
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Strong Security for Distributed File Systems

Permalink
https://escholarship.org/uc/item/1x8864qk

Authors
Miller, Ethan
Long, Darrell
Freeman, William
et al.

Publication Date
2001

DOI
10.1109/ipccc.2001.918633

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1x8864qk
https://escholarship.org/uc/item/1x8864qk#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

34

Strong Security for Distributed File Systems

Abstract

We have developed a scheme to secure network-
attached storage systems against many types of attacks.
Our system uses strong cryptography to hide data from
unauthorized users; someone gaining complete access
to a disk cannot obtain any useful data from the system,
and backups can be done without allowing the super-
user access to unencrypted data. While denial-of-ser-
vice attacks cannot be prevented, our system detects
forged data. The system was developed using a raw
disk, and can be integrated into common file systems.

We discuss the design and security tradeoffs such a
distributed file system makes. Our design guards
against both remote intruders and those who gain
physical access to the disk, using just enough security
to thwart both types of attacks. This security can be
achieved with little penalty to performance. We discuss
the security operations that are necessary for each type
of operation, and show that there is no longer any rea-
son not to include strong encryption and authentication
in network file systems.

1. Introduction

Computer storage is an increasingly important part
of the Internet, and ensuring the security and integrity
of stored data is a crucial problem. Attacks by intruders
and insiders have led to billions of dollars in lost reve-
nue and expended effort to fix the problems. Most
organizations rely heavily on their distributed comput-
ing environment, which usually consists of worksta-
tions and a shared file system. This file system is often
stored on a centralized file server that is managed by a
system administrator who has access to the whole file
system, leaving the data vulnerable to anyone who can
prove (legitimately or otherwise) that he is the adminis-
trator.

Recently, however, network-attached disks have
begun to replace traditional centralized storage systems
[7]. In such systems, disks are attached directly to a
network, and rely upon their own security rather than
using the server’s protection. This arrangement makes
security more difficult because the disk is directly
exposed to potential attacks instead of being hidden
behind a single server that can be “hardened.”

We have developed a security system for network-
attached storage that relies upon strong cryptography
to protect data stored in a distributed file system. Our
system stores and transfers all data encrypted, only
decrypting it at a client workstation. The drives them-
selves lack sufficient information to decrypt the data
they hold or to undetectably forge new data, so physi-
cally stealing the media will not enable an attacker to
gain access to the data or to plant false data. Similarly,
an administrator backing up the file system only has
access to encrypted copies of the files; the authorized
users of a particular file are the only ones with access
to its unencrypted contents.

Despite this level of security, our system imposes
little overhead on the file system. The disks need only
perform secure hashes, with encryption and decryption
done at the client. This arrangement allows the system
to be built using inexpensive embedded processors for
the disks, leaving the computationally intensive task of
encryption and decryption to the relatively faster cli-
ents.

We begin by summarizing previous work in secur-
ing file systems, discussing the strengths and weak-
nesses of each system. We then describe Secure
Network-Attached Disks (SNAD), our system for pro-
tecting data on network-attached disks. We then
present three alternate security schemes, each appropri-
ate for different levels of client and server CPU perfor-
mance. Finally, we conclude with a description of our
plans for integrating strong security into modern dis-
tributed file systems.

2. Related Work

Many systems have been designed to address the
security problems of modern distributed file systems.
However, these systems have suffered either from weak
security, poor performance, or both. It is only recently
that CPU performance has advanced to the point where
strong cryptography can be done quickly with inexpen-
sive processors. This allows its use on low-cost proces-

Ethan Miller Darrell Long William Freeman Benjamin Reed
University of California, Santa Cruz TRW IBM Research

0-7803-7001-5/01/$10.00 © 2001 IEEE

Ethan L. Miller
This paper appeared in the 20th International Performance, Computing, and Communications Conference (IPCCC 2001), Phoenix, AZ, April 2001.

35

sors that can be associated with each disk in a
distributed file system [7].

Most file systems include some measure of secu-
rity. However, systems such as NFS [13] and xFS [1]
pass most of their data in the clear, generally relying on
relatively insecure networks and trusted hosts for data
protection. Other systems, such as AFS [9] and NASD
(Network Attached Secure Disk) [7] use third-party
authentication such as Kerberos [11] to provide secu-
rity. These systems provide stronger security by requir-
ing users to obtain “tickets” from a third party. These
systems are considerably stronger than those that rely
upon simple authentication, but they still store files in
the clear.

