
Lawrence Berkeley National Laboratory
LBL Publications

Title
Characterizing Snowpack with 60 GHz FMCW Millimeter-Wave Radar Sensors

Permalink
https://escholarship.org/uc/item/1x9148wt

Authors
Wielandt, Stijn
Marković, Ivo
Chien, Lonnie
et al.

Publication Date
2023-11-01

DOI
10.1109/ieeeconf59524.2023.10476846

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1x9148wt
https://escholarship.org/uc/item/1x9148wt#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


Characterizing Snowpack with 60 GHz FMCW
Millimeter-Wave Radar Sensors

Stijn Wielandt∗, Ivo Marković∗, Lonnie Chien∗, Diana Morales∗, Ryan Landon Crumley†,
Baptiste Dafflon∗, and Reynold Cooper‡

∗ Earth and Environmental Sciences Area, ‡ Nuclear Sciences Division
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
† Climate, Ecosystems, and Environmental Science

Los Alamos National Laboratory
Los Alamos, NM, USA

Email: stijnwielandt@lbl.gov

Abstract—Snowpack is a vital component of Earth’s hydrolog-
ical cycle and one of the most sensitive to global warming. In
order to develop a predictive understanding of the hydrological
and biogeochemical dynamics in snow-dominated watersheds,
scientists and water resources managers need spatially and tem-
porally dense data sets of snowpack parameters, which could be
obtained by networks of low-cost, low-power, distributed sensors.
We investigate how 60 GHz frequency modulated continuous
wave (FMCW) radar systems-on-chips (SoCs) can be used for
measuring a variety of snowpack parameters. For snow depth
measurements, we present a dedicated radar detection algorithm
that detects the top of the observed snowpack, and we compare
its performance to the established cell averaging constant false
alarm rate (CA-CFAR) technique. We also evaluate the impact of
non-coherent integration of radar frames over receive channels
and over time. For measuring snow density and snow water
equivalent (SWE), we rely on an adjustment for the signal’s
propagation speed in the snowpack based on prior knowledge
about the radar’s true distance to the ground. Our lab and field
experiments show that snow layers can be detected, bulk snow
density can be calculated, and the 90th percentile of snow depth
measurement errors is 25 mm.

Index Terms—FMCW Radar, Millimeter-Wave, Environment,
Sensors, Snow, CFAR

I. INTRODUCTION

More than one billion people on Earth rely on snowpack
associated water supplies [1]. Snowmelt results in a steady
and often yearlong water supply for streamflows and ground-
water recharge. However, snowpack is one of the hydrological
features most sensitive to global warming, resulting in growing
impacts on communities, agriculture, infrastructure, and water
resources management. An important focus of environmental
research is improving the predictive understanding of the hy-
drological and biogeochemical dynamics in snow-dominated
watersheds under a changing climate, which requires spatially
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and temporally dense measurements of snowpack character-
istics [2]. Snow depth (d̄) is an important parameter that
indicates the thickness of the snowpack, measured from the
ground up. Snow water equivalent (SWE) is expressed in mm
and represents the depth of a hypothetical water column after
melting the snowpack. The density of snow (ρ) is defined as
the snow mass (ms) in a control volume (V ), with common
values in the 80–600 kg/m3 range. The snow density averaged
over the depth (ρ̄) is referred to as the bulk density and is
related to SWE and d̄ as expressed in (1).

SWE = ρ̄d̄ (1)

Other parameters of interest include thermal characteristics
and snow stratigraphy, i.e. the structure of snowpack with
layers of varying height, density, hardness, grain size, and
crystal shape [3]. Snow stratigraphic observations still rely on
manual methods that include digging snow pits and an often
visual or manual assessment of layer parameters, as described
in the International Classification for Seasonal Snow on the
Ground [4]. Because of this manual and invasive approach,
measurements are spatially and temporally sparse, and not
repeatable. Satellite and airborne observations provide an alter-
native, non-invasive solution to increase the spatial coverage of
snow observations. However, these observations are often char-
acterized by high uncertainties for SWE measurements, coarse
spatial resolutions (tens of km), low temporal resolutions, and
impacts of cloud cover [5]. In-situ sensors can provide an
outcome for highly accurate observations with a high temporal
resolution. Snow pillows and scales are standard instruments
for accurate SWE measurements, but their cost and installation
efforts prevent spatially dense observations. Snow depth is
commonly measured using ultrasonic ranging sensors, but the
technology requires a correction of the acoustic propagation
speed based on atmospheric temperature and humidity, and
the accuracy of the results is also affected by wind, snowfall,
and the density of the top layer of the snowpack [6]. Optical
systems (e.g., laser based) form an alternative, but these are
also sensitive to atmospheric processes and come at a high cost



