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Abstract

The temperature sensitivity of soil processes is of major interest, especially

in light of climate change. Originally formulated to explain the temperature

dependence of chemical reactions, the Arrhenius equation, and related Q10

temperature coefficient, has a long history of application to soil  biological

processes. However, empirical data indicate that Q10 and Arrhenius model

are  often poor  metrics  of  temperature  sensitivity  in  soils.  In  this  opinion

piece,  we  aim  to  (1)  review  alternative  approaches  for  characterizing

temperature sensitivity,  focusing on Macromolecular  Rate Theory (MMRT),

(2)  provide  strategies  and  tools  for  implementing  a  new  temperature

sensitivity  framework,  (3)  develop  thermal  adaptation  hypotheses  for  the

MMRT  framework,  and  (4)  explore  new  questions  and  opportunities

stemming  from  this  paradigm  shift.  Microbial  ecologists  should  consider

developing and adopting MMRT as the basis for predicting biological rates as

a  function  of  temperature.  Improved  understanding  of  temperature

sensitivity  in  soils  is  particularly  pertinent  as  microbial  response  to

temperature has a large impact on global climate feedbacks.
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1. Introduction

The temperature sensitivity of soil biological processes under climate

change  is  of  major  interest  because  of  the  major  consequences  for  soil

carbon dynamics  (Bradford  et  al.,  2016).  Although definitions  vary in  the

literature, most simply, temperature sensitivity can be defined as the rate of

change  with  respect  to  temperature  (Sierra,  2012);  or  mathematically,

temperature sensitivity is the first derivative of the temperature response.

Historically, the most common metrics for measuring temperature sensitivity

of  soil  processes have been the Arrhenius  model  or  the Q10 temperature

coefficient. It is important to note that Q10 is not the rate of change with

respect  to  temperature,  but  rather  the  ratio  between  two  rates.  The

Arrhenius  model  and  Q10 temperature  coefficient  have  been  used  to

characterize soil  temperature sensitivity  since the 1920s  (Singh & Gupta,

1977). However, over the past several decades, a growing body of literature

now clearly demonstrates that Q10 and Arrhenius models are ineffective and

sometimes misleading models for characterizing temperature sensitivity in

soils (e.g.  Lloyd & Taylor, 1994; Davidson  et al., 2006; Hamdi  et al., 2013;

Schipper  et al., 2014; Tang & Riley, 2015; Alster  et al., 2016a; Robinson et

al., 2017). 

We argue that the Q10 temperature coefficient and the Arrhenius model

are ill suited for soil biological systems. First, the Arrhenius equation was not

originally  intended  for  biological  reactions,  but  instead  to  describe  the

thermal dependence of reaction rates in physical chemistry. Applying it in
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biological  systems neglects enzyme catalysis of the reaction by assuming

that enzyme tertiary structure is not temperature sensitive  (DeLong  et al.,

2017). Second, these equations assume that biological  reaction rates rise

monotonically with warming (i.e., only increase with increasing temperature).

In  reality,  these  rates  are  typically  unimodal—they  peak  at  intermediate

temperatures, and decline at higher temperatures (Dell  et al., 2011). Third,

Arrhenius and Q10-modeled rates are dependent on the temperature range

measured  (Kirschbaum,  1995;  Sierra,  2012;  Schulte,  2015;  Alster  et  al.,

2016b;  Pawar  et  al.,  2016).  Therefore,  the  same  data  fit  to  the  Q10

temperature  coefficient  and  the  Arrhenius  model  can  yield  different

parameter estimates for different temperature ranges, meaning that these

model  parameters  can be inconsistent  metrics  of  temperature  sensitivity.

Moreover,  the  parameters  can  be  misleading  when  comparing  results

between studies.  Even more problematic with Q10,  realistic  values can be

generated when using randomly generated data as a consequence of the

mathematical formulation  (Sierra, 2012). We therefore caution against the

use  of  the  Q10 temperature  coefficient  and  the  Arrhenius  model  in

biogeochemical modeling.

