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Abstract
The aim of this study is to refine a cognitive model for
the takeover in highly automated driving. The focus lies
on the impact of objective complexity on the takeover
and resulting outcomes. Complexity consists of various
aspects. In this study, objective complexities are di-
vided into the complexity of the non-driving-related task
(no-task, listening, playing, reading, searching) and the
traffic complexity (relevant vehicles in the driving envi-
ronment). The impact of a non-driving related tasks’
complexity on the takeover is evaluated in empirical
data. Following, the cognitive model is run through sit-
uations of different traffic complexities and compared to
empirical results. The model can account for empirical
data in most of the objective complexities. Additionally,
model predictions are tested on significant variations in
different complexities until the action decision is made.
In more complex traffic conditions, the model predicts
longer times on different processing steps. Altogether,
the model can be used to explain cognitive mechanisms
in differently complex traffic situations.
Keywords: highly automated driving; HAD; cognitive
modeling; ACT-R; takeover; conditional automation;
NDRT; non-driving related tasks; real vehicle study;
Objective complexity; traffic complexity; Complexity of
NDRT; cognitive model predictions;

Introduction
In the field of Highly Automated Driving, the develop-
ment of technological innovations is growing rapidly. It
is not only necessary to develop working technology, but
to understand human cognition, enhance the human-
machine interaction (HMI) and improve safety and com-
fort (Sun et al., 2017). Approaching the next SAE Level
of automation (Level 3, conditional automation), where
the driver still has to take over the driving task if re-
quested (SAE, 2014), the state of the driver plays an
important role. Here, the state is determined as the
awareness of the surrounding traffic and necessary ac-
tion decisions. It depends highly on the situation and
its complexity in which the driver has to take over. Dif-
ferent approaches of defining situation complexity exist
(Baumann and Krems, 2007; Haerem and Rau, 2007;
Schlindwein and Ison, 2004). A key factor concerning the
driver is the expectation about the future development
of a situation, that is activated when a type of situation
occurs (Baumann & Krems, 2007). These types of situ-
ations can be distinguished in various ways. They could

for example be a traffic situation (congestion, construc-
tion zone, intense or low traffic etc.), a type of traffic
environment (city, highway etc.), a weather condition or
further differentiations.

Figure 1: Outline of the Assumed Dependencies, leading
to the Approached Hypotheses concerning the Impacts
of Objective- and Subjective Complexity on the Takeover
Performance. Dark Grey Variables and Interactions are
Focus in this Study (Source: own figure).

Due to Schlindwein and Ison, 2004, complexity can
be understood as a result of a particular perception of
a situation of complexity or resulting from a distinction
between expectation and situation development. As we
live embedded in situations of complexity, it is important
to distinguish between descriptive (objective) and per-
ceived complexity. The perception, that is made by an
observer and individually variable, can be determined as
perceived complexity (Schlindwein & Ison, 2004). Objec-
tive complexity on the other hand describes the complex-
ity a certain traffic situation has. For the first modeling
approach presented in this paper, the objective complex-
ity will be the focus of the cognitive model. The impact
of the objective complexity on the takeover is analyzed
and displayed in the model. According to Paxion, Galy,
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and Berthelon (2015), the objective complexity of a sit-
uation in driving can vary with road geometry (rectilin-
ear vs. curvilinear), the roadside environments (quantity
and variability of traffic signs, variability of scenery) and
traffic density (low vs. high). Thus, the role played by
objective characteristics is very important (Haerem &
Rau, 2007) for the takeover task and will be addressed
here. The focus is set on understanding the impact of
objective complexity on cognitive mechanisms during a
takeover on a highway with varying traffic density in the
relevant areas of interest. Thus, an explanation of how
the visual perception and the resulting cognitive process-
ing is provided and differences that occur due to different
complexities can be displayed. To provide a safe and cog-
nitive adequate takeover, it is necessary to understand
which cognitive mechanisms influence different behavior
of the driver. Based on such a comprehension of the
situation the development of a useful HMI in highly au-
tomated driving is possible. It can thus incorporate the
current situation and adapt and support the driver ac-
cordingly to enable a safe and comfortable takeover.

In this study links between objective complexity and
the impact on the takeover are assumed and visualized in
(Figure 1). Objective complexity is based on the amount
of relevant vehicles in the traffic environment as well as
the complexity of the non-driving related task (NDRT)
in the in-vehicle environment. The subjective complex-
ity on the other hand is assumed to be influenced by the
objective complexity as well as by the individual percep-
tion of the objective complexity and management abili-
ties. Both complexity versions should have an impact on
cognitive mechanisms and the processing stages during
the takeover and the resulting action decision. Neverthe-
less, as mentioned earlier, in the current context, the fo-
cus is set on understanding the impact of objective com-
plexity before approaching subjective complexity. This
is important, as the subjective complexity can only be
measured, if an understanding about the impact of the
objective complexity on the takeover already exists.