and power consumption [7]. In recent research, novel, low-cost
methods have been investigated to facilitate spatiotemporally
dense observations using wireless sensor networks. Dafflon
et al. [8] presented a low-cost probe for thermal snowpack
analysis and snow height estimation, but the accuracy of the
system depends on sensor spacing and the impact of the
instrument on the snowpack is still to be investigated. Other
relevant techniques rely on the radio frequency (RF) propa-
gation characteristics of snowpack to gain insights into SWE
and layer structures. Le Breton et al. presented an RFID based
system that measures RF signal phase differences introduced
by the snowpack for RFID tags at different depths [9]. Based
on these measurements, the snowpack permittivity can be
determined, which is a function of ρ. Steiner et al. also rely on
snowpack permittivity to calculate SWE based on the signal
delays measured by buried GPS stations [10]. In the same
context, radar technology has garnered considerable interest
for observing snowpack over the past few decades. Pulsed
(ground penetrating) radar technology has been used for snow
stratigraphy [11] and tomographic imaging [12]. However,
the pulsed operation and sub-GHz frequency range of these
systems results in a limited resolution of the observations,
a large instrument footprint, and a high power consumption
and cost [13]. In a frequency modulated continuous wave
(FMCW) radar system a chirp is transmitted by the radar,
reflected by the environment, and received again by the radar.
By down mixing the transmitted and received waveforms, an
intermediate frequency (IF) signal is created that can easily
be sampled. The IF signal’s frequency components (fIF)
are directly proportional to the reflectors’ distances and the
chirp bandwidth (β) determines the range resolution. Previous
research on the use of FMCW radars for snow stratigraphy
has used L-band radars [14], but Koh et al. demonstrated
that higher frequencies (up to Ka band) can provide more
detailed insights in snowpack structure [15]. The widespread
adoption of FMCW radars for spatiotemporally dense snow-
pack observations has been hindered by the cost, footprint,
and complexity of these systems. However, recent develop-
ments in the field of millimeter-wave (mmWave) sensing have
resulted in the commercial availability of low-cost, highly
integrated FMCW radar systems-on-chips (SoCs) [16]. These
chips usually operate in the 60 GHz ISM band (or the 77 GHz
automotive radar band), support bandwidths exceeding 4 GHz,
and house the entire analog, digital, and signal processing
chain, which can even include antenna arrays (i.e. antenna in
package (AiP)). A radar system based on these FMCW SoCs
is characterized by a low cost, limited power consumption,
small size, low complexity, and compatibility with the 60 GHz
ISM band, which opens opportunities for wireless sensor
networks for spatiotemporally dense observations of snowpack
characteristics. In this paper, we present how a 60 GHz FMCW
radar SoC can be used for measuring snow depth, SWE, and
snowpack stratigraphy, based on lab and field experiments.

II. PROPOSED METHOD

For our research we employ an Infineon XENSIV™
BGT60TR13C [17] FMCW radar SoC on an Infineon DEMO
BGT60TR13C board. This chip was selected because it pro-
vides a bandwidth of 5.5 GHz in the 60 GHz band, and
it houses all functionality on-chip, including one transmit
antenna and three receive antennas with 12-bit ADCs. Fur-
thermore, the availability of low-cost, low-power develop-
ment platforms and data acquisition software accelerates the
development of environmental sensor devices. An important
drawback of this system in comparison to other radar SoCs
is that it only samples in-phase signal components, reducing
phase coherent processing capabilities like beam forming. In
our experiments, the board was covered with a 0.254 mm thick
LDPE film for waterproofing with minimal RF impact [18].
All experiments in this paper were performed at temperatures
< 0◦C to ensure the absence of liquid water. In order to
maximize the accuracy of our measurements in the context of
the snowpack parameters under investigation (d̄, ρ̄, SWE, layer
structure) we aim for a maximal range resolution (∆R) and
minimal range bin size (∆Rs), which is achieved by using the
maximal frequency range of the chip (58.0 GHz – 63.5 GHz),
while maximizing the sample frequency (fs = 2.5 Msps) and
chirp duration (512 samples). In vacuum and by approximation
in air the (real) relative permittivity is εr = 1, which results in
a range resolution of 0.0272 m, a range bin size of 0.0136 m,
and a maximum range detection of 6.98 m [19]. In order to
maximize the signal-to-interference ratio (SIR), we maximize
the transmit power (PTx = 31 dBm) and we activate all
three receive channels, which allows for signal integration over
space. In our experiments, each acquired radar frame contains
256 chirps, which affects doppler velocity capabilities. How-
ever, doppler velocity measurements are considered irrelevant
to this research since all measurement scenarios are static.

