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ABSTRACT OF THE DISSERTATION 

 

Clustering Techniques for Data Mining and Protein Design 
Around The Concept of Locality 

by 

Huseyin Hakkoymaz 

Doctor of Philosophy, Graduate Program in Computer Science 
University of California, Riverside, August, 2010 

Professor Eamonn Keogh and Professor Dimitrios Morikis, Co-Chairpersons 
 

 

Advances in technology have expedited the use of acquisition ability in computers 

to obtain data from diverse sources via sensors or imaging techniques with high 

throughput. The collected data usually tend to be extremely large, and processing a large 

volume of data requires computationally intensive resources. Clustering techniques 

simplify the data by partitioning it into meaningful groups and allow us to analyze a large 

volume of data in a relatively short period of time with high accuracy. 

This dissertation introduces several novel approaches that improve the 

performance of semi-supervised and unsupervised clustering by utilizing the concept of 

locality.  It makes two specific contributions: 

1. Magnetically Affected Paths: A novel approach to apply the user-defined 

constraints through local manipulations in semi-supervised clustering. MAP 

refines the clustering results by increasing the weight of the edges connecting 
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the objects that are in the neighborhood of a cannot-link constraint, and 

decreasing the weight of the edges connecting the objects that are in the 

neighborhood of a must-link constraint. MAPClus framework introduced in 

this dissertation integrates the MAP concept into the clustering algorithms by 

applying a three-step algorithm. The efficacy of the algorithm is demonstrated 

through extensive experimental evaluations on several synthetic and real 

datasets. 

2. Wavelet-Based Similarity Measures: A family of similarity measures 

which exploits the ability of wavelet transformation to analyze the spectral 

components of the physicochemical properties and suggests a more sensitive 

way of measuring the similarity of biological molecules. We demonstrate the 

validity of our wavelet-based similarity measures by employing them in two 

different protein clustering applications. In the first set of experiments, we use 

the measures to identify the relationships between mutant proteins that were 

obtained by alanine scanning. Additionally, we present how accurate our 

methods are in recognizing the connection between charge density and 

electrostatic potential in homology models. 
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Chapter 1 

 

 

1 Introduction 

One of the many goals of artificial intelligence is to imitate the human mind as 

much as possible in order to solve the problems that involve vast amounts of data. In the 

last 30 years, advances in technology have expedited the use of acquisition ability in 

computers to obtain data from diverse sources via sensors or imaging techniques with 

high throughput. The collected data usually tend to be extremely large, and processing a 

large volume of data requires computationally intensive resources. For example, LSST 

(Large Synoptic Survey Telescope) generates 30 terabytes of astronomical data daily [1]. 

As for drug design, ab initio methods produce a large number of protein sequences for 

which no tertiary structure information is available [2]. Typically, collecting or 

generating the raw data is relatively easy and just the tip of the iceberg. However, a 
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significant problem still persists after all these years: the need for efficient and novel 

techniques that analyze the data to explore useful information. 

Data mining is the process of extracting useful information in order to discover 

hidden patterns and relationships which may lead to a better understanding of the data 

[3]. In spite of the vast amount of the data generated every day, the raw data is usually 

not useful for many applications. In data mining tasks, we generally assume that the 

dataset consists of a collection of instances. Each instance is described by a set of 

features, which can be numeric or categorical and can vary from a few to thousands in 

number, depending on the domain. Data mining transforms the raw data into useful 

information by analyzing and correlating the instances based on their features. It offers 

potential benefits for understanding the data and domain-specific decision making.  

1.1 Clustering  

Clustering is an important data mining task which partitions the data into 

meaningful groups without advance knowledge of the relationships between the data 

elements [3]. From a machine learning perspective, clustering methods search for hidden 

patterns and systematic relationships that reveal unknown characteristics about the data. 

These patterns and relationships then can be used in numerous applications ranging from 

information retrieval [4] [5] [6], database applications [7], market analysis[8], medical 

diagnosis[9], and bioengineering [10] to scientific data exploration such as satellite 

imagery[11]. Due to its practicality and efficiency, clustering is one of the most important 
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analysis tools in data mining. It simplifies the data representation and helps us understand 

the natural grouping and structures in a dataset. 

Clustering utilizes the techniques of many active research fields, such as statistics, 

machine learning and pattern recognition, while discovering the patterns. The primary 

goal of clustering is usually clustering accuracy, which is followed by efficiency, 

interpretability, generalizability, and ease of use [12].  

Clustering methods can be roughly divided into three groups: 

1. Unsupervised Clustering: Unsupervised clustering seeks to determine how the 

data is organized by using unlabeled examples only; i.e., no a priori knowledge about the 

data is available. Such methods rely on statistical data analysis and are expected to 

perform poorly in contrast to supervised clustering. 

2. Supervised Clustering: This approach learns a clustering function from training 

data and uses this function to predict the value of the unlabeled data. It assumes that the 

examples are classified as desired. Thus, the clustering performance is relative to the 

quality of examples and the function learned.  

3. Semi-Supervised Clustering:  Semi-supervised clustering makes use of both 

labeled and unlabeled data for training, unlike traditional supervised and unsupervised 

classifiers. Labeled data is usually expensive and hard to obtain since it is gathered either 

from human experts or from well-studied measurements, whereas unlabeled data is 

relatively inexpensive and usually available in large amounts.  The use of labeled data is 

often critical to the success of the clustering process. Semi-supervised clustering 
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approaches improve the clustering performance considerably when the problem involves 

a large amount of unlabeled data and a small amount of labeled data.  

In this thesis, we focus on the techniques that potentially increase the performance 

of unsupervised and semi-supervised clustering. Unsupervised clustering mostly depends 

on the quality of the statistical methods chosen. In some cases, even the state-of-the-art 

methods can be unsuccessful in finding a good clustering [13]. One reason for this 

deficiency is that the characteristics of the data may not be compatible with the objective 

function of the clustering algorithm. We can overcome this problem by mapping the data 

into another domain where we can increase the compatibility level [14][15].  In the 

following chapters, we shall present two methods, namely vector-to-graph transformation 

and wavelet transformation, which may be used for such mapping to improve the 

clustering quality. Semi-supervised clustering methods which use the former mapping 

approach in our studies suggest a significant improvement in terms of accuracy over 

unsupervised clustering when unlabeled data is used in conjunction with a small number 

of labeled data. The labeled data is considered as user knowledge that creates a positive 

bias on clustering function, thus improving the clustering result. An important problem is 

how to describe the user knowledge; we need a technique that is easy to use but also 

possible to generalize. Typically, one of two methods is used is to specify constraints on 

pairs of objects: either must-link (two objects must be in the same cluster) or cannot-link 

(two objects must be in different clusters).  
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1.2 Locality Concept in Data Mining 

In statistics, the locality indicates the central tendency of a particular dataset[16]. 

This definition can be extended to the tendency of spatially close by or functionally 

relevant objects.  In data mining, the locality is usually mentioned in the context of local 

feature relevance methods which attempt to select the most relevant features for distance 

determination as a counter-attack to the curse of dimensionality [17].  The curse of 

dimensionality refers the phenomenon in which the data become extremely sparse in 

high-dimensional spaces and are far apart from each other. Due to the high bias effect of 

the curse, distance functions lose their usefulness in high dimensionality [18]. While this 

may be true, recent studies reveal that not all dimensions are equally relevant  to the class 

probability functions; i.e., some are more discriminative than others in determining the 

class of a given data point [19][20]. Local feature selection that analyzes the data in 

advance estimates different degrees of relevance for the dimensions given in feature 

space. This approach strengthens the relationships of relevant objects as a result of 

eliminating the noise in the data [21].  

In this dissertation, we introduce an important term called a local manipulation 

approach for data mining applications. The main conjecture motivating this approach is 

that the large systems can be manipulated by local changes in order to achieve a specific 

objective. With this in mind, the approach involves a two-step model: first, small 

modifications are carried out on a large system and then their effects are observed on the 

whole system from a holistic perspective. While performing local manipulations, the 

method directly targets the raw data without any prior cluster or global information and 
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adjusts the relationships among data elements using the insight of user-defined 

constraints.   

In the following chapters, we shall examine several novel clustering techniques 

derived from two aspects of the local manipulation: metric and data. From the first point 

of view, the distance measures can be further improved in quality when a local 

manipulation method is integrated into the distance function. This function can then be 

employed by a clustering algorithm to measure the pair-wise distances more precisely, 

which in turn leads to better clustering quality. Magnetically Affected Paths (MAP) 

realizes this idea and helps the distance functions perform more sensitive measurements. 

The objective of the MAP is to increase the weight of the edges connecting the objects 

that are in the neighborhood of a cannot-link constraint, and to decrease the weight of the 

edges connecting the objects that are in the neighborhood of a must-link constraint. This 

method establishes an interesting analogy between electromagnetic field theory and 

graphs. In physics, charged objects produce an electric field which exerts a force on other 

uncharged objects in space [22]. This situation forces uncharged objects to resonate with 

the charged objects and to show similar electromagnetic behavior as the charged objects. 

The MAP concept simulates the same characteristics on user-defined constraints and data 

in a graph domain, where constraints correspond to the charged objects and edges 

correspond to the uncharged objects. 

From a data perspective, we define and investigate several locality patterns in 

which a subset of a large dataset locally exhibits a similar behavior. These patterns are as 

follows: 
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1. Proportionality:  This pattern indicates a change in the magnitude of data 

values within a local region of a large dataset due to a peculiar event. The 

change occurs in the same way for all local points and is measured by the 

proportionality constant k as  φA = k.φB.  Here, φA  and  φB indicate the former 

and latter values, respectively. 

2. Displacement: This pattern is observed when a particular region is displaced 

in space, while the rest of data points remain the same. In this pattern, the 

magnitude of data values never changes. The distortion in the pattern is 

measured by the displacement angle α based on a pre-defined axis origin.  

3. Scaling: The third pattern exhibits an expanding or a shrinking behavior in the 

area of a particular region. The magnitude of data values within the boundary 

of the region remains the same. The scaling is measured by the scaling ratio S, 

as in the equation rA = S.rB, where rA and rB correspond to the former and 

latter radius of the region. 

The investigation is carried out on an electrostatic potential distribution of 

biological molecules to see the effects of these patterns on molecular similarity. To this 

end, we present a family of similarity measures which extends the previously established 

Linear [23], Hodgkin [24], and Carbo [25] similarity functions with multi-resolution 

analysis (MRA) in order to recognize these patterns and account for them in similarity 

calculations. These measures apply an appropriate discrete wavelet transformation to the 

molecular electrostatic potential distributions to find the corresponding wavelet 

coefficients. Subsequently, they perform the comparison using the wavelet coefficients. 
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By using this approach, we can analyze the spectral components of electrostatic potential 

distributions at different resolutions. According to our systematic evaluations, the MRA-

based approach can potentially increase the sensitivity of similarity measures for locality 

patterns and provide more accurate similarity values.  

1.3 Dissertation Overview 

The rest of this thesis is structured as follows. Chapter 2 provides a literature 

review for the state-of-the-art clustering methods in data mining. Moreover, we present 

some background information to allow the reader to understand the data mining concepts 

such as semi-supervised learning, graph clustering, multi-resolution analysis, and wavelet 

decomposition. 

Chapters 3 and 4 describe the metric aspect of the locality in more detail. Chapter 

3 gives a formal definition of Magnetically Affected Paths and discusses the 

implementation issues of the idea in a graph domain. Chapter 4 outlines the MAPClus 

framework, which integrates the MAP concept into the clustering algorithms. This 

section explains a three-step algorithm proposed for performing semi-supervised 

clustering on both vector and graph data.  This chapter also serves to experimentally 

validate the claims of efficiency and accuracy for the MAPClus algorithm. 

Chapter 5 proposes three molecular similarity measures tailored toward 

accounting for the locality patterns mentioned in the previous section.  This chapter 

investigates these similarity measures with respect to their support for different patterns 

by conducting thorough experiments on toy data models. 
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 In Chapter 6, we demonstrate the validity of our MRA-based similarity measures 

by employing them in two different protein clustering applications. In the first section of 

this chapter, we use the measures to identify the relationships between mutant proteins 

that were obtained by alanine scanning. In the following section, we present how accurate 

our methods are in recognizing the connection between charge density and electrostatic 

potential in homology models.  

Finally, Chapter 7 summarizes the arguments of the dissertation and discusses 

future research problems related to the methods presented in this thesis. 
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Chapter 2 

 

 

2 Background and Related Work 

Clustering aims to organize the data into clusters since interpretation of the 

organized data is relatively easy in contrast with the raw data [26]. High-throughput data 

acquisition techniques generate raw data in large volumes every day [1][27][2]. 

Typically, interpreting a large volume of accumulated data for a specific application and 

extracting useful information with high accuracy is computationally intensive. 

 To cope with this challenge and balance the tradeoff between accuracy and 

efficiency in clustering context, several methods that exploit the local manipulation and 

analysis techniques will be presented in the subsequent chapters. In order to facilitate the 

explanation of these methods, we introduce fundamental concepts and discuss the 

previous work in the literature on unsupervised and semi-supervised clustering methods 

as well as wavelet transformation in biological applications. 
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2.1 Clustering  

Clustering is the process of partitioning data into meaningful group such that each 

group consists of objects that are similar within themselves and dissimilar to the objects 

of other groups [26].  In data mining context, we consider a dataset D consisting of data 

points D={x1, x2,…, xi,…, xN} where xi={a1, a1,…, aj,…, ad} and each ai is an attribute 

of the data point xi. Although the attributes may be either numerical or categorical, we 

will consider datasets with numerical attributes throughout this dissertation. The goal of 

clustering is to assign data points to a finite number of clusters C={C1, C2,…, Ck} such 

that clusters typically have the following properties [28]: 

௜ܥ .1 ് ;׎   ݅ א ሼ1, … , ݇ሽ 

ڂ .2 ௜ܥ
௞
௜ୀଵ ൌ  ܦ

௜ܥ .3 ת ௝ܥ ൌ ; ׎  ݅, ݆ א ሼ1, … , ݇ሽ ܽ݊݀ ݅ ് ݆ 

A wide variety of clustering algorithms [29][30][31][32] that meet these 

requirements have been proposed in data mining. In this dissertation, we will focus on 

clustering methods based on unsupervised and semi-supervised learning. 

2.1.1 Unsupervised Clustering 

In unsupervised clustering, we seek to partition the datasets in which only 

unlabeled objects are given. No knowledge about the data is available in advance and 

thus unsupervised clustering algorithms thoroughly rely on mathematical and statistical 

methods to optimize a criterion function for the clustering [31]. In this section, we review 

the major unsupervised clustering approaches based on the theories behind them. To this 
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end, we discuss the unsupervised clustering algorithms according to their clustering 

methodology [28], which is either partitioning or hierarchical in the context of this 

dissertation.  

2.1.1.1 Partitioning methods 

Partitioning methods usually divides the data into several groups iteratively in 

order to achieve a clustering objective [33][34][35]. For example, one of the widely-used 

clustering objectives is minimizing the distance between the objects within same cluster 

and maximizing the distance to the other objects residing in other clusters [36]. In data 

clustering tasks, searching an optimum value of an objective is clearly computationally 

intensive and prohibitive. Therefore, partitioning algorithms utilize heuristic algorithms 

in order to seek approximate solutions [31]. These partitioning algorithms typically run 

multiple times with different starting points and iteratively assign the set of objects into k 

clusters, where k is the pre-defined number of clusters.  

In order to assess the validity of the clustering results, the partitioning methods 

evaluate the structural and statistical properties of the data via objective functions.  These 

functions are usually evaluated at each iteration in order to optimize the final clustering. 

The most frequently used objective function is the squared error criterion [28]:  

ܧܵ ൌ ෍ ෍ቛݔ௜
ሺ௝ሻ െ ௝ܿቛ

ଶ
ே

௜ୀଵ

௞

௝ୀଵ

 

where ቛݔ௜
ሺ௝ሻ െ ௝ܿቛ

ଶ
 is the distance measure between a data point ݔ௜

ሺ௝ሻ of cluster Cj and 

the cluster centroid ௝ܿ.  
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K-means algorithm [31] is one of the simplest clustering tools, yet by far most 

popular, in unsupervised clustering which aims at minimizing the squared error criterion. 

The iteration procedure of the algorithm can be summarized as below: 

1. Select K points in the space at random or using some heuristics. These points 

will be used as the centroids of initial clusters. 

2.  Assign each object to the cluster with the closest centroid or mean. This step 

is similar to the construction of Voronoi diagrams, where we focus on just 

discrete points rather than entire space.  

3. Calculate the new means to be used as the centroids in the next iteration: 

௝ܿ ൌ
1

หܥ௝ห
෍ ௜ݔ

௫೔א஼ೕ

 

The algorithm repeats these steps until the assignments no longer change. As you 

may notice, the algorithm refines the clusters in an iterative manner. The accuracy of the 

final clustering is thus very sensitive to the selection of initial centroids. If the initial 

centroids are not chosen carefully, the algorithm can get stuck in local minimal solutions 

which may be far away from the optimal solution. Furthermore, the stability of the 

clustering may be affected depending on the selection method. Therefore, many heuristic 

methods have been proposed to refine the quality of the start condition of the algorithm. 

