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Introduction

1.1 Linear Breit-Wheeler process and previous studies

Linear Breit-Wheeler (linear BW) process, or the creation of an electron-positron pair

by the collision and annihilation of two photons, is a fundamental prediction of the theory of

quantum electrodynamics (QED) [1]. Besides being fundamental in theory, it also has many

interesting and important applications in astrophysics, such as in understanding the opacity of

the Universe [2] and the pair cascades in pulsar magnetospheres [3, 4, 5]. However, despite

this process has been proposed for almost a century since 1934, the linear BW process has

never been observed in a laboratory using real photons. The experimental difficulty comes from

the smallness of its cross section (of the order of 10−30 m2), and the high energy threshold

of the two colliding photons (where the product of the two photon energy needs to be larger

than (0.511 MeV)2). To overcome these experimental difficulties, dense population of colliding

photons in at least MeV range will be required, which, unfortunately, is challenging for traditional

photon sources to produce.

On the other hand, with the fast development of laser technology and construction of

facilities, the state-of-the-art laser facilities are able to deliver multi-beam, high-power, and

ultra-intense laser pulses with intensities above 1022 Wcm−2 [6, 7, 8]. Under the strong fields of

the laser pulses of such intensity, matter will be ionized into plasma state almost instantaneously,

and electrons can be easily accelerated to ultra-relativistic regime. The interaction of these

ultra-relativistic electrons with the strong fields in such systems then allows various strong-field

QED processes to emerge, such as electron-positron pair creation and the emission of photons via
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various processes. Such unprecedented regime, enabled by the interaction of state-of-the-art laser

pulses with matter, leads to brand new opportunities of studying strong-field QED processes [9].

It is then natural to ask whether an opportunity for the first experimental observation of the linear

BW process by real photons in history has been opened up by such ultra-intense laser plasma

interactions.

Multiple works have been previously done on utilizing high intensity laser pulses to

produce linear BW pairs. The experimental setups proposed in these works can be classified

into two main types, according to the methods to surpass the four-momentum threshold (ε1ε2 >

(mec2)2 ≈ (0.511 MeV)2 with ε1,2 being the two photon energies and mec2 being electron rest

energy) of the linear BW process. In the first type which is shown in Figure 1.1(a), a GeV-level

photon beam is produced and collide with photons in the keV energy range. The GeV-level

photon beam is typically produced from the Bremsstrahlung process by a laser accelerated

electron beam, and the keV photons are, for example, laser photons in an X-ray laser pulse [10]

or photons produced from the blackbody radiation inside a laser heated hohlraum [11]. In the

second type shown in Figure 1.1(b), two MeV-level photon beams, each of which is produced

from a laser-plasma interaction system, collide in vacuum to produce linear BW pairs [12, 13].

In particular, multiple works have been done on using two MeV photon beams produced from

two separate direct laser acceleration (DLA) systems [13, 14].

GeV  +  keV MeV  +  MeV

(a) (b)

Figure 1.1. Schematic setups of systems proposed in previous researches.

2



1.2 Linear Breit-Wheeler pair creation inside plasmas: two
setups

Examining these setups previously proposed as discussed in Sec. 1.1, we notice a few

limitations which hinder the linear BW pair yields.

The first limitation is that in these setups, photons need to travel a long distance before

they can collide with other photons. During their travelling, divergence of these photon beams

significantly reduces the photon density when these photons collide. For example, in the second

type of setups where two MeV-level photon beams collide, photon density nγ in each beam

scales like nγ ∝ L−2, where L is the distance each photon beam has to travel before colliding

with the other photon beam. So the total linear BW pair yield NBW
lin ∝ n2

γ ∝ L−4, and the -4th

power dependence heavily suppresses the pair yields.

To improve the situation, the most direct idea would be to reduce L as much as possible,

where ideally L = 0. The case L = 0 would corresponds to the physical picture that when a

photon is emitted, this photon is already inside the region where photons are colliding with

each other. This brings up one of the important underlying ideas of the research discussed in

this dissertation, that in order to achieve pronounced linear BW pair creation, ideally, photon

collisions should happen inside the plasma where the photons are produced.

The second limitation of these systems is that the potential of the energetic electrons to

emit energetic photons may not haven been fully utilized. Radiation reaction (or nonlinear inverse

Compton scattering, synchrotron emission) is one of the two main (alone with bremsstrahlung

emission) mechanisms for the generation of high energy photons in these systems. As detailed

in Sec. 9.3, one important method to leverage energetic photon emission via radiation reaction

of electrons in laser-plasma systems is to collide energetic electrons with intense laser pulse.

However, although more than one laser pulse is used in these previously proposed setups, each

laser pulse is only responsible for generating one of the photon beams. As the scenario of

electron-laser collision is not realized in these setups, the potential of energetic electrons on
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emitting energetic photons is not fully exploited.

Following these two ideas, which are to collide photons inside plasmas and to leverage

energetic photon emission by electron-laser collision, we considered the setup shown in Fig-

ure 1.2. In this setup, two intense laser pulses are injected into a solid channel target from two

sides. Due to relativistic transparency described in Sec. 9.2, they can propagate in the classically

over-dense plasma channel, and each of them drives a strong co-propagating energetic electron

beam through the process of DLA (Sec. 9.1 provides a brief summary of DLA). As these two

pulses collide in the center of the plasma channel, each of the two electron beams would collide

with the other laser pulse, which significantly enhances the quantum nonlinearity parameter of

these electrons, leading to the brilliant generation of energetic photons. Since photons from two

electron beams are both emitted in the center of the plasma channel, the produced photons start

to collide with each other immediately after they are produced. In this dissertation, we show

that the linear BW pair yields in this setup can be orders of magnitude larger than what was

previously proposed [11, 12], using currently available laser pulses.

(b)𝑥 [µm]
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𝑦
 [

µ
m

]

0

−10

10

Laser #1 Laser #2

Figure 1.2. scheme of the dual laser setup. Electron density ne (gray scale), transverse electric
field of laser #1 Ey (color scale) and energetic electrons with γ ≥ 800 accelerated by laser #2
(dots, colored by γ). Laser #1 generates a similar population of electrons moving to the right.

Nevertheless, in either the setup shown in Figure 1.2 or the setups previously proposed

in other research, we still face the limitation that more than one laser pulse is required. In

4



another words, the collisional feature of the photon populations would need to come from the

synchronization and aiming of different (laser or particle) sources. Experimentally, especially in

the cases using high-power and high-intensity laser systems, the synchronization and aiming

of pulses can be very challenging. Inspired by some of the findings during working on the

dual laser setup we just presented, we also studied and proposed a single laser setup. In this

setup, a self-organized photon collider can be achieved by using only one laser pulse with

currently available parameters. Utilizing collective plasma effects in the laser-plasma system,

the collisional geometry of energetic photons is realized. In this setup, the linear BW pair

yields are approximately one orders of magnitude less than the one in the dual laser setup, but

are still orders of magnitude larger than numbers reported in any of the previously proposed

setups [11, 12], despite of the fact that only one laser pulse is used. The key for the large pair

yields is the same with the one in the dual laser setup: colliding photons inside plasmas and

leveraging energetic photon emission by electron-laser collision.

Our researches have proposed possible experimental schemes for the realization and

observation of the linear BW pair creation using real photons. Moreover, they have also

emphasized the previously overlooked existence of the linear BW process inside high-intensity

laser-plasma systems. In fact, our numerical reesults show that in both setups, the linear Breit-

Wheeler process can be the dominant electron-positron pair creation process over other pair

creation processes (namely, the nonlinear Breit-Wheeler (nonlinear BW) process and the Bethe-

Heitler (BH) process. Even without our results, one can still see that the linear BW process

should not always be ignored when considering the electron-positron pair creation in laser-plasma

systems from the following simply back-of-envelope calculation. Take, as comparison, the BH

process which is the process of producing an electron-positron pair by the interaction of an

energetic photon with the Coulomb field of a nucleus. Multiple experiments have shown the

existence of the BH process in laser-matter experiments long before our research [15], and the

numerical implementation of the BH process into kinetic simulation codes are also done [16].

The cross section of the BH process can be estimated as σBH ≈ αZ2r2
e , where α ≈ 1/137 is the
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fine structure constant, Z is the atomic number, and re ≈ 2.8×10−15 m is the clasical electron

radius. On the other hand, the cross section of the linear BW process is approximately σγγ ≈ r2
e .

One can then estimate the linear BW pair yields (per unit volume per unit time) by NBW
lin ∼σγγn2

γc,

and the BH pair yields (per unit volume per unit time) by NBH ∼ σBHninγc, where nγ is the

density of photons in the MeV energy range and ni is the ion density. For ni ≈ ne/Z, one has

the ratio between pair yields being NBW
lin /NBH ≈ nγ/αZne. For an electron colliding with a laser

pulse, the number of photons emitted is approximately 18αa0, where a0 = e|E|/mecω is the

normalized laser amplitude for the peak laser electric fields E and frequency ω , with e, me, c

being electron charge, electron rest mass, and vacuum speed of light. Estimating nγ ≈ 18αa0ne,

we find:

NBW
lin /NBH ≈

18a0

Z
. (1.1)

For typical values of Z = 6 for plastic targets, and a0 = 100, the linear BW pair yields is about

300 times of the BH pair yields. Our estimation is, of course, rough. However, it shows the linear

BW process may not be always neglected in high intensity laser-plasma systems, and possibly

could even dominate other pair creation processes which agrees with our results shown in this

dissertation.

1.3 Numerical tools and dynamics of positrons

In the beginning of our studying of the two setups, one of the major difficulties was the

non-existence of numerical tools. Unlike other pair creation processes such as the nonlinear BW

process or the BH process, it was commonly assumed that the existence of the linear BW process

in laser-plasma systems is negligible, due to its seemingly small cross section. As a result, prior

to our research, there were no numerical tools which could compute the linear BW pair yields

inside a photon-emitting plasma. To conduct our study, we first developed a post-processing

algorithm that could calculate the linear BW pair yields inside such a system. It was with the

help of this post-processing algorithm were we able to calculate the large linear BW pair yields
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in the two setups we considered and initiate further studies later.

After we validated the potential of our systems on producing the linear BW pairs by

showing the large pair yields, our next question was how to detect these produced linear BW

positrons. This question boils down to knowing the dynamics of these positrons in the laser-

plasma system after they are produced. In collaboration with Professor Yasuhiko Sentoku’s

research group from Osaka University, we successfully implemented the linear BW process into

particle-in-cell (PIC) codes. Professor Yasuhiko Sentoku’s group implemented the linear BW

process into the PIC code PICLS, and I implemented it into the PIC code Epoch [17] using

similar methods. With the help of our newly developed computation tools, we found that in both

the dual laser and the single laser setups, the produced linear BW positrons could form collimated

energetic positron beams in up to GeV energy level by interacting with the in-situ strong fields in

the system. It is important to point out that the formations of these energetic positron beams are

self-organized which do not required additional experimental setups. These energetic positron

beams not only facilitates the experimental detection of the linear BW positrons, but also are

interesting as potential methods to serve as collimated Mev to GeV energy level positron sources

for other researches in the future.

1.4 Organization of chapters

Organization of chapters in this dissertation is summarized in Figure 1.3.

In Chapter II, we present results on the linear BW pair creation in the dual laser setup.

We show that around the order of 108 linear BW pairs can be produced in this setup by currently

available laser pulses. Such high pair yields dominate over the ones by the nonlinear BW and

BH processes, and are approximately 3 orders of magnitude larger than the linear BW pair yields

reported in previous researches.

Following the discussion presented in Chapter II, in Chapter IV, we then examine the

impact of the target parameters on the pair yields by the three pair creation processes. We show
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Chapter 2

Chapter 4

Chapter 3

Chapter 7 (7.6-7.7) Chapter 7 (7.2-7.5) Chapter 6*

Numerical algorithm detailed in Chapter 5**

* Chapter 6 contains a description of the numerical algorithm used to obtain the results in the chapter.
** Chapter 5 can be neglected without affecting the understanding of the physics discussed in other chapters.

Dual laser setup Single laser setup

Dynamics of 
produced positrons

Linear BW pair 
creation

Numerical algorithm detailed in Section 7.1

Figure 1.3. Organization of chapters in this dissertation.

that by changing the length and channel density of the targets which can be controlled during

target manufacturing, we can manipulate the energy spectrum of the emitted energetic photons.

Since the three pair creation processes favor photons in very different energy range, these target

parameters can then be used as control knobs for the ratio of the pair yields by these three

processes while keeping the laser parameters unchanged.

In Chapter III, we present the setup where around 107 linear BW pairs can be produced

by using only a single laser pulse that is currently available. Similar to the dual laser setup, such

pair yields dominate over the ones by other pair creation processes, and are around 2 orders of

magnitude larger than the linear BW pair yields reported in previous researchers where multiple

laser pulses were used.

Chapter V presents the numerical algorithm that was used to obtain the linear BW pair

yields presented in Chapter II, III, and IV. Although this is a post-processing method, it was

the only numerical tool capable of assessing the linear BW pair yields inside a photon emitting

plasma until more advanced numerical tools were later developed by us with our collaborators.
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Chapter V can be skipped without affecting the understanding of the physics discussed in other

chapters.

In Chapter VI, we implement the linear BW process into PIC code PICLS. The newly

implemented codes can simulate the produced linear BW positrons in PIC simulations, which

allowed us to study the dynamics of the produced linear BW positrons. With the help of our

newly developed codes, we discovered a positron acceleration mechanism in the single pulse

setup which leads to the generation of collimated GeV-level positron beams without adding extra

experimental stages.

Chapter VII presents results that are currently being prepared for publications. These

results are obtained using an implementation of the linear BW process into the PIC code Epoch

(Sec.7.1). In Sec.7.2, we present more details on the positron acceleration mechanism discussed

in Chapter VI by focusing on the dynamics of individual linear BW positrons. We then benchmark

our results discussed in Chapter VI and Sec. 7.2 by 3D PIC simulations in Sec. 7.3. In Sec. 7.4

and 7.5, we investigate the dynamics of the other two groups of energetic positrons we found

in the single laser setup. These two groups, together with the one investigated in Chapter VI

and Sec. 7.2, constitute the majority of energetic positrons we see so far in our simulations

for the single laser setup. Following the discussion on the single laser setup, in Sec. 7.6, we

confirm the DLA of the produced linear BW positrons in the dual laser system, which was a

major postulation of Chapter II. We further show the positron heating by the overlapping of the

two laser pulses, and briefly discuss how such heating impact the dynamics of positrons during

their DLA. Finally, in Sec. 7.7, we investigat the impact of oblique laser injection on the linear

BW pair creation in the dual laser setup, and benchmark our results in the dual laser setup by 3D

PIC simulations.
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Dominance of photon-photon electron-
positron pair creation in a plasma driven
by high-intensity lasers

Creation of electrons and positrons from light alone is a basic prediction of quantum

electrodynamics, but yet to be observed. Our simulations show that the required conditions

are achievable using a high-intensity two-beam laser facility and an advanced target design.

Dual laser irradiation of a structured target produces high-density γ rays that then create >108

positrons at intensities of 2× 1022 Wcm−2. The unique feature of this setup is that the pair

creation is primarily driven by the linear Breit-Wheeler process (γγ → e+e−), which dominates

over the nonlinear Breit-Wheeler and Bethe-Heitler processes. The favorable scaling with laser

intensity of the linear process prompts reconsideration of its neglect in simulation studies and

also permits positron jet formation at experimentally feasible intensities. Simulations show that

the positrons, confined by a quasistatic plasma magnetic field, may be accelerated by the lasers

to energies > 200 MeV.

2.1 Introduction

High-power lasers, focused close to the diffraction limit, create ultrastrong electro-

magnetic fields that can be harnessed to drive high fluxes of energetic particles and to study

fundamental physical phenomena [9]. At intensities exceeding 1023 Wcm−2, those energetic

particles can drive nonlinear quantum-electrodynamical (QED) processes [18, 19] otherwise

only found in extreme astrophysical environments [20, 21]. One such process is the creation of
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electron-positron pairs from light alone. Whereas multiphoton (nonlinear) pair creation has been

measured once, using an intense laser [22], the two-photon process (γγ → e+e−, referred to here

as the linear Breit-Wheeler process [1]) has yet to be observed in the laboratory with real pho-

tons. As the probability of the nonlinear process grows nonperturbatively with increasing field

strength [23, 24], it is expected to provide the dominant contribution to pair cascades in high-field

environments, including laser-matter interactions beyond the current intensity frontier [25, 26]

and pulsar magnetospheres [27].

The small size of the linear Breit-Wheeler cross section means that high photon flux is

necessary for its observation. Achieving the necessary flux requires specialized experimental

configurations [11, 12] and therefore its possible contribution to in situ electron-positron pair cre-

ation has hitherto been neglected in studies of high-intensity laser-matter interactions. However,

these interactions create not only regions of ultrastrong electromagnetic field, but also high fluxes

of accelerated particles, because relativistic effects mean that even a solid-density target can be-

come transparent to intense laser light [28, 29]. In the situation of multiple colliding laser pulses,

which is the most advantageous geometry for driving nonlinear QED cascades [25, 30, 31, 32],

there are, as a consequence, dense, counterpropagating flashes of γ rays, and so the neglect of

linear pair creation may not be appropriate.

Recent construction of multi-beam high-intensity laser facilities, such as Extreme Light

Infrastructure Beamlines [33], Extreme Light Infrastructure Nuclear Physics (ELI-NP) [34, 6],

and Apollon [35], and a significant progress in fabrication of µm-scale structured targets [36, 37]

open up qualitatively novel regimes of pair production for exploration. Specifically, we show

that a structured plasma target irradiated by two laser beams creates an environment where the

linear process dominates over the nonlinear and over the Bethe-Heitler process. Remarkably,

this regime does not require laser intensities beyond than what is currently available. At

I0 < 5×1022 Wcm−2, the positron yield from the linear process is∼ 109, which is four orders of

magnitude greater than that envisaged by Pike et al. [11] and Ribeyre et al. [12] These positrons

are generated when two high-energy electron beams, accelerated by and copropagating with laser

11



pulses that are guided along a plasma channel, collide head-on, emitting synchrotron photons

that collide with each other and the respective oncoming laser. Not only does this provide an

opportunity to study the linear Breit-Wheeler process itself, which is of interest because of its role

in astrophysics [2, 38, 39], but also the transition between linear and nonlinear-dominated pair

cascades. In an astrophysical context, the balance between these two determines how a pulsar

magnetosphere is filled with plasma; as in the laser-plasma scenario, the controlling factors are

the field strength and photon flux [3, 4, 5, 40]. We also show that the positrons, created inside the

plasma channel coterminously with the laser pulses, may be confined and accelerated to energies

of hundreds of MeV, which raises the possibility of generating positron jets. The transverse

confinement needed to accelerate positrons is provided by a slowly evolving plasma magnetic

field. Crucially, it is the same field that enables acceleration of the ultra-relativistic electrons

prior to the collision of the two laser pulses.

An overview of the key results of this chapter is shown in Fig. 2.1: we show that a

structured target, when irradiated from both sides by intense laser pulses, enables the creation

of a large yield of positrons through γ-γ collisions, i.e. the linear Breit-Wheeler process, at

intensities well within the reach of existing high-power laser facilities. Two beams of electrons,

accelerated along the plasma channel [Fig. 2.1(a)], collide with the respective counterpropagating

laser [Fig. 2.1(b)], and emit γ rays that themselves collide to produce electron-positron pairs

[Fig. 2.1(c)]. Furthermore, we show that a quasistatic magnetic field, created by the propagation

of the lasers through the plasma channel [Fig. 2.1(c)], is sustained over sufficiently long times,

and with the correct topology, to enable confinement and acceleration of the positrons, rather

than electrons, so generated [Fig. 2.1(d) and (e)].

2.2 Results

The target configuration considered in this chapter is shown in Fig. 2.1(a). A structured

plastic target with a pre-filled channel is irradiated from both sides by two 50-fs, high-intensity
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Figure 2.1. Positron production and acceleration in a structured plasma target. Results
from a 2D-3V particle-in-cell (PIC) simulation of two laser pulses with a0 = 190 irradiating a
structured plasma target. (a) Electron density ne (gray scale), transverse electric field of laser
#1 Ey (color scale) and energetic electrons with γ ≥ 800 accelerated by laser #2 (dots, colored
by γ). (b) Total transverse electric field Ey (color scale) and electrons from panel (a). (c) Laser-
accelerated positrons (points), confined by the quasistatic plasma magnetic field ⟨Bz⟩ (color
scale). E0 and B0 are the peak laser electric and magnetic fields in vacuum. Time evolution of
the energy spectra of (d) positrons and (e) electrons generated by nonlinear Breit-Wheeler pair
creation: the horizontal, dashed lines indicates the time at which the lasers collide.

laser pulses that have the same peak normalized laser amplitude a0, in the range 100≤ a0 ≤ 190.

Here a0 = 0.85I1/2
0 [1018Wcm−2]λ0[µm], where I0 is the peak intensity of the laser and λ0 = 1 µm

its wavelength in vacuum. The target structure, where a channel of width dch = 5 µm and electron

density ne = (a0/100)3.8nc is embedded in a bulk with higher density ne = 100nc, enables stable

propagation [41] and alignment of the two lasers. Here nc = πmc2/(eλ0)
2 is the so-called critical

density, where e is the elementary charge, m is the electron mass, and c is the speed of light. At

relativistic laser intensities (a0≫ 1), the cutoff density for the laser increases roughly linearly

with a0 due to relativistically induced transparency. Scaling the channel density with a0 ensures

that the optical properties of the channel and thus the phase velocity of the laser wave-fronts
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are approximately unchanged with increase of a0. Structured targets with empty channels have

successfully been used in experiments [36, 37] and it is now possible to fabricate targets with

prefilled channels, similar to those considered in this dissertation [42].

The interaction is simulated in 2D-3V with the fully relativistic particle-in-cell (PIC)

code EPOCH [17], which includes Monte Carlo modules for quantum synchrotron radiation

and nonlinear pair creation [43]. At each time-step, the quantum synchrotron radiation module

computes the quantum nonlinearity parameter,

χ ≡ γ

ES

√(
E+

1
c
[v×B]

)
2− 1

c2 (E ·v)
2, (2.1)

for each charged macro-particle using the electric and magnetic fields (E and B) at the particle

location, as well as the particle relativistic factor γ and velocity v. Here ES ≈ 1.3×1018 V/m

is the Schwinger field [44, 45, 46]. The parameter χ controls the total radiation power and the

energy spectrum of the emitted photons. In the quantum regime χ ≳ 1, which is reached in the

work presented in this chapter, it is necessary to take into account the recoil experienced by the

particle when emitting individual photons. This is done self-consistently by the PIC simulation,

which uses the Monte Carlo algorithm described by Ridgers et al. [43] and Gonoskov et al. [47]

Note that, since the ion species is fully ionized carbon, Bethe-Heitler pair creation, already

demonstrated in laser-driven experiments [15, 48], may be neglected. Detailed simulation and

target parameters are provided in the Methods section. All the results presented in this chapter

have been appropriately normalized by taking the size of the ignored dimension to be equal to

the channel width dch, i.e. 5 µm.

2.2.1 Electron acceleration

The plasma channel, being relativistically transparent to the intense laser light [28, 29],

acts as an optical waveguide. The laser pulses propagate with nearly constant transverse size

through the channel, pushing plasma electrons forward. This longitudinal current generates

14



−61 fs

−21 fs 10 fs
−73 fs

−73 fs

−61 fs

−21 fs

10 fs

86 fs
49 fs

11 fs
19 fs

86 fs
49 fs 11 fs

19 fs

+ [µm]

,- [./]

, 0
[.
/]

1[
µm

]

+ [µm]

,- [./]

, 0
[.
/]

1[
µm

]

Original electron Generated positron 2

(a) (b)

(c) (d)

Figure 2.2. Trajectories of an accelerated plasma electron and a generated positron in
spatial and phase space. Trajectories of an accelerated plasma electron and a generated positron
from the 2D PIC simulation shown in Fig. 2.1: (a, b) tranverse momenta px, py and (c, d)
position in the x-y plane. Color coding denotes the magnitude of the relativistic factor γ . The
vertical solid line is the initial position of the left edge of the target. The horizontal dashed
lines show the initial location of the channel walls. The timestep between the colored markers
is 0.5 fs. Timestamps are provided for selected markers (shown as dark circles) to facilitate
comparison between trajectories in (px, py)-space and (x,y)-space. To improve visibility, the
electron trajectory in (a) is shown for −73 fs≤ t ≤ 11 fs.

a slowly evolving, azimuthal magnetic field with peak magnitude 0.6 MT (30% of the laser

magnetic field strength) at a0 = 190, as shown in Fig. 2.1(c). The magnetic field enables

confinement and direct laser acceleration of the electrons [41, 49]. After propagating for

∼30 µm along the channel, laser #2 in Fig. 2.1(a) has accelerated a left-moving, high-energy,

high-charge electron beam that performs transverse oscillations of amplitude∼2 µm: the number

of electrons with relativistic factor γ > 800 is 4×1011, which is equivalent to a charge of 64 nC.

Laser #1 generates a similar population of electrons moving to the right, with a representative

electron trajectory shown in Fig. 2.2(a) and (c).

The plasma magnetic field has an essential role in enabling generation of ultrarelativistic

electrons. Transverse deflections by the magnetic field keep py antiparallel to the transverse

electric field Ey of the laser, despite the oscillation of the latter. As a result, the electron continues

to gain energy while moving along the channel and performing transverse oscillations, as may

15



be seen in Fig. 2.2(a) and Fig. 2.2(c). In the absence of the magnetic field, the oscillations

of Ey would terminate the energy gain prematurely. The magnetic field of the plasma has to

be sufficiently strong to ensure that the electron deflections occur on the same time scale as

the oscillations of Ey. This criterion can be formulated in terms of the longitudinal plasma

current [49]. Note that the same confinement and acceleration would occur for a positron, if the

positron were moving in the opposite direction along the x-axis, as its charge has opposite sign.

This is shown in Fig. 2.2(b) and (d) and discussed in more detail in Positron acceleration. The

evolution of the energy of the electron population as a whole is shown in Fig. 2.3, where we see

the bulk of the electrons reach energies of several hundreds of MeV.

2.2.2 Radiation emission

!"
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Figure 2.3. Growth and collapse of the electron γ and χ as the laser collision occurs. Time
evolution of the distributions of the (a) electron relativistic factor γ and (b) quantum nonlinearity
parameter χ , defined by Eq. (2.1), for the 2D PIC simulation shown in Fig. 2.1. The two laser
pulses have a0 = 190 and collide at t = 0, which is shown by the horizontal dashed lines.

The target length is such that no appreciable depletion of the laser pulses occurs by

the time they reach the midplane (x = 0), t = 0. Here, the high-energy electron beams collide

head-on with the respective oncoming laser pulse, each of which has an intensity at least as large

as its initial value (the magnitude can increase slightly due to pulse shaping during propagation

along the channel). This configuration maximizes the quantum nonlinearity parameter χ for the

electrons, as the two terms under the square root in Eq. (2.1) are additive for counterpropagation.
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(In copropagation, by contrast, they almost cancel each other, which is why radiation prior to

the collision, when electrons propagate in the same direction as the accelerating laser pulse, is

driven primarily by the plasma magnetic field.) Figure 2.3(a), as well as Figure 2.1(b), shows the

impact of the collision on the energetic electrons from Fig. 2.1(a): they radiate away a substantial

fraction of the energy they gained during the acceleration phase and are scattered out of the

channel. Similar behavior is shown in Fig. 2.2(c): the electron encounters the counterpropagating

laser beam at about t = 10 fs and then its energy decreases rapidly. As is shown in Fig. 2.3(b),

χ ≲ 0.25 before the collision occurs; immediately thereafter, the cancellation is eliminated, χ

increases rapidly to approximately 1.25, and then it collapses due to the radiative energy loss.

The configuration under consideration here therefore represents a micron-scale, plasma-

based realization of an all-optical laser–electron-beam collision [30]. This geometry is the

subject of theoretical [50, 51, 52] and experimental [53, 54] investigation into radiative energy

loss in the quantum regime, as well as nonlinear pair creation [55]. It is worth emphasizing that

the use of the structured target has two key benefits compared to the commonly used gas targets:

automatic alignment of the colliding electrons with an oncoming laser beam and a considerably

higher density of colliding electrons.

The observed increase in χ during the electron-laser collision increases the radiation

power of the individual electrons. The conversion efficiency of the laser energy into photons

with energies 100 keV ≤ εγ ≤ 10 MeV is shown in Fig. 2.4(a) over a wide range of a0. We

are interested in the photons in this energy range because these are the photons that participate

in the linear Breit-Wheeler process in our setup (see Section 2.5.6). As expected, there is a

significant increase in the conversion rate caused by the electron-laser collision. The angularly

resolved spectrum of the emitted photons is shown in Fig. 2.4(b). There are approximately

2×1014 photons with energies between 100 keV and 10 MeV and with 90◦ ≤ θ ≤ 180◦. This

is essentially half of the energetic photons emitted by the left-moving electrons (the other half

is emitted with −180◦ ≤ θ ≤ −90◦ and has a similar spectrum). Furthermore, this emission

occurs in a highly localized region, which leads to the marked increase in photon density shown
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Figure 2.4. MeV photon emission inside the structured target. Results from the 2D PIC
simulation shown in Fig. 2.1, where the two counterpropagating lasers have a0 = 190. (a)
Conversion efficiency of the laser energy into γ rays with energies 100 keV ≤ εγ ≤ 10 MeV:
(blue markers) before the two lasers collide at x = 0 and (red markers) over the whole laser-target
interaction. (b) Energy-angle spectrum, ∂ 2N/(∂ sγ∂θ) [◦−1], of the photons emitted inside the
channel. Here θ is the angle defined in Fig. 2.1(b) and sγ ≡ log10(εγ [MeV]). (The spectrum for
−180◦ ≤ θ ≤ 0◦ is similar.) (c) and (d) The density of photons with energy εγ ≥ 1 keV, in units
of the critical density nc, before and after the laser-laser collision.

in Fig. 2.4(c) and (d) for the case where a0 = 190.

2.2.3 Positron acceleration

The photons emitted by one electron beam collide with both the oncoming laser and the

photons emitted by the other electron beam. The former drives electron-positron pair creation

by the nonlinear Breit-Wheeler process, γ
EM field−−−−−→ e+e− [18, 24]: at a0 = 190, our simulations

predict a yield of 5×108 pairs.

The positrons subsequently undergo direct laser acceleration in much the way as the

electrons: PIC simulations show that the typical relativistic factor of a right-moving positron
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increases to γ ≈ 1000 as it propagates from x≈ 0 to x≈ 20 µm. This is illustrated in Fig. 2.1(c)

and corroborated by the time evolution of the positron energy spectrum shown in Fig. 2.1(d). A

representative trajectory for a positron moving from the central region towards the left target

boundary is shown in Fig. 2.2(d). Acceleration is made possible by the plasma magnetic field,

which is confining (on the left-hand side of the target) for electrons moving to the right, or

equivalently, positrons moving to the left [compare Fig. 2.2(c) and Fig. 2.2(d)]. Crucially,

Fig. 2.1(c) shows that this magnetic field polarity is preserved well after the lasers and electron

beams collide. This is why, after the two laser pulses collide and pass through each other, they

can accelerate the positrons, but not the electrons, created in by photon-photon collisions, as

seen in Fig. 2.1(e). The generated electrons are not transversely confined in our magnetic field

configuration when moving from the center towards either of the channel openings. However,

the continued propagation of the lasers along the channel raises the possibility of accelerating

positron jets, if there is sufficient pair creation in the channel center.

2.2.4 Competing positron generation mechanisms

We now show that there is prolific pair creation in the channel center, and furthermore

that it is dominated by the linear Breit-Wheeler process. The cross section is [1]:

σγγ =
πr2

e
2ς

[
(3−β

4) ln
(

1+β

1−β

)
−2β (2−β

2)

]
, (2.2)

where re = e2/(mc2) is the classical electron radius, β =
√

1−1/ς , and
√

ς is the normalized

center-of-mass energy, ς = ε1ε2(1− cosψ)/(2m2c4), for two photons with energy ε1,2 colliding

at angle ψ . Equation (2.2) is the cross section for two-photon pair creation in vacuum: while

it is modified by a strong electromagnetic field [56, 57, 58, 59], these corrections, which scale

as (χγ/ς)2 for photon quantum nonlinearity parameter χγ [60], are negligible for the scenario

under consideration here (see Sec. 2.5.5 in the Appendices of this chapter for details).

We take as a representative value σγγ ≈ 2r2
e (approximately its maximum, at ς ≈ 2)

19



and assume that we have two photon populations of number density nγ , colliding head-on in

a volume of length cτ (the laser pulse length) and width dch (the width of the channel). The

number of photons (in each beam) is Nγ ≈ 109λ0[µm]Pγ(ne/nc)(cτ/λ0)(dch/λ0)
2, where Pγ is

the number of photons emitted per electron, ne is the electron number density and λ0 is the

laser wavelength. The number of positrons produced, NBW
lin = 2N2

γ σγγ/d2
ch, follows as NBW

lin ≈

40P2
γ (ne/nc)

2(cτ/λ0)
2(dch/λ0)

2. The physical parameters are ne = 7nc, τ = 50 fs, dch = 5 µm,

and λ0 = 1 µm. The number of photons emitted per laser period by a counterpropagating

electron is Pγ ≈ 18αa0, where α ≃ 1/137 is the fine-structure constant. By setting Pγ = 20, we

obtain a total number of photons, 2Nγ ≈ 1.3×1014, which is approximately consistent with the

simulation result. As a consequence, we predict that NBW
lin ≈ 7×109. Given that Pγ ∝ a0 and

ne ∝ a0, we predict a scaling of NBW
lin ∝ a4

0.

This is considerably larger than the number of pairs expected from the nonlinear Breit-

Wheeler process; moreover, as the probability rate for the latter is exponentially suppressed with

decreasing a0, we expect the yield to be much more sensitive to reductions in laser intensity. The

potential dominance of the linear process motivates a precise computation, which takes into the

account the energy, angle and temporal dependence of the photon emission.

However, direct implementation of the linear Breit-Wheeler process in a PIC code is

a significant computational challenge, as it involves binary collisions of macroparticles and

the interaction must be simulated in at least 2D. The simulation at a0 = 190 generates ∼108

macrophotons in the energy range relevant for linear Breit-Wheeler pair creation and therefore

∼1016 possible pairings. This can be reduced by using bounding volume hierarchies [61], which

is effective if the photon emission and the pair creation are well-separated in time and space. In

our case, there is no such separation. As such, we postprocess the simulation output to obtain the

yield of linear Breit-Wheeler pairs, using the algorithm described in Sec. 2.5.6, Sec. 2.5.7, and

more completely in Chapter V. Note that the photons used to compute this yield are the same

photons used by the simulation to compute the yield of nonlinear Breit-Wheeler pairs. As such,

while the photon number would change if the simulation were performed in 3D rather than 2D,
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the yield of both processes would be affected in a similar way.

2.2.5 Positron yield
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Figure 2.5. Distribution of linear Breit-Wheeler pairs upon their creation. (a) Probability
density that an electron-positron pair is created by the linear Breit-Wheeler process at longitudinal
and transverse coordinate x and y. The density integrated over x (y), and normalized to the total
number of pairs, is shown to the right (above). (b) Probability density that an electron-positron
pair is created by the linear Breit-Wheeler process at time tBW

lin , by photons that were emitted at
times temit. The density includes a normalizing factor of 1/2 because each pair has two parent
photons. Both plots are obtained by post-processing the 2D PIC simulation from Fig. 2.1, where
the lasers have a0 = 190, using the algorithm described in Chapter V. An equivalent for the
nonlinear process is given in Sec. 2.5.3.

The location and time that pairs are created by the linear process, as determined by

this algorithm for the case that a0 = 190, are shown in Fig. 2.5(a) and Fig. 2.5(b) respectively.

Approximately 59% of the pairs are created inside the original channel boundary. The majority

(74%) of pairs are created by photons emitted after t = 0, when the high-energy electrons collide

with the respective counterpropagating laser. There is a smaller contribution from photons

that are emitted during the acceleration phase, temit < 0; radiation in this case is driven by the

plasma magnetic field, because the energetic electrons are moving in the same direction as the

laser [41, 13]. The dominance of the post-collision contribution is caused by the increase in

the quantum parameter χ for counterpropagation. The fact the pair creation overlaps with the

laser pulses (in both time and space) indicates that the positrons could be accelerated out of the

channel, as the magnetic field, shown in Fig. 2.1(c), has the correct orientation to confine them.
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Figure 2.6. Number of electron-positron pairs created by the three most important mecha-
nisms. The number of electron-positron pairs created by the linear, NBW

lin , and nonlinear, NBW
nonlin,

Breit-Wheeler processes (green crosses and magenta markers, respectively), for the setup shown
in Fig. 2.1, at given normalized laser amplitude a0 (and equivalent peak intensity I0). Error bars
on the nonlinear results indicate statistical uncertainties (at one standard deviation): see text
for details. The estimated background, electron-positron pairs produced by the Bethe-Heitler
process, NBH, is shown by blue circles. The nonlinear Breit-Wheeler pair yield is calculated
directly by the PIC code, whereas the linear Breit-Wheeler and Bethe-Heitler pair yields are
obtained by post-processing, as described in Sec. 2.5.4.