A. Snow Depth Sensing

In order to evaluate the snow depth measurement capa-
bilities of the considered radar hardware, we built a mea-
surement setup in Nome, AK as presented in Fig. 1(A).
The setup consists of a pile of snow with a flat top (2 m
diameter) and d̄ ≈ 0.95 m. A downward looking radar
was mounted at seven discrete heights above the snow pile
(xsnow = {0.24, 0.39, 0.53, 0.63, 0.73, 1.31, 1.64} m) and
experiments were performed in snowy, windy weather, with
a top snow pile layer of both fresh undisturbed snow, and
compacted snow. For each height, 4 data sets of 100 frames
were acquired separately, resulting in a total data set of 2,800
radar frames. d̄ can easily be calculated as the difference
between the height of the radar (which is supposed to be
known) and the measured range to the top of the snowpack
(x̂snow). Fig. 2 illustrates a radar range profile (R(x), where
x represents the distance from the radar) for a single receive
channel with the radar mounted 0.53 m above the snow pack.
The curve shows an initial DC peak, followed by a dip that
demonstrates the lack of reflections in air. The air-snowpack
interface is characterized by a strong reflection, followed by
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Fig. 1. Measurement setups for (A) snow depth measurement of a snow pile
in Nome, AK, (B) SWE and snowpack stratigraphy near Nome, AK, (C) SWE
and snowpack stratigraphy in a lab setting.

multiple reflections originating from within the snowpack and
subsurface. In order to accurately measure the distance to the
air-snowpack interface, we need a peak detection algorithm
that accurately identifies the associated reflection in the curve.

Constant false-alarm rate (CFAR) detection is a common
approach for radar peak finding because it takes variable
interference levels into account [20]. The established cell-
averaging CFAR (CA-CFAR) detector is used as a benchmark
in this research. For each range bin value (the cell under
test), the interference power is estimated (P̄i) by averaging
a certain number (N ) of neighboring reference cells. This
excludes Nguard guard cells on each side of the cell under
test because a target reflection could span multiple range bins.
A detection threshold T is determined as a function of a false
alarm probability (PFA) as defined in (2):

T = P̄i ·N ·
(
P

−1/N
FA − 1

)
(2)

CA-CFAR is supposed to detect any radar target, which
means the algorithm can return multiple peaks or no peak
at all (xCFAR = {. . . }), as demonstrated in Fig. 2. In our
application, we are only interested in the air-snow boundary
(xsnow), so we decided to estimate it as either the first
(x̂snow,first = xCFAR[1]) or the highest CA-CFAR peak
(x̂snow,max = argmax(R(xCFAR)). When no peak is detected,
we assume x̂snow = 0.

As for the CA-CFAR parameters, we arbitrarily selected
N = 10 to ensure sufficient impact of the deep dip in the
range curve while reducing the impact of the DC peak, and
Nguard = 4 to take into account snow surface roughness while
avoiding reflections from within the snowpack. We evaluate
the algorithm for PFA = 0.1% and PFA = 1% to evaluate the
trade-off between false positives and undetected peaks.

Since the number of returned peaks from the CA-CFAR
algorithm is unpredictable and we are only interested in one
strong reflection from the air-snow interface, we propose a

different method. First, we determine the range value with the
steepest upslope (xup) in the range plot (3). Then we find
the next local maximum, which is our estimated range to the
snowpack (x̂snow,up) (4).

xup = argmaxx(∇R) (3)

x̂snow,up = min
∀ x>xup

{x | ∇R = 0} (4)

In order to reduce the impact of interference and improve
the accuracy of snow depth detection, we investigate the
impact of averaging signals over multiple receive channels
and over time. Since the used platform does not perform
coherent IQ sampling, we only study non-coherent signal
integration [20].