Here,  we advocate for  broader  adoption  of  an alternative  model  of

temperature sensitivity for soil microbial processes.  Recent studies provide

feasible  alternatives  to the  Q10 temperature coefficient  and the Arrhenius

model  that  provide  technical  advancement,  empirical  validation,  and

improved theoretical understanding of temperature sensitivity  (Schipper  et
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al., 2014; Pawar et al., 2016; Dobri & Bååth, 2018). Despite these advances,

of  the  papers  published  in  Global  Change  Biology in  2017  and  2018

regarding temperature sensitivity in soil systems, 25 out of 31 (81%) only fit

data to the Q10 temperature coefficient or Arrhenius model. To move beyond

these  measures  of  temperature  sensitivity,  we  provide  (1)  a  review  of

alternative approaches, focusing on Macromolecular Rate Theory (MMRT), (2)

strategies and tools to overcome potential barriers of transitioning to a new

temperature sensitivity framework, (3) hypotheses for incorporating MMRT

into thermal adaptation theory,  and (4) exploration of  new questions and

opportunities stemming from these new approaches. 

2. Alternative approaches

Over  the  past  several  decades,  many  alternative  approaches  have

been  proposed  to  describe  the  temperature  sensitivity  of  biological

processes. Some stem from enzyme biochemistry or microbiology and have

been applied to soils  (Ratkowsky et al., 1982, 1983; Schipper  et al., 2014),

while others derive from empirical modifications of existing equations that fit

soil data (Lloyd & Taylor, 1994; Qi et al., 2002; Bååth, 2018). Most of these

approaches improve predictions of temperature sensitivity by modifying Q10

or Arrhenius to account for residual variation in the data. However, most of

these modified models  remain monotonic,  so projected responses are not

necessarily representative of biological processes (Alster et al., 2016b). 
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Several  non-monotonic,  unimodal  equations  have  been  proposed  to

describe  temperature  response in  biological  systems.  Four  of  these have

been applied to soil  processes: the Johnson and Lewin model  (Jing  et al.,

2014), the square root model (Ratkowsky equation) (Pietikäinen et al., 2005;

Rinnan  et al., 2009, 2011; Birgander  et al., 2013; van Gestel  et al., 2013;

Taylor et al., 2017; Duan et al., 2018), the equilibrium model (Menichetti et

al., 2015), and macromolecular rate theory (MMRT)  (Schipper  et al., 2014;

Alster et al., 2016a, 2016b; Robinson et al., 2017; Taylor et al., 2017; Duan

et  al.,  2018).  Each  has  its  own  merits  and  shortcomings.  However,  all

improve upon the  Q10 temperature coefficient and the Arrhenius model  by

capturing the unimodality typical of biological enzymatic reactions. DeLong

et al. (2017) review the assumptions of these models from a thermodynamic

perspective (see Box 1 of DeLong et al., 2017). There are no studies directly

comparing  all  four  approaches  for  soils,  although  Taylor  et  al.  (2017)

compared the square root model and MMRT for nitrification by soil bacteria

and  archaea.  They  noted  that  the  two  models  did  not  differ  in  their

effectiveness (Taylor et al., 2017).

We propose the adoption of MMRT (Box 1) to represent temperature

responses of soil biological systems for two reasons. First, in contrast to the

square  root  model,  MMRT  is  not  strictly  empirical  but  rather  based  on

underlying  thermodynamic  theory.  Second,  in  contrast  to  the  equilibrium

model,  MMRT does not assume unlimited substrate supply  (DeLong  et al.,

2017).  Since  substrates  for  soil  enzymatic  reactions  are  typically  limiting
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(Schimel  & Weintraub,  2003),  temperature models  that assume substrate

saturation may not be as accurate. 

Box 1: Overview of Macromolecular Rate Theory
Macromolecular Rate Theory (MMRT) was first proposed by  Hobbs et al.