The pair yields for the linear and nonlinear processes are compared in Fig. 2.6. The results

for the latter are obtained by performing four simulation runs for each value of a0 with different

random seeds: points and error bars give the mean and standard deviation obtained, respectively.

At a0 < 145, fewer than ten macropositrons are generated per run, so the corresponding data

points are not shown. Our analytical estimates for linear Breit-Wheeler pair creation lead us

to expect a yield that scales as a4
0: this is consistent with a power-law fit to the data in Fig. 2.6,

which gives a scaling ∝ am
0 , where m≈ 3.93. We find that the linear pair yield is significantly

larger for a0 < 190.

The number of positrons produced by the linear Breit-Wheeler process exceeds 106 even

for a0 = 50, equivalent to I0 = 3.4×1021 Wcm−2, which is well in reach of today’s high-power

laser facilities. In order to determine whether this is sufficient to be observed, we estimate
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the number of pairs produced by the Bethe-Heitler process, which is the principal source of

background. In this process, a γ ray with energy ℏω > 2mc2 creates an electron-positron pair by

interacting with the Coulomb field of an atomic nucleus. The calculation is described in detail in

Sec. 2.5.4. We sum the pair creation probabilities for each simulated photon, taking into account

the distance each photon travels in the plasma channel, to obtain the blue circles in Fig. 2.6. The

Bethe-Heitler background is smaller than the linear Breit-Wheeler signal by approximately two

orders of magnitude, which supports the feasibility of using a plasma channel as a platform for

investigating fundamental QED effects.

2.3 Discussion

We have shown that laser-plasma interactions provide a platform to generate and ac-

celerate positrons, created entirely by light and light, at intensities that are within the reach of

current high-power laser facilities. While previous research into pair creation at high intensity

has focused largely on the nonlinear Breit-Wheeler process, we show that the high density of

photons afforded by a laser-plasma interaction can make the linear process dominant instead. As

such, the geometry we consider has the potential to enable the first experimental measurement

of two-photon pair creation, driven entirely by real photons. More broadly, it motivates recon-

sideration of the neglect of two-particle interactions in simulations of dense, laser-irradiated

plasmas. Such interactions will form a major component of the physics investigated in upcoming

high-power laser facilities. From the theory perspective, our results also motivate investigation

of field-driven corrections to the two-photon cross section. The theory for the inverse process,

pair annihiliation to two photons, has recently been revisited [62].

One of our surprising findings, besides the dominance of the linear Breit-Wheeler process,

is that the plasma magnetic field preserves its polarity after the two laser pulses collide and

pass through each other. The polarity of the magnetic field enables transverse confinement of

the positrons within the channel and their acceleration by one of the laser pulses to energies
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approaching 1 GeV. We have confirmed this directly for the positrons generated via the nonlinear

Breit-Wheeler process. This should also be the case for the positrons generated via the dominant

linear Breit-Wheeler process, because the particles are created inside the channel magnetic field

in the presence of a laser pulse, which are the prerequisites for the direct laser acceleration. We

therefore expect the positrons to be ejected from the target in the form of collimated jets. (In

Chapter VII, we will confirm this expectation.) The collimation should aid positron detection

outside of the target. Moreover, their detection at lower values of a0 should be a clear indicator of

the linear Breit-Wheeler process being the source, as the nonlinear process is heavily suppressed

for a0 ≲ 150.

Finally, we point out that our observations regarding the dominance of the linear Breit-

Wheeler process apply to a range of channel densities. In our simulations, the electron density

in the channel is set at nch = (a0/100)3.8nc, such that it increases linearly with a0 during the

intensity scan. Two channel density scans provided in Sec. 2.5.2 show that our observations hold

for channel densities that are within a ±20% window of nch. A more detailed scan on channel

density and target length is also presented in Chapter IV.
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[17]. The photon-photon collision code is based on the algorithm detailed in Sec. 2.5.6, Sec. 2.5.7,

and Chapter V.

2.5 Appendices

2.5.1 Particle-in-cell simulations

Table 2.1 provides detailed parameters for the simulations presented in this chapter.

Simulations in this chapter were carried out using the fully relativistic particle-in-cell code

EPOCH [17]. All our simulations in this chapter are 2D-3V.

The axis of the structured target is aligned with the axis of the counterpropagating lasers

(laser #1 and laser #2) at y= 0. The target is initialized as a fully-ionized plasma with carbon ions.

The bulk electron density is constant during the intensity scan while the electron density in the

channel is set at ne = (a0/100)3.8nc. Each laser is focused at the corresponding channel opening.

The lasers are linearly polarized with the electric field being in the plane of the simulation. In the

absence of the target, the lasers have the same Gaussian profile in the focal spot with the same

Gaussian temporal profile.

We performed additional runs at a0 = 190 with higher spatial resolutions (40 by 40 cells

per µm and 80 by 80 cells per µm). There are no significant variations in the photon spectra

for multi-MeV photons and for photons with energies above 50 keV. The electrons that emit

energetic photons, as the one whose trajectories in physical and momentum space are shown

in Fig. 2.2(a) and Fig. 2.2(c), undergo their energy gain without alternating deceleration to

non-relativistic energies and re-acceleration. This is likely the reason why they are not subject

to a more severe constraint [63, 64, 65] that requires for the cell-size/time-step to be reduced

according to the 1/a0 scaling in order to achieve convergence.
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Table 2.1. 2D PIC simulation parameters.

Laser parameters
Normalized field amplitude a0 = 100−190
Peak intensity range I0 = 1.4−4.9×1022 W/cm2

Wavelength λ0 = 1 µm
Focal plane of laser #1 x =−35 µm
Focal plane of laser #2 x =+35 µm
Laser profile (longitudinal and trans-
verse)

Gaussian

Pulse duration (full width at half
maximum for intensity)

50 fs

Focal spot size (full width at half
maximum for intensity)

3.6 µm

Target parameters
Target thickness (along y) 30 µm
Target length (along x) 70 µm
Channel width dch = 5 µm
Composition C+6 and electrons
Channel density ne = 3.8−7.1nc
Bulk density ne = 100nc

Other parameters
Simulation box 80 µm in x; 36 µm in y
Spatial resolution 40 cells per µm in x

20 cells per µm in y
Macro-particles per cell 40 for electrons

20 for carbon ions

2.5.2 Channel density scan

In our simulations, the electron density in the channel is set at nch = (a0/100)3.8nc. This

value was chosen to achieve prolonged laser propagation inside the channel, such that each laser

pulse can generate ultrarelativistic electrons without becoming significantly depleted prior to the

collision. In order to show that the observed trend is valid for a range of channel densities, we

have performed channel density scans for a0 = 160 and a0 = 190. The pair yield for the linear

and nonlinear Breit-Wheeler processes is given in Table 2.2 for a0 = 160 and in Table 2.3 for
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a0 = 190. The ratio of the linear to nonlinear pair yield increases for 0.8≤ ne/nch ≤ 1.2 as we

reduce a0 from 190 to 160. This is the trend that is reported in the main text, which indicates

that our observations apply to a range of channel densities and no fine-tuning is necessary.

Table 2.2. Number of pairs at a0 = 160 for different electron densities, ne, in the channel. The
density ne is given in terms of nch = (a0/100)3.8nc, where nc is the critical density

.
ne/nch 0.8 1.0 1.2

Linear BW pairs (×108) 5.89 6.05 6.21
Nonlinear BW pairs (×108) 1.06 0.86 0.38

Table 2.3. Number of pairs at a0 = 190 for different electron densities, ne, in the channel. The
density ne is given in terms of nch = (a0/100)3.8nc, where nc is the critical density

.
ne/nch 0.8 1.0 1.2

Linear BW pairs (×108) 17.0 13.1 11.8
Nonlinear BW pairs (×108) 9.2 6.6 4.4

2.5.3 Distribution of nonlinear Breit-Wheeler pairs
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Figure 2.7. Distribution function ∂ 2NBW
nonlin/(∂ tBW

nonlin∂ temit) [fs−2] of the number of electron-
positron pairs over the time tBW

nonlin of pair creation and the temit of the parent photons. The peak
amplitude of each laser peak is a0 = 190.

Figure 2.7 provides additional information on the production of nonlinear Breit-Wheeler

pairs. The horizontal scale shows the emission time, temit, of energetic photons that go on to

produce pairs by interacting with the laser photons. The energetic photons are generated and

subsequently propagated as particles by the PIC code. The time of the pair production, tBW
nonlin,
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is shown along the vertical scale. The number of pairs for each pairing of temit and tBW
nonlin is

color-coded. The pair production is directly computed by the PIC code. The numbers shown in

the figure are obtained by assuming that the spatial scale along the z axis is equal to the initial

width of the channel.

The vast majority of the nonlinear pairs are produced by photons emitted after the two

lasers collide. Indeed, temit = 0 is the time when the two laser beams begin to collide. Most of

the pairs are located at temit > 0, which indicates that the parent photons were generated after the

collision.

2.5.4 Estimated background from Bethe-Heitler pair creation

The principal source of background in a prospective measurement of linear (or nonlinear)

Breit-Wheeler pair creation is the Bethe-Heitler process, wherein a photon with energy ℏω >

2mc2 produces an electron-positron pair on collision with an atomic nucleus [66]. In order

to estimate the contribution from this process, we sum the pair creation probability for each

macrophoton in the simulation: NBH = ∑k wkPk,BH, where wk is the weight of the kth photon,

scaled assuming that the third dimension has size 5 µm. The probability Pk,BH = niℓkσBH, where

ni is the density of carbon ions in the channel and ℓk is the distance the photon travels before

it leaves the channel. We estimate ni and ℓk using the unperturbed properties of the channel,

i.e. those at the start of the simulation, and taking into account the photon’s point of emission

and direction of propagation. Thus ni = 3.8a0nc/(100Z). We approximate the cross section

σBH by that for an unscreened, fully ionized, point carbon nucleus (formula 3D-0000 given by

Motz et al. [67] with Z = 6). The functional dependence of the cross section on the normalized

photon energy γ = ℏω/(mc2) is given by σBH(γ)≃ αr2
eZ2(2π/3)[(γ−2)/γ]3 for γ−2≪ 1 and

σBH(γ)≃ αr2
eZ2[28ln(2γ)/9−218/27] for γ ≫ 1, where re is the classical electron radius [67].

Our results are shown as blue circles in Fig. 2.6. This estimate neglects contributions from pair

creation in the plasma bulk, which can be controlled by reducing the thickness of the channel

walls. Furthermore, the difference in magnitude between background and signal is sufficiently
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large that it provides a margin of safety.

2.5.5 Strong-field modifications to the linear Breit-Wheeler cross section

The cross section we use to determine the number of electron-positron pairs created

by the linear Breit-Wheeler process, Eq. (2.2), is calculated assuming that the photons are in

vacuum. However, our calculations show that the pairs are created within the plasma channel as

the laser pulses overlap, where the background electromagnetic field is strong. The presence

of a strong magnetic field [56, 57] or plane EM wave is known to modify the cross section for

this process. Calculations of the cross section in the latter case have focused on changes at

moderate a0 [68] or on resonance features [58, 59]. Resonances occur where the intermediate

fermion is on mass shell, which corresponds to the incoherent combination of nonlinear pair

creation, followed by photon absorption by one of the daughter fermions, in the high-intensity

regime. This contribution, which is effectively driven by a single photon, is already counted as

our simulations include nonlinear pair creation; photon absorption by an electron in a strong

field [24, 69] is suppressed unless the photon and electron are aligned within electron’s emission

cone. (See supporting simulations by Blackburn et al. [70])

As such, in order to estimate the effect of the strong field at a0≫ 1, we use the cross

section for two-photon pair creation in a constant, crossed field given by Baier et al. [60] (see Sec.

5.7). If two-photon pair creation is kinematically allowed, i.e. ς > 1, corrections to the cross

section scale as (χγ/ς)2, where χγ is the quantum nonlinearity parameter [60]: in the scenario

under consideration here, the photons which undergo linear pair creation have MeV energies

and χγ ≪ 1, and therefore these corrections can be neglected. On the other hand, the fact the

laser-plasma interactions provide a platform for prolific two-photon pair creation in a region of

strong EM field, as our results show, motivates a more general treatment that can investigate

where these field-driven corrections become substantial. We note that a related process, pair

annihiliation to two photons in a pulsed, plane EM wave, has recently been revisited [62].
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2.5.6 Postprocessing algorithm for determination of the linear Breit-
Wheeler pair yield

In this section and Sec. 2.5.7, we present a brief summary of the postprocessing algorithm

we use to calculate the linear BW pair yields in this chapter. A more detailed description is

presented in Chapter V.

In order to compute the yield and spatial distribution of the linear Breit-Wheeler pairs,

we approximate the photon population as a collection of collimated, monoenergetic beamlets.

Discretization into beamlets is achieved by recording the location (x0,y0), energy εγ , and angle

θ of each photon macroparticle at the time of the emission temit. The photon emission pattern

suggests that the emission profile across the channel can be approximated as uniform. We thus

represent the emitted photons by a time-dependent distribution function f = f (x0,sγ ,θ ; temit),

where sγ ≡ log10(εγ/MeV). It is sufficient to limit our analysis to −40 µm ≤ x0 ≤ 40 µm,

−3 ≤ sγ < 3, and 0◦ ≤ θ ≤ 180◦. We split each interval into 70 equal segments to obtain

2.6× 105 beamlets. We only check for collisions of beamlets propagating to the right with

beamlets propagating to the left. The yield is multiplied by a factor of two to account for

beamlets with −180◦ ≤ θ ≤ 0◦.

The temporal dependence of a beamlet is represented by slices of given density and

fixed thickness. For each beamlet pairing, our algorithm finds the interaction volume V , the

intersections of the beamlet axes and the crossing angle ψ . The pair yield is given by ∆NBW
lin =

σγγc(1− cosψ)V
∫

n1n2dt, where n1 and n2 are the photon densities in two overlapping slices at

the intersection point. In general, the shape of the overlapping region is not rectangular, so the

pair creation is visualized by depositing ∆NBW
lin onto a rectangular grid, into cells with centers

inside volume V . The procedure is repeated for each beamlet pairing to obtain the density of

generated pairs.

To show that the limitation −3 ≤ sγ < 3 is justified, we plot the distribution of linear

Breit-Wheeler pairs as a function of photon energies. We use sγ rather than εγ to capture a wide
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range of energies. Figure 2.8 confirms that the pair yield drops off for |sγ |> 2, which justifies

the energy range selected in the chapter.
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Figure 2.8. Yield of the linear Breit-Wheeler process as a function of photon energies.
Distribution of linear Breit-Wheeler pairs as a function of photon energies for colliding laser
pulses with a0 = 190.

The algorithm is a simplification that replaces a direct approach of evaluating all possible

collisions of beamlet slices. In a head-on collision, each slice collides with many counter-

propagating slices within the interaction volume, which makes the calculation computationally

intensive. Our algorithm takes advantage of the fact that the typical duration of beamlet emission,

τ , is much longer than the time it takes for photons to travel between the sources emitting the two

beamlets, ℓ/c, where ℓ is the distance between the sources in the case of near head-on collision.

As shown in Sec. 2.5.7, our approach is a good approximation as long as ℓ/cτ < 1, with the error

scaling as (ℓ/cτ)2.

The postprocessing algorithm neglects the depletion of the photon population due to the

linear Breit-Wheeler process. This is justifiable, because only a small fraction of the considered

photons actually pair-create (and would therefore be lost). Using the maximum photon density

of nγ ≈ 600nc from Fig. 2.4, we obtain a mean free path with respect to the linear Breit-Wheeler

process,

1/σγγnγ ≈ 6×104 µm, (2.3)
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that is much larger than the characteristic size of the photon cloud of 10 µm. We estimate

depletion of the photon population due to the linear Breit-Wheeler process (as a fraction of the

initial size) to be smaller than 2×10−4.

2.5.7 Pair production algorithm for head-on collisions of beamlets

Our algorithm for computing the pair production yield due to the linear Breit-Wheeler

process leverages the fact that the colliding photons are emitted over an extended period of time

compared to the characteristic travel time between the emission locations. In what follows, we

illustrate its implementation for head-on collisions of two beamlets. Near head-on collisions are

the biggest contributor to the pair yield and this is also the regime that greatly benefits from our

simplified approach in terms of computational efficiency.

We are considering a head-on collision of two counterpropagating beamlets that have

the same transverse area S. The first beamlet is being emitted at x = x1 and it propagates in

the positive direction. It is convenient to use the emission time τ as a marker for the photons

in each beamlet. The corresponding photon density in the first beamlet is then n1(τ1). The

counterpropagating beamlet is emitted at x = x2 > x1 and its photon density is n2(τ2). The total

pair yield by these two beamlets interacting with each other is

∆Npairs = σγγSc2
∫ +∞

−∞

dτ1n1(τ1)

[∫
τ1+l/c

τ1−l/c
dτ2n2(τ2)

]
, (2.4)

where

l ≡ x2− x1. (2.5)

Equation (2.4) presents a direct approach to calculating the pair yield and it involves a double

integral.

In our case, the typical beamlet emission lasts longer than l/c, which suggests a possible

simplification of replacing n2(τ2) with n2(τ1). The inner integral in Equation (2.4) can then be
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directly evaluated and we find that

∆Npairs ≈ 2cσγγV
∫ +∞

−∞

n1(τ)n2(τ)dτ, (2.6)

where V ≡ lS is the interaction volume. Note that the two beamlets are interchangeable in this

expression. In order to estimate the error, we expand n2(τ2) around τ2 = τ1 and retain linear and

quadratic terms in the expansion. The time integral of the linear term in Equation (2.4) is equal

to zero, which means that the error in our approach is determined by the quadratic term. We thus

estimate that the relative error in the number of produced pairs scales as (l/c∆τ)2, where ∆τ is

the characteristic duration of beamlet emission.

We compute the spatial distribution of pairs by simply assigning the pair density

∆npairs = ∆Npairs/V (2.7)

to each position within the interaction volume. We call this the average density method. A direct

approach would however require us to compute the following integral at each position along the

x axis:

∆ndirect
pairs (x) = 2cσγγ

∫ +∞

−∞

n1 (t1)n2 (t2)dt, (2.8)

where

t1 = t− (x− x1)/c, (2.9)

t2 = t− (x2− x)/c. (2.10)

The direct approach is much more demanding computationally.

Even though our approach for calculating the spatial distribution of pairs is deliberately

crude for a single pair of beamlets, it is effective when applied to a large ensemble of spatially

distributed beamlets. As an example, we have carried out calculations for approximately 3000
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Figure 2.9. Spatial distribution of linear Breit-Wheeler pairs produced in a head-on collision
of spatially distributed beamlets. The three curves represent three different approaches: direct
approach (open circles), average density method (solid circles), and point density method (star
markers).

spatially distributed beamlets, where 1573 beamlets are directed to the right and 1590 beamlets

are directed to the left. The photon energy range is 0.19 MeV < εγ < 2.05 MeV. We used our

PIC simulation to generate these beamlets by selecting photons emitted with |θ | < 5.15◦ or

|θ −π| < 5.15◦. The average density method that uses ∆npairs from Equation (2.7) for each

beamlet-beamlet collision gives the curve shown with small solid circles. The direct approach

detailed by Equation (2.8) gives the curve shown with open circles. The two curves have a

similar shape, but the direct approach took almost two orders of magnitude longer in terms of

computational time. The relative difference in the total number of pairs between the two methods

is less than 17%.

Our method evenly distributes the generated pairs over the interaction volume, which

is the key to achieving a good agreement with the direct but more computationally expensive

approach. In order to illustrate this aspect, we performed another calculation. In this case, all of

the pairs produced by two beamlets are placed into the center of the interaction volume without

being evenly distributed. We call this the point density method. The density is calculated as

∆Npairs/S∆x, where ∆Npairs is given by Equation (2.6) and ∆x is the thickness of slices that we use

for spatial discretization into beamlets. The result of this procedure is shown with star markers

in Figure 2.9. There are no significant savings in terms of computational costs compared to the
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average density method. The characteristic width of the spatial distribution shows considerable

deviation from that for the direct approach.
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A single-laser scheme for observation of
linear Breit-Wheeler electron-positron
pair creation

We show that a single laser pulse, travelling through a dense plasma, produces a pop-

ulation of MeV photons of sufficient density to generate a large number of electron-positron

pairs via the linear Breit-Wheeler process. While it may be expected that the photons are

emitted predominantly in the forward direction, parallel to the laser propagation, we find that

a longitudinal plasma electric field drives the emission of photons in the backwards direction.

This enables the collision of oppositely directed, MeV-level photons necessary to overcome the

mass threshold for the linear Breit-Wheeler process. Our calculations predict the production of

107 electron-positron pairs, per shot, by a laser with peak intensity of just 3×1022 Wcm−2. By

using only a single laser pulse, the scheme sidesteps the practical difficulties associated with the

multiple-laser schemes previously investigated.

3.1 Introduction

With the development of modern laser technology, the intensity of state-of-the-art lasers

has surpassed the level of 1022 Wcm−2 [6, 7, 8]. Under electromagnetic fields of such magnitude,

which are able to accelerate particles to ultrarelativistic energies, effects of quantum electrody-

namics (QED) are expected to become important [19]. This capability has led to wide interest

in using ultra-intense lasers to study strong-field QED phenomena, the theory of which has

been developed for at least sixty years [71, 72, 9]. Experimental investigation of the strong-field
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regime is at an early stage [53, 54], but is expected to develop significantly as the next generation

of high-intensity laser facilities are commissioned.

It is of particular interest to investigate the annihilation of two photons into an electron-

positron pair, or the linear Breit-Wheeler process (γ +γ→ e−+e+) [1], using the most advanced

laser facilities. The linear Breit-Wheeler process, besides being a fundamental prediction of the

theory of QED, also has important applications in astrophysics: for example, in understanding the

opacity of the universe [2] and in studying the pair cascade in pulsar magnetospheres [3, 4, 5, 40].

Despite its importance, however, it has never been observed in a laboratory with real photons.

The experimental difficulty comes from its small cross section and its MeV center-of-mass

energy threshold. To overcome these difficulties, a system with colliding dense multi-MeV

photons is required. Various geometries have been proposed, including the combination of GeV

bremsstrahlung photons with keV blackbody photons produced in a hohlraum [11] or with an

intense x-ray laser pulse [10]; the combination of multi-MeV photon beams each produced

by a separate laser-irradiated foil or low-density plasma targets [12, 13, 73, 74, 14]; and the

combination of multi-MeV photon beams produced by two colliding laser pulses within a

structured target [75].

However, in these works, multiple laser pulses are required in one experiment, which

limits the choice of facility where the proposed experiments can be conducted. Moreover, if the

photon beams are generated in separate sources, then they must travel over a certain distance

to reach the collision point. This leads to two limiting factors for the possible pair yield. First,

alignment and overlap of the photon beams is not automatically achieved. Second, during the

propagation of beams, the divergence reduces the photon density, which scales as 1/R2, where

R is the distance between the photon source and the collision region. The number of binary

photon collisions scales as the product of photon densities, i.e. as 1/R4, and therefore the yield

of electron-positron pairs is suppressed.

In this chapter, we show that, during the propagation of a single laser pulse along a

plasma channel, more than 107 pairs can be produced by the linear Breit-Wheeler process inside
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the plasma target, where currently available 1022 Wcm−2 class laser pulses and targets [76] are

used. The key feature which explains this high yield is an unexpected emission of MeV photons

in the opposite (backward) direction to the laser propagation: indeed, our simulations show that

the numbers of photons emitted backwards and forwards, in the keV to MeV energy range, are

of the same order of magnitude. This is unexpected because electrons, under the action of the

laser fields and the azimuthal magnetic field generated by their collective motion, are expected

to be accelerated parallel to the direction of laser propagation [77, 78, 79], and therefore to emit

photons overwhelmingly forward. The backward moving photons collide with these forward

moving photons, usually focused on in studies of direct laser acceleration (DLA) [41], and

produce linear Breit-Wheeler pairs. Since both the backward and forward moving photons are

created inside the same plasma channel, photon density remains high at the time of collision.

This chapter examines and explains the origin of the backward-moving MeV photons.

We find that, as the laser propagates along the plasma channel, a longitudinal electric field

is induced at the leading edge of the laser pulse due to charge separation. The longitudinal

field co-propagates with the laser pulse, accelerating some of the channel electrons backwards

after they encounter the laser pulse. The interaction of the backward-moving electrons with the

propagating laser pulse causes them to emit energetic MeV-level photons. The emission process

is enhanced due to the counter-propagating geometry of the interaction. These are the photons

that cause the observed two-photon pair production inside the channel when they collide with

the forward-emitted gamma-rays.

The rest of this chapter is organized as follows. In Section 3.2, we review the key

elements of a laser-plasma interaction where a high-intensity laser pulse propagates through a

relativistically-transparent target and the generation of a collimated beam of energetic gamma-

rays associated with it . In Section 3.3, we examine the source of backward-directed gamma-rays

that are also present, but frequently overlooked, in the considered interaction. In Section 3.4,

we show that binary collisions between the forward and backward-directed photons of the right

energy range occur frequently enough to generate an appreciable yield of electron-positron
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pairs. In Section 3.5, we develop a reduced test-particle model and then apply it to examine the

backward electron acceleration that leads to the emission of the backward-directed gamma-rays

and assess the impact of the plasma electric and magnetic fields on the electron dynamics. In

Section 3.6, we summarize our findings.

3.2 Emission of forward-directed collimated gamma-rays

It is now well-recognized that a high-intensity laser pulse propagating through a rela-

tivistically transparent plasma can efficiently generate a collimated beam of energetic gamma-

rays [41, 13, 76, 80, 81, 82]. In this section, we review the main physics elements of this process.

A comprehensive analysis is available in [13] and [49].

The emission of collimated energetic gamma-rays is closely associated with the presence

of a strong quasi-static azimuthal magnetic field inside the laser-irradiated plasma. The field is

generated and maintained by a volumetrically distributed longitudinal electron current driven

by the propagating laser pulse. Figure 3.1 illustrates this phenomenon for a 25 fs, 800 nm laser

beam with a peak intensity of I0 ∼ 3× 1022 Wcm−2 propagating through a structured plastic

target with a pre-filled channel. The beam has the parameters similar to those expected at the

ELI-NP laser facility [6]. Detailed laser and target parameters and the information regarding the

simulation setup are given in Sec. 3.8 of the Appendix. Figure 3.1(a) shows stable propagation

of the laser beam through the channel and Fig. 3.1(c) shows a time-averaged magnetic field (the

averaging is performed over one laser period) generated as a result of this propagation.

The magnitude of the quasi-static magnetic field in the considered example is very high –

it is 3 GG or 20% of the strength of the oscillating laser magnetic field (in the absence of the

target). Such a strength is achieved by using a channel with an electron density that is higher

than the classical cutoff density nc = πmc2/(eλ0)
2 for a laser with a vacuum wavelength of

λ0 = 800 nm, where c is the speed of light and e and m are the electron charge and mass. In

our example, the normalized laser amplitude, defined as a0 = 0.85I1/2
0 [1018 Wcm−2]λ0[µm],
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Figure 3.1. Propagation of a laser pulse with a0 = 120 inside a structured target and the resulting
generation of gamma-rays. (a) and (b) Transverse, Ey, and longitudinal, Ex, electric fields
normalized to E0 = 1.61×1010 statV/cm. (c) Time-averaged (over one laser period) magnetic
field, ⟨Bz⟩, normalized to B0 = 16.1 GG. (d) The density of emitted photons with energy greater
than 100 keV. (e) Density of forward moving electrons with χe > 0.03 and γe > 15. (f) Density
of backward moving electrons also with χe > 0.03 and γe > 15. The characteristic photon energy,
εγ , of the photons emitted by the electrons selected in (e) and (f) is greater than 100 keV. (g)
Density of forward moving photons with energy greater than 100 keV. (h) Density of backward
moving photons with energy greater than 100 keV. Electron and photon densities are normalized
to the critical density nc. All of the snapshots are taken at t = 67 fs.
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is a0 = 120. The fact that a0 ≫ 1 means that the electrons in the irradiated plasma become

relativistic. This, in turn, raises the cutoff density to approximately a0nc = 120nc, making

the plasma in the channel, whose density is ne ≈ 2.8nc, transparent. The increased plasma

transparency is a manifestation of a more general phenomenon referred to as relativistically

induced transparency [28, 29, 83, 84]. The channel is used in our simulation to stabilize the

laser propagation [41, 85], with the dense walls (ne ≈ 28nc) providing optical guiding. The

mechanism described here and the resulting electron acceleration and photon emission discussed

in this Section have been shown not to be sensitive to the bulk density. For example, similar

simulations have been performed in [13] with a bulk electron density of 100nc. Structured targets

with foam-filled channels have been successfully fabricated by General Atomics and used for an

experimental campaign at the Texas Petawatt laser facility [76].

The plasma magnetic field has two important functions: to enhance laser-driven electron

acceleration and to induce emission of energetic photons by the accelerated electrons. At a0≫ 1,

direct laser acceleration produces forward moving electrons due to a forward push by the Lorentz

force of the laser magnetic field. Transverse deflections by the plasma magnetic field can keep

the transverse electron velocity anti-parallel to the transverse laser electric field and thus enable

the accelerated electrons to continue gaining energy despite the oscillations of the laser electric

field [49]. The deflections are particularly effective when the frequency of transverse electron

oscillations caused by the magnetic field is comparable to the Doppler shifted frequency of the

laser [86, 87]. Such a condition can be realized only in a plasma with a sufficiently high current

density [49]. In our simulation, the electrons reach a maximum energy of 700 MeV through the

described mechanism. The deflections by the magnetic field not only enable the electrons to gain

more energy from the laser field, but they also lead to energy losses via synchrotron emission of

electromagnetic radiation. The rate of the energy gain typically greatly exceeds the rate of energy

losses associated with the emission, so the laser accelerated electrons can efficiently convert the

laser energy carried by optical photons into gamma-rays.

The photon emission process by an electron with a velocity v is characterized by a
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dimensionless parameter

χe = γeE
/

Bcrit , (3.1)

with E being an effective transverse field strength:

E =

√(
E+

1
c
[v×B]

)2

− 1
c2 (E · v)

2. (3.2)

Here E and B are the electric and magnetic fields acting on the electron, γe = 1/
√

1− v2/c2

is the relativistic factor, and Bcrit ≈ 4.4×1013 G is the magnetic equivalent of the well-known

Schwinger (or critical) electric field [46]. The characteristic energy of emitted photons, εγ , is

given by [88]

εγ = 0.44γeχemc2, (3.3)

These photons are emitted in the direction of the electron momentum into a narrow cone whose

opening angle is roughly 1/γe. As a result, forward moving electrons generate a forward-directed

beam of photons.

In the case of ultra-relativistic forward-moving electrons, like those generated by the

laser in the presence of the plasma magnetic field, the contributions from the laser electric and

magnetic fields to the effective field E nearly cancel each other out. Therefore, one can estimate

E by simply using the plasma magnetic field Bpl , with E ≈ Bpl , which yields the following

approximate expression for χe:

χe ≈ γeBpl/Bcrit . (3.4)

It follows from this estimate that we have χe ≈ 0.020 for an electron with γe ≈ 300 that is

deflected by Bpl ≈ 3 GG ≈ 0.19B0, which is close to the maximum amplitude of the quasi-static

field shown in Fig. 3.1(c). The characteristic photon energy is εγ ≈ 1.4 MeV. This example

illustrates the important role played by the plasma magnetic field in generating energetic gamma-

rays.
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Figure 3.2. Energy-angle spectra of the photons emitted inside the structured target from Fig. 3.1.
(a) and (b) The distribution of the forward-directed photons on linear and logarithmic energy
scales, where sγ ≡ log10(εγ [MeV]). (c) The distribution of the backward-directed photons on a
logarithmic energy scale. Here θ is the angle defined in Fig. 3.1(b).

The spectrum of forward-emitted photons in our simulation is shown in Fig. 3.2(a). It

is indeed well-collimated in the forward direction, in agreement with our expectations. The

photon spectrum is broad because the synchrotron spectrum is itself broadband and because

electrons with a wide range of energies contribute to the emission. In our simulation, the photon

emission is modelled using a Monte Carlo module for quantum synchrotron radiation [43]. The

module computes χe at each time-step for each charged macro-particle. This value is then used

to determine the energy and number of emitted photons. The finite width of the emission cone is

neglected, so the photons are emitted along the momentum of the emitting particle. The module

also self-consistently accounts for the recoil experienced by the particle when emitting individual

photons, as described in [43] and [47].

3.3 Emission of backward-directed gamma-rays

In Section 3.2, we reviewed how a high-intensity laser pulse propagating through a

relativistically-transparent plasma can efficiently generate a collimated beam of energetic gamma-

rays. In what follows, we discuss the source of backward-directed gamma-rays that are also

present, but frequently overlooked, in the considered setup.

Figure 3.2(c) shows that indeed, in addition to forward-directed gamma-rays, the plasma
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Figure 3.3. Time evolution of χe, γe, and εγ along trajectories of five randomly selected electrons
from inside the channel. The solid and dashed gray curves indicate the extent of the localized Ex
structure shown in Fig. 3.4(a) and located at the front of the propagating laser pulse. The curves
show the locations where Ex is 10% of max(Ex) at each time instant.

electrons in our simulation emit energetic backward-directed photons. These photons, which have

an almost uniform angular distribution, originate from electrons that are moving backwards over

at least some segments of their trajectories. The backward-emitting electrons are concentrated

primarily at the leading part of the laser pulse: this may be seen in Fig. 3.1(f), which shows the

density of electrons that have px < 0, γe > 15 and χe > 0.03. In order to identify their origin,

we track five randomly selected electrons that are initially located inside the channel prior to

the arrival of the laser pulse. The electrons were selected, at t = 17 fs, from the region defined

by |y|< 0.5 µm and 18.75 µm < x < 19.25 µm. As seen in Fig. 3.3, these electrons reverse the

direction of their longitudinal motion after being swept up by the leading edge of the laser pulse.

The backward acceleration of the electrons inside the channel is caused by a longitudinal

electric field, Ex, which is shown in Fig. 3.1(b) at t = 67 fs. This field is concentrated at the

leading edge of the laser pulse. It is formed by charge separation as the laser enters the plasma

channel, displacing electrons ahead of the much heavier and therefore slower moving ions, and

moves forward with the leading edge of the laser pulse. This aspect is shown in Fig. 3.4, where

Fig. 3.4(a) shows the time evolution of Ex in the region close to the axis and Fig. 3.4(b) shows
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Figure 3.4. Temporal evolution of Ex and Bz in the near-axis region in the PIC simulation
shown in Fig. 3.1. The fields are spatially averaged in the transverse direction over a region with
|y|< 1.5 µm. The dashed black lines is the same in both panels, represent motion along x with
velocity vx = 0.82c.

the time evolution of the time-dependent magnetic field Bz, associated primarily with the laser,

in the same region. At each location along x, both fields are a spatial average over the region

|y| < 1.5 µm. We find that the Ex structure moves with a constant speed of 0.82c and that its

amplitude is slowly varying after the initial ramp-up. The field structure disappears by about

x≈ 70 µm following the laser depletion, which again confirms that it is driven by the laser pulse

itself.

In contrast to the case of the forward-moving electrons, the effective field E for the

backward-propagating electrons is primarily determined by the fields of the laser. The reason for

this difference is the lack of compensation between E and B of the laser. These fields are much

stronger than the fields created by the plasma, so, in the absence of their compensation, they

dominate the expression for E given by Eq. (3.2). Therefore we neglect the plasma fields, set

Elaser = Blaser, and assume that the electron is moving purely backwards to find that the effective

field acting on the backward-moving electrons is E ≈ 2Blaser. This effective field is stronger

than the effective field for the forward moving electrons by a factor of 2Blaser/Bpl ≈ 13 [in our

case max(Blaser)≈ 20 GG]. Thus, while a relativistic factor of γe ≈ 300 would be necessary for

a foward-moving electron to have a typical photon energy of 1.4 MeV, only γe ≈ 80 is necessary
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for a backward-moving electron to emit photons with the same energy.

3.4 Yield of electron-positron pairs via the linear Breit-
Wheeler process

As discussed in Section 3.2 and Section 3.3, the laser-plasma interaction under consid-

eration generates a gamma-ray population with both backward and forward moving photons.