In order to perceive different stimuli in a complex en-
vironment, awareness of the situation has to be reached
and sensory information understood (Plavsic, 2010). In
driving, the most important human sense is the visual
perception, involving several sub-processes. These are
seeing, detection and recognition (Plavsic, 2010). To
comprehend the impact of complexity on the takeover in
highly automated driving, cognitive processes during a
takeover and the influence of objective complexity have
to be understood. This can be captured and simulated
by a cognitive model. Further resulting behavior can be
predicted based on the model.

Cognitive modeling is used to understand more pre-
cisely, how complexity emerges and subsequently affects
the takeover. Thus, the exploitation of the resources in
different complexity combinations can be revealed. For

the implementation of the cognitive model, the ACT-
R (Adaptive Control of Thought-Rational) cognitive ar-
chitecture (Anderson et al., 2004) was used. It pro-
vides a more accurate representation of human abilities
than standard programming languages (Salvucci, Boer,
& Liu, 2001). Several cognitive patterns can be mod-
eled and clearly distinguished between the different re-
sources. The architecture provides different modules for
each resource that can act simultaneously and interact
with each other. Especially the visual module is able to
illustrate precisely the above mentioned sub-processes of
the visual perception. In conclusion, cognitive model-
ing is used, as it is a valid and useful method to depict
human cognition very detailed with respect to the dif-
ferent resources (visual, haptic, auditory). The ACT-
R cognitive architecture is chosen, as it is an architec-
ture that incorporates all relevant mechanisms for the
takeover task and enables the modeling of the whole task
with respect to the different resources and their interac-
tions. To understand underlying cognitive mechanisms
as a function of the objective complexity, the cognitive
model is established based on empirical data of a pre-
vious study (project KoHAF) and run through different
levels of objective complexity. As task performance is re-
liant on the availability of resources (Kahneman, 1973)
and auditory perception uses different resources than vi-
sual perception does (multiple resource theory; Wick-
ens, 2008), traffic density has a strong influence on the
takeover quality in highly automated driving Radlmayr,
Gold, Lorenz, Farid, and Bengler (2014). The developed
cognitive model gives an understanding about the under-
lying cognitive mechanisms. This is necessary for future
development of the HMI in highly automated driving.
In order to test, whether the model correctly depicts
the cognitive processes, the following questions are ad-
dressed in the examination of this paper:

• Is the cognitive model able to validly display differ-
ences in objective complexity that are found in empir-
ical data?

• Is the cognitive model able to generate predictions
that significantly vary with different objective com-
plexities in the traffic environment?

Methods
In this paper, the impact of the complexity of a NDRT
and the traffic environment is addressed. As non-driving
related tasks (NDRT) play an important role when it
comes to taking over the driving task (Radlmayr et al.,
2014), the impact of tasks with different complexities is
investigated. To validate the cognitive model, data of a
previous study (KoHAF) was used. In a first step (Step
1) the influence of NDRT-Complexity on takeover stages
in empirical data is evaluated. Further, an ACT-R cog-
nitive model for the takeover task per se, that displays
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underlying cognitive mechanisms during a takeover is de-
veloped. The model is run through scenarios of different
objective complexities and resulting predictions are com-
pared to empirical data (Step 2). The predictions of the
model in environments of different complexities are then
tested significant differences in prediction times.

Data Acquisition
The data that is evaluated in this paper comes from a
previous study in the project KoHAF. As it includes all
the relevant information, necessary for the model, it sup-
ports the assumptions, that are addressed in this paper.
For the realization of a takeover in a real scenario rather
than an simulator, a Wizard of Oz vehicle is used. It
allows the passenger to drive the vehicle covertly via a
hidden control. Thus, a takeover in a real driving en-
vironment is possible, simulating a Level 3 automation.
Due to that, participants feel like driving an automated
vehicle in real traffic (Ko-HAF, 2017) and can engage
into secondary tasks during the mock-automation.