(2013). They provided a model that better accounts for observed declines

in  enzyme  activity  at  temperatures  below  thermal  denaturation

temperatures.  They  hypothesized  that  the  curvature  in  biological

temperature  response  curves  is  a  function  of  the  change  in  the  heat

capacity (∆CP
‡)  between the enzyme-substrate complex and the enzyme-

transition state complex, not denaturation.  Heat capacity describes how

the temperature of an object increases with added energy. In the Arrhenius

equation,  the activation barrier  is  independent of  temperature,  which is

generally  true  for  reactions  involving  small  molecules,  such  as  water.

However,  biological  reactions  are  typically  mediated  by  large

macromolecules, such as enzymes, which have large heat capacities (per

mole),  meaning  that more energy is needed to raise their temperatures

compared to their surrounding environment. Therefore, large  ∆CP
‡ values

lead to temperature dependence of the activation energy. The assumption

that  the  temperature  sensitivity  of  activation  energy  is  negligible  is

therefore not appropriate for biological reactions. Thus, biological reactions

are expected to deviate from the Arrhenius model. 
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Macromolecular Rate Theory modifies the Arrhenius equation to account

for  the  large  change  in  heat  capacity  associated  with  the  transition

between  the enzyme-substrate complex and the enzyme-transition state

for macromolecules. The MMRT equation is:

ln (k )=ln(
kBT

h )−
∆HT 0

‡
+∆CP

‡
(T−T0)

RT
 
+∆ ST0

‡
+∆C P

‡
(lnT−lnT 0)

R
,

(1)

where k is the rate, T is temperature, T0 is the reference temperature, kB is

Boltzmann’s  constant,  h is  Planck’s  constant,  R  is  the  universal  gas

constant, H is enthalpy,  S is entropy, and ‡ indicates the transition state

(Figure 1). With MMRT, the  ∆CP
‡ of the enzyme controls the temperature

response of the reaction. Minor mutations in isoenzymes can change the

∆CP
‡ and  therefore  result  in  reactions  having  different  temperature

responses (Hobbs et al., 2013). 
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Figure 1. Example plot of k predicted by MMRT (solid, black line,  y-axis,

left hand side) and the first derivative of k (dotted, black line, y-axis, right

hand side). The red line intersects dk/dT at the temperature optimum (T opt

). The positive peak of dk/dT is equal to the point of maximum temperature

sensitivity  (TSmax).  Here,  temperature  dependence  is  the  shape  of  the

MMRT curve, while the temperature sensitivity corresponds to dk/dT of the

MMRT curve.   

Although  originally  intended  to  describe  pure  enzymatic  response  to

temperature, MMRT has also been applied to soil microbial processes, at

first  by Schipper et al.  (2014).  They reported that MMRT is  suitable  for

modeling  soil  enzymatic  reactions  and  various  ecosystem  rates  (i.e.,

10



respiration,  nitrification,  denitrification,  and  methane  oxidation  and

production). Since then, MMRT has been further applied to soil biological

reactions  (Alster  et al., 2016a; Robinson  et al., 2017; Taylor  et al., 2017;

Duan et al., 2018; Liu et al., 2018). Parameters from MMRT have also been

used  to  define  temperature  response  traits  for  microbes  (Alster  et  al.,

2016b, 2018). These traits include ∆CP
‡, which describes the steepness of

the  temperature  response  curve,  T opt,  which  describes  the  point  of

maximum activity, and TSmax, which describes the point of greatest positive

change  in  the  reaction  rate  (i.e.,  point  of  maximum  temperature

sensitivity). While ∆CP
‡ can be estimated directly by fitting data to equation

1,  T opt can  be estimated  by  setting  to  zero  the  first  derivative  of  that

equation with respect to temperature and solving for T (Arcus et al., 2016):

T opt=
∆ HT 0

‡
−∆CP

‡ T 0

−∆CP
‡
−R

,
(2)

and  TSmax (also known as  T inf)  can be estimated by setting to zero the

second derivative of the MMRT equation with respect to temperature and

solving for T (Schipper et al., 2019):

TSmax=
∆HT0

‡
−∆ CP

‡ T0

−∆CP
‡ ±√−∆CP

‡ R

(3)
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These  traits  can  replace  activation  energy  or  Q10 for  describing  and

comparing the temperature response of different soil biological reactions.