Bradley et al. [37] suggested determining the modes of the joint probability density of the 

data and placing a clustering centroid at each mode. However, estimating the density in 

high dimensions usually gets difficult. Thus, they have used a sub-sampling approach to 

overcome the curse of dimensionality. Another method is to use the stochastic approach 
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[38] to adjust the initial centroids. To this end, a probabilistic error function integrated 

into the formula that is used to calculate the mean. The error function searches through all 

centroids found so far and determine the best solution based on a stochastic model. 

Another shortcoming of the K-means algorithm is the sensitivity to the outlier 

objects, which are very far away from the rest of the objects. In contrast, K-Medoids 

algorithm [35] is very robust in the presence of outliers. In order to find the clusters, the 

algorithm determines a representative object for each cluster, instead of using the mean of 

data points:  
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Once the medoids are selected, all other objects are assigned to the cluster that has the 

closest medoids, likewise K-means.  

K-Medoids algorithms are usually examined within a graph-theoretic framework 

due to the nature of how the clustering is done [30].  Thus, we compare these algorithms 

using the graph concepts. PAM (Partitioning Around Medoids) [39] algorithm developed 

by Kaufmann and Rousseeuw searches the medoids in the graph that minimizes the 

objection function. At each step, all nodes in the graph are examined. It is obvious that 

PAM is inefficient for large dataset and large values of K, number of clusters.  Therefore, 

Kaufmann et al. designed CLARA (Clustering Large Applications) [39] which draws a 

sample of the dataset, applies the PAM on the sample to find the medoids of the sample, 

and then uses these medoids to approximate the medoids of the entire data set.  The 

problem here is that the minimum medoids for the entire dataset may not be included in 
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the sample and thus the performance of the clustering may be suffer dramatically. 

CLARANS (Clustering Large Application based on Randomized Search) [30] mitigates 

this deficiency. It does not check every neighbor to optimize the medoids. It uses the 

original graph but restricts maximum number of neighbors to be searched while finding 

the new medoids. Thus, the main difference between CLARA and CLARANS is that 

CLARA algorithm draws a sample of nodes while CLARANS draws a sample neighbors. 

CLARANS algorithm provides better quality clustering and requires a very small number 

of searches compared to the other methods. 

2.1.1.2 Hierarchical methods 

Hierarchical clustering searches for a cluster hierarchy among the objects and 

constructs a tree structure known as a dendrogram. In the dendrogram, the root node 

represents the whole data set and each leaf node represents the individual data objects. 

Intermediate nodes describe the relationship between the objects based on their 

proximity. This structure allows us exploring the data at different levels of granularity. 

The final clustering can be obtained by cutting the tree at different levels using a cut-off 

criterion. 

Hierarchical clustering methods are principally categorized into agglomerative 

(bottom-up) and divisive (top down) groups. In agglomerative approach, each data point 

is initially regarded as a cluster and these points are recursively merged to obtain final 

clusters. The latter approach starts with one cluster that contains all data points and 

recursively splits the most appropriate clusters. The both approaches continue forming 

clusters until a termination criterion is reached. Once an agglomerative method merges 
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two clusters, the objects in the new cluster will always be in one cluster. Once a divisive 

method separates a cluster, the objects in the new clusters will never be grouped again. In 

this dissertation, we will utilize the agglomerative approach. 

While merging two clusters or splitting one cluster, the hierarchical clustering 

algorithms need to generalize the distances between individual objects to the distances 

between clusters. Linkage metrics determines the distance between clusters as a function 

of pairwise distances between objects. Most widely used linkage metrics are complete-

link, single-link and average-link: 
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Like any other clustering method, hierarchical clustering needs to adapt itself in 

order to handle very large datasets. In recent years, many new hierarchical clustering 

techniques with great performance enhancements have been proposed. BIRCH [40] is the 

one of the most important development in hierarchical clustering. The algorithm 

introduces a new data structure called clustering feature tree in order to deal with large 

data sets and maintain robustness in the presence of outliers. Feature tree stores the 

summaries of the original data and the hierarchical clustering is applied to the summaries 

to build the global clustering tree. Additionally, Guha et al. proposed CURE algorithm 

[32] which can identify the clusters with non-spherical shapes. In the algorithm, each 

cluster is represented by a fixed number of points. These points are selected in a way that 
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they would be well scattered inside the cluster. Selecting well-scattered points usually 

make the hierarchical clustering algorithms vulnerable to the outliers. In order to solve 

the outlier problem, CURE shrinks the points towards the mean of the cluster by a 

fraction α.  The algorithm captures the arbitrary-shaped clusters using the representative 

points. It uses only these representative points to calculate the distances between clusters, 

which increases the efficiency of the agglomerative clustering.  In order to handle very 

large datasets, CURE algorithm applies random sampling in advance to the actual 

clustering. 

2.1.2 Semi-Supervised Clustering 

Unsupervised clustering algorithms use only similarity information, which is 

usually given in the form of a distance function or a distance matrix, in order to perform 

the clustering.  In many cases, partial background knowledge about the data is available. 

Such a priori knowledge can be utilized to provide a limited supervision on the clustering 

process. Background knowledge is usually given as instance-level constraints or class 

labels on some objects. In this dissertation, we will be considering the model where 

supervision is provided in the form of must-link and cannot-link constraints: 

a. Must-link     :  Two objects should be assigned to the same cluster 

b. Cannot- link  :  Two objects should be assigned to different clusters 

Semi-supervised clustering methods employ the constraints in two ways. First, 

they modify the objective function to include the satisfaction of the constraint. For 

instance, COP-KMeans [41] integrates must-link and cannot-link constraints in the 

objection function so that it checks whether any constraint is violated after assignment of 
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objects at each step. This approach performs hard constrained clustering and computes 

the transitive closure of the constraints, thus suffering greatly from noisy constraints 

sensitivity. The objective function of this method was re-expressed by Bilenko et al. [42] 

to reduce the effect of hard constraint approach as follows: 
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Second approach for applying the constraints in semi-supervised clustering is to 

train a distance metric to satisfy the constraints. Xing et al. [20] proposed a distance 

metric learning algorithm which places a distance metric over the input space with the 

intention of assigning small distances between similar pairs. This approach aims to 

satisfy the maximum number of constraints by specifying different weights for different 

axes using the following formula: 
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The RCA algorithm [43] learns a Mahalanobis distance metric by using only must-link 

constraints. However, both approaches find one global metric which must be applied all 

clusters in the same way.  

MPCK-KMeans [42] integrates the strengths of both metric-based and constraint-

based approaches in a principal manner: 
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 The algorithm learns individual distance-metrics for each cluster by utilizing both 

unlabeled data and constraints. This allows different clusters to define their own space 

and have arbitrary boundaries.  

HMRF-KMeans [44] is a probabilistic framework based on Hidden Markov 

Random Fields. Basu et al. have taken advantage of the available constraints in several 

ways. First, they estimate initial centroids using the constraints as the initialization step is 

crucial to accuracy of the KMeans algorithm. The model integrates constraint-based and 

distance-based approaches to maximize the joint likelihood of data and constraints while 

penalizing violated constraints. One weakness of the method is that it is applicable only 

to vector data, like all of the other mentioned so far. 

Kulis et al. [45] extended HMRF-KMeans to a kernel-based clustering with 

constraints framework which can handle both vector-based and graph-based data. For this 

purpose, they have established connection between unweighted Kernel-KMeans, HMRF-

KMeans and penalties for violated constraints. The proposed method, SS-Kernel-

KMeans, optimizes the kernel by preprocessing the similarity matrix with must-link and 

cannot-link constraints. It applies the penalty or rewarding only to the constraint edges in 

affinity matrix. Kernel methods are sensitive to the manual selection of the kernel’s 

parameters. Yan and Domeniconi [15] proposed an adaptive method that estimates the 

optimal parameters.  
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2.1.3 Graph Clustering 

Graph G(V,E) is a data structure that contains a collection of vertices and a 

collection of edges connecting pairs of vertices. Graph clustering is the task of 

partitioning the vertices of a graph into clusters using the edge information [46]. Graph 

clustering is an important and well-studied problem in many applications varying from 

image processing [47] to circuit design [48].  The spectral methods [49] have been widely 

used in many graph clustering algorithms [50]. These methods involve the computation 

of eigenvectors with the smallest Eigen values on Laplacian matrix, which can be 

computationally very expensive. TribeMCL[51] exploits the Markov model on 

connection graphs of proteins in order to cluster the protein sequences into families. The 

algorithm follows the idea that the random walks on a graph will infrequently go from 

one cluster to another based on the transitional probabilities in graphs. The transition 

operator used aims to strengthen intra-cluster flow and weaken inter-cluster flow. Satuluri 

et al. [52] applies the same stochastic flow idea in community discovery problem. 

Dhillon et al. extended the SS-Kernel-KMeans to multilevel GraClus algorithm [53]  that 

generalizes the graph clustering objectives using trace maximization. In addition to 

obtaining high quality clusters for graph domain like these methods, MAPClus elucidates 

the graph clustering from a different perspective, and utilizes it as a tool for bending the 

space that wraps the vector data.  A common denominator of the graph clustering 

algorithms is that they all need some multilevel partitioning schema for optimization 

while dealing with large graphs.   
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2.2 Protein Similarity Search and Wavelet Transformation  

The protein engineering analyzes the similarity among proteins by comparing 

their physicochemical characteristics such as electrostatic potentials, hydropathy, charge 

density, sequence and tertiary structures. Protein similarity analysis is of paramount 

importance in many fields associated with the proteins. For instance, drug design 

recognizes the functionality of unknown proteins by comparing them against proteins 

whose functionality is well known. The idea is that the molecular structures with similar 

physicochemical properties tend to exhibit similar biological activity. 

Sael et al. computes the similarity of proteins by using 3D Zernike descriptors, 

which represent a protein structure as a series of 3D functions in compact form [54]. The 

method serves as a index that allows fast retrieval of protein structures. Ying Zhou et al. 

[55] follow the same idea with using a spatial distribution function for backbone 

structure. The algorithm computes the distance between the Cα atoms using 3D 

coordinates and uses a sampling schema to extract the features. The features can assist 

the protein similarity searches in protein databank when sequence similarity is not 

enough. Daras et al. [56]  have proposed another 3D shape-based approach for the 

efficient search of proteins which relies on the geometric 3D appearance of the proteins. 

After the translation and scaling of the protein, they decompose the 3D structures into 

planes which are then used to produce descriptor vectors. The advantage of these vectors 

is that even if the molecule rotates, these vectors remain the same. In these methods, only 

the global surface shape representation of the protein is taken into consideration while 

neglecting physicochemical characteristics.  



 

 
22

Significant developments achieved in wavelet transformation recently have 

increased the interest in analyzing the physicochemical properties from a signal 

processing perspective [57].  Wavelet transformation allows us to analyze different scale 

information, which refers to the spectral components, of biological data. Wavelet 

transformation is defined as [58]: 
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where f(t) represents the biological function or data and ߰ሺ௧ିఛ
௦

ሻ is the wavelet function to 

analyze the spectral component at scale s and translation ߬.  By substituting s and ߬ in the 

function with different values, several spectral components are extracted out of the data 

and used to compare the biological structures [59]. This process is called multi-resolution 

analysis due to fact that each spectral component represents the same biological data but 

at different resolutions.  

 Wavelet transformation is widely used in bioinformatics and chemometrics to 

discriminate the molecular structures  [60][61][62][63][64]. These methods attempt to 

understand the functionality or tertiary structure of the proteins using their sequence 

information only. In the analysis, they first substitute the amino acids in the sequence 

with a numeric value which corresponds to the physicochemical property of the amino 

acid. Then, wavelet transformation is applied to the vector structure to compute the 

corresponding wavelet coefficients at different scales.  Finally, these coefficients are used 

in the structure analysis. In this dissertation, we will analyze the actual three dimensional 

distributions of physicochemical properties rather than using only sequences. 
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Chapter 3 

 

 

3 Magnetically Affected Paths 

In this section, we introduce the concept of Magnetically Affected Paths (MAP), a 

novel approach to applying user constraints in semi-supervised clustering, and describe 

the basic idea behind the approach in an intuitive way [13]. We assume that a function 

defining the distance between any two points and a set of user defined constraints are 

given. The main goal is to calculate more accurate distances between data instances using 

the supervision provided by the constraints. We make no assumptions about the distance 

measure, but we assume that the constraints are on pairs of points, either must-link or 

cannot-link, which indicate that a pair of points should be or should not be put in the 

same cluster, respectively. This method uses the user-defined constraints to stretch the 

space around the objects and helps the distance metric calculate more accurate distances. 
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3.1 MAP Concept 

The objective of the MAP is to increase the weight of the paths connecting the 

objects that are in the neighborhood of a cannot-link constraint, and to decrease the 

weight of the paths connecting the objects that are in the neighborhood of a must-link 

constraint. We realize the idea via the interesting analogy between electromagnetic field 

theory and graphs. We focus on the graph representation of a given dataset and assume 

that this graph has the characteristics of an electromagnetic field. In physics, an electric 

field is the property of the space in the vicinity of electric charges or in the presence of a 

time-varying magnetic field. The charges produce an electric field in space. This electric 

field exerts a force on other charged objects [22].  Opposite-charged objects induce 

attractive   properties,  whereas   like-charged   objects  induce   repulsive  properties.  To 

 

(a) 

 

(b) 

Figure 3-1. Simulation of an EMF in a graph. (a) Like charges induces repulsive 

properties while (b) opposite charges induces attractive properties of other objects. 
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simulate these characteristics, we add charges to the nodes that take part in a pair-wise 

constraint. For must-link constraints, we add opposite charges to the node pair. The 

generated magnetic field decreases the weight of the affected edges. Cannot-link 

constraints (like charges) increase the weights of affected edges. 

The situation is illustrated in Figure 3.1, where must-link constraints are {e(2,3), 

e(6,7), e(14,15)} and the cannot-link constraints are {e(9,10)}. We explore imaginary 

magnetic fields surrounding the pair of charged nodes. We check the nearby edges in the 

graph and identify the graph edges that are influenced by the magnetic field. Then, we 

reduce the weight of the affected edge or escalate it according to the constraint type. The 

magnitude of readjustment depends on the distance of the edge in regard to the magnetic 

field and its alignment in the field. The magnitude is defined in terms of following 

definitions in the latter section: 

• Constraint axis: The shortest path between the nodes of a constraint 

• Reduction ratio { rRatio(u,v) }: The decrement amount in edge weight w(u,v) 

due to a must-link constraint. 

• Escalation ratio { eRatio(u,v) }: The increment amount in edge weight w(u,v) 

due to a cannot-link constraint. 

• Vertical distance { vd(u,v) }: The average distance of an edge e(u,v) to the 

constraint axis. 

• Horizontal distance { hd(u,v) }: The distance of an edge e(u,v) to the mid-point 

of the constraint axis. 
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The effect of an electromagnetic field decreases as we get further away from the 

constraint axis (vertical distance). For must-link constraints, the horizontal distance has 

no effect on the reduction ratio. Cannot-link constraints utilize the horizontal distance of 

an edge to determine its probability of being in the separation region of two clusters. 

Intuitively, the closer a regular edge e(u,v) is to the mid-point of a negative edge 

constraint, the higher the probability of it being an inter-cluster edge. Based on this 

intuition, we apply the highest penalty to the edges overlapping with the mid-point of a 

constraint axis. The penalty is reduced as we go further away from the mid-point.  

In summary, MAP increases or decreases the weights of regular edges based on a 

probabilistic approach. Even though it classifies some of the edges incorrectly, overall re-

adjustment of edge weights defines better distances in the graph domain. 

           
(a) 

 
(b) 

Figure 3-2. Horizontal and vertical distances relative to the constraint edge c(s,t) 
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3.2 Weight Adjustment Process 

We describe the MAP-based weight adjustment algorithm in this section. As 

mentioned in previous section, the algorithm applies the MAP concept to the graph in 

order to increase or decrease the edge weights. For each constraint c(s,t) , we extract a list 

L of edges e(u,v)∈E which are affected by the constraint. Affected edges are recognized 

according to the following definition: 

DEFINITION: If a given edge e(u,v) is in between nodes s and t of constraint 

c(s,t) and is not orthogonal to the constraint axis, then it is affected by constraint c(s,t). 

In our model, the orthogonality and betweenness is defined based on hop-count 

distance to the constraint nodes s and t. We run two breadth-first search algorithms 

starting at node s and t separately and for each node we store entries hc(u,s) and hc(u,t), 

the hop-count distance to s and to the t respectively. For a given edge e(u,v), we check the 

hop-count entries of u and v to see whether the edge is affected by a constraint or not. 