The study was held in 2017 in the area of Stuttgart.
Overall data of N = 14 participants is evaluated.
Takeover requests (TOR) after five different NDRTs are
covered. A first evaluation of empirical data shows, that
NDRTs have a significant influence on the takeover. Due
to this, the complexity of the different NDRTs is rated on
a ten point likert-scale by three experts based on resource
capacities that are needed to solve the tasks. Conditions
without NDRT are rated as lowest complex with one
point (1P.). A bit more complex, listening to an audio-
book (3P.) is valued as it occupies the auditory channel.
This is followed by playing Tetris (6P.). Reading a news-
paper (7P.) as well as searching something in the back
of the vehicle (7P.) is assessed as most complex, each
with seven points. Tetris was rated as less complex than
reading a newspaper or searching something in the back,
as the tablet was mounted to the center console and par-
ticipants did not need to hold it. Thus, it is assumed as
less resource-demanding with regard to the task of tak-
ing over. The data was evaluated by two independent
raters concerning the different steps of the takeover and
the objective complexity of the scenery (amount of vis-
ible vehicles on the road and their position). The over-
all objective complexity thus consists of the scenery and
the traffic conditions and of the driving situation. The
scenery has a high influence on the objective complexity
of a situation (Rommerskirchen, Helmbrecht, & Bengler,
2013), including possible distraction sources from the in-
vehicle driver’s point of view (e.g. NDRT’s).

Cognitive Model
As the most important factor in driving is the visual
perception, the focus of the cognitive model to update
situation awareness (SA) during the takeover task lies
on modeling the perception behavior. Overall longer
takeover times are found in a more complex scenery

(Radlmayr et al., 2014). This is realized in the model
with the focus on visual perception mechanisms of the
relevant objects in the traffic environment. The model
interacts with a graphical user interface in Lisp. It rep-
resents the ego-vehicle on the center lane of a three lane
highway. The surrounding traffic is inserted at random,
varying between zero and five vehicles in the environ-
ment.

Besides visual perception patterns, the cognitive
model for the takeover task incorporates motoric and
cognitive retrieval patterns. In the following, the steps,
that are undertaken until control is regained during a
takeover are defined as well as the realization in the cog-
nitive model (Figure 2). While engaging into a secondary
task, the driver is alert on whether a takeover request
(TOR) appears. This is due to the drivers awareness of
situation and task. As soon, as a TOR is detected (0),
the NDRT is interrupted (2) and the gaze oriented to
the TOR message (1). The model reacts to a stimulus
in the visual or aural module, that fits the condition of
a TOR message. The meaning of the TOR message is
retrieved from the declarative memory and the TOR vi-
sually attended, fixated and processed. Then, the visual
resource is oriented to the road center and the front lane
(near and far area; Salvucci, 2006) is perceived (4). First
sensory-motoric patterns (hands to steering wheel, feet
to pedals) are automatically applied (3), resting on auto-
mated reactions rather than intentionally directed move-
ments. The visual resource further attends and processes
the left and right lane (5), storing the status (car or no
car) of the attended areas in chunks. In the data, this
is followed by the deactivation of automation (6). This
is not implemented in the model though, as deactiva-
tion modalities vary and there is no common mechanism
yet. The model thus completes the perception phase (7),
and forms characteristics of current status. The current
status of the environment is compared to the task ((8)
status-task-mapping) and a decision made based on that
(9). Finally, the motoric module performs the selected
action ((10) sensory-motoric intervention patterns) that
are either to follow, change the lane to the left or right.
The vehicle is then stabilized (11). This final step is not
explicitly included in the model though.

The cognitive model incorporates these steps and dis-
plays the cognitive processes that occur during each one
(Figure 2).

Results
Statistical analysis is used, to show, that the cognitive
model is able to depict differences that occur due to ob-
jective complexity. The two objective complexity mea-
surements (complexity of NDRT and amount of objects
in traffic environment) are evaluated separately. The im-
pact of complexity of the NDRT is evaluated in empirical
data. NDRT complexities are then scaled and compared
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Figure 2: Representation of Main Productions, the Cognitive Model Resolves to Display Cognitive Processes During
the Takeover in Highlay Automated Driving (Source: own figure).

to the cognitive model to show, that cognitive model pre-
dictions are able to account for empirical data. Based
on these results, the model itself is further run through
conditions of different traffic complexities and tested on
significant variations between those conditions.

The influence of the NDRTs on takeover patterns
is tested first using ANOVA for statistical evaluation.
Based on that, regression analysis is used to measure
the impact of the complexity of the NDRT on the perfor-
mance of the takeover in empirical data (Step 1). Fur-
ther, it is examined, whether predictions of the model
correlate with the results found in empirical data (Step
2). Finally, model predictions of action decisions are
tested on the influence of objective complexity variations
(Step 3).