0 1 2 3 4 5 6 7
x [m]

100

90

80

70

60

50

40

30

R
ef

le
ct

iv
ity

 [d
B

FS
]

A
ir

Sn
ow

Snow pile radar response R(x)
Material boundary
CA-CFAR peaks
Gradient method peak

Fig. 2. Example range plot for the Infineon BGT60TR13C positioned 0.53 m
above a snow pile.

B. Snow Density

The IF signal’s frequency fIF that is sampled by the FMCW
radar as a result of a reflection from a target at a distance
xr is described by (5) [15], where c represents the speed
of light in vacuum, and Ts is the chirp sweep time. In
most radar applications, the signal travels through air and the
only unknown parameter is the range xr, which is directly
proportional to fIF.

fIF =
2βxr

√
εr

cTs
(5)

When the signal travels through snowpack, εr becomes an
unknown. According to Tiuri et al., εr for dry snow (i.e., not
containing liquid water) can be modeled by a second order
polynomial (6) [21]. The authors verified this relationship for
frequencies of 850 MHz up to 12.6 GHz, and it was also
determined that εr depends almost solely on the density ρ; no
impact was observed for differences in snow crystal structure
or grain size, age, and hardness.

εr,snow = 1 + 1.7ρ+ 0.7ρ2 (6)

Following (5) and (6), our FMCW radar system can be
used to measure ρ when xr is a known parameter. In practice,
this means that a standard radar range measurement (assuming



εr = 1) can be corrected to find the actual εr,snow, which
in turn leads to ρ̄. With both range and density information
being known, we can calculate SWE using (1). However, we
need to evaluate if (6) also holds for measurements in the
60 GHz band. In order to test this, we perform experiments
with various known snow densities and known xr. Fig. 1(C)
presents our lab setup, consisting of a radar aimed into a
PVC tube (εr,PVC,60 GHz ≈ 4 [18], 40 mm inner diameter,
4 mm wall thickness, 1.585 m length), an aluminum disk at
xr,disk = 0.785 m, and a sample core (225 mm length) placed
on the aluminum disk. The use of a plastic tube (over a metallic
waveguide for example) ensures that multipath reflections off
the tube’s walls are weak, and the ground clearance of the
aluminum disk eliminates interference from ground reflections.
Since εr depends almost solely on ρ, we can perform our
experiments with cores of artificial snow. We evaluate a low-
density snow core (ρ1 = 130 kg/m

3), a high-density snow
core (ρ2 = 520 kg/m

3), and an ice core (ρ3 = 910 kg/m
3).

C. Snowpack Stratigraphy

While εr is only a function of ρ, other snow parameters
(e.g., crystal size) do affect signal reflectivity and attenuation.
This means that each layer within the snowpack will have
different signal absorption and reflection characteristics that
affect the radar response, so we aim to capture this phe-
nomenon in the 60 GHz band. First, we evaluate the radar
response of the homogeneous snow and ice cores in the
lab, as discussed in Section II-B. Next, we test an artificial
core consisting of multiple homogeneous layers: a top snow
layer of 150 mm (ρtop = 115 kg/m

3), followed by a
50 mm ice layer (ρmid = 910 kg/m

3), and a bottom snow
layer of 100 mm (ρbottom = 520 kg/m

3). For practical
reasons, this test was performed using a transparent acrylic
tube (εr,acrylic,60 GHz ≈ 2.6 [18], 50 mm inner diameter,
5 mm wall thickness, 1.390 m length), with the aluminum
disk at xr,disk = 0.955 m. Finally, we evaluate the radar’s
performance for snow stratigraphy in the field. We conducted
a snow pit study in Nome, AK, gathering information on
snow layer thickness, density, hardness, and temperature. As
illustrated in Fig. 2(B), we performed a radar measurement at
the same site; for practical reasons we placed the radar face-
down on the snowpack, 1.5 m away from the snow pit. All
snowpack stratigraphy experiments involve a correction for the
snow density, so these tests also double as an extra evaluation
of our snow density measurement capabilities.

