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SUMMARY

This paper proposes an efficient metamodeling approach for UQ of complex system based on Gaussian
process model (GPM). The proposed GPM-based method is able to efficiently and accurately calculate
the mean and variance of model outputs with uncertain parameters specified by arbitrary probability
distributions. Due to the use of GPM, the closed form expressions of mean and variance can be derived
by decomposing high-dimensional integrals into one-dimensional integrals. This paper details on how to
efficiently compute the one-dimensional integrals. When the parameters are either uniformly- or normally
distributed, the one-dimensional integrals can be analytically evaluated, while when parameters do not
follow normal or uniform distributions, this paper adopts the effective Gaussian quadrature technique for
the fast computation of the one-dimensional integrals. As a result, the developed GPM method is able to
calculate mean and variance of model outputs in an efficient manner independent of parameter distributions.
The proposed GPM method is applied to a collection of examples. And its accuracy and efficiency is
compared with Monte Carlo simulation (MCS), which is used as benchmark solution. Results show that
the proposed GPM method is feasible and reliable for efficient UQ of complex systems in terms of the
computational accuracy and efficiency. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: uncertainty quantification; parameter uncertainty; Gaussian process model; arbitrary
probability distribution; Gaussian quadrature

1. INTRODUCTION

Uncertainty is inherent in a variety of complex systems, including spacecraft, automobiles, bridges,
wind turbines, and offshore structures, among many others. The sources of uncertainties may be
categories into four groups: model uncertainty, numerical uncertainty, measurement uncertainty,
and parameter uncertainty. In general, these uncertainties can be either purely aleatory, purely
epistemic, or a mixture of both. Parameter uncertainty, one of the most studied types of uncertainty,
is the focus of this study. Parameter uncertainty can arise due to a number of factors, including but
not limited to manufacturing tolerances, assembly processes, unavoidable variability in operating
conditions (e.g., inherent aging and deterioration, corrosive environment), and a lack of complete
information (e.g., unknown exact value, ill-defined boundary conditions). In order to gain more
precise characterization and interpretation of quantities of interest (QoIs) of physical system,
parameter uncertainty should be taken into account within the associated physical/simulation model,
which corresponds to the task of uncertainty quantification (UQ). UQ generally refers to the process
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of characterizing the uncertainty in QoIs of physical model propagated from uncertain parameters.
Specifically, UQ is to determine the relevant statistical moments (such as mean and/or variance),
probability density function (PDF), or the envelope (bounds) of QoIs.

The significance of UQ has been increasingly recognized among the scientific community.
Modelers and researchers relies heavily on the important characteristics of physical system for
prediction, product design, model verification and validation, and decision making with respect to
operations, maintenance, and risk management. Consider, for example, a pedestrian bridge, where
it would be essential to know the operational probability that an as-built natural frequency would
correspond to (or be close to) human input frequencies. Otherwise, human-induced vibration will
make pedestrians uncomfortable and even give rise to safety issues. As a result, it is dangerous to
considerate OoIs, which are supposed to be uncertain, as deterministic for conducting the above-
mentioned activities. In recent years, there has been a surge of interest in the field of UQ, which
remains an active research branch.

The commonly-used and well-known approach for UQ is parameter-sampled Monte Carlo
simulation (MCS), which refers to performing UQ directly on the physical/simulation model.
MCS for UQ involves three steps. First, it starts with generating an ensemble of samples drawn
randomly from the PDFs of the uncertain parameters. Then, an ensemble of the corresponding
model evaluations are obtained by entering each sample into solvers, such as finite element analysis
(FEA) and computational fluid dynamics (CFD). Finally, relevant QoI performance statistics (PDFs
or order statistics) may be extracted from the collected model evaluations. Although straightforward,
MCS is extremely time-consuming and prohibitively computationally expensive due to its slow
convergence rate with only O(N−0.5), where N is the number of samples. When applied to UQ
of complex systems where a single run of simulation model is very computationally demanding,
MCS is likely to be unaffordable and impractical. For example, on the desktop platform of DELL
Dimension E520 with Pentium (R) D CPU 2.80 GHz, Wan et al. [1] spend 64863 minutes (about 45
days) to quantify the uncertainty in natural frequencies of an arch bridge with structural parameter
uncertainty via MCS. Accordingly, the bottleneck of the high computational cost associated with
MCS severely hindered its wider application to complex systems. It should be mentioned that
MCS is broadly used as benchmark for verification of other UQ methods owing to its generality,
robustness, and easy implementation.

To improve the efficiency of MCS for UQ, various effective strategies are investigated, including
advanced sampling method (such as Latin hypercube sampling [2] and quasi-Monte Carlo (QMC)
[3]), subspace iteration [4], subset simulation [5], etc. These techniques are used to make MCS
more efficient but still require many runs of the full model. As a result, metamodeling (”fast
surrogate”) techniques that use simpler, low-dimensional mathematical expressions to replace the
high-fidelity simulation model are gaining popularity in the context of UQ. Versatile metamodels
ranges in complexity from simple regressions to more sophisticated models, such as polynomial
response surface, radial basis function, polynomial chaos expansion (PCE), and Gaussian process
model (GPM). Among these metamodels, PCE and GPM have been extensively used to alleviate
the computational burden of the expensive UQ task. PCE is a metamodeling technique based on
the spectral representation of the uncertainty. Based on whether the deterministic solver must be
modified or not, the approaches of PCE can be categorized into two groups: stochastic Galerkin
(intrusive method) and stochastic collocation (non-intrusive method). PCE, which is constructed
based on a rigorous mathematical theory, maintains several appealing merits in dealing with UQ
problems. PCE enables the numerical stochastic solution to be expressed as the expansion of
orthogonal polynomials that are functions of the random parameters. PCE exhibits fast convergence
when the solution dependence on random parameters is smooth, and the convergence rate
can be improved by selecting the optimal type of orthogonal polynomial. Furthermore, PCE,
being a parametric metamodel, provides a computationally efficient, low-dimensional, explicit
mathematical expression to model the input-output relationship of the physical system. As a result,
there has been a large volume of research devoted to the use of PCE for UQ; see Refs. [6–16].
Unfortunately, PCE severely suffers from the computational challenge of the curse of dimensionality
[17], where the number of model evaluations required to build an accurate metamodel grows

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



3

exponentially with the number of random inputs and the approximation order. It is noted that the
developed sparse grid and/or adaptive schemes (see e.g., [18–20]) provide a remedy to alleviate
the curse of dimensionality to some extent. In such circumstance, GPM seems to be more suitable.
GPM owns the following attractive merits: (1) it allows modelers to assess the uncertainty of the
prediction; (2) it possesses the data-driven property, which enables itself not to be restricted to a
certain functional form and guarantees the high flexibility in modeling the complexity of a physical
system.