Figure 3.2(b) and Fig. 3.2(c) show that the energies of these photons exceed 100 keV and reach

10 MeV, even for the backward emission. This energy range is favorable for the electron-positron

pair creation via binary photon collisions, i.e. the linear Breit-Wheeler process, because it can

overcome the center-of-mass energy threshold:

ε
f

γ ε
b
γ >

(
mc2)2

, (3.5)

where ε
f

γ and εb
γ are the energies of the forward and backward-directed colliding photons. In this

section, we show that, in the interaction, binary collisions between photons of the right energy

range occur frequently enough to generate an appreciable yield of electron-positron pairs.

Photon collisions are possible only if the backward-moving photons are emitted ahead

of forward-moving photons. As these photons are emitted by backward and forward-moving

electrons, respectively, we examine the spatial distribution of these two components of the

electron population, selecting only those electrons which have γe > 15 and χe > 0.03. We

apply this selection criterion because, according to Eq. (3.3), the characteristic energy of the

photons emitted by such electrons is εγ > 100 keV, which is within the favorable energy range

for the linear Breit-Wheeler process. Snapshots of the density for backward and forward-moving

electrons, selected according to the described criterion, are shown in Fig. 3.1(e) and Fig. 3.1(f),

respectively. The forward-moving and thus forward-emitting electrons are spread throughout

entire region occupied by the laser pulse [see Fig. 3.1(a)]. The backward emitting electrons, by

contrast, are primarily concentrated at the front of the laser pulse. This is in good agreement with
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Figure 3.5. Longitudinal profiles of electric fields and photon emission at t = 67 fs. (a)
Transverse, Ey, and longitudinal, Ex, electric fields spatially averaged in the transverse direction
over a region with |y|< 1.5 µm. (b) Instantaneous emission rate, ∂ 2Nγ/∂x∂ t [fs−1µm−1], for
backward and forward-directed photons, where Nγ is the number of photons with energy between
100 keV and 10 MeV emitted in a thin vertical slice.

the mechanism of their generation by Ex at the leading edge of the laser pulse [see Fig. 3.1(b)].

The difference in the spatial localization of the emitting electrons translates into photon

emission profiles that are favorable for the photon-photon collisions. Figure 3.5(b) shows

snapshots of ∂ 2Nγ/∂x∂ t for forward and backward-directed photons, where Nγ is the number of

photons with energy between 100 keV and 10 MeV emitted in a thin vertical slice. We can see

from the two curves that the backward-moving photons are emitted ahead of the forward-moving

photons. For completeness, Fig. 3.6 shows the energy distribution of the forward and backward

directed electrons in our simulation. The snapshots in Fig. 3.6 and Fig. 3.5 are taken at t = 67 fs.

Figure 3.1(d) shows that our setup produces an extremely dense population of gamma-

rays with energies greater than 100 keV. What is also remarkable is that this population consists

of overlapping forward and backward-moving photons whose densities are shown in Fig. 3.1(g)
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Figure 3.6. Energy distribution, ∂Ne/∂εe, of forward and backward-moving electrons at t = 67 fs.
The number of electrons Ne is computed by assuming that the width along the third dimension is
equal to the channel width dch = 5 µm (our simulation is two-dimensional).

and Fig. 3.1(h), which is a result of the longitudinal offset in the photon emission. As the two

populations collide, they produce electron-positron pairs, with the yield being enhanced due to

the high photon density.

We first estimate the yield using the density of photons from our simulation. In our

system, this density of photons with energy εγ > 100 keV is nγ ≈ 10nc, as shown in Fig. 3.1(d),

where nc ≈ 1.7×1027 m−3 is the critical density for λ0 = 0.8 µm. A useful figure of merit is an

approximate macroscopic cross-section for the photons in the MeV energy range: Σγγ = σγγnγ ,

where nγ is their density and σγγ is the microscopic cross-section for the linear Breit-Wheeler

process. We set σγγ ≈ 1.7×10−29 m−2 which is close to its maximum value (a head-on collision

of two 700 keV photons). The number of photons with εγ > 700 keV is about 40% of the number

of photons with εγ > 100 keV. We therefore re-scale the density by setting nγ ≈ 4nc and use

this value to find that Σγγ ≈ 1.2×10−1 m−1. The total number of photons with εγ > 700 keV is

Nγ ≈ 4×1013, where we have assumed that the size of the photon cloud in the third dimension

is equal to the channel width dch = 5 µm (our simulation is two-dimensional). It is worth
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Figure 3.7. Yield of the linear Breit-Wheeler process, NBW
lin , in a collision of forward-directed

and backward-directed photons as a function of the photon energies. These energies are denoted
as ε

f
γ and εb

γ , respectively. The yield is shown on a log-log scale, where s f
γ ≡ log10(ε

f
γ [MeV])

and sb
γ ≡ log10(ε

b
γ [MeV]).

pointing out that in the energy range between 0.1 and 10 MeV the number of backward-moving

photons (4.4×1013) is comparable to the number of forward-moving photons (5.9×1013). The

backward-emitted photons are not collimated, so we assume that they leave the cloud after

travelling a distance roughly equal to the channel radius, dch/2. This gives the following estimate

for the pair yield via the linear Breit-Wheeler process: NBW
lin ≈ ΣγγdchNγ ≈ 1.2×107.

In order to perform a quantitative assessment of the pair yield, we use the post-processing

algorithm developed in [75] (i.e., Chapter II of this dissertation) detailed in Chapter V. The

algorithm uses the photon data provided by the PIC simulation, which includes, in addition to

the photon energy, the emission time, location, and the macro-particle weight. The photons are

grouped into collimated mono-energetic beamlets. Each longitudinal position along the x-axis

emits multiple such beamlets. They are assumed to be uniform along the y-axis (the assumption

is motivated by the PIC data) with a width equal to the width of the channel.

By applying the described algorithm, we found that the total number of pairs is NBW
lin ≈

1.1×107, which is close to our earlier estimate. The number of generated pairs is three orders of
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Figure 3.8. Momentum distribution of the positrons generated via the linear Breit-Wheeler
process.

magnitude larger than the number of pairs produced by colliding two beams consisting of the col-

limated forward-emitted photons 250 µm away from each laser-irradiated structured target [13],

where each beam is generated by a separate target as described earlier in Section 3.2. The

significant increase is due to the increased density of the colliding photons in our configuration.

It must be noted that adding a counter-propagating laser to this configuration can boost the yield

by an order of magnitude [75] (see Chapter II), but this makes the corresponding experimental

setup much more challenging.

Figure 3.7 shows the yield of the linear Breit-Wheeler process in a collision of forward

and backward-directed photons as a function of their energies, where the superscripts f and

b indicate the direction of the photon motion. As anticipated, the majority of the pairs are

produced by photons within the energy range 100 keV< ε
f ,b

γ < 10 MeV, where εγ is the photon

energy. This is a consequence of the broad photon spectrum. Figure 3.8 shows the momentum

distribution of the generated positrons. We distribute the pairs generated in each photon-photon

collision isotropically in the corresponding center of mass frame. The result can be refined by

taking into account the differential cross-section [74]. The ‘initial’ distribution shown in Fig. 3.8
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(a) (b)

Figure 3.9. Laser and plasma electric fields in the PIC simulation (blue) and in the test-particle
model (red). The PIC simulation electric fields are the snapshots taken at t = 150 fs and averaged
over a region with |y| < 1.5 µm. The analytical form of the test-particle fields is given by
Eq. (3.15) and Eq. (3.17). The phase variable is given by Eq. (3.14), with xinit = 20 µm and
tinit = 150 fs.

is likely to evolve because the positrons inside the channel experience a superposition of strong

laser and plasma fields.

3.5 Test-particle model for backward electron acceleration
and photon emission

In this section, we use a reduced model motivated by the PIC simulation results to

examine the backward electron acceleration that leads to the emission of the backward-directed

gamma-rays. The purpose is to assess the impact of the plasma electric and magnetic fields on

the electron dynamics.

The model is similar to that developed in [49] for analyzing direct laser acceleration of

electrons in the presence of a static azimuthal plasma magnetic field. The electron is treated

as a test particle, which means that the laser and plasma fields are externally prescribed. There

are two modifications that we have made to adapt the model to our problem: we have added a

longitudinal plasma field Ex, which moves with the laser pulse, and the force of radiation friction

fRF caused by the emission of photons. The force of radiation friction, in the Landau-Lifshitz
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(a) (b) (c)

Figure 3.10. Electron trajectories from the test-particle model, with the color indicating the
relativistic factor γe. (a) Complete electron dynamics. (b) Electron dynamics in the absence of
the radiation friction force. (c) Electron dynamics in the absence of the static plasma magnetic
field. The thick lines indicate the initial location of the channel wall in the PIC simulation. The
electron experiences Ex ≥ 0.1Emax

x while moving between the black round markers.

prescription [89], is directed anti-parallel to the electron momentum p:

fRF =−γ
2
e

8π2

3
re

λ0

mec2

λ0

(
eE

mecω

)2 p
p
, (3.6)

where E is the effective field strength given by Eq. (3.2), re ≡ e2/mec2 ≈ 2.8×10−13 cm is the

classical electron radius, ω is the laser frequency, and λ0 = 2πc/ω is the vacuum wavelength.

The equations that describe the electron dynamics are

d px

dt
=−|e|Ex−

|e|
γemec

pyBz−|fRF |
px

p
, (3.7)

d py

dt
=−|e|Ey +

|e|
γemec

pxBz−|fRF |
py

p
, (3.8)

dx
dt

=
c
γe

px

mec
, (3.9)

dy
dt

=
c
γe

py

mec
, (3.10)

where px and py are the components of the electron momentum, parallel and perpendicular to
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the laser propagation respectively, and x and y are the electron coordinates. The fields are a

superposition of the laser and plasma fields:

Ex = E pl
x (ξ ), (3.11)

Ey = E laser
y (ξ ), (3.12)

Bz = Bpl
z (y)+Blaser

z (ξ ), (3.13)

where

ξ =
2π

λ0
[c(t− tinit)− (x− xinit)] (3.14)

is the phase variable, with ξ = 0 at the initial location of the electron in our calculations (x = xinit

at t = tinit). We neglect the slight superluminosity of the wave fronts (caused by the plasma and

the finite transverse size of the channel) by assuming that the phase velocity is equal to c. More

importantly, the longitudinal field in this model is also moving with the speed of light for the

sake of simplicity. The assumption here is that the difference between the actual speed, 0.82c,

and the speed of light is inconsequential, because the electrons are moving in the opposite to the

direction of the laser propagation. It is more important that the envelopes of the laser pulse and

the longitudinal electric field should move forward at the same velocity.

We perform our calculations for

E laser
y = Blaser

z = Eenv(ξ )sin(ξ +π−∆y), (3.15)

where

Eenv(ξ ) =
E0

2
[1− cos(π(ξ −∆y)/σy)] (3.16)

for ξ ≥ ∆y and Eenv(ξ ) = 0 otherwise. Here ∆y = 3π and σy = 57.53, and a0 = |e|E0/mecω =

120.4. The values of these parameters are chosen such that the field given by Eq. (3.15)
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reproduces the snapshot of the laser electric field shown in Fig. 3.9(a). The longitudinal plasma

field in our calculations is

Ex(ξ ) = Emax
x exp

[
−(ξ −µ−∆x)

2

σ2
x

]
(3.17)

for ξ ≥ ∆x and Ex(ξ ) = 0 otherwise. Here ∆x = 2π , σx = 5.5, µ = 20.12, and |e|Emax
x /mecω =

16.34. The values of these parameters are chosen such that the field given by Eq. (3.17)

reproduces the snapshot of the laser electric field shown in Fig. 3.9(b). The plasma magnetic

field is

Bpl
z (y) = 2π j0y/c. (3.18)

The uniform current density is set at j0 = 10JA/πλ 2
0 to reproduce the transverse linear profile

of the magnetic field in our PIC simulation, where JA = mec3/|e| is the non-relativistic Alfvén

current.

Figure 3.10(a) shows a trajectory of an electron computed using the test-particle model.

The electron is located at xinit = 20 µm at tinit = 150 fs. In our fully self-consistent PIC simulation,

the electrons in the channel typically acquire some negative longitudinal momentum before

they encounter the laser beam and the longitudinal electric field structure driven by its front. In

order to capture this feature in our test-particle calculations, we set px = −0.3mec at t = tinit .

After encountering the laser pulse, the electrons gets pushed in the forward direction. As it slips

further into the laser pulse, the longitudinal plasma field, associated with the leading edge of the

laser pulse, ramps up at the electron location. The increase in Ex causes the electron to reverse

the direction of its longitudinal motion while gaining energy. In order to make the correlation

evident, we use black round markers to show the beginning and the end of that segment of the

trajectory where Ex ≥ 0.1Emax
x . The calculation confirms the role of the plasma Ex in generating

relativistic (γe ≈ 100) backward-moving electrons.

The plasma magnetic field also has a profound impact on the electron trajectory. As seen
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Figure 3.11. Details of electron dynamics along the trajectories shown in Fig. 3.10, with the
red color corresponding to px < 0. Left column: complete electron dynamics. Middle column:
electron dynamics in the absence of the radiation friction force. Right column: electron dynamics
in the absence of the static plasma magnetic field. (a1) - (a3) Longitudinal electron momentum.
(b1) - (b3) Relativistic factor γe. (c1) - (c3) Transverse laser electric field acting on the electron.
(d1) - (d3) Longitudinal plasma electric field acting on the electron. (e1) - (e3) Characteristic
energy of emitted photons calculated according to Eq. (3.3). The region between the vertical
dashed lines corresponds to that part of the electron trajectory where Ex ≥ 0.1Emax

x .
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in Fig. 3.10(c), the electron moves backwards while performing transverse oscillations after

its interaction with Ex. This trajectory is obtained by setting j0 = 0 in the electron equations

of motion, so that there is no plasma magnetic field. The energy gain is comparable to that

seen in Fig. 3.10(a). However, the magnetic field in Fig. 3.10(a) causes appreciable transverse

electron deflection that leads to electron loss once the electron reaches the wall of the channel.

The deflection is in qualitative agreement with the magnetic field orientation. We terminate the

calculation once the electron cross the initial channel boundary shown with the thick lines.

Figure 3.11 provides additional information regarding the electron dynamics, including

the characteristic energy of emitted photons εγ . In order to clearly distinguish the backward

electron motion, we use the red color to indicate px < 0. The region between the vertical dashed

lines corresponds to that part of the electron trajectory where Ex ≥ 0.1Emax
x . Figure 3.11(e1)

shows that εγ reaches the 0.5 MeV level towards the end of the electron interaction with Ex. More

importantly, the emission occurs in the backward direction. The electron continues to emit in the

backward direction even after the interaction with Ex, which indicates the long-lasting effect of

the plasma electric field. Our result confirms that Ex at the leading edge of laser pulse can indeed

lead to emission of energetic backward-directed photons suitable for the pair production.

Figure 3.11 also provides details of the electron dynamics without radiation friction

and without the plasma magnetic field. By comparing Fig. 3.11(e1) and Fig. 3.11(e3), we

find that εγ is essentially the same in the absence of the plasma magnetic field. The backward

emission is prolonged because the electron remains within the channel. The middle column in

Fig. 3.11 shows the electron dynamics in the absence of the radiation friction. Even though the

electron trajectory in the absence of the radiation friction remains relatively unaffected [compare

Figs. 3.10(a) and 3.10(b)], the energy of the emitted photons changes appreciably. As seen from

comparing Figs. 3.11(e1) and 3.11(e2), the difference occurs after the interaction with Ex. The

conclusion then is that the photon emission should be calculated self-consistently, with radiation

friction taken into account in real-time.
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3.6 Summary and discussion

We have shown that electron-positron pair creation by the linear Breit-Wheeler process

is possible when a single laser travels through a dense plasma target. In particular, using a laser

pulse with parameters similar to those at the ELI-NP laser facility, it is possible to produce 107

linear Breit-Wheeler pairs in a single shot with a peak laser intensity of just 3×1022 Wcm−2.

The mechanism involves a strong longitudinal electric field driven by the laser pulse. As

the laser pulse travels through the plasma channel, it induces a longitudinal electric field at the

front of the laser pulse due to charge separation. The electric field pulls the channel electrons

back when they encounter the laser pulse, causing them to travel opposite to the direction of laser

propagation. The backward-moving electrons experience strong acceleration from the laser pulse,

causing them to emit energetic backward-directed photons. These photons are in the energy

range suitable for the linear Breit-Wheeler process, and therefore when they collide with forward

moving photons that are typically associated with the considered setup, electron-positron pairs

are created. The high pair yield is due to the fact that the photon collisions occur locally, i.e.

close to the point of emission, and thus at high density. The practical advantage of the scheme

presented is that only a single laser pulse is required and therefore the difficulty of spatially and

temporally overlapping multiple laser pulses is avoided.

The number of positrons produced by the linear Breit-Wheeler process in our setup is 107

even for a0 = 120, equivalent to I0 ≈ 3×1021 Wcm−2, which is within reach of today’s high-

intensity laser facilities. The uniqueness of our setup compared to the setup that involves two

lasers [75] (presented in Chapter II) is that it produces virtually no pairs via the nonlinear Breit-

Wheeler process, i.e. no pairs were produced in our simulation by the module that computes the

corresponding yield. For this process to become significant for a single laser pulse propagating

in a plasma channel, we would need intensities ≥ 1024 Wcm−2 [90], or if the laser pulse is

subsequently reflected from a high-density mirror,≥ 1023 Wcm−2 [91]. The linear Breit-Wheeler

process then only needs to compete with the Bethe-Heitler process. In this process, a γ-ray with
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energy greater than 2mec2 creates an electron-positron pair by interacting with the Coulomb field

of an atomic nucleus. Using a simple post-processing algorithm detailed in [75] (Chapter II of

this dissertation), we determine that the Bethe-Heitler process generates 5.7×105 pairs inside

the channel. This number is roughly 20 times lower than the yield from the linear Breit-Wheeler

process, so we conclude that the linear Breit-Wheeler process is the primary source of positrons

in our setup.

Figure 3.8 shows the momentum distribution of the positrons right after they were

created, but this ‘initial’ distribution is likely to change before the positrons leave the plasma.

The positrons created inside the channel are subject to the influence of the laser and plasma fields.

One would need to develop a PIC code that can produce the linear Breit-Wheeler pairs in order to

reliably assess the impact of these fields on the positron momentum. The plasma magnetic field

is likely to have a confining effect. The transverse confinement however causes charged particles

to slide along the magnetic filament [49], with the direction dependent on the polarity of the field

and the particle charge. In the magnetic field configuration shown in Fig. 3.1(c), the electrons

slide forward, which enables the increased energy gain from the laser [49], so we anticipate that

the positrons are likely to slide back towards the channel opening. (Subsequent dynamics of

these produced positrons are discussed in detail in Chapter VI and Sec. 7.2, 7.3, 7.4, 7.5.)

The backward emission of energetic photons by a similar mechanism related to the charge

separation at the leading edge of the laser pulse was previously discussed in [92], albeit in the

case of a much higher laser intensity. This regime was then further investigated in [93]. The

strength of the longitudinal electric field goes up with the laser intensity or, equivalently, with

a0, which means that the energies of backward accelerated electrons and the energies of the

photons they emit also increase with a0. Even though the nonlinear Breit-Wheeler process is

inefficient for the value of a0 considered in our work in this chapter, it can become an import

source of electron-positron pairs at much higher a0 due to the discussed increase of the photon

energies [92, 93]. It must be pointed out that Refs. [92, 93] only considered the nonlinear Breit-

Wheeler process, so further research is needed to determine at what value of a0 the nonlinear
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Breit-Wheeler process becomes the dominant mechanism.
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3.8 Appendix

2D-3V kinetic simulations presented in this chapter were performed using the fully

relativistic particle-in-cell code EPOCH [17]. Detailed simulation parameters are given in

Table 3.1. The laser beam is injected into the rectangular simulation domain at the left boundary

located at x =−5 µm and it propagates in the positive direction along the x-axis. The laser is

linearly polarized, so that its electric field has only x and y components and its magnetic field has

only a z component. The laser is focused at the surface of the target located at x = 0 µm. The

time t is defined such that the laser reaches its peak intensity in the focal plane (in the absence of

the target) at t = 0 fs.

The plastic structured target contains a pre-filled channel whose axis is aligned with the

axis of the laser beam. The target is initialized as a fully ionized plasma. The density of the

carbon ions is set to be equal to the density of the protons in the bulk and inside the channel. The

values of the electron density in the bulk and inside the channel are listed in Table 3.1.
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Table 3.1. 2D PIC simulation parameters.

Laser parameters
Normalized field amplitude a0 = 120
Peak intensity I0 = 3.11×1022 W/cm2

Wavelength λ0 = 800 nm
Focal plane of laser x = 5 µm
Laser profile Gaussian
(longitudinal and transverse)
Pulse duration 25 fs
(FWHM for intensity)
Focal spot size 4.0 µm
(FWHM for intensity)

Target parameters
Target thickness (along y) 30 µm
Target length (along x) 120 µm
Channel width dch = 5 µm
Composition C6+ ions, H+ ions, and electrons
Ion density ratio nC6+ : nH+ = 1 : 1
Electron density in the channel ne = 2.8 nc
Electron density in the bulk ne = 28 nc
Channel density 15 mg cm−3

Bulk density 150 mg cm−3

Other simulation parameters
Simulation box size 130 µm along x

36 µm along y
Spatial resolution 40 cells per µm along x

40 cells per µm along y
Number of 40 for electrons
macro-particles per cell 20 for carbon ions

20 for hydrogen ions
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Achieving pair creation via linear and non-
linear Breit-Wheeler processes in dense
plasmas irradiated by high-intensity laser
pulses

It has been recently shown that over 109 electron-positron pairs can be produced from

light alone at experimentally accessible laser intensity of 5×1022Wcm−2 by irradiating a target

with a pre-formed channel by two counter-propagating laser pulses (see Chapter II). Although

targets of variable length and channel density have been successfully fabricated and used in

recent experiments involving high-intensity lasers, the impact of these parameters on the pair

yield by different pair creation processes is yet to be understood. In this chapter, we explore,

using two-dimensional particle-in-cell simulations, the impact of the channel density and length

on pair production by linear Breit-Wheeler process, nonlinear Breit-Wheeler process, and Bethe-

Heitler process at fixed laser intensity. We find that these parameters can be successfully used to

increase the linear Breit-Wheeler pair yield. More importantly, the relative contribution of each

process can be adjusted by varying the same parameters. We show that this approach allows us

to completely eliminate the yield from the nonlinear Breit-Wheeler process while maintaining

a significant yield from the linear Breit-Wheeler process. The Bethe-Heitler process plays a

secondary role in the considered system, so the majority of the positrons inside the channel

are produced from light alone. Our results indicate that a structured target irradiated by two

laser beams has the potential to be a versatile platform for future experimental studies of the

Breit-Wheeler pair production processes, with the target parameters serving as control knobs.
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4.1 Introduction

Creation of electron-positron pairs in photon collisions is probably one of the most

striking predictions of quantum electrodynamics. The process is often referred to as the Breit-

Wheeler process [1]. The linear Breit-Wheeler process involves two photons, with these photons

typically being energetic gamma-rays. The nonlinear Breit-Wheeler process involves multiple

(more than two) photons. One example is a collision of an energetic gamma-ray with multiple

optical photons. Both linear and nonlinear Breit-Wheeler (BW) processes play an important

role in astrophysics [2, 3, 4, 5]. However, they are notoriously hard to observe in laboratory

conditions. The nonlinear BW process has been observed once before [22] by colliding a

46.6 GeV electron beam with a terawatt laser pulse. The yield was less than one pair per shot.

The linear BW process has only been observed via the use of virtual photons [94].

There are two aspects that make BW processes challenging to recreate: the smallness of

the cross section and the high photon energy threshold. For example, in the case of the linear

BW process, the conservation of momentum and energy requires ε1ε2 > (mc2)2, where ε1,2

are the energies of the colliding photons, m is the electron mass, and c is the speed of light.

This condition translates into a requirement to have an MeV-level photon population. The cross

section of the linear BW process is only about r2
e [95], where re ≈ 2.82×10−15 m is the classical

electron radius. It is about ten orders of magnitude smaller than the cross section for electron

impact ionization.

High-power, high-intensity lasers have the potential to overcome the described difficulties.

The existing state-of-art laser facilities are able to achieve laser intensities that exceed 1022

W/cm2 [6, 7, 8], whereas the systems that are currently under construction are expected to

approach intensities of 1023 W/cm2 [7]. Most of the BW-related research has been focused on

leveraging the anticipated ultra-high intensities (beyond 1023 W/cm2) to achieve a significant

yield from the nonlinear-BW process (e.g. see Refs. [96, 97]). It has also been claimed that, by

leveraging multi-GeV electron acceleration in hollow cones, the intensity required to produce
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dense pairs via the nonlinear BW process can be as low as 1022 Wcm−2 [30, 98]. The linear-BW

process has received less attention due to a perceived difficulty to create adequate conditions [99].

In the context of laser driven experiments, the key difference between the nonlinear and

the linear processes is that the nonlinear process is a collision of gamma-rays with the laser

photons, whereas the linear process is a collision of gamma-rays with other gamma-rays. This

means that the linear process does not directly utilize the high density of optical photons provided

by an ultra-high intensity laser beam. One way to utilize high-intensity lasers for the linear-BW

process is by converting the optical photons into gamma-rays. It has been shown that dense

laser-irradiated plasmas can efficiently convert laser energy into gamma-rays. The laser first

transfers its energy to plasma electrons, accelerating them to ultra-relativistic energies. Energetic

gamma-rays are then efficiently emitted by these relativistic electrons via synchrotron emission

during electron deflections by laser and plasma fields [80, 100, 41, 101, 102, 82, 103]. Even

though this is not a threshold process, laser intensities above 1022 W/cm2 are required to achieve

a conversion efficiency that is in the range of a percent.

There has been an increased interest in utilizing gamma-rays emitted during ultra-intense

laser plasma interactions to develop setups that can be used to experimentally observe the

linear BW process [11, 12, 74, 73, 13, 10, 75]. One general approach is to use two lasers, each

irradiating its own target and generating a beam of gamma-rays [73]. The gamma-rays are

then collided in vacuum some distance away from the targets. The appeal of this approach

is that the pairs are created in vacuum. The drawback however is that, due to the divergence

of the gamma-ray beams, the yield strongly depends on the distance from the targets to the

collision location. In practical terms, this means that the distance should not exceed several

hundred microns in order to achieve a yield that is more than just a few pairs [13], which makes

experimental implementation challenging.

One can dramatically increase the pair yield by easing the requirement that the pairs

must be produced in vacuum. In two recent publications (whose reprints are Chapter II and

Chapter III of this dissertation), we considered the pair production via the linear BW process
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inside a laser-irradiated plasma [104, 75]. We found that over 107 pairs can be produced using

laser intensity of ∼ 3×1022 Wcm−2, which is a significant increase in the pair yield compared

to the approach where the pair production takes place in vacuum [13]. Our simulations have

revealed that this yield can be achieved either by using a single laser beam [104] (Chapter III)

or by using two laser beams in a colliding geometry [75] (Chapter II). A distinctive feature of

the setup with two beams is that it generates an accelerating configuration for the positrons after

they have been created. A synergistic combination of the laser fields and a quasi-static plasma

magnetic field driven by the laser beams enables the positrons to gain hundreds of MeV of energy.

The energetic positrons leave the target in the form of collimated jets, which can facilitate the

detection of the produced positrons in experiments.

In Ref. [75] (Chapter II), the colliding laser setup [also shown in Fig. 4.1(a)] was used for

a proof-of-principle calculation demonstrating that the linear BW process can be the dominant

source of positrons at experimentally accessible intensities. Specifically, the yield was compared

to that of two competing processes, the nonlinear BW process and Bethe-Heitler process (a

collision of a gamma-ray with an atomic nucleus that results in an electron–positron pair), for

different laser intensities. The laser collision in Ref. [75] was achieved using a structured target

with a pre-filled channel whose plasma density is lower than the density in the bulk. The channel

provides optical guiding to the laser pulses, preventing possible misalignment that can be caused

by laser-plasma instabilities in a uniform plasma. Similar structured targets with a foam-filled

channel have been fabricated and used for a recent experiment [76]. It remains to be understood

how the target parameters impact the pair yield from all three processes.

Recent progress in target fabrication techniques makes it possible to create a wide range

of target configurations and parameters [105, 106]. Relevant capabilities include production

of targets with a cylindrical channel of variable length [37, 36] and production of low-mass

foam targets (∼10–80 mg/cm3) [107]. Both channel density and target length are known to have

a considerable impact on electron acceleration and, as a result, on the photon emission. It is

therefore worth asking whether target parameters, such as channel length and density, can serve
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as effective control-knobs in the context of pair production for the purpose of enhancing the pair

yields and experimentally distinguishing different pair creation processes.

In this chapter, we examine the impact of target parameters on pair production by linear

BW process, nonlinear BW process, and Bethe-Heitler (BH) process at fixed laser intensity.

In order to make our predictions relevant to such multi-beam laser facilities as Extreme Light

Infrastructure Nuclear Physics (ELI-NP) [34, 6], we use a peak intensity of 5×1022 Wcm−2 for

our study. We show that, by varying the channel density and length of the structured target, one

can increase the linear BW pair yield compared to the yield achieved in Ref. [75] (Chapter II).

More importantly, the relative contribution of each process can be adjusted by varying the same

parameters. For example, we show that this approach allows us to completely eliminate the yield

from the nonlinear BW process while maintaining a significant yield from the linear BW process.

Our results indicate that a structured target irradiated by two laser beams has the potential to be

a versatile platform for future experimental studies of BW pair production processes, with the

target parameters serving as control knobs.

The rest of this chapter is organized as follows. In Section 4.2, we review the results of

Ref. [75] (Chapter II) and the original setup used to obtain them. In Section 4.3, we investigate

the impact of channel density nch and length L on the pair yields of linear BW, nonlinear BW,

and BH processes at fixed peak laser intensity of 5×1022Wcm−2. In Section 4.4, we summarize

the key findings from the parameter scan presented in Section 4.3.

4.2 Review of previous results

In order to set the stage for the parameter scan discussed in Section 4.3, we start by

reviewing the results of Ref. [75] (of which Chapter II is a reprint) and the original setup used to

obtain them.

In Ref. [75], the pair production was studied with the help of 2D particle-in-cell (PIC)

simulations using the setup schematically shown in Fig. 4.1(a). In the setup, two identical
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Figure 4.1. Generation of energetic photons in a structured target irradiated by two counter-
propagating laser beams with a0 = 190. (a) Electron density ne (gray scale), transverse electric
field of laser #1 Ey (color scale) and energetic electrons with γ ≥ 800 accelerated by laser #2
(dots, colored by γ). The snapshot is taken at t ≈−6 fs and prior to the laser-laser collision. The
laser pulses arrive to the mid-plane (x = 0) and collide at t = 0. (b) The density of photons with
energy ε ≥ 1 keV, in units of the classical critical density nc at t ≈ 38 fs and after the laser-laser
collision. Reproduced with permission from He et al., Communications Physics, 444, 139 (2021).
Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY 4.0) license.
Adapted from original.

counter-propagating ultra-intense laser pulses are injected into a solid micro-tube. The two laser

pulses are linearly polarized with 50 fs duration, 1 µm wavelength λ0, and normalized peak

amplitude a0 in the range 40≤ a0 ≤ 250, where a0 := 0.85I1/2
0 [1018 Wcm−2]λ0[µm], and I0 is

the dimensional peak intensity. The target is a micro-tube with channel diameter dch = 5 µm and

bulk electron density nbulk = 100nc, where nc := πmc2/|e|λ0 is the classical critical or cutoff

density with e being the electron charge. The target channel is filled with a lower density plasma.

The electron density in this plasma is set according to the laser intensity, nch := (a0/100)3.8nc,

to ensure that the optical properties of the channel stay approximately unchanged. One way
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to achieve such a target configuration is by filling a pre-formed channel with a low-mass foam

whose pore size is smaller than the laser wavelength [76]. Additional details regarding the

simulation setup can be found in Table 4.1 of Section 4.6.1.

Even though the channel electron density exceeds the classical cutoff density nc, the

channel becomes transparent to the laser electromagnetic fields due to the relativistically induced

transparency. The transparency is caused by electron heating to relativistic energies by the

intense laser fields (the typical requirement is a0≫ 1). As the two laser beams propagate along

the channel, each of them drives a strong longitudinal electron current that induces a strong

slowly evolving azimuthal magnetic field. The magnetic field provides transverse electron

confinement [108], while, at the same time, it also enhances electron energy gain from the laser

fields [49]. Each laser beam generates its own co-propagating beam of ultra-relativistic electrons.

The electrons continue gaining kinetic energy, (γ − 1)mc2, prior to encountering a counter-

propagating laser pulse, which occurs at t ≥ 0. Here γ stands for the electron relativistic Lorentz

factor. Figure 4.2(a) shows the time evolution of the electron distribution as a function of γ . It is

worth noting that our previous studies have shown that the discussed magnetic field generation

and electron acceleration in 2D PIC simulations are qualitatively similar to the magnetic field

generation and electron acceleration in 3D PIC simulations [41, 13, 49].

A qualitative change in the dynamics of the accelerated electrons occurs when they

encounter a counter-propagating laser beam. The change can be quantified using the quantum

nonlinearity parameter χ defined as

χ =
γ

Es

√(
EEE +

1
c
[vvv×BBB]

)2

− 1
c2 (EEE · vvv)

2 (4.1)

where EEE and BBB are the electric and magnetic fields acting on the considered electron with velocity

vvv and Es ≈ 1.32× 1018 V/m is the Schwinger field. The quantum nonlinearity parameter χ

is proportional to the electron acceleration in an instantaneous rest frame. This is the reason

why the value of χ increases when the energetic electrons collide head-on with another laser

67



!"
!#

!"
!$

Laser collision

Laser collision

%
[fs

]

$ #

(a) (b)

Figure 4.2. Time evolution of the electron distribution in the simulation shown in Fig. 4.1.
(a) Electron distribution as a function of the relativistic factor γ . (b) Electron distribution as a
function of the quantum nonlinearity parameter χ defined by Eq. (4.1). The two laser pulses
collide at t = 0, marked with a horizontal dashed line in each plot. Reproduced with permission
from He et al., Communications Physics, 444, 139 (2021). Copyright 2021 Authors, licensed under
a Creative Commons Attribution (CC BY 4.0) license.

beam. The collision occurs at t ≥ 0, with the exact time determined by the electron position

within its parent laser beam (the co-propagating beam responsible for the electron energy gain).

Figure 4.2(b) confirms that a dramatic change in the electron distribution as a function of χ

indeed occurs at t ≈ 0 when the two laser beams collide in the mid-plane.

The power of synchrotron emission by the electrons scales as

Psynch ∝ χ
2. (4.2)

The spectrum emitted by the electrons peaks at photon energy

ε∗ ≈ 0.44χγmc2. (4.3)

The increase in χ causes the energetic electrons to emit a large proportion of their energy. This

process is evident in Fig. 4.2(a) and Fig. 4.2(b) at t > 0. Figure 4.3 shows the angular-energy

spectrum of the emitted photons. In our simulation carried out using the PIC code EPOCH [17],

the photon emission is modelled with the help of a Monte Carlo module for quantum synchrotron
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Figure 4.3. Energy-angle spectrum ∂ 2N/∂ s∂θ [◦−1] of emitted photons in the simulation shown
in Fig. 4.1. Here, θ is the angle between the photon momentum ppp and the x-axis and s is a
dimensionless energy variable defined to be s := log10(ε/mc2) with ε being the photon energy.
The photon number N is calculated by taking the size of the third dimension to be equal to
the channel width dch = 5 µm. Reproduced with permission from He et al., Communications
Physics, 444, 139 (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution
(CC BY 4.0) license. Adapted from original.

radiation that emits photons as individual particles. Due to the high power of emission at t > 0,

the energetic electrons rapidly emit their energy and the density of high energy photons becomes

very high at the place where the two laser beams overlap. For example, for a0 = 190, the density

of photons with energy above 1 keV reaches several hundreds of nc, as shown in Fig. 4.1(b).

In the considered setup, the dense population of generated counter-propagating energetic

gamma-rays overlaps with the two laser pulses, which creates favorable conditions for linear

and nonlinear BW processes. The gamma-rays can also collide with the plasma ions, which

can lead to pair production via the BH process. Currently (by the time of the publication

of materials in this chapter), none of the PIC codes used for simulating high-intensity laser-

plasma interactions are capable of calculating the yield from the linear BW process because this

requires simulating binary collisions (PIC codes with such implementation are already done
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which are shown in Chapter VI and Chapter VII). We compute the yield using a post-processing

algorithm detailed in Ref. [75] (More details about the post-processing algorithm can be found

in Chapter V). The algorithm uses 2D PIC simulation data, leveraging the fact that the photons

only move in the plane of the simulation. No algorithm currently exists that can treat 3D photon

motion (PIC codes with such implementation are already done which are shown in Chapter VII).

