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ABSTRACT OF THE DISSERTATION

Dynamic modeling of untethered soft flagellated locomotion in viscous fluids

and granular media

by

Yayun Du

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2022

Professor Mohammad Khalid Jawed, Chair

Bacteria, one of the most common microorganisms in nature have been dis-

covered to be propelled by rotating one or more slender rod-like filaments,

called flagella. Flagellar propulsion results from a complicated fluid-structure

interaction (FSI), between the structural flexbility of flagella and the hydrydy-

namic forces generated by the surrounding flow. This FSI can result in geomet-

rically nonlinear deformation and structural instability. The former generally

happens in compliant structures, such as soft robots, but is challenging to model

and simulate while the latter is conventionally avoided because they normally

causes structural failure. However, bacteria were recently discovered to utilize

structural instability to change their movement direction, and this mechanism is

called “buckling-to-turn" [1]. This mechanism can be used to control the moving

direction of microrobots that can potentially revolutionize in-vivo targeted drug

delivery or minimally invasive surgeries [2]. Nonetheless, there is no released

work that developed soft robots that are able to replicate this mechanism. This

is due to experimental challenges: flagellum is difficult to be controlled precisely

on generic soft robots that are actuated by external fields [3] while self-actuated

soft robots have a surprisingly low energy efficiency (mostly below 0.1%) [4].

Recently, the hydrodynamic force model - Resistive Force Theory (RFT) [5]
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that was original defined in viscous fluids only accounting for the local force

around each segment have been also found valid in granular media (GM) [6],

such as sand, chia seeds, snow. This amazing discovery is a milestone to the

exploration of locomotion in GM because it reveals a validated theory for move-

ments in granules for the first time, and enables fast simulation of these move-

ments thanks to the simplicity of RFT. Although previous work performed ex-

periments on animals in the nature to comprehend their locomotion, work that

employs soft robots as experimental platform to replicate the locomotion for

practice is very few because of challenges in both experiments and simulations.

Our work solve the above problems by combining model experiments with

state-of-the-art computational tools in computer graphics, and theoretical analy-

sis towards developing predictive physical understanding of untethered flagellar

propulsion in viscous fluids and granular media. We scale up the flagellar bacte-

rial propulsion to desktop-scale soft flagellated robots. This allows for systematic

experimental exploration of parameter space. In parallel, we conduct numeri-

cal simulations using the Discrete Differential Geometry (DDG)-based method,

which was originally produced for special effects of the visually dramatic dy-

namics of slender structures, e.g., hair and fur in the animation industry. We

adapt DDG-based simulator into engineering as a predictive computational tool

and test it against our experiments. Overall, this dissertation makes four major

contributions:

First, we introduce arguably the simplest soft multi-flagellated robot with a

single binary control signal, which can move along an arbitrary 2D trajectory

near air-fluid interface and at the interface between two fluids. Our work ex-

plores the performance of multi-flagellar propulsion near an open boundary as

opposed to closed boundaries such as walls, as the former is much less stud-

ied but has numerous applications, such as flagellated robots used as baits, and

tools for oil spill cleanup, water quality monitoring, and infrastructure inspec-
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tion. We investigate the performance of the robot versus the number of flagella.

In the end, we briefly propose the idea of incorporating machine learning with

our fast-running simulator as a handy inverse design tool of flagellated robots.

Secondly, we use the same robot as experimental platform to explore the

locomotion in granular media (GM). Numerically, the same DDG-RFT-Stokes’

framework is applied again to model the hydrodynamics of locomotion mov-

ing through GM. Numerical and experimental results match quantitatively with

each other when the number of flagella is two or three, validating the applica-

bility of RFT in GM. However, “stick-slip" or “jamming", i.e., the robot randomly

gets stuck at the same position with time passing, happens when the number

of flagella turns four or five. The simulator fails to capture this, which proves

the limitation of RFT in GM. Moreover, our main finding is that increasing the

number of flagella from two to three decreases the speed of the robot. This is

kind of counter intuitive, proving the complexity of flexible flagellar locomotion,

the competition between the drag and propulsion. This indicates that our sim-

ulator is potentially applicable for unknown physics exploration. We find that

there is an optimal rotational speed at which maximum efficiency is achieved.

This highlights that our validated simulator can be used as a design tool for

soft robots. Our third contribution is the implementation of an Euler-Bernoulli

beam-based analytical framework that is both simple and capable of capturing

the performance of the robot in GM.

Our forth contribution is developing the first untethered underwater robot

with a flexible polymeric flagellum that can replicate bacterial “buckling-to-turn"

mechanism. Additionally, we show the effect of flagellar geometrical proper-

ties on the performance of flagellar propulsion. Moreover, we prove that while

bacteria utilize buckling to steer, flagellar buckling is probably not ample for a

robust robotic system to follow any 3D prescribed trajectory. As a result, we

develop a “mass-transformer" mechanism to make the robot system robust and
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be able to reach a destination in the 3D space. Additionally, we are the first to

demonstrate that the state-of-the-art continuous hydrodynamic model Regular-

ized Stokeslet Segment (RSS) method can accurately model the hydrodynamic

force on a rotating flagellum on an untethered robot (with a rigid head). We

develop a numerical framework that incorporates (i) DDG to account for the

elasticity of soft flagellum, (ii) RSS for the long term hydrodynamic flow by the

rotating helical flagellum, and (iii) Stokes’ law for the hydrodynamics induced

by a spherical head. Our modular robot design enables researchers to use it

as testbeds for studying generic flagellar propulsion. The “mass-transformer"

mechanism together with simple flagellar buckling control scheme can be used

for developing autonomous underwater robots for exploration and and exploita-

tion of new environments.
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CHAPTER 1

Introduction

Animals, plants, and microbes in nature provide engineers with much inspi-

ration for robot designs. In general, their locomotions result from the inter-

actions between their structures and the surrounding fluidic media, e.g., air,

water, and blood; hence, they are modeled as fluid-structure interaction (FSI)

problems. There are several types of propulsion methods utilized in robots

to mimic bio-locomotion, such as flapping propulsion utilized by fish [7, 8,

9] and bats [10, 11], jetting- and paddling-based propulsion used by jelly-

fish [12, 13], octopuses [14] and cephalopods [15], and rotational and oscil-

lating flagellated propulsion discovered in microorganisms. The former two

propulsion approaches have been widely investigated in biomimetic robots, typi-

cally macroscale. They are designed to perform autonomous or semi-autonomous

daily tasks, such as exploration and exploitation of new environments, search

and rescue, and delicate underwater sample collection.