Step 1: Influence of NDRT-Complexity on
Takeover Times in Empirical Data
ANOVAs show significant results for the takeover pat-
terns one to four ((1) visual re-orientation and fixation
of takeover request (TOR) message, (2) interruption of
NDRT, (3) first sensory-motoric patterns, (4) visual ori-
entation to road center). The time until the gaze gaze
is directed to the TOR differed statistically significant
for the different NDRTs (F (4,65) = 3.088,p < .05). The
same applies for the time until the NDRT is stopped
(F (4,65) = 4.221,p < .01), the time until the hands are
moved to the steering wheel (F (4,65) = 12,p < .001)
and the time until the gaze is directed to the road
(F (4,65) = 5.808,p < .001). Due to this, the impact
of complexity on takeover patterns is evaluated, using
regression analysis. Based on the regression equation
y = xβ+ ε, the impact of the Complexity of the NDRT

(CNDRT ) is tested on significance to reject the null hy-
pothesis. Further, the amount of variance that can be
explained by the regression (multiple determination co-
efficient R2) is evaluated. Regression analysis is tested
on normal distribution of residuals, heteroscedasticity,
non-linearity and multi-collinearity by plots (Liborius,
2015; Ligges, 2007). Analysis of empirical data (N =
14) on CNDRT on the takeover shows significant effects
for all takeover processes (Figure 3).

The time until the Gaze is directed to the TOR sig-
nificantly rises with higher CNDRT (β = .004,p < .01).
The complexity of the NDRT explains 11.3% percent of
variance (R2 = .113, t(68) = 2.943,p < .01).

The effect of CNDRT on the time until the NDRT is
stopped (β = .0005,p < .001), explains 16.4% of variance
(R2 = .164, t(68) = 3.652,p < .001). Variance in time un-
til the hands are moved to the steering wheel can be ex-
plained with 29,07% (R2 = .2907, t(68) = 5.297,p < .001).
The time increases significantly (β = 1.47e−06,p < .001)
with more complex NDRTs. CNDRT also influences
the time until the gaze is moved to the road (β =
3.05e− 05,p < .001). 22.7% of variance can be resolved
(R2 = .227, t(68) = 4.469,p < .001). The results show,
that the complexity of the NDRT has a significant im-
pact on all four steps of the takeover that were measured
empirically (Figure 3). The more complex the NDRT
that is performed before the takeover, the longer do
drivers need to perform the takeover steps. This shows,
that more cognitive occupation during the NDRT oc-
cupies relevant resources that need to be freed in order
to attend and process objects, that are relevant for the
takeover. The more complex a non-driving related task
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Figure 3: Regressions of the Influence the Complexity of
the Non-Driving-Related Task (CNDRT) has on Times
of Takeover Patterns (Significance codes: 0 ’***’ .001
’**’ .01 ’*’ .05 ’.’ .1; Source: own figure).

is, the longer do drivers need to complete the outlined
steps for taking over the driving.

Step 2: Correlation between Model
Predictions and Empirical Results of
Different Objective Complexities
Further, model predictions under different complex traf-
fic conditions are tested against the results found in
empirical data (N = 14), that are described above.
The comparison of empirical takeover times with differ-
ent surrounding traffic conditions and model predictions
shows, that model predictions correlate with the empiri-
cal data for almost all situations of objective complexity
(amount of vehicles) significantly (Figure 4). Empiri-
cal data (gray) was evaluated for situations with zero to
five vehicles in the surrounding traffic. Mean (pink) and
median median (red) courses for empirical data are eval-
uated and median courses correlated with model predic-
tions (green-dotted). For each traffic conditions, model
predictions correlate with median values of empirical
data. Especially with one, three and four vehicles in
the environment, model predictions are in line with em-
pirical data.

Step 3: Test whether Model Predictions of
different Complex Traffic Environments
show Significant Differences
Finally, predictions of the action decision (9, see sec-
tion Cognitive Model) of the model are evaluated based
on objective complexity measures. In the interaction of
the model with different driving situations, it can be
shown, that the time for an action decision increases
with a more complex driving environment. Overall the
model is run through 17 different complexity situations
(N = 17), varying between zero to five vehicles in the