Multiple research efforts are dedicated to using GPM in place of the simulation model combined
with MCS to facilitate the daunting task of UQ (see e.g., [21–24]). Moreover, GPM in connection
with Kronecker products [25], and PCE [26, 27] are also explored for UQ in recent years. The
authors develop an analytical GPM-based UQ method [1], which is able to efficiently and precisely
calculate mean and variance of QoIs of the physical system. The core of this proposed method is
that the introduction of GPM enables the high-dimensional integrals related to mean and variance
of QoIs to be decomposed into the one-dimensional integrals. Therefore, the analytical calculation
of these one-dimensional integrals would lead to an analytical computation of mean and variance.
However, these one-dimensional integrals can be analytically evaluated only when the parameters
are with normal and/or uniform distributions, so the proposed GPM UQ method in Ref. [1] is only
suitable for the cases whose parameters follow normal and/or uniform distributions. This study
extends that previous work in order to generalize the GPM UQ method to cases of complex systems
with arbitrary parameter probability distributions.

The organization of this paper is as follows. Section 2 presents the theoretical background and
formulation of GPM. In Section 3, the closed form expressions of mean and variance are presented,
and then analytical solution and Gaussian quadrature solution are detailed for the fast calculation
of the decomposed one-dimensional integrals, depending on the type of probability distributions
of parameters. Section 4 provides a collection of industrial application examples to verify the
feasibility of the GPM UQ method. After that, how the computational accuracy and time of the
GPM UQ method are affected by the number of Gaussian quadrature points is investigated. Finally,
the conclusions of this work are drawn in Section 5.

2. GAUSSIAN PROCESS MODEL

GPM is a very popular machine learning technique that can be used for both regression and
classification purposes [28]. The original idea of application of GPM to deterministic computer
simulator (noise-free), which returns the same outputs every time if it is given the same inputs,
dates back to the work of [29]. The nonparametric GPM is derived from a Bayesian framework.
In particular, model outputs are treated as a random function with the associated probability
distribution modeled through a Gaussian process (GP) prior; a GP prior combined with Gaussian
likelihood yields a posterior GP over prediction at a new point using the maximum likelihood
estimate. Instead of following the specific algebraic structure of the input-output relationship (such
as polynomial response surface), GPM is fully specified by its mean function and covariance
function. The mean function is set to zero because we lack prior knowledge of the overall trend
of the latent function [30], and zero mean function can also facilitate the formulation of GPM but
without loss of generality. On the other hand, we adopt the popularly used squared exponential
covariance function, which is expressed as:

C(x,x′) = η2 exp

[
−1

2

d∑

k=1

(
xk − x′k
`k

)2
]

(1)

where xk is the k-th component of x, and d is the dimension of input space. The covariance function
parameters Θ = {`1, `2, . . . , `d, η} are usually named hyperparameters, which are positive to ensure
a valid covariance function.

Consider a training set with n observations, D = (X,Y), where X =
[
x>1 ,x

>
2 , . . . ,x

>
n

]>
and

Y = [y1, y2, . . . , yn]
>. Our primary aim is to predict the target y∗ at an unobserved input x∗. Based
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on the postulation of GPM that model outputs follow GP prior, training set outputs have a joint
Gaussian distribution written as:

p(Y) ∼ GP (0, C(X,X)) (2)

and the combination of y∗ and Y, denoted as Y∗ =
[
Y>, y∗

]>
, also follows a joint Gaussian

distribution:

p(Y∗) ∼ GP
(

0,

[
C(X,X) C(X,x∗)
C(x∗,X) C(x∗,x∗)

])
. (3)

The posterior predictive distribution over y∗ conditioned on the training set results from the
Bayes’ theorem:

p(y∗) =
p(Y∗)

p(Y)
. (4)

Substituting Eqs. (2) and (3) into Eq. (4) leads to:

p(y∗) ∼ GP(ŷ∗, νy∗) (5)

with the mean and the variance given by:

ŷ∗ = α>C∗ (6)

νy∗ = η2 −C>∗ C−1C∗ (7)

where C∗ = [C (x∗,x1) , C (x∗,x2) , . . . , C (x∗,xn)]
>; C = C(X,X); α = C−1Y.

The hyperparamters Θ that completely govern the GPM may be inferred through maximizing the
marginal likelihood (i.e., minimizing negative log marginal likelihood (NLML)) of the training set
D:

Θ̂ = arg min
Θ

L(Θ). (8)

Both the expressions of NLML L(Θ) and its partial derivatives with respect to the hyperparameters
are analytically tractable [28], which are as follows:

L(Θ) = − log p(Y|X,Θ) =
1

2
Y>C−1Y+

1

2
log |C|+ n

2
log(2π) (9)

∂L(Θ)

∂Θi
=

1

2
tr

(
C−1 ∂C

∂Θi

)
− 1

2
Y>C−1 ∂C

∂Θi
C−1Y (10)

where | • |, tr(•), and (•)> represent the determinant, trace, and transpose operators, respectively.
The conjugate gradient algorithm is used as optimization solver to search the optimal set of

hyperparameters Θ̂ corresponding to the minimum of the objective functionL(Θ) defined in Eq. (9).
Recall that hyperparameters must be positive to ensure a valid covariance function. To this end,
the hyperparameters are log-transformed before estimation and thus unconstrained. Considering
that optimization method is likely to get stuck in local minima, the multi-starting point strategy, is
adopted for global coverage, combined with the conjugate gradient optimization to quickly find the
neighborhood minimum. To be specific, first we randomly generate 100 starting points. Then, the
NLML values are computed for the 100 cases and among them 10 starting points corresponding to
the smallest NLML values are selected as starting values to run conjugate gradient routine. Finally,
the resulting hyperparameters with the smallest NLML values among these 10 pre-selected cases
are accepted as the optimal set of hyperparameters Θ̂.

