of a recording from a putative interneuron 

alongside a recording from a putative projection neuron (Appendix 3, Figure 3.8a). 
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Appendix 3, Figure 3.8.  Firing patterns of a putative projection neuron and a putative 
interneuron.  (a) Raw sound amplitude trace (top) and a recording of a putative projection 
neuron (bottom) from Bird 2.  Putative projection neurons are spontaneously active when 
the bird is not singing, displaying characteristic evenly spaced spikes, such as those seen 
in the last second of the neural trace.  The bursty activity preceding the song is likely 
related to the production of three introductory notes, marked with green asterisks.  (b)  A 
putative interneuron from Bird 3.  Neurons of this type are not active when the bird is at 
rest, but fire bursts of activity during song.  Putative projection neurons and putative 
interneurons made up 97% and 3% of units sampled, respectively.  
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Sparse distribution of significant correlations 

While most units are correlated with at least one acoustic parameter at some point 

during song, significant correlations are sparsely distributed (see Figure 3.6 in the main 

text and Appendix 3, Figure 3.9).  That is, units are typically active before multiple 

syllables, but are significantly correlated with acoustic output in only a fraction of these 

cases.  This sparse distribution might reflect dynamic changes in the strength of 

covariation between recorded neurons and the ensemble of RA neurons controlling each 

acoustic feature.  Such changes would presumably lead to across-syllable differences in 

the correlation between that cell’s activity and motor output. 

The sparse distribution of significant correlations might also result from 

nonlinearities either in the brainstem targets of RA or in the syrinx itself.  The activity of 

a group of brainstem motor neurons or a syringeal muscle might influence pitch (for 

example) during some syllables but not others.  Variations in the activity of RA neurons 

driving these motor structures would therefore only produce pitch variations during a 

subset of syllables. 

In addition to being sparsely distributed across syllables, significant correlations 

are also distributed across acoustic properties such that one unit can be correlated with 

more than one acoustic feature.  This might reflect either the multiple actions of 

individual syringeal muscles or the connectivity of RA neurons to the motor neuron pool.  

EMG studies have shown that activation levels of the syringeal muscles controlling 

amplitude are also correlated with pitch (Goller and Suthers, 1996), suggesting that 

individual muscles can contribute to the control of multiple acoustic features.  

Furthermore, although RA has a roughly myotopic organization (Vicario, 1991), single 
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RA neurons might activate motor neurons controlling multiple muscles, thereby affecting 

multiple aspects of song (Wild, 1993). 

 

 

 

 

Appendix 3, Figure 3.9 (on following 2 pages)  Significant correlations of premotor 
activity with acoustic structure across all birds.  Each box shows data from one bird in 
our dataset, following the same conventions as Figure 6 in the main text (which showed 
the data from Bird 1).  Note that different birds can have different numbers of rows 
(reflecting differences in the number of units recorded) and different numbers of columns 
(reflecting differences in the number of syllables sung by each bird). 
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RA activity in directed vs. undirected song   

Song is produced both in social isolation ("undirected song") and during courtship 

interactions ("directed song").  Previous studies have established that directed song is less 

variable than undirected song (Sossinka and Bohner, 1980; Kao and Brainard, 2006; 

Sakata et al., 2008).  Furthermore, lesion, inactivation, and stimulation studies suggest 

that some of the increased behavioral variation observed during undirected song results 

from lMAN injecting neural variation into RA (Kao et al., 2005; Olveczky et al., 2005; 

Kao and Brainard, 2006).  Together with the results of the current study, these prior 

findings suggest that the increased behavioral variability during undirected song might be 

driven by changes in the overall level of variability in RA activity across social contexts.  