Orthogonality and betweenness is described as the inverse behavior on hc(u,s), hc(u,t) 

and hc(v,s), hc(v,t) values for nodes u and v. In other words, if hc(u,s)>hc(v,s) and 

hc(u,t)<hc(v,t) or vice versa, then the edge is orthogonal to the constraint axis and 

between nodes s and t. 

Once we identify the affected edges, we compute the escalation ratio for the 

cannot-link constraints or reduction ratio for the must-link constraints. In line with the 

main idea, we expect the effective escalation or reduction ratio on an affected edge to 

decrease as we get away from the constraint axis (vertical distance). Further for a cannot-
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link constraint, we expect an inversely proportional weight increase in regard to the 

distance of the edge to the mid-point of the constraint axis, as explained earlier. To 

express this, we use a method similar to the validation process. Instead of hop counts, we 

find the shortest path distance to all edges starting at node s and t. Shortest path dist(u,v) 

is the sum of the weights of all edges that compose the shortest path. 

We compute the reduction ratio of e(u,v) for must-link constraints as follows: 

)(),(
r
qnormvurRatio r=

 
 

Here, qr is the weight for the must-link constraint and r=(dist(u,s) + dist(u,t) + 

dist(v,s) + dist(v,t)) / w(s,t) which is the dispersion ratio from the constraint c(s,t). norm() 

is the normalizing function. To prevent extremely low values, normalization function 

maps the output to a higher interval. 

Similarly, we can write the following equation to compute the escalation ratio due 

to a cannot-link constraint: 
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where qe is the weight of the cannot-link constraint, ∆=(|dist(u,s)-dist(u,t)|+|dist(v,s)-

dist(v,t)|)/w(s,t)+c, which is the average distance approximation function to the mid-point 

of the constraint axis to reflect the effect of horizontal distance as seen in Figure 3.2. The 

value of |dist(u,s)-dist(u,t)| becomes zero if node u has equal distances to the s and t. We 

add a constant value c=1 to the ∆ so that in this case, no penalty is applied to eRatio(u,v). 

If ∆ increases, the effect of eRatio(u,v) reduces gradually. 
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After applying all constraints, we approximate the overall ratio of edge e(u,v) as 

follows: 
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In the last step, we adjust the edge weight as follows: 

),(),(),( vutRatio
new vuwvuw α⋅=   

Empirically, we have observed that 1<α<2 is a good interval for the adjustment of 

the edge weights. It is obvious that if cannot-link constraints are dominant upon the must-

link ones, then the edge weight increases. Otherwise, the base variable acts like a 

denominator. It is important to note that vertical and horizontal distances are used just to 

compute the adjustment ration and are not used in any way in the clustering process.  
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Chapter 4 

 

 

4 MAPClus Clustering Framework 

In this section, we describe our clustering framework that unifies MAP and 

clustering algorithms. The algorithm uses three steps to apply the MAP concept to a 

given dataset and perform clustering:  

1) Graph Construction: If given a vector-based dataset, it is converted into a graph 

by connecting k-nearest-neighbors. Must-link and cannot-link constraints are 

addressed as same- or opposite-charged nodes, respectively. 

 2) Weight Adjustment: Identifies the edges that are affected by the given 

 constraints and adjusts the edge weights accordingly.  

3) Clustering: Runs an appropriate clustering algorithm to partition the adjusted 

 graph.  
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4.1 Introduction 

Clustering aims at providing useful information by organizing data into groups 

(referred to as clusters). The use of labeled data is often critical to the success of the 

clustering process and the evaluation of the clustering accuracy. Consequently, learning 

approaches which use both labeled and unlabeled data have recently attracted the interest 

of researchers [20] [42] [44] [45] [65]. These approaches incorporate user knowledge in 

the clustering technique, thus improving the clustering result. Typically the method used 

is to allow the user to specify constraints on pairs of objects, either must-link (two objects 

must be in the same cluster) or cannot-link (two objects must be in different clusters), and 

produce a clustering that satisfies these constraints as much as possible. 

In this chapter, we present a novel way of applying user constraints for clustering, 

which is inspired by the Electromagnetic Field Theory used in physics. Our approach 

transforms vector data into graph data by finding and linking k-nearest neighbors for each 

instance in the dataset. If given graph data as an input, no transformation is needed. Must-

link and cannot-link constraints are then expressed naturally as magnetic fields between 

the nodes that are involved in the constraint. These fields impact edge weights based on 

the alignment of each edge compared to the magnetic field and its distance to the 

constraint axis. Using graph representation yields an advantage in that we can adjust the 

edge weights without any limitations, in contrast to Euclidean space, where pair-wise 

distances need to comply with the triangle inequality. We exploit this liberty through a 

probabilistic model based on the nature of the constraint edges. Once we adjust the 
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weights, we can apply any clustering algorithm compatible with graphs. In our study, we 

use the K-Medoids algorithm [39], since it is less sensitive to the outliers. For the 

distance metric to be used by the clustering algorithm, we propose k simple-and-distinct 

shortest paths. k-SD shortest paths leads to more accurate clustering with small number of 

constraints.  

An important challenge is dealing with large graphs. We use the most widely used 

method for graph clustering, METIS [66], to partition the large graphs into equal-sized 

sub graphs to perform our operations. This partitioning strategy preserves 95+% quality 

and enables the method to scale almost linearly with the number of subgraphs. However, 

this approach losses its efficacy on datasets with over ten thousands instances. In order to 

work with very large datasets, we improve our framework with a multilevel partitioning 

approach which was proposed by Karypis and Kumar [67]. The multilevel approach first 

coarsens the given graph level by level until only a small number of nodes are left. Then, 

it performs the initial partitioning on this small graph. Finally, the initial partitioning is 

projected back to the original graph by refining the graph level by level.   

4.2 MAPClus Framework 

4.2.1 Graph Construction Phase 

If the input is not graph, but a vector of data points D, our goal is to build a graph 

reflecting the data with minimal loss of information. We list k nearest neighbors Li for 

each object xiאD, according to their Euclidean distance, and add an edge between xi and 
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each vאLi. We assign the Euclidean distance ||xi-v||2 as the edge weight of e(xi,v). k can be 

easily estimated from the graph size. Experimental results show that k should be 

proportional to the dataset size |D| for better accuracy in small data sets. However, this 

characteristic does not hold for large datasets and typically ten neighbors for each node 

suggests reasonable results in the ultimate clustering. 

We take all node pairs (si,ti) involved in some constraint and charge si and ti so 

that the force between them is equal to ||si-ti||2. Remember, opposite charged pair of nodes 

create an attractive force (must-link constraint), whereas same charged pair of nodes 

create a repulsive force (cannot-link constraint). 

Even if we set k to a appropriate value, disconnected components might still exist. 

Thus, we identify all disconnected subgraphs, explore k nearest neighbors at subgraph 

level, and add an edge between the closest points connecting the disconnected 

components. This approach is similar to [45]. 

4.2.2 Weight Readjustment Phase 

The weight readjustment phase applies the MAP concept, which was described in 

the previous chapter, to the graph in order to increase or decrease the weight of edges.  

Because the affected edges are identified according to their hop distances to the 

constraint axis, we start with running two breath-first search algorithms originated at two 

ends of each constraint. Once breath-first search completes, we can easily determine the 

affected edges using the betweenness and orthogonality criteria. Next, we compute the 

shortest path distances from constraints to the affected edges and measure the effect of 
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the constraint on each edge according to the formulas given in the previous chapter. After 

all constraints are processed, we proceed to calculating the k-shortest path distances 

between each pair of nodes, which will be input into clustering algorithm as distance 

matrix. The weight adjustment algorithm is summarized in Table 4.1.  

Algorithm: Weight_Adjustment_Algorithm 

     Input: G(V,E): graph with constraints 

     Output: G' (V,E'): graph with adjusted edge weights 

              P:  proximity matrix 

1. For each constraint c(s,t) 

      a. Run breath-first search algorithm starting at node s and t; 

 and record hop-counts for each node vi ∈V 

      b. Run single shortest path algorithm starting at node s and t;   

          and record shortest path distances for each node vi ∈V 

      c. Identify affected edges using hop-counts and put them into list L 

      d. Compute escalation/reduction ratio for each affected edge e(u,v) ∈L  

2. For each edge e(u,v) ∈E 

      a. Calculate overall ratio using following formula                    
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Table 4-1. Pseudo-code of Weight Adjustment Algorithm 
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4.2.3 K-Shortest and Distinct Paths (k-SDP) Distance 

After adjusting all the edge weights, the need for a distance metric which is 

capable of exploiting the final affinity matrix emerges. Even though single shortest path 

is a widely-used metric in graphs, we can define more accurate distances between node 

pairs using k-shortest paths distance. Remember that k was the number of neighbors used 

to transform vector data into a graph representation. For vector data, we use the same k 

for the number of shortest paths since intuitively this is the maximum out-link number of 

an edge and looking for more than k shortest path that are distinct (have no common 

edge) would be pointless. For graph-based data, k is the average degree of the graph.  Our 

experiments support using multiple shortest paths as a distance metric works in practice 

better than single shortest path. Involving more paths in the calculation of the distance 

involves also more constraints, which due to the homophily phenomenon, as mentioned, 

yields better accuracy even for a small number of constraints.  The shortest path distance 

is expressed as: 

,ݑ௔௟௟ሺݐݏ݅݀ ሻݒ ൌ ൭෍
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where ݀݅ݐݏ௜ሺݑ,  ሻ is the weight of the ݅௧௛ path between node u and v such thatݒ

,ݑ௜ሺݐݏ݅݀ ሻݒ ൏ ,ݑ௝ሺݐݏ݅݀ ,݅׊ ݂݅ ሻݒ ݆ א ሾ1, … , ݇ሿ ܽ݊݀ ݅ ൏ ݆. 

A naive approach for k-shortest paths is using the Dijkstra’s algorithm to discover 

k most significant paths one by one, which has a time complexity of O(k.|V|2.(|E|+ 
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|V|.log|V|)). Obviously, finding the pair-wise paths with naive method would be 

cumbersome for the efficiency.  

4.2.4 Optimizations for k-SDP distance 

4.2.4.1 Extending Dijkstra’s Algorithms for k-Shortest and Distinct Paths 

We have optimized our implementation in several ways for maximum efficiency. 

First, we have started with restricting the definition for the k-shortest path. Even though 

there is more than one k-shortest paths definitions in the literature [68], we focus on k 

simple and distinct shortest paths in which no loop is allowed, i.e. all vertices on a path 

are distinct and no two paths share the same edge for a given source and destination pair. 

Exploiting this definition, we extend the Dijkstra algorithm for single-shortest path to k-

shortest paths at a reasonable cost and refer to it as k-SDP algorithm. The new algorithm 

is asymptotically only k times slower than the Dijkstra algorithm for one path.  

The algorithm works as follows: For each node, we define k entries to handle each 

lth path passing   through the node where 1≤l ≤k.  We initialize all entries to ∞ except the 

entries of source node s and nodes adjacent to the source. We set all s entries to 0. We 

assign monotonically increasing path labels i to each node u adjacent to s ensuring that 

each path is rooted at a different edge outgoing s. We update the lth entry of each node u 

to edge weight w(s,u) and the parents of lth entry of the nodes to source node s where l is 

the path label pertaining to each adjacent node. Then, we initialize a minimum priority 

queue Q that contains all path entries. The rest of the algorithm works very similar to 
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Dijkstra’s shortest path algorithm except for a few additional restrictions in the relaxation 

routine. 

When we remove the minimum entry from Q, we lock the parent of the entry in 

order to prevent more updates from this parent for other path entries, using bitmaps with  

Algorithm: K-SD_Shortest_Path_Algorithm 

     Input: G'(V,E): graph with adjusted edge weights 

  s: source node 

  k: number of shortest path 

     Output: P: Distance matrix 

1. Assign k path entries for each node such as pi(s,u) 

2. Initialize pi(s,u).length +∞ for each node u≠s 

3. For each node u adjacent to s 

a. Assign a monotonically increasing path id i to u 

b. Set pi(s,u).dist w(s,u) and parenti(u) s 

4. Let a min priority queue Q contain all path entries 

5. while Q is not empty do 

a. Extract path entry pe Q.removeMin() 

b. Let i pe.pathID and v pe.node 

c. Lock parenti(v) to prevent updates for v  

d. for each node u adjacent to v  

i. if v is locked for u, then continue 

ii. if pi(s,v).length+w(v,u)<pi(s,u).length, then 

         pi(s,u).length  pi(s,v).length+w(v,u) 

         parenti(u) v 

         Update the value of pi(s,u) in queue Q 

 

Table 4-2. Pseudo-code of K-SD Shortest Path Algorithm 
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each bit assigned to one neighbor node. In the relaxation procedure, first we check 

whether the current node is locked for destination node. If it is not, the algorithm allows it 

to relax the destination from current node. Otherwise, we simply proceed to the next 

available neighbor node. Another rule is that lth entry of path entries at a node can be 

updated only by the lth path entry of the parent node. This limitation is necessary in order 

to force all paths to follow a different set of edges to the destination so that we can trace 

the path lengths in the case that we want one specific path with path id of l. We repeat the 

relaxation process until all path entries at each node are updated and no more entries 

remain in the queue. The algorithm is outlined in Table 4.2. 

THEOREM 1: K-SD Shortest Path algorithm identifies k simple and distinct 

shortest paths from a given source node to all other nodes in O(k2*|V|*log|V|) time. 

Proof: We assume the worst case scenario where we find all shortest path 

available, giving us O(k*|V|) entries  in  the  queue.  For each entry, we check all 

neighbor nodes and based on k-shortest path definition and our graph construction 

algorithm, we may have at most k neighbors. We may update the keys of all neighbors   

at   each   relaxation step, requiring O(k*log|V|) time. 

4.2.4.2 Partitioning Approach for Extracting Distance Matrix 

Even with the optimization in previous section, computing all pairs KSD-shortest 

paths still takes O(k2.|V|2.log|V|), which is quite inefficient for large datasets. Many state-

of-art methods deal with this problem by using a multilevel approach. Our strategy is to 
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partition the graph into smaller pieces. Then, we compute local distance matrices and 

correlate these local resolutions via hubs to obtain the global solution. 

Here, we have pursued the same idea in [69]: We partition the graph into p 

equally sized sub graphs using METIS with the Kernighan-Lin objective and find local 

K-SD shortest path distances for each partition. Let Di be the distance matrix for partition 

i. The main problem is how to establish a mutual relation between these partitions to 

estimate global distances. The solution lies in hub concept discussed in [70]. The vertices 

that reside on the cut and bridge different clusters are considered as hubs. We identify the 

high quality hubs, the ones with high degree in total and balanced neighborhood to 

different partitions. Unlike the hubs in SCAN, we assume hubs are special vertices 

belonging to all clusters which it has neighborhood. Thus, we put them into the partitions 

as member. If needed, we add new edges to hubs to maintain the k-neighborhood. In 

Figure 4.1, shown hubs are an element of both partitions. 

 

Figure 4-1. The Ionosphere graph with two partitions and hubs connecting them and the 

correlation of same paths for clusters Ci and Cj 
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Let H be the set of all hubs in the graph, Hi 
 be the set of hubs in partition i, and m 

be the size of H. Interestingly, m<<n, which makes the fast correlation possible. We 

already have the distances between all Hi elements in matrix Di. Next step is finding the 

pair-wise distances for the elements in H so that we can compute the distance of two 

elements belonging to two different partitions in an efficient way. We create an edge 

between all hub pairs (ha,hb) in Hi and assign Di(ha,hb) as the edge weight where 

iba Hhh ∈∀ , . Since Hi elements are also elements of another partition by definition, we get a 

fully connected graph of just hubs. By running Floyd-Warshall, we get a distance matrix 

S of all hubs in the graph. As we always maintain k-shortest paths for a hub in both 

partitions, the matrix S is a good approximation of KSD-shortest path distances and will 

function as a router between the nodes of different clusters. 

At this point, we have performed all the preparation for extracting the global 

distances in an efficient way. Let s be the source node, t be the destination node, and  

S(hi,hj) be the distance between hubs hi and hj. Then, the KSD-shortest path problem can 

be expressed as the following optimization problem: 

} and        where          
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We have the distances between s and all Hi elements in matrix Di. We compute 

the distances from s to the other hubs in set (H-Hi) through Hi using the S matrix. Each 

destination node checks only the hubs of its own partition in Hj to relax the shortest path 

distance to node s. It takes O(|Hi|.(|H|-|Hi|)+|V-Vi|.|Hj|) to find k-shortest paths from s to 
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all other nodes. Note that, |Vi| ≈ |V|/p and |Hi| ≈ |H|/p. MAPClus implementation with 

partitioning approach has an overall time complexity of ܱሺ|௏|మ௞మ ୪୭୥ሺ|௏|ሻ
௣

൅ ଷ|ܪ| ൅

|௏|.|ு|ሺ|௏|ା|ு|ሻ
௣

ሻ. If p=|V|, the algorithm performs like regular single shortest path algorithm. 