These  traits  also  provide  more  intuitive  and  ecologically  meaningful

metrics for describing temperature response compared with the enthalpy

and entropy parameters from MMRT.

3. Potential barriers and solutions

3.1 Additional model parameters

One  of  the  potential  disadvantages  of  switching  to  MMRT  is  the

additional parameters in the model.  More complex models can be prone to

overfitting and they require more data. The Arrhenius equation requires two

fitted  parameters  (i.e.,  activation  energy  and the  pre-exponential  factor),

while Q10  is based on a single slope parameter. More complex temperature

models may involve three or four fitted parameters  (DeLong  et al., 2017).

Several  studies  comparing  a  three-parameter  MMRT  model  and  a  two-

parameter Arrhenius model found a superior goodness of fit for MMRT even

when accounting for the additional parameter  (Alster  et al., 2016a, 2016b;

Robinson  et  al.,  2017;  Liang  et  al.,  2018).  Additionally,  with  MMRT some

model  parameters  can  be  fixed  using  empirical  information.  The  MMRT

equation includes four parameters, T 0, ∆HT 0

‡ , ∆ ST 0

‡ , and ∆CP
‡. However, T 0 can

be set empirically to 4 to 10°C below the experimental T opt, because T 0 does

not  strongly  affect  overall  model  fit  (Schipper  et  al.,  2014;  Alster  et  al.,

2016a). Due to the phenomena of enthalpy-entropy compensation  (Sharp;
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Chodera & Mobley, 2014),  ∆HT 0

‡  and  ∆ ST 0

‡  are also typically interdependent

(Mills & Plotkin, 2015; Alster et al., 2018). Therefore, the effective number of

model parameters is closer to two (Arcus et al., 2016; Robinson et al., 2017).

The  MMRT  traits  provide  a  novel  perspective  on  microbial  and

enzymatic responses to temperature. Determining the temperature at which

the  greatest  change  in  rate  occurs  (TSmax)  could  help  identify  climate

scenarios  with  large  effects  on  nutrient  cycling  or  greenhouse  gas

production.  TSmax is particularly interesting because it typically falls within

environmentally relevant temperature ranges (Alster et al., 2016b). 

3.2 Comparing temperature response with prior studies

Because  researchers  have  long  used  Q10 and  activation  energy  as

measures  of  temperature  sensitivity,  there  might  be  hesitation  to  adopt

MMRT if  its parameters are not comparable to previous models. Still,  this

hurdle could be overcome by fitting existing data to the MMRT model in a re-

analysis.  Here,  we have included open source tools  in our supplement to

facilitate MMRT parameter fitting, including T opt and TSmax. 

3.3 Solutions for experimental limitations

For  optimal  model  parameterization,  MMRT  requires  sufficient

measurements  across  a  broad  temperature  range.  In  an  analysis  of  the

sample  size  needed  for  fitting  soil  respiration  data  to  the  MMRT  model,

Robinson et al. (2017) demonstrate that model fits continue to improve up
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until roughly 20 measurements at different temperatures. It is also important

to capture the T opt within the range of temperatures measured (Alster et al.,

2018). These requirements (i.e., large number of independent temperature

measurements and a large temperature range) may be an obstacle to fitting

the  MMRT  model  to  existing  empirical  data  or  new  data  from  small

experiments. To overcome this problem in new experiments, we suggest use

of  multiple  incubators  or  staggered time points  to expand the range and

number  of  temperature  points.  Sample  sizes  need  not  increase,  though.

Added temperature points across the experimental range could be offset by

decreasing replicate number at each point (O’Brien et al., 2009; Sefer et al.,

2016). Total sample size could remain the same. 

A  temperature  gradient  block  is  another  option.  Common  in

microbiology  experiments,  temperature  gradient  blocks  are  made  of

aluminum set in  a circulating water bath that is  heated on one side and

chilled on the other (detailed in Konishi et al., 2006). This approach has been

used to incubate soils and sediments at multiple temperatures with minimal

additional effort  (Fey & Conrad, 2000; Yao & Conrad, 2000; Canion  et al.,

2014; Robinson et al., 2017). For experiments on soil microbial enzymes or

isolates, temperature gradients in thermal cyclers—often found in microbial

laboratories—are another option. 