Bacteria, one of the most common prokaryotic germs, typically move through

fluids by rotating one or more slender helical structures called flagella [16]. The

rotation produces a propelling force and offers locomotion. Bacteria play a use-

ful role in human digestion, vitamin synthesis in the intestine, and pest manage-

ment, but they can also serve as disease-transmission agents. In the food indus-

try (e.g., fermentation), environmental engineering (e.g., sewage treatment),

biotechnology (e.g., antibiotics), and genetic engineering (creation of geneti-

cally modified organisms), bacteria have enormous economic values [17, 18].

Examples such as Escherichia coli that is frequently linked to disorders and ill-
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nesses such as diarrhea, urinary tract infections, respiratory sickness, and pneu-

monia. However, the vast majority of E. coli are not only harmless, but certain

E. coli can even be utilized as markers for water pollution, meaning that their

presence in drinking water indicates contamination despite the fact that they are

innocuous. Flagellar propulsion is prevalent in a wide range of bacteria, with

90% of marine bacteria being uni-flagellated. Vibrio cholerae is a uni-flagellated

bacterium that causes cholera, which can occasionally be fatal. Salmonella is the

bacterium that causes salmonellosis, a type of food poisoning. Every year in the

United States, it causes one million foodborne infections, 19,000 hospitaliza-

tions, and 380 deaths [17]. Lactobacillus is one of the most prominent friendly

bacteria [18, 19]. Some varieties of Lactobacillus are found in the digestive,

urinary, and genital systems of humans, and they can be utilized to treat and

prevent a range of disorders.

As a joint, the cell body and flagellum are connected by a hook that is minus-

cule in comparison to the flagellum [1]. The existence of the short but flexible

hook enables bacterial locomotion by breaking the scallop theorem [20], i.e., the

time-reversibility constraint [21]. Additionally, Ref. [1] demonstrates that bacte-

ria achieve “buckling-to-turn" by elongating and compressing the hook, as shown

in Fig. 1.2(d1)(d2). Flagellar bacteria swimming stays in the low Reynolds num-

ber (Stokes) regime, where viscous effects dominate over inertia. Due to the

simplicity and efficiency of propulsive organelle, i.e., flagella, bacterial locomo-

tion has been cited as “the most efficient machine in the universe"[82] because

bacteria by moving 25 - 450 times the body length per seconds [22].

Resistive Force Theory (RFT), the hydrodynamic force model that was orig-

inal defined in viscous fluids only accounting for the local force around each

segment have been also found valid in granular media (GM) [6]. This amazing

discovery is a milestone to the exploration of locomotion in GM because it re-

veals a validated theory for movements in granules for the first time, and enables
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fast simulation of these movements thanks to the simplicity of RFT. Although

previous work performed experiments on animals in the nature to comprehend

their locomotion, work that employs soft robots as experimental platform to

replicate the locomotion for practice is very few because of challenges in both

experiments and simulations.

Motivated by these observations about bacterial locomotion modes and afore-

mentioned work in locomotion in GM, we will present in this Thesis a uniform

predictive framework consisting of model experiments, numerical simulations,

and an analytical approach for flagellated locomotion in viscous fluid and GM.

We will investigate a collection of modes of flagellated locomotion in viscous

fluids and GM, e.g., swimming in circles near open boundaries in viscous fluids,

increase or decrease of the robot speed based on the number of flagella in GM,

and utilizing the buckling instability of the flagellum (“buckling-to-turn") Fur-

thermore, we make efforts to translate into practice by making robotic systems

robust and simple to control in Ch. 5.

The objective of this chapter is to offer a background for the Thesis consisting

of the theoretical, experimental, and numerical methods that will serve as the

basis for the research in the subsequent chapters.

Despite the fact that research about flagellated locomotion dates back to

1600s [23], researchers have been committed to observing the performance of

flagellated locomotion and conducting experiments on scaled-up platforms (in-

cluding mesorobots and macrorobots) to understand the underlying FSI prob-

lem. Recent advances in microfabrication make it possible to microfabricate

robots with flagella. They are remote-controllable and have the potential to rev-

olutionize clinical in vivo targeted therapy by inflicting considerably less tissue

damage than conventional medical interventions. Accordingly, the research on

macro-scale robots and prototypes that operate using similar mechanisms are

being developed to further improve the existing theories and verify them.
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This leads to a complex interaction between the geometrically nonlinear de-

formation in the soft flagellum and the hydrodynamics from the low Reynolds

flow, such as tumbling [24], turning [1], and bundling [25]. Recently, there has

been significant progress in understanding flagellar propulsion – particularly

from a single flagellum – through experiments [1], computation [26], and the-

ory [27]. The models used for this fluid-structure interaction problem are: Re-

sistive Force Theory (RFT) [5], Lighthill’s Slender Body Theory (LSBT) [5], and

Regularized Stokeslet Segments (RSS) method [28] We use DER-LSBT frame-

work to show that bacteria can exploit buckling in flagellum to precisely control

their swimming direction, and then consider DER-RSS theory to perform the

bundling behavior between multiple filaments.

The fundamental mechanics of thin structures is another key component of

this thesis. The elastic gridshells that described by are of interests.