Previous studies [41, 13] show that the divergence of the emitted photons in 3D simulations is

not symmetrical, with most of the divergence taking place in the laser polarization plane. Our

2D PIC simulations already capture this divergence while neglecting the much weaker photon

divergence out of the polarization plane. The yield from the nonlinear BW process is computed

using a standard module that is a part of the PIC code EPOCH [17]. In Ref. [75], the same

simulation (same parameters) was repeated four times with different random seeds to get a more

accurate assessment at lower a0 when the code generates only a few macro-particles as a result of

the nonlinear BW process. We calculate the yield from the BH process using a post-processing

algorithm as well. This basic algorithm is described in Ref. [75]. Only the positrons created

inside the channel have the opportunity of being accelerated by one of the laser beams and

becoming a part of a collimated positron jet. This is the reason why we compute the BH yield

just inside the channel.

The yields for all three processes as a function of laser amplitude a0 are shown in Fig. 4.4.

The BW processes dominate over the BH process over the entire range of a0, which confirms that

the considered setup can be used to study the pair production via BW processes inside a plasma.

The plot also indicates that the linear BW process dominates over the nonlinear BW process at

lower intensity, with the two yields becoming comparable only when a0 reaches the value of 220.

However, it is important to point out that this trend is obtained for a specific target length and a

specific channel density that is set according to a0. Indeed, our setup uses nch = (a0/100)3.8nc

with a fixed channel length L = 70 µm, which means that, for each a0, the trend corresponds to

only a single combination of nch and L. This raises a question of whether the trend will persist

for other combinations of nch and L or whether it can be altered.
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Figure 4.4. Number of electron-positron pairs created by the linear, NBW
lin , and nonlinear, NBW

nonlin,
BW processes (green crosses and magenta markers, respectively), for the setup discussed in
Ref. [75], at given normalized laser amplitude a0 (and equivalent peak intensity I0). Error bars
for the nonlinear BW process indicate statistical uncertainties. The number of electron-positron
pairs produced by the BH process, NBH, is shown by blue circles. Reproduced with permission
from He et al., Communications Physics, 444, 139 (2021). Copyright 2021 Authors, licensed under
a Creative Commons Attribution (CC BY 4.0) license.

4.3 Impact of channel density and length on electron-
positron pair yields

All three pair production processes (linear BW, nonlinear BW, and BH) rely on energetic

gamma-rays, but the sensitivity to different parts of the spectrum varies greatly from process to

process. The nonlinear BW process is also sensitive to the field strength in a counter-propagating

laser at the time of collision between gamma-rays and the laser beam. The intensity in each laser

beam changes during laser propagation along the channel, so the intensity during the collision

with gamma-rays is dependent on the channel length and channel density. The yield from the

BH process depends on the ion density in the channel, whereas it is independent of the intensity

in the colliding lasers. These very different dependencies on channel parameters suggest that,

by adjusting the channel density and length, one can control the pair yield by each of the three
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Figure 4.5. Parameter scan over channel density and and length. (a) Schematic plot that
illustrates the relation between the parameters α and β and the physical quantities, such as the
number density, the areal density, and the channel length. (b) The discretization for α and β used
in our scan. The values of L covered by this scan are shown in blue (the length is given in µm).

processes.

In order to gain more insight, in this section we investigate the impact of channel density

nch and length L on the pair yields of linear BW, nonlinear BW, and BH processes at fixed peak

laser intensity of 5×1022Wcm−2. The basic setup is similar to that described in Section 4.2.

Table 4.2 provides the key parameters, including the range for nch and L. The parameters not

listed in Table 4.2 should be assumed to be the same as those used in Section 4.2 and listed in

Table 4.1. The pair yields for the three processes under consideration are calculated as described

in Section 4.2. We only count and compare the positrons generated inside the channel, because

these are the positrons that can potentially form jets after being accelerated by one of the laser

beams.
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As shown in Fig. 4.5(a), we parameterize our scan using

α := nch/n∗, (4.4)

β := Lnch/σ∗, (4.5)

where n∗ = 7.1nc is the electron density in the channel considered in Section 4.2 and σ∗ = n∗L∗

is the areal density of electrons in this channel, whose length is L∗ = 70 µm. Parameter α

quantifies the relative change in electron number density, whereas parameter β quantifies the

relative change in electron areal density. A family of channels that have the same length but

different density have β/α = Ln∗/σ∗. This dependence is schematically shown in Fig. 4.5(a)

that uses a log-log scale. The exact values of α and β used in our parameter scan are given in

Fig. 4.5(b). Note that the discretization is close to uniform on a log scale for both α and β . In

total, we examine 25 different pairings of α and β . We perform a 2D PIC simulation for each

set of parameters. The scan corresponds to a range of values for L that spans from 31 µm to

157 µm. The exact values of L are listed in Fig. 4.5(b) inside the domain. To find the value of L

for a given set of parameters, use the values listed in Fig. 4.5(b) and the rule shown in Fig. 4.5(a)

that indicates that the length is the same along diagonal lines.

Figure 4.6 shows the result of our parameter scan and contains eight panels in order to

provide detailed information regarding the yield from each of the processes. Figure 4.6(e) gives

the total pair yield that consists of the yield from the linear BW process, NBW
lin , the nonliner

BW process, NBW
nonlin, and the BH process, NBH. The three yields are shown individually in

Figs. 4.6(a), 4.6(f), and 4.6(g). The same information is provided in Table 4.3, Table 4.4, and

Table 4.5. Figures 4.6(b), 4.6(c), and 4.6(d) quantify the relative contribution of the linear BW

process. Finally, Fig. 4.6(h) shows the combined yield of the nonlinear BW and BH processes.

In our scan, the nonlinear BW process shows the strongest sensitivity. This is why the

general trend for the total yield in Fig. 4.6(e) matches the trend for NBW
nonlin in Fig. 4.6(f). At

α = 2/3 and β = 3/2, the nonlinear BW process produces no pairs in our simulation, whereas,
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Figure 4.6. (a), (f) and (g) Pair yield inside the initial channel boundary for the parameter space
shown in Fig. 4.5 and a0 = 190, where (a) NBW

lin is the yield from the linear BW process, (f)
NBW

nonlin is the yield from the nonlinear BW process, and (g) NBH is the yield from the BH process.
NBW

nonlin is shown in log scale, whereas NBW
lin and NBH are shown in linear scale. (b), (c) and (d)

The ratio of the yields from the linear BW to the yields by the other two processes. At α = 2/3
and β = 3/2, NBW

nonlin = 0 in (f) and NBW
lin /NBW

nonlin→ ∞ in (b). (e) The total yields from the three
processes, and (h) the sum of the yields from nonlinear BW and BH processes. All the yields
assume that the size along the third dimension is equal to the channel width dch = 5 µm. Note
that in (b), (d), and (f) the color-coding uses a log-scale.
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at α = 2/3 and β = 2/3, it produces 13×108 pairs. In contrast to that, the yield from the linear

BW process increases by a factor of 2.5 (from 4× 108 to 10× 108) and they yield from the

BH process increases only by a similar factor of 2.4 (from 8.5×106 to 20.6×106). Moreover,

the highest yield from the nonlinear BW process exceeds the highest yield from the other two

processes.

In agreement with our expectations, we find from Figs. 4.6(a), 4.6(f), and 4.6(g) that each

process indeed has its own unique dependence on α and β over the considered parameter range.

The result of the presented scan confirms that it is possible to control the pair yield of different

processes by only changing the target parameters. One key feature is that the BH process plays a

secondary role in the considered system, so the majority of the positrons inside the channel are

produced via the BW processes. Another important feature is that the setup makes it possible to

switch from a regime where the linear and the nonlinear BW processes have a comparable yield

(NBW
lin /NBW

nonlin ∼ 1) to a regime where the linear BW process completely dominates the yield

(NBW
lin /NBW

nonlin≫ 1). Specifically, by choosing α = 2/3 and β = 3/2, we can eliminate the yield

from the nonlinear BW process, as seen in Fig. 4.6(f), while maintaining a high absolute yield

from the linear BW process.

The rest of this section is dedicated to explaining the trends for each of the three processes.

4.3.1 Yield from the linear Breit-Wheeler process

The linear BW process has a threshold that sets a lower limit for the product of energies

ε1 and ε2 of the colliding photons. This product has the lowest value for a head-on collision of the

two photons, so the corresponding condition reads ε1ε2 > (mc2)2. It follows from this relation

that the range of photon energies relevant to the linear BW process is set by the energetic tail of

the photon spectrum with ε ≫ mc2. In other words, if the system has photons with ε ≫ mc2,

then these photons make the photons with ε ≪ mc2 useful. It is convenient to introduce a

dimensionless energy variable s = log10
(
ε/mc2). Then the discussed relation takes the form

s1 + s2 > 0. We conclude that the lowest photon energy that can lead to pair production via the
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Figure 4.7. Generation of photons with energies between 70 keV and 3.7 MeV. (a) The total
number of generated photons N70keV<ε<3.7MeV for each pairing of α and β in our parameter scan.
(b) Time evolution of the laser energy conversion into photons with energies between 70 keV
and 3.7 MeV. The corresponding parameters are shown in (b) using star markers. The photon
yield assumes that the size along the third dimension is equal to dch = 5 µm.

linear BW process corresponds to smin =−smax. For the set of parameters considered in Sec. 4.2,

smax ≈ 3.25, so we have smin ≈−3.25. This means that the relevant range of photon energies

is roughly 0.3 keV < ε < 900 MeV. The most productive energy range is however much more

narrow than the range set by smin and smax because of the slope of the photon energy distribution

function [109]. For the set of parameters considered in Section 4.2, the most productive range is

roughly between 70 keV and 3.7 MeV, accounting for 47% of the total yield.

The pair yield by the linear BW process increases as the square of the number of colliding

photons, so the number of photons in the range between 70 keV and 3.7 MeV can serve as a
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useful figure of merit. Figure 4.7(a) shows the total number of photons with energies in this

range emitted for each pairing of α and β in our parameter scan. The photon number increases

with the channel length L at fixed density nch (increasing β for fixed α). The channel length

influences the photon yield by limiting the time given to plasma electrons to gain energy before

their collision with a counter-propagating laser beam. Figure 4.6(a) shows that the increase in

the total number of photons translates into an increase in NBW
lin , albeit only up to a certain L. In

our scan, this length is independent of the channel density and it is about 58 µm.

In order to better understand the impact of the channel length L, we have computed

the laser energy conversion into photons in the range between 70 keV and 3.7 MeV. The time

evolution of the conversion for three different channel lengths (31 µm, 70 µm, and 157 µm)

is shown in Fig. 4.7(b). By comparing the curves that corresponds to the markers in the same

horizontal row, we compare channels that have the same density but different length. We find

that, even though the conversion rate for the 157 µm long channel (red curve) is higher than

that for the 70 µm long channel (orange curve), most of the photons in the 157 µm setup are

produced well before the two lasers collide in the mid-plane. In contrast to that, the 70 µm

channel setup generates the majority of the photons after the two laser collide. The trends are the

same for the blue and green curves that represent 31 µm and 70 µm long channels with the same

channel density.

There are two aspects of the photon emission that set the observed trend. In a longer

channel, laser-accelerated electrons travel a longer distance before colliding with another laser.

Therefore, they spend more time emitting photons prior to the collision, with the emission is

primarily caused by the plasma magnetic field [41]. This is the reason why the conversion rate

for L = 157 µm (red curve) is about three times higher than for L = 70 µm (orange curve) at

t = 0. The emission after the two lasers collide depends on laser amplitude via the quantum

nonlinearity parameter χ defined by Eq. (4.1). In the case of a longer channel, both laser pulses

experience significant depletion, which reduces the strength of the laser fields at the time of the

collision. This is the reason why the photon emission is less effective for L = 157 µm (red curve)
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than for L = 70 µm (orange curve) at t > 0.

A photon cloud emitted at t < 0 must travel towards the mid-plane before it encounters

counter-propagating photons and can produce pairs. During its travel time, the cloud expands

because its photons have an angular distribution (e.g. see Fig. 4.3). The expansion increases with

L. Once this cloud collides with a counter-propagating cloud that was also emitted at t < 0, the

density of both clouds is lower than the original density right after the emission and, as a result,

the yield from the linear BW process is reduced. The expansion also causes some of the photons

in the cloud to miss the photons emitted at t ≥ 0, because these photons are emitted inside the

channel. The conclusion then is that the photons emitted at t < 0 are either not fully utilized or

not utilized efficiently. This is the reason why, at α = 2/3, NBW
lin for L = 157 µm is lower than

NBW
lin for L = 70 µm.

The main takeaway point from our scan is that there is an optimal length for a given

channel density. Remarkably, this optimal length appears to be not very sensitive to the channel

density for the considered range of parameters.

4.3.2 Yield from the nonlinear Breit-Wheeler process

The nonlinear BW process is the process where a high energy photon and multiple lower

energy photons are annihilated creating an electron-positron pair. In our case, the energetic

photon is a gamma-ray produced by one of the laser-accelerated electrons, whereas the lower

energy photons are the optical photons in a counter-propagating laser beam. The probability to

produce pairs is negligible if the gamma-ray is moving in the same direction as the laser beam that

provides optical photons, so the focus is on collisions of gamma-rays with a counter-propagating

laser beam.

The sensitivity of the pair yield to laser amplitude and gamma-ray energy can be assessed

using a previously derived result for a head-on collision of a gamma-ray with a Gaussian

pulse [110]. The probability for a gamma-ray with energy ε to produce an electron positron-pair
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Figure 4.8. (a) Maximum normalized laser amplitude right before the collision, â. (b) Total
number of emitted photons with energy above 300 MeV, Nε>300MeV. (c) Estimated total yield
from the nonlinear BW process, Nesti

nonlin. (d) - (g) Time evolution of the electron distribution
as a function of γ and χ for two sets of parameters. The “+” and “–” superscripts are used to
distinguish the two systems whose parameters are marked by “+” and “–” in (a). The photon,
electron, and positron numbers assume that the size along the third dimension is equal to
dch = 5 µm.

79



while passing through a Gaussian beam with a peak normalized amplitude amax is

P± ≈ αfscamaxnR
(
2amaxεLε/m2c4) , (4.6)

where αfsc ≈ 1/137 is the fine structure constant, n is the number of cycles at the full width at

half maximum, and εL = hc/λ0 is the energy of the optical photons (h is the Planck constant). In

Eq. (4.6), R is a super-exponential function defined as

R(x) =
0.453K2

1/3(4/3x)

1+0.145x1/4ln(1+2.26x)+0.330x
, (4.7)

where Kν is a modified Bessel function of the second kind. Therefore, the probability to produce

pairs strongly increases with the increase of the product amaxε .

The described sensitivity indicates that the most energetic photons are the biggest con-

tributor to the pair yield. These photons are produced at t > 0, i.e. when energetic electrons

collide with a counter-propagating laser. The collision greatly increases the value of the quantum

nonlinearity parameter χ given by Eq. (4.1). The increase of χ shifts the peak of the emitted

photon spectrum to a higher energy given by Eq. (4.3). Since the relevant photons are produced

at t > 0, then the pair creation also takes place at t > 0. We therefore conclude that the laser

amplitude that determines the yield is the laser amplitude at t > 0, which can be drastically

different from the laser amplitude at the entrance into the channel.

Figure 4.8(a) shows the maximum value of the normalized laser amplitude a right before

the two lasers collide. We denote this quantity as â (see Section 4.6.3 for a detailed explanation

of how we determine this quantity). Figure 4.8(a) shows â for the entire parameters scan. As

expected, â decreases with the increase of the channel length at fixed channel density (horizontal

rows) due to the depletion. For the same channel length L, â decreases with the increase of the

channel density (diagonally upward direction). This is also a result of the depletion caused by an

increased number of electrons accelerated by the laser in the channel. Figure 4.8(b) shows the
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total number of energetic photons, Nε>300MeV, with energy above 300 MeV produced for each

set of parameters. The exact value of the cutoff energy has no significance and it is used only

to select energetic photons. We find that the trend differs from that for â, as there is an optimal

length for a given density (horizontal rows).

The trend for Nε>300MeV can be understood from scalings for the emitted power Psynch ∝

χ2 and the characteristic emitted photon energy ε∗ ∝ γχ . For an electron with a given relativistic

factor γ , the value of ε∗ needs to satisfy ε∗ ≳ 300 MeV in order for the electron to contribute

to Nε>300MeV. The value of Psynch determines how many photons the electron can contribute.

In our case, the electrons collide head-on with a laser pulse, so we have χ ∝ γ â. The electron

spectrum becomes more energetic with the increase of L since the electrons have more time to

gain energy before their collision with the laser pulse. This means that more electrons can emit

the photons in the considered energy range and we can expect for Nε>300MeV to go up with L.

This trend is observed in Fig. 4.8(b) for all α at L≤ 70 µm. However, as we increase L, we must

pay a penalty associated with the laser depletion that reduces our χ through â. The reduction of

χ not only prevents some energetic electrons from emitting sufficiently energetic photons, but it

also reduces the emitted power for those electrons that emit in the desired energy range. The

depletion causes the rollover in Nε>300MeV at L > 70 µm for all values of α .

Figures 4.8(d) - (g) provide additional information regarding the time evolution of the

electron γ and χ . In order to see the impact of L, we consider the shortest (L = 31 µm) and

the longest (L = 157 µm) channels in our scan. The α and β parameters for these channels are

marked with “+” and “–” in Fig. 4.8(a) and Fig. 4.8(b). A comparison of Figs. 4.8(d) and 4.8(f)

confirms that the electrons in a longer channel are able to gain much higher energies. The energy

gain in Fig. 4.8(f) saturates well before the collision, which happens because the energy gain

during direct laser acceleration has an upper limit [49]. A comparison of Figs. 4.8(e) and 4.8(g)

provides an example of the detrimental effect of depletion on χ . Even though the electrons are

more energetic in the longer channel, the maximum value of χ following the collision is lower

than that for the shorter channel. The significant depletion that takes place in the longer channel
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reduces â and, as a result, it reduces χ whose scaling is χ ∝ γ â.

The discussed trend for the number of energetic photons translates into a trend for NBW
nonlin

shown in Fig. 4.6(f). For a given channel density (fixed α), NBW
nonlin experiences a roll over with

the increase of L (increase of β ). It is instructive to show that this trend can also be captured

by the approximate expression for the probability of the pair-production given by Eq. (4.6). We

calculate the corresponding yield, Nesti
nonlin, by binning the photon spectrum and then applying

Eq. (4.6) for each energy bin. We use â from Fig. 4.8(a) instead of amax. The exact value of n in

Eq. (4.6) is not very important, since the trends are set by the strong dependence of R. We take

n = 15, which is the value of n for our laser pulses before they enter the channel. Figure 4.8(c)

shows Nesti
nonlin as a function of α and β . The general trend matches that in Fig. 4.6(f).

One important consequence of the observed trend is that, by increasing the length of the

channel, the yield from the nonlinear BW process can be almost completely eliminated while

retaining a significant yield from the linear BW process. Figures 4.6(a), 4.6(b), and 4.6(f) provide

a specific parameter range needed to realize this regime within our scan.

4.3.3 Bethe-Heitler Pair Yields
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Figure 4.9. Total number of emitted photons with energy above 2mc2 as a function of α and β

(assuming that the size along the third dimension is equal to dch = 5 µm).

82



The BH process takes place when gamma-rays pass through the Coulomb field of ions.

In order to estimate the yield from this process while keeping the calculations as simple as

possible, we treat our ions as immobile and use their initial or unperturbed density to calculate

the yield. We use a cross-section for a fully ionized unscreened nuclei given by formula 3D-0000

in Ref. [67]. This cross-section is monotonically increasing with the energy of the gamma-ray ε ,

and for ε > 4mc2, the leading term is proportional to ln(2ε/mc2). The most energetic photons

emitted in our system have about 900 MeV of energy. Between 4mc2 and 900 MeV, the value

of ln(2ε/mc2) changes by only about a factor of four. This means that the BH process has a

relatively low sensitivity to gamma-ray energies in our range.

Figure 4.9 shows the number of photons with ε > 2mc2 in our parameter scan. The

photon number tends to increase with length (with β ), but the change is moderate. In order to

obtain an approximate trend for the yield, we need to multiply the photon number by the ion

density or, equivalently, by α . This would compress the red region in Fig. 4.9 upwards, which

qualitatively agree with the trend shown in Fig. 4.6(g).

A comparison between Fig. 4.6(b) and Fig. 4.6(c) reveals that by reducing the relative

contribution of the nonlinear BW process by going to lower α and higher β we can automatically

reduce the contribution of the BH process. In general, the BH process inside the channel produces

a number of pairs that is at least an order of magnitude smaller than the number of pairs produced

by the linear BW process. This suggests that our setup can serve as useful platform for studies of

the BW processes.

4.4 Summary and discussion

Using two-dimensional PIC simulations, we have investigated the impact of the channel

density and length on pair production by linear Breit-Wheeler process, nonlinear Breit-Wheeler

process, and Bethe-Heitler process at fixed laser intensity of 5×1022 Wcm−2. We found that

these parameters can be successfully used to increase the linear Breit-Wheeler pair yield. More
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importantly, the relative contribution of each process can be adjusted by changing the same

parameters. We show that this approach allows us to completely eliminate the yield from the

nonlinear Breit-Wheeler process while maintaining a significant yield from the linear Breit-

Wheeler process. The Bethe-Heitler process plays a secondary role in the considered system, so

the majority of the positrons inside the channel are produced from light alone.

Our results indicate that a structured target irradiated by two laser beams can serve as a

versatile platform for future experimental studies of the Breit-Wheeler pair production processes.

The scalings shown in Fig. 4.6 can be used to distinguish between different pair production

processes by performing experiments with targets of various density and length. These target

parameters are adjustable via target fabrication [105, 106, 37, 36, 107].

Another advantage of using structured targets with a prefilled channel is that these targets

mitigate effects of laser prepulse. In our setup, the channel density exceeds nc, which means that

the channel remains opaque as long as the laser amplitude remains non-relativistic (normalized

laser amplitude being less than unity). This means that non-relativistic laser prepulse is unable to

enter the target. In contrast to the prefilled channels, hollow channels can be sensitive to laser

prepulse. For example, it has been shown that the pre-expansion of the channel walls caused by

prepulse can change electron acceleration [111] and photon emission [112] in hollow channels.

Our parameter scan is performed using 2D PIC simulations. One of the main reasons for

using 2D PIC simulations is the computational difficulty of calculating the linear BW yield for

3D photon motion (This was so by the time of the publication of materials in this chapter. PIC

codes with such implementation are done which are shown in Chapter VI and Chapter VII). The

post-processing algorithm that we use has been developed specifically for 2D photon motion (no

algorithm currently exists that can treat 3D photon motion). Previous studies [41, 13] show that

the divergence of the emitted photons in 3D simulations is not symmetrical, with most of the

divergence taking place in the laser polarization plane. Our 2D PIC simulations already capture

this divergence while neglecting the much weaker photon divergence out of the polarization

plane. Therefore, it is reasonable to expect that our approach that uses 2D simulations captures
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the key trends of the pair production. Moreover, in our calculations, the same photons are used

to compute the yield for all three processes. An important implication of this is that possible

differences in photon numbers between 2D and 3D simulations would impact all three processes

in a similar way.
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4.6 Appendices

4.6.1 Particle-in-cell simulation setups

All simulations presented in this chapter were carried out using the fully relativistic

particle-in-cell code EPOCH [17]. All our simulations are 2D-3V. The axis of the target is always

aligned with the axis of the counter-propagating lasers at y = 0. Each laser beam is focused at

the corresponding channel opening. The lasers are linearly polarized (the electric field is in the

plane of the simulation). In the absence of the target, the lasers have the same Gaussian profile in

the focal spot and the same Gaussian temporal profile. The target is initialized as a fully-ionized

85



plasma with carbon ions.

Table 4.1 provides detailed parameters for the simulations presented in Section 4.2. The

bulk electron density is constant during the intensity scan while the electron density in the

channel is set at nch = (a0/100)3.8nc. Table 4.2 provides simulation parameters of the scan

discussed in Section 4.3. In order to avoid repetition, Table 4.2 only lists those parameters that

differ from the parameters listed in Table 4.1.

Table 4.1. Parameters of the 2D PIC simulations of Sec. 4.2.

Laser parameters
Normalized peak amplitude a0 = 40−250
Peak intensity range I0 = 0.2−8.5×1022 Wcm−2

Wavelength λ0 = 1 µm
Focal plane of laser #1 x =−L/2 µm
Focal plane of laser #2 x = L/2 µm
Laser profile (longitudinal and trans-
verse)

Gaussian

Pulse duration (full width at half
maximum for intensity)

50 fs

Focal spot size (full width at half
maximum for intensity)

3.6 µm

Target parameters
Target thickness (along y) 30 µm
Target length (along x) L = 70 µm
Channel width dch = 5 µm
Composition C+6 and electrons
Channel density nch = 1.5−9.5nc
Bulk density nbulk = 100nc

Simulation parameters
Simulation box in x −(L/2+5 µm)< x< (L/2+5 µm)
Simulation box in y −18 µm < y < 18 µm
Spatial resolution 40 cells per µm in x

20 cells per µm in y
Macro-particles per cell 40 for electrons

20 for carbon ions
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Table 4.2. Simulation parameters used for the scan presented in Sec. 4.3.

Parameters of the scan
Normalized field amplitude a0 = 190
Peak intensity range I0 = 4.9×1022 Wcm−2

Target length (along x) L = 31 µm, 37 µm, 46 µm, 58 µm,
70 µm, 84 µm,
105 µm, 131 µm, 157 µm

Channel density nch/nc = 4.7, 5.7, 7.1,
8.9, 10.6

Spatial resolution 80 cells per µm in x
80 cells per µm in y

Macro-particles per cell 10 for electrons
5 for carbon ions

Table 4.3. Pair yield from the linear BW process in the parameter scan of Section 4.3.

Linear Breit-Wheeler pair yield NBW
lin [108]

PPPPPPPPP0000α

0β
2/3 4/5 1 5/4 3/2

3/2 7.53 8.69 9.22 9.16 7.94
5/4 7.94 8.93 10.21 8.52 7.34
1 8.50 9.38 8.75 7.56 5.98
4/5 8.88 8.43 8.09 6.50 4.95
2/3 8.02 7.98 7.29 5.49 4.06

4.6.2 Positron yield from linear BW, nonlinear BW, and BH processes

Tables 4.3, 4.4, and 4.5 show the pair yields by different processes for the parameter

scan of Section 4.3. The yields NBW
lin and NBH are computed only in the region set by the initial

location of the channel walls, |y| ≤ dch/2. The calculation method is described at the end of

Section 4.2.

4.6.3 Definition of â

In Section 4.3.2, we use the value of â that essentially stands for the maximum value

of the normalized electric field in the laser pulses prior to their collision. However, the field

experiences fluctuations in addition to the oscillations associated with the laser wavelength. By
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Table 4.4. Pair yield from the nonlinear BW process in the parameter scan of Section 4.3.

Nonlinear Breit-Wheeler pair yield NBW
nonlin [108]

PPPPPPPPP0000α

0β
2/3 4/5 1 5/4 3/2

3/2 2.68 2.32 3.35 1.79 0.67
5/4 1.84 5.02 6.47 2.87 0.12
1 4.13 7.93 10.61 1.02 0.10
4/5 12.29 3.26 4.21 1.48 0.09
2/3 12.96 6.38 5.61 0.33 0

Table 4.5. Pair yield from the BH process in the parameter scan of Section 4.3.

Bethe-Heitler pair yield NBH [106]
PPPPPPPPP0000α

0β
2/3 4/5 1 5/4 3/2

3/2 13.92 15.88 18.15 19.73 20.61
5/4 12.49 14.88 16.59 17.11 16.27
1 11.37 13.12 14.04 14.97 13.29
4/5 9.83 10.53 11.86 11.12 12.19
2/3 8.54 8.91 9.54 9.59 8.91

taking the maximum of Ey for a given snapshot can introduce uncertainties in â that depend on

the timing of the snapshot. In order to reduce the impact of these uncertainties, we introduce an

averaging procedure. For a given snapshot, we first average ay = Ey|e|/mcω0 in the transverse

direction within a window with |y| < 2 µm. This window and the profile of ay (for a channel

with α = β = 1) are shown in Fig. 4.10(a). The result of this averaging is ay. Figure 4.10(b)

shows ay for ay from Fig. 4.10(b). We next divide the domain in Fig. 4.10(b) into four quadrants

and pick three tallest spikes of |ay| in each quadrant, as shown in Fig. 4.10(b). Finally, we define

â as an average of these twelve values.
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Figure 4.10. (a) Normalized transverse electric field ay = |e|Ey/mcω0 before the collision of
two laser beams in a channel with α = β = 1. The region of averaging is marked by dashed
black lines. (b) ay, which is ay from the upper panel averaged over y, as a function of x. Solid
black lines show how we split the domain in four quadrants. The black circles mark three tallest
spikes of |ay| in each quadrant.
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Algorithm for computing the electron-
positron yield from the linear
Breit-Wheeler process in high-intensity
laser-plasma interactions

High-intensity laser-plasma interactions have been shown to generate dense populations

of gamma-rays, so these interactions are expected to generate electron-positron pairs via binary

photon collisions (linear Breit-Wheeler process). However, particle-in-cell (PIC) codes that are

used for studies of laser plasma interactions are not yet equipped to compute the yield from

the linear Breit-Wheeler process. We present a post-processing algorithm that allows one to

quickly calculate the yield of the linear Breit-Wheeler process inside a photon-emitting plasma

using PIC simulation data. The algorithm splits the PIC computational domain into smaller sub-

domains whose shape and size are determined based on a specific problem. The photons emitted

within each sub-domain are grouped into collimated mono-energetic beams called beamlets.

The algorithm computes the yield by evaluating beamlet-beamlet collisions without the spatial

integration over the interaction region. Presented benchmarking shows that the computational

time is reduced by two orders of magnitude compared to the direct approach that involves the

spatial integration, while the resulting error in the total yield remains around 10%. We also show

how the algorithm can be leveraged to compute the density of the pair-producing events and the

positron momentum distribution at the time of their creation. The ability of our algorithm to

quickly compute the pair yield makes it a useful tool for studies of high-intensity laser-plasma

interactions. It can also be useful for testing future implementations of the linear Breit-Wheeler
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process into plasma simulation codes.

5.1 Introduction

One of the fundamental predictions of quantum electrodynamics (QED) is the annihilation

of two photons into an electron-positron pair, or the linear Breit-Wheeler (linear BW) process [1].

Besides playing a fundamental role in QED, the linear BW process also plays an important

role in astrophysics. For example, it determines the opacity of our Universe to high energy

photons [2] and the pair cascades in pulsar magnetospheres [3, 4, 5, 40]. However, the linear

BW process is yet to be observed in a laboratory using real photons (the nonlinear Breit-Wheeler

process has been observed [22], whereas the linear BW process has been observed only via the

use of virtual photons [94]). The obstacles are its small cross section and a high photon energy

threshold. In order to achieve a detectable yield, a dense photon population with energies at least

in the multi-MeV range is required, which none of the traditional photon sources are capable of

achieving.

The invention of the chirped pulse amplification technique has stimulated a rapid ongoing

development of ultra-intense laser systems. The existing state-of-art laser facilities are able

to achieve laser intensities that exceed 1022 W/cm2 [6, 7, 8], whereas the systems that are

currently under construction are expected to approach intensities of 1023 W/cm2. A material

irradiated by such intense electromagnetic fields is quickly ionized, turning into a plasma

with relativistic electrons. Energetic gamma-rays are efficiently emitted by these relativistic

electrons via synchrotron emission during electron deflections by laser and plasma fields [80,

41, 101, 102, 82, 103]. There has been increased interest in utilizing energetic photons emitted

during the ultra-intense laser plasma interactions to experimentally observe the linear BW

process [11, 12, 74, 73, 13, 10, 75].

Computational studies can facilitate the search for optimal setups, but, being a binary

process, the linear BW process is challenging to implement into kinetic simulations. In fact,
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none of the modern particle-in-cell (PIC) simulation codes are able to compute the yield for

the linear BW process even though other pair production processes like the nonlinear BW and

Bethe-Heitler (BH) processes are routinely used in PIC simulations (This was so by the time of

the publication of materials in this chapter. Implementation of the linear BW process into PIC

codes are done which are shown in Chapter VI and Chapter VII). The linear BW process requires

simulating binary photon collisions under conditions where the photon mean free path greatly

exceeds the size of the physical system under consideration, i.e. the photon population is very

much collisionless. Directly simulating these collisions requires performing N2 queries, where N

is the number of photons in the system. If the photons are represented by Nmacro macro-particles,

then the number of queries is significantly smaller, provided that Nmacro≪ N. However, this

number is still too large for this approach to be feasible for ultra-intense laser-plasma interactions.

For example, in the setup investigated in Ref. [75], Nmacro ≈ 109 for photons with energies above

50 keV, which means that the number of required queries is 1018.

In some cases, the difficulty associated with the large number of queries can be circum-

vented using a random pairing approach. The domain is typically separated into sub-domains

where the particles are randomly paired up every time-step, and only these random pairs are

checked for collisions. This procedure is repeated each time-step. The random pairing approach

has been shown to work well for Coulomb collisions [113, 114, 115, 116, 117]. Repeated over

many time-steps, it correctly recovers plasma relaxation processes. It must be stressed that

the random pairing algorithm for Coulomb collisions is usually used for those systems where

the electrons experience multiple collisions during the simulation time, i.e. the electrons are

collisional. The effectiveness of the random pairing method in the case of a photon population

with a very low collision rate is not clear and it remains to be investigated.

Other algorithms exist that can directly compute binary collisions without performing

all the possible queries. One such algorithm has been recently developed for the linear BW

process [61]. A significant reduction in the number of queries is achieved by grouping the

photons and only checking the photons for collisions if the corresponding groups collide. This
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method works well if the emission and collision regions are spatially separated. This is the case

for those setups where two photons beams produced inside two separate targets have to travel

in vacuum before colliding with each other [12, 61, 13]. In contrast to that, if two lasers pulses

collide inside a target [75], then new photons are emitted within the region where the photon

collisions take place, with the emissions and collisions happening concurrently. These features

make it impossible to pre-sort the photons in order to reduce the number of queries and this then

reduces the efficiency of the method relying on grouping the photons [61]. The same difficulty

arises in a recently discussed setup that uses a single laser pulse [104] where the emissions and

collisions also happen concurrently.

In this chapter, we present a post-processing algorithm that allows one to quickly calculate

the yield of the linear BW process inside a photon-emitting plasma using PIC simulation data.

The algorithm splits the PIC computational domain into smaller sub-domains whose shape and

size are determined based on a specific problem, with each sub-domain typically containing

multiple cells used by the PIC simulation. The photons emitted within each sub-domain are

grouped into “beamlets” – collimated mono-energetic beams whose density varies along the

beam. The cross-section of the linear BW process depends on the energy and relative orientation

of the colliding photons, so that it is the same for all photon collisions for a given pair of beamlets.

The algorithm computes the yield of electron-positron pairs for every possible combination of

two beamlets and then these contributions are added up.

The algorithm is made fast by replacing integration over space and time with a single

integral over time when computing a collision of two beamlets. This is an important and justifiable

simplification for beamlets with a temporal duration longer than the typical photon travel time

through the region where most of the photon-photon collisions take place. The simplification

dramatically reduces the required computational time. The algorithm is designed to perform

better for systems with a large number of photons concentrated in a small region, which are the

conditions relevant to high-intensity laser-plasma interactions. It is straightforward to parallelize

the algorithm because it treats beamlet-beamlet collisions as independent by ignoring the very
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weak reduction in the number of photons due to the linear BW process. The weak attenuation of

the photon population due to pair production suggests that the developed algorithm can be used

in conjunction with algorithms for simulating other pair production processes (the nonlinear BW

and BH processes) in the laser-irradiated plasmas.

The rest of this chapter is organized as follows. Section 5.2 presents an example of a

high-intensity laser-plasma interaction that motivated the development of our post-processing

algorithm. Section 5.3 provides a detailed description of our algorithm. Section 5.4 then presents

an accuracy analysis. In Section 5.5, we benchmark the algorithm using a reduced photon data

set from the simulation presented in Section 5.2. In Section 5.6, we apply our algorithm to the

entire data set to find the total pair yield and their spatial and momentum distribution. Finally,

Section 5.7 summarizes our results and provides an additional discussion of the algorithm.

5.2 Motivating example

The development of the post-processing algorithm presented in this chapter is motivated

by the need to evaluate the yield of the linear BW process inside a photon-emitting laser-

irradiated plasma. We have previously investigated two setups that can produce a plasma with

dense colliding populations of energetic photons [75, 104] (shown in Chapter II and III) and thus

enable an appreciable yield from the linear BW process. It is instructive to review one of the

setups here before describing the algorithm. We specifically focus on the key features of the

photon emission in order to make the assumptions made by the algorithm easier to rationalize

and understand.