For  field  experiments,  several  solutions  already  exist  to  overcome

these obstacles. Natural temperature and elevation gradients are commonly

used for warming experiments (e.g., Bradford et al., 2019; Dacal et al., 2019)
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and  provide  access  to  many  temperature  points.  For  manipulative  field

experiments,  measurements  could  be  collected  near  and  far  from  the

heating source because warming decreases with distance  (Peterjohn  et al.,

1993). Field experiments also include temporal fluctuations in temperature.

Such variation can be used to fit the model, as well as compare between

warmed  and  control  treatments  (Carey  et  al.,  2016;  Li  et  al.,  2019).

Additionally,  variation in environmental  temperatures poses an interesting

question  for  field  studies:  are  organisms  from  more  stable  thermal

environments more or less temperature responsive? In other words, do they

display more or less negative  ∆CP
‡? Overall, we urge scientists to consider

incorporating more temperature levels into future research projects. 

While we strongly encourage incorporation of additional temperature

points,  another  logistical  consideration  is  how temperature  interacts  with

moisture  and  oxygen  availability.  High  temperatures  typically  decrease

moisture  availability.  The  interaction  of  these  three  variables  (i.e.,

temperature,  moisture,  and  oxygen  availability)  may  confound  the

temperature-reaction rate relationship in soil systems  (Sierra  et al., 2017).

We  therefore  recommend  controlling  for  these  other  variables  when

estimating  soil  temperature  response,  for  example  by  adding  water,  to

minimize misleading results.  

3.4 Development of thermal adaptation theory
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Another  potential  barrier  in  applying  MMRT is  a  lack  of  conceptual

theory  on  thermal  adaptation  (Allison  et  al.,  2018),  or  how  temperature

response curves adapt to changes in temperature. Particularly, how should

respiration rate, or enzymatic V max, the maximum reaction velocity, adapt or

acclimate to temperature change? Enzyme catalyzed reactions are typically

characterized through Michaelis-Menten kinetics,

V=V max [ S ]/(Km+[S ]), (4)

where  V  is velocity,  S  is substrate, and  K m is the half-saturation constant.

V max is  thought to adapt to temperature through changes in the enzyme-

substrate binding complex  (Davidson & Janssens,  2006). According to the

Arrhenius  theory,  cold-adapted  enzymes  should  have  lower  activation

energies to offset the lower kinetic energy of cooler systems, in comparison

to  higher  activation  energies  of  warm-adapted  enzymes.  Therefore,

enzymatic adaptation to warming should entail increased activation energy

(Figure 2A), which is controlled by a change in the enthalpy of  activation

(Wolfenden  &  Snider,  2001).  A  higher  activation  energy  also  implies  a

greater  temperature  response  (and  Q10),  because  small  changes  in

temperature have a larger effect on the reaction. Therefore, V max is expected

to become more temperature responsive with soil warming. 

Still, the empirical support for the Arrhenius-based theory of thermal

adaptation is contradictory. Some studies find that warm-adapted enzymes
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are more temperature sensitive (Koch et al., 2007; Allison et al., 2018; Tang

et  al.,  2019),  while  other  studies  find  the  opposite  (Koch  et  al.,  2007;

Wallenstein  et al.,  2009; Brzostek & Finzi,  2012; Nottingham  et al.,  2016;

Razavi  et al.,  2017;  Tang  et al.,  2019).  This discrepancy could be due to

confusion  in  defining  the  term  “temperature  sensitivity.”  Some  studies

measure temperature sensitivity of  Vmax,  K m, or both. Additionally, studies

can measure intrinsic versus apparent temperature sensitivity. These details

should be clearly reported. 