1.1 Geometric nonlinearity for functionality, not failure

The past several decades have witnessed expedited development of soft robots

thanks to the structural compliance and reversibility of soft materials in com-

parison to rigid materials [29]. Unlike Euler-Bernoulli beams where geometric

linear analysis is applied and equations of equilibrium are not updated with the

change in geometry, geometric nonlinearity is ubiquitous in nature and engi-

neering. Compliant structures, e.g., soft robots are prone to mechanical insta-

bilities such as buckling that will be covered in Ch. 5. Buckling and geometric

nonlinearities are conventionally associated with structural failures and thus

were tried to be avoided [30]. Nonetheless, one of emerging themes in mechan-

ics resides in utilizing nonlinearities and mechanical instabilities for mechanical

metamaterials, stuctures of desired functionality [31], or locomotion [32, 33].

Recent advances in computational tools and experiments, as well as industrial

demands, have led to the development of a vast array of metamaterials. Meta-
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materials are man-made substances that derive their extraordinary capabilities

through mechanical structure instead of chemistry. Notable examples are struc-

tures that are foldable and deployable origami [34], stretchable electronics [35],

and nonlinear deformation-induced locomotion [36, 37].

The ubiquity of flagellated microorganisms with instinctive sensing, motility,

and non-motile functions in nature inspires scientists to investigate the underly-

ing mechanisms and further apply them in practice. This includes in vitro and in

vivo biomedical applications, which were achieved through advancements in

manufacturing. Hence, this review reports the design, fabrication, control, and

modeling of microrobots, mesorobots, and macrorobots inspired by flagella and

cilia. Typically, their design, fabrication, and control are interdependent. As

depicted in Figs. 1.3(a)(b), we mainly report synthetic microrobots that are

magnetically and optically controlled. We also briefly summarize microrobots

that are controlled by other approaches. Additionally, we cover bio-hybrid mi-

croswimmers that integrate biological flagella or cilia with artificial substrates,

as seen in Fig. 1.3.

The tendency of incorporating geometric nonlinearities and instabilities into

systems for locomotion inspires us to place our emphasis on modeling large

deformation in locomotive systems. Finite element methods (FEM) can be pow-

erful tools for accurately modeling large deformations, but they are so time-

consuming, fluid-involved particularly, that they are even less effective than

performing trial-and-error experiments directly. Despite the emergence of an

increasing number of machine learning (ML)-assisted FEM methods [38] ben-

efiting from the upsurge in ML, released models are typically data-hungry and

only confidently applicable to cases from which experimental data have been

collected. In this Thesis, we strive to predictively comprehend and quantita-

tively capture the nonlinear configurations in fluid-structure interaction related

applications. The physical insight and predictive function of the system behav-
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Figure 1.1: Illustration of successful application of micro flagellated robots (flag-
ellated MC-1 cells) for targeted drug delivery (to kill tumors).

ior gained from the computational framework in this Thesis show the significant

potential of our numerical tool to be used as efficient design tools for generic

soft robots to save time, energy, and costs. Moreover, we also demonstrate

the potential of incorporating our fast-running simulator with machine learning

techniques as inverse design tools for soft locomotive systems.

1.2 Efficient untethered flexible flagellated underwater/underground

robots development and simulations

Robotics is pushing forward the boundary of exploration, by targeting distant

planets in space, soils, and the depths of our oceans. Because of the human

potential for minuscule robots to revolutionize targeted drug delivery [39], a

large number of researchers are either developing macro-robots to understand

the underlying mechanics of flagellar locomotion or advancing micro-fabrication

in order to minimize and engineer micro-robots. As illustrated in Fig 1.1, one

of successful cases in applications of micro flagellated robots to targeted drug

delivery is the injection of flagellated MC-1 cells into mice to eliminate tumours.

Before diving into bacteria-inspired robots, we take a look at the bacterial struc-

ture. A micrograph of a Vibrio cholerae cell is presented in Fig. 1.2(a). In

Fig. 1.2(b), a fluorescently labeled experimental image of Escherichia coli is

shown. The bacterial cell body is spheroidal in shape with radius on the order
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of 1µm, and is attached to single (Fig. 1.2(a)) or multiple (Fig. 1.2(b)) flagella.

A little hook, in comparison to the flagellum, may serve as a connection between

the cell body and the flagellum [1].

Fig. 1.3 summarizes flagellar motility and collage of existing flagella-inspired

robots. There are also a number of robots inspired by cilia, which are struc-

turally shorter than flagella. We discuss it to demonstrate that the outcomes

of this study are applicable to cilia research. The following content reports

the design, fabrication, control, and modeling of microrobots, mesorobots, and

macrorobots inspired by flagella. Typically, their design, fabrication, and control

are interdependent. Existing magnetic, optical, biohybrid, chemical, and other

microbots are shown in Fig. 1.4. The detailed summary of the pros and cons of

each actuation method is in Table 1.1 for the ease of reference.

As we can see, microrobots are primarily intended for medical applications,

where design, fabrication, and control are typically coupled with trial-and- er-

ror processes. In addition, miniaturization poses fundamental technical chal-

lenges, such as power sourcing, precise actuation, multifunctional integration,

and post- injection recovery or biodegradation. It is therefore time-consuming,

labor-intensive, and prohibitively expensive. The trial-and-error processes are

significantly prolonged if the fundamental physics of the movement of micro-

robots is not adequately understood. As a result, many flagella or cilia-inspired

macroscopic robots are used as scaled- up experimental platforms to explore the

underlying mechanisms of their locomotion, including hydrodynamics, and op-

timize the actuation efficiency. Regardless of length scale, the flows surrounding

macroscopic robots are governed by Stokes equations so long as the Reynolds

number remains low.