driving environment. The time until an action deci-
sion is executed ranges from 1.37s to 4.86s (M = 1.74).
Regression analysis results in significant regressions for
the overall amount of vehicles in the environment (β =
0.04,p < .05). The parameter resolves 24.91% of variance
(R2 = .25, t(15) = 2.23,p < .05). Regarding the vehicle
distributon in detail, it can be shown that the amount of
vehicles on the right lane has a significant impact on the
time until an action decision (β = 0.04,p < .05). 18.87%
of variance (adj.R2 = .19, t(14) = 2.3,p < .05) can be ex-
plained. Also the amount of vehicles on the left lane has
a small impact on the time until an action decision is
made (β = 0.09,p < .1), explaining 12.13% of variance
(adj.R2 = .12, t(14) = 1.83,p < .1). Neither for the vehi-
cle in the front of the ego vehicle a significant impact
can be shown. Nor the speed (faster/slower) in relation
to the own position has an impact. This shows, that the
perception of left and right lane (5), the completion of
the perception phase (7) and the formation of character-
istics and recognition of the current status (8) need more
time in more complex driving environments and lead to
a delay of the action decision (9).

Discussion

The results show, that the complexity of the NDRT has
a significant impact on the time of takeover patterns in
empirical data. It can thus be concluded, that more
complex tasks that are done during the automated drive
lead to longer takeover times. Portraying the processing
patterns that are undergone during the takeover with a
cognitive model, similar time trajectories can be shown.
This is very important, as results show, that not only
the overall time, but also processing steps can be iden-
tified and displayed in the model. Further, the model
is run through situations with differently complex traffic
situations (amount of relevant vehicles). Results show
longer times for the processing patterns in more com-
plex environments. The predicted time-lines of the cog-
nitive model are compared to results in empirical data
with respect to the traffic complexity. Model predic-
tions correlate with empirically gathered trajectories in
differently complex traffic environments. In addition,
predictions of the cognitive model are tested on signifi-
cance in differences between traffic complexities. It can
be shown, that the traffic complexity (amount of relevant
vehicles) has a significant impact on the time until an ac-
tion decision is made. These results indicate, that the
objective complexity of the NDRT as well as of the traf-
fic situation play an important role concerning process-
ing steps during a takeover in highly automated driving.
The takeover behavior as well as the time until an action
decision is made, show significant influences of complex-
ity measures (NDRT and traffic environment). Still, the
model is slightly faster in the overall performance ( 0.5
seconds). Since the difference already occurs at the first
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Figure 4: Correlations between Empirical Values and Model Predictions in Different Complex Traffic Situations
(Significance codes: 0 ’***’ .001 ’**’ .01 ’*’ .05 ’.’ .1; Source: own figure).

processing step (Gaze to TOR), it is assumed, that cog-
nitive processes before the gaze is directed to the TOR
already have an influence. In the remaining sequence
no noticeable time differences are observed. Thus, cog-
nitive processes before the gaze is directed to the TOR
have to be included into the model. Further, more as-
pects of the objective complexity have to be incorporated
(e.g. notifications in the HMI, relevance of colors). It is
though necessary to investigate on complexity measures
concerning the takeover and incorporate further aspects
of objective complexity. For an efficient development of
interaction devices and estimates in highly automated
driving cognitive models are important. They uncover
underlying processes and should guide the development
of highly automated driving. In this study, empirical
data was collected in real traffic. The advantage of this
is the creation of a more realistic scenario. However,
traffic situations were not controllable and action deci-
sion patterns could hence not be evaluated. A simula-
tor study in which the traffic conditions at the moment
of the takeover request are controllable will thus be ex-
ecuted. This enables the collection of action decision

parameters. The action decision is unequal to the ac-
tion execution, as the decision may take place before
the execution is possible due to the traffic environment.
Thus, model predictions of the action decision in dif-
ferent complex situations can be validated by empirical
data. In further investigations it will also be important
to focus on subjective complexity in addition to objec-
tive complexity measures to include the individual into
predictions. This is a very important factor, as only the
consideration of individual differences enables a suitable,
adaptable and safe development of the human machine
interface. In order to focus on subjective complexity
measures validly, it is though necessary to completely
understand and control the objective complexity to sepa-
rately carry out result analysis for subjective complexity
measures.

Conclusion
Results of this study provide a first understanding of the
impact of objective complexity on the takeover task. In
a next step, action decision mechanisms in dependance
of the objective complexity will be gathered. These will

2739



be incorporated to further investigate in the subjective
complexity of participants during a takeover. Addition-
ally, steps that are undertaken during the takeover will
be differentiated more detailed. Patterns like action de-
cision, action execution and the quality of the takeover
and of the action execution should be included. Later,
subjective complexity measures will be addressed, to ad-
ditionally select model predictions based on the individ-
ual.
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