3. EFFICIENT UNCERTAINTY QUANTIFICATION USING GPM

3.1. Methodology

Consider a physical system with multiple uncertain parameters (denoted by the d-dimensional x).
And the QoI is the model output of the physical system (denoted by y). The GPM is utilized to model
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the input-output relationship of the physical system. The focus of this paper is the fast computation
of mean and variance of QoIs, which are the two important statistical moments commonly used
to quantify the variability, within GPM framework. Bear in mind that GP prediction over y is
probabilistic, following a Gaussian distribution with mean and variance given in Eqs. (6) and (7),
respectively. Therefore, in light of probability theory, the mean and variance can be defined as:

E(y) =

∫
y p(y)dy

=

∫
y

[∫
p(y|x,D)p(x)dx

]
dy

=

∫ [∫
y p(y|x,D)dy

]
p(x) dx

(11)

V(y) =

∫
y2 p(y)dy − E2(y)

=

∫
y2

[∫
p(y|x,D)p(x)dx

]
dy − E2(y)

=

∫ [∫
y2 p(y|x,D)dy

]
p(x)dx− E2(y).

(12)

Since

∫
y p (y|x,D) dy = ŷ (13)

∫
y2 p (y|x,D) dy = νy + ŷ2, (14)

we obtain

E(y) =

∫
ŷ p(x) dx (15)

V(y) =

∫
(νy + ŷ2) p(x) dx− E2(y). (16)

where
∫
F(x)p(x)dx =

∫
· · ·
∫
F(x1, . . . , xd)p(x1) · · · p(xd)dx1 · · · dxd for brevity.

Making use of Eq. (1), we have the rearrangement of Eqs. (6) and (7) as:

ŷ = c

n∑

i=1

αi

d∏

k=1

Nxk
(
xik, `

2
k

)
(17)

νy = η2 − c2
n∑

j=1

n∑

i=1

C−1
ij

d∏

k=1

Nxk
(
xik, `

2
k

)
Nxk

(
xjk, `

2
k

)
(18)

where c = η2(2π)
d
2
∏d
k=1 `k; αi is the i-th element of α; C−1

ij denotes the (i, j)-element of

C−1;Nxk
(
x
i(j)
k , `2k

)
= 1

`k
√

2π
exp

[
− 1

2`2k

(
xk − xi(j)k

)2
]

; xk denotes the k-th parameter of x; xi(j)k

represents the element at the i(j)-th row and the k-th column of the sampling matrix X. Note that
the subscript * associated with y is removed for notational convenience.
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Substituting Eq. (17) into Eq. (15) gives:

E(y) =

∫ (
c

n∑

i=1

αi

d∏

k=1

Nxk
(
xik, `

2
k

)
)
p(x) dx

= c

n∑

i=1

αi

d∏

k=1

∫
Nxk

(
xik, `

2
k

)
p(xk) dxk

= c

n∑

i=1

αi

d∏

k=1

Iik.

(19)

where xk denotes the k-th parameter of x; xik represents the element at the i-th row and the k-th
column of the sampling matrix X.

And substituting Eqs. (17) and (18) into Eq. (16) results in:

V(y) =

∫ 



[
η2 − c2

n∑

j=1

n∑

i=1

C−1
ij

d∏

k=1

Nxk
(
xik, `

2
k

)
Nxk

(
xjk, `

2
k

)]
+



(
c

n∑

i=1

αi

d∏

k=1

Nxk
(
xik, `

2
k

)
)2




p(x) dx

− E2(y)

=

∫ {[(
c

n∑

i=1

αi

d∏

k=1

Nxk
(
xik, `

2
k

)
)(

c

n∑

j=1

αj

d∏

k=1

Nxk
(
xjk, `

2
k

))]

+

[
η2 − c2

n∑

j=1

n∑

i=1

C−1
ij

d∏

k=1

Nxk
(
xik, `

2
k

)
Nxk

(
xjk, `

2
k

)]}
p(x) dx− E2(y)

=

∫ [
c2

n∑

j=1

n∑

i=1

αiαj

d∏

k=1

Nxk
(
xik, `

2
k

)
Nxk

(
xjk, `

2
k

)
− c2

n∑

j=1

n∑

i=1

C−1
ij

d∏

k=1

Nxk
(
xik, `

2
k

)
Nxk

(
xjk, `

2
k

)]

p(x) dx + η2 − E2(y)

=

∫
c2

[
n∑

j=1

n∑

i=1

(
αiαj −C−1

ij

) d∏

k=1

Nxk
(
xik, `

2
k

)
Nxk

(
xjk, `

2
k

)]
p(x) dx + η2 − E2(y)

=

∫
c2

[
n∑

j=1

n∑

i=1

(
αiαj −C−1

ij

) d∏

k=1

Nxik
(
xjk, 2`

2
k

)
Nxk

(
xik + xjk

2
,
`2k
2

)]
p(x) dx + η2 − E2(y)

=c2

[
n∑

j=1

n∑

i=1

(
αiαj −C−1

ij

) d∏

k=1

Nxik
(
xjk, 2`

2
k

)∫
Nxk

(
xik + xjk

2
,
`2k
2

)
p(xk)dxk

]
+ η2 − E2(y)

=c2

[
n∑

j=1

n∑

i=1

(
αiαj −C−1

ij

) d∏

k=1

Nxik
(
xjk, 2`

2
k

)
Iijk

]
+ η2 − E2(y)

(20)

where xi(j)k represents the element at the i(j)-th row and the k-th column of the sampling matrix X.
The derivation of V(y) makes use of the identity of Gaussian multiplication, that is, the product

of two Gaussians gives another (un-normalized) Gaussian [31]:

Nx (µ1,Σ1) Nx (µ2,Σ2) = zNx (µ3,Σ3) (21)

where Σ3 =
(
Σ1
−1 + Σ2

−1
)−1

; µ3 = Σ3

(
Σ1
−1µ1 + Σ2

−1µ2

)
; z = Nµ1

(µ2,Σ1 + Σ2).
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As seen in Eqs. (19) and (20), it is known that with the use of GPM, the high-dimensional integrals
associated with mean and variance are successfully transformed into the one-dimensional integrals.
As long as the one-dimensional integrals can be efficiently calculated, QoI order statistics will be
computed very efficiently. As a result, using GPM as a surrogate model of a physical system, the UQ
problem will become the task of computing the one-dimensional integrals. Therefore, it is crucial to
evaluate these one-dimensional integrals efficiently, while still maintaining high accuracy.

3.2. Efficient calculation of one-dimensional integrals

Integrals of Iik and Iijk can be unified into the following expression:

I =

∫
Nx
(
ζ, ϑ2

)
p(x) dx, (22)

3.2.1. Analytical solution When parameter x follows normal or uniform distributions, the above
integral may be analytically evaluated [1, 32]; see as follows:

I =

∫
Nx
(
ζ, ϑ2

)
p (x) dx

=





∫
Nx
(
ζ, ϑ2

)
Nx
(
ξ, θ2

)
dx if x ∼ N

(
ξ, θ2

)
,

1

(x− x)

∫
Nx
(
ζ, ϑ2

)
dx if x ∼ U(x, x).