4.2.5 Clustering Phase 

The framework allows us to use any graph-compatible clustering algorithm. The 

success of clustering essentially depends on the compatibility of the dataset and the 

clustering algorithm. Thus, the choice of the algorithm must be made cautiously.  

We implemented the K-Medoids algorithm, which utilizes the similarity matrix 

and can be applied on both vector and the graph data. Usually the initial centroids 

determine the final clustering, so instead of random initialization, we take advantage of 

the given constraints. We take the transitive closure of the must-link constraints and 

define groups of nodes, which have to be clustered together. At this point, each group 

represents a set. We merge the closest two sets until we have K sets remaining. 

Eventually, we have K disconnected sets formed by constraints, which we use to initialize 

the medoids. 

The algorithm starts by assigning every point xi∈Ds to the cluster that minimizes 

the distance between xi and μk where μk is the cluster medoid of cluster k*. Rather than 

Euclidean distance, we use the distance matrix extracted in the previous step for 

assignment. The algorithm re-estimates medoid μk  using the points  assigned to cluster 

k*. For each point xi, we check the total distance to all other points and we assign the 
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point with minimum distance as the cluster medoid. Then, we repeat the steps until 

algorithm converges or reaches to a pre-specified number of runs. The time complexity of 

the clustering process is O(t.K.N2) where t is the number of iterations, K is number of 

clusters and N is the size of the dataset. 

4.3 A Multilevel Approach 

In this section, we present multi-level MAPClus framework that is based on the 

multilevel partitioning algorithms implemented by Karypis and Kumar [71]. The 

multilevel approach first coarsens the given graph level by level until only a small 

number of nodes are left. Then, it performs the initial partitioning on this small graph. 

Finally, the initial partitioning is projected back to the original graph by refining the 

graph level by level. Obviously, the  basic  structure  of  the  multilevel  partitioning  is  

very  straight-forward; however, implementing it for a specific objective, which is MAP 

in our case, can be quite tricky.  We describe the details of each phase in order to exploit 

the MAP concept in a multilevel manner. 

4.3.1 Coarsening Phase 

Given a weighted graph G0=(V0,E0), the coarsening phase successively transforms 

G0  into smaller graphs such that |V1| > |V2| > … >| Vk| where |Vi| is the number of nodes at 

level i.   A widely-used coarsening schema is combining a set of vertices into super 

nodes. In super node notion, we visit the each vertex at random order. For each vertex, 

we find the closest neighbor which is referred as candidate node for the fold operation. If 
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Figure 4-2. Multilevel Clustering with four levels.  During the coarsening, some 

constraints are removed out of the graph due to the homophily criterion 

there is a negative edge between current node and candidate node, then we look for the 

second closest and so on. We check which one, between current node and candidate 

node, has a greater degree. The smaller one then gets collapsed onto the larger one. The 

operation uses a similar approach as the union-by-rank procedure in graph theory in order 

to maintain the efficiency. 

The main issue in the fold operation is how to treat the edges. So as to preserve 

the connectivity information, the super node typically contains the union of the edges 

from current and the candidate nodes.  If there is more than one edge between same node  
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(a)           (b) 

Figure 4-3. Folding operation of node v3 onto the node v1 

pairs, these edges are merged into one and the weight of the new edge is determined as 

the sum of the weights of these edges. This procedure works well with methods using the 

Kernighan-Lin objective. However, the methods relying on a distance-based objective 

such as MAP benefits very little. To change the course of the situation, we need a new 

interpretation for the merged edges while conserving the connectivity information.    

After the edge weights are adjusted in the next phase, MAP employs the k-SDP 

algorithm to compute the distance between two objects. The k-SDP performs a distance 

relaxation procedure by finding and merging k-shortest paths. When we collapse two 

nodes during fold operation, the path information between two nodes gets lost and this 

affects the k-SDP algorithm’s performance dramatically. We perform a relaxation 

procedure to reduce this effect as follows: Consider the sub-graph example in Figure 7. 

Let v3 be the current node to be merged, v1  be the candidate node to which we merge and 

e(v1, v3) be the collapsing edge. The merging of edge e(v2, v3) to node v1 fits to the 

problem definition since we will have two e(v1, v2) nodes in the super node at the very 
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end. To solve the problem, we find the path from v2 to v1 that passes through the node v3. 

Then, we relax the edge between v1 and v2 using the equation:  
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path vvw = w(v1, v3)+ w(v2, v3). This equation simulates the k-SDP metric in a 

local scope. We can use the relaxed edges directly in the initial clustering phase. In 

Figure 4.3, the relaxation procedure is applied to e(v1, v4) as well while all other edges are 

connected to the super node v1 without any change. 

During the coarsening phase, the folding operation may eliminate the homophily 

criteria for some of the constraints. If a node of a constraint edge gets carried away from 

the original location too much, the probabilistic model no longer holds for the constraint. 

Before coarsening phase starts, the algorithm identifies the 2-hop neighbors for each node 

and they are marked as safe neighbors for fold operation. As long as the node collapses 

on any of these neighbors, we assume the homophily criteria still holds.  If the fold 

operation involves neighbors out of this range, then the constraint edge is removed from 

the graph.  

The algorithm stops coarsening phase when the average degree of the current-

level graph gets larger than 2 times the average degree of the original graph. Considering 

each fold operation removes one node and minimum one edge out of the graph, this 

condition is typically more than enough for obtaining a good sub-graph.  
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4.3.2 Initial Clustering Phase 

After the coarsening phase, we have a small graph which is a projection of the 

original graph with limited yet enough number of constraints. The framework allows us 

to use any graph-compatible clustering algorithm. The success of clustering essentially 

depends on the compatibility of the dataset and the clustering algorithm. Thus, the choice 

of the algorithm must be made cautiously. In the multilevel approach, the selection of the 

algorithm gets more of an issue.  

4.3.3 Refinement Phase 

In the final phase, the initial partitioning is repeatedly projected back to the 

original graph. The initial clustering can be improved using refinement algorithms during 

the projection of Gi to Gi-1. Many multilevel methods implement the Kernighan-Lin 

refinement algorithm [71], which attempts to minimize the cut while maintaining equal-

sized clusters. The Kerninghan-Lin algorithm engages a quantity called “gain” which is 

the benefit of swapping nodes between clusters relative to the objective function. 

Kerninghan-Lin algorithm computes the gain for all nodes in the graph. However, most 

of the swap operations happen along the boundary of the cut and Kerninghan-Lin wastes 

too much time while visiting other nodes. The boundary refinement algorithm computes 

the gain for only boundary vertices and performs swap operation accordingly. In our 

study, we employ the k-SDP based refinement algorithm which is also a type of boundary 

refinement. It aims to minimize distance-based objective without the restriction of equal-

sized clusters. Our multilevel algorithm uses MAPClus algorithm to refine the clustering 
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from previous level. Before running the algorithm, the collapsed nodes for the current 

level should be unfolded so that they can contribute to the refinement step.   

We assume that the edges are already readjusted by the MAP algorithm in the 

previous  level.   We  consider  the  same  setting  as  in  the  fold  operation. Figure  4.4a 

illustrates the sub-graph before the node v1 and v3  are unfolded.  The edge weights are  

 

  (a)                     (b) 

Figure 4-4. Unfolding operation on node v3 after the readjustment procedure 

increased or decreased in the sub-graph. The data structure in the algorithm keeps the 

sub-graph state before the readjustment procedure. We need to compute tRatioi-1(v1, v2) , 

tRatioi-1 (v1, v3) , tRatioi-1 (v2, v3),  tRatioi-1 (v1, v4) ,  tRatioi-1 (v3, v4) in order to readjust 

the unfolded edges. Running the readjustment algorithm just for these edges is a waste of 

computation. Instead, we can use the tRatios of the merges edges, – tRatioi(v1, v2) and 

tRatioi(v1, v4) –, to estimate these values. We compute tRatioi(v1, v2) as 
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We apply tRatioi-1(v1, v2) to the edges e(v1, v2)  and e (v2, v3). In a similar way, we 

compute tRatioi(v1, v4) and apply it to the edges e(v1, v4) and e(v3, v4). Finally, we 

compute the average of tRatioi-1(v1, v2) and tRatioi-1(v1, v4) and apply it to the e(v1, v3).  

This method achieves very good estimations for the readjustment of unfolded edges while 

avoiding heavy constraint computations recurrently at each level. The multilevel 

algorithm terminates after the refinement of the original graph. Because of the 

optimizations such as boundary nodes and efficient readjustment, the refinement step 

usually converges very quickly, -just like coarsening phase. The experimental results 

demonstrate that this refinement algorithm projects the initial clustering to the final graph 

very rapidly and accurately. 

4.4 Experiments 

We have conducted experiments on two synthetic datasets and six real datasets 

from UCI Machine Learning Repository [72]: Soybean, Iris, Wine, Ionosphere, Balance, 

Breast Cancer and Satellite. The properties of these dataset are summarized in Table 1. N 

is the number of instances, d is the number of dimensions, and K is the number of 

clusters in each dataset. We have measured the clustering accuracy as:  
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where 1{·} returns 1 if any pair of instances xi and xj are assigned correctly by the 

algorithm [20]. In each experimental setup, we have run the clustering algorithms for 50 

times and reported the average accuracy ratios. 
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Must-link and cannot-link constraints are generated randomly at equal amounts 

and the total amount is varied proportional to the dataset size. For each run we have used 

the same constraint set for all clustering algorithms. For the MAPClus configuration, we 

used α=1.2 and increased the number of nearest neighbors and number of shortest paths 

proportional to the dataset size. The ratio between positive and negative edge constraint 

weights, qr and qe, are set to 1.6.  

4.4.1 Synthetic Datasets 

To visualize how our method works, we generated two synthetic datasets: 

Gaussian: A set of 180 two-dimensional instances generated by Gaussian number 

generator, as shown in Figure 4.5. 120 instances in vertical and lower horizontal sets are 

labeled as class one. Upper horizontal set is label as class two. 

ThreeCircles: Similar to TwoCircles data in [45], we have generated three layered 

circular data with 300 instances in 2 dimensions. Each circle represents one class with 

100 data points in it.  

We generated small amount of must-link and cannot link constraints (18 for 

Gaussian and 30 for ThreeCircles). Figure 4.5 shows final clustering of these datasets 

with high accuracy. For the circular data, Graph Construction process had a pre-

clustering effect. As we have selected k-nearest neighbors for each point, there were not 

too many inter-cluster edges in the graph. In addition, the re-adjustment phase 

successfully wiped out the effects of these inter-cluster edges for the clustering phase. 
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(a)                                                                    (b) 

Figure 4-5. MAPCLUS clusters (a) Gaussian and (b) ThreeCircles datasets with small set 

of constraints 

4.4.2 Choice of Tuning Parameters 

4.4.2.1 Effect of Parameter k and p 

We have analyzed the effect of parameters over clustering results. As increasing 

number of constraints and increasing number of nearest neighbors k both increase 

accuracy rate, they show different effects in the results. Second, we have varied both k 

and number of constraints in the first set of experiments. The number of nearest 

neighbors, k, is one of the essential parameters for the graph construction algorithm and it 

must be increased proportionally to the dataset size to ensure the best result. However, as 

seen in Figure 4.7, taking a value for k outside the optimal interval causes reduction or 

instability in the accuracy trend. For small values of k, we cannot fully take advantage of 

the k-shortest paths distance metric. If the value is set too high, all edges are labeled as an 

affected edge and consequently, false escalation or reduction occurs for too many edges.  
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Figure 4-6. Effect of number of partitions on clustering Breast dataset in terms of  (a) 

running time and (b) accuracy 

The number of partitions has a dramatic effect upon the running time while 

preserving the accuracy. The algorithm runs up to 24x faster for the Breast dataset 

without significant loss of accuracy. Given that this is a small dataset, we have more gain 

in performance for larger datasets. After p=12, the accuracy starts to decline because the 

K-SD shortest path distance approximation does not keep up with very small-sized sub 

graphs. On the flip side, running time starts increasing after p=16. 

The reason for this situation is the high number of hubs. The computation of 

matrix S starts to dominate the running time as it requires O(|H|3) time. One advantage of 

partitioning is that we no longer need to increase the value of parameter k and about five 

shortest paths are quite enough to compute distances accurately. 

4.4.2.2 Effects of Only Must-link or Cannot-link Constraints 

Next, we have checked the effect of constraint types individually (see Figure 4.6). 

When we use the must-link constraints alone, it reduces the weights of both inter-cluster 
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and intra-cluster edges. When the reduction ratio on weights of intra-cluster edges is 

larger than inter-cluster edges, there is a small gain. Similarly, when cannot-link 

constraints are used alone, the weights of inter-cluster edges increase more than weights 

of intra-cluster edges. However, gain in accuracy is greater than when using only positive 

edges.  This situation contradicts with [73] and proves that the informativeness of a 

constraint type depends on the method how it is applied. Furthermore, the accuracy ratio 

trend is not steady as number of constraints is augmented. On the other hand, when used 

together, we get optimal results for the algorithm. On incorrectly validated edges, as seen 

in Figure 4.8, they cancel the effect of each other. We observed the same phenomena for 

other algorithms as well. 

  

Figure 4-7. The effect of only (a) negative edges and (b) only positive edges on 

Ionosphere dataset 
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4.4.3 Real Datasets 

4.4.3.1 Methods Compared 

On real datasets, we compared our MAPCLUS algorithm with the MPCK-Means, 

SS-Kernel-KMeans and KMeans+Diagonal Metric algorithms, which are publicly 

available online. We used the same parameters for MAPCLUS: k=5 and p=|V|/80 (each 

subgraph has approximately 80 nodes. MAPClus outperforms MPCK-Means, SS-Kernel-

Means and KMeans+Diagonal Metric algorithms on all datasets, except Breast and Wine 

(Fig. 11).  Also, it runs better than SS-Kernel-KMeans and Kmeans+Diagonal Metric on 

Breast dataset and quite reasonable compared to the MPCK-Means. For Wine dataset, 

graph-based methods such as SS-Kernel-KMeans and MAPClus do not improve the 

performance significantly and overall accuracy is very low compared to metric-based 

methods. 

SS-Kernel-KMeans concentrates on min-cut objective while MAPClus tries to 

minimize overall pairwise distance. Furthermore, the same way MPCK-Means and 

Kmeans+ Diagonal Metric algorithms could not improve the clustering performance for 

Balance regardless of constraint amount, MAPClus failed to increase the accuracy for 

Wine dataset. In some of our experiments, we detected the phenomena that the accuracy 

of the algorithm goes up and down slightly as we increase the constraint amount. As 

shown in [6], this is a general problem of randomly-chosen constraint sets, where some 

constraints reduce the clustering performance. Thus, the experiments show that a learning 

metric or edge weight re-adjustment, using a small amount of constraints, is not always 
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reliable. Compared to other methods, MAPClus is typically more trustworthy even when 

using few constraints. 

Table 4-3. Datasets used in experiments and running time of the algorithms (in secs) 

 

4.4.3.2 Running Time Experiments 

We have performed experiments on the running time of the algorithms. All 

experiments were carried out on 1.7 GHz Pentium IV machine with 512 MB memory. 

We have performed 10 experiments for each algorithm as we increase the constraint 

amount by 10%·|D|, where |D| is the dataset size, for each experiment and reported the 

average running time of these experiments. The running time of MAPClus 

implementation with multilevel approach is clearly better than other methods, even better 

than standard K-means algorithm. Thanks to the small graph size at the lowest level, the 

convergence time is much smaller than other iterative approaches. MAPClus algorithm 

managed to partition Forest dataset with approximately 62000 instances in about 45 

seconds where K-means took 78 seconds to converge. It took 220 seconds for MPCK-

Means to partition the same dataset. Most of the time was spend during the swap 

operation which moves the objects between the clusters. 
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Figure 4-8. Accuracy results of MAPClus, as we vary the number of nearest neighbors, k 

from 5 to 20. Constraints amounts are constraint ratio times |D|. 
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Figure 4-9. Comparison of MAPClus, MPCK-Means, KMeans+Diagonal and SS-

Kernel-KMeans algorithms. 
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4.5 Summary 

We have presented a framework that, when given a dataset of instances and user 

constraints, transforms vector data into a graph and improves the clustering algorithm 

distance metric by adjusting the edge weights based on user constraints. The most 

important contribution lies in the way the weights are adjusted based on Electro-Magnetic 

field theory. Instead of modifying the distance metric, it alters the distances between 

objects in the graph domain. MAPCLUS algorithm allows us to cluster both vector-based 

and graph-based datasets and it works with distances only as well.  Rather than a standard 

variation of K-Medoids, we can integrate other clustering algorithms into the framework. 