SCARED [12] and the network-attached disks
described by Gobioff [8] also use cryptographic tech-
niques to authenticate users of remote network storage.
The SCARED design supports the use of end-to-end
encryption of data in the network, but does not encrypt
data on the disk itself. Similarly, Gobioff leaves
encryption of stored data to the application level of the
software. We use similar mechanisms in our design, but
with the added safety of encryption in the file system
itself, guaranteeing that data on disk cannot be read by
an intruder who gains access to the disk.

The Secure File System (SFS) [6] provides strong
authentication and a secure channel for communica-
tions, including an extensive authentication mechanism
for individual users and strong security for data in tran-
sit between clients and servers. However, it still relies
upon trusted file servers that do not alter data stored on
them and may allow an intruder to recover data by
physically compromising the server.

Though many file systems use authentication, few
file systems actually protect data disk. Many users have
implemented their own “secure file system” by simply
encrypting their files using standard encryption soft-
ware. While this can provide security and integrity
guarantees, it is an

ad hoc

 mechanism, and does not
deal with issues such as sharing files between users.

The Cryptographic File System (CFS) developed
at AT&T Bell Laboratories [2,3] encrypts all data and
potentially sensitive metadata stored on disk. A user
who supplied the correct password could read files in
the directory. However, CFS also required that the
server be trusted to “actually store (and eventually
return) the bits that were originally sent to it.” In the
Internet era, there is no guarantee that a server will do
this, so there must be a mechanism to ensure that the
server has not maliciously altered the data. In addition,
CFS does not discuss mechanisms for distributing keys
among users for sharing files.

3. System Design

The goal of our system is to address the security
shortcomings of previous file systems while preserving
the flexibility and performance of standard distributed
file systems.

We propose three security alternatives for net-
work-attached storage; these schemes vary the CPU
time required at both the client and the server, with
more security requiring more CPU cycles. The first
scheme places the highest demand on both the client
and the server, but provides the strongest security. The
second scheme removes the need for the server to
check signatures (a computationally expensive task),
but requires the clients to both generate and check sig-
natures. The third scheme eliminates signature check
and verification completely, at the expense of a slight
loss in security.

Given current (and near future) CPU speeds, we
believe that the third scheme will be the best for current
file systems, but the first two schemes will become
more attractive as CPU speeds increase.

3.1. Design Goals

Our security schemes provide several important
features for a secure file system. The first feature is
end-to-end encryption of all file system data and meta-
data, including storage on disk. This is necessary to
restrict access to cleartext to only authorized users
while still allowing administrators and backup systems
to do their jobs. The disk must not contain sufficient
information to decrypt the data stored on it. Rather,
files should only exist in cleartext on the client.

Ensuring data integrity is a second goal. A user
reading data from the server must be sure that the files
received are those he originally stored; data modified at
the disk or introduced into the system by an malicious
intruder must be detectable. Storing a non-linear
checksum of the cleartext in a block along with the
ciphertext allows any authorized user to detect a
change made to the encrypted block by an intruder.

Flexibility is a third feature that is desirable in a
secure file system. While it would certainly be possible
to simply encrypt each file with a user’s password, this
approach is impractical because it makes file sharing
difficult. Instead, a file system should have sharing at
least as powerful as that in standard Unix, and prefera-
bly as flexible as the access control lists provided by
AFS [9].

High performance and scalability is the fourth fea-
ture desirable for a secure distributed file system.
Though it may be possible to build a secure file system,

36

no one will use it if the file system is too slow. If
encryption and decryption are performed at the client,
encryption throughput will limit a single client’s band-
width. Minimizing the effort required by the network-
attached disk’s CPU allows a distributed file system to
be used by hundreds of clients, each of which can
decrypt the data intended for itself.

3.2. Basic Mechanisms

The basic mechanism behind SNAD is to encrypt
all data at the client and give the server sufficient infor-
mation to authenticate the writer and the reader suffi-
cient information to verify the end-to-end integrity of
the data.

SNAD relies upon several standard cryptographic
tools. The client uses a standard algorithm such as RC5
[14] or Blowfish [14] to encrypt the data, ensuring that
the data is unreadable by anyone until it is decrypted
by the client that reads it. Public-key cryptography is
used to allow disks to store information that can be
used to decrypt their files; because public-key encryp-
tion is asymmetric, however, only a user with the
appropriate private key can use this information.