=




Nζ
(
ξ, ϑ2 + θ2

)
if x ∼ N

(
ξ, θ2

)
,

1

(x− x)

[
Φ

(
x− ζ
ϑ

)
− Φ

(
x− ζ
ϑ

)]
if x ∼ U(x, x).

(23)

where x and x are corresponding to lower bound and upper bound of the parameter x, respectively
and Φ(•) denotes the cumulative distribution function of the standard normal distribution.

3.2.2. Gaussian quadrature solution For the cases whose parameters are not normal and uniform
distributions, we resort to Gaussian quadrature integration for fast computation of the integral. The
implementation procedure regarding computing the integral using Gaussian quadrature is detailed
in the following section.

3.2.2.1. Gaussian quadrature formulae Gaussian quadrature is an important numerical integration
technique to approximate a definite integral of a given function by a weighted sum of a finite set
of function evaluations. An n-point quadrature rule for a given function f(x) and positive measure
w(x) is given by: ∫

f(x)w(x) dx ≈
n∑

i=1

wif(xi) (24)

where xi and wi are called abscissae (nodes) and weights of the Gaussian quadrature rule,
respectively. The quadrature on the right side of Eq. (24) gives the exact value of the integral for
polynomials of degree less than or equal to 2n− 1. In our case, w(x) and f(x) represent the PDF
p(x) of an uncertain parameter and Nx

(
ζ, ϑ2

)
in Eq. (22), respectively.

3.2.2.2. Calculation of Gaussian quadrature rules Gaussian quadrature rules {wi, xi}ni=1

only depend on positive measure w(x) and can be obtained from certain orthogonal polynomials.
An orthogonal polynomial set is defined by the vanishing of the inner product of any two members
of the set with regard to some weight. Defining the inner product on pairs of polynomials f and g
with regard to some weight function w as:

〈f, g〉 =

∫
f(x) g(x)w(x) dx, (25)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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then the orthogonality relations can be expressed as:

〈ψm, ψn〉 =

∫
ψm ψn w(x) dx = γnδmn (26)

where δmn is a Kronecker delta that is one if m = n and zero otherwise; the normalizing constant
γn is equal to 〈ψn, ψn〉.

Orthogonal polynomial sequence satisfies the well-known three-term recurrence relation [33],
which is written in the form:

ψi+1(x) = (x− ai)ψi(x)− biψi−1, i = 0, 1, 2, . . .

ψ−1(x) = 0, ψ0(x) = 1
(27)

where
ai =

〈xψi, ψi〉
〈ψi, ψi〉

i = 0, 1, 2, . . . (28)

bi =




〈ψ0, ψ0〉 i = 0,
〈ψi, ψi〉

〈ψi−1, ψi−1〉
i = 1, 2, . . . .

(29)

are the recurrence coefficients uniquely determined by positive measure w(x).
Gaussian quadrature rules {wi, xi}ni=1 can be obtained from the eigenvalue decomposition of the

symmetric, tridiagonal Jacobi matrix Jn assembled with the recurrence coefficients {ai, bi}

Jn =




a0

√
b1√

b1 a1

√
b2

√
b2

. . . . . .

. . . an−2

√
bn−1√

bn−1 an−1



. (30)

Specifically, if VTJnV = diag(λ1, λ2, . . . , λn) and VTV = I, in which I is the n× n identity
matrix, then the desired abscissae xi = λi and the weights wi = b0v

2
i,1, in which vi,1 is the first

component of the i-th column vector of V.

3.2.2.3. Calculation of the recurrence coefficients From the above description, we know that
in order to obtain the Gaussian quadrature rules {wi, xi}ni=1, the fundamental problem is to
compute the recursion coefficients {ai, bi}n−1

i=0 associated with orthogonal polynomials. As
shown in Tab. I, there exists the exact recurrence coefficients corresponding to some well-known
probability distributions [33, 34]. Therefore, for other probability distributions not in Tab. I, efforts
have to be made to find the effective technique for calculating the associated recurrence coefficients.

Discretization method is widely considered as a general-purpose and unconditionally stable
scheme to determine the recurrence coefficients for arbitrary positive measure [33–35]. The basic
idea behind the discretization method is that the given continuous measure can be approximated
by a discrete n-point measure if the discretizations are done in a meaningful manner. This discrete
measure is given by:

ωn(x) =

n∑

i=1

ωi δ (x− ξi) , (31)

which has its weights and abscissae assembled into a sparse matrix

A =




1
√
ω1

√
ω2 · · · √ωn√

ω1 ξ1√
ω2 ξ1
...

. . .√
ωn ξn




(32)
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that is orthogonally similar to the matrix

J =

[
1

√
b0 e>1√

b0 e1 Jn

]
(33)

where e>1 = [1, 0, . . . , 0]1×n and Jn is the Jacobi matrix expressed in Eq. (30). Considering that
the conventional Lanczos algorithm is numerically unstable, Givens rotation technique developed
by Gragg and Harrod [36] is adopted for the orthogonal similarity transformation to obtain the
recurrence coefficients in the Jacobi matrix Jn. The corresponding implementation details are
summarized in their pseudocode RKWW algorithm.

To get the recurrence coefficients, we have to obtain the weights ωi and abscissae ξi with respect
to the discrete measure ωn(x). In accordance with Eq. (31), the first step is to choose a sequence of
measures that converge to the measure w(x)dx. Herein, the fast Fejér Type-2 integration scheme,
whose weights can be calculated considerably efficiently through the inverse fast Fourier transform
[37], is utilized to perform the integral

∫
w(x)dx. Fejér Type-2 rules are very similar to the well-

known Clenshaw-Curtis rules over the interval [−1, 1], but Fejér Type-2 rules are open-ended, that is
omitting the abscissae -1 and 1, and thus are more suitable for measures with non-compact support.
To use the fast Fejér Type-2 integration forw(x) with an arbitrary domain [l, u] (l and u can be either
finite or infinite.), a suitable transformation of variables can be used to scale [l, u] into the interval
[−1, 1]:

∫ u

l

w(x) dx =

∫ 1

−1

w (φ(τ)) φ′(τ) dτ. (34)

Here we adopt transformation x = φ(τ) of Ref. [33] expressed as:

φ(τ) =





1

2
(u− l)τ +

1

2
(u+ l) if −∞ < l < u <∞,

u− 1− τ
1 + τ

if −∞ = l < u <∞,

l +
1 + τ

1− τ if −∞ < l < u =∞,
τ

1− τ2
if −∞ = l < u =∞.