These  inconsistencies  could  also  result  from  limitations  in  the

underlying reaction rate models. In particular, the assumption of a constant

activation energy for the transition state in Arrhenius-based theory may not

be  valid,  which  could  undermine  thermal  adaptation  theory  built  on  this

assumption. In addition, poor fits of the Arrhenius model to rate data may

lead  to  inaccurate  estimates  of  the  parameters  used  to  test  for  thermal

adaptation.  As  an  alternative,  in  the  next  section  we  propose  new

hypotheses about microbial and enzymatic temperature adaption that follow

from MMRT and focus on V max. Interpreting the temperature sensitivity of K m

is also important but requires more study of the thermal controls on enzyme-

substrate binding.

4. Hypotheses for temperature sensitivity and thermal adaptation

To build a conceptual theory on how V max should adapt to temperature

change under MMRT, we focus on two temperature response traits, ∆CP
‡ and
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T opt.  A more negative  ∆CP
‡ corresponds to a steeper temperature response

curve whereas a less negative ∆CP
‡ corresponds to a flatter curve. A steeper

temperature  response  curve  would  indicate  larger  changes  in  rate  with

temperature compared with a flatter curve. Here, thermal adaptation refers

to changes in temperature response traits (e.g.,  ∆CP
‡,  T opt) of an enzyme in

response to shifts in the temperature or temperature regime experienced by

an organism. Below we propose three hypotheses derived from biochemical

and physiological  mechanisms to  describe  how thermal  adaptation  might

occur within the MMRT framework (Figure 2B, C, and D).  

Under the Enzyme Rigidity Hypothesis (Figure 2B), cooling causes ∆CP
‡

to become more negative (i.e., steeper curve) and  T opt decreases. A more

negative  ∆CP
‡ should be expected if cold-adapted enzymes have decreased

rigidity  compared  with  warm-adapted  enzymes  (Fields  &  Somero,  1998;

Zavodszky et al., 1998; Fields, 2001). With cold-adapted enzymes, increasing

vibrations in the enzyme-substrate complex help compensate for declining

activity at lower temperatures  (Wallenstein  et al., 2011). A more negative

∆CP
‡ (and a steeper curve) results when enzyme rigidity decreases through

an increased number of enzyme-transition-state species (Arcus et al., 2016).

With the Enzyme Rigidity Hypothesis, the entire temperature response curve

may also shift upwards with increasing temperature (Feller & Gerday, 2003;

Arcus  et al., 2016). This directional shift and flattening of the temperature

response  curve  are  in  line  with  empirical  findings  of  thermophilic  versus

18

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290



psychrophilic enzymes (Struvay & Feller, 2012; Arcus et al., 2016), but this

upward shift is not always observed  (Struvay & Feller, 2012). Additionally,

several studies have found that a more negative ∆CP
‡ corresponds to a lower

T opt (Hobbs  et al.,  2013;  Arcus  et al.,  2016;  Alster  et al.,  2018), which is

actually an expected consequence of the mathematics (Arcus et al., 2016). 

The second and third hypotheses, which we term the Optimum Driven

Hypothesis and  the  Thermal  Breadth  Hypothesis,  respectively,  take  a

physiologically-driven approach (Figure 2C and D). For the Optimum Driven

Hypothesis, the T opt increases with warming to more closely match the new

thermal environment, but the ∆CP
‡ remains the same (Figure 2C). We might

expect this type of response if  ∆CP
‡ is a highly conserved property of that

enzyme (Alster et al., 2016b). Furthermore, results from Alster et al. (2018)

(see Figure 3C) suggests that multiple  T opt values are possible at the same

∆CP
‡, particularly at less negative ∆CP

‡ values. However, it might be that this

relationship is not possible at more negative ∆CP
‡ and that ∆CP

‡ must increase

with increasing T opt as is predicted in the Enzyme Rigidity Hypothesis. 

Lastly, the Thermal Breadth Hypothesis predicts that changes in  ∆CP
‡

are  related  to  the  temperature  range  of  the  environment  (Figure  2D).