SNAD also makes extensive use of cryptographic
hashes and keyed hashes. Cryptographic hashes such
as MD5 and SHA-1 [14] use a one-way function to
compute a large number (128 or 160 bits) from a block
of data. Any modification in the input data will cause
the resulting hash value to change. It is currently
believed NP-hard to find two input texts that result in
the same hash value.

Keyed hashes such as HMAC (hashed message
authentication code) [10] use a cryptographic hash in
conjunction with a shared secret to check integrity and
authenticate a writer. If the sender and receiver share a
key, the key can be included in the cryptographic hash,
preventing anyone who intercepts the data from unde-
tectably modifying it unless they know the shared key.

3.3. SNAD Data Structures

All of the SNAD security schemes use four basic
structures:

data objects

,

file objects

,

key objects

, and

certificate objects

. While these objects are all shown as
contiguous blocks of data, there is no requirement that
they be stored contiguously on disk. In particular, data
objects may be broken apart, storing the data itself in a
“normal” file system and the remainder of the data
object in a special structure (analogous to i-nodes and
index blocks in Unix) if desired.

3.3.1. Secure Data Objects.

A

secure data object

(SDO) is the minimum unit of data that can be read or
written in the secure file system, and corresponds to a
file block in a standard file system. Files are composed
of one or more secure data objects; a sample secure
data object is shown in Figure 1.

The block security information is different for
each of the three schemes discussed in Section 3.4, but
is on the order of 32 bytes long. The block ID uniquely
identifies each block in the file system, and consists of
a file ID and block offset within the file. The first user
ID in the list is the creator of the SDO and is used by
the SNAD server to determine which key to use to
check the security of the block.

The initialization vector (IV) is used to prevent
identical data blocks encrypted with the same key from
encrypting to the same ciphertext. Using a unique
value such as the block ID concatenated with the file
ID will guarantee that blocks with identical content
encrypt to different ciphertexts. The timestamp is used
simply to prevent replay attacks; it need not be an
actual timer, but instead could simply be a counter
incremented at each client.

The data stored in the data object is encrypted
using a symmetric encryption algorithm such as RC5.
The key used to encrypt the data is obtained from the
key object associated with the file, If each data object is
large, files will waste relatively large amounts of space
because of internal fragmentation. However, minimiz-
ing cryptographic overhead, both storage and opera-
tional, requires that data objects not be too small. Like
file blocks, secure data objects could be variably sized
within a single file system.

3.3.2. File Objects.

File objects

 are composed of one
or more data objects along with per-file metadata. In
addition to the usual file metadata such as block point-
ers, file size, and timestamps, a file object contains a
pointer to a key object. This pointer is used to find the

Figure 1. Secure data object.

Block security information

Block ID

User IDs

Timestamp

Initialization vector

Data

37

keys that may be used to access the file. Except for the
pointer to the key object and perhaps pointers to the
extra information for secure data objects, the structures
for file objects are identical to those for standard files.

3.3.3. Key Objects.

Each key object, as shown in
Figure 2, contains several types of information. The
key file ID is just the unique identifier for the block on
the system. The user ID in the header of the key object
is that of the last user to modify the key object. When a
user writes the object, he hashes the entire object and
signs the hash with his private key, storing the result in
the signature field. Anyone using the key object verifies
the integrity of the object by performing the same hash
and verifying the provided signature. This mechanism
prevents anyone with low-level access to the disk from
undetectably modifying a key object — a client using
the key object can check to ensure that the signature on
a key object belongs to someone authorized to change
the key object. Because someone who modifies a key
object must sign it, there is a way of tracing illegitimate
modifications to a particular user.

Each tuple in the body of the key object includes a
user ID, encrypted key, and permissions for that user.
The user ID need not correspond to a single user; it
could, instead, be an equivalent to a Unix group and
correspond to several users with shared access to a sin-
gle private key. The second field in the tuple contains
the key for the symmetric RC5 algorithm. Rather than
storing this key in the clear, the key object stores the
key encrypted with the user’s public key. The disk can-
not decrypt any key unless it obtains a user’s private
key, but the only way to get a user’s private key is to
steal it from a client or the user himself because keys
are kept on the client and never sent to the disk. The
permissions field is used by the disk to determine
whether the user is allowed to write the key object.

A key object may be used for more than one file. If
this is done, all files that use the key object are
encrypted with the same symmetric encryption key and
are readable by the same set of users. In this way, a key
object corresponds to a Unix group.

3.3.4. Certificate Objects.

Each server contains a sin-
gle certificate object, shown in Figure 3, which con-
tains administrative and cryptographic information
about each SNAD user. The disk uses the information
in the certificate object to authenticate users and do
basic storage management.