(35)

Finally, we obtain the abscissae and weights {ξi = φ(zi), ωi = qi ω(zi)φ
′(zi)}ni=1 for Eq. (31),

in which {zi, qi}ni=1 are corresponding to the abscissae and weights of the Fejér Type-2. Then by
performing the orthogonal similarity transformation using Givens rotation technique, the recurrence
coefficients {ai, bi}n−1

i=0 can be attained. For the sake of guaranteeing the high accuracy in the
recurrence coefficients, an iterative process is applied using the following stopping criterion [38]:

|bsi − bs−1
i | ≤ ε bsi , i = 1, 2, . . . , n (36)

where s is the iteration step and ε is the given error tolerance.
In summary, first, find a discrete measure ωm(x) to approximate the continuous measure w(x).

Next, Fejér Type-2 integration is utilized to infer the abscissae and weights {ξi, ωi}ni=1 associated
with the discrete measure ωm(x). Then, Lanczos process using Givens rotation technique is
launched to transform A into J. Finally, we obtain the recurrence coefficients {ai, bi}n−1

i=0 , which are
assembled into Jn. Note that the procedure of calculating the recurrence coefficients will be repeated
until the stopping criterion is achieved. The detailed implementation of the recurrence coefficients
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estimation is presented in Algorithm 1.

Algorithm 1: Computation of the recurrence coefficients
Input: No. of the recurrence coefficients n, the positive measure w(x) and the associated

support interval [l, u], and the error tolerance ε.
Output: Recurrence coefficients {ai, bi}n−1

i=0 .
repeat

1: Update Ns =





1 + b(2n− 1)/2c if s = 0,

N0 + 1 if s = 1,

Ns−1 + 2bs/5cn if s = 2, 3, . . . .

2: Evaluate the abscissae and weights {zi, qi}Nsi=1 of the Fejér Type-2.
3: Compute {εi, ωi}Nsi=1 through ξi = φ(zi), ωi = qi ω(zi)φ

′(zi).
4: Perform orthogonal similarity transformation (A→ J) to obtain the

recurrence coefficients {ai, bi}n−1
i=0 .

until |bsi − bs−1
i | ≤ ε bsi ;

Ns is determined based on the Ref. [33]; b•c returns the nearest integer less than or equal to •.

3.2.3. Implementation summary The highlight of the present method for efficient UQ is the use of
GPM, which enables us to decompose the high-dimensional integrals related to mean and variance
into one-dimensional integrals. Once the one-dimensional integrals can be efficiently computed,
the goal of achieving fast and accurate calculation of the mean and variance of QoIs may be
attained. Therefore, the efficient and accurate evaluation of the one-dimensional integrals is of great
importance. For the case that p(x) is either uniform or normal distribution, the one-dimensional
integrals can be evaluated in an analytical way, while for the case that p(x) are not (or cannot be
modeled with) normal or uniform distributions, the one-dimensional integrals can be efficiently
computed as well via Gaussian quadrature solution. The computation of the one-dimensional
integral defined I in Eq. (22) is detailed in Fig. 1.

   In Tab. I: See Tab. I

   Otherwise: Use Algorithm 1

 E
ig

en
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al
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d
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o
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si
ti
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Normal or uniform 

distributions ?

Yes

No

Gaussian quadrature

integration

Analytical solution

Gaussian quadrature solution

Uniform distribution:

Normal distribution:

Fig. 1. Flowchart of the computation of the one-dimensional integral I.
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Tab. I. Exact recurrence coefficients for several probability distributions p(x).

Distribution PDF Domain ai, i ≥ 0 bi, i ≥ 1

Uniform 1
2 [−1, 1] 0 i2

4i2−1

Normal 1
σ
√

2π
e−

(x−µ)2

2σ2
[−∞,∞]

µ i σ2

σ2 > 0

Log-normal 1
xσ
√

2π
e−

(ln x−µ)2

2σ2
(0,∞]

[eiσ
2

(eσ
2

+ 1)− 1]eµ+ 1
2σ

2(2i−1) (eiσ
2 − 1)e2µ+σ2(3i−2)

σ2 > 0

Gamma 1
Γ(α)βαx

α−1e−
x
β

(0,∞]
β(α+ 2i) iβ2(α+ i− 1)

α > 0, β > 0

Inverse-gamma βα

Γ(α)x
−α−1e−

β
x

(0,∞] β(α+1)
(α−2i+1)(α−2i−1)

iβ2(α−i+1)
(α−2i)(α−2i+2)(α−2i+1)2α > 0, β > 0

Beta 1
B(α,β)x

α−1(1− x)β−1 (0, 1) α(α+β)+α(2i−2)+2iβ+i(2i−2)
(α+β+2i)(α+β+2i−2)

i(α+β+i−2)(α+i−1)(β+i−1)
(α+β+2i−1)(α+β+2i−3)(α+β+2i−2)2α > 0, β > 0

Student’s t Γ( ν+1
2 )√

νπΓ( ν2 )

(
1 + x2

ν

)− ν+1
2 [−∞,∞]

0 iν(ν−i+1)
(ν−2i)(ν−2i+2)ν > 0

Fisher’s F
√

(ν1x)
ν1 ν2

ν2

(ν1x+ν2)ν1+ν2

xB(
ν1
2 ,

ν2
2 )

[0,∞] ν2(ν1ν2+2ν1+4iν2−8i2)
ν1(ν2−4i−2)(ν2−4i+2)

2iν2
2 (ν1+2i−2)(ν2−2i+2)(ν1+ν2−2i)

ν2
1 (ν2−4i)(ν2−4i+4)(ν2−4i+2)2ν1 > 0, ν2 > 0

Note: b0 = 〈ψ0, ψ0〉 =
∫
p(x) dx = 1; By setting α = 1, gamma distribution can be transformed into exponential distribution.

3.3. Scope

The proposed approach is based on the use of GPM with zero mean function and squared
exponential covariance function. The separable feature of the adopted mean and covariance
functions is the key of the approach, since it finally results in the decomposition of the high-
dimensional integrals associated with mean and variance into one-dimensional integrals. As for
GPM, there are available various mean and covariance functions [28]. Apart from zero mean
function, other types of mean functions, such as constant, linear, and polynomial, are available.
Obviously, these mentioned mean functions are separable. In contrast with mean function, there
exists more versatile covariance functions, including squared exponential, Matérn, exponential,
power exponential, periodic, etc. Most of covariance functions are separable, since they can
be expressed in the separable form of a product of a sequence of one-dimensional functions.
Considering the fact that most of mean and covariance functions are separable, this approach is
not restricted to the use of the special GPM, which is defined by zero mean function and squared
exponential covariance function.