Enzymes  exposed  to  more  temperature  variation  would  have  flatter

temperature response curves (less negative ∆CP
‡) to maintain more constant

rates across varying temperatures. We previously found that multiple  ∆CP
‡
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values are also possible with the same T opt (Alster  et al., 2018). This result

may be explained by enzymes experiencing different temperature regimes,

but similar mean temperatures. Temperature regime is thought to play a role

in determining temperature sensitivity, but few studies have examined this

relationship (Zhu & Cheng, 2011; Bai et al., 2017).

5. New questions and opportunities

Several  questions  arise  from  these  hypotheses,  providing  new

opportunities for inquiry and development of thermal adaptation theory for

soil  biological  systems.  These  questions  include:  Which  of  the  proposed

hypotheses, if  any,  are supported experimentally? Which enzyme thermal

response traits change with long-term environmental warming (i.e.,  ∆CP
‡ or

T opt)? How much divergence, if any, does warming cause in the temperature

response curves? How can we incorporate  responses of  K m into this  new

thermal adaptation framework? How will adaptation of ∆CP
‡ and T opt vary with

substrate availability or temperature variability? 

Another set of key questions centers on scaling enzyme MMRT. Prior

studies have already demonstrated MMRT’s validity for higher level biological

processes  (Alster  et al.,  2016a;  Robinson  et al.,  2017;  Duan  et al.,  2018;

Liang  et al., 2018); however, what this theory means at scales beyond the

enzyme  level  is  still  unknown.  What  is  the  relationship  between  single

enzymatic  reactions  versus  reactions  involving  a  suite  of  enzymes  (e.g.,

20

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333



microbial  respiration)  (Alster  et  al.,  2018)?  Can  we  expect  changes  in

thermal  adaptation  to  vary  by  ecosystem, microbe,  or  enzyme? How will

production  of  different  isoenzymes  and  changes  in  microbial  community

composition be reflected in the thermal adaptation of temperature sensitivity

of  a  microbe  or  community?  We  previously  hypothesized  that  reactions

involving multiple enzymes would reflect the summation of the temperature

response curves and thus have a less negative  ∆CP
‡ (Alster  et al.,  2018).

However,  we did not find that the data were entirely consistent with this

hypothesis.  Additionally,  soils are composed of both organic and inorganic

elements.  These  inorganic  elements  lack  enzyme  catalysts  and  follow

Arrhenius-type kinetics for chemical reactions (e.g., sorption, desorption, or

diffusion processes). Schipper et al. (2019) argue that soil processes should

thus be determined by combining the MMRT and Arrhenius models based on

substrate supply in the system.  However,  how to determine the relative

contribution of each model and how to vary each of the model parameters

for this mixed-model requires attention.

6. Conclusion

We have several recommendations to facilitate testing and application

of  MMRT.  We  advise  researchers  to  design  experiments  with  as  many

independent temperatures as possible, up to 20, and across a range that is

biologically relevant and includes T opt. This approach is important to secure

adequate data for model fitting.  We also encourage  researchers to collect
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data that can be used to fit and compare alternative models. Macromolecular

Rate Theory offers universal metrics for comparing temperature sensitivity

across microbes and systems. Measurements that are only analyzed using a

Q10 temperature coefficient  or  the Arrhenius  equation represent a missed

opportunity to test MMRT. Using MMRT, we can examine more biochemically

relevant  parameters,  which could  provide  insights into  how enzymes and

organisms adapt to temperature. Therefore, we suggest MMRT as a powerful

tool for representing the biochemical mechanisms operating in soil systems.

In doing so, we may improve predictions of microbial temperature responses

to climate change.
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Figure  2.  Hypotheses  for  thermal  adaptation  of  temperature  response

curves for cold-adapted (blue lines) and warm-adapted (red, dashed lines)

biological  reactions. Panel  A  corresponds  to  the  thermal  adaptation

hypothesis  generated  from  the  Arrhenius  equation  and  panels  B-D

correspond to hypotheses for thermal adaptation developed for the MMRT

framework. With all hypotheses, the magnitude and direction of the change

in rate will depend on how much the temperature response curve shifts, and

at  what  temperature  the  reaction  occurs.  See  table  S1  for  the  example

parameter values corresponding to each plot. 
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