In contrast, flagella-inspired macro robots are far less studied and can be

categorized based on structural changes, the proximity of a boundary, and the

computational models used to simulate the robots. The details (literature re-
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Table 1.1: Summary of the different actuation methods for microrobots

Methods Pros Cons
Bio-hybrid compat-
ible microorgan-
isms

Magnetic

• Penetrable

• Magnetic fields are
harmless to human
tissues and organs

• Low-powered mag-
netic fields are
sufficient

• High speed and force
output

• Magnetic parts are not bio-
compatible, and are typi-
cally coated with biocompat-
ible materials

• Not easily scalable

• Challenges in small scale
robot due to scaling issues

• Bulky magnetic actuation
systems that requires cool-
ing

•
Magnetospirillum
gryphiswaldense [54]

• Bovine
sperm
cell [55]

• Marine mag-
netotactic
ovoid [56]

• Salmonella
ty-
phimurium [57,
58, 59]

Optical

• Easily scalable fabri-
cation methods

• Highly biocompatible
materials

• Ideal for organ-on-
chip applications

• Optical radiation has low
penetrability (NIR penetra-
tion depth: around 1–2 cm)

• Requires high power light
for actuation in fluids due to
attenuation

• Not suitable for medical ap-
plications due to limited
depth

•
Chlamydomonas
rein-
hardtii [60]

Chemical

• Does not require
external power
source and can be
self-propelled

• Can easily be minia-
turized

• Directional control is limited

• Many methods still rely on
toxic catalysts

• Dependent on medium

S. marcescens [61]

Acoustic

• Biocompatible

• Penetrable

• Dual purpose for sin-
gle acoustic wave (ac-
tuation and imaging)

• Directional control has not
yet been achieved

• Bulky acoustic actuation sys-
tem

N/A
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view) will be given below. The structural difference includes the quantity and

flexibility of the flagella and the presence or absence of a head, the working

environment, i.e., granular media or viscous fluids, and the employment of a

motor as the actuator. Pictures of meso robots and macro robots can be found in

Fig. 1.5. Farma et al. investigated the flagella-inspired locomotion in low Re fluid

in a cylindrical channel to comprehend the motion and development of micro-

robots inside capillaries and blood vessels (Fig. 1.5(a)) [62, 63]. The flagellum

is composed of rigid steel wire, so it can swim forward but fails to replicate the

locomotion mode of bacteria with a flagellum, e.g., “turning-by-buckling" [1].

Additionally, the steel wire tail of the robot prevented it from being neutrally

buoyant, so it rested at the wall of the horizontally placed channel; hence, a

rigid BC is close. Computationally, it modeled the locomotion through a com-

putationally intensive computational fluid dynamics (CFD) model using off-the-

shelf COMSOL software. This study used a previously validated CFD model [69]

to study the effects of geometric parameters of the tail and the radial position

of the robot in the silicone-oil-filled tube on its swimming performance. The

comparison between experimental and simulated results is qualitative rather

than quantitative because the exact location and orientation of the robot in

the tube were not measured. The same robot structure and magnetic control

method were applied in [70] to learn the propulsion of micro-organisms in

complex non-Newtonian fluids. Later, Ye et al. fabricated submillimeter-scale

(mesoscale) swimming robots with multiple flexible straight ABF that are actu-

ated and controlled by rapidly rotating magnetic fields and conducted numerical

simulations [3] to predict the swimming performance of the robot and guide its

design (Figs. 1.5(c1)-(c3)) [64]. Xu et al. designed an experimental setup and

scaled-up helical nanobelt swimmers with magnetic coatings on the tail, with

and without a head, to compare their rotating propulsion performance [71].

Similar scaled-up helical microswimmers were employed in [63, 65] (1.5(d)) to
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design a closed-loop control strategy that is robust and accurate to disturbances

so that the robot can follow a 3D path. Meanwhile, Jawed et al. [72] were the

first one to quantify the propulsive force and buckling instability of a flexible

helical rod rotating in a low Reynolds number fluid by modeling geometrically

nonlinear elastic rods with discrete elastic rods (DER) [73] and the fluid loading

with a nonlocal hydrodynamic model [5]. The effect of a rigid boundary was

then incorporated into the same framework. A systematic parametric study was

conducted to quantify the dependence of the wall effects on the geometric pa-

rameters of the helical filament [74]. However, in Jawed’s work above, the helix

was fixed without a head, and thus the head effect was ignored. His work does

not comprise developing a robot. Nevertheless, it still deserves attention as one

of the pioneers in adapting a tool introduced by the computer graphics commu-

nity to perform fast simulations of flexible structures and soft robots. A simi-

lar simulation framework could be found in [75], demonstrating that bacteria

can exploit flagellar buckling to control their swimming direction, i.e., bacterial

“turning-by-buckling" mechanism [1] that is demonstrated in Figs. 1.2(d1)(d2).

Lim et al. developed a multi-flagellated robot (Figs. 1.5(f1)-(f2)) and applied

the DDG method to simulate the structure of the robot, Regularized Stokeslet

Segments to model the hydrodynamics on the flagella, as well as a penalty-based

method to model the contact between the flagella [68].

Overall, the comprehension of bacterial flagellar locomotion is still relatively

shallow due to the following challenges to replicate the locomotion:

• Most soft robots are tethered because of the bulky actuators, such as

pump [37], and high-current circuits [76]. Tethered robots have limita-

tions replicating flagellar locomotion in nature. Moreover, robots made

from state-of-the-art soft materials such as shape memory alloy and liq-

uid crystal elastomer [77] typically have bi-stable states, meaning that the

locomotion between the transition is not controllable;
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• To explore flagellar locomotion in viscous fluids, the first challenge to con-

quer is to make the robot neutrally buoyant while perfectly matching the

center of mass and center of buoyancy. However, underwater robotic sys-

tems are only stable when the center of mass is located below the center

of buoyancy. This requires ingenious design if the robot is going to be

translated into practice.

• Mechanical nonlineariy and instability, such as flagellar flexibility is a double-

sided sword. Robots with a flexible flagellum can achieve “buckling-to-

turn" if the flagellum buckles but cannot realize an efficient locomotion if

the flagellum is too soft and thus too easy to buckle.

1.3 Numerical method: discrete differential geometry

Although most soft robots look nothing like a rod, they can still be modeled

as a collection of elastic rods by being discretized through discrete differental

geometry (DDG). The Discrete Elastic Rods (DER) [73, 78] approach is one of

the most prominent applications of DDG in physics-based modeling for captur-

ing the geometrically nonlinear deformation of thin elastic rods, such as curled

hairs. The numerical simulations presented in this Thesis employ Discrete Elastic

Rods (DER)-based simulator. DER lays the basis on Kirchhoff elastic rod [79].