Bear in mind that within GPM framework, the multi-dimensional integral decomposition can take
effect only when the selected mean and covariance functions are both separable. In the situation
that either mean function or covariance function (e.g., non-stationary neural network one) is non-
separable, MCS and cubature can be used to obtain the mean and variance of QoIs. The GPM-based
MCS in conjunction with the advanced sampling strategies (such as Latin hypercube sampling
and quasi-Monte Carlo) is a promising alternative for mean and variance calculations. It should
be pointed out that the GPM-based MCS allows for evaluating PDF beyond order statistics. For
more details on the GPM-based MCS, interested readers are referred to Refs. [21, 23]. Specifically,
the cubature is that the d-dimensional integration is treated as a succession of d one-dimensional
integrals and apply the one-dimensional quadrature formula d times. This is the idea underlying
tensor product quadrature formulae.

4. APPLICATION

This section presents three industrial examples: one composite beam, one auto frame, and one
concrete-filled steel tubular (CFST) through arch bridge. The present method is put forward to
conduct UQ of the displacement of the composite beam, and the natural frequencies of the auto
frame and the CFST through arch bridge. In the meanwhile, MCS is used to assess the computational
accuracy and efficiency of the proposed GPM UQ method.
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4.1. Case I: A composite beam

This example of the composite beam, shown in Fig. 2, comes from Ref. [39]. The material of this
composite beam is a combination of a fraction f of fibers and a fraction 1− f of matrix. The
elastic moduli and density of the fiber and matrix materials are denoted by Ef , ρf and Em, ρm,
respectively. The beam is L long, with a rectangular section b× h. Of interest is the maximal
mid-span displacement d, which resulting from the uniformly distributed load q along its length,
is determined by the following expression:

d =
5

384

qL4

EhomI
(37)

where the uniformly distributed load q is:

q = ρhomgbh; (38)

the elastic moduli of the composite material is:

Ehom = fEf + (1− f)Em; (39)

the density of the composite material is:

ρhom = fρf + (1− f)ρm; (40)

and moment of inertia is:

I =
b h3

12
. (41)

Fig. 2. Simply supported composite beam.

For this composite beam, a total of 8 uncertain parameters considered are summarized in Tab. II.
The proposed GPM UQ method is launched to calculate the mean and variance of the maximal
mid-span displacement d under those 8 uncertain parameters. To the end of verification of the GPM
method, the brute-force MCS approach is utilized to approximate the true values of statistics of the
displacement d. And a large number of samples, namely 106, are adopted in order to ensure that
the mean and variance are convergent. The UQ task is carried out on desktop platform of LENOVO
M4360-N000 with Pentium (R) D CPU G2030 @ 3.00 GHz, so do the following two examples.
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Tab. II. Characteristics of parameters of the composite beam [39].

No. Parameter Distribution Mean COV

1 Length (L) Log-normal 2 (m) 0.01
2 Widht of the rectangular section (b) Log-normal 10 (cm) 0.03
3 Height of the rectangular section (h) Log-normal 1 (cm) 0.03
4 Elastic moduli of the fiber material (Ef ) Log-normal 3.0E+11 (Pa) 0.15
5 Elastic moduli of the matrix matrial (Em) Log-normal 1.0E+10 (Pa) 0.15
6 Density of the fiber material (ρf ) Log-normal 1800 (kg/m3) 0.03
7 Density of the matrix matrial (ρm) Log-normal 1200 (kg/m3) 0.03
8 Fraction (f ) Beta 0.5 0.10
Note: COV, namely the coefficient of variation, represents the ratio of the standard

deviation to the mean.

Tab. III. UQ results for the composite beam.

QoI
GPM method MCS Relative error (%)

Mean Variance Mean Variance Mean Variance

d (mm) 2.4460 0.1944 2.4462 0.1950 0.0109 0.2797
Time (sec) 30.9 4.4 -
Note: Relative error=|(GPM−MCS)/MCS|

Tab. III summarizes the results of UQ for the composite beam. As seen in Tab. III, the results of
GPM method have an excellent agreement with the results of MCS, and particularly, the relative
errors of mean and variance are 0.0109% and 0.2797%, respectively, which indicates that the
proposed GPM UQ method is effective and reliable. Beyond the accuracy of the proposed method,
its computational efficiency also needs to be concerned with. The whole UQ task performed by the
GPM method takes around half min, which means that the proposed GPM method is considerably
computationally efficient. It should be pointed out that although the computational time of the brute-
force MCS is 4.4 sec, it does not mean that the brute-force MCS is generally efficient. The short time
of the brute-force MCS is in essence attributable to the fact that input-output relationship defined in
Eq. (37) is extremely simple rather than black-box so that the performing brute-force MCS is quite
straightforward, and direct model evaluations do not cost much time. When applied to the complex
systems, the brute-force likely tends to be neither affordable nor feasible, which will be confirmed
in the subsequent two cases.

Considering the fact that the number of Gaussian quadrature points have an impact on the
integration result, which can be implied by Eq. (24), we explore how UQ results are influenced
by the number of Gaussian quadrature points. Here we define an index of total absolute error as:

TAE =

k∑

i=1

(∣∣EiGPM − EiMCS

∣∣+
∣∣V iGPM − V iMCS

∣∣) (42)

where k represents the number of QoIs; E and V denote mean and variance, respectively.
The relationship between TAE and the number of Gaussian quadrature points as well as the

associated computational time are shown in Fig. 3. In light of Fig. 3, we can have two observations:
(1) the index TAE becomes stable after the number 10, which means that UQ results by the GPM
method is convergent; and (2) the increase in the number from 5 to 100 do not result in the big
increase of the computation cost. The second observation is due to the fact that Gaussian quadrature
is remarkably computationally efficient especially with the use of fast Fejér Type-2 quadrature rules.
Nevertheless, it may be too early to draw the conclusion that the increased number of Gaussian
quadratures will not result in the obvious increase in the computational cost. We will further check
this observation in the subsequent more complex engineering examples.
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Fig. 3. Total absolute error and computational time of the composite beam versus the number of Gaussian
quadrature points.