We review the setup used in Ref. [75] (which is the one presented in Chapter II) and

shown in Fig. 5.1. It involves a structured target with a pre-filled channel that is irradiated from

both sides by two ultra-high-intensity laser pulses. The channel, whose electron density is lower

than the electron density in the bulk, enables stable propagation [41] and alignment of the two

lasers. The laser peak intensity is the same for both lasers and it is I0 = 4.9×1022 Wcm−2. The
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Figure 5.1. Photon generation in a structured target irradiated by two counter propagating laser
beams. (a) Electron density ne (gray scale), transverse electric field of laser #1 Ey (color scale)
and energetic electrons with γ ≥ 800 accelerated by laser #2 (dots, colored by γ). The snapshot
is taken prior to the laser-laser collision at t ≈−6 fs. The laser pulses arrive to the mid-plane
(x = 0) and collide at t = 0. (b) The density of photons with energy ε ≥ 1 keV, in units of the
critical density nc after the laser-laser collision at t ≈ 38 fs. Reproduced with permission from
He et al., Communications Physics, 444, 139 (2021). Copyright 2021 Authors, licensed under a
Creative Commons Attribution (CC BY 4.0) license. Adapted from original.

corresponding peak normalized laser amplitude, defined as a0 = 0.85I1/2
0 [1018Wcm−2]λ0[µm],

is a0 = 190, where λ0 = 1 µm is the laser wavelength in vacuum. Detailed laser and plasma

target parameters are listed in Table 5.1.

The channel becomes transparent when irradiated by the laser beams due to relativistically

induced transparency [28, 29]. The cutoff electron density for a laser with a0≫ 1 is roughly

a0nc rather than nc, where nc = πmc2/(eλ0)
2 is the conventional cutoff density at a0≪ 1. Here

m is the electron mass, e is the electron charge, and c is the speed of light. In our case, the

channel electron density, ne ≈ 7nc, is much higher than nc, but it is much lower than a0nc, which

enables unimpeded laser propagation. By using such a high channel density we increase the

number of laser-accelerated electrons and, as a consequence, the number of generated energetic

photons. The density in the bulk is set at ne = 100nc ∼ a0nc, which enables the channel walls to
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Figure 5.2. Energy-angle spectrum ∂ 2N/∂ s∂θ [◦−1] of emitted photons in the 2D-3V PIC
simulation shown in Fig. 5.1. Here, θ is the angle between the photon momentum ppp and the
x-axis and s is a dimensionless energy variable defined by Eq. (5.2). The photon number N
is calculated by taking the size of the ignored dimension to be equal to the channel width
dch = 5 µm. Reproduced with permission from He et al., Communications Physics, 444, 139
(2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY 4.0)
license. Adapted from original.

guide both beams. Structured targets, similar to the one considered here, have been fabricated

and used for a recent experiment at the Texas Petawatt Laser Facility [76].

In the considered setup and for the chosen parameters, most of the energetic photons

are produced when the electrons accelerated by one of the laser beams collide with the other

beam. Electron energy gain prior to the collision is aided by a strong slowly evolving, azimuthal

magnetic field driven by each laser beam [49, 118]. Transverse deflections by the magnetic field

lead to enhanced direct laser acceleration of electrons where the electrons gain energy with each

transverse oscillation while moving forward with the laser beam [49, 118]. For example, after

propagating for ∼ 30 µm along the channel, laser #2 in Fig. 5.1(a) has generated a left-moving

beam of ultra-relativistic electrons with a peak energy reaching 800 MeV. Laser #1 generates a

similar electron beam moving to the right.

The electron beams scatter after colliding with a corresponding counter-propagating laser
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and this rapid change in the direction of electron motion leads to emission of electromagnetic

radiation in the form of energetic gamma-rays. The gamma-rays are essentially emitted along

the electron momentum (at the time of the emission) because the emitting electrons are ultra-

relativistic. In our 2D simulation that was performed using PIC code EPOCH [17], the photon

emission is modelled using a Monte Carlo module for quantum synchrotron radiation [43] that

neglects the finite width of the emission cone. The photons are emitted as macro-particles that

have energy (ε), momentum (ppp), and weight (w). In total, there are 6× 108 macro-particles

representing photons with energies above 1 keV in the simulation. To reduce the use of storage

space, we randomly select 5% of the macro-particles with photon energies between 1 keV and

50 keV and 10% of the macro-particles with energies above 50 keV. In order to preserve the

photon distribution, we multiply the weight w of the first group by 20 and the weight of the

second group by 10. The resulting angularly resolved spectrum of the photons is given in Fig. 5.2.

The photon spectrum in Fig. 5.2 shows that 1) the emitted photons move in both directions

along the x-axis and 2) our setup produces energetic gamma-rays whose energy can reach tens

of MeV. The combination of these two features creates favorable conditions for photon-photon

collisions that can produce electron-positron pairs via the linear BW process. The process has a

threshold [95]
ε1ε2

(mc2)2
1− cosϕ

2
> 1 (5.1)

set by energy and momentum conservation requirements, where ε1 and ε2 are the energies of the

colliding photons and ϕ is the collision angle. The threshold has the lowest value for a head-on

collision (ϕ = π), with ε1ε2 > (mc2)2 ≈ (0.511 MeV)2. Therefore, the pair production requires,

at the very least, photons with energies in the MeV range. Our photon population easily satisfies

this requirement. The colliding geometry is created by the two counter-propagating electron

beams generated by the counter-propagating laser beams.

The range of photon energies relevant to the linear BW process is set by the most energetic

part of the photon spectrum. It is convenient to introduce a dimensionless energy variable defined
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as

s = log10
(
ε/mc2) . (5.2)

Equation (5.1) can then be rewritten in the following form

s1 >−s2 + log10

(
2

1− cosϕ

)
(5.3)

where s1 corresponds to ε1 and s2 corresponds to ε2. The lowest photon energy that can lead to

pair production is determined by setting ϕ = π and s2 = smax. It follows from Eq. (5.3) that

smin =−smax. (5.4)

According to Fig. 5.2, smax ≈ 2 in our simulation, so we have smin ≈−2. This means that the

relevant range of photon energies spans roughly four orders of magnitude.

The last aspect that needs to be discussed is the concurrency of the photon emission

and photon collisions in the considered setup. The enhanced photon emission starts as soon

as the leading part of an ultra-relativistic electron beam produced by one of the lasers meets a

counter-propagating laser beam. This happens roughly at the time (t = 0) when the lasers reach

the mid-plane (x = 0). We define a region of active emission as the region where one of the

electron beams overlaps with a counter-propagating laser. This region increases in time at t > 0.

As seen in Fig. 5.1, the electron beam in our case is roughly 15 µm long, which means that the

rear side of each electron beam starts to emit with at least a 25 fs delay. On the other hand, the

photons that have been emitted by this point keep moving forward and can potentially collide

with each other. The collisions can happen in the region of active emission, which distinguishes

this setup from the one used in Refs. [12] and [13] where the collisions occur away from the

emission region. Figure 5.1(b) shows the density of photons with ε > 1 keV at t = 38 fs. At this

stage, the density of the photon population is extremely high. The population contains photons

moving in the opposite directions, so this is the stage when the pair production is likely to occur
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in our setup. This example emphasizes that a suitable algorithm must be able to evaluate the pair

yield in the region of the photon emission.

5.3 Algorithm description

We are interested in a system, similar to that discussed in Section 5.2, where the photons

emitted by plasma electrons experience collisions with each other within the same plasma. We

assume that the photon emission process is modelled using a PIC code such that the emitted

photons are represented by macro-particles that have energy (ε), momentum (ppp), and weight (w).

For example, this is the case for simulations performed with the PIC code EPOCH [17].

Our algorithm is a post-processing algorithm for computing the yield from the linear

BW process using the PIC simulation data. In addition to ε , ppp, and w, the algorithm uses the

time t0 and location rrr0 of emission for each photon macro-particle. In the case of EPOCH, the

emission time t0 is not one of the output quantities, so we had to modify the source code in order

to output t0 for each photon macro-particle. We limit our analysis to a two-dimensional setup

where the photon macro-particles move in the (x,y)-plane and have only px and py components

of the momentum. Our goal is to compute the total number and spatial distribution of the pairs

created as a result of the photon-photon collisions.

We make the problem computationally manageable by grouping emitted photons into

“beamlets”. A beamlet consists of collimated monoenergetic photons emitted within a fixed

sub-domain. The photons are assigned to sub-domains based on their emission location rrr0. It is

convenient to number the sub-domains, so they are represented by rrr j
0, where j is an integer that

runs from 1 to Nsub – the total number of sub-domains. We use rectangular sub-domains, with rrr j
0

being the sub-domain center. For a given sub-domain, we define beamlets using two variables:

angle θ , which is the angle between ppp and the x-axis, and a dimensionless energy variable s,

defined by Eq. (5.2). We use s rather than ε because the energy range relevant to the linear BW

process can span four orders of magnitude, as shown in the example discussed in Section 5.2.

99



Beamlet 1

x
y

Beamlet 2

ε1
ε2

V

(a)

(b)

(c)

V

(d)

φ

𝜃𝑛1

𝜃𝑛2

𝛥𝜃

2

𝛥𝜃

2

𝛥𝜃

2

𝛥𝜃

2

𝑟∗

𝑟∗

L2
L1

Figure 5.3. (a) Two beamlets, Beamlet 1 and Beamlet 2, that overlap in region V . The small
rectangles show the sub-domains that emit each of the beamlets. (b) Beamlet shape, when the
beamlet widening is neglected. The color schematically shows the density variation. (c) Density
variation along each beamlet can be calculated by emission time temit of photons. (d) Region
V for head-on collision of two beamlets. Our algorithm uses the photon density at the location
marked by r∗ (black circle) to compute the yield.
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Figure 5.4. Contour plots of the cross section σγγ for the linear BW process, given by Eq. (5.9),
for ϕ = π . (a) and (b) σγγ as a function of energies ε1 and ε2 of the two colliding photons. The
difference between (a) and (b) is the energy range. (c) σγγ as a function of s1,2 = log10

(
ε1,2/mc2).

The cross section is normalized to its maximum value σmax ≈ 1.70×10−29 m2.

The beamlets are defined by

θn = (n−1)∆θ (5.5)

and

sk = smin +(k−1)∆s, (5.6)

where n and k are integers and ∆θ and ∆s are input parameters that set the discretization in

θ and s. The index n runs from 1 to Nθ = ⌊2π/∆θ⌋, whereas the index k runs from 1 to

Ns = ⌊(smax− smin)/∆s⌋. A beamlet labeled by θn and sk contains the photons whose angle and

energy meet the following criteria:

θn−∆θ/2 < θ ≤ θn +∆θ/2, (5.7)

sk−∆s/2 < s ≤ sk +∆s/2. (5.8)

Figure 5.3(a) provides a graphical representation of two colliding beamlets.

The discretization in s also makes it easier to capture the dependence of the cross section

for the linear BW process on energies of the colliding photons. The cross section of the linear
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BW process [95] for photons with energies ε1 and ε2 colliding at an angle ϕ is

σγγ =
πr2

e
2

(1−ν
2)×

[
−2ν(2−ν

2)+(3−ν
4) log

(
1+ν

1−ν

)]
, (5.9)

where

ν =
√

1−1/ξ , (5.10)

ξ =
ε1ε2

(mc2)2
1− cosϕ

2
, (5.11)

and re = e2/mc2≈ 2.82×10−15 m is the classical electron radius. The photon collision produces

an electron-positron pair only if ξ > 1, which is the threshold given by Eq. (5.1). Figure 5.4(a)

shows σγγ for a head-on collision (ϕ = π) as a function of ε1 and ε2 for 0 ≤ ε1,2/mc2 ≤ 100.

Figure 5.4(b) is a zoomed-in version for 0 ≤ ε1,2/mc2 ≤ 10. What stands out is that σγγ has

a very narrow peak for ε1,2≫ ε2,1. This sensitivity requires extremely fine discretization in ε ,

which can lead to a large number of beamlets. For example, if ∆ε ≈ 0.01mc2, then we would

need to split the energy range 0.01≤ ε/mc2≤ 102 into∼ 104 segments. As shown in Section 5.2,

such a wide range is required to compute the pair yield in the considered example. The plot

of σγγ as a function of s1 and s2, shown in Fig. 5.4(c), is qualitatively different, because it no

longer has a narrow peak. Note that the energy range covered by this plot is the same as that

in Fig. 5.4(a). The dependence on s can then be sufficiently well-resolved with ∆s = 0.05. In

this case, we would need only Ns ≈ 80 segments to represent the range −2 ≤ s ≤ 2, which is

equivalent to the energy range 0.01≤ ε/mc2 ≤ 102.

The advantage of representing photons by beamlets is that instead of considering binary

photon-photon collisions we can work with a much smaller number of beamlet-beamlet collisions.

The total number of beamlets, Nbeamlets = NsubNθ Ns, is set by the described discretization rather

than by the number of photon macro-particles created in the PIC simulation. By properly

choosing the discretization parameters, Nbeamlets can be made much smaller than the number
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of the photon macro-particles such that the number of beamlet-beamlet collisions becomes

computationally manageable.

We now consider two beamlets: the first beamlet has s = sk1 , θ = θn1 , and a time-

dependent photon density ρ1(rrr, t); the second beamlet has s = sk2 , θ = θn2 , and a time-dependent

photon density ρ2(rrr, t). We neglect the spread in s and θ within each beamlet set by the

discretization. The linear BW reaction rate is given by

R(rrr, t) = κcσγγ(sk1,sk2,ϕ)ρ1(rrr, t)ρ2(rrr, t), (5.12)

where

ϕ = θn2−θn1 (5.13)

is the collision angle and

κ = 1− cos(ϕ) = 1− cos(θn2−θn1) (5.14)

is a kinematic factor. The total yield (per unit length along the z-axis) for the two considered

beamlets is

Npairs =
∫

∞

−∞

dt
∫∫

V
R(rrr, t)dxdy = κcσγγ(sk1,sk2,ϕ)

×
∫

∞

−∞

dt
∫∫

V
ρ1(rrr, t)ρ2(rrr, t)dxdy, (5.15)

where the spatial integration is performed over the two-dimensional region V where the two

beamlets overlap. The expression given by Eq. (5.15) involves a triple integral, which makes it

computationally demanding.

We simplify our calculation by assuming that the photon density changes insignificantly

within the integration region V . We replace ρ1,2(rrr, t) with their values at the intersection of the

beamlet axes rrr = rrr∗. Figure 5.3(c) shows how the axis of a given beamlet is defined – it is the
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central axis whose angle with the x axis is θ = θn. The simplified expression for the number of

pair then only involves the temporal integration:

Ñpairs ≈ κcσγγ(sk1 ,sk2,ϕ)V
∫

∞

−∞

ρ1(rrr∗, t)ρ2(rrr∗, t)dt. (5.16)

We use Ñpairs rather Npairs for the number of pairs in order to distinguish this result from that

obtained using the direct approach that involves spatial integration. In the case of a head-on

collision of two beamlets, the central axes overlap rather than intersect. We therefore assign rrr∗

to be the midpoint between the two sources of beamlets, i.e. their parent sub-domains.

In order to make further progress, we need a procedure for calculating ρ(rrr, t) for a given

beamlet labeled by θn and sk. We neglect beamlet widening, so that the beamlet is a stripe

originating at the parent sub-domain and directed according to θn, as shown in Fig. 5.3(b). The

photons emitted by the sub-domain move with the speed of light c along the stripe without

overtaking each other. We group them by their emission time t0 using a finite time interval ∆t.

We introduce ti = tstart + i∆t, where tstart is the start of the simulation and i is an integer. The

index i runs from 1 to Nt = ⌊(tend− tstart)/∆t⌋, where tend is the end of the simulation. We define

δNi as the number of photons emitted during a time interval ti−∆t ≤ t0 < ti. The density of

this photon cloud is ρ i ≈ δNi/hc∆t|cos(θn)|, where h is the height of the sub-domain. This

result assumes that the width of the sub-domain is much smaller than c∆t. The values of δNi

must be obtained from the PIC simulation data by summing up the weights of emitted photon

macro-particles that satisfy conditions (5.7) and (5.8).

The photon density ρ i represents each beamlet as a sequence of uniform slices/clouds

shown in Fig. 5.3(c). This representation enables us to easily find the photon density at the

intersection of two beamlets. A photon slice with density ρ i emitted by a sub-domain located

at rrr = rrr j
0 arrives at rrr = rrr∗ at t = (ti−∆t) + |rrr∗− rrr j

0|/c. The next slice arrives at rrr = rrr∗ at
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t = ti + |rrr∗− rrr j
0|/c. We thus conclude that

ρ(rrr∗, t) = ρ
i, (5.17)

where

i = 1+

⌊
t− tstart−|rrr∗− rrr j

0|/c
∆t

⌋
. (5.18)

We can now use the obtained discretization to simplify the temporal integral in Eq. (5.16)

by a sum. A slice with index i1 from beamlet 1 collides with one or two slices from beamlet 2.

For compactness, we introduce

L1,2 = |rrr∗− rrr j1,2
0 | (5.19)

shown in Fig. 5.3(c). The first scenario occurs if |L1−L2|/c∆t is an integer. The corresponding

index i2 of the slice in beamlet 2 is

i2 = i1 +(L1−L2)/c∆t. (5.20)

We then find that ∫
∞

−∞

ρ1(rrr∗, t)ρ2(rrr∗, t)dt ≈ ∆t
imax

∑
i1=imin

ρ
i1
1 ρ

i2
2 (5.21)

where i2 is given by Eq. (5.20). For L1 ≥ L2, imin = 1 and imax = Nt − (L1− L2)/c∆t. For

L1 < L2, imin = 1+(L2−L1)c∆t and imax = Nt .

A slice from beamlet 1 collides with two consecutive slices from beamlet 2 if |L1−

L2|/c∆t is not an integer. Without any loss of generality, we assume that L1 ≥ L2. The index of

the first slice in beamlet 2 that experiences the collision is

i2 = i1 + ⌊(L1−L2)/c∆t⌋. (5.22)

This slice is already at rrr = rrr∗ by the time the considered slice from beamlet 1 with the index i1
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arrives. Therefore, their overlap time δ t is shorter than ∆t and it is given by

δ t
∆t

= 1−
(

L1−L2

c∆t
−
⌊

L1−L2

c∆t

⌋)
. (5.23)

We then find that

∫
∞

−∞

ρ1(rrr∗, t)ρ2(rrr∗, t)dt ≈
i1=imax−1

∑
i1=imin

[
ρ

i1
1 ρ

i2
2 δ t +ρ

i1
1 ρ

i2+1
2 (∆t−δ t)

]
+ρ

imax
1 ρ

Nt
2 δ t, (5.24)

where imin = 1 and imax = Nt−⌊(L1−L2)/c∆t⌋. Note that i1 in the sum runs only to imax−1 to

make sure that i2 +1 does not exceed Nt in the second term inside the square brackets. The last

term on the right-hand side of Eq. (5.24) accounts for the collision with the last slice of beamlet

2. Ideally, the duration of the simulation should be set such that no considerable emission occurs

at tend at any of the sub-domains, so that the discussed truncation of the sum has little effect on

the result.

The total yield (per unit length along the z-axis) for two beamlets is then given by the

following approximate expression

Ñpairs ≈ κcσγγ(sk1,sk2,ϕ)V

×

(
i1=imax−1

∑
i1=imin

[
ρ

i1
1 ρ

i2
2 δ t +ρ

i1
1 ρ

i2+1
2 (∆t−δ t)

]
+ρ

imax
1 ρ

Nt
2 δ t

)
. (5.25)

The expressions for i2 and δ t are given by Eq. (5.22) and Eq. (5.23). In the limit of (L1−

L2)/c∆t→ ⌊(L1−L2)/c∆t⌋, δ t→ ∆t and the expression in the brackets in Eq. (5.25) reduces to

the expression given by the right-hand side of Eq. (5.21). An important feature of Eq. (5.25) is

that it only involves a single sum, which reduces the time required to compute the pair yield. A

detailed error analysis of this simplification is presented in Section 5.4.

Our approach for computing the photon density implies that the photon depletion due

to the linear BW process is negligible. In order to estimate the maximum depletion, we use
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Algorithm 1: Linear BW process yield for beamlets emitted from two fixed
locations

/* The two beamlet emission locations are set as rrr j1
0 and rrr j2

0 */

Use PIC data to set smax and Eq. (5.4) to set smin
User provides ∆t, ∆θ and ∆s
Set θn and sk using Eqs. (5.7) and (5.8)
/* Loops over θn1 and sk1 at rrr j1

0 */

for n1← 1 to Nθ do
for k1← 1 to Ns do
/* Loops over θn2 and sk2 at rrr j1

0 */

for n2← 1 to Nθ do
for k2← 1 to Ns do
/* Check if the beamlets overlap */

if V ̸= /0 then
/* Check if sk1 and sk2 satisfy the energy threshold */

if Eq. (5.1) is true then
Compute Ñpairs from Eq. (5.25)

end
end

end
end

end
end
Sum up Ñpairs for the total yield: Ñtot

pairs = ∑ Ñpairs

the maximum value for the cross section, σmax ≈ 1.70×10−29 m2, and the maximum photon

density from Fig. 5.1(b), which is 500nc, where nc ≈ 1.1× 1021 cm−3. We then find that the

photons in our setup have to travel a distance that exceeds

lmfp ≈ (500ncσmax)
−1 ≈ 0.10 m (5.26)

before experiencing a collision that results in the linear BW process. The size of our photon cloud

is roughly 20 µm, so the probability for the photons to collide and disappear is 20 µm/0.10 m≈

2× 10−4. We then conclude that only a small fraction of the photons disappears due to the

linear BW process (2×10−4), so the depletion is indeed negligible. It was shown in Refs. [75]
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(Chapter II) and [119] (Chapter IV) that the pair yield by the nonlinear BW and BH processes

are at best comparable to the pair yield by the linear BW process in the considered system.

Moreover, the cross sections for the nonlinear BW and BH processes have a different photon

energy dependence from that for the linear BW process, so that the photons used by these two

processes do not necessarily participate in the linear BW process. We then conclude that, for

the purpose of calculating the linear BW pair yield, the impact of the nonlinear BW and BH

processes on the photon population can be ignored.

Algorithm 1 illustrates our approach for beamlets emitted from sub-domains labeled

by rrr j1
0 and rrr j2

0 . The result is a total pair yield from all possible beamlet pairings for the two

considered sub-domains. Each sub-domain emits Nθ Ns beamlets, so the number of pairings is

(Nθ Ns)
2. The total yield from the entire simulation domain is obtained by considering all possible

pairings of rrr j1
0 and rrr j2

0 , with rrr j1
0 ̸= rrr j2

0 . Using Algorithm 1, we can independently compute the

yield for different sub-domain pairings. The total number of electron-positron pairs is obtained

by summing up these results, Ñtot
pairs = ∑ Ñpairs.

Algorithm 1 requires only a slight modification in order to find the density of the pair-

production events in the interaction of two considered beamlets. We denote this quantity as

ρ̃pairs. The two beamlets overlap inside a two-dimensional region V . For a given region V , the

algorithm identifies all cells with a center located inside the region V , as schematically shown

in Fig. 5.5. Here we assume that the algorithm uses the cells of the PIC simulation, but any

cells can be used to perform this calculation. The algorithm uniformly distributes Ñpairs for

the considered beamlet-beamlet collision over the selected cells. After dividing the number of

generated pairs in each cell by the cell size we obtain ρ̃pairs(x,y). This process is repeated for

all beamlet-beamlet pairings and the calculated numbers are accumulated for each cell. The

result is the spatial density distribution of pair-producing events generated by all beamlets:

ρ̃ tot
pairs(x,y) = ∑ ρ̃pairs(x,y).
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V

Figure 5.5. The cells (orange) used to compute the spatial distribution of the pair-producing
events ρ̃pairs in a collision of two beamlets. The two beamlets overlap inside region V .

5.4 Accuracy Analysis

In this section, we examine the accuracy of the algorithm detailed in Section 5.3. Let

us again consider two overlapping beamlets, as shown in Fig. 5.3(a). The area of the region V

where the two beamlets overlap increases with the angle ϕ between the two beamlets, defined by

Eq. (5.13). Our approximate expression for Npairs given by Section 5.3 was derived by assuming

that ρ1(rrr, t) and ρ2(rrr, t) do not change significantly within the region V . Therefore, the beamlet

pairings that are likely to give the most inaccurate result are those with ϕ = π , i.e, when the

two beamlets collide head-on, as illustrated in Fig. 5.3(d). Therefore, we focus the analysis that

follows on the case of a head-on collision.

We start with the general expression (5.15) for the number of pairs produced by two

colliding beamlets. Without any loss of generality, we consider two beamlets emitted by sub-

domains with x = x j1
0 and x = x j2

0 , where x j1
0 < x j2

0 . We again neglect the beamlet widening and,
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for simplicity, we also assume that the photon density has no dependence on y (the y variable

will be omitted for compactness). The kinematic factor, defined by Eq. (5.14), is κ = 2 for the

considered head-on collision. Since we neglect the depletion of the photon population due to

the linear BW process as they travel through the system, the two photon densities ρ1(x, t) and

ρ2(x, t) are only functions of (x− ct) and (x+ ct), respectively. We therefore replace ρ1(x, t)

with ρ1(x− ct) and ρ2(x, t) with ρ2(x+ ct). Then the total yield from the considered head-on

collision of two beamlets is

Npairs = 2cσγγ(sk1,sk2 ,ϕ)h×
∫

∞

−∞

dt
∫ x j2

0

x j1
0

ρ1(x− ct)ρ2(x+ ct)dx, (5.27)

where h is the sub-domain height. The density of the pair-producing events is given by

ρpairs(x) = 2cσγγ(sk1,sk2,ϕ)
∫

∞

−∞

ρ1(x− ct)ρ2(x+ ct)dt, (5.28)

such that

Npairs =
∫ x j2

0

x j1
0

ρpairshdx. (5.29)

We denote the pair yield given by our algorithm as Ñpairs to distinguish it from the exact

result given by Eq. (5.27). For the same head-on collision of two beamlets, the yield from our

algorithm is given by Eq. (5.16), where rrr∗ is the midpoint between the two sources of beamlets

because we are considering a head-on collision. We introduce l = x j2
0 −x j1

0 and x∗ = (x j1
0 +x j2

0 )/2

to find

Ñpairs = 2cσγγ(sk1 ,sk2,ϕ)hl×
∫

∞

−∞

ρ1(x∗− ct)ρ2(x∗+ ct)dt, (5.30)

where it has been taken into account that ρ1 and ρ2 are functions of (x− ct) and (x + ct).

According to Section 5.3, the density of the pair-producing events generated by our algorithm
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for the considered head-on collision is simply ρ̃pairs = Ñpairs/hl, because V = hl. We then have

ρ̃pairs = 2cσγγ(sk1,sk2,ϕ)×
∫

∞

−∞

ρ1(x∗− ct)ρ2(x∗+ ct)dt. (5.31)

We next quantify the accuracy of our algorithm by comparing Ñpairs with Npairs and ρ̃pairs with

ρpairs.

5.4.1 Accuracy of the pair yield

In what follows, we compare Ñpairs given by Eq. (5.30) with Npairs given by Eq. (5.27). It

is evident that the major difference between the two equations is the integral over x in Eq. (5.27).

We thus start by considering this integral.

We use the definition of l to re-write the integral as

∫ x j2
0

x j1
0

ρ1(x− ct)ρ2(x+ ct)dx =
∫ l/2

−l/2
ρ1(x− ct)ρ2(x+ ct)d(x− x∗). (5.32)

In Eq. (5.30), ρ1 is a function of x∗− ct, which motivates us to expand ρ1(x− ct) in Eq. (5.32)

about x∗− ct:

ρ1(x− ct)≈ ρ1(x∗− ct)+(x− x∗)
∂ρ1(ξ1)

∂ξ1

∣∣∣∣
ξ1=x∗−ct

+
1
2
(x− x∗)2 ∂ 2ρ1(ξ1)

∂ξ 2
1

∣∣∣∣
ξ1=x∗−ct

. (5.33)

Following similar logic, we expand ρ2(x+ ct) in Eq. (5.32) about x∗+ ct:

ρ2(x+ ct)≈ ρ2(x∗+ ct)+(x− x∗)
∂ρ2(ξ2)

∂ξ2

∣∣∣∣
ξ2=x∗+ct

+
1
2
(x− x∗)2 ∂ 2ρ2(ξ2)

∂ξ 2
2

∣∣∣∣
ξ2=x∗+ct

. (5.34)

The product ρ1(x− ct)ρ2(x+ ct) contains linear terms, i.e the terms proportional to x− x∗, but

their integral over (x− x∗) vanishes. After retaining quadratic terms, i.e the terms proportional
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to (x− x∗)2 and performing the integration over (x− x∗) in Eq. (5.32), we find that

∫ l/2

−l/2
ρ1(x− ct)ρ2(x+ ct)d(x− x∗)

≈ lρ1(x∗− ct)ρ2(x∗+ ct)+
l3

12
∂ρ1(ξ1)

∂ξ1

∣∣∣∣
ξ1=x∗−ct

∂ρ2(ξ2)

∂ξ2

∣∣∣∣
ξ2=x∗+ct

+
l3

24
ρ1(x∗− ct)

∂ 2ρ2(ξ2)

∂ξ 2
2

∣∣∣∣
ξ2=x∗+ct

+
l3

24
ρ2(x∗+ ct)

∂ 2ρ1(ξ1)

∂ξ 2
1

∣∣∣∣
ξ1=x∗−ct

. (5.35)

We now substitute the approximate expression given by Eq. (5.35) into Eq. (5.27). The

integral over t of the first term on the right side of Eq. (5.35) yields Ñpairs, as evident from

Eq. (5.30). Therefore, the l3-terms in Eq. (5.35) represent the difference between Npairs and

Ñpairs, with

Npairs− Ñpairs

≈ cσγγ

hl3

6

∫
∞

−∞

[
∂ρ1(ξ1)

∂ξ1

∣∣∣∣
ξ1=x∗−ct

∂ρ2(ξ2)

∂ξ2

∣∣∣∣
ξ2=x∗+ct

]
dt

+ cσγγ

hl3

12

∫
∞

−∞

[
ρ1(x∗− ct)

∂ 2ρ2(ξ2)

∂ξ 2
2

∣∣∣∣
ξ2=x∗+ct

+ ρ2(x∗+ ct)
∂ 2ρ1(ξ1)

∂ξ 2
1

∣∣∣∣
ξ1=x∗−ct

]
dt. (5.36)

The derived expression indicates that the duration of the shortest beamlet sets an upper limit on

the error that we denote as ∆Nmax. We estimate ∆Nmax/Ñpairs using Eq. (5.35). Without any loss

of generality, we assume that the beamlet with density ρ1 is shorter than the beamlet with density

ρ2. Then the last term on the right-hand side of Eq. (5.35) provides the largest correction to the

value given by the first term on the right-hand side. The latter determines Ñpairs, so that the ratio

of the considered two terms is roughly ∆Nmax/Ñpairs. We estimate the last term in Eq. (5.35) as

(l3/24)ρ1(x∗− ct)ρ2(x∗+ ct)/(∆ξ1)
2, where ∆ξ1/c is the characteristic duration of the beamlet
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with density ρ1. We can then formulate the following general condition:

|Npairs− Ñpairs|
Ñpairs

≲
∆Nmax

Ñpairs
≈ l2

24(∆ξmin)2 , (5.37)

where ∆ξmin = ∆ξ1 if ρ1 is shorter than ρ2 (as in the considered example) and ∆ξmin = ∆ξ2 if ρ2

is shorter than ρ1, where ∆ξ2/c is the characteristic duration of the beamlet with density ρ2.

To provide an example of the algorithm’s accuracy, we have considered two beamlets

with

ρ1,2(ξ1,2) =
ρmax

2

[
1+ cos

(
π

ξ1,2−d1,2

∆ξ1,2

)]
(5.38)

for |ξ1,2− d1,2| < ∆ξ1,2 and ρ1,2(ξ1,2) = 0 for |ξ1,2− d1,2| ≥ ∆ξ1,2, where ξ1 = x− ct and

ξ2 = x+ ct. We set d1 =−d2 =−36l and x∗ = 0. We found directly from Eqs. (5.27) and (5.30)

that |Npairs− Ñpairs|/Ñpairs ≈ 4.9×10−4 for ∆ξ1 = 15l and ∆ξ2 = 40l. This value is comparable

to ∆Nmax/Ñpairs ≈ 1.9×10−4 given by Eq. (5.37), where we set ∆ξmin = ∆ξ1 = 15l. We have

then increased the duration of the longer beamlet to ∆ξ2 = 80l and repeated the calculation

using Eqs. (5.27) and (5.30) to find that the error has reduced by roughly a factor of seven

to |Npairs− Ñpairs|/Ñpairs ≈ 1.3× 10−4. On the other hand, ∆Nmax/Ñpairs given by Eq. (5.37)

remains unchanged, because the parameters of the shortest beamlet are unchanged, which

suggests that Eq. (5.37) overestimates the error if the two beamlets are very different in duration.

We have performed two additional scans to substantiate our observation. In the first scan,

we varied ∆ξ1 from 10l to 40l with ∆ξ2 = 60l. We found that the error reduces with the increase

of ∆ξ1, but the change is relatively small. Specifically, |Npairs− Ñpairs|/Ñpairs ≈ 2.3×10−4 for

∆ξ1 = 10l and |Npairs− Ñpairs|/Ñpairs ≈ 1.9×10−4 for ∆ξ1 = 40l. In our second scan, we varied

∆ξ2 from 10l to 80l with ∆ξ1 = 10l. The errors has reduced with the increase of ∆ξ2 by roughly

a factor of four hundred from |Npairs− Ñpairs|/Ñpairs ≈ 5.5×10−3 to |Npairs− Ñpairs|/Ñpairs ≈

1.3×10−5. In contrast to the scaling of ∆Nmax, the observed scaling is closer to l2/(∆ξmax)
2.

This result can be understood by examining the right-hand side of Eq. (5.36). The last term has
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the biggest absolute value for a given t. However, it is an oscillating term for the considered

shape of ρ1. Moreover, the integral over t of the second derivative alone is equal to zero. This

means that the contribution from the considered term greatly reduces with the increase of ∆ξ2,

which characterizes the duration of the beamlet whose photon density is ρ2. A similar argument

applies to the first term on the right-hand side, because the first derivative of ρ1 is also an

oscillating function. The second term on the right-hand side is different from the other two terms

because the second derivative of ρ2 does not experience significant oscillations on the time scale

comparable to the duration of the shortest beamlet. We can then conclude that the second term

that scales as l2/(∆ξ2)
2 should determine the error in the limit of ∆ξ2≫ ∆ξ1, which matches

our numerical results.

We conclude the discussion of our algorithm’s accuracy by examining a regime where

∆ξ1,2 are comparable to l. We set ∆ξ1 = ∆ξ2 = 5l. We found directly from Eqs. (5.27) and

(5.30) that the error, |Npairs− Ñpairs|/Ñpairs ≈ 2× 10−2, remains relatively small even in this

regime. It is worth pointing out that Eq. (5.37) predicts the error to be even smaller because the

corresponding expression is derived by assuming that both beamlets are much longer than l.

5.4.2 Accuracy of the density of the pair-producing events

In this subsection, we examine how our algorithm performs in computing the density of

the pair-producing events by comparing ρ̃pairs given by Eq. (5.31) with ρpairs given by Eq. (5.28).

To assess the error, we again use the approximate expressions for ρ1(x−ct) and ρ2(x+ct)

given by Eqs. (5.33) and (5.34). We retain only linear terms in the expansion and in the product
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ρ1(x− ct)ρ2(x+ ct), which yields

ρpairs(x) ≈ 2cσγγ

∫
∞

−∞

ρ1(x∗− ct)ρ1(x∗+ ct)dt

+ 2cσγγ

∫
∞

−∞

[
ρ1(x∗− ct)

∂ρ2(ξ2)

∂ξ2

∣∣∣∣
ξ2=x∗+ct

]
(x− x∗)dt

+ 2cσγγ

∫
∞

−∞

[
ρ2(x∗+ ct)

∂ρ1(ξ1)

∂ξ1

∣∣∣∣
ξ1=x∗−ct

]
(x− x∗)dt. (5.39)

We now take into account the definition of ρ̃pairs given by Eq. (5.31) to obtain

ρpairs(x)− ρ̃pairs ≈ 2cσγγ

∫
∞

−∞

[
ρ1(x∗− ct)

∂ρ2(ξ2)

∂ξ2

∣∣∣∣
ξ2=x∗+ct

]
(x− x∗)dt

+ 2cσγγ

∫
∞

−∞

[
ρ2(x∗+ ct)

∂ρ1(ξ1)

∂ξ1

∣∣∣∣
ξ1=x∗−ct

]
(x− x∗)dt. (5.40)

This expression indicates that the duration of the shortest beamlet sets an upper limit on the error

that we denote as ∆ρmax. We again assume that the beamlet with density ρ1 is shorter than the

beamlet with density ρ2. Then the last term on the right-hand side of Eq. (5.40) provides the

largest correction. To estimate this term, we replace (x− x∗) with l/2 and the first derivative of

ρ1 with ρ1(x∗− ct)/∆ξ1. The ratio of this term to ρ̃pairs [see the first term on the right-hand side

of Eq. (5.39)] gives
∆ρmax

ρ̃pairs
≈ l

2∆ξmin
, (5.41)

where ∆ξmin = ∆ξ1 if ρ1 is shorter than ρ2 (as in the considered example) and ∆ξmin = ∆ξ2 if ρ2

is shorter than ρ1.