We have shown than even when using a small amount of constraints, the algorithm 

improves clustering accuracy significantly. 
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Chapter 5 

 

 

5 MRA-Based Similarity Measures 

Molecular similarity is an important tool in drug design and protein engineering 

for analyzing the quantitative relationships between physicochemical properties of two 

molecules. We present a family of similarity measures which exploits the ability of 

wavelet transformation to analyze the spectral components of the physicochemical 

properties and suggests a more sensitive way of measuring the similarity of biological 

molecules. In order to investigate how effective wavelet-based similarity measures are 

against conventional measures, we defined several patterns which indicate a scalar or 

topological change in the distribution of the properties. The proposed methods were more 

successful in recognizing patterns in contrast to the state-of-the-art similarity measures. 
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5.1 Introduction 

The notion of molecular similarity is widely used in protein engineering and drug 

design to detect the structural and functional patterns based on molecular properties such 

as electrostatic potentials, hydropathy, and charge density [74] [75].  Similarity analysis 

helps classifying molecules according to their physicochemical properties. Many 

molecular similarity determination approaches [76] [77] [78]  compare the molecules of 

interest according to their electrostatic potentials quantitatively and attempt to reveal the 

correlations between physicochemical properties and biological activities through 

similarity analysis. The basic idea is that if electrostatistics is an important driving force 

for bioactivicity, then molecules with similar electrostatic potential distribution exhibit 

similar biological functionality. With the advent of Adaptive Poisson-Boltzmann Solver 

(ABPS) [79], the evaluation of electrostatic distributions and interactions has become 

more efficient and more accurate. Thus, computational methods for analyzing 

electrostatic properties has been of great interest. 

Molecular similarity determination usually involves evaluating a distance function 

which compares the relevant properties of two superimposed molecules and returns a 

numeric value within well-defined limits. A variety of similarity indices have been 

introduced in the past.  Carbo et al. [25] introduced a similarity measure for comparing 

the molecular density functions which were established in quantum mechanics: 
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Although Carbo similarity measure was first proposed to compare continuous 

functions using integration, the current function is usually evaluated in the discrete space. 

The value of the CBAB is bounded by the interval    -1.0 ≤ CBAB ≤ 1.0 where 1.0 indicates 

two potentials are identical and -1.0 indicates they are completely different. The measure 

is still used by many applications due to its sensitivity to the spatial behaviour and the 

sign of the potentials. However, it comes with a particular drawback referred as 

proportionality problem [23]: if φA =k.φB, the similarity gets equal to the identity. 

Consequently, Carbo measure does not take magnitude of electrostatic potentials into 

account in similarity calculations. Yet higher electrostatic potential magnitude typically 

indicates higher functionality in biological molecules. 

              

Figure 5-1. An illustration of electrostatic potential distribution of a protein. (a) Darker 

region indicates larger values residing in the molecule interior. (b) These large values are 

usually filtered out by using the skin concept in case Hodgkin or Carbo are used. 

Hodgkin et al. [24] proposed another measure which mitigates the proportionality 

problem to some extent by using summation in the normalization factor: 
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The measure is sensitive to the magnitudes of the potentials in addition to the 

other characteristics. Like Carbo measure, the similarity value falls within the range of -

1.0 ≤ HDAB ≤ 1.0.  

 Hodgkin and Carbo measures both can be generalized as cumulative similarity 

measures considering the fact that they are computed by accumulating the products of 

potentials and dividing by the normalization factor.  The use of products leads to the 

domination of large values upon small values in similarity calculation. The situation may 

cause inaccurate comparison of proteins, especially when extreme variance is observed in 

the spatial distribution of electrostatic potentials. For instance, electrostatic potential 

distribution in the protein interior may potentially dominate the one on the protein surface 

and in the protein exterior in similarity calculations due to the relatively large values [76]. 

If either Hodgkin or Carbo measure is used to compare the proteins, the similarity will be 

under the influence of mostly the interior distribution, instead of overall distribution. 

Wade et al. [80] introduced the “skin” concept which focuses on the thin region 

surrounding the protein. The skin responses to the ion accessibility surface and the debye, 

which are dependent on ionic screening of electrostatic interaction. However, it ignores 

the electrostatic potentials in the interior and further away from the debye screening 

length, which is typically 3o-7o from the surface. Another shortcoming peculiar to these 
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measures is that the similarity is overestimated at extreme similarity values due to the 

again use of products. 

 Reynolds [23] proposed a non-cumulative measure which focuses on the local 

differences of the potentials: 
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The linear similarity measure has the distinctive property of providing a linear 

relationship with respect to the proportionality of the compared electrostatic potentials. 

Unlike other two measures, the similarity is bounded by the interval 0 ≤ LNAB ≤ 2.0. 

In this study, we present a family of similarity measures which employ the 

previously established CB [25], HD [24], and LN [23] similarity measures in conjuction 

with multi-resolution analysis (MRA) [81]. The MRA-based similarity measures 

transform the protein characteristics into real numbers and apply an appropriate discrete 

wavelet decomposition to find the corresponding wavelet coefficients. Subsequently, they 

perform the comparison on the wavelet coefficients. This approach exploits the ability of 

wavelet transformation to analyze the spectal components of the physicochemical 

characteristics and suggests a more sensitive way of measuring the similarity of 

biological molecules.  

We also propose a generalized testbed for comparing the characteristics of each 

measure. To this end, we analyzed electrostatic  potential  distributions  generated by 

APBS software and identified several patterns indicating a scalar or topologocial   change   
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in   the distributions. In addition to proportionality pattern [23], we introduce the locality 

and scaling patterns. The definitions for all three patterns are as follows: 

(i) The proportionality pattern indicates the change in the ratio of molecular 

electrostatic potential magnitudes and does not involve any topological changes. In 

Figure 5.2, an electrostatic potential distribution of a protein is illustrated. In the figure, 

region A exhibits positive electrostatic properties due to an amino acid with positive side 

chain. After replacing it with an amino acid with negative side chain, the same region 

exhibits negative electrostatic properties. The difference between the electrostatic 

potentials of region A and region B can be expressed as proportionality pattern.  

 (ii) The scaling pattern is commonly encountered in electrostatic potential 

distributions when an expansion or shrinkage is observed in the area of a particular region 

with no other significant changes. As seen in Figure 5.3, the area of a positive region 

expands due to a mutation in the molecule or a change in ionic strength of the medium.   

(iii) The locality pattern reveals the particular regions which exist in both molecules with 

similar properties but at different locations. The locality is of paramount importance in 

homology modelling where we compare the proteins derived from a common ancestor. In 

homology models, amino acid sequences are more or less conserved, thus possibly 

leading them to have similar tertiary sub regions but at different locations. Figure 5.4 

depicts a simple example where locality pattern is observed. The positive and negative 

regions illustrate two sub regions of a protein. The positive region is displaced by an 

angle of α in Figure 5.4b while its distance l  to the center point C is being preserved. 



 

 

 

 64

    

Figure 5-2. Proportionality pattern observed in electrostatic potential distributions. The 

positive potentials in the region A are replaced by negative potentials such that φA =k.φB 

 

Figure 5-3. Scaling pattern observed in electrostatic potential distributions. The 

electrostatic potential at a specific region can expand or shrink while rest of the molecule 

remains the same. Here, d2>d1 indicating an expansion in positive potentials (red). 

Finally, we have performed a systematic study using the testbed to investigate 

how  sensitive  the  proposed  MRA-based  similarity  measures  to  the   proportionality,  

locality and scaling patterns. We have conducted our investigation on the charge 

distributions of molecules on which the electrostatic potential distribution is grounded. 
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 Figure 5-4. Locality pattern observed in electrostatic potential distributions. A specific 

region may get displaced while the electrostatic potential values in the system remain the 

same. Here, positive region (red) is displaced by an angle of α. Note that its distance l  to 

the center point C doesn’t change. 

Empirical evaluations demonstrate that MRA-based methods are more successful in 

recognizing these patterns in contrast to the state-of-the-art similarity measures. 

5.2 Discrete Wavelet Transformation 

The wavelet signal transformation is used to divide a raw non-stationary signal 

into its spectral components at different scales. It helps obtaining further information 

about the local features of a signal. The process makes use of the concept called multi-

resolution analysis. Signals are usually represented in two main domains: time and 

frequency domains. Time domain is obtained by plotting the amplitude of a signal as a 

function of time. The change of amplitude is mostly in the form of oscillations similar to 

the cosine or sine waves. In frequency domain, we study the components of a signal at 

different spectra. The frequency is used to observe the change in the rate of an oscillating 

l
αl CC
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variable. It is measured as the number of oscillations per unit time. If a variable changes 

rapidly, it is of high frequency. Likewise, if a variable changes smoothly, it is of low 

frequency [58]. The multi-resolution analysis decomposes the signal into its frequency 

components and observes the changes in the signal at different frequency bands. 

In wavelet analysis, the frequency bands are disintegrated by performing a 

convolution operation on the original signal and the wavelet function.  The convolution 

operation involves shifting the wavelet function, multiplying the original signal by the 

wavelet and summing up the results. The continuous wavelet transform is defined as 

follows: 

∫
−

= dt
s

ttf
s

sW f )()(1),( τψτ  

where ψ(t) is the mother wavelet function, and the variables τ and s  are the translation 

and scale parameters, respectively. The mother wavelet function is a small wave function 

used as a prototype to generate the window functions for each τ and s values.  The scale 

parameter defines the length of the wavelet and makes the window function react to a 

specific frequency band. When the window function is multiplied by the original signal, 

the output is the spectral component that resonates with the frequency band defined by 

the scale. If the scale is low, the wavelet function extracts the high frequency 

components. When we increase the value of the scale, we can extract the lower frequency 

elements which may span even the entire signal. The translation parameter defines the 

location of the window. During the extraction process, the window function is shifted 

through the signal. At each location, we check whether the window function and the 
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signal resonate. If they have a perfect match, the resulting signal will be identical to the 

wavelet function. Otherwise, it will be zero. The operation is applied to all time locations 

in the original signal. When we sum up the resulting signals, we obtain the frequency 

component or wavelet coefficient whose frequency is same as the wavelet.  The high 

frequency elements represent the short-range changes in the signal and thus are referred 

as detail coefficients whereas the low frequency elements represent the long-range 

changes and are referred as approximation coefficients. 

The continuous wavelet transformation scans through all spectrum and computes 

all coefficients. It is computationally very expensive. In addition, analyzing all wavelet 

coefficients is highly redundant. The discrete wavelet transformation is a special kind of 

wavelet transformation that achieves significant computational improvement over 

continuous wavelet transformation while providing sufficiently non-redundant 

coefficients.  The DWT takes a discrete function as input. It requires the continuous 

signal function to be transformed into the discrete form. The discrete function is usually 

created by sampling the continuous function at discrete time values. In DWT, the 

selection of scale parameters is s=2 and τ=1, i.e. the wavelet length is dilated by 2 at each 

level and shifted by 1 at each step. The discrete wavelet transform is defined as: 

)2()(
2

1),( τψτ −= ∑ ttfsDW
t

f        

 The DWT consists of two filter banks that are derived from wavelet functions: 

high-pass filter and low-pass filter. The same signal is passed through the filters 

separately. In case s=2 and τ=1, the low-pass filter removes all frequency elements above 
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the half of the highest frequency in the signal. The high-pass filter, on the contrary, filters 

out all the frequencies below the half of the highest frequency.  For example, if the 

highest frequency in the signal is 500 Hz, we obtain the 0-250 Hz components via low-

pass filter and 250-500 Hz components via high-pass filter. The low-pass filter and high-

pass filters decompose the signal into its approximation and the detail coefficients by 

using equations: 

)2()(
2

1 tktfc low
t

k
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1 tktfd high
t

k
f −= ∑ ψ  

respectively. 

 The DWT explores a range of frequency components instead of all frequencies 

individually. Multi-resolution analysis takes advantage of this property. It repetitively 

applies the decomposition to the approximation coefficients to produce multi-level 

coefficients.  Suppose the original signal has a maximum frequency of 200 Hz. At the 

first decomposition level, the signal is passed through the high-pass and low-pass filters. 

The output of the low-pass filter is 0-100 Hz components whereas the output of the high-

pass filter is 100-200Hz components. We take the output of the low-pass filter and input 

it into the second level decomposition. The output is 0-50 and 50-100 Hz components. 

The procedure is repeated until no more spectral elements left. The decomposition is 

illustrated in Figure 5.5. 
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Figure 5-5. The illustration of a wavelet transform on a signal with 0-200 Hz spectrum 

5.3 Wavelet-Based Similarity Measures 

The intuition behind this study is that almost all biological data can be expressed 

in some form of time series and this property allows us to apply the time-series 

techniques to many biological applications. We hypothesize that the similarity 

information can be captured with higher sensitivity in time-series domain than the 

original domain.  We exploit the similarity measures through a concept called multi-

resolution analysis (MRA) which is practically relevant to the discrete wavelet 

decomposition. MRA produces a series φ =( φ1, φ2,…, φm) of coefficients by 
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0-50 Hz

0-100 Hz



 

 

 

 70

decomposing the signal such that their corresponding frequencies are ordered as  

f1>f2>…>fm. Each coefficient represents the same signal at different resolutions. Here, 

the resolution defines the amount of detail information in the signal. Depending on the 

application, each resolution may be of different importance. For example, MRA is 

widely-used in medical domain to analyze the medical images. In a cancer image, early 

stages of the cancer can be determined by examining fine-resolution coefficients, while 

the late stages are more likely to appear at coarser resolutions.   

The key insight of our algorithm is that the low-frequency coefficients correspond 

to the more global changes and thus, more important than the high-frequency coefficients 

in similarity calculations. The high-frequency coefficients represent the local changes 

which may vary significantly within a very short range. They are usually considered as 

noise in many applications and filtered out of the signals to obtain more smooth 

representation. However, in biological domain, each piece of information is usually 

valuable and should be taken into consideration carefully.  

Note that each coefficient is a spectral component of the original signal and 

contributes to the similarity value proportional to its importance. The importance may 

differ depending on the domain.  Therefore, we calculate the similarities on each 

coefficient separately and then take the weighted sum of the calculated similarities.  We 

define the following wavelet-based similarity measures in this context. 
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Wavelet Similarity Index with Carbo Distance: 
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Wavelet Similarity Index with Hodgkin Distance: 
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Wavelet Similarity Index with Linear Distance: 
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In the formulas above, φ is a series of wavelet coefficients and w is the weight 

function for the coefficient levels.  We typically choose the weights as kth power of 2 for 

the kth coefficient level. According to our empirical evaluations, the selection of weights 

works fine with many biological applications. Wen et al. [59] also used a similar weight 

function in detecting protein sequences, with the motivation of normalizing the energy 

levels of wavelet coefficients.  However, different weights can always be used for 

specific applications.  
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5.4 Empirical Evaluations and Discussion 

To quantitately assess the pattern recognition capability of MRA-based similarity 

measures, we generated several toy data, where each dataset projects an isolated pattern.  

As proof of concept, we used simple spherical representation for molecule structures. We 

assumed that the charge distributions within the molecules were uniform. The wavelet 

coefficients were obtained by applying discrete wavelet transformation on the three-

dimensional spatial distribution of molecular charges. In the experiments, we investigated 

similarity behavior  of the measures with respect to the proportionality, locality, and 

scaling patterns. In our evaluations, “0„ indicates that two molecules are identical. All 

other values indicate intermediate dissimilarity levels between two molecules. 

5.4.1 Proportionality  

The proportionality pattern implies a change in the ratio of charge magnitudes. 

After a single amino acid mutation, charge magnitudes close to the mutated residue may 

change significantly and as a result, electrostatic potential values may increase or reduce 

dramatically. To simulate this pattern, we generated two equal-sized spherical molecules 

and varied the ratio between their charge magnitudes from -1.0x to 1.0x as shown in 

Figure 5.6.  

Proportionality experiments suggested no change in similarity behavior whether 

or not the wavelet coefficients were used. CB and WCB measures both behave like a step 

function for positive and negative proportionality constants due to the fact that they are 

based on cosine similarity and cosine similarity does not take charge magnitudes into  
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Figure 5-6. The similarity between molecules A and B whose charge distributions are 

maintained by a proportionality variable. Non-MRA and MRA-based measures show 

similar behavior for the same proportionality constants.  
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account. HD and WHD similarity measures both overestimated the dissimilarity at 

extreme values. While it may be true, they managed to restrain the overestimation for the 

extreme similarity values, i.e. HD and WHD similarities scale almost linearly when the 

objects get more similar. On the contrary, LN and WLN similarity measures both 

displayed a linear relationship between similarity and proportionality constant. The 

reason why non-MRA and MRA measures exhibit similar behaviour lies in the wavelet 

transformation: The wavelet decomposition analyzes the charge distributions according 

to their spectral or frequency characteristics. In frequency domain, the magnitudes are not 

taken into consideration. Instead, changes in the magnitudes are considered in the 

decomposition. Therefore, when the wavelet coefficients were  examined  for  different  

proportionality constants, the ratio between the charges were also preserved in wavelet 

domain for the coefficients. 