In the 18th century, Euler and Bernoulli proposed a simple one-dimensional

beam model, which marked the appearance of rod theory [80]. In the 19th

century, Kirchhoff and Cosserat generalized their work [81, 82]. Recently, re-

searchers in the field of computer graphics devised a rapid numerical frame-

work, Discrete Elastic Rods technique, to conduct the nonlinear dynamics of

elastic rods [73, 78]. As this Thesis aims to model the dynamics of unteth-

ered soft flagellated locomotion in viscous fluids and granular media, DER-based

framework is augmented to include various boundary conditions (§ 4.3.3) and

external forces, mainly the hydrodynamic loading from the surrounding vis-
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cous fluids and granular drag which will be incorporated in § 5.4.2, § 4.3.3, and

§ 2.4.3. Note that our application of DER is restricted to rods with circular cross-

sections and helical or straight shapes; nevertheless, this approach is applicable

to arbitrary (i.e. curved) undeformed configurations and arbitrary cross-sections

(i.e. non-circular). The kinematics and elastic energy in a discretized geometry

situation are presented here, followed by the formulation of forces and the time

marching scheme.

The continuous centerline of a rod is discretized into N nodes: x0, ...,xN−1

and in-between N − 1 edge vectors: e0, ..., eN−2 such that ek = xk+1 − xk and

k = 0, . . . , N − 2., as shown in Fig. 1.6. Hereafter, subscripts will be used to ex-

press quantities related with nodes, such as xk, while superscripts will be used to

denote values associated with edges, such as ek. At every edge, ek, an orthonor-

mal adapted reference frame
{
dk1,dk2, tk

}
and a material frame

{
mk

1,mk
2, tk

}
are

attached; these two sets of frames share the same tangent tk = ek/|ek| as one

of directors. Referring to Fig. 1.6, at each time step, reference frame is updated

through parallel transport (in the time scale). Then, material frame is obtained

after applying a scalar twist angle θk. This accounts for the physical bending

and twisting happening during the adjacent time steps. Please check Ref. [83]

for a detailed pedagogical explanation of the DER method. The 4N − 1 degrees

of freedom (DOF) vector of the rod consist of positions of nodes and twist an-

gles, i.e., q =
[
x0, θ

0,x1, ...,xN−2, θ
N−2,xN−1

]
. Subsequently, on the basis of this

kinematic representation of an elastic rod, we provide the formulation of elastic

energies and forces, and the time marching scheme inside the DER solver.

An elastic rod is essentially modelled as a mass-spring system: each node

(and edge) is associated with a lumped mass (and rotational inertia). The as-

sociated elastic energies are the linear sum of stretching, bending, and twisting

energies. For a rod with an isotropic circular cross section and physical pa-

rameters: Young’s modulus E, and shear modulus G, stretching, bending, and
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twisting energies are as follows [73, 78]

Es = 1
2

N−2∑
k=0

EA(ϵk)2|ēk|, (1.1a)

Eb = 1
2

N−1∑
k=0

EI

∆lk

[
(κ(1)

k − κ̄
(1)
k )2 + (κ(2)

k − κ̄
(2)
k )2

]
, (1.1b)

Et = 1
2

N−1∑
k=0

GJ

∆lk
(τk)2, (1.1c)

where A is the area of cross-section, EI is the bending stiffness, I is the area

moment of inertia, GJ is the torsional rigidity, J is the polar moment of inertia,

ϵk is the stretching strain associated with the k-th edge, ēk is the undeformed

edge length of the k-th edge, ek. At the k-th node, κ(1)
k and κ(2)

k are the bending

curvatures while κ̄(1)
k and κ̄

(2)
k stand for the curvatures in the undeformed con-

figuration, τk is the twist, and ∆lk =
(
|ek|+ |ek+1|

)
/2 represents the Voronoi

length. Note that strain measures ϵk, κ(1)
k , κ(2)

k , and τk, are functions of the de-

grees of freedom q. The above formulation can still be used for the case of non-

circular cross-section with minor changes, which is detailed in Refs. [73, 78].

At each degree of freedom qj, the elastic forces (coupled with nodal posi-

tions) and elastic moments (coupled with twist angles) are

F int
j = − ∂

∂qj
(Es + Eb + Et) , (1.2)

where j = 0, 1, ..., 4N − 2 as the dimension of nodal positions is 3N and the di-

mension of twist angles is N − 1. Depending on the variables that are known at

each time step during simulation execution, the simulator may be semi-implicit

or implicit. Implicit approach can make the simulator run stably even under big

time steps. Implicit Euler integration is used to solve the following 4N − 1 equa-

tion of motions and update the DOF vector q and its velocity (time derivative of
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DOF) v = q̇ from time step tk to tk+1 = tk + h (h is the time step size):

M∆qk+1 − hMvk − h2
(
Fint
k+1 + Fext

k+1

)
= 0 (1.3a)

qk+1 = qk + ∆qk+1 (1.3b)

vk+1 = 1
h

∆qk+1, (1.3c)

where Fext is the external force vector (e.g., gravity and damping force), M

is the diagonal mass matrix comprised of the lumped masses, and (̇) represents

derivative with respect to time. The superscript k+1 (and k) denotes evaluation

of the quantity at time tk+1 (and tk). Newton’s method is used to iteratively solve

the 4N − 1 sized equation of motions.

In summary, DER is formulated based on the classical Kirchhoff theory, e.g.,

the elastic energies are given by the curvatures of rod centerline, and the inter-

nal elastic forces required by equations of motion are derived from the energies

in a discrete format. Our researches adapt the well-established DER simulation

to develop discrete differential geometry (DDG) to simulate the dynamic move-

ment of untethered soft flagellated locomotions in granular media and viscous

fluids. The flagellated locomotions reported in this Thesis are driven by a ro-

tary motor; hence, robot dynamics is complicated, involving both rotation along

the robot’s long axis and translational movement. Overall, although the robots

look nothing like rods, our DDG-based simulator can still well capture the per-

formance of such complicated systems. These locomotions are fluid-structure

interaction problems; we will consider hydrodynamic loading and integrate it to

DDG in Ch. 2, 3, 4, and 5.