The certificate object contains a list of tuples, each
of which includes a user ID, public key, HMAC key
(for Schemes 2 and 3), and timestamp. The user ID
identifies the user or group to which the remainder of
the tuple pertains. The public key is stored on the disk
for two reasons: as a convenience so that the disk and
those using it need not consult a centralized key server,
and for writer authentication in Scheme 1 as described
in Section 3.4.1.

The HMAC key is used in the second and third
schemes to verify the identity of the user writing data,
and is stored encrypted, with the decryption key for the
HMAC keys held in non-volatile memory on the disk.
Storing the HMAC keys encrypted allows them to be
backed up without compromising them. When the cer-
tificate object is loaded into memory on disk startup,
the HMAC keys are decrypted and cached in volatile
memory.

The timestamp field is updated each time a user
writes a file object, and is used to prevent replay
attacks. A centralized clock is not necessary unless
requests for a particular user ID may come from sev-
eral clients at about the same time. The sole purpose of
the timestamp is to prevent replay attacks; clocks may
be synchronized using any number of common
approaches, or replay attacks may be thwarted as
described in Schneier [14].

3.3.5. Overall Data Structure Organization.

The
relationship between the objects described above is
shown in Figure 4. The diagram shows multiple file
objects using a single key object; this corresponds to a
situation where two files have the same access controls.
It is likely that there will be relatively few key objects
on a disk, just as there are relatively few unique groups
in a standard Unix file system.

Figure 2. Key object.

Key file ID User ID Signature

User ID Encrypted key Permissions

User ID Encrypted key Permissions

User ID Encrypted key Permissions

...

Figure 3. Certificate object.

Timestamp
HMAC
key

Public
keyUser ID

Timestamp
HMAC
key

Public
keyUser ID

Timestamp
HMAC
key

Public
keyUser ID

...

38

All of the objects shown in Figure 4 require rela-
tively little overhead. Each data object requires 36–100
bytes of overhead, depending on which security
scheme is being used. Even for 100 bytes of overhead,
using 8 KB blocks requires just 1.2% overhead for
cryptographic metadata. File objects require little over-
head — just a pointer to a key object. Key objects are
also small: a key object requires 72 bytes for the header
and 72 bytes for each user. If each of 10,000 users is
part of 200 different groups, there will need to be
144 MB of key objects, or 0.7% of a 20 GB disk. The
certificate object requires less than 100 bytes per user,
adding just 1 MB to the total. Thus, all of the security
information for SNAD requires less than 2% overhead
for a 20 GB disk.

3.4. SNAD Security Schemes

Our goal for SNAD was to provide authenticated,
encrypted storage. Encryption and decryption in
SNAD is done at the client. Though the time to do this
cannot easily be reduced, symmetric algorithms are rel-
atively fast. There are several different methods for
authentication, however, varying in security and speed.

The most secure authentication mechanism is for
users to sign the checksum of every block they write
using public-key encryption, and for the disk to authen-
ticate every block before writing it. If the checksum is
cryptographically strong (i.e., finding two blocks with
the same hash requires random guessing), this mecha-
nism is very secure, and allows the system to track the
last writer for each block. Unfortunately, signature
generation and checking are slow operations, so this

method, which we call Scheme 1, is relatively slow and
requires fast CPUs on the disk as well as the client.

Scheme 2 reduces the load on the disk’s CPU by
replacing the signature check at the server with a mes-
sage authentication code (MAC) check. The client still
generates a signature and checks it upon reading a
block, but the disk need not perform such an expensive
check, improving overall performance.

Scheme 3 further improves performance by dis-
pensing with signatures altogether. Instead, it uses
combinations of cryptographic hashes to ensure data
integrity throughout the system. This scheme is consid-
erably faster because it requires no signature genera-
tion or checking; however, it is not possible to verify
who last wrote a file.

Reading and writing data in each of the three
schemes follow similar paths. First, the user must give
his private key to the client, which is assumed to be
trusted by the user. This can be done via password,
authentication server, or smartcard. For each file, the
user opens the file and reads the key object for the file;
file system caching may be transparently used for this
operation as for any other. The appropriate field of the
key object is then decrypted the to obtain the symmet-
ric encryption key for the file. This key is then used to
encrypt the data before sending it to the server and
after receiving it from the server.