 Although our dataset consists almost entirely of recordings during undirected 

song, in a small number of cases in one bird we were able to obtain both directed and 

undirected song while recording in RA.  Two such recording sites yielded sufficient data 

in both conditions to allow for comparison across social contexts.  As shown in Appendix 

3, Figure 10, neural variability (CV) was indeed significantly lower in the directed 

condition.  While preliminary, these results suggest that not only do trial-by-trial 

variations in RA activity drive variations in song (the main finding in our study), but also 

that modulations in the overall level of RA variability are responsible for social context-

dependent changes in song. 
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Appendix 3, Figure 3.10.  Neural variability across social context.  (a)  Spiking activity 
during undirected (middle) and directed (bottom) song for Bird 3, unit 8.  Bouts of 
directed and undirected song were interleaved during data collection and are plotted 
separately for visual clarity only.  Other plotting conventions as in Figure 4 in the main 
text.  (b)  Variability of spiking activity in directed vs. undirected song.  Each point plots 
the CV (SD/mean) of the number of spikes in the premotor window before one syllable.  
Only syllables with mean activity >25 Hz are analyzed (see Methods).  Squares plot data 
from the unit shown in (a), circles plot data from Bird 3, unit 3.  The p-value is from a 
Wilcoxon signed-rank test. 
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Correlations extend across time 
 When quantifying the relationship between neural activity and song output, we 

restricted our analysis of neural activity to a 40 msec premotor window preceding each 

syllable.  This window likely encompasses the latencies with which spikes in RA directly 

(via synapses with motor neurons in the brainstem) influence behavior.  Using this 

restricted time window allows us to examine the relationship between neural activity and 

acoustic output in the context of a single syllable. 

However, variations in both premotor activity and acoustic output might have a 

timecourse longer than a single syllable (Glaze and Troyer, 2006), and an increase in 

firing rate or pitch (for example) in one syllable might correlate with a similar increase in 

the next syllable.  In the extreme case, consecutive syllables could be perfectly correlated, 

both in terms of premotor activity and acoustic output.  In this situation a 40 msec 

premotor window, although it includes the "true" causal latency of RA neurons, would 

have no more or less predictive power than any other window, and acoustic output would 

be predicted equally well by neural activity following, rather than preceding, the syllable.   

At the other extreme, variation in one syllable could be completely independent of 

variation in neighboring syllables.  In this case, neural activity outside of the true 

premotor window would be a poor predictor of behavioral output. 

 To examine whether behavioral correlations extend across time, we asked 

whether the acoustic properties of a given syllable are correlated with the acoustic 

properties of the next syllable.  We found this type of correlation to be widespread.  The 

pitch of a given syllable was significantly (p<0.05) correlated with the pitch of the next 

syllable in 23.8% of cases.  Similar measurements of amplitude and entropy yielded 

significant correlations in 48.5% and 21.4% of cases, respectively. 
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 We then performed a similar analysis of premotor activity to ask whether neural 

activity is also correlated across time.  As with acoustic output, we found a substantial 

number of correlations.   The number of premotor spikes before a given syllable and the 

number of spikes before the next syllable were significantly correlated in 32.4% of cases. 

The prevalence and strength of these correlations show that motor activity during 

consecutive syllables is neither perfectly correlated nor completely independent.  Since 

consecutive syllables are not perfectly correlated, neural activity in the 40 msec premotor 

window we used should predict behavior better than activity taken from other times 

relative to the syllable.  Since consecutive syllables are not independent, however, we 

expect that using other “premotor” windows to predict behavior would have some 

statistical power, though not as much as using the original premotor window.  

 We tested this prediction by repeating our analysis using two alternate premotor 

windows (Appendix 3, Figure 3.11).  In one analysis, we examined correlations between 

acoustic data and premotor neural activity taken from the previous syllable (light gray 

bars).  In a second alternate analysis, neural data were taken from the syllable after the 

one from which premotor neural data were taken (dark gray bars).  Comparison of the 

results with those of the original analysis (black bars) confirms the prediction that these 

alternate premotor windows have some predictive power, but significantly less power 

than the window used in the original analysis. 
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Appendix 3, Figure 3.11 Correlations with adjacent syllables.  Each bar shows the 
percent of cases correlated with a particular acoustic feature.  The black bars show the 
results of the main analysis (also shown in Figure 7a in the main text), in which the 
acoustic features of a given syllable are regressed against the premotor activity before 
that same syllable.  Also shown are the results two alternate analyses, in which the neural 
data are taken from the premotor window preceding the previous syllable (light gray 
bars) or next syllable (dark gray bars).  In all nine cases, the percent of cases correlated is 
significantly greater than chance (dashed line).  Asterisks indicate that the proportion of 
cases correlated with neural data from the same syllable is significantly higher than those 
derived from using either of the two alternate premotor windows (Z-test for proportions, 
p<0.0001). 
 

 

 
 