As in the case of the total pair yield, the error given by (ρpairs(x)− ρ̃pairs)/ρ̃pairs dra-

matically reduces if one of the beamlets is much longer than the other one. This feature can

be understood by considering the right-hand side of Eq. (5.40). We assume that the duration

of ρ2 is much longer than the the duration of ρ1, i.e. ∆ξ2≫ ∆ξ1. Then the last term has the

biggest absolute value for a given t. However, the integral over t of the first derivative of ρ1 that
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enters this term is equal to zero. This means that the contribution from the considered term in

the limit of ∆ξ2≫ ∆ξ1 is reduced due to the time integration. The integral is determined by

the change of ρ2 over the duration of the shorter beamlet rather than by the value of ρ2 itself.

The contribution to the integral from the first term on the right-hand side of Eq. (5.40) is also

determined by the change of ρ2 due to the presence of the first derivative. However, this term

contains ρ1 rather than ∂ρ1/∂ξ1, which suggests that the first term becomes the dormant one in

the limit of ∆ξ2≫ ∆ξ1. We can then estimate the error as

|ρpairs− ρ̃pairs|
ρ̃pairs

≈ l/∆ξmax, (5.42)

where ∆ξmax = ∆ξ2 if ρ1 is shorter than ρ2 (as in the considered example) and ∆ξmax = ∆ξ1 if

ρ2 is shorter than ρ1.

5.5 Benchmarking

In this section, we benchmark our algorithm by comparing the results given by our

algorithm to the results of an exact calculation using the photon data from the PIC simulation

detailed in Section 5.2.

The photons emitted in the simulation of Section 5.2 have a wide angular distribution

and a significant energy spread that spans several orders of magnitude. As a result, a direct

calculation of the linear BW yield is not feasible, which is the original motivation for developing

our algorithm. In order to benchmark our algorithm against an exact calculation, we must

reduce the size of the data set. We consider only a subset of photons with 0◦ < θ < 10◦ and

170 < θ < 180◦. To simplify the exact calculation, we treat beamlet-beamlet collisions as head-

on collisions when assigning the integration region V for two beamlets and set the kinematic

factor κ = 2. The angular dependence is retained only for the calculation of the cross-section σγγ .

These simplifications enable us to calculate Ntot
pairs and ρ tot

pairs needed to perform the comparison.

Note that Ñtot
pairs and ρ̃ tot

pairs calculated without the described simplifications are presented in
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Figure 5.6. The density of the pair-producing events in the benchmark calculation. The solid
curve is ρ tot

pairs(x) computed using the direct approach and the dashed curve is ρ̃ tot
pairs(x) obtained

using our algorithm.

Section 5.6.

We discretize the angle, the energy, and the longitudinal position. The longitudinal

discretization is performed by splitting our domain along the x into 80 subdomains with ∆x =

1 µm. In the transverse direction, the majority of photons are emitted inside the channel. We

thus forgo the discretization in the transverse direction and instead unifromly distribute the

photons emitted within a given range of longitudinal positions set by our discretization between

y =−2.5 µm and y = 2.5 µm. The width of the emission region in the third direction is set to be

equal to the channel width, h = 5 µm. The angle 0◦ < θ < 10◦ is discretized into eight segments.

We use the same number of segments for 170 < θ < 180◦. We limit the considered photon

energy range to 100 keV< ε < 10 MeV. It corresponds to −0.7 < s < 1.3 that we split into eight

equally-spaced segments. The resulting number of beamlets moving in the positive direction

along the x-axis is 4753, whereas the number of beamlets moving in the opposite direction is

4781. The number of beamlets differs and it is less than 5120 because the empty beamlets or

the beamlets that containing no photons have been eliminated from the consideration. The time

interval that sets the discretization in time for each beamlet is set at ∆t = ∆x/c≈ 3.3 fs.

Using the direct approach, we found the total pair yield Ntot
pairs≈ 5.36×107 and the density
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Figure 5.7. Total pair yield (a) and the required computational time (b) as a function of the
number of beamlet-beamlet collisions in the benchmark calculation. The o-markers correspond
to the exact calculation, whereas the x-markers represent our algorithm. All of the computations
are performed on a single core of Intel i7-8700 @3.20GHz cpu.

of the pair-producing events ρ tot
pairs, shown in Fig. 5.6. Our algorithm predicts Ñtot

pairs ≈ 5.04×107

pairs, so the error is |Ntot
pairs− Ñtot

pairs|/Ñtot
pairs ≈ 0.06. The density ρ̃ tot

pairs calculated using our

algorithm is shown in Fig. 5.6 with a dashed curve. The standard deviation calculated for the

curve given by ρ tot
pairs(x) is 8.64 µm, whereas the standard deviation calculated for the curve given

by ρ̃ tot
pairs(x) is 9.03 µm. There is a relatively good agreement between the density generated by

our algorithm and the result of the exact calculation.

We have performed a series of calculations to determine how the discretization impacts

the pair yield. In our scan, we use a single parameter k to adjust the discretization for θ , s, and x
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while keeping the range for all three quantities the same as in the already discussed example. The

angle θ (0◦ < θ < 10◦ and 170 < θ < 180◦) is discretized into 2k segments, the energy range set

by s is discretized into k segments, and the spatial range set by x is discretized into 10k segments.

In the scan, the integer k runs from 1 to 8, with k = 8 corresponding to the already considered

calculation (see Fig. 5.6). The total number of beamlets for a given value of k is Nbeamlets = 20k3

(some of these might contain no photons). Half of these beamlets are directed to the right and

the other half is directed to the left. The maximum number of beamlet pairs that represents

beamlet-beamlet collisions in our system is (Nbeamlets/2)2 = 100k6. Figure 5.7(a) shows Ntot
pairs

and Ñtot
pairs versus the number of beamlet pairs set by k. At k = 4, the relative error of Ñtot

pairs

compared to Ntot
pairs is |(Ntot

pairs− Ñtot
pairs)/Ntot

pairs| ≈ 8.8%. Our results indicate that increasing

the discretization above that set by k = 4 may be of diminishing return. This conclusion is

further reinforced by the plots of the required computational time in Fig. 5.7(b) that increases

significantly with k.

We observe that the ratio of the computational time using the exact method to the

computational time using our algorithm increases as we increase the discretization. The primary

cause is the increased discretization along x that increases the cost of the spatial integration in

the direct approach. Our algorithm requires no spatial integration, which leads to significant

computational savings as we increase k. The key conclusion is that our algorithm computes

the yield with an error around 10% while reducing the computational time by two orders of

magnitude compared to the direct approach. (and below 10% for k ≥ 4).

We now examine the impact of the beamlet duration on the pair yield. The estimate

derived in Section 5.4 and given by Eq. (5.37) indicates that the error in the total pair yield

calculation should decrease with the increase of the beamlet duration. We perform our analysis

using the discretization set by k = 8. The time-dependence of each beamlet is set by the

physics of the laser-plasma interaction rather than by the discretization. To quantify the beamlet

duration, we introduce the standard deviation τ calculated for each beamlet using the time

dependence of its photon density ρ . For each pair of beamlets, we quantify the error by
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Figure 5.8. Dependence of the pair yield from the direct approach and the corresponding error
in Ñpairs on the beamlet duration. The magenta curve is the yield from the direct approach,
∂Ntot

pairs/∂ζ , as a function of ζ = log10(24c2τ2
min/l2), where τmin is the duration of the shorter

beamlet in a beamlet-beamlet collision. The color-coding shows ∂ 2Ntot
pairs/∂η∂ζ , where η =

log10(Ñpairs/Npairs) characterizes the discrepancy between Ñpairs and Npairs. The black curve is
the weight-averaged η for a given ζ .

computing η = log10(Ñpairs/Npairs). The criterion given by Eq. (5.37) involves l2/24(∆ξmin)
2,

which motivates us to introduce ζ = log10(24c2τ2
min/l2) for each pair of colliding beamlets,

where l is the length of the interaction region and τmin is τ of the shorter beamlet. Figure 5.8

shows ∂ 2Ntot
pairs/∂η∂ζ , which is the total pair yield (on a log-scale) computed using the direct

approach as a function of ζ and η . The vertical axis represents the error introduced by our

algorithm. The magenta curve, ∂Ntot
pairs/∂ζ , shows how the pair yield computed using the direct

approach depends on the beamlet duration.

We can make several observations based on the information presented in Fig. 5.8. We find

that ∂ 2Ntot
pairs/∂η∂ζ becomes primarily localized near η = 0 with the increase of ζ . This means

that Ñpairs/Npairs indeed converges to unity with the increase of ζ , as predicted by Eq. (5.37).

The value of Ñpairs/Npairs does fluctuate between 0.01 and 10 for ζ in the range (from 0 to 1)

responsible for the majority of the pair yield. We find that, despite these fluctuations, the average

η for a given ζ , shown in Fig. 5.8 with a back curve, remains close to unity. The weighted
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averaging is performed using ∂Ntot
pairs/∂ζ to account for the fact that the yield can vary greatly

between different pairs of beamlets with the same ζ . The key conclusion is that the algorithm

performs well in computing Ñtot
pairs even though Ñpairs can contain significant errors for some

beamlet-beamlet collisions.

We conclude this section by examining the impact of the number of macro-particles

contained in each beamlet on our results. In our benchmark system, there are 1.6×106 macro-

particles representing a subset of photons with 0◦ < θ < 10◦ and 170 < θ < 180◦. As we

increase the discretization parameter k, the number of beamlets grows like Nbeamlets ∝ k3, so

the number of macro-particles in each beamlet decreases. By going from k = 4 to k = 8, we

reduce the average number of macro-particles in each beamlet from 1319 to 172, which agrees

with the reduction factor predicted by the k3 dependence. Figure 5.7(a) shows that the pair

yield computed using our algorithm (Ñtot
pairs) remains roughly unchanged despite the significant

reduction in the number of macro-particles in each beamlet. Therefore, in the considered setup,

the accuracy of our algorithm is insensitive to the number of macro-particles contained in each

beamlet.

Additional insight regarding the number of macro-particles can be gained using Fig. 5.8.

It shows that the majority of the pairs is produced by beamlet pairings concentrated around the

line η = 0 with 0 ≲ ζ ≲ 2. We then select beamlet pairings with −0.5 < η < 0.5 and 0 < ζ < 2.

They account for 82% of Ñtot
pairs. The pair yield for these pairings is calculated with good accuracy

by our algorithm. The average number of macro-particles in these beamlets is 188, where we

took into account the occurrence of each beamlet in the selected subset of beamlet pairings. This

number is close to the averaged number of macro-particles in each beamlet (172) calculated

using all beamlets. Therefore, we can conclude that the number of macro-particles in a given

beamlet has relatively little impact on the accuracy compared to the other factors discussed

earlier.

Finally, we would like to stress that the number of photon macro-particles produced in a

PIC simulation can be made arbitrarily large, if computational resources permit, by increasing the
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number of electron macro-particles representing real electrons. The QED modules used in most

PIC codes treat the photon emission by each electron macro-particle independently [43], so an

increase in the number of electron macro-particles automatically translates into a similar increase

in the number of photon macro-particles. Therefore, the number of photon macro-particles

contained in individual beamlets can always be increased if necessary; while such increase in the

number of photon macro-particles does not increase the computation time of our algorithm.

5.6 Application

In this section, we employ our algorithm to examine the pair yield in the simulation with

two colliding laser pulses detailed in Section 5.2. In contrast to Section 5.5, we no longer limit

our analysis to head-on collisions, so a direct calculation of the pair yield is not feasible in this

case and the use of our algorithm is essential for obtaining quantitative results.

The discretization is similar to that used in Section 5.5, with the major difference being

that we now use wider ranges for the energy and the angle. We again forgo the discretization

in y and instead unifromly distribute the photons emitted within a given range of longitudinal

positions (set by our discretization) between y = −2.5 µm and y = 2.5 µm. We consider the

photons with 1 keV< ε < 857 MeV, which means −3 < s < 2.93. This range for s is divided

into 70 equal segments. The axial coordinate x runs from −40 µm to 40 µm. We split this range

into 70 segments. The time interval that sets the discretization in time for each beamlet is set at

∆t = ∆x/c.

Instead of discretizing θ in the range from −180◦ to 180◦, we limit our consideration to

0◦ ≤ θ ≤ 180◦ only. The photon spectrum for 0◦ ≥ θ ≥−180◦ is similar to the photon spectrum

for 0◦ ≤ θ ≤ 180◦. We additionally split the beamlets into two groups: group 1 contains beamlets

with 0◦ ≤ θ ≤ 90◦ and group 2 contains beamlets with 90◦ ≤ θ ≤ 180◦. The range for each

group is split into 70 segments. We only pair up beamlets from group 1 with beamlets from

group 2. Even though beamlets from group 1 can collide with each other, the angle of the
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Figure 5.9. Spatial distribution ∂ 2NBW
lin /∂x∂y [µm−2] of created pairs in the simulation detailed

in Section 5.2. The horizontal and vertical histograms show how the yield is distributed along
the x and y axes. Reproduced with permission from He et al., Communications Physics, 444, 139
(2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY 4.0)
license. Adapted from original.

collision is likely to be small. This is the reason for neglecting these collisions and those between

the beamlets in group 2 to reduce the computational time. It is important to point out that we

underestimate rather than overestimating the pair yield using the described simplifications.

It must be pointed out that beamlets with −180◦ ≤ θ ≤ 0◦ can in general collide with

the considered group of beamlets. We neglect these collision because of their relatively small

contribution for the considered system, which allows us to simplify our calculation. Let us

introduce two additional groups to facilitate an explanation: group 3 contains beamlets with

−180◦ ≤ θ ≤−90◦ and group 4 contains beamlets with −90◦ ≤ θ ≤ 0◦. A collision between

groups 1 and 4 and groups 2 and 3 has a small collision angle ϕ , which increases the threshold

for ε1ε2 given by Eq. (5.1) and thus reduces the pair yield for the considered photon spectrum. A

collision between groups 1 and 3 and groups 2 and 4 can happen only if the beamlets are emitted

sufficiently close to each other or if the collision is nearly head-on. We expect only a few beamlet

pairs from groups 1 and 3 and groups 2 and 4 to overlap with a relatively large V . Therefore,

we expect for the pair yield from the collisions between the considered beamlet groups to be

relatively small.

Using our algorithm, we found that the total pair yield is almost two orders of magnitude

123



higher than what we obtained in the benchmarking calculation that used a reduced data set. We

have NBW
lin = 1.3×109, where we denote the total pair yield as NBW

lin in order to be consistent with

the notations used in Ref. [75] (Chapter II) where the result was first reported. The calculation

of the yield assumes that the width of each beamlet in the third direction is equal to 5 µm.

Figure 5.9 shows the spatial distribution of the created linear BW pairs calculated using the

algorithm discussed in Section 5.3. Figure 5.10(a) shows how the pair yield depends on the

energies of the colliding beamlets. The yield is spread over a wide range of s, which justifies the

use of s rather than ε as our discretization variable. The shown distribution was computed by

binning the yield for beamlet pairs based on their energies.

Our algorithm can also be readily leveraged to compute the initial momentum distribution

of the created electron-positron pairs. The mono-energetic nature of the beamlets particularly

facilitates the calculation. The photons in each beamlet have the same momentum pppγ . Let us

then consider two beamlets with photon momenta pppγ1 and pppγ2. There exists a frame of reference

where the total momentum of two colliding photons from the considered beamlets is zero. The

velocity of this frame of reference is

vvvcm =
pppγ1c+ pppγ2c

ε1 + ε2
, (5.43)

where ε1 = pγ1c and ε2 = pγ2c. It is often referred to as the ‘center of mass’ frame of reference

because a created electron-positron pair has no net momentum in this frame of reference. The

energy of the generated electrons and positrons in this frame of reference is the same and it is

equal to

εcm =
√

[1− cos(θ1−θ2)]ε1ε2/2, (5.44)

where θ1 and θ2 are the angles associated with each beamlet. The corresponding amplitude of

the momentum (it is again the same for all electron and positrons) is

pcm = (1/c)
√

ε2
cm−m2c4. (5.45)
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Figure 5.10. The pair yield computed using our algorithm as a function of (a) photon energies and
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2 for the pairs created by colliding photons with
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Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY 4.0) license.
Adapted from original.
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Therefore, the only extra step that is required once the pairs are generated by our algorithm is the

assignment of their angular distribution.

The angular distribution of the created positrons in the center of mass frame of reference

is somewhat anisotropic [74]. This can be accounted for using the differential cross section

to distribute the generated pairs. Since the anisotropy is not particularly strong, we neglect it

here, treating the distribution in the center of mass frame of reference as isotropic instead. Due

to the large number of beamlet-beamlet collisions, we choose not to differentiate between the

pairs produced in a single beamlet-beamlet collision. All of the positrons produced in a single

collision are thus assigned the same pppcm. The direction is decided by randomly placing a point

onto a sphere with radius pcm in momentum space. The resulting pppcm is then transformed into

the laboratory frame of reference to obtain ppp for a given beamlet-beamlet collision. It must be

stressed that the resulting momentum distribution of positrons is necessarily three-dimensional

even though the colliding photons have no momentum along the z-axis. Figure 5.10(b) shows

how the positrons generated by our algorithm are distributed in the (px, py) plane. The plot is

obtained by binning the yield from each beamlet-beamlet collisions according to the values of px

and py.

The momentum distribution in Fig. 5.10(b) is clearly anisotropic even though there is no

preferred direction in the center of mass reference frame that we use to generate pairs for each

beamlet-beamlet collision. The anisotropy results from the fact that, in most cases, colliding

photons have very different energies, as seen in Fig. 5.10(a). Due to the difference in energy, vcm

is typically relativistic. For example, vcm ≈ 0.82c for a head-on collision with |pγ1|= 0.1|pγ2|.

Such a high velocity causes a significant change of momentum when converting pppcm into the

momentum in the laboratory frame of reference. Most importantly, the momentum is enhanced in

the direction of the beamlet with more energetic photons. As seen from the spectrum in Fig. 5.2,

the most energetic photons in the considered simulation are emitted along the axis of the channel.

This is why the momentum distribution of positrons in Fig. 5.10(b) is elongated along px. It is

worth pointing out that the observed anisotropy is much more pronounced than the neglected
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anisotropy in the center of mass reference frame [74], which suggests that any corrections due to

the differential cross section [74] may be inconsequential for our system.

The example considered in this section illustrates that the developed algorithm can indeed

provide useful and otherwise unavailable information about the pair production via the linear

BW process in high-intensity laser-plasma interactions.

5.7 Summary and discussion

We have presented a post-processing algorithm that can efficiently compute the linear

Breit-Wheeler pair yield inside a laser-irradiated plasma. The efficiency of our algorithm is

based upon a simplification in computing the number of collisions by two photon beamlets.

Presented benchmarking shows that the computational time is reduced by two orders of magnitude

compared to the direct approach, while the resulting error remains around 10%. The algorithm

can also be leveraged to compute the density of the pair-creating events and the initial momentum

distribution of generated positrons.

Our algorithm offers a novel tool for studies of the linear Breit-Wheeler process in

laser-irradiated plasmas. This process has been omitted from previous studies of high-intensity

laser-plasma interactions because none of the PIC codes used for these studies are currently

capable of computing the pair yield from the linear Breit-Wheeler process. The application of

our algorithm in Refs. [75] (Chapter II) and [104] (Chapter III) has revealed that the yield is

much higher than previously anticipated, indicating that the linear Breit-Wheeler process must be

taken into account. Studies of positron dynamics will require implementation of the linear BW

process into a PIC code. However, even in this case, the developed post-processing algorithm

can serve an important role in assessing the pair yield and the pair distribution. Moreover, the

density of the pair-producing events ρ̃pairs can be used to assess the number of positrons that

can undergo acceleration by one of the laser pulses in the set up considered in Section 5.6 and

discussed in more detail in Ref. [75] (Chapter II). This is because only those positrons that are
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produced inside the channel that guides the laser propagation can experience acceleration.

The current version of the algorithm neglects the divergence of colliding beamlets. To in-

clude the impact of the beamlet divergence, we would have to modify the shape of the interaction

region for each pair of beamlets, which can potentially have a non-negligible detrimental effect

on computational time. However, as the resolution for θ goes up, the impact of the divergence

decreases, so the divergence of beamlets is likely to be important only for low resolutions.

Moreover, as seen in Fig. 5.9, most of the pairs are created relatively near to the region where the

photon are emitted, which further reduces the impact of the beamlet divergence. One easy way

to take the divergence into consideration without changing the shape of the interaction region is

by introducing a multiplier for the densities of the colliding photons.

Our algorithm explicitly assumes that modifications to the emitted photon spectrum

during photon propagation through the plasma can be neglected. This is definitely the case for

the set up shown in Fig. 5.9 where the characteristic spatial scale is about ten microns. However,

the user of the algorithm should check this key assumption, as the assessment might change

for a setup with drastically different parameters. If there is a need to include the attenuation of

the photon population, then one can add extra multiplicative factors on the right hand side of

Eq. (5.16) to account for the change of photon density. Our partitioning of the photon population

into beamlets makes it easy to include the energy dependence into consideration.
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Table 5.1. 2D-3V PIC simulation parameters.

Laser parameters
Normalized field amplitude a0 = 190
Peak intensity range I0 = 4.9×1022 W/cm2

Wavelength λ0 = 1 µm
Focal plane of laser #1 x =−35 µm
Focal plane of laser #2 x =+35 µm
Laser profile (longitudinal and trans-
verse)

Gaussian

Pulse duration (FWHM for inten-
sity)

50 fs

Focal spot size (FWHM for inten-
sity)

3.6 µm

Target parameters
Target thickness (along y) 30 µm
Target length (along x) 70 µm
Channel width dch = 5 µm
Composition C+6 and electrons
Channel density ne = 7.1nc
Bulk density ne = 100nc

Other parameters
Simulation box 80 µm in x; 36 µm in y
Spatial resolution 40 cells per µm in x

20 cells per µm in y
Macro-particles per cell 40 for electrons

20 for carbon ions

5.9 Appendix

Table 5.1 provides detailed parameters for the PIC simulation presented in the chapter.

The 2D-3V simulation was performed using the fully relativistic PIC code EPOCH [17].

The simulation setup follows the one used in Ref. [75] (Chapter II). The axis of the

structured target (y = 0) is aligned with the axis of the counter-propagating lasers. We initialize

the target as a fully-ionized carbon plasma. Each of the lasers is focused at the corresponding

channel opening. The lasers are linearly polarized (their electric field is directed in the simulation
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plane). In the absence of the target, the lasers have the same spatial Gaussian profile in the focal

spot with the same Gaussian temporal profile.

A resolution scan reported in Ref. [75] (Chapter II) indicates that the resolution used here

produces a converged photon spectrum for photons with energies above 50 keV. The electrons

that emit energetic photons undergo their energy gain without alternating deceleration to non-

relativistic energies and re-acceleration. This is likely the reason why they are not subject to

a more severe resolution constraint [63, 64, 65] that requires for the cell-size/time-step to be

reduced according to the 1/a0 scaling in order to achieve convergence.
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Positron generation and acceleration in a
self-organized photon collider enabled by
an ultraintense laser pulse

We discovered a simple regime where a near-critical plasma irradiated by a laser of

experimentally available intensity can self-organize to produce positrons and accelerate them

to ultra-relativistic energies. The laser pulse piles up electrons at its leading edge, producing a

strong longitudinal plasma electric field. The field creates a moving gamma-ray collider that

generates positrons via the linear Breit-Wheeler process – annihilation of two gamma-rays into

an electron-positron pair. At the same time, the plasma field, rather than the laser, serves as an

accelerator for the positrons. The discovery of positron acceleration was enabled by a first-of-

its-kind kinetic simulation that generates pairs via photon-photon collisions. Using available

laser intensities of 1022 W/cm2, the discovered regime can generate a GeV positron beam with

divergence angle of ∼ 10◦ and total charge of 0.1 pC. The result paves the way to experimental

observation of the linear Breit-Wheeler process and to applications requiring positron beams.

In astrophysics, creation of matter from light is ubiquitous, playing an important role

for various astrophysical objects (e.g. see [120, 121, 122, 123, 124]). The advent of ultra-

high-intensity laser facilities [7, 125, 126] promises to enable, for the first time, creation of

electron-positrons pairs from light alone on a macroscopic scale in laboratory. If successfully

implemented, this capability will open a new area of QED research [9, 19, 127] and it will

enable laboratory studies of astrophysically relevant electron-positron plasmas [128]. The ability

to generate positrons by a laser is also likely to impact the research on laser-driven positron
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acceleration. Currently, positrons are produced by an external source and the focus is on finding

augmented configurations that facilitate positron acceleration [129, 130, 131, 132].

In the context of pair production from light alone, it is important to distinguish between

the non-linear [22] and linear [1] Breit-Wheeler (BW) processes. The nonlinear BW or the

multiphoton process is the decay of a γ-ray propagating through a laser pulse into a pair. The

decay involves multiple coherent optical photons. The linear BW or the two-photon process

is the annihilation of two energetic γ-rays that leads to pair production. The setups that many

pairs via the nonlinear BW [26, 133, 134, 135, 136, 137, 138] require a laser intensity in

excess of 1023 W/cm2. The two-photon process has no laser intensity requirement, but it does

require a dense population of energetic γ-rays to overcome the smallness of the cross-section,

σγγ ∼ 10−25 cm2, and the energy threshold. A laser-irradiated plasma can efficiently generate a γ-

ray beam [80, 139, 41], so colliding in vacuum two such beams (produced by two different laser)

is a possible approach to produce pairs [12, 13]. The inherent γ-ray beam divergence requires

the targets generating γ-rays to be close to each other and makes experimental implementation

challenging. A conceptually different approach is to generate and collide γ-ray beams inside

one target [75] (Chapter II). It not only allows to overcome the divergence and thus boost the

pair yield [75], but, more importantly, it offers an unexplored opportunity to accelerate the linear

BW positrons. If the positrons can be accelerated and collimated, then this would facilitate their

detection, making a first laboratory observation of the linear BW process possible, and enable

their use for applications like positron annihilation lifetime spectroscopy [140, 141].

In this chapter, we present a simple but previously unknown regime where a dense plasma

irradiated by a laser of experimentally achievable intensity self-organizes to produce positrons

from light alone and accelerate them to ultra-relativistic energies. The laser pulse piles up

electrons at its leading edge, producing a strong longitudinal plasma electric field that moves

with the pulse. The field creates a moving γ-ray collider that generates positrons via the linear

BW process and, at the same time, serves as an accelerator for the produced positrons. The

discovery of the new positron acceleration mechanism and the synergistic interplay between the
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photon collider and the plasma accelerator was enabled by a first-of-its-kind kinetic simulation

that generates pairs via photon-photon collisions. This work builds on an important observation

based on post-processed photon data that a single laser-pulse can generate a colliding population

of γ-rays in a dense structured plasma [104] (Chapter III). We find that the linear BW process

produces about 107 pairs at 3×1022 W/cm2, whereas the nonlinear BW process produces no

pairs at all. About 10% of the positrons experience the forward acceleration and form a GeV

beam with a divergence angle of 10◦. The advantage of our regime is that it uses a simple setup

and requires only a single laser with intensity already accessible at ELI [142] and CoReLS [143].

The laser-plasma interaction is self-consistently simulated in 2D-3V with the PIC code

PICLS that includes a radiation transport module [144] for energetic photons emitted via syn-

chrotron radiation [145] and Bremsstrahlung [146]. We have developed a module for simulating

the linear BW process [see Sec. 6.2.2 in Appendices of this chapter], making PICLS the first PIC

code capable of generating linear BW pairs during the laser-plasma interaction and thus suitable

for studies of positron dynamics. In our setup, a 25 fs, 3×1022 W/cm2 laser pulse irradiates

a dense uniform carbon plasma (see Sec. 6.2.1 for simulation parameters). We normalize all

electric fields, EEE, and use a dimensionless quantity aaa = |e|EEE/mecω0 instead, where e and me are

the electron charge and mass, c is the speed of light, and ω0 is the laser frequency corresponding

to vacuum wavelength λ = 0.8 µm. The laser amplitude is aL = 120. This laser makes electrons

ultra-relativistic and renders a plasma with electron density ne less than γLnc ∼ aLnc transpar-

ent, where γL ≡
√

1+a2
L/2 is the electron Lorentz factor for ponderomotive energy [147] and

nc = meω2
0/4πe2 is the classical critical density. In our main simulation, the initial electron

density is ne0 = 2.8nc≪ aLnc, so the laser easily propagates into the plasma.

Figure 6.1 illustrates key aspects of the laser-plasma interaction. All snapshots are taken

when the laser pulse reaches x = 30 µm. The corresponding time is t = 117 fs, with t = 0 fs

being the time when the pulse reaches the target. Figure 6.1(a) shows the normalized transverse

electric field ay that is dominated by the field of the laser. Due to the relativistic self-focusing,

the beam remains tightly focused after having traveled a distance greater than the Rayleigh
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Figure 6.1. Laser interaction with a dense plasma. (a) Normalized transverse electric field
ay. Dashed lines indicate the beam waist in the absence of the plasma. (b) Electron density.
(c) Normalized magnetic field bz averaged over one laser period. (d) Normalized longitudinal
electric field ax. (e) Electron distribution in the x-px plane, and ax and ay in the vicinity of
the pulse front [dashed rectangle in (d)]. The electric fields ax and ay in (e) are averaged over
|y| ≤ 0.5 µm. The snapshots in (a) - (e) are taken at t = 117 fs.

length (lR = πw2
0/λ ≃ 25 µm for a focal spot with radius w0 = 2.5 µm). The dashed curves

mark the expected beam waist in the absence of the target. The self-focusing also increases

the laser amplitude to ay = 150. The beam becomes fully depleted after propagates 70 µm

into the plasma. The profiles of electron density and generated azimuthal magnetic field are

shown in Figs. 6.1(b)&(c). Transverse electron expulsion by the ponderomotive force produces a

density pileup (ne ∼ 10nc) at the periphery of the beam that helps guide the laser. The electrons

remaining in the beam accelerate forward in the laser field and form longitudinal current. The

current generates a strong quasi-static magnetic field Bz [41] whose peak strength is 30% of that

for the laser magnetic field. Figure 6.1(c) shows the field profile while providing an additional

figure of merit bz = ωc/ω0, where ωc = |e|Bz/mec is the cyclotron frequency.
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Figure 6.2. Self-organized photon collider. (a)&(b) Angular distribution of synchrotron and
Bremsstrahlung photons in the region with 22 µm ≤ x ≤ 27.5µm and |y| ≤ 1 µm. The radius
is log10 εγ [keV]. The dashed circles are εγ = 100 keV and 10 MeV. (c)&(d) Energy density of
forward and backward emitted photons via synchrotron emission. (e) Time integrated number
density of the linear BW pair production events. The snapshots in (a) - (e) are taken at t = 117 fs.

The B-field plays a key role in generating forward-directed γ-rays. It transversely confines

the electrons that are accelerated and pushed forwarded by the laser. The B-field defects electrons

forward instead of causing the conventional rotation and the deflections change the orientation

of the transverse velocity v⊥ with respect to E⊥ of the laser. If their frequency is comparable to

the Doppler-shifted frequency of the laser, then v⊥ remains antiparallel to E⊥ as the laser field

and the electron oscillate. This mechanism of direct laser acceleration assisted by the plasma

B-field [49] produces ∼ 500 MeV electrons with a forward momentum of 1000 mec. They are

located in Fig. 6.1(e) at 22 µm≤ x≤ 28 µm. The deflections of the electrons by the magnetic

field has another important effect – they cause the electrons to emit MeV γ-rays in the direction

of laser propagation [41, 13, 14].

Due to the high plasma density, the laser also generates a strong longitudinal plasma

electric field that is essential for the production of backward-directed γ-rays. This is a charge-

separation field that arises as the leading edge of the laser pulse sweeps up plasma electrons. Its
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peak amplitude is 25% of ay and it dominates over the oscillating longitudinal field of the laser.

The positive plasma field is clearly visible in Fig. 6.1(d) at x≈ 29.5 µm. After initial forward

acceleration to px ∼ 200mec, the electrons swept up by the leading edge of laser pulse slow down

under the influence of ax and then re-accelerate in the backward direction to px∼−100mec.These

electrons emit backward-directed photons. In contrast to the forward-moving electrons, the

emission is induced by the laser field [148] that is much stronger than the plasma magnetic field.

This makes the emission more efficient, causing the electrons to quickly lose a large portion

of their energy, as seen in Fig. 6.1(e) at x > 28 µm. The emission process accompanies laser

propagation since the population of backward-moving electrons is constantly replenished by ax

that is moving forward with the laser pulse.

The two photon populations form a moving γ-ray collider. Figures 6.2(a)&(b) show

photon spectra versus the polar angle θ in the region where the energy density of forward-

and backward-moving photons (|θ | ≤ π/2 and |θ | > π/2) overlap (22 µm ≤ x ≤ 27.5 µm;

|y| ≤ 1 µm). The corresponding energy density plots are shown in Figs. 6.2(c)&(d). The

Bremsstrahlung that plays a secondary role is included for completeness. The synchrotron

emission converts 40% of the laser energy into photons over the entire simulation (vs. 2% for

Bremsstrahlung). The linear BW process has a threshold of εγ1εγ2 > m2
ec4 ≈ 0.26 MeV2, where

εγ1,2 are the energies of colliding photons. Therefore, linear BW pairs are mainly produced

by forward-moving photons with 0.5 MeV ≲ εγ ≲ 100 MeV colliding with backward-moving

photons with 10 keV ≲ εγ ≲ 1 MeV. The photon densities in these two groups are comparable,

with nγ ∼ 1022 cm−3. The probability for a backward-moving photon to produce a pair is

σγγnγ l ∼ 10−6, where l ∼ 10 µm is the length of the forward-moving photon cloud. The total

number of backward-photons is nγSL∼ 1013, where L≈ 70 µm is the laser depletion length and

S≈ 25 µm2 is the cross-section of the cloud, assuming the length in the third dimension is the

laser spot diameter. The predicted pair yield is 107, which matches the yield evaluated using

the developed module for the linear BW process. A similar module implemented by us into the

PIC code EPOCH [17] that has a different approach for treating emitted photons produced a
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comparable yield. A time integrated density of the pair-production events is shown in Fig. 6.2(e).

The γ-ray collider is moving with the laser, continuously producing positrons with a

mildly relativistic momentum p ∼ mec within the laser pulse [see Fig. 6.3(a)]. The positron

dynamics is strongly influenced by the laser and plasma fields, with two distinct populations

emerging over time: forward-moving positrons whose energies reach 1 GeV and backward-

moving positrons whose energies reach 100 MeV. Figures 6.3(c)&(d) show terminal positron

distributions in the energy-angle space for the forward- and backward positrons. Figure 6.3(e)

shows the electron and positron energy spectra, distinguishing the linear BW and Bethe-Heitler

[see Sec. 6.2.4 in the Appendices of this chapter] positrons to emphasize the dominant role of the

linear BW process. A striking feature of Fig. 6.3(e) is that the peak energy of forward positrons

exceeds the peak energy of forward electrons by a factor of two. The electrons gain their energy

from the laser via the direct laser acceleration assisted by the plasma magnetic field [49], but the

positrons are not able to do that because they are positively charged. The plasma magnetic field

deflects positrons backward rather than forward, which causes the formation of the backward

positron population.

We tracked the energetic forward-moving positrons and found that they gain most of their

energy (80%) from the strong forward-moving longitudinal plasma electric field, thus discovering

a new positron acceleration mechanism. Figure 6.3(b) confirms that the energetic positrons are

surfing with the spike in ax. The positrons continue accelerating until they overtake the laser

pulse or leave the acceleration region in lateral direction. The acceleration by ax only works

for positrons, whereas the same field pulls plasma electrons backward creating the backward

emission that contributes to the photon collider.

The discovered acceleration mechanism produces 106 or 0.1 pC of positrons with energies

above 100 MeV and average divergence angle |θ | ∼ 10◦. The high plasma density is not only

important for generating strong ax needed for positron acceleration (no ax spike is produced

at subcritical densities [138]), but it is also crucial for achieving a high number of accelerated

positrons. Positrons must catch up with ax to experience the acceleration, but this is hard to
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Figure 6.3. Laser-driven positron accelerator. (a)&(b) Positron distribution in (x,px) space
for |y| ≤ 2 µm and electric field profiles at t = 150 fs and 217 fs. The fields are averaged over
|y| ≤ 2 µm. (c)&(d) Energy vs. divergence angle of forward- and backward-moving positrons
at t = 317 fs. (e) Energy spectra at t = 317 fs of positrons produced via the linear BW process
and via the BH process, and electrons. The 3rd dimension is set to 5 µm to evaluate number of
particles.