3.4.1. SNAD Scheme 1.

The first SNAD scheme pro-
vides security on each block of data similar to that pro-
vided by some cryptographic electronic mail security
schemes. Writes in this scheme encrypt each data
block, compute a hash over the entire data object
(including the metadata), and sign the hash using the
user’s private key. This hash can then be verified by
anyone with the user’s public key. In particular, the
disk can recompute the hash and compare it against the
hash signed by the user who sent the block. If they
match, the disk successfully verifies the provided sig-
nature, and the user has the permission to write the file,
the SNAD server writes the block to disk.

Reads in this scheme require no operations by the
SNAD server CPU, but do require that the client CPU
check the hash and signature just as the SNAD server
did on a write.

Table 1 summarizes the operations that must be
done for each read and write request. This scheme
requires relatively expensive signature and verification
operations for each disk request; in particular, the CPU
on the server must perform a slow signature verifica-
tion for each block write. Because this CPU is likely to
be slow, the verification will reduce write performance.

Figure 4. Relationships between objects in a Secure
Network-Attached Disk.

Data
object

Data
object

Data
object

Data
object

Data
object

Data
object

File
object

File
object

File
object

Key
object

Key
object

Certificate
object

39

3.4.2. SNAD Scheme 2.

Scheme 2 replaces the SNAD
server’s verification with an HMAC. In this scheme,
the client performs a cryptographic hash on the block
and signs it. However, this signature is only verified by
the client when it reads a block. The client also calcu-
lates an HMAC on the secure data object using the
shared secret HMAC key and sends it to the SNAD
server. The SNAD server computes an HMAC using
the shared secret key from the certificate object and
checks it against the HMAC received from the client.
Recalculating the entire hash including the HMAC key
would be time-consuming; instead, the client simply
performs an HMAC over the hash.

The replacement of a signature verification by an
HMAC reduces the load on the SNAD disk CPU, but
does not reduce the load on the client CPU, which still
must perform signatures on writes and verifications on
reads. Table 2 shows the operations that the client and
server perform for SDO reads and writes.

3.4.3. SNAD Scheme 3.

The third scheme eliminates
the signed hash of Scheme 2, and uses only the keyed-
hash (HMAC) to authenticate a writer of a data block
and verify the block’s integrity. HMACs differ from
signed hashes in that a user able to verify a keyed-hash
is also able to create it. Scheme 3 still uses public-key
authentication for key objects because writing key
objects, while slower with public-key controls, is very
infrequent.

Write operations in this scheme require the client
to encrypt the SDO and calculate an HMAC over the
ciphertext. This information is then sent to the disk,
which authenticates the sender by recomputing the
HMAC using the shared secret key from the certificate
object. If the write is authentic and the user has the per-

missions to modify or create the SDO, the SNAD disk
commits the write to disk, updating structures as neces-
sary. Note that the disk does not store the HMAC
because it must recalculate a new HMAC if the reader
is a different user from the user who wrote the SDO.

Unlike the previous two schemes, this scheme
requires the SNAD disk to perform a cryptographic
operation on a read: the disk must calculate a new
HMAC using the key from the user requesting the data.
The data object, along with the new HMAC, is then
sent to the client requesting the data. If the disk were
forced to write blocks without the proper encryption
key, a client could detect this during a read by checking
the non-linear checksum against the decrypted data.

The operations performed by the client and SNAD
disk are summarized in Table 3. Note that this scheme
requires no signature generation or verification opera-
tions; however, the SNAD disk must now compute an
HMAC on both reads and writes.

4. Preliminary Results

We implemented all three security schemes in a
block-oriented client and server, and tested their speed
against that of a similar system without encryption.
The results are shown in Figure 5. As expected,
Scheme 3 performs the best on both reads and writes,
15%–20% slower than unprotected operations.
Schemes 1 and 2 are comparable in performance, but
are considerably slower than Scheme 3 because of the
need to generate and check signatures.

5. Future Work

There is still much work to do on cryptographi-
cally secure file systems, particularly with actual
implementations. We are investigating the actual per-
formance of a file system using the security described
in this paper. Issues such as key revocation and general
security infrastructure also need to be explored further.

Another area that we are currently investigating is
the scalability of the different security schemes.
Schemes 1 and 2 are slow because the clients must gen-
erate a signature. With one client and one server, this

Table 1. Operations necessary for Scheme 1.

Operation
Read Write

Host NAS Host NAS

En/Decrypt

√ √

Hash

√ √ √

Signature

√

Verification

√ √

Table 2. Operations necessary for Scheme 2.

Operation
Read Write

Client NAS Client NAS

En/Decrypt

√ √

Hash

√ √ √

Signature

√

Verification

√

Table 3. Operations necessary for Scheme 3.