1.4 Outline of the Thesis

This chapter introduces the novelty of our Thesis or new science that we unveil

– utilizing geometric nonlinearity for functionality through efficient untethered

14



flexible flagellated underwater/underground locomotion development, and a

well-established numerical tool (DDG) for modelling the mechanics of rods that

serve as the foundation for this Thesis. Subsequent chapters present some robots

as testbeds to explore the mechanics of locomotions in granular media and vis-

cous fluids, as well as extensions of the DER method to investigate the dynamics

in soft robots. The primary contributions of this thesis are as follows:

Ch. 2 displays, for the first time, an untethered robot with multiple soft flag-

ella capable of moving through granular media, where the drag on the flagellum

contributes to propulsion. The propulsion results from the battle between the

drag on the head and flagella and the propulsion of flagella. One counterin-

tuitive phenomenon we find is that the speed of the robot diminishes as the

number of flagella increase, demonstrating the complexity of this system. The

drag from the surrounding granules onto flagella is modelled by resistive force

theory (RFT). Meanwhile, we develop a fully implicit DDG-based simulation

framework that incorporates actuation of systems, e.g., the rotation of motor,

through a time-varying undeformed configurations. This differs from the nor-

mal simulation approach, in which undeformed configurations at each time step

are often unchanged. In this innovative manner, the simulation is entirely im-

plicit, capable of precisely simulating the system’s dynamics over a huge time

step, and therefore computationally efficient. The high computational efficiency

of our validated simulator makes it an ideal tool for simulating soft robots, in-

verse design and optimization of such systems. Also, the large amount of data

generated by the simulator in a short time can be learned by machine learning

algorithms to learn the underlying physics in these systems and to function as

accurate predictors.

The results of our simulator in Ch. 2 quantitatively match those from ex-

periments, verifying that RFT is powerful to model the hydrodynamic forces on

the robot in granular media. In Ch. 3, we further develop an analytical tool on
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the basis of simple Euler-Bernoulli beam theory. The analytical framework com-

pletely resolves the system’s dynamics, as the number of equations equals the

number of system variables. Our analytical approach yields results that are qual-

itatively consistent with DDG-based simulation results and experimental data,

acting as the gold standard and providing physical context for our DDG-based

simulator. Our analytic methodology also suggests that there should be a sec-

ond design in which the robot has more flagella and runs quicker. Under the

guidance of this framework’s forecast, we revise our robot design to achieve the

prediction. The simplicity of this analytic framework and the effectiveness of its

predictive function contrast starkly.

The same robot platform and DDG-based simulation framework are then

proved to be applicable to explore the locomotion in viscous fluids (low Reynolds

number fluids) in Ch. 4. his chapter employs the aforementioned methods to re-

veal the science behind why bacteria swim in circles near boundaries. As the

mechanics of bacteria swimming near close barriers, such as walls, have already

been investigated, we intend to conduct tests near open boundaries. Finally, we

determined that the circular motion of bacteria is caused by the unequal dis-

tribution of the fluid’s viscosity. The computational efficiency of the numerical

method enables it to run faster than real-time on a desktop processor, which

makes it ideally suited for algorithms that iterate over a wide variety of pa-

rameters in order to select a robot design or locomotion strategy. Therefore, at

the conclusion of this chapter, we propose how our simulator might work with

machine learning models as inverse design tools for robots of this type.

Ch. 5 exhibits a new platform, an untethered underwater robot with a rigid

head and a helical soft flagellum that is able to move forward in straight lines

when the rotational speed of its motor is below a threshold but turns a large

angle when the rotational speed exceeds the threshold. We are the first one to

develop and use the arguably simplest robot to replicate the same mechanism
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happening in bacteria, utilizing structural instability for functionality. A com-

pact head is required due to the fact that rigid electronics inside the robot head

and the radius of the head is proportionally to the drag. On the way to achiev-

ing this objective, we overcame several common obstacles in the development

of underwater robots, including making the robot neutrally buoyant, aligning

the center of mass and center of buoyancy for horizontal swimming, and cus-

tomizing soft PCB board to make the robot head as compact as possible. To

make the platform accessible to flagellar locomotion researchers, we present a

method to begin from tethered setup, a gimbal-based configuration that is much

simpler for experiments while keeping the same number of degrees of freedom

as an untethered robot. In parallel, we develop a new simulation framework,

DDG to discrete and model the robot structure, Regularized Stokeslet Segments

(RSS) to consider long distance hydrodynamics interaction among nodes on the

flagellum, and Stokes’ law to model forces and torques on a rigid head. This

framework is validated against experiments step by step for the first time. The

two strengths of RSS, elimination of discontinuity in forces, and its compatibility

with large edgelength, improve the computational efficiency of the simulation to

another level. Additionally, RSS is the state-of-the-art hydrodynamics model. We

build “mass-transformer" to continue pushing the robot’s autonomy to its limits,

a device that can disperse the mass within the robot based on the orientation

measurement embodied by an IMU. The control loop is as brief as feasible due

to the seamless embodied perception and the basic yet effective control signals.

As a result, the robot can now follow any 3D trajectory, buckling its flagellum

for a minor in-plane turn and providing “mass-transformer" control when the

robot requires a severe turn, especially invert. Our study sheds light on the

mechanics of the bio-locomotion of microorganisms, provides researchers with

easy testbeds, motivates the design of novel biomimetic soft robots, and even

gives a template for researchers to scale down our concept to microrobots for
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targeted drug delivery.