4.2. Case II: An auto frame

The second test-bed to validate the proposed GPM UQ method is an auto frame, which is composed
of two main frames and six diaphragms. The geometric details of the auto frame are shown in Fig. 4.
All the components of the auto frame have the identical thickness (T ), whose nominal value is 5
mm. The nominal values of elastic moduli and density are corresponding to 2.1E+11 Pa and 7860
kg/m3, respectively. The finite element model (FEM) of the auto frame is constructed using FEA
package ANSYS [40]. All of the components are modeled as shell elements (SHELL63). The FEM
consists of a total of 6707 nodes and 6180 elements, and the resulting total number of degrees of
freedom (DOFs) is 40242. The first four natural frequencies are our focus. The FEM and the first
four mode shapes are presented in Fig. 5.

Fig. 4. Configuration of the auto frame: plan (top) and side (bottom) (unit: mm).
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(a) FEM

(b) First torsional mode (f1 = 6.156 Hz) (c) First longitudinal mode (f2 = 14.338 Hz)

(d) First vertical mode (f3 = 16.825 Hz) (e) Second vertical mode (f4 = 43.729 Hz)

Fig. 5. FEM and mode shapes of the auto frame with mean value of uncertain parameters.

A total of 3 parameters including material properties: elastic moduli (E) and density (ρ), and
geometric property: thickness (T ) are assumed to be uncertain. Their statistical characteristics are
listed in Tab. IV. Then the GPM method is put forward to evaluate the mean and variance of the first
four natural frequencies of the auto frame subjected to parameter uncertainty. Meanwhile, like the
previous example, the brute-force MCS with sample size 106 is still used as the metric for accuracy
assessment of the GPM approach. The corresponding results are tabulated in Tab. V, from which
we know that the largest relative errors in the mean and variance compared to the ”true” values
approximated by the brute-force MCS method are 0.0015% and 0.1309%, respectively. The nearly
negligible relative errors demonstrate that the statistics of the four natural frequencies derived by
our method are almost the same as those obtained by the brute-force MCS, which verifies that the
proposed GPM method is effective and reliable for UQ. In terms of the computational time, the
GPM presents overwhelming superiority over the brute-force MCS. To be specific, the former takes
904.0 sec while the latter is 2815186.5 sec (around 32.6 days). Therefore, it can be concluded that
the GPM method is very accurate and computationally efficient as well, whereas the computational
efficiency of the brute-force MCS is unacceptable.
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Tab. IV. Characteristics of parameters of the auto frame.

No. Parameter Distribution Mean COV

1 Elastic moduli (E) Log-normal 2.1E+11 (Pa) 0.15
2 Density (ρ) Weibull 7860 (kg/m3) 0.10
3 Thickness (T ) Uniform 5 (mm) 0.10

Tab. V. UQ results for the auto frame.

QoI
GPM method MCS Relative error (%)

Mean Variance Mean Variance Mean Variance

f1 (Hz) 6.2354 0.7218 6.2355 0.7222 0.0007 0.0640
f2 (Hz) 14.5191 3.8509 14.5193 3.8547 0.0015 0.0993
f3 (Hz) 17.0524 2.5470 17.0525 2.5497 0.0003 0.1067
f4 (Hz) 44.3057 16.8525 44.3062 16.8746 0.0012 0.1309

Time (sec) 904.0 2815186.5 -

Following the UQ task, an investigation of the impact of the number of Gaussian quadrature points
on the UQ results of the GPM method is considered. The graph of the TAE and the computational
time against the number of Gaussian quadrature points is shown in Fig. 6. Similar observations are
obtained. That is, when the number of Gaussian quadrature points arrives at 10, TAE becomes
convergent, and the increase in the number of Gaussian quadrature points from 5 to 100 do not give
rise to the noticeable upsurge of the computational cost either.
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Fig. 6. Total absolute error and computational time of the auto frame versus the number of Gaussian
quadrature points.

4.3. Case III: A CFST through arch bridge

A CFST through arch bridge is used as the third test-bed to verify the GPM UQ method. Fig. 7
shows the configuration of the CFST through arch bridge with a rise-to-span ratio of 1/6, which
is 30 m in width and 65 m in length. The main girders are formed in a shape of a hollow box.
The floor system, which comprises the 0.25 m thick concrete slab, is supported by T-shaped cross
girders. The two parallel arch ribs lie in a vertical plane with the center-to-center distance of 21.5 m.
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The arch ribs have a constant wall thickness of 14 mm throughout their length, and are filled with
concrete. Two symmetrical lateral bracings consisting of K-shaped hollow steel tube are placed to
connect the vertical arch ribs, aiming at improving structural stability. The arch ribs and the floor
system are vertically connected by 22 suspenders placed every 4.8 m, each having 73 steel wires
with a diameter 7 mm. The arch bridge is modeled within the FEA package ANSYS environment.
3-D beam elements (BEAM188) are utilized to model the main girder, cross girder, and lateral
bracing. The suspenders are modeled with elements (LINK10). Shell elements (SHELL63) are
used to simulate the bridge deck. In sum, the constructed FEM has a total of 379 nodes and 724
elements, including 196 shell elements, 506 beam elements, and 22 link elements, and the resulting
total number of DOFs is 2250. Herein, the first four natural frequencies are our QoIs. Fig. 8 shows
the FEM and the first four mode shapes of the CFST through arch bridge.

(a) Elevation

(b) Plan

Fig. 7. Configuration of the CFST arch bridge (unit: mm).
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(a) FEM

(b) First vertical mode (f1 = 2.764 Hz) (c) Second vertical mode (f2 = 3.412 Hz)

(d) First torsional mode (f3 = 3.887 Hz) (e) Second torsional mode (f4 = 4.809 Hz)

Fig. 8. FEM and mode shapes of the CFST through arch bridge with mean value of uncertain parameters.

Consider a total of 12 uncertain structural parameters, whose statistical characteristics are
summarized in Tab. VI. These uncertain parameters comprise material and geometric properties
related to the different structural components, such as main girder, deck, and arch rib. The GPM
method is employed to quantify the uncertainty in the first four natural frequencies propagated
from the parameter uncertainty. And in the meantime, the brute-force MCS with sample size 106

is performed for the purpose of accuracy assessment of the GPM method. The comparison of UQ
results of the GPM method and the brute-force MCS is presented in Tab. VII. The extremely small
differences between their UQ results indicate that the GPM method still has high accuracy for UQ
of complex system. For the computational cost, the GPM method takes 431.7 sec while the brute-
force MCS takes 224503.8 sec (around 2.6 days). Thus, one can conclude that the GPM method
substantially alleviates the computational burden of UQ of complex system, while still achieving
comparable accuracy to the brute-force MCS.
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Tab. VI. Characteristics of parameters of the CFST arch bridge.