For completeness, we also analyzed the behaviours of   similarity  functions   

when   proportionality  constant    k<-1.0 and k>1.0. In our analysis, we observed that out 

of interval [-1, 1], all similarity functions except for CB and WCB change direction. 

When the proportionality constant k gets closer to the -∞ and +∞, HD and WHD 

similarity functions converge to 1 √2⁄  whereas LN and WLN converge to 1 2⁄ . A similar 

behaviour was also reported by Petke et al. [75] in their analyis of proportional datasets 

5.4.2 Scale 

The scaling pattern indicates a change in the area of a specific region with no 

significant change in other characteristics of the region. One scenario for the pattern is 
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that there might be two amino acids right next to each other, one with a negative side 

chain and the other with a positive side chain. If the residue with negative side chain is 

replaced with an amino acid with positive side chain, the area of positive charges, as well 

as electrostatic potentials, in the neighborhood will expand proportional to the net charge 

of new amino acid. Similarly, substitution of a hydrophobic amino acid residue with a 

hydrophilic amino acid may cause the same effect. Such mutations affect the 

hydrophobic cores within the protein, which may result in expansion or shrinkage in the 

size of whole molecule or just a particular sub region.  

In order to investigate the effect of scaling in similarity analysis, we generated 

several spherical molecules with varied radius. We have used three charge distributions 

in scaling experiments. The first experiment assumes  ߮஺ ൌ 1  and ߮஻ ൌ 1 , where  ߮஺ is 

the charge per unit for the molecule which is used as reference in comparisons and ߮஻ is 

the charge per unit for the molecule whose radius is varied. Remember that charges are 

uniformly distributed inside the molecules. Figure 5.7 depicts the behavior of similarity 

measures as we increase the scale from 0x to 3x. Even though all measures demonstrated 

similar behavior, WCB measure underestimated the similarity between two molecules 

when the scale is less than 1x. 

In the second experiment, we adopted the case where  ߮஺ ൌ 1  and ߮஻ ൌ 4.  CB 

measure could not handle the experiments with different charge values at all and 

presented the same plot as in Figure 5.8.  WHD, WLN, HD and LN measures managed to 

discriminate  the  objects reasonably   well   when   their   charge   distributions  different.  
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Figure 5-7. The similarity between molecules A and B whose radii differ by a scale 

constant. The molecular charges are ࡭࣐ ൌ ૚  and ࡮࣐ ൌ ૚. Although non-MRA (a) and 

MRA-based measures (b) show similar behaviour, the slope of WCB similarity measure 

indicates an underestimation of the similarity when the scale is less than 1x.         
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However, in wavelet domain, the point where the minimum similarity value is observed 

is shifted to the left by a ratio of ݎ஺ඥ߮஺ ߮஻⁄ .  Interestingly, both molecules have the same 

sum of charges at this scale value. When molecular charges were  ߮஺ ൌ 4   and  ߮஻ ൌ 1, 

we observed that the minimum similarity value is shifted to the right by a ratio of 

஺ඥ߮஺ݎ ߮஻⁄ . The behavior indicates a clear relationship between the minimum similarity 

value and the sum of charges in the system. The approximation function in the wavelet 

transformation performs like a mean function and takes the average of the charges at each 

level. At the lowest level of the decomposition, the approximation and detail coefficients 

become equal for two molecules due to the overall distribution of the charges. In the 

weight function we use, the lowest level has the highest weight because of the importance 

of the information it presents. Consequently, the equality at lower levels dominates the 

overall similarity value.  This property of MRA-based similarity measures is quite 

attractive for similarity analysis of homology models, whose biological functionality is 

usually compared according to the net charge in the molecule. 

When the molecules have opposite charges, it has a negative effect on the 

similarity. We have the similar behaviours for similarity measures, however the similarity 

value was relative small compared to the configuration where identical charges were 

used. 
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Figure 5-8. The similarity between molecules A and B whose radii differ by a scale 

constant. The molecular charges are ࡭࣐ ൌ ૚  and ࡮࣐ ൌ ૝. The point where the minimum 

similarity value is observed is shifted to the left by  ࡭࢘ඥ࡭࣐ ⁄࡮࣐   in wavelet domain. 

Interestingly, the sum of charges has same value at this scale. 

0x                  1x                     2x                 3x
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5.4.3 Locality 

The locality criteria measures how much a particular region is displaced from its 

original position as a result of a mutation or an external singularity.  The mutation at a 

single residue may affect the position of a binding interface of two complementary 

proteins that are involved in a complex structure.  Also, we observe the same pattern in 

homology modeling. The homology models usually have similar amino acid sequences, 

and this situation causes homologous proteins to have similar secondary structures.  Due 

to the substitutions in the sequence, these sub regions may be found at different locations 

in space [27]. Considering Cα atoms forming the backbone structure of the homologous 

proteins are more or less conserved, the displacement can be expressed in terms of a 

displacement angle. In order to simulate these scenarios, we generated two spherical 

molecules that were attached to each other as illustrated in Figure 5.9. The relationship 

between the molecular radii was rA=2rB. The charges were equal and uniform inside the 

spheres as in the previous experiments.  At each step, molecule B was displaced counter-

clockwise by an angle of α on the surface of molecule A. We used the first charge 

distribution (α=0o) as reference and compare it against all other configurations. 

Figure 5.9 compares the behavior of conventional and MRA-based similarity 

measures as we displaced the molecule B by an angle of 15o at each step. LN, HD and 

CB measures cannot discriminate the displacements greater than 60o, when molecule B in 

two different configurations no longer overlapped. CB and HD functions calculated the 

same similarity values for all displacement angles. Conversely, MRA-based measures  
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Figure 5-9. The similarity between molecules A and B where the molecule B is displaced 

counter-clockwise by a displacement angle of α on the surface of the molecule A. The 

conventional similarity measures (a) cannot differentiate the similarity values once α>60.  

The MRA-based similarity measures (b), on the contrary, managed to discriminate 

different configuration much better. 
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managed to discriminate the displacements even beyond this angle.  Similar to HD and 

CB, WHD and WCB measures showed the same behavior in the experiments and 

overlapped for all displacement configurations. Even though they were more sensitive to 

the locality than CB and HD measures, they couldn’t discriminate the displacements 

greater than 120o. In contrast, WLN outperformed all other measures.  

During our experiments, we have observed that the steepness of the MRA-based 

similarity functions reduced dramatically when the displacement angle was a multiple of 

ߨ 2⁄ . In other words, the similarity was underestimated for these configurations. Such 

behavior was a natural result of wavelet transformation. When performing wavelet 

decomposition in multiple dimensions, the original wavelet function was applied in turn 

to each of the dimensions in an orthogonal fashion. Once again, the wavelet function 

decomposes the data according to their spectral information. When the displacement 

angle gets closer to the multiple of ߨ 2⁄ , the molecules shows similar characteristics in 

terms of  spectral information.  

When we use different or opposite charges, the similarity measures have similar 

behavior as we see in Figure 5.8. While this may be true, likewise scaling experiments, 

the similarity was again relatively small in contrast with the default configuration.  
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Table 5-1. Comparison of Similarity Indices with respect to their support for locality, 

proportionality and scaling patterns 

 

5.5 Conclusions 

In summary, we have proposed a novel approach for molecular similarity 

determination, which integrates the established similarity measures and the multi-

resolution analysis.  In order to establish a test bed for molecular similarity measures, we 

have studied several patterns which are commonly observed in charge and electrostatic 

potential distribution of molecules, especially biological molecules and proteins.  Using 

the test bed, we have reported a systematic study of pattern recognition supported by each 

similarity measure. The comparisons of similarity measures with respect to their support 

for different patterns are given in Table 5.1.  The results of empirical evaluation suggest 

that the pattern recognition ability of the state-of-art similarity measures can potentially 

be enhanced when they are used in conjunction with the multi-resolution analysis.  Even 

though we have studied only electrostatics in this paper, the proposed measures can 

potentially be applied to other physicochemical characteristics as well. 
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Chapter 6 

 

 

6 Similarity Analysis of 

Complement Proteins using 

Wavelet Transform 

Advances in computational biology allow us to determine 3-D protein structures 

and evaluate their properties, such as electrostatic potential and hydropathy, rapidly. 

However, electrostatic potential is more distinguished than any other characteristic 

because it drives the intermolecular interactions and keeps the protein stable within itself 

by cooperating with the hydrophobicity. Due to its strenuousness in bioactivity, we need 

to perform comprehensive electrostatic potential analysis on proteins in order to 
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understand their biological functionality and consequently design novel drugs [82] [83].  

In this chapter, we shall present the validity of wavelet-based similarity measures through 

the hierarchical clustering of several complement protein datasets. The datasets were 

obtained either via alanine scanning or homology modeling, two widely-used methods in 

drug design to analyze the mutations and unknown protein structures, respectively.  

Alanine scanning is a powerful tool for protein analysis which replaces every 

single ionizable amino acid by alanine which is neutral in charge [84]. In molecular 

biology, the alanine scanning is used to select residues in a protein sequence for mutation 

in order to improve the functionality and molecular properties. The idea is to determine 

whether a specific side chain group of a specific residue plays an important role in 

bioactivity. The residues without any important role are considered as sites for 

substitutions for the generation of mutant alleles. Such residues usually present a high 

probability of getting a mutation that allows folding while giving a phenotype. In alanine 

scanning, the sequence of a protein is scanned using an overlapping window of five 

residues as looking for charged residues. All the charged residues are substituted with 

alanine using vitro mutagenesis or computational methods. The mutant allele is then 

examined for phenotype. In this study, we have focused on the C3d and Efb-c mutants 

that form the C3d/Efb-c complex [82]. The complex prevents the activation of immune 

response and causes infections on the host. In order to understand the interactions 

between C3d/ Efb-c, we performed a alanine scanning and quantitative analysis on C3d 

and Efb-c mutants. We have followed a computational approach for modeling the 
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mutants with the Whatif program widely used for alanine scanning in the research 

community [85]. Each mutant corresponds to the substitution of a single residue on the 

original protein. The goal of the analysis is to determine which mutation causes 

enhancement or inhibition in the C3d/Efb-c association.  

Alternatively, the wavelet-based similarity measures have been employed to 

analyze the proteins that were computationally generated by homology modeling. In 

homology modeling, a sequence of a protein whose topology is unknown is compared 

against a set of template proteins whose sequence and topology is available, by using an 

alignment algorithm [27]. After finding the template with the best alignment, a sequence-

to-structure alignment is applied to the sequence of unknown protein and the tertiary 

structure of the template in order to predict the tertiary structure of the unknown protein. 

The sequence-to-structure alignment should be performed with high precision. The 

protein structure is so sensitive that single residue misplacement may cause unrealistic 

models. This is to say that the computationally discovered protein becomes useless for an 

application like drug design. The homology modeling was applied to generate the 

unknown structures of CCP modules of Factor H in the second set of experiments. The 

Factor H in particular regulates the complement system by binding to the C3b protein and 

prevents the complement components attacking the host cells. It is believed that the 

electrostatic diversity of CCP modules drives the interactions for distinguishing self from 

non-self and the key information to understand the bioactivity of the Factor H lies in 

understanding the electrostatic characteristics of the CPP modules [86]. As we shall see 
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in the experiments, we have computed the tertiary structures of unknown CCP modules 

using the known modules as template and performed a comparative analysis on the CPP 

using the wavelet-based similarity measures. Next, we will give an overview of the 

complement system and describe the functionality of each protein mentioned so far in 

details.   

6.1 The Complement System Overview 

Every living organism is equipped with an immune system that protects the 

organism from invading pathogenic microorganisms. The immune system is a 

remarkably versatile defense system that initiates and maintains protective responses 

against a vast variety of foreign invaders called antigens [87].   The elimination or 

neutralization of the antigens is accomplished by complex interactions between 

components of the adaptive and innate immune system. The adaptive immune system is 

composed of highly specialized, systemic cells that can virtually recognize any foreign 

microorganisms and eliminate them with tailored responses. The lymphocytes generated 

by adaptive immunity have a single type of receptor protein with an unlimited repertoire 

of variants. By courtesy of this receptor, the lymphocytes can bind to and recognize any 

type of antigens. The recognition ability of the lymphocytes is so sensitive that it can 

distinguish between two proteins that differ in only a single amino acid. The adaptive 

immunity can remember specific pathogens after an initial encounter. It can adapt itself 

accordingly to mount stronger attacks next time the same pathogen is encountered. 

Unlike adaptive immune system, the innate immune system is not adaptable and does not 



 

 

 

 87

change over the course of an individual's lifetime. It provides a network of antigen-

nonspecific defense mechanisms that the organism activates immediately or within 

several hours after the invasion of an antigen.   

The complement system is an integral part of the innate immune system that can 

mediate a variety of immune reactions such as triggering the downstream inflammatory, 

directly attacking the membrane of the intruding micro organisms and simulating the 

antibody production which is essential for the proper elimination of the antigens [88][89]. 

To this end, it promotes and regulates the phagocythosis or lysis of foreign cells, 

macromolecules and host tissue breakdown products [90]. 

The complement system consists of more than 30 proteins, both soluble and 

membrane bound.  These plasma and membrane proteins interact with each other when 

the complement system is activated via three pathways: classical, alternative and lectin. 

The Complements component 3 (C3) functions as the central protein of the complement 

system and provides amplification of immune response. It serves as a link between innate 

and adaptive immune components [82]. Thus, it is required for both classical and 

alternative complement activation pathways. During the activation pathways, C3 protein 

is cleaved into two active fragments, C3a and C3b, by C3-convertase enzyme. The 

cleavage of the C3 enhances the clearance of the foreign cells by promoting binding of 

the antibodies to the infection site.  

C3a peptide mediates histamine release from several immune cells such as mast 

cells, basophiles, neutrophils, and eosinophils. The histamine release triggered from mast 
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cells and basophiles increases the vascular permeability to leukocytes and other proteins 

so as to allow them to engage foreign cells, whereas the histamines released from 

eosinophils and neutrophils cause inflammatory response[91]. C3b fragment usually 

binds to the foreign cell membrane directly to make the cell more attractive to the 

phagocytic host cells which have receptors for C3b. This fragment, thus, acts as binding 

enhancer for the process of phagocythosis.   C3b can be further be cleaved to produce 

C3d protein which activates the B cells or lymphocytes.  The B lymphocytes possess C3d 

receptor called complement receptor 2 (CR2). The interaction between C3d and CR2 

plays a significant role in lymphocyte activation and maturation. During the infection, 

C3d binds to the CR2 receptor on B cells and enhances their response to the antigens 

greatly.   

The complement activation has a tremendous potential for self-amplification and 

destruction. The continuous activation of C3 causes damage to the both host cells and 

microbes since the complement system is non-specific and does not discriminate between 

host and foreign cells.  In addition, uncontrolled amplification accelerates the depletion of 

complement proteins in the bodily fluid.  In order for the complement system to function 

properly and not cause the oponization of host cells, the complement should be regulated 

by specific inhibitors such as factor H, factor I, decay accelerating factor, C1 inhibitor.  

Many of these inhibitors are expressed on the surface of the host cells but not foreign 

cells [92]. Therefore, the complement activation causes limited damage to the host cells 
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compared to the pathogens. Among all inhibitors, factor H plays a distinguished role in 

complement activation and regulation.     

 

Figure 6-1. The functionality of C3a and C3b fragments produced by the cleavage of C3. 

Amplification of complement activity is achieved by association of C3b and 

factor B   enzyme; the   association results   in   C3bBb complex,   also   known as C3 

convertase. The presence of C3b protein in the medium increases the convertase 

formation, which in turn further activates the complement system. However, if C3b 

density decreases in the serum, the complement activation stops. To this end, factor H 

competes with factor B for binding to C3b and prevents further pathway activation. 

Another favorable characteristic of factor H is its ability to protect the host cells. The type 

of cell surface to which C3b binds affects which factor binds to the C3b. The host cell 

surfaces possess sciatic acid, which favors the binding of C3b with factor H. However, 

cleavage of C3 into C3a and C3b
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the microbial cells lack the siatic acid, which favors the binding of C3b with factor B. In 

the host cells, the C3 convertase is inhibited by factor H and complement activation is not 

carried on any further. Thus, the host cells are protected against the complement proteins. 

The microbial cells, on the contrary, still remain as targets for further complement 

activation. 

6.2 Methods 

6.2.1 Similarity Analysis 

The electrostatic interactions drive the biological function of complement proteins 

and similar electrostatic characteristics possibly indicates similar physicochemical 

properties as well as biological role. Our study aims to perform a comparative 

electrostatic analysis on immune-related protein datasets generated by either alanine 

scanning or homology modeling and to identify protein families in which the proteins 

typically have similar tertiary structures and functions.   