Finally, in Ch. 6, we summarize all the findings presented in this dissertation

thesis.
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Figure 1.2: Diagram showing the overall structure of flagellated bacteria and
bacterial“buckling-to-turn" mechanism. (a) A uni-flagellated bacterium, Vibrio
cholerae. Courtesy of Kwangmin Son and Roman Stocker. (b) A multi-flagel-
lated bacterium, Escherichia coli. Immobilized cells illuminated by a mercury
arc. Adapted from Ref. [40]. (c) The structure of flagellated bacteria. Schemat-
ics (not to scale) of the flagellar filament, hook and rotary motor during back-
ward swimming (d1), when the hook is in tension, and during forward swim-
ming (d2), when the hook is in compression. The structures noted inside the
rectangles in (a) and (b) are hooks, which are actuated by the motor embedded
in the body and connect the body and slender filaments (flagella) as seen in (c).
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Figure 1.3: Illustration of representative flagella, cilia motility and collage
of existing flagella, cilia-inspired robots. Bundling, tumbling and buckling
phenomena are also often found in uni-polar arrangements of flagella as
depicted (lophotrichous, monotrichous) yet also prevalent with microorgan-
isms with multipolar arrangements of flagella (amphitrichous, perithichous).
(a)-(b) Bio-hybrid microrobots. (a) RBC microswimmer with an attached bac-
terium [41] (b) Magnetic helices coupled with live sperm cells [42] (c)-(d)
Acoustically actuated microrobot. (c) Design of acoustically actuated mi-
croswimmer [43]. (d) Controlled translation motion of acoustically actuated
microrobot [44]. (e)-(f) Optically actuated microrobots. (e) Swing of the robot
flagellum, actuated through light-driven liquid-crystal film [45]. (f) The direc-
tional motion of a helical microstructure [46]. (g) Positive phototaxis of Janus
nano trees [47]. (h) Back and forth swimming of a cylindrical microrobot [48].
(i)-(m) Examples of magnetically actuated microrobots. (i) Side view SEM im-
age of magnetic nano propellers. [49]. (j) SEM image of Artificial Bacterial
Flagella, with a diameter of 2.8µm [50]. (k) Helical micromachine with a mi-
cro holder [51]. (l) Walking capability of ciliated metachronal robot [52]. (m)
Microscopic images of fabricated helical, single twist-type, double twist-type ac-
tuators [53] .

20



Figure 1.4: Schematic of different actuation methods for flagella-inspired mi-
crorobots. The asterisk (*) indicates actuation methods that are applicable to
cilia (not the focus of our paper).
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Figure 1.5: Schematic showing released flagella-inspired meso robots and
macro robots that seek to understand the fundamental fluid-structure inter-
action physics and physiology of microorganisms with flagella or cilia. (a)A
robot with a rigid metal helical tail with three waves with a 3 mm ampli-
tude [62]; (b)3D printed swimmers [63]; (c1)-(c3)Optical microscope images
of fabricated miniature swimming robots with different designs. Robots with
a cylindrical body of (c1)500 µm (D)×600 µm (H) and flagella of 120 µm
(W)×100 µm (B)×1.5 mm (L) made of polymer ST-1087 with a Young’s mod-
ulous E = 9.8MPa (BJB Enterprises), (c2)500 µm (D)×600 µm (H), and sinu-
soidal flagella made of ST-1087 (E = 9.8 MPa) [64];(d)A scaled-up helical mi-
croswimmer with 14 mm in length and 1 mm in diameter [65]; (e)Compositive
top view of a robot with four straight, flexible Vinyl Polysiloxane (VPS) flagella
in a viscous fluid - glycerin. Inside the robot head, there is a DC geared motor,
two batteries (from up to down on the left side of the robot), a microcontroller,
and a 3D printed circular disc connecting the flagella to the rotating motor shaft
that protruded from the robot head [66]. Inside the head of the robot moving
in granular media, two batteries and a motor (same as in (e)) are contained.
Chrome steel bearing balls are added to increase the moment of inertia of the
head. Nuts are attached to the outer surface of the robot head to increase the
friction [67]; The video snapshot of a macro robot propelled by rotating two
elastic VPS flagella with the same handedness in glycerin when they (f1) rotate
at the same rotational speed in the same direction and do not bundle and (f2)
rotate in the same direction but with different rotational speeds and bundle as
illustrated in Fig. 1.3 [68].
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Figure 1.6: Schematic diagram of the centerline of one elastic rod (at the top)
that is discretized into a collection of elastic rods with Discrete Elastic Rods
method (at the bottom). The rod is discretized into N vertices (with coordinates
x0 to xN−1) and in-between N − 1 edges e0 to eN−2 (dashed arrows). At edge k,
a reference frame

{
dk1,dk2, tk

}
and material frame

{
mk

1,mk
2, tk

}
are assigned.
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CHAPTER 2

Modeling the locomotion of articulated soft robots

in granular medium

We introduce a numerical tool for modeling articulated soft robots that couples

discrete differential geometry-based simulation of elastic rods, our model for the

articulated structure, and other external forces. Parallel to simulations, we build

an untethered robot testbed, in the granular medium, comprised of multiple

flexible flagella that are rotated about an axis by a motor. Drag from the granules

causes the flagella to deform and the deformed shape generates a net forward

propulsion. External drag depends on the flagellar shape, while the change in

flagellar shape is the result of the competition between the external loading and

elastic forces. We find reasonable quantitative agreement between experiments

and simulations. Owing to a rod-based kinematic representation of the robot,

the simulation can run faster than real-time in some cases, and, therefore, we

can use it as a design tool for this class of soft robots. We find that there is an

optimal rotational speed at which maximum efficiency is achieved. Moreover,

both experiments and simulations show that increasing the number of flagella

from two to three decreases the speed of the robot. This indicates that our

simulator is potentially applicable for unknown physics exploration. We also

gain insight into the mechanics of granular medium - while resistive force theory

can successfully describe the propulsion at low number of flagella, it fails when

more flagella are added to the robot.