Operation
Read Write

Client NAS Client NAS

En/Decrypt

√ √

Hash

√ √ √ √

Signature

Verification

40

reduces performance. However, with many relatively
low-bandwidth clients, the overhead of generating sig-
natures is distributed to many machines. In such a sys-
tem, even a relatively slow CPU on a SNAD server can
handle several clients simultaneously.

6. Conclusions

We presented the details of the Secure Network
Attached Disk system, showing that cryptographic
security is possible for distributed file systems and net-
work-attached storage. This type of system is feasible
with today’s computing power, and will become even
more attractive as processors become faster.

This security mechanism for distributed file sys-
tems solves many of the performance and security
problems in existing systems today. This system pro-
vides user data confidentiality and integrity from the
moment it leaves the client computer. The distributed
disks should perform substantially better than central-
ized file servers, and provide better reliability. Having
the security functionality decentralized will improve
performance and scalability. Distributed security also
removes the single point of failure that plagues many
proposed centralized security schemes to date.

Integrating SNAD and schemes like it into modern
distributed file systems is essential. Such integration
can cost relatively little in performance but provides
tremendous advantages in security. Given the hostile
environment on the Internet, distributed file systems
can no longer afford to be without strong security.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.
Roselli, and R. Wang, “Serverless Network File Sys-
tems,”

ACM Transactions on Computer Systems

, Feb.
1996, pages 41-79.

[2] M. Blaze, “A Cryptographic File System for Unix,”

Proceedings of the First ACM Conference on Computer
and Communication Security

, Nov. 1993, pages 9-15.
[3] M. Blaze, “Key Management in an Encrypting File

System,”

Proceedings of the Summer 1994 USENIX
Conference

, 1994.
[4] W. Freeman,

Decentralized Security for Network
Attached Storage

, Ph.D. thesis, University of Maryland
Baltimore County, April 2000.

[5] W. Freeman and E. Miller, “An Experimental Analysis
of Cryptographic Overhead in Performance-Critical
Systems,”

Proceedings of the 7th International Sympo-
sium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS 99)

,
College Park, MD, October 1999, pages 348-357.

[6] K. Fu, M. F. Kaashoek, and D. Mazieres, “Fast and
secure distributed read-only file system,”

4th Sympo-
sium on Operating Systems Design and Implementa-
tion

(San Diego, CA), October 2000, pages 181-196.
[7] G. Gibson, et al., “A cost-effective, high-bandwidth

storage architecture,”

Proceedings of the 8th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems

 (San
Jose, CA), October 1998, pages 92-103.

[8] H. Gobioff, “Security for a High Performance Com-
modity Storage Subsystem,” Ph.D. thesis, Computer
Science Department, Carnegie Mellon University, July
1999. Available as Technical Report CMU-CS-99-160.

[9] J. Howard, et al., “Scale and Performance in a Distrib-
uted File System,”

ACM Transactions on Computer
Systems

6

(1), February 1988, pages 51-81.
[10] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC:

Keyed-Hashing for Message Authentication,”

IETF
Network Working Group RFC2104

, February 1997.
[11] B. Neuman and T. Ts’o, “Kerberos: An Authentication

Service for Computer Networks,”

IEEE Communica-
tions Magazine

32

(9), September 1994, pages 33-38.
[12] B. Reed, E. Chron, R. Burns, and D. Long, “Authenti-

cating Network Attached Storage,”

IEEE Micro

,

20

(1)January 2000, pages 49-57.

[13] J. Reid, “Plugging the Holes on Host-Based
Authentication,”

Computers and Security

, 1996,
pages 661-671.

[14] B. Schneier,

Applied Cryptography

, Wiley (New York),
1994.

[15] M. J. Wiener, “Performance Comparison of Public-Key
Cryptosystems,”

RSA CryptoBytes

,

4

(1), Summer
1998.

Figure 5. SNAD performance on sequential accesses.

�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�

0

2

4

6

8

0 5 10 15 20 25 30 35

R
ea

d
ba

nd
w

id
th

 (
M

B
/s

)

Block size (KB)

� Base

� Sch 1

� Sch 2

� Sch 3

�
�

�

�

�

�
����

�����

��

�

�

�

0

2

4

6

8

10

0 5 10 15 20 25 30 35

W
rit

e
ba

nd
w

id
th

 (
M

B
/s

)

Block size (KB)

� Base

� Sch 1

� Sch 2

� Sch 3