No. Parameter Distribution Mean COV
1 Elastic moduli of stell used in arch rib (Es) Log-normal 2.1E+11 (Pa) 0.15
2 Elastic moduli of concrete inside arch rib (Ec) Log-normal 3.5E+10 (Pa) 0.15
3 Density of concrete inside arch rib (ρc) Weibull 2550 (kg/m3) 0.10
4 Elastic moduli of cross girder (Ecg) Log-normal 3.5E+10 (Pa) 0.15
5 Density of cross girder (ρcg) Weibull 2500 (kg/m3) 0.10
6 Elastic moduli of main girder (Emg) Log-normal 3.5E+10 (Pa) 0.15
7 Density of main girder (ρmg) Weibull 2500 (kg/m3) 0.10
8 Elastic moduli of lateral bracing (Elb) Log-normal 2.1E+11 (Pa) 0.15
9 Elastic moduli of bridge deck (ρbd) Log-normal 2.8E+10 (Pa) 0.15
10 Thickness of bridge deck (Tbd) Uniform 0.25 (m) 0.10
11 Elastic moduli of suspender (Esp) Log-normal 2.05E+11 (Pa) 0.15
12 Sectional area of suspender (Asp) Normal 0.002809 (m2) 0.05

Tab. VII. UQ results for the CFST arch bridge.

QoI
GPM method MCS Relative error (%)

Mean Variance Mean Variance Mean Variance

f1 (Hz) 2.7517 0.0187 2.7518 0.0188 0.0017 0.2127
f2 (Hz) 3.4018 0.0437 3.4014 0.0432 0.0136 1.1663
f3 (Hz) 3.7804 0.0308 3.7885 0.0302 0.2119 2.0319
f4 (Hz) 4.7738 0.0557 4.7777 0.0547 0.0804 1.7936

Time (sec) 431.7 224503.8 -

Subsequently, we turn to the study on the influence of the number of Gaussian quadrature points
on the UQ results of the GPM method. The TAE and the corresponding computational time with
respect to the number of Gaussian quadrature points is given in Fig. 9, from which we can see that
TAE converge at the number of Gaussian quadrature points of 15, and the increase in the number
of Gaussian quadrature points leads to the slight increase of the computational time.
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Fig. 9. Total absolute error and computational time of the CFST through arch bridge versus the number of
Gaussian quadrature points.
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4.4. Discussion

This section provided three industrial examples of one composite beam, one auto frame, and one
CFST through arch bridge to evaluate the capability of the proposed GPM method in UQ of
complex systems. MCS, is used as the benchmark solution. The comparison of the GPM method
and full MCS verifies that the GPM method presents an excellent performance in terms of both
the computational accuracy and efficiency. The computational cost of these three examples is
summarized in Tab. VIII, which reveals that as the simulation model of target structure becomes
more complex, the computational cost of MCS exponentially grows. For example, MCS for UQ
of the auto frame modeled by FEM with a total of 40242 DOFs takes about 32.6 days, which is
highly undesirable in terms of computational efficiency. It is worth noting that the reason why the
computational time of the MCS for the CFST through arch bridge is not as high as that of the
auto frame is that the FEM of auto frame has a total of 40242 DOFs, which is about 18 times as
many as the DOFs of FEM of the CFST through arch bridge. On the contrary, the present GPM
method is quite computationally efficient and the increase of parameter dimensionality from 3 to
12 will not lead to the exponential growth of the computational time. In addition, it can be known
from Tab. VIII that when applied to a complex system, a large share of the computational cost of UQ
using GPM method is allocated to training set preparation by running the computationally expensive
physical model. Therefore, we can conclude that the present GPM method itself for UQ is with great
efficiency and provides a competitive alternative to solve the issue of the high computational cost
involved in the UQ of complex systems.

For these examples, after UQ task, we investigate the impact of the number of Gaussian
quadrature points on the accuracy of GPM method. Results show that the GPM method may become
convergent at a low number of Gaussian quadrature points. In these examples, the convergence is
reached at 10 or 15. Additionally, the big increase of the number of Gaussian quadrature points will
not cause the exponential growth of the computational time. Accordingly, there may be no need
to worry too much about the high computational cost resulting from the selected big number of
Gaussian quadrature points for the sake of high accuracy of the GPM method.

Tab. VIII. Computational cost summary of three cases.

Case No. of parameters
Computational cost (sec)

GPM method MCS

Case I: A composite beam 8 30.9 4.4
(a simple mathematical function)

Case II: An auto frame 3 904 2815186.5(a FEM with 40242 DOFs)
Case III: A CFST through arch bridge 12 431.7 224503.8

(a FEM with 2250 DOFs)

5. CONCLUSIONS

A new GPM-based approach is developed for efficient calculation of mean and variance of QoIs of
complex systems in this paper. This proposed GPM-based method is suitable for the cases whose
uncertain parameters are arbitrarily distributed. The core of this methodology is that GPM is used as
the surrogate model of the computationally expensive simulation model, which enables us to obtain
the closed form expressions for the integrals related to mean and variance via decomposing high-
dimensional integrals into one-dimensional integrals. Thus, for calculation of mean and variance
of QoIs, we just have to compute the one-dimensional integrals rather than the daunting high-
dimensional integrals, which is likely to be computationally intractable. These one-dimensional
integrals can be evaluated in an analytical way when the parameters are either uniformly- or
normally distributed. And when parameters do not follow or cannot be modeled with the above

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



21

two specific probability distributions, the effective Gaussian quadrature technique is utilized for
the fast computation of the one-dimensional integrals. As a consequence, the present GPM method
is able to evaluate mean and variance of QoIs in a fast manner, thus allowing for efficient UQ of
complex systems with arbitrary probability distributed parameters.

The proposed GPM method is applied to calculate mean and variance in three applications, where
the output functions are either simple mathematical functions or eigenvalues of an auto frame and
a CFST through arch bridge. MCS is used as benchmark solution to verify the feasibility of the
proposed GPM method. The results demonstrate that the GPM is as accurate as MCS, but also
offers considerable reduction in the computational cost. Therefore, the GPM method is effective
and reliable for UQ of complex systems in terms of the computational accuracy and efficiency. In
addition to UQ of three industrial examples, we also investigate on how the computational accuracy
and time of GPM method are affected by the number of Gaussian quadrature points. The results of
three examples confirm that a low number of Gaussian quadrature points are enough to ensure the
GPM method convergent and the increase of the number will not cause the noticeable increase in the
computational time. The latter observation implies that using large number of Gaussian quadrature
points for the end of high accuracy will not lead to the high computational cost.
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