138



achieve if ax, whose speed is u, moves too fast. In a low density plasma, u is close to the

group velocity vg/c≈
√

1−ne/γLnc [149]. In a dense plasma, u is lower than vg due to laser

depletion, which enables more positrons to experience acceleration. In our case, u/c≈ 0.8, but

vg/c≈ 0.98. Only relativistic positrons with vx ≈ ccosθ > u are able to catch up with ax. We

have vx ≈ ccosθ > u for |θ | ≤ 37◦, whereas vx ≈ ccosθ > vg for |θ | ≤ 11◦. The 20% reduction

in u compared to vg increases the range of θ by a factor of three and thus significantly increase

the number of positrons that can catch up with ax.

To examine the impact of the plasma density ne0 on the strength of ax and the positron

energy gain, we performed extra simulations with ne0/nc = 0.5, 1.0, 1.75, and 5.6. Fig-

ures 6.4(a)&(b) show ax at the leading edge of the pulse and the energy gain by forward-moving

positrons versus ne0. We average ax over y at the time when the laser peak intensity reaches the

pulse leading edge to obtain the values in Fig. 6.4(a). The energies in Fig. 6.4(b) were averaged

over the top 5, 10, and 20 percent of the positron spectrum to confirm the trend. The discovered

regime is robust and can be achieved over a wide range of plasma densities. For nc ≤ ne0 ≤ 5.6nc,

the number of positron with energies above 100 MeV and |θ |≲ 10◦ is consistently about 106. At

ne0/nc = 0.5, the speed of ax is very close to c, which makes ax too fast to effectively accelerate

positrons that are originally only mildly relativistic.

We next use estimates for ax and the positron energy gain to determine their scaling

at high ne0. The electron density pileup responsible for ax is sustained due to force balance,

0 = Fp +Fs, between the laser ponderomotive force Fp =−mec2∇xγL and Fs =−axmecω0. We

estimate that γL/|∇xγL| ≃ lskin, where lskin =
√

γLc/ωpe is the relativistic skin depth. Taking into

account that aL≫ 1, we obtain

ax ≃
√

γLne/nc, (6.1)

where ne is the density of the electron pileup. The shaded area in Fig. 6.4(a) shows ax from

Eq. (6.1) for aL = 120 and 2ne0 ≤ ne ≤ 6ne0. The latter is the entire range of ne observed in

the simulations, with ne ≈ 2ne0 for ne0 = 5.6nc and ne ≈ 6ne0 for ne0 = 0.5nc. The momentum
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gain, ∆pe+ , from ax can be estimated by integrating the positron equation of motion d pe+/dt ≃

mecω0āx over the acceleration time interval ∆tacc, where āx = ax/2 is the average field amplitude

in the acceleration region. The length of the region with positive ax is the width of the electron

pileup, lskin, plus the length of the positively-charged electron cavity, lcav, formed behind the pulse

leading edge. We estimate lcav from the charge conservation: (ne0−nc) lcav = (ne−ne0) lskin for

ne0 > nc. The acceleration region is moving forward with velocity u while the positron velocity

is vx, so that ∆tacc ≡ (lcav + lskin)/(vx−u). Assuming an ultra-relativistic positron, we set vx ∼ c.

After taking into account that γLnc≫ ne for aL≫ 1, we find that that the positron momentum

gain is

∆pe+ ≃
γLmec

2
1

1−u/c
ne−nc

ne0−nc
. (6.2)

Equation (6.2) gives ∆pe+/mec ≃ 1200 for ne0 = 2.8nc, aL = 120, u = 0.8c, and ne = 4ne0,

reproducing the significant positron momentum increase at the pulse leading edge seen in

Fig. 6.3(b). The energy gain, ∆εe+ = c∆pe+ , obtained from Eq. (6.2) is shown in Fig. 6.4(b) with

a dashed curve. For high densities, ∆εe+ has a weak dependence on ne0, because the increase in

ax is counteracted by the reduction in the acceleration time caused by lower u.

In summary, we discovered a robust regime where a laser-irradiated plasma self-organizes

to produce positrons and accelerate them. The GeV-level positron beam can be generated using

just a single laser with an experimentally available intensity. The regime requires the use of a

dense plasma that can create a strong longitudinal electric field via electron pileup. The field is

crucial for creating the γ-ray collider and for accelerating positrons. The positron acceleration was

discovered by a first-of-its-kind simulation code generating pairs via photon-photon collisions.

This code has direct relevance to astrophysics research since correct treatment of secondary pairs

is one of the main problems facing modern PIC simulations of pulsars [122, 124] The uniform

density is a simplification and not a requirement. A simulation with ne ramping up from 0.5 to

3nc over 60 µm has a similar pair yield of 107. 3D simulations with PICLS (see Sec. 6.2.3) and

EPOCH [17] have nγ that is similar to that in our 2D simulations, confirming the robustness of
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Figure 6.4. (a) Normalized electric field ax at the leading edge of the laser pulse as a function of
target density. The shaded area is given by Eq. (1) for 2ne0 ≤ ne ≤ 6ne0, aL = 120, and u = 0.8c.
(b) Positron energies averaged over the top 5%, 10%, and 20% of the positron spectra for different
target densities. The dotted curve is ∆εe+ = c∆pe+ obtained from Eq. (2) for aL = 120, u = 0.8c,
and ne = 4ne0.

the discussed phenomena. Lastly, our regime can be instrumental in gauging the focal intensity

of multi-PW lasers. At 1021 W/cm2, the positron yield is five orders of magnitude lower than

at 1022 W/cm2. Therefore, the presence of energetic positrons in the laser direction can be a

confirmation of laser intensity exceeding 1022 W/cm2.
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6.2 Appendices

6.2.1 Setup of 2D particle-in-cell simulations

The 2D-3V simulations of laser-plasma interactions were carried out using the PIC code

PICLS that includes a radiation transport module with a newly implemented linear BW process

for pair creation. The size of the simulation box is 110 µm by 10 µm. The grid size and the

time step are set to ∆x=∆y=c∆t=0.025µm. Initially, the target is a uniform fully ionized carbon

plasma with electron density set by ne0. The plasma occupies the region with 5≤ x≤ 105µm.

The plasma is represented by macro-participles, with 30 macro-participles per cell for electrons

and 5 macro-particles per cell for ions. The laser pulse is injected from the left boundary (x = 0)

and it is focused on the plasma surface at x = 5µm with a Gaussian focal spot of diameter

5.0µm (FWHM of intensity). The laser is linearly polarized with the electric field EL being

in the plane of the simulation.The wavelength and pulse duration are set to 0.8µm and 25 fs,

respectively. The peak amplitude in the focal plane in the absence of the target is aL=120, which

corresponds to the intensity of 3×1022W/cm2. The corresponding laser electric field strength

of EL = 3.6 kV/Å is sufficiently strong to strip electrons from the K-shell of carbon within

femtoseconds [150].

The simulations include two photon emission processes: synchrotron emission and

Bremsstrahlung. Details of their implementation into PICLS are provided in [145, 146]. The

code accounts for electron recoil that is modelled in the case of synchrotron emission as a

radiation friction force. Rather than treating photons as individual particles, the code uses a

photon distribution function. In our simulations, the distribution function covers a photon energy

range from 10 keV to 1 GeV. We use a log-scale to uniformly discretize this range into 100 energy

segments, producing 100 photon energy groups. The transport of the emitted photons is simulated
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self-consistently by solving a radiation transport equation within the PIC simulation. The details

of the radiation transport module are provided in Ref. [144, 151]. To reduce the computational

cost, the grid size and the time step for the radiation transport calculation are ten times larger

than those of the PIC simulation: ∆xrad = ∆yrad = 0.25µm. We use open boundary conditions

(in the x- and y-directions) for particles, fields, and radiation fluxes. The electron-positron pair

yield is computed in each grid of the radiation transport calculation.

6.2.2 Algorithm for computing the linear
Breit-Wheeler pair yield

In the simulations, the high-energy photons from 10 keV to 1 GeV are treated as a ray.

Their radiation energies are characterized by using specific intensity. We implemented a physics

model of positron production in the pair creation process, e.g. linear BW process, as opacity in

the radiation transport. The new algorithm consists of three parts: (1) randomly sampling two

photons and move to the center of momentum (CM) frame, (2) evaluate the cross section of the

pair creation and produce a positron particle in the CM frame, and (3) transform the positron

momentum to the laboratory frame via the Lorentz transformation.

In one radiation grid at (x,y) for radiation transport, the specific intensity is discretized

in the solid angle Ω(θ ,φ) where θ is the polar angle with respect to the positive x-direction

and φ is the azimuthal angle using the discrete ordinate method[152]. Using the discretized

photon energy ε , a specific intensity in the unit of J/cm2/s/Hz/str is expressed as a function of the

discretized angles and photon energy: I(xi,yj,θk,φℓ,εm) where the subscripts are indexes. The

amount of energy of radiation traveling in the direction in a solid angle dΩ(θk,φℓ) and with the

energy width dεm is expressed as I(xi,yj,θk,φℓ,εm)dΩ(θk,φℓ)dεm/c. In the current research,

the angles are divided into 16 directions (N=16 in SN method), and thus the 2π solid angle for

the upper hemisphere is discretized into 146 directions, while the lower hemisphere is assumed

symmetric. Using the intensity I and the total cross-section of the linear BW process σBW, the

number of generated positrons is calculated. The σBW for the colliding photons with energy of
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ε1 and ε2 at colliding angle ψ is :

σBW =
πr2

e
2
(
1−β

2)×[(3−β
4) ln

(
1+β

1−β

)
−2β

(
2−β

2)] , (6.3)

where re is the classical electron radius, β =
√

1−1/s, and
√

s is the normalized energy of

each colliding photons in the CM frame, s = ε1ε2 (1− cosψ)/
(
2m2

ec4). Then, the number of

generated positrons Np via collision among two groups of radiation field, I1
(
xi,yj,θ1,φ1,ε1

)
and

I2(xi,yj,θ2,φ2,ε2) during ∆t, is obtained as :

Np,BW = nγ,1nγ,2σBWc∆t, (6.4)

where nγ is the photon density defined as nγ = I(xi,yj,θk,φℓ,εm)dΩ(θk,φℓ)dεm/εmc. When we

compute 100 groups in photon energies and 146 solid angles, more than 104 number of radiations

in one radiation grid. Therefore, there are potentially hundred millions of the radiative collisions.

However, calculation of such a large mount of combinations every time step in every cell is too

expensive to complete the simulation. Instead of doing all the possible collisions, we produce

random pairs, I(xi,yj,θrand1,φrand1,εrand1) and I(xi,yj,θrand2,φrand2,εrand2), as many times as the

number of photon groups and compute photon collisions. This random pairing reduces the total

number of calculations of photon collisions to about 104, but underestimates the number of

events. To compensate the underestimation, we adjust the time step for the positron generation

as ∆t ′ = ∆t×gε ×gθ ,φ in Eq. (6.4), where gε and gθ ,φ are number of groups for photon energies

and solid angles, respectively. This random paring of photons is the similar to the random pairing

of charged particles in the Coulomb collision calculation used in PICLS code, see Ref. [116].

In order to obtain the momentum of generated positron, we first calculate the magnitude

of momentum pppe+,cm of the generated positron in the CM frame :

pe+,cm =

√
ε1ε2 (1− cosψ)

2c2 −m2
ec2. (6.5)
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We assume that the generated positrons are emitted isotropically in the CM frame. Using random

variables 0≤Θ≤ 2π and 0≤Φ≤ π , we obtain the momentum in the CM frame :

pppe+,cm = pe+,cm× (cosΘsinΦeeex + sinΘsinΦeeey + cosΦeeez) , (6.6)

where eeex, eeey, and eeez are the unit vectors in the x-, y-, and z-direction. With the velocity of the

CM vvvcm = c2 (pppγ1 + pppγ2
)
/(ε1 + ε2) where pppγ1 and pppγ2 are the momentum of colliding photons

in the laboratory (LAB) frame, we perform Lorentz transformation of positron momenta from

CM to LAB frame [116].

During one time step, the density of newborn positrons are accumulated at a grid while

their momenta are averaged :

ntot = ∑
θ

∑
φ

∑
ε

Np,BW

pppe+ =
∑θ ∑φ ∑ε Np,BW pppe+

ntot
,

(6.7)

where pppe+ is the positron momentum in the LAB frame. We then produce positron particles with

the particle weight and averaged momentum in the simulation per time step, which were located

initially at the center of the grid.

We also have implemented the BH process. Here, the numerical particles of positrons are

produced in the same manner with the linear BW process. We compute the cross-section of BH

σBH described in Ref. [153]. Then, the number of generated positrons via collision between a

radiation field with intensity I(x,y,θ ,φ ,ε) and ions with density ni is calculated as :

Np,BH = nγniσBHc∆t. (6.8)

We assumed that the momentum of positrons is the half of the colliding photon momentum, since

the other half is taken by the electron born together. The direction of momentum is the same
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with the photon :

pppe+ =
pppγ

2
. (6.9)

The density of positrons, which create the pairs, accumulated during one time step and averaged

momentum can be obtained by using Eqs. (6.7), (6.8), and (6.9) and a positron particle is

produced at the center of the grid.

6.2.3 3D particle-in-cell simulation without pair creation

To confirm the robustness of the self-organized field structure observed in 2D PIC

simulations, we performed a 3D PIC simulation with ne0 = 2.8nc. We used the PICLS PIC code

without the radiation transport module to make the simulation computationally feasible. The

simulation does include the electron recoil during the photon emission.

Figure 6.5 shows instantaneous profiles of the magnetic field By, electric field Ex, and

electron density ne. The snapshots are taken at t = 117 fs, which is the time of snapshots shown

in Fig. 1 for the 2D PIC simulation. We confirm that the 3D simulation has a channel and field

structure that is qualitatively similar to that observed in 2D. Most importantly, there is a strong

positive longitudinal electric field at the leading edge of the laser pulse. It moves forward with

a velocity close to 0.8c, which is the propagation velocity in 2D. The laser depletion length is

similar to that in the 2D simulation as well (∼ 70µm).

6.2.4 Comparison with the Bethe-Heitler process

In addition to the linear BW process, there are two other processes that can generate

electron-positron pairs from gamma-rays: the nonlinear BW process and the Bethe-Heitler (BH)

process. In the nonlinear BW process, backward moving photons shown in Fig. 6.2 collide with

optical photons representing the laser. The yield is extremely low for our laser intensity and

gamma-ray energies, which means that the linear BW process dominates over the nonlinear

BW process [104]. To assess the role of the BH process, we performed a simulation with an

additional module that generates pairs using the BH cross-section [153].
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Figure 6.5. 3D PIC simulation of the laser-plasma interaction with parameters the same as
those in the 2D PIC simulation of Fig. 6.1. The vertical slice is a snapshot of By, whereas the
horizontal slices are snapshots of Ex and ne. All three snapshots are taken at t = 117 fs (same
snapshot time with Fig. 1(a)-(e)). The contour levels are set for By as −30≤ By(by)≤+30, Ex
as −30≤ Ex(ax)≤+30, and ne as 0≤ ne(nc)≤ 8, respectively.

Figure 6.3(e) shows positron energy spectra at t = 317 fs, where we distinguish four

groups of positrons based on the direction of their longitudinal motion and the process that

created them. The spectra of the backward-moving linear BW and BH positrons have similar

shapes, but the number of BH positrons is three orders of magnitude smaller. The spectra of

the forward-moving positrons differ. The linear BW spectrum dominates for energies above

10 MeV. In the ‘low-energy’ range between 3 and 10 MeV, the spectrum of the BH positrons has

an elevated plateau such that the number of BH positrons in this range becomes non-negligible

compared to the number of linear BW positrons. The BH positrons were produced mostly outside

of the laser beam and thus have not experienced acceleration. Figure 6.3(e) also shows that the

positron cutoff energy exceeds the electron cutoff energy by a factor of three, emphasizing the

importance of the longitudinal positron acceleration.
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Dynamics of linear Breit-Wheeler positrons
produced inside laser irradiated plasmas

In this chapter, we investigate dynamics of positrons in the two setups proposed in this

dissertation. Enabled by a new implementation of the linear BW proces into the PIC code Epoch,

we study the dynamics of positrons in these systems both 2D and 3D PIC simulations.

7.1 Numerical implementation of the linear BW process
into Epoch

In Chapter VI, a numerical implementation of the linear BW process was done on the

PIC code PICLS. PICLS uses a module where photon emission by electrons are treated as

deterministic continuous radiation. Such photon emission module, although being fully effective,

is different those usually implemented to PIC codes for ultra-intense laser-plasma interactions.

Moreover, the photon emission module in PICLS is computationally expensive in 3D simulation

for the regime of our systems. Finally, unlike the nonlinear BW process or the BH process, the

linear BW pair creation inside laser irradiated plasmas is relatively unstudied prior to our work.

Therefore, there are few results with which we could benchmark our work. For these reasons, we

decided to also implemented the linear BW process into the PIC code Epoch. Epoch uses a photon

emission module (discrete and stochastic semi-classical module) different from the one in PICLS,

which makes 3D simulations of the systems we study feasible. We also benchmarked the linear

BW pair yields given by the three implementations we have (post-processing algorithm detailed

in Chapter V, implementation into PICLS as described in Chapter VI, and implementation into
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Epoch described in this section), and we found they agree with each other.

In Epoch, photons emitted by electrons are treated as individual macro-particles with

weight (w), momentum (p⃗), and positron (⃗r). The recoil on electrons when they emit photons is

calculated for the emission of photons of all energies. The maximum energy of photons produced

in our systems is approximately less than 1 GeV and the threshold for linear BW pair creation

is εγεγ > (mc2)2 ≈ (0.5MeV)2. Furthermore, our previous studies also show that most of the

linear BW positrons are produced by photons approximately within the range of tens of keV

to hundreds of MeV. So, in the simulations discussed in this chapter, we only create photon

macro-particles whose energy reach the keV range. A typical value we use for such cutoff energy

is 1 keV.

From our studies presented in previous chapters, we found that the total linear BW pair

yields in our systems are typically no greater than the order of 109. This number is very small

compared to the number of other charged particles in our systems. Therefore, the influence

of the produced electrons and positrons on the collective plasma fields is negligible. Because

the purpose of our research is to examine dynamics of the produced positrons in our systems,

to reduce memory usage, we only create macro-particles for the produced positrons in our

simulation. Moreover, to avoid numerical instabilities caused by changing local charge density

in the simulation, we set these positron macro-particles as tracer particles, which means they

do not contribute to the collective plasma fields. They will only passively move in simulations

according to the background fields, with the synchrotron emission of photons by these positrons

taken into account in the simulation.

A schematics of our implementation is shown in Algorithm (2). In our implementation,

at each time step of the simulation, we first check photon density in each simulation cell. To

save memory usage, we proceed in each cell only if photon density in this cell is greater than the

classical critical density nc. This is justified by the scaling of the pair yields npairs on the photon

density nγ : npairs ∝ n2
γ . Next, suppose there are N (pair creation is calculated only if N ≥ 2)

photon macro-particles in this cell at this time step, in principle, there will be N(N−1)/2 binary
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Algorithm 2: Linear BW pair creation in EPOCH
/* Main loop of the PIC simulation with Nt total time steps */

for t← 1 to Nt do
/* Loop over simulation cell with Nx, Ny, and Nz cells in each

dimension */

for ix← 1 to Nx do
for iy← 1 to Ny do

for iz← 1 to Nz do
/* Check photon density nγ and number of photon

macro-particles N */

if nγ > nc & N ≥ 2 then
Randomly pick two out of these N photon macro-particles;
/* Check picked photons satisfies momentum threshold

(Eq. (5.9)) */

if Momentum threshold then
Compute Nyield according to Eq. (7.1);
Compute positron momentum p⃗e;
Create a tracer positron macro-particle with weight Nyield ∗N(N−1)/2
and momentum p⃗e located at the mid-point of the two photon
macro-particles;

end
end

end
end

end
end

pairings of these N particles. As each of these N(N−1)/2 pairings will create positrons with

momentum different from each other, in principle, N(N−1)/2 positron macro-particles need

to be produced. To save memory usage, we adapt the idea of random pairing method which

is widely used in simulating binary collisional process in PIC codes. We randomly select two

out of the N photon macro-particles. If their momentum does not satisfy the condition on the

momentum threshold for the linear BW pair creation (shown in Eq. (5.1)), we assume there is no

pair creation happening in this cell for this time step. If the condition is satisfied, we compute the

pair yields Nyield by these two photon macro-particles. We then create a positron macro-particle

with weight Nyield ∗N(N− 1)/2 as an estimation to account for the pair creation from other
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binary pairs of photon macro-particles in the cell.

The value of Nyield which is the number of linear BW pairs produced by two photon

macro-particles is calculated by the formula:

Nyield = κ ·σγγ ·wγ1 ·wγ2 ·
c∆t
Vcell

. (7.1)

In this equation, κ := 1− cos(ϕ) is the kinematic factor for the angle between the two photons

being ϕ (same as defined in Eq. (5.14)), σγγ is the cross section for the linear BW process

calculated from the momentum of the two photons as defined in Eq. (5.9), wγ1 and wγ2 are the

weights of the two photon macro-particles, ∆t is the time step of the PIC simulation, and Vcell is

the volume of the cell of the PIC simulation.

Momentum of the produced positron p⃗e is determined in the following way. Suppose θp

is the angle between the colliding photons, εγ1 and εγ2 are energy of photon macro-particles in

the lab frame, and p⃗γ1 and p⃗γ2 are their momenta in the lab frame. We first compute energy εe,cm

and magnitude of the momentum of the produced positron |p⃗e,cm| in the center of mass frame of

the colliding photons:

εe,cm =

√
εγ1εγ2(1− cos(θp))

2
, (7.2)

|p⃗e,cm| =

√
εγ1εγ2(1− cos(θp))

2c2 −m2
ec2, (7.3)

The angular distribution of p⃗e,cm in center of mass frame is assumed to be isotropic by the

following procedure. We first generate two random variables (u,v) each with uniform distribution

on the interval (0,1). Then we define spherical coordinates (θ ,φ) by:

θ = 2πu, (7.4)

φ = cos−1(2v−1), (7.5)
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where θ ∈ (0,2π) is the azimuthal angle, and φ ∈ (0,π) is the polar angle. By defining θ and

φ) this way, we ensure the random angle we assign to p⃗e,cm has a uniform distribution on the

surface of a unit sphere. We can then define p⃗e,cm by:

p⃗e,cm = |p⃗e,cm| ∗ (sinφcosθ x̂xx+ sinφsinθ ŷyy+ cosφ ẑzz). (7.6)

Finally, p⃗e is calculated by transforming the four vector (εe,cm, p⃗e,cm) in the center of mass frame

to the lab frame with respect to the velocity

v⃗ =−c∗
p⃗γ1 + p⃗γ2

εγ1 + εγ2
. (7.7)

After the momentum of the produced positron p⃗e is calculated, we create a positron

with momentum p⃗e and weight Nyield ∗N(N−1)/2 at the mid-point of the positrons of the two

selected photons. This pair creation process is then repeated inside each cell at every simulation

time step.

7.2 Longitudinal acceleration of positrons by a single laser
pulse

In Chapter VI, we discussed acceleration of linear BW positrons by the longitudinal

electric field co-propagating with the laser pulse created by charge separation in the laser front.

In this section, we examine the dynamics of these positrons, with the focus on the dynamics of

individual positron particles.

We first confirmed that forward-moving energetic positrons we saw in Chapter VI are

indeed accelerated by the longitudinal electric field. We performed PIC simulation with the same

parameters used in Chapter VI (with initial target density being 2.8nc). We randomly selected

15 positrons in our simulation who are accelerated to near GeV level. Figure 7.1 shows the

trajectories of these positrons as well as their position with respect to the longitudinal electric
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Figure 7.1. Positron generation and acceleration simulated by EPOCH. Upper panel: trajectories
of 15 randomly selected positrons produced via the linear BW process who are accelerated to
high energies. Bottom four panels: longitudinal electric field and positron positions at four
different times. The color of each marker represents the positron energy.

fields Ex in the simulation. From this figure, we confirm that they are in the region of the

co-propagating electric field in the laser front during their acceleration to GeV energy level.

Figure 7.2 shows the work done on these 15 positrons by the longitudinal (Wx) and transverse

(Wy) electric fields in the simulation. Figure 7.2 further confirms that these positrons are mainly

accelerated by the longitudinal electric fields (in our case, the co-propagating charge-separation

electric fields), rather than the transverse laser fields.

From Figure 7.2, we see that the transverse fields can do work on these positrons shortly

after they are produced. However, as these positrons gain longitudinal momentum from the

co-propagating longitudinal fields, eventually they enter the regime of px≫ py, where px and

py are their momentum in x and y. In this regime, the velocity vector of these positrons are

predominantly along the longitudinal direction x, which causes strong cancellation between

the acceleration by the laser electric and magnetic fields. As a result, the acceleration of these

positrons are primarily along the longitudinal direction, causing them to continuously gain
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longitudinal momentum. The trajectories of these positrons thus stay approximately linear, while

the azimuthal plasma magnetic fields slowly deflect these positrons transversely outward as

shown in Figure 7.1.

" "
#$

[M
eV

]

(% [MeV]

( &
[M

eV
]

Figure 7.2. Energy gain (color) for the positrons shown in Fig. 7.1, with the horizontal axis
showing the contribution from Ex and the vertical axis showing the contribution from Ey.

7.3 3D results of the a single laser setup

Our new implementation discussed in Sec. 7.1 also allows us to simulate our systems

in 3D. We checked the linear BW pair yields in same system presented in Chapter VI (with

initial target density being 2.8nc) in 3D simulation. As a process of binary collision of photons,

the linear BW pair yields depend heavily on the density of colliding photons. Therefore, one

might expect the pair yields in 3D to be significantly reduced compared to the yields in 2D

simulations. However, in our simulations, we observed that the laser self-focusing inside the

plasma in 3D simulation is much stronger than the one in 2D simulation. Figure 7.3 (a,d) shows

the amplitude of the laser fields after propagating for the same distance into the plasma in 2D

and 3D simulations. After propagating in the plasma for approximately 25 microns, the peak

amplitude of the laser pulse increases from a0 = 120 (the peak normalized laser amplitude in

vacuum) to a0 ≈ 200 in 2D simulation, and to a0 ≈ 300 in 3D simulation. This is because
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while the laser pulse is self-focused along the two transverse dimensions, which is accurately

simulated in 3D simulation, 2D simulation can only account for the self-focusing of the laser

pulse from the only transverse dimension (in our simulation setup, y). This can be seen from

the ratio of the peak laser amplitudes after self-focusing over the peak amplitudes in vacuum.

Our simulations show that this ratio in 3D is approximately equal to square of this ratio in 2D:

(200/120)2 ≈ (300/120).
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Figure 7.3. Comparison of instantaneous laser amplitude and densities of backward-moving
and forward-moving photon populations between 2D and 3D PIC simulations. All snapshots are
taken at t = 117 fs where laser peak amplitude in vacuum reaches target boundary at t = 0. (d)
Ey on the plane z = 0. Density for backward-moving photons are for those with energy greater
than 10 keV and less than 1 MeV. Density for forward-moving photons are for those with energy
greater than 0.5 MeV and less than 100 MeV. Photon densities for 3D simulation are averaged
over a 2 µm slice (|z|< 1 µm).

Figure 7.3 shows that, as expected, densities of both forward-moving and backward-

moving photons in 3D simulation are less than these densities in 2D simulation. However, due

to the enhanced self-focusing of the laser pulse, both photon densities in 3D simulation are

approximately of the same orders of magnitude (∼ 1022 cm−3) with the photon densities in 2D
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simulation. As a result, the linear BW pair yield calculated from our 3D simulation is 2.6×106,

which is only about 4 times smaller than the pair yields in 2D simulation (1×107).
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Figure 7.4. Angle-energy spectrum ∂ 2N3D
e+ /∂ψ∂εe+ [A. U. ] of the linear BW positrons in 3D

PIC simulation. Here, ψ is the polar angle to the axis of laser propagation, x.

Lastly, the angle-energy spectrum of the linear BW positrons in the 3D simulation is

shown in Figure 7.4, which confirms the acceleration of the produced positrons in our setup

observed from 2D simulations.

7.4 Sideways acceleration of positrons in the single pulse
setup

The longitudinally accelerated positrons discussed in Chapter VI and Sec. 7.2 and Sec. 7.3

co-propagate with the longitudinal electric field and the laser pulse. Therefore, they can stay

inside the PIC simulation box for a extended amount of time. During our study of this population

of energetic positrons, positrons who leave the simulation box are generally neglected. However,

as the azimuthal plasma magnetic fields (shown in, e.g., Figure 3.1(c), Figure 6.1(c), and

Figure 7.10(a)) generated by the laser-accelerated electron current are with the orientation which
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will deflect positrons outward, one may wonder whether there were positrons who do not interact

with the co-propagating electric fields leaving the plasma channel and the simulation box from

transverse directions.

In this section, we give an affirmative answer to this postulation. The same 2D PIC

simulation with those in Chapter VI for ne = 2.8nc (which is also the same simulation as in

Sec. 7.2 and Sec. 7.3) is run. In this simulation, we record information of positrons who leave

the simulation box. We then calculate the angle-energy spectrum of linear BW positrons in the

simulation box at the end of the simulation alone with positrons who have left the simulation

box. The result in shown in Figure 7.5. By including both of these positrons, Figure 7.5 covers

all of the produced positrons in our system.
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Figure 7.5. Angle-energy distribution ∂ 2Ne+/∂θ∂εe+ of positron in the single pulse setup
including positrons leaving the simulation box. The white dashed lines are the upper bounds
of the angle of sideways-moving positrons defined in Eq. (7.21) with ⟨B̃z⟩max = 20 and R = 6λ .
The red rectangular box is defined by 25◦ < θ < 90◦ and εe+ > 200 MeV.

From Figure 7.5, we see the central spike around the angle range −25◦ ≲ θ ≲ 25◦ which

corresponds to the longitudinally accelerated positrons discussed previously. Besides this central

spike, we also observe two extra spikes on the left and right sides of the central spike. These
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are the positrons who are not able to enter the region of the co-propagating longitudinal electric

field, thus are deflected transversely outward by the azimuthal plasma magnetic fields. Figure 7.6

shows trajectories of 20 randomly selected positrons from these two side spikes. From this figure

we see that these positrons started to be deflected transversely outward almost immediately after

their production, quickly leaving the plasma channel and the simulation. This is the reason why

the existence of these sideways-moving positrons was not noticed in our previously studies, for

only positrons inside the simulation box were analyzed.

.

x [µm]

y 
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m
]

𝜀𝑒+  [MeV]

Figure 7.6. Characteristic trajectories of sideways-moving positrons in PIC simulation. 20
positrons are randomly selected from positrons with final energy greater than 200 MeV and final
angle θ in the range 25◦ < |θ |< 90◦.

7.4.1 Absence of the interaction with co-propagating longitudinal fields

Before examining the dynamics of these positrons, we first need to clarify what back-

ground fields they experience. Specifically, we would like to confirm that these positrons do

not interact with the co-propagating electric fields. One thing we can quickly check is to make

a histogram of these positrons on the instantaneous longitudinal electric field they experience.

The result is shown in Figure 7.7. Here, we first take a snapshot of the longitudinal electric field

Ex and plot it in Figure 7.7(b) when the laser pulse propagates 30µm into the plasma. From

this figure we see that the strength of the co-propagating longitudinal field in the laser front is

approximately |e|Ex/mecω ≈ 40. We then record the longitudinal electric fields experienced
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by positrons at this time snap. Figure 7.7(a) shows the number of positrons as a function of

longitudinal electric fields they experience. Here we plot two distributions, with one for all of the

positrons in the simulation box and the other one only for positrons who are sideways-moving.

The definition of being sideways-moving is to be inside the red rectangle in Figure 7.5 defined

by 25◦ < θ < 90◦ and εe+ > 200 MeV. The comparison between the red and black curves in

Figure 7.7(a) near the range of |e|Ex/mecω ≈ 40 suggests that sideways positrons do not interact

with the co-propagating longitudinal fields.
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Figure 7.7. (a) Distribution of positrons with respect to the instantaneous normalized longitudinal
fields eEx/mecω they experience at the same time snap with panel (b). The black curve is for all
positrons in the simulation box, and the red curve is for positrons inside the red rectangular box
of Figure 7.5. (b) Spatial distribution of the normalized longitudinal electric fields eEx/mecω as
the laser pulse travels 30µm into the plasma.

We can further confirm this by examining their integral of motion. Assuming the laser

pulse is a plane wave with phase ξ , the azimuthal magnetic fields are generated by uniform

longitudinal current density, and the strength Es of the co-propagating longitudinal electric field
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is a constant. It is easy to check that a positron in such a system has the integral of motion:

d
dt
(γ− px/mec−πα(

y
λ
)2−asξ ) = 0, (7.8)

where γ and px are the Lorentz factor and longitudinal momentum of the positron, α is a

factor quantifying the strength of the azimuthal magnetic fields, λ is the laser wavelength, and

as := eEs/mecω is the normalized longitudinal field. The cross-section of the linear BW process

peaks at around εγ1εγ2 ≈ [0.7 MeV]2 for head-on collisions. Therefore, we estimate the initial

condition of positrons in our system by

γ− px/mec≈ 1. (7.9)

On the other hand, positrons gain relativistic energies by interacting with the strong fields in the

plasma channel. By the time they leave the plasma channel, we have

γ− px/mec≈ py/mec, (7.10)

where py is the y component of the positron momentum. Plugging Eq. (7.9) and (7.10) into the

integral of motion (7.8), we obtain

p f inal
y

mc
= πα(

y f inal

λ
)2 +1−πα(

yinitial

λ
)2−∆(asξ ), (7.11)

where p f inal
y is the final transverse momentum py, yinitial and y f inal are the initial and final

transverse position y, and ∆(asξ ) is the change of the term asξ . Because the strong fields in

our system only exists inside the plasma channel expelled by the propagation of the laser pulse,

positron momentum are not expected to change after positrons leave the channel. Therefore,
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y f inal in Eq. (7.11) can be replaced by the radius R of the channel:

p f inal
y

mc
= πα(

R
λ
)2 +1−πα(

yinitial

λ
)2−∆(asξ ). (7.12)

The important conclusion we would like to make is that in Eq. (7.12), in the case of

as = 0 which means positrons do not interact with the co-propagating longitudinal field, the final

transverse momentum p f inal
y depends only on the initial transverse coordinate yinitial:

p f inal
y

mc
=

p f inal
y (yinitial)

mc
= πα(

R
λ
)2 +1−πα(

yinitial

λ
)2. (7.13)

We then check whether this is the case in the simulation by calculating the distribution of the

sideways positrons as a function of p f inal
y and yinitial . In comparison, we have also calculated

the same distribution for positrons who are longitudinally accelerated. The result is shown in

Figure 7.8. In this figure, we have estimated the upper and lower bounds of p f inal
y for each value

of yinitial using white dashed lines. This is because as the channel continue expanding after the

passing of the laser pulse, both the radius R and the radial gradient of the azimuthal magnetic

fields (thus α) are not fixed. Figure 7.8(a) shows that p f inal
y of the sideways-moving positrons

are overall within the two bounds, and the distribution captures the trends of the two bounds.

This shows that sideways positrons satisfy Eq. (7.13). In contrast, from Figure 7.8(b) we can see

that longitudinally accelerated positrons are overall not inside the two dashed lines predicted

by Eq. (7.13). This is because the co-propagating longitudinal fields contributes to the integral

of motion, therefore the ∆(asξ ) term in Eq. (7.12) is not zero. We thus conclude that these

sideways-moving positrons do not interact with the co-propagating longitudinal electric fields in

our system.
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Figure 7.8. Distribution of positrons as a function of their initial transverse coordinate yinitial and
final transverse momentum p f inal

y . (a) For sideways-moving positrons ∂ 2NSide
e+ /∂yinitial∂ p f inal

y .
(b) For longitudinally accelerated positrons ∂ 2NLongi

e+ /∂yinitial∂ p f inal
y . The sideways positrons

are those in the red rectangular box in Figure 7.5. The longitudinally accelerated positrons are
those with final angle |θ |< 25◦ and final energy εe+ > 250 MeV. The white dashed line on both
panels on the left is for R = 5λ and α = 2.4. The white dashed line on both panels on the right
is for R = 4λ and α = 9.

7.4.2 Upper bound on energy and angle of positrons

We first give an rough upper bound on the energy gain of the sideways-moving positrons.