Our systematic analysis consists of three steps: 

i. Acquisition of Molecular Structures 

ii. Electrostatic Potential Calculation 

iii. Similarity Calculation 

Our similarity analysis assumes the three-dimensional structures of all proteins in 

each dataset are available at atomic resolution. In our experiments, C3d and Efb-c 

datasets consists of mutant proteins that were generated via alanine scanning.  Whatif [85] 
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program was used to generate C3d and Efb-c mutants by substituting each ionizable 

amino acid with alanine one at a time. Once all alanine mutants were obtained, the 

structures were superimposed in order to assure that rotation- and displacement-invariant 

comparison could be performed.  The superimposition was obtained by overlapping the 

backbone C atoms of mutant proteins as close as possible to each other.  In Factor H 

experiments, we shall investigate the functional similarity of 20 modules which have the 

complement control protein (CCP) architecture. Factor H consists of 20 homologous 

proteins out of which only 11 modules were derived from NMR or X-Ray 

crystallography experiments. The rest of the CCP modules were computationally 

obtained through protein threading method. Threading attempts to solve the tertiary 

structure of an unknown protein by looking for a template protein through the set of 

currently known structures and using the most appropriate template to calculate the ideal 

coordinates for the backbone C- atoms. 

Following the acquisition of molecular structures, the method calculates the 

electrostatic potentials by using the atomic charges composing the electric fields inside 

the protein. The problem here is that protein structure files only define the coordinates of 

the atoms and lack the atomic charge values. PDB2PQR [93] software is utilized to 

integrate missing hydrogen atoms into the structure and assign the charge and radius 

values to the coordinates of the atoms. The charges are determined according to the 

PARSE [94] force field. Adaptive Poisson-Boltzmann Solver (ABPS) [95] was 

subsequently employed to calculate the electrostatic potentials resulting from the protein 
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charge distribution. ABPS actually solves the linearized Poisson-Boltzmann equation 

given below:  

 

For each electrostatic calculation, the protein is embedded into a three-

dimensional grid structure with 129x129x129 grid points. Even though ABPS supports 

several grid dimensions, our preliminary calculations demonstrated that selecting the grid 

value as 129 provides better results for both small and large proteins. ABPS calculates 

the spatial distribution of electrostatic potentials at discrete grid points rather than over 

the continuous space. In our calculation, we assume the solvent dielectric coefficient is 

set to 1, i.e. vacuum environment. Another feature of the program is ability to generate 

isopotential surfaces for visualization of electrostatic potentials surrounding the protein.  

At this point, the spatial distributions of electrostatic potentials are represented by a 

128x128x128 matrix. We perform three-dimensional discrete wavelet transformation on 

the matrix and decompose it into corresponding detail and approximation wavelet 

coefficients. The transformation is iteratively applied on the approximation coefficients 

to extract the wavelet decomposition tree. At each iteration, the coefficients are sub-

sampled by 2 and we have thus seven levels in the tree due to the initial size of the 

matrix.   

Once the wavelet coefficients for electrostatic potentials are calculated, similarity 

analysis is performed on each protein datasets by calculating the distances between each 
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pair with different MRA-based distance measures. Three MRA-based distance measures 

mentioned in the previous chapter are compared against their corresponding regular form. 

Remember that the regular measures computes the distances using the raw electrostatic 

potential distribution.  

The MRA-based measures include: 
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The wavelet-based measures use the wavelet coefficients (ϕ ) to compute the 

similarity value, whereas the regular distance measures use the original electrostatic 

potentials (φ ) for the same purpose. In wavelet-based similarity measures, the weights 

were chosen as kth power of 2 for the kth decomposition level. As you may have noticed, 

the regular distance measures here are normalized so that the resulting similarity ranges 

from 0 meaning exactly the same to 1 meaning exactly different. Custom Python and 

Matlab scripts were implemented to generate separate distance matrix for each protein 

dataset and distance measure combination.   

6.2.2 Clustering Analysis 

Using the distance matrix extracted during similarity analysis as input, the 

agglomerative hierarchical clustering algorithm with average linkage was applied to 

cluster similar proteins together. The algorithm creates a hierarchy of proteins which is 

represented as a dendrogram. Therefore, it is necessary to apply a tree cutting procedure 

to find the final clusters. The criterion for tree cutting in our experiments was determined 

by cluster function in Matlab. The function supports two cutoff settings to construct 

clustering from the dendrogram, which are height and inconsistency coefficient. The 

height criterion uses the distance value indicated as x-axis in the dendrogram. All nodes 

below than a height threshold are grouped into a cluster. The second criterion, the 

inconsistency coefficient, indicates how consistent a link is compared to the other links at 
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the same level in the tree. The value statistically compares the height of a link in a cluster 

hierarchy with the average height of links below it. The algorithm finds an inconsistency 

value for each link present in the tree. By changing the height or inconsistency coefficient 

at each step, it scans through the dendrogram and cuts the tree into clusters. For each 

cutoff criterion, it analyzes the clustering using ground truth provided for each dataset 

and calculates an accuracy score. The clustering with the best score was then reported 

back for accuracy analysis. 

 Almost all clustering analysis measures assume that the class labels for each 

protein should be known prior to the analysis. Therefore, first step is to obtain class labels 

using the known similarities in physicochemical properties of proteins. C3d/Efb-c dataset 

consists of C3d and Efb-c proteins that are mutated via alanine scanning. The main goal 

of the alanine scanning is to identify the importance of an ionizable amino acid in the 

protein. Since alanine is a neutral amino acid, it usually doesn’t affect the tertiary 

structure and replacing it with an ionizable amino acid cause either enhancement or 

disruption in functionality. The enhancement or disruption in a protein-protein interaction 

can be measured in terms of association free energy. Note that this measure is usually 

applicable when the structures of all proteins participating in a complex are known in 

advance. Electrostatic free energies were calculated by APBS according to a 

thermodynamic cycle. The change in electrostatic free energy of C3d/Efb-c association is 

calculated according to  

vacuum
cEfb

vacuum
dC

vacuum
cEfbdC

vacuum
assoc GGGG −− Δ−Δ−Δ=ΔΔ 3/3  
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where vacuum
proteinGΔ  is the measure of unstableness, which is higher in protein’s unfolded 

state. In mutant comparisons, the free energies higher than the parent protein indicate 

enhancement of functionality. If the free energy is less than the parent, the mutant is less 

stable than the parent implying a disruption in the association. In that respect, the Efb-c 

and C3d mutants are categorized into two classes based on their affect on the interaction: 

enhancing and inhibitory.  Factor H dataset, on the contrary, does not assume any 

interaction among the proteins. In absence of interactions, we can use the charge 

composition of the protein surface as reference to form ground truth for the clustering 

analysis. Even though this approach is not as accurate as the free energy, the method will 

still aid in understanding the functionality of modules since the surface charges are one of 

the significant forces that drive complement interactions. The method partitions the CCP 

modules into three groups: positive, negative and grey zone. 

Expressing the clustering performance quantitatively is usually a critical step in 

clustering analysis. Our method employs a scoring function that is originated in 

classification problem of data mining. The classification assigns a specific class label to 

each instance while clustering identifies a set of correlated instances which may form a 

class. As a matter of course, we have the actual class labels for each instance in 

classification while having only group labels in clustering. The classification compares 

the class labels estimated by the classification algorithm to the original ones and 

measures the number of the correct assignments for accuracy calculation. As mentioned 

earlier, each protein in a dataset is associated with a class label which was determined 
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based on its physicochemical properties. However, the clustering algorithm returns only 

group labels to which proteins are assigned, -which may not be necessarily same as the 

class label. Since the relationship between actual class labels and estimated cluster labels 

is unknown, we define a measure that is capable of extracting the accuracy from only the 

group information. 

The measure of clustering accuracy in our clustering analysis is the pair-wise 

relationship conservation. The measure calculates the percentage of the relationships 

conserved by the clustering algorithm to the number of all relationships in the dataset. Let 

li be the class label for instance i. Assume we know the original classes to which each 

instance belongs. From the clustering perspective, we have two types of relationship for 

each pair ρ(i, j) of instances: 

1. They both belong to the same cluster ( li = lj ) 

2. They belong to the different clusters ( li ≠ lj ) 

The clustering algorithm assigns a clustering label to each instance, let’s say li', 

which may be different from the original one. However, we may safely assume that if the 

estimated clusters are correct in respect to the original grouping, the relationships should 

be still the same for the pairs: 

1. if li = lj, then li' = lj 

2. if li ≠ lj, then li' ≠ lj 

The measure is expressed as follows: 
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If the estimated clustering is the same as the clusters in the original dataset, the metric 

will return 1. Otherwise, each lost relationship degrades the clustering accuracy. The 

measure computes the accuracy as a numeric value whose range is [0,1]. 

6.3 Experimental Results 

6.3.1 Efb-c and C3d Mutants Dataset 

6.3.1.1 Overview 

In order to design therapeutic drugs to eliminate infections, we must analyze the 

molecular interactions between the complement and pathogenic proteins. In the first set 

of experiments, we examine the effectiveness of our wavelet-based similarity measures in 

comparing mutant proteins that are generated via alanine scanning and understanding the 

functional similarity between each mutant pair. C3d/Efb-c interaction is an excellent 

candidate for such analysis since the association provides means of intrusion into the host 

body for the bacteria. Efb is a surface protein that is produced and released by the 

staphylococcus aureus bacteria. The Efb protein binds to the C3d complement protein 
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and prevents the activation of immune response by interrupting CR2/C3d interaction. 

CR2/C3d interaction plays an important role in activation and maturation of B-cells of 

immune system. Due to the interruption, the bacteria pass through the surveillance of the 

immune system without being caught and cause infection and inflammatory response.  

Recent studies drew attention to importance of electrostatics in the C3d/Efb-c 

association. Electrostatic analysis in conjunction with alanine scanning may help identify 

the significant ionizable residues that influence the protein complex formation. The drugs 

targeting the important residues necessary for binding may interfere the C3d/Efb-c 

association and eliminate the virulence mechanism of the Efb-c pathogen protein. We 

will analyze the electrostatic properties of the Efb-c and C3d mutants using six different 

similarity measures and seek which method can correlate the electrostatic properties of 

the mutant to its physicochemical properties to the best. 

6.3.1.2 Efb-c Clustering 

Figure 6.2 and 6.3, respectively, compares the performance of the non-wavelet 

and wavelet based similarity measures in clustering Efb dataset. The clustering of the 

Efb-c mutants is based on their similarity in the spatial distribution of their electrostatic 

potentials. In each experiment, we seek to cluster inhibitor and enhancer mutants into two 

separate groups using only electrostatic potential information. The class labels for each 

mutant were determined in advance based on the association free energies. The mutations 

that release less free energy than the parent protein are classified as inhibitory. In 

contrast, the mutations which increase the stability of the association by releasing more  
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energy are classified as enhancing mutation. Based on this classification, we have 6 

enhancing and 18 inhibitory proteins in the Efb-c dataset. 

Since the Efb-c is excessively positive charged (+7e), we predict the positive 

mutants to reduce the association free energy and stability while the negative mutants to 

increase them. The positive mutants in the dataset are arginine-to-alanine (R2A) and 

lysine-to-alanine (K2A). The negative mutants are glutamic acid-to-alanine (E2A) and 

aspartic acid-to-alanine (D2A). In addition, we have histidine mutations (H2A) or neutral 

mutations whose contribution to the association is negligibly small. Thus, we expect the 

histidine mutations to cluster with the parent protein and to exhibit almost identical 

physiological characteristics. 

The relationships between the electrostatic potentials, as well as the 

corresponding free energies, of 24 Efb-c mutants were depicted in Figure 25 and 26. 

Electrostatic potentials were calculated using ionic strengths corresponding to 0 mM 

counter ion   concentration.   The dendrograms in Figure 6.2   were   calculated   by    

using the agglomerative clustering algorithm in conjunction with Carbo (CB), Hodgkin 

(HD) and Linear (LN) distance measures, respectively.  Figure 6.3 demonstrates the 

dendrograms generated by using the wavelet-based Carbo (WCB), wavelet-based 

Hodgkin (WHD) and wavelet-based Linear (WLN) distance measures. Figure 6.8 

provides the accuracy ratios for final clusters, calculated by applying six methods and 

cutting the trees with height criterion. Figure 6.9 shows the corresponding accuracy ratios 

when inconsistency coefficient was used to generate the final clusters. Glancing at both 
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tables, we observe that the inconsistency coefficient is a better criterion for clustering the 

Efb-c mutants. Thus, the discussions will refer to the results in Figure 6.8. 

The dendrograms generated by using the Carbo and Hodgkin measure were quite 

comparable, producing almost identical clusters. Although these measures managed to 

cluster the inhibitory and enhancing mutations partially, they are not very promising in 

finding the correlation between the electrostatic potentials and the complex stability with 

high accuracy. The Linear similarity measure outperformed them by achieving 72% 

accuracy, while Hodgkin and Carbo are both stuck at an accuracy of only 61%.  

The clustering results based on wavelet-based similarity measures suggests that 

the wavelet domain is more favorable in comparing the electrostatic potentials and 

finding their connection with the physicochemical properties, as seen in Figure 6.3. 

While WCB and WLN were about the same as CB and LN respectively, WHD measure 

managed to increase the cluster quality by 10% over HD measure. In our analysis, LN, 

WHD and WLN measures outperformed the other three with the maximum accuracy of 

71%. The reason why the accuracy does not exceed 71% is that D56A, E53A, H30A and 

H25A mutations tend to decrease the association free energy even though they are 

classified as neutral or negative mutations and physiologically supposed to maintain or 

increase the free energy.  

In free energy analysis of C3d/Efb-c complex, we observe that not all mutations 

equally affect the association. The mutations whose free energies change less or more 

than 50kJ/mol are considered as important residues affecting the association stability. 
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These residues are known to be on the association interface with C3d.  Based on free 

energy analysis, K10A, K6A, K7A, R31A, K35A, K32A, R65A represents the most 

inhibitory mutations for the formation. In addition, D2A, E8A, E20A and E43A residues 

are observed as the most important mutations that enhance the stability of the protein 

complex.  In the dendrograms, LN and W-LN successfully clustered the most inhibitory 

and enhancing mutations together while other methods have failed to identify such 

patterns.   

6.3.1.3 C3d Clustering 

We have performed electrostatic analysis on C3d fragment of C3d/Efb-c complex 

for completeness. Similar to the Efb dataset, C3d mutants are categorized into enhancing 

and inhibitory classes according to the a priori knowledge on the association free 

energies. Efb-c and C3d have opposite excess charges and Efb-c protein is believed to 

bind to the acidic pocket of C3d. An increase in the magnitude of the negative excess 

charge on C3d component can potentially increase the interaction between two 

components. As a result, we expect the positive mutations to enhance the binding ability 

and the negative mutations to disrupt the binding ability, which is the opposite of Efb 

mutants. Within this context, 33 out of 66 mutants in the dataset exhibit inhibitory 

characteristics while the rest cause enhancement in the binding.  

In Figure 6.4, which shows the clustering on C3d mutants using the non-wavelet 

similarity measure, we see that clustering results with CB and HD measures were not 

optimal. Notice that the dendrograms display a cascading structure.  The situation is due  
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to the large electrostatic potentials observed inside the mutants. The quadratic nature of 

these measures favors the large values in distance calculation. The negative effect of 

large values is considerably obvious in large proteins like C3d. Clustering algorithm 

joined with LN measure, on the contrary, managed to recognize all C3d clusters except 

for the histidine mutations. In quantitative analysis of the non-wavelet similarity 

measures on C3d mutants, choosing inconsistency coefficient as tree cutoff criterion 

demonstrated 16% more accurate results in HD and CB clustering. With 94% overall 

accuracy, LN clustering outperformed the others. 

The wavelet-based clustering has shown in Figure 6.5 that the quality of CB and 

HD clustering could be significantly increased in the wavelet domain. We observed 27% 

and 24% better clustering accuracy for WCB and WHD clustering respectively. In the 

dendrograms, negative and positive mutations are all clustered together properly, except 

for the E241A, E163A, K94A, E22A and E130A mutations. The situation implies that 

using wavelet-based similarity measures lessens the negative effect of large values on CB 

and HD clustering. In contrast, there was 2% drop in WLN clustering accuracy compared 

to the LN clustering. Considering the increase in WCB and WHD clustering, this amount 

is relatively negligible. In the tree cutting routine here, the height criterion dominated the 

inconsistency coefficient and increased both the precision and accuracy in clustering 

results. 

Besides achieving high quality clusters, we anticipate that the wavelet-based 

clustering algorithm may assist to identify the important ionizable C3d residues which 
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favorably contribute to the C3d/Efb-c binding. So long as it does not interfere with 

associations of other immune proteins with C3d, these residues are possible targets for 

drug design. In the C3d analysis, we only consider those residues that have a considerable 

effect on the association free energy. The threshold for the effect is defined as >250 

kJ/mol because of the large molecular size of C3d component.  Based on our free energy 

threshold, there were nine noteworthy inhibitory mutations: D106A, E163A, D166A, 

E169A, E170A, D295A, D39A, E40A, and E42A. In the dendrograms generated by using 

WCB, WHD, WLN and LN, these inhibitory mutants were observed to be very close to 

each other, which were expected. We have also identified four important enhancing 

mutations which are K165A, K115A, K294A, and R52A. Even though these mutants had 

similar free energy values, they were typically located away from each other in the 

dendrograms. The reason is believed to be due to their distance to each other in the 

protein structure. 