III. EXPERIMENTAL DATA AND RESULTS

A. Snow Depth Sensing

Table I lists the statistics of snow depth measurement errors
(absolute values) for the CA-CFAR and gradient based detec-
tion algorithms, based on the measurements of 2,800 radar
frames at the presented seven heights above the snowpack. In
order to reduce interference, all results presented in this table
were based on radar profiles averaged over all three receive
channels. The impact of this averaging operation is presented
separately in Table II and discussed in the next paragraph.

All median error values across the considered algorithms
are below 0.05 m, which demonstrates the general capability
of the algorithms for snowpack ranging. Based on the 50th

percentiles, one could also conclude that a CA-CFAR based
algorithm provides better results for x̂snow,max than x̂snow,first.
However, CA-CFAR based methods demonstrate very high er-
ror levels in the 90th and 95th percentiles. For the PPA = 0.1%
configuration these percentiles line up with the 0.24 m and
1.60 m measurement heights, indicating that the CA-CFAR
algorithm did not detect any radar targets and x̂snow = 0 for
these setups. Reducing the CA-CFAR threshold (PPA = 1%)
results in the actual detection of peaks, but these peaks often
don’t line up with the top of the snowpack, resulting in an
overall low performance of the CA-CFAR algorithm for this
application. The gradient based peak detection algorithm is
tailored to our application and always produces a single result,
which clearly yields superior performance to the CA-CFAR
based methods. One can observe that the median error for
x̂snow,up is smaller than ∆Rs, which can be explained by the
close alignment of some of our 7 test setups with the range
bins.

TABLE I
ACCURACY OF SNOW DEPTH MEASUREMENTS FOR THE PROPOSED

CA-CFAR AND GRADIENT BASED ALGORITHMS.

Algorithm: x̂snow,max x̂snow,first x̂snow,up

PPA = 1% 0.1% PPA = 1% 0.1%

|E
rr
o
r|

[m
] Mean 0.165 0.161 0.150 0.180 0.076

Std. 0.383 0.426 0.335 0.418 0.314
P50 0.011 0.011 0.047 0.038 0.002
P90 0.397 0.240 0.240 0.240 0.053
P95 1.091 1.600 1.063 1.600 0.454

The BGT60TR13C has three receive antennas, so we eval-
uate the performance of each channel separately, and we
evaluate the impact of averaging range profiles over all three
channels. Table II presents the ranging errors for these scenar-
ios, indicating slightly better performance for radar channel
3, but overall there is a considerable number of large errors
as demonstrated by the 90th and 95th percentiles. Averaging
a radar frame’s range profiles over all channels significantly
reduces these larger errors and results in a 90th percentile
snowpack ranging accuracy of 0.053 m.

TABLE II
x̂snow,up ERRORS FOR DIFFERENT RADAR CHANNELS AND THEIR

AVERAGED RADAR RESPONSE.

Channel: 1 2 3 Averaged

|E
rr
o
r|

[m
] Mean 0.189 0.176 0.134 0.076

Std. 0.415 0.442 0.434 0.314
P50 0.006 0.007 0.001 0.002
P90 0.943 0.698 0.238 0.053
P95 1.241 1.412 1.241 0.454

All previously discussed results were obtained by consider-
ing radar frames separately. In Table III we evaluate the impact
of non-coherent integration of multiple radar frames (i.e. aver-
aging). While the acquisition of multiple radar frames results
in an increased power consumption, our results show that



the snowpack ranging accuracy can significantly be improved.
Especially the sporadic, large errors represented by the 95th

percentile can be reduced tenfold by averaging, improving the
accuracy in that percentile to 0.042 m. If power consumption
is a concern, at least 2 radar frames should be averaged, since
this results in the most dramatic improvement of the 95th error
percentile.

TABLE III
x̂snow,up ERRORS WITH NON-COHERENT INTEGRATION OF MULTIPLE

RADAR FRAMES OVER TIME.