Taking the derivative of positrons’ Lorentz factor:

dγ

dt
=

e
mec2 ∗ [vxEx + vyEy] , (7.14)

where vx and vy are the x and y components of the velocity, and Ex and Ey are the x and y

components of the electric fields. In Sec. 7.4.1, we confirmed that sideways positrons do not

experience the co-propagating electric fields. Therefore their energy gain is expected to be from

Ey by doing transverse displacement:

∆γ ≈ 2π

∫
ay d

( y
λ

)
, (7.15)
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where ay = e|Ey|/mecω is the normalized electric fields in y, and λ is the laser wavelength. We

then approximate the transverse profile of the laser pulse as a cos function: ay = a∗cos(πy/2R)∗

cos(ξ ) for some peak amplitude a, channel radius R, and laser phase ξ . In our system, as a

positron move transversely outward, the term for the transverse profile of the laser profile

cos(πy/2R) decreases. So, the ideal case for the energy gain of sideways-moving positrons is

that when |y| is small, the phase ξ is around 0 so that cos(ξ ) ≈ 1. In this case, the positron

experience efficient energy gain while the laser profile cos(πy/2R) is at largest. In this case, the

impact of the fields when |y| is large will have a relatively minor contribution to ∆γ . We thus

estimate the upper bound for the energy gain as

∆γ ≲ 2π

∫ R

0
a∗ cos(πy/2R) d

( y
λ

)
= 4a∗

(
R
λ

)
. (7.16)

For values we observe from the simulation where a≈ 150 (after self-focusing) and R≈ 5λ , we

obtain the upper bound for sideways-moving positrons being

∆γ ≲ 3000. (7.17)

This upper bound is slightly larger than what we see from our simulation, but this is expected

because here ξ = 0 is assumed throughout the positron motion.

We can also estimate the upper bound for the angle of these sideways-moving positrons

for a given final energy. The angle θ of a positron is affected by the laser fields (E laser
y and Blaser

z )

and the azimuthal plasma magnetic fields (⟨Bz⟩) of our system:

dθ

dt
=

e
γmec

∗
[
cos(θ)E laser

y −Blaser
z −⟨Bz⟩

]
. (7.18)

Positrons are produced with relatively small gamma factor, and are accelerated to high energy

(up to hundreds of MeV) as they leave the plasma channel. Overall, these positrons are gaining

energy from the laser pulse. Since when a positron is gaining energy from the laser pulse, the
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laser fields are in the orientation that will confine the positron. We can therefore approximate

∣∣∣∣dθ

dt

∣∣∣∣≲ ∣∣∣∣e⟨Bz⟩
γmec

∣∣∣∣ . (7.19)

Figure 7.6 shows that sideways positrons transversely move out of the channel without significant

oscillations on their trajectory. Therefore, the azimuthal plasma magnetic fields ⟨Bz⟩ they

experience are approximately monotonically increasing. On the other hand, their gamma factor

overall is also increasing as they transversely move out. We thus assume that the ratio ⟨Bz⟩/γ is

approximately a constant, and set it to equal to ⟨Bz⟩max/γ f inal , where ⟨Bz⟩max is the azimuthal

magnetic fields at the boundary of the channel, and γ f inal is the final Lorentz factor of the

positrons. We thus have: ∣∣∣∣dθ

dt

∣∣∣∣≲ ∣∣∣∣ e⟨Bz⟩max

γ f inalmec

∣∣∣∣ . (7.20)

Eq. (7.20) corresponds to the physical picture that the minimum local gyro radius of the

sideways positrons is γ f inalmec/e⟨Bz⟩max. We therefore assume the maximum final angle θmax

for a positron with final energy γ f inal to be the angle between a circle and the channel boundary

y =±R illustrated in Figure 7.9. This circle is tangent to the central axis of the channel y = 0,

and has radius γ f inalmec/e⟨Bz⟩max. Figure 7.9 illustrates such definition of θmax for the upper

half of the system. The definition for the lower half is analogous.

𝑦 = 0

𝑦 = 𝑅
𝜃𝑚𝑎𝑥 𝜃𝑚𝑎𝑥 𝜃𝑚𝑎𝑥

Figure 7.9. Illustration of the definition of θmax for the upper half of the system. All arcs in the
figure are part of circles tangent to the line y = 0 whose radii are γ f inalmec/e⟨Bz⟩max.

Then, from pure geometric calculations, we obtain the following relation between θmax

164



and γ f inal:

tan(θmax) =

√
R
λ
· γ f inal

⟨B̃z⟩max
· 1

2π
− (

R
λ
)2
/(

R
λ
− γ f inal

⟨B̃z⟩max
· 1

2π

)
, (7.21)

where ⟨B̃z⟩max = e⟨Bz⟩max/mecω . Since we are estimating the upper bound for the angle, we use

the value of ⟨B̃z⟩max in regions where laser pulse has past, so that we do not overestimate the

deflection by ⟨B̃z⟩max. Using ⟨B̃z⟩max = 20 and R = 6λ , we obtain the two white dashed curves

in Figure 7.5, which is in good agreement with the simulation result.

7.5 Backward acceleration of positrons in the single pulse
setup

Besides the three spikes we see in the forward direction in Figure 7.5, we also observe

there is a highlighted region in the backward direction of this figure in the regime εe+ ≲ 200 MeV.

These are the positrons who do not gain enough energy to leave the plasma channel, either

by longitudinally overtaking the laser front or transversely leaving the channel, during their

interaction with the laser fields. As a result, after the laser pulse has past, they are trapped

inside the plasma channel by the azimuthal plasma magnetic fields ⟨BZ⟩ who is illustrated in

Figure 7.10(a). As the sign of the azimuthal magnetic fields flips between lower and upper half

of the channel, these trapped positrons oscillate between lower and upper half of the channel,

forming backward moving positron current. Figure 7.10 shows the trajectories of these backward

moving positrons.

We can estimate the threshold energy above which positrons can no longer be trapped by

equating the positron gyro radius to the channel radius R.

γmec2

e⟨Bz⟩
= R. (7.22)

Here the magnitude of the azimuthal magnetic fields ⟨Bz⟩ is not a constant. We approximate its
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Figure 7.10. (a) Azimuthal plasma magnetic fields generated by laser driven electron current.
⟨BZ⟩ is the z component of the magnetic fields averaged over 2 laser periods. B0 is the peak laser
magnetic fields in vacuum. (b) Trajectories of 5 randomly selected backward moving positrons
in PIC simulation with color coding showing positron energy εe+ .

value such that e⟨Bz⟩/mecω ≈ 12. The approximated value set to be smaller than peak value of

⟨Bz⟩ from the simulation to account for the fact that ⟨Bz⟩ is weaker in the vicinity of the central

axis of the channel. Assuming R = 5µm = 6.25λ , we thus get the threshold positron gamma

factor γth being:

γth = 2π ∗
(

R
λ

)
∗ e⟨Bz⟩

mecω
≈ 500. (7.23)

Comparing to Figure 7.5, our estimation for γth approximately agrees with the simulation result.

The importance of this backward moving positron population is that from our simulation,

we typically observe that the majority of the produced linear BW positrons would end up

backward-moving. The dominance of the backward-moving positrons is especially noticeable in

the energy range in the order of 100−102 MeV. Figure 7.11 shows the angular-energy distribution

of backward and forward positrons within a cone of 10◦ around the central axis of the channel in

3D PIC simulations. Here we run a parameter scan on the laser focal spot (thus the peak intensity)

and the target density shown in the figure. Parameters that are not listed in the figure are assumed
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to be the same as those used in Chapter VI, Sec. 7.2, Sec. 7.3, and Sec. 7.4. From this figure, we

see that the backward-moving population has the higher peak on the angle-energy distribution.

Such dominance suggests that the backward-moving positrons may be less challenging to detect

in experiments than other populations of positrons in the system.

Figure 7.11. Angle-energy distribution ∂ 2N/∂εe+∂Ω [MeV−1steradian−1] of linear BW
positrons in 3D PIC simulations with different laser intensity and target density. Positrons
are selected within cones of 10◦ opening angle around the central axis of the channel. Pulses
with intensity 1×1022Wcm−2 are focused to a waist radius of 8µm, while pulses with intensity
3×1022Wcm−2 are focused to a waist radius of 4.6µm.

7.6 Direct laser acceleration of the linear BW positrons in
dual pulse setup

In Chapter II, one of the surprising finding from our 2D simulations was that in the dual

pulse setup, after the two pulses collide, the azithumal plasma magnetic fields would retain

their polarity as the two remaining pulses propagating in the plasma channel. As a result, the

polarity of the azimuthal magnetic fields with respect to each of the two pulses is reserved. We

thus speculated that similar to the nonlinear BW positrons, the produced linear BW positrons
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would also undergo direct laser acceleration by the remaining pulses while being confined by the

azimuthal magnetic fields. This is confirmed by our PIC simulations using the same parameters

as those used in Chapter II (with laser a0 = 190). Figure 7.12 (a) shows trajectories of linear BW

positrons who are accelerated by the remaining pulses to near GeV energies. The oscillatory

feature of these trajectories clearly suggests these positrons were accelerated by the process of

DLA. Figure 7.12 (b) shows the angle-energy spectrum of the linear BW positrons in the dual

pulse system 104 fs after the laser collision. The two-lobe structure of Figure 7.12 (b) further

confirms positrons are accelerated by the process of DLA in the system.
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Figure 7.12. Direct laser acceleration of the linear BW positrons in the dual pulse setup in
2D PIC simulations. (a) Characteristic trajectories and energy gain of linear BW positrons
accelerated by the remaining pulses. (b) Angle-energy spectrum ∂ 2NLin

BW/∂θ∂εe+ [A. U. ] of the
linear BW positrons. Parameters for the simulation is the same as in Chapter II with a0 = 190.

The retention of the azimuthal plasma magnetic fields after the laser collision in 3D PIC

simulations is also confirmed. In these 3D simulations, parameters of the laser pulses are set

to be the same with those of the High Power Laser System (HPLS) in ELI-NP [6], and a target

similar to the one used in Chapter II is used. Details of the simualtions parameters are listed

in Table. 7.1 in Appendix 7.10. Figure 7.13 shows the configuration of the plasma azimuthal

magnetic fields before and after the collision of the two pulses. The most apparent feature is that

the polarity of the azimuthal magnetic fields do flip after the collision of the two pulses. However,

such flipping happens relatively slowly. At a fixed longitudinal position, the polarization of the

azimuthal plasma magnetic fields flip after the passing of the laser pulses. Moreover, as shown
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in Figure 7.13(b1), the flipping of the azimuthal magnetic fields starts from the outer ring of

the channel, which leaves the polarity around the central axis of the channel where positron

DLA takes place unchanged. Therefore, although the polarity of the azimuthal magnetic fields

would eventually flip, produced positrons in the dual pulse setup can still be accelerated via the

process of DLA. More quantitative results on such DLA of positrons in the dual pulse setup in

3D simulations are presented in Sec. 7.7.
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Figure 7.13. Configuration of the azimuthal plasma magnetic fields in 3D PIC simulations. (a1,
b1, c1) Normalized ⟨Bz⟩ z at the z = 0 plane. (a2, b2, c2) Direction and strength of ⟨Bazi⟩ at the
plane x =−4µm (shown by the brown vertical line in (a1, b1, c1)). ⟨Bz⟩ z is the component of
the magnetic fields averaged over 2 laser periods. ⟨Bazi⟩ is the azithumal component (in the y− z
plane) of the magnetic fields averaged over 2 laser periods. Snap shots are taken at the time of
laser collision (a1, a2), 40 fs after laser collision (b1, b2), and 80 fs after laser collision (c1, c2).

Electrons in our system are accelerated by the pulses while confined by the azimuthal

magnetic fields before the two pulses collide, whereas positrons in our system are accelerated by

the remaining pulses while being confined by the same azimuthal magnetic fields. Although the

equation of motion for the DLA of electrons and positrons are the same with fields being similar,
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the uniqueness of positrons DLA is that positrons can easily possess initial conditions for DLA

that are difficult to be achieved by electrons. It was suggested in previous studies [154, 155, 86]

that the initial condition of the charged particle in DLA has a profound impact on the dynamics

of the particle. For instance, it was shown that one of the integrals on motion which involves the

particle momenta and background fields experienced by the particle could uniquely determine

the energy gain of the particle by the process of DLA [86]. For electrons, they are initially

approximately at rest with no background fields before the pulses arrive at the target. Although

some of the electrons can be transversely injected into the pulses as suggested in [154, 155], the

gamma factor associated to such injection is still relatively small. On the other hand, due to energy

and momentum conservation during the pair creation processes, positrons are almost always

produced with relativistic energies. Moreover, most of positrons in our system are produced at

the same place and time of the overlapping of the two pulses, so the initial background fields

experienced by the positrons are also expected to be very strong (a0≫ 1).
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Figure 7.14. Angle-energy spectrum ∂ 2Ncenter
e+ /∂θ∂εe+ [A. U.] of the linear BW positrons

inside the rectangular region defined by −10 µm < x < 10µm and −5 µm < x < 5µm before
and after the laser collision. (a) 6 fs before laser collision. (b) 28 fs after laser collision.
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In our system, such difference on the initial conditions of DLA is further enlarged by

the acceleration of the positrons by the overlapping of the two pulses. Positrons started to be

produced as soon as the two pulses collide, and they are continuously produced during the

overlapping of the two pulses. Our simulation show that before the two pulses completely

separate from each other, produced positrons are accelerated by the electromagnetic fields of the

overlapping of the two pulses, forming an angularly uniform distribution of energetic positrons

with energy up to a few hundreds of MeV. Figure 7.14(b) shows the angle-energy spectrum of

the linear BW positrons inside the region where the two pulses collide shortly after the laser

collision. From this figure we see the angularly isotropic energetic population of linear BW

positrons. Figure 7.14(a) shows the same spectrum of linear BW positrons in the same region

as in Figure 7.14(b) before the laser collision. Comparing the two panels of Figure 7.14, we

conclude that the energetic positrons in Figure 7.14(b) are not from positrons accelerated in each

of the two single pulse systems before the collision of the two pulses. We therefore confirm that

energetic positrons Figure 7.14(b) are accelerated by the overlapping pulses. Such acceleration

of the positrons creates initial conditions for the subsequent DLA process in a the regime of

hundreds of MeV with arbitrary initial angle. These initial conditions are very challenging to

be achieved by electrons in their DLA process under currently available technology. Whether

the unique initial conditions for positron DLA in our system would lead to dramatic different

particle dynamics is an interesting open question that is to be examined in the future.

7.7 Impact of the laser injection angle on the dual pulse
setup

Most of the experimental facilities nowadays who can deliver ultra-intense laser pulses

(I ∼ 1022 Wcm−2, multi-PW, and a0 ∼ 102) would not allow shooting such pulses perpendic-

ularly onto a solid surface. In this section, we benchmark our results in accordance with this

experimental restriction by performing a parameter scan on the injection angle ϕlaser of the
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laser pulses with respect to the axis of the target channel in both 2D and 3D PIC simulations.

Figure 7.15 shows the schematic setup of our simulations, where the angle ϕlaser is on the

polarization plane (x− y) of each pulse. To be further consistent with experiments, we use laser

parameters same with those of the High Power Laser System (HPLS) in ELI-NP [6]. Details of

the laser and simulation parameters used in this section are listed in Table 7.2 and Table 7.3 in

Appendix 7.10.

x [µm]

y 
[µ

m
] φlaser

φlaser

Figure 7.15. Schematic setup of the dual pulse system with laser injection angle ϕlaser.

Figure 7.16(a) shows the pair yields by both linear and nonlinear Breit-Wheeler processes,

as well as number of linear BW positrons being accelerated to above 500 MeV, in our simulations

with different laser injection angle ϕlaser. Our simulations show that as the pulses are obliquely

injected into the target channel, the channel redirects their direction of propagation. The

automatic redirection and alignment of the two pulses allow the system to resemble the system

as if pulses were injected with no oblique angle. Therefore, the linear BW pair yields and the

number of generated energetic linear BW positrons are robust to the oblique injection angle ϕlaser

of the pulses up to ϕlaser ≲ 20◦, as shown in Figure 7.16(a). On the other hand, Figure 7.16(a)

also shows the nonlinear BW pair yields are much more sensitive to ϕlaser. This is because as a

non-perturbative process, the nonlinear BW process is much more sensitive to the change on the

laser amplitude and electron (thus photon) energy at the moment of the electron-laser collision

in our system. The sensitivity of the nonlinear BW process to the injection angle ϕlaser suggests

that the oblique injection of laser pulses may be more than a experimental requirement. It could

172



potentially be utilized as a method of suppressing the nonlinear BW pair creation in our system

without significantly affecting the linear BW pair yields.

Breit-Wheeler pair yields in 2D PIC simulations

φlaser

Comparison of  linear BW pair yields 
in 2D and 3D PIC simulations

φlaser
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Figure 7.16. Breit-Wheeler pair yields with different laser injection angle ϕlaser. (a) Pair yields
by the linear BW (green markers) process, nonlinear BW (magenta markers) process, and the
number of linear BW positrons accelerated to above 500 MeV (yellow markers). (b) Linear BW
pair yields in 2D (green X markers) and 3D (green circular markers) PIC simulations. Number
of linear BW positrons accelerated to above 500 MeV in 2D (yellow X markers) and 3D (yellow
circular markers) simulations. Simulation parameters are listed in Table 7.2 and Table 7.3. The
third dimension of 2D simulations are assumed to be 6 µm.

We also examined the impact of the oblique injection on the linear BW pair production

and positron acceleration in 3D PIC simulations. Figure 7.16(b) shows the comparison on the

linear BW pair yields and number of accelerated positrons between 2D and 3D simulation results.

This Figure confirms that similar to 2D simulation results, both the pair yields and acceleration of

positrons are robust to the injection angle ϕlaser in 3D simulations up to ϕlaser ≲ 20◦. Moreover,

as expected, the 3D pair yields are less than those of 2D. However, both the pair yields and

the number of positrons accelerated to above 500 MeV are only about one orders of magnitude

smaller than those in 2D simulations for the range of injection angle ϕlaser ≲ 20◦. This is because

all of the key physical components (such as relativistic transparency, DLA of electron, generation

of strong azimuthal magnetic fields) of our system, which are the building bricks for both the

linear BW pair creation and positron acceleration, have been previously shown to exist also in

3D PIC simulations with some even in experiments [156, 157].
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7.8 Summary of positron dynamics

In this section, we investigate the dynamics of linear BW positrons produced in the two

setups we proposed in previous chapters.

We found that linear BW positrons in the single pulse setup can be classified into

three groups: longitudinal positrons (Sec. 7.2), sideways positrons (Sec. 7.4), and backward

positrons (Sec. 7.5). Longitudinal positrons are those who are accelerated by the co-propagating

longitudinal electric field in the laser front. Sideways positrons are those who are accelerated

by the laser fields and deflected transversely outward by the azimuthal magnetic fields. Finally,

backward positrons are those who have not gained enough energy during their interaction with

the laser pulse, and are thus trapped by the azimuthal magnetic fields forming backward moving

positron current.

In the dual pulse setup, positrons are first heated by the fields of overlapping pulses,

forming a angularly uniform population of positrons with energy up to a few hundred MeV.

These positrons are then accelerated by the remaining pulses via the process of DLA after the

two pulses separate, while confined by the azimuthal magnetic fields.
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7.10 Appendix

This appendix presents tables for the parameters of PIC simulations discussed in Sec. 7.6

and Sec. 7.7 of this chapter.
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Table 7.1. Parameters of 3D PIC simulation discussed in Sec. 7.6.

Laser parameters
Normalized field amplitude a0 = 152
Peak intensity range I0 = 5×1022 W/cm2

Wavelength λ0 = 0.8 µm
Laser polarization Linearly polarized in y
Focal plane of laser #1 x =−20
Focal plane of laser #2 x =+20
Laser profile (longitudinal and trans-
verse)

Gaussian

Pulse duration (full width at half
maximum for intensity)

23 fs

Focal spot size (full width at half
maximum for intensity)

4.2 µm

Target parameters
Cylindrical target diameter 11.5 µm
Target length (along x) 40 µm
Cylindrical Channel diameter dch = 5.5 µm
Composition C+6:H+ = 1 : 1, and electrons
Channel density ne = 1.5nc
Bulk density ne = 30nc

Simulation parameters
Simulation box 50 µm in x; 14 µm in y; 14 µm in z
Spatial resolution 30 cells per µm in x

30 cells per µm in y
30 cells per µm in z

Macro-particles per cell 2 for electrons
1 for carbon ions
1 for hydrogen ions
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Table 7.2. Laser and target parameters for PIC simulations discussed in Sec. 7.7.

Laser parameters
Normalized field amplitude a0 = 152
Peak intensity range I0 = 5×1022 W/cm2

Wavelength λ0 = 0.8 µm
Laser polarization Linearly polarized in y
Focal spot of laser #1 x =−15 µm; y = z = 0
Focal spot of laser #2 x =+15 µm; y = z = 0
Laser profile (longitudinal and trans-
verse)

Gaussian

Pulse duration (full width at half
maximum for intensity)

23 fs

Focal spot size (full width at half
maximum for intensity)

4.2 µm

Plane of central axis of laser pulses (x− y) plane
Oblique angle of laser injection 0−21 degrees

Target parameters
Cylindrical target diameter 11.5 µm
Target length (along x) 30 µm
Cylindrical Channel diameter dch = 5.5 µm
Composition C+6:H+ = 1 : 1, and electrons
Channel density ne = 2nc
Bulk density ne = 30nc
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Table 7.3. Parameters for the setup of simulations discussed in Sec. 7.7.

2D simulation parameters
Simulation box 140 µm in x; 48 µm in y
Spatial resolution 40 cells per µm in x

40 cells per µm in y
Macro-particles per cell 40 for electrons

10 for carbon ions
10 for hydrogen ions

3D simulation parameters
Simulation box 40 µm in x; 14 µm in y; 14 µm in z
Spatial resolution 30 cells per µm in x

30 cells per µm in y
30 cells per µm in z

Macro-particles per cell 2 for electrons
1 for carbon ions
1 for hydrogen ions
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Summary

In this dissertation, we investigated the linear BW pair creation and dynamics of the

produced positrons in ultra-intense laser-plasma interaction systems, enabled by numerical tools

we developed.

We have proposed two experimental setups for the production of the linear BW pairs

inside plasmas. In Chapter II, we propose the dual laser setup, and in Chapter III, we propose

the single laser setup. Laser pulse(s) and targets used in both setups are currently experimentally

available. The linear BW pair yields in our setups are approximately 2 to 3 orders magnitude

higher than those reported in previously proposed setups. Besides proposing schemes for

potentially the first experimental observation of the linear BW process using real photons, our

results also suggest the non-negligibility and possible dominance (over the nonlinear BW and

BH processes) of the linear BW process in ultra-intense laser-plasma systems.

In Chapter IV, we investigate the impact of the target parameters, namely target length

and channel density, on the pair yields by the linear BW, nonlinear BW, and BH processes in

the dual laser setup. We find that these two target parameters, which are controllable during

manufacturing, can be used as control-knobs for the ratios among the three pair creation processes

without changing the laser parameters.

In this dissertation, we present the three numerical tools for calculating and simulating

the linear BW pair creation in the systems we studied. Chapter V presents the post-processing

algorithm we developed for evaluating the linear BW yields presented in In Chapter II, Chapter III,

and Chapter IV. By the time we developed this algorithm, it was the only numerical tool that

was able to calculate the linear BW pair yields inside photon-emitting ultra-intense laser-plasma
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interaction systems. Following the development of this algorithm and research presented in

Chapter II, III, and IV, we then implemented the linear BW process into PIC codes PICLS and

Epoch, in collaboration with Professor Sentoku’s research group in Osaka University. These new

implementations are able to simulate the produced positrons in the simulation, allowing us to

investigate the dynamics of them after their creation in simulations.

We found, with the help of our newly implemented codes, that the produced positrons in

the single laser setup can be divided into three major groups, and we investigated the dynamics

of positrons in each of these three groups. The first group (Chapter VI and Section 7.2) includes

positrons who are accelerated by the co-propagating longitudinal electric fields induced by charge

separation in the laser front. These positrons form collimated positron beam in GeV energy level.

The second group (Section 7.4) includes positrons transversely leaving the plasma channel due to

the outward reflecting azimuthal magnetic fields. Finally, the third group (Section 7.5) includes

positrons who do not gain enough energy to leave the plasma channel during their interaction

with the laser fields. These positrons are then trapped inside the plasma channel by the azimuthal

plasma magnetic fields, forming backward moving positron current. We found that this backward

moving group has the highest positron density per unit energy per steradian among the three

groups. Therefore, a potential experiment on the observation of the linear BW process in the

future might consider aiming at detecting positrons that are backward-moving.

In the dual laser setup, before the collision of the two pulses, each of the two pulses

resembles a system of the single laser setup until the two pulses collide which leads to much

more pronounced events of the linear BW pair creation. In Section 7.6 and 7.7, we show that the

produced positrons are first heated to up to a few hundred MeV by the two overlapping pulses,

and then accelerated by one of the remaining pulses via DLA assisted by the confining azimuthal

magnetic fields. The acceleration by the overlapping pulses enables initial conditions for the

subsequent DLA process that are dramatically different from those that are typical for DLA of

electrons, potentially influencing the dynamics of these positrons during DLA. Finally, results

on the linear BW pair creation and positron acceleration in the dual laser setup are benchmarked
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by 3D PIC simulations.

The formation of energetic positron beams in the systems we studied not only facilitates

experimental detection of the produced linear BW positrons, it also shows that our setups could

potentially serve as energetic positron sources in future experiments.
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Appendix: review of basic physical con-
cepts

9.1 Direct laser acceleration

The basic idea of DLA can be understood in the following simple toy model. Consider

the equation of motion of an electron inside a plane wave:

d p⃗
dt

=−|e|E⃗− |e|
γmec

[
p⃗× B⃗

]
, (9.1)

d⃗r
dt

=
c
γ

p⃗
mec

, (9.2)

where p⃗ is the momentum of the electron, γ =
√

1+(p/mec)2 is the Lorentz factor of the

electron, me, e, and c are the electron mass, elementary charge, and vacuum speed of light. Here

E⃗ and B⃗ are the electric and magnetic fields of the plane wave defined by:

E⃗ = E0g(ξ )exp{iξ}eeey, (9.3)

B⃗ = E0g(ξ )exp{iξ}eeez, (9.4)

where E0 is the amplitude of the electric and magnetic fields, g is a function for the envelope,

and ξ = kx−ωt is the phase for wavenumber k and frequency ω .

It’s easy to see that this system has translational symmetry in z, so we will focus our
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discussion on the (x− y) plane. Defining dimensionless parameter

a =
|e|E

mecω
(9.5)

being the normalized amplitude of the fields, one can check that the two integrals of motion are:

d
dt

(
py

mec
−a
)
= 0, (9.6)

d
dt

(
γ− px

mec

)
= 0. (9.7)

For an electron initially at rest at a = 0, we have:

√
1+(

px

mec
)2 +a2− px

mec
= 1. (9.8)

Therefore:

px

mec
=

a2

2
, (9.9)

py

mec
= a. (9.10)

For a wave with amplitude a≫ 1, we have px≫ py, and γ ≈ px/mec≫ 1. Therefore, when

such a wave propagates inside a plasma, it can drive a co-propagating ultra-relativistic electron

beam. From here, we see in order to electron energy with γ ≫ 1, a laser pulse with sufficiently

high intensity (a≫ 1) is required.

In practice, as a laser pulse propagates inside a plasma and drives an electron current, the

system is more complex than this simple model we discussed above. Multiple analytical and

numerical studies have been done to investigate the impact of various factors on the electron

dynamics in more realistic DLA systems. For example, factors that have significant influences on

the electron dynamics include the radiation friction force on the electrons [158], the azimuthal
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magnetic fields induced by the laser accelerated electrons [49], the detrimental role of the

longitudinal component of the laser pulse due to its finite width, and the superluminosity [159]

of the laser fields propagating inside the plasma.

9.2 Relativistic transparency

Recall the definition of critical density in the non-relativistic regime:

nc =
meω2

4π|e|2
. (9.11)

It is well known that an electromagnetic wave with frequency ω can propagate inside a plasma

with density ne only if ne < nc.

However, in the relativistic regime, due to the effective mass increase, the critical density

increases by approximately a factor of γ . Therefore, the criterion for the wave to propagate inside

a plasma becomes:

ne ≲ γ ∗nc. (9.12)

The phenomenon that an strong electromagnetic wave (such as an intense laser pulse) being able

propagate inside a classically over-dense plasma is known as the relativistic transparency. In

our research, this is the key to achieve high density of energetic electrons which results in high

photon density for pronounced production of the linear BW pairs.

9.3 Radiation reaction

In our research, the mechanism for the emission of energetic photons for the linear BW

pair production is the nonlinear inverse Compton scattering, also known as the radiation reaction

or synchrotron emission.

In classical electrodynamics, according to Maxwell’s equations, a moving electron will

irradiate electromagnetic waves governed by the Lorentz–Abraham–Dirac equation. In the
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quantum picture, this process is represented by the emission of photons by an electron as it

interact with the strong background fields. The parameter characterizing this process is called

the quantum nonlinearity parameter χ , defined as [95]

χ =

∣∣Fµν pν
∣∣

Esmec
=

γ

Es
∗
√
[E⃗ +

1
c
(⃗v××× B⃗)]2− 1

c2 (E⃗ · v⃗)
2, (9.13)

where Fµν and pν are the field tensor and four-momentum of the lepton respectively, v⃗ is the

velocity vector, and Es = m2c3/eℏ≈ 1.32×××1018 V/m is the Schwinger limit. For an electron

moving in background electromagnetic fields, the probability P of emitting a photon over a unit

amount of time approximately scales like P ∝ χ , and the characteristic energy εγ of this emitted

photon approximately scales like εγ ∝ χ . For efficient generation of energetic photons, it is

important to maximize χ of electrons.

Eq. (9.13) seems to suggest χ ≈ γ|E⃗|/Es for the fields of a laser pulse. However, for an

electron being accelerated and co-propagating with a laser pulse, there is strong cancellation

between the two terms E⃗ and v⃗/c× B⃗ for the laser electric and magnetic fields, and E⃗ · v⃗ is also

expected to be very small. In practice, as an intense laser pulse propagate inside a plasma, the

primary contributor of χ of the accelerated energetic electrons are the azimuthal magnetic fields

induced by the laser driven electron current. In this case, the value of χ can be estimated to be

χco ≈ Bplasma ∗
γ

Es
, (9.14)

where Bplasma is the azimuthal magnetic field generated by the laser accelerated electron beam.

Typically, Bplasma is around 10% to 20% of the peak laser electric field Elaser. The emission of

energetic photon beams by DLA electrons via the interaction with plasma azimuthal magnetic

has been widely studied in the past decade [41].

The value of χ in Eq. (9.14) is below the order of γElaser/Es because of the cancellation

between E⃗ and v⃗/c× B⃗. for an electron who is, instead of co-propagating, counter-propagating
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to the laser pulse, the flipping of the sign of v⃗ would result in the amplification of χ . In this case,

χcounter ≈ 2Elaser ∗
γ

Es
. (9.15)

Comparing Eq. (9.15) to Eq.(9.14), we see that since 2Elaser≫ Bplasma, we have χcounter≫ χco.

This means that compared to an electron co-propagating with a laser pulse, the value of χ can

be greatly enhanced if the electron collides with a laser pulse. It also suggests that compared to

co-propagating electrons, similar values of χ can be achieved by much less energetic electrons if

these electrons were counter-propagating to a laser pulse.
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[10] Golub A, Villalba-Chávez S, Ruhl H and Müller C 2021 Phys. Rev. D 103(1) 016009 URL
https://link.aps.org/doi/10.1103/PhysRevD.103.016009

[11] Pike O, Mackenroth F, G H E and Rose S J 2014 Nat. Photon. 8 434–436

[12] Ribeyre X, d’Humières E, Jansen O, Jequier S, Tikhonchuk V T and Lobet M 2016 Phys.
Rev. E 93(1) 013201 URL https://link.aps.org/doi/10.1103/PhysRevE.93.013201

[13] Wang T, Ribeyre X, Gong Z, Jansen O, d’Humières E, Stutman D, Toncian T and Are-
fiev A 2020 Phys. Rev. Applied 13(5) 054024 URL https://link.aps.org/doi/10.1103/
PhysRevApplied.13.054024

186

https://link.aps.org/doi/10.1103/PhysRev.46.1087
https://link.aps.org/doi/10.1103/PhysRev.46.1087
https://link.aps.org/doi/10.1103/PhysRevLett.16.252
https://link.aps.org/doi/10.1103/PhysRevLett.16.252
https://ui.adsabs.harvard.edu/abs/1998A&A...338...62Z
https://ui.adsabs.harvard.edu/abs/1998A&A...338...62Z
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-8-5-630
https://link.aps.org/doi/10.1103/PhysRevD.103.016009
https://link.aps.org/doi/10.1103/PhysRevE.93.013201
https://link.aps.org/doi/10.1103/PhysRevApplied.13.054024
https://link.aps.org/doi/10.1103/PhysRevApplied.13.054024


[14] Jansen O, Wang T, Stark D J, d’Humières E, Toncian T and Arefiev A V 2018 Plasma
Physics and Controlled Fusion 60 054006 URL https://doi.org/10.1088/1361-6587/aab222

[15] Chen H, Wilks S C, Bonlie J D, Liang E P, Myatt J, Price D F, Meyerhofer D D and
Beiersdorfer P 2009 Phys. Rev. Lett. 102(10) 105001 URL https://link.aps.org/doi/10.
1103/PhysRevLett.102.105001

[16] Martinez B, Lobet M, Duclous R, d’Humières E and Gremillet L 2019 Physics of Plasmas
26 103109 ISSN 1070-664X URL https://doi.org/10.1063/1.5118339

[17] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J,
Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control.
Fusion 57 113001

[18] Erber T 1966 Rev. Mod. Phys. 38(4) 626–659 URL https://link.aps.org/doi/10.1103/
RevModPhys.38.626

[19] Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84(3)
1177–1228 URL https://link.aps.org/doi/10.1103/RevModPhys.84.1177

[20] Harding A K and Lai D 2006 Rep. Prog. Phys. 69 2631–2708

[21] Ruffini R, Vereshchagin G and Xue S S 2010 Phys. Rep. 487 1–40

[22] Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M,
Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J,
Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A and Ragg W 1997
Phys. Rev. Lett. 79(9) 1626–1629 URL https://link.aps.org/doi/10.1103/PhysRevLett.79.
1626

[23] Reiss H R 1962 J. Math. Phys. 3 59–67

[24] Ritus V I 1985 J. Sov. Laser Res. 6 497–617 URL http://dx.doi.org/10.1007/BF01120220

[25] Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101(20) 200403 URL https://link.aps.org/doi/
10.1103/PhysRevLett.101.200403

[26] Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L
and Bell A R 2012 Phys. Rev. Lett. 108(16) 165006 URL https://link.aps.org/doi/10.1103/
PhysRevLett.108.165006

[27] Timokhin A N and Harding A K 2019 Astrophys. J. 871 12

[28] Kaw P and Dawson J 1970 Phys. Fluids 13 472–481

[29] Palaniyappan S, Hegelich B M, Wu H C, Jung D, Gautier D C, Yin L, Albright B J,
Johnson R P, Shimada T, Letzring S, Offermann D T, Ren J, Huang C, Hörlein R, Dromey
B, Fernandez J C and Shah R C 2012 Nat. Phys. 8(10) 763–769

187

https://doi.org/10.1088/1361-6587/aab222
https://link.aps.org/doi/10.1103/PhysRevLett.102.105001
https://link.aps.org/doi/10.1103/PhysRevLett.102.105001
https://doi.org/10.1063/1.5118339
https://link.aps.org/doi/10.1103/RevModPhys.38.626
https://link.aps.org/doi/10.1103/RevModPhys.38.626
https://link.aps.org/doi/10.1103/RevModPhys.84.1177
https://link.aps.org/doi/10.1103/PhysRevLett.79.1626
https://link.aps.org/doi/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1007/BF01120220
https://link.aps.org/doi/10.1103/PhysRevLett.101.200403
https://link.aps.org/doi/10.1103/PhysRevLett.101.200403
https://link.aps.org/doi/10.1103/PhysRevLett.108.165006
https://link.aps.org/doi/10.1103/PhysRevLett.108.165006


[30] Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E and Pukhov A 2016 Nat. Commun. 7
13686

[31] Grismayer T, Vranic M, Martins J L, Fonseca R A and Silva L O 2017 Phys. Rev. E 95(2)
023210 URL https://link.aps.org/doi/10.1103/PhysRevE.95.023210

[32] Gonoskov A, Bashinov A, Bastrakov S, Efimenko E, Ilderton A, Kim A, Marklund
M, Meyerov I, Muraviev A and Sergeev A 2017 Phys. Rev. X 7(4) 041003 URL https:
//link.aps.org/doi/10.1103/PhysRevX.7.041003

[33] Weber S, Bechet S, Borneis S, Brabec L, Bučka M, Chacon-Golcher E, Ciappina M,
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