6.3.2 Factor H Modules Dataset 

6.3.2.1 Overview 

Factor H has a chain-like structure consisting of 20 complement control protein 

modules. The charge diversity of the CCP modules permits a variety of interactions with 

immune system proteins. In absence of this essential regulator, the immune system 

cannot distinguish self from non-self and complement proteins attack to the self-tissues 

aside from pathogen cells. In addition, mutations at functional sites of Factor H result in a 

variety of diseases such as Age-related Macular Degeneration (AMD) and Atypical 
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Hemolytic Uremic Syndrome (aHUS).  In this section, we present a comparative 

electrostatic analysis of CCP modules which may guide future studies on Factor H.  

Currently, the structures of only 11 CCP modules are available through 

experimentation, against 9 CCP modules still lacking structures.  The experimentally 

determined structures are:  CCP1-3, 5-8, 15-16, and 19-20. In this study, we have 

obtained the structures of the rest by using homology models. If an amino acid sequence 

of an unknown  structure  has  more  than 30%  identity  to  the  sequence  of  a known 

structure, it is highly probably that they have a similar tertiary structure. The rationale of 

this statement is that less than 15% of structures deposited into the protein databases in 

recent years  are  considered  as  new  folds[].  Because  of  the structural  and  sequential 

CCP Module CCP Template Sequence identity 

CCP4 CCP5  (Online) 32% 

CCP9 CCP7  (2UWN) 35% 

CCP10 CCP16 (1HCC) 27% 

CCP11 CCP19 (2BZM) 34% 

CCP12 CCP16 (1HCC) 33% 

CCP13 CCP15 (1HFI) 17% 

CCP14 CCP15 (1HFI) 37% 

CCP17 CCP16 (1HCC) 31% 

CCP18 CCP19 (2BZM) 40% 

Table 6-1. Template CCP modules and corresponding coordinate (PDB) files used for 

homology modeling of the individual Factor H modules.  
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similarity among CCP modules, the homology modeling is a reasonable method for 

obtaining the unknown structures computationally. The template modules used for 

homology modeling are described in Table 2. After all CCP modules were obtained, the 

structures were superimposed based on C-atom using the CCP16 module as reference and 

their electrostatic potentials were calculated using APBS. Then, we have performed a 

comparative analysis to classify similarities and dissimilarities of the spatial distributions 

of elect static potentials of the CCP modules. In the following section, we shall see the 

results of this analysis. 

6.3.2.2 Factor H Clustering 

Figure 6.6 and 6.7 presents the clustering of the spatial distribution of electrostatic 

potentials of 20 CCP modules with non-wavelet and wavelet-based clustering algorithms, 

respectively. To quantitatively assess the performance of the methods, the ground truth 

for the Factor H dataset was to be obtained. The excess charge of each module is 

responsible for driving the Factor H interactions and thus can be used to determine the 

family of the module. In this respect, the individual CCP modules were divided into three 

small families prior to the clustering: 

1. Negative Modules: The family consists of nine CCP modules whose excess 

charge varies between -6 and -2:  CCP2, 3, 6, 9, 11,12, 14, 15, and 16 

2. Neutral Modules: These modules are assumed to be in the gray zone since 

their excess charge ranges from -1 to +1: CCP4, 8, 10, 17, 18, and 19  
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3. Positive Modules: This family consists of five modules whose excess charge 

varies between +2 and +5: CCP1, 5, 7, 13 and 20. 

Figure 6.6 show that clustering algorithm with CB and HD measure cannot cluster 

the CCP modules properly as seen in the fuzzy structure of the dendrogram. The fuzzy 

structure is believed to be due to the quadratic nature of the CB and HD measures. In the 

Figure 6.9, it is evident that the HD measure does not suffer as much as the CB measure 

in distinguishing the modules owing to its normalization factor. In comparison, the 

clustering algorithm cooperating with LN measure performed much better in identifying 

the clusters. While the clustering results may be acceptable, the neutral modules were not 

recognized as a separate cluster; rather they were clustered with the closest positive or 

negative modules.   

The clusters generated by using wavelet-based similarity measures depict more 

encouraging results. From first glance, it is apparent that all CCP families were identified 

more clearly in the cluster tree. The quantitative analysis also supports the validity of the 

clustering results based on the wavelet approach. Although CB clustering had the lowest 

quality for the clusters among all methods, WCB presented the best results with 92% 

accuracy when the tree was cut by using the inconsistency coefficient as seen in Figure 

6.8. In addition, the WLN clustering has succeeded to find the optimal clustering of the 

modules when the height criterion was used. While WHD clustering performed poorly 

against other wavelet-based methods, it was still superior to the non-wavelet based 

clustering methods. 
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6.4 Conclusion 

In this chapter, we have performed theoretical calculations for a set of 

computationally obtained complement-related proteins to investigate the effectiveness of 

wavelet-based similarity measure in practice, specifically on C3d, Efb-c and Factor H 

proteins. We have carried out a comparative and quantitative analyses of wavelet and 

non-wavelet similarity measures by applying a hierarchical clustering method. The 

proteins in each dataset were partitioned into small families in advance to generate a 

ground truth which was later used to the measure the clustering quality of each method. 

In generation of families, we have used the association free energies and excess charges, 

two characteristics chiefly affecting the binding ability of the proteins. In our quantitative 

analysis, the wavelet-based similarity measures outperformed the non-wavelet similarity 

measures by presenting up to 45% better clustering quality in some experiments. 

Additionally, the proposed methods managed to identify the significant mutations in Efb 

and C3d datasets and cluster them together more precisely in contrast to the non-wavelet 

similarity measures. These results suggest that wavelet-based methods are more effective 

and promising in electrostatic potential similarity calculations, and thus identifying the 

physicochemical similarities among proteins. 

 

 

 

 



 

 

 

 115

 

Figure 6-8. The performance comparison of wavelet and non-wavelet clustering methods 

using the height criterion. 

 

Figure 6-9. The performance comparison of wavelet and non-wavelet clustering methods 

using the inconsistency coefficient criterion. 
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Figure 6-10. The protocol that was used to perform the similarity analysis 
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Chapter 7 

 

 

7 Conclusions 

In this dissertation, we have analyzed many aspects of locality and its applications 

to real datasets. We began with covering the issues related to how semi-supervised 

clustering can incorporate magnetically affected paths in order to achieve better accuracy. 

Additionally, we have proposed efficient and effective data mining methods for 

molecular similarity analysis. We have defined several locality patterns commonly 

observed in electrostatic potential distributions of biological molecules and explained 

how wavelet transformation can be utilized in similarity functions so as to recognize 

these patterns. This approach has shown promising results in capturing the correlations 

among proteins, especially the ones sharing the same ancestor. 

In this chapter, we summarize the dissertation briefly, discuss its contributions, 

and suggest directions for future research. 
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7.1 Contributions 

The most important contributions are summarized below: 

1. Magnetically Affected Paths: We have presented a semi-supervised concept that 

locally manipulates the edges of a graph structure in order to aid the distance 

measure. We have named this concept MAP, as an acronym of the words 

“Magnetically Affected Paths,” due to the fact that it simulates the 

electromagnetic field characteristics in a graph structure and adjusts the shortest 

paths between the objects based on user constraints.  The basis for selecting 

graphs as a natural target of the concept lies in the ease of implementation in a 

graph domain, rather than in a Cartesian space.  The must-link and cannot-link 

constraints are expressed as special edges which exert a force on regular edges. 

The regular edges resonate with special edges and imitate their characteristics so 

that the objects in the vicinity of positive (must-link) edges get closer to each 

other, whereas the objects in the vicinity of negative (cannot-link) edges get away 

from each other. The impact factor of a constraint on an object is determined by 

the distance and alignment of the object relative to the constraint edge.  

2. MAPClus Framework: One important goal of this thesis was to develop a 

flexible clustering algorithm with the capability of partitioning both vector and 

graph data. We have accomplished this goal by integrating the MAP concept into 

a semi-supervised clustering framework. The MAPClus framework implements a 

3-step model in order to perform clustering. First, it converts the vector data into a 
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graph structure such that the distance relationships between objects are preserved. 

The algorithm runs a k-nearest neighbor search for each object in the dataset and 

connects the objects in certain vicinity together to construct the graph.  If the data 

is already given as a graph structure, it skips the graph construction routine. 

Second, the algorithm adjusts the edge weights using the probabilistic insight 

provided by constraint edges. Once all edges are adjusted according to their 

proximity to the constraint edges, it runs all pairs in the k-shortest path algorithm 

to extract the distance matrix. Even though a single path was enough to capture 

acceptable distances, the experimental results suggest that the distances become 

more accurate when multiple shortest paths are used. Finally, the framework runs 

a graph-compatible clustering algorithm to find the clusters. We have optimized 

the framework implementation in several ways for better time efficiency. First of 

all, we have extended the Dijkstra’s shortest path algorithm to find multiple 

shortest paths between any pair of nodes. In addition, we have introduced a 

divide-and-conquer algorithm which partitions the graph into equal-sized sub-

graphs, calculates the k-shortest path distances locally, and then merges them 

back together to extract the global distances. Although we managed to speed up 

the clustering algorithm to some degree, it was not enough for the algorithm to 

compete with state-of-the-art algorithms, such as GraClus and MPCK-Means, in 

terms of efficiency. Thus, we have implemented a multilevel version of the 

framework which has almost the same performance as the standard K-Means 
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algorithm and the same or better accuracy as the other clustering algorithms with 

which it was compared. 

3. Formalization of Locality Patterns: A family of locality patterns which are 

usually observed in electrostatic potential distributions of proteins have been 

defined to assist the similarity analysis of two proteins in a quantitative way. We 

have also given several scenarios where each pattern can usually be observed. We 

have discussed the patterns under three headings: proportionality, displacement 

and scaling. (i) The proportionality pattern indicates the changes in the 

electrostatic potential magnitude. For example, an increase or a decrease in pH 

value in vivo will make bio molecules have a more negative or a more positive 

net charge [96]. The ratio between the initial and final values of the electrostatic 

potentials can be expressed as a proportionality pattern.  This pattern plays a 

significant role in protein recognition because the bioactivities among proteins are 

mostly driven by the diversity of charges. (ii)  The displacement pattern reveals 

the particular regions which exist in both proteins but at different locations. Due 

to the preservation of the carbon backbone structure, the pattern is usually 

measured in terms of a displacement angle where the origin is located at the 

center of the protein. The empirical evaluations suggest that this pattern is of 

paramount importance to molecular similarity analysis, especially in analysis of 

homology modeling [97] where the proteins are derived from a common ancestor. 

(iii) Finally, a scaling pattern is commonly encountered in electrostatic potential 
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distributions when an expansion or shrinkage is observed in the area of a 

particular region without any other characteristic change. This pattern usually 

happens as a result of a mutation such as when a hydrophobic amino acid is 

substituted with a hydrophilic amino acid or a specific amino acid is substituted 

with an amino acid whose net charge is different from the original’s charge [97].   

4. Wavelet Transformation-Based Similarity Indices:  Our earlier experiments 

suggested that the state-of-the-art molecular similarity measures could not 

recognize the locality patterns and thus could not take them into account in 

similarity calculations. Hence, we have proposed WCB, WHD and WLN similarity 

measures which are capable of discriminating between the locality patterns. 

Unlike conventional methods, these measures apply a three-dimensional wavelet 

transformation on the electrostatic potential distribution of proteins to find the 

corresponding wavelet coefficients. Then, they determine the similarity using the 

wavelet coefficients. This approach exploits the ability of wavelet transformation 

to analyze the spectral components of an electrostatic potential distribution and 

suggests a localized and more sensitive way of measuring the similarity.  To the 

best of our knowledge, our similarity measures are the first of their kind which 

support true three-dimensional analysis in molecular informatics. We have 

generated several toy data models in which we isolated one locality pattern at a 

time in order to determine which methods were sensitive to each pattern. Our 

empirical evaluations suggested that WHB and WLN were able to recognize all 
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three patterns, whereas WCB could only discriminate between displacement and 

scaling patterns. Furthermore, the WLN similarity measure was more responsive 

to the patterns than the WHB and WCB measures in the experiments. 

5. Analysis of C3d/Efb-c and Factor H proteins: In addition to the toy models, we 

have applied our MRA-based similarity measures to three different complement 

protein datasets. These real datasets were obtained either via alanine scanning or 

homology modeling. In alanine scanning, we replace every single ionizable amino 

acid with alanine in order to determine the contribution of specific residues to a 

protein’s function. To demonstrate the effectiveness of our similarity measures in 

conjunction with alanine scanning, we have performed a systematic study on C3d 

and Efb-c mutant datasets. In the study, the goal was to determine whether a 

specific amino acid residue played an important role in the C3d/Efb-c association. 

Theoretically, each mutation would cause either an enhancement or an inhibition 

in the bioactivity. We determined the actual enhancing and inhibitory mutants 

experimentally using C3d/Efb-c association-free energies in advance.  Then, we 

performed a hierarchical clustering to cluster the mutants into two groups, 

inhibitory and enhancing, using only electrostatic potential information. The 

experiments were conducted using both conventional and MRA-based similarity 

measures. According to the quantitative analysis of alanine mutant clustering, 

MRA-based methods provided up to 45% better clustering quality in contrast to 

the conventional methods. In homology modeling experiments, we have used our 
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measures in the task of recognizing the functionality of computationally generated 

protein structures. We have chosen the Factor H CCP module datasets to 

demonstrate the validity of these methods. The class labels of CCP modules were 

determined based on the net charge, which is an important identifier for molecular 

functionality just like association-free energy. Once again, the clustering 

algorithms with the MRA-based similarity measures achieved up to 40% better 

accuracy over the conventional methods. Also, the dendrograms generated by the 

hierarchical clustering provided meaningful cluster descriptions.  

7.2 Future Research 

We are currently extending the research described in this thesis in many possible 

ways. In this section, we highlight several important directions for future work and 

present our preliminary results.  

The MAPClus algorithm may suffer severely from the usage of a quadratic 

distance function such as a Euclidean metric in a graph construction phase, especially 

when some features are more dominant than others. For example, the proline attribute in 

the Wine dataset [72] takes values between 278 and 1680, while the other attributes 

usually take values between 7.6 and 19.3 on average. When we calculated the k-nearest 

neighbors using the Euclidean distance, the low quality of the graph structure did not 

allow the algorithm to improve clustering results significantly. The same conditions were 

observed in the Forest dataset. In order to reduce this negative effect on clustering, we 

can utilize a local feature selection algorithm in graph construction, such as a Principal 
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Component Analysis [98] or a Locally Adaptive Metric[19], to determine appropriate 

feature weights for the Euclidean distance function and increase the quality of the graph.  

During our evaluations, another problem we encountered was that the current 

stochastic model used for the readjustment routine may overestimate escalation and 

reduction ratios. The current model was established based on a simplified two-cluster 

data model which is similar to the one used in support vector machines [99]. By 

extending the current model to a multiple-cluster model with the insight provided by 

statistical analysis, we may increase the accuracy even more. 

In addition to a graph domain, we have implemented a simple version of the 

MAPClus framework in a Cartesian space. The Cartesian implementation utilized the line 

of sight to determine the object pairs affected by some constraints. The preliminary 

results demonstrated a significant increase in accuracy; however, the time complexity 

was not very satisfactory when a vast amount of constraints were involved in the 

calculations. One solution we are working on is extracting a kernel matrix [100] based on 

the principals of the MAP concept and then applying this matrix to the distance or 

adjacency matrix.  

For the MRA-based similarity analysis, we have realized that using different 

weight functions may result in completely different yet meaningful clusters. For example, 

in Factor H experiments, assigning higher weights to the 2nd and 3rd level coefficients 

increased the influence of structural similarity on the clustering. A similar statement was 

proposed by Qiu et al. [60] in their study of protein secondary structure prediction. They 
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found that the lower resolution scales corresponded well to the α-helices and the 

connecting peptides. However, the importance of each coefficient level may differ based 

on the application. Thus, we have considered estimating the weight function 

automatically when provided with the appropriate user knowledge. The challenge here is 

that the user knowledge about data is very limited in biological applications and it is very 

hard to come up with a mechanism that calculates the weights with very limited 

knowledge. 

Another interesting problem is to apply the MRA-based similarity measures to the 

different types of data. In our analysis, we have applied the methods to the electrostatic 

potential distributions calculated in a vacuum. It is well known that the proteins change 

their electrostatic characteristics in different environments, particularly based on the ionic 

strength of the medium [101]. We can use the locality-based similarity measures to 

investigate the influence of ionic strength on the protein activity. Following this line of 

research, we will also apply the methods to hydrophobicity [102] and molecular 

dynamics [103]. 
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