# frames: 1 2 4 8 16 32

|E
rr
o
r|

[m
] Mean 0.076 0.049 0.027 0.027 0.024 0.019

Std. 0.314 0.242 0.172 0.169 0.155 0.128
P50 0.002 0.002 0.002 0.002 0.002 0.002
P90 0.053 0.039 0.025 0.025 0.025 0.025
P95 0.454 0.066 0.053 0.053 0.053 0.042

When comparing our results to literature, we find that
the invasive snow probes reported in [8] provide a much
lower measurement resolution of 5 to 10 cm. The laser based
solution presented in [22] has mean error levels of 4.5 cm,
which is higher than the 1.9 cm we achieve when integrating
multiple radar frames. Most importantly, our results show that
low-cost, low-power 60 GHz FMCW radar SoCs can be a
solution for accurate, in-situ snow depth measurements with
high spatiotemporal densities and reliable operation, even in
windy and snowy weather conditions.

B. Snow Density

In order to assess the snow density sensing capabilities of
the 60 GHz radar, we evaluate the results from the three lab
experiments with homogeneous snow/ice cores. Fig. 3 depicts
the uncorrected radar range profiles (assuming εr = 1) as
dashed lines, while the solid curves represent a corrected range
profile based on (6) and the known values of ρ1, ρ2, and ρ3.
All curves exhibit a clear peak at the air-snow/ice interface,
and –in contrast to the uncorrected radar range profiles– the
adjusted curves have their next peak aligned exactly with the
location of the aluminum disk. The precise alignment of this
correction demonstrates that we are effectively correcting for
the slower propagation speed, and that (6) can be used in the
60 GHz band for a wide range of ρ values. This also means
that the same technique can be inverted to measure SWE:
Section III-A demonstrated that we can measure d̄, and prior
knowledge about the true distance to ground enables a range
adjustment that yields ρ̄, and consecutively SWE (1).

C. Snowpack Stratigraphy

The results in Fig. 3 demonstrate how a homogeneous
snow/ice core yields a clear radar response at the material
boundaries. Fig. 4 presents the results from an artificial core
that consists of three homogeneous layers with varying density,
hardness, and grain size. The results show how all material
boundaries consistently align with the peaks in the corrected
radar profile, confirming not only the validity of (6) for prop-
agation speed adjustments, but also that material interfaces
within the snowpack produce clear radar responses.
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Fig. 5 visualizes the results from manual examinations
in a snow pit, and a co-located radar measurement. The
snowpack temperature ranges from −6◦C to −2◦C, and while
the hardness exhibits some variability (reported according
to [4]), the density is more or less constant. The adjusted
radar response has a significant peak coinciding with the
ground interface, confirming that ρ̄ can actually be measured in
realistic environments with prior knowledge of the distance to
ground. When observing material boundaries, some agreement
can be found with a peak and an inflection point of the adjusted
radar range profile, but the overall agreement between radar
peaks and snow pit observations is limited, which could be
explained as follows. First, there is the limited variability
in snow characteristics (e.g., no ice layers were observed)
and no metal target (cfr. aluminum disk) was present at the
snow-ground interface, which explains why no particularly



strong features in the radar profile are observed. Second, a
significant number of peaks can be observed within snow
layers, which contrasts lab tests. This could be explained by
the small sample size and coarse resolution of manual snow
pit observations (5-10 cm), while the radar observes an entire
snowpack volume with cm-resolution and high sensitivity to
perturbations because of the short wavelength [2].
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Fig. 5. Radar range profiles and co-located snow pit measurements.

IV. CONCLUSIONS AND FUTURE WORK

Our evaluation of a snowpack sensor based on a 60 GHz
FMCW radar SoC shows that these systems form a promis-
ing solution for large-scale deployments of low-cost, low-
complexity, and low-power in-situ snowpack sensors for spa-
tiotemporally dense measurements. Our experiments indicate a
90th percentile snow depth measurement error of 25 mm when
we use a dedicated peak detection algorithm that outperforms
CA-CFAR, and when we average radar frames over time and
over receive channels. Our lab and field experiments also
demonstrate that ρ̄ and SWE can be calculated by performing
an adjustment for the signal’s propagation speed with prior
knowledge about the snow-ground interface, which is gener-
ally available in fixed deployments. While lab experiments
clearly demonstrate that 60 GHz radars can be used for
snow layer detection, further field experiments are needed
to investigate how these systems can be used for in-situ
snow stratigraphy. Future work will focus on long-term field
experiments that include buried reflective targets. We will also
assess the maximal propagation distance of a radar signal in
snowpack, and assess the impact of wet snow.
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