We describe the motivation behind our research in § 2.1 followed by a litera-
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ture review in § 2.2. Next, we describe the experimental design in § 2.3 includ-

ing the robot design, the procedure of choosing the granular medium, and the

process of data analysis. Then, we present the DDG-based numerical framework

in § 2.4 depending on the geometry of our soft flagellated robot, after which we

point out the novelty of our framework. Results and discussion are then given

in § 2.5. In the end, summary of our work and the outlook is expressed in § 2.6.

Most of the content in this chapter has appeared in Ref. [67].

2.1 Motivation

Soft robots and continuum robots inspired by nature that mimic echinoderms,

bacteria, and fish, are primarily composed of intrinsically soft matter and fluids,

enabling them to deform elastically into reversible shapes [37, 84, 85]. Their

modeling and control are particularly challenging due to the geometric nonlin-

earity induced by the structural flexibility and the nontrivial coupling among

elasticity, contact, and other external forces such as hydrodynamic and mag-

netic forces. Depending on the mechanics of the medium, locomotion can face

unique physical constraints, e.g. at fluid flow with low Reynolds number (vis-

cous forces dominate inertia), scallop theorem states that a swimmer with time

reversible motion cannot achieve propulsion [21]. Over the past two decades,

numerous investigations have been conducted on natural and artificial locomo-

tions in the marine environment [86, 87]. As a result, the interplay between

the environment and aquatic and aerial locomotion (swimming and flying) is

well studied. To comprehend the hydrodynamics, Navier-Stokes equations with

boundary conditions must be solved.

Compared with well studied underwater locomotion [86, 87], the mecha-

nisms behind underground locomotion are far less understood. Slender flexible

animals have evolved to apply various locomotion modes depending on their

physiology and environmental factors [88, 89, 90]. Unlike the Navier-Stokes
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equations for fluids, no validated theories for locomotions on or inside terres-

trial surfaces exist until recently, when the granular flow is shown to be function-

ally equivalent to low Reynolds fluid [91]. Flagellar propulsion, widely studied

since 1955 [92] for application in low Reynolds fluids, is effective in granular

media (GM) as well [93]. This builds a remarkable connection between the

microscopic world of bacteria [94] and meter-sized snakes in sand. Real-time

simulators for soft robots interacting with granules are also nonexistent. A com-

prehensive understanding of locomotion of soft bodies in GM can lead to novel

design of robots for application in hazardous terrain, e.g. search and reconnais-

sance through debris and underground environmental monitoring. Moreover,

the design and control of soft robots usually require painstaking trials due to

the limitations of current simulators. Previous work on soft robot modeling has

focused on the Finite Element Method [95], voxel-based discretization [96], and

modeling of slender soft appendages with Cosserat rod theory [87] (including

the piecewise constant strain method [97], piecewise variable strain method,

differential kinematics [98], the constant curvature model, and piecewise con-

stant curvature model [99]). A real-time simulator that can conveniently incor-

porate geometry and external forces will accelerate robot design and explore

unknown physics in a complicated environment. Moreover, a simple-to-deploy

testbed can greatly benefit theoretical and computational verification.

In this chapter, we draw inspiration from the bacterial locomotion and in-

troduce a palm-sized untethered robot comprised of n ≥ 2 naturally straight

elastic rods and a rigid head with an embedded motor and battery. As shown in

Fig. 2.1, the rotation of these tails generates drag from the GM, deforming the

soft material. The tails provide a net propulsive force as a result of their non-

linear deformation. This net propulsion is only feasible in flexible structures;

propulsion is zero in the case of rigid straight tails. We introduce a numerical

method for simulating the dynamics of a collection of Kirchhoff elastic rods [79]

26



subjected to viscous drag described by Resistive Force Theory (RFT) [92]. This

computational tool is used to simulate the multi-limbed robot and quantita-

tively compared against experiments. We conduct parametric studies on the

speed of the robot as a function of the number of tails and rotational speed,

and determine the optimal rotational speed for maximum efficiency. We test the

applicability of RFT to GM and indicate regimes in which it can fail.

2.2 Literature review

Simulating the dynamics of soft robots is complex and slow because of the nu-

merous degrees of freedom and nonlinear material properties. Modeling soft

robot locomotion can be divided into two components: (1) external loading on

the flexible structure from the surrounding medium and (2) articulated slender

bodies composed of multiple thin elastic rods.

Model of external loading from GM: GM, such as sand, soil, muddy sedi-

ments, and other mechanically unstable terrestrial substrates, display solid-like

behavior in bulk and fluid-like behavior when disturbed. A major challenge of

modeling the nonlinear dynamics of soft robots in GM is modeling the external

forces on thin filaments. Modeling the motion of soft robots in purely fluidic

medium is possible by solving Navier-Stokes hydrodynamics in the presence of

moving boundary conditions. However, the computational cost is prohibitive for

application in design and control of soft robots. For rods – mechanical structures

with one dimension much larger than the other two – moving in low Reynolds

flow, RFT is widely used to connect the hydrodynamic force from viscous en-

vironment and the velocity along the rod’s centerline [92, 100]. Despite dif-

ferences in the physical mechanisms involved, a solid friction analog to RFT in

viscous fluid has been successfully applied in the context of GM to describe the

undulatory motion of sand lizards and snakes [101, 102]. Several studies have

shown that the frictional forces perpendicular to the body per unit length are
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Figure 2.1: Snapshots from simulation. The shape of a robot with (a) n = 2
tails (Rotational speed of the motor ωT = 100.00 rpm, head rotational speed
ωh = 95.47 rpm, tail rotational speed ωt = 4.53 rpm) and (b) n = 3 tails
(ωT = 100.00 rpm, ωh = 97.49 rpm, ωt = 2.51 rpm) between t = 0 and t = 200
seconds. The speed of the robot is v = 0.22 mm/s (and v = 0.13 mm/s) for
n = 2 (and n = 3).

greater than those along the body [6, 93].

Mechanics of articulated elastic rod structures: As with bacteria, the head

and tails of our untethered articulated robot rotate in opposite directions [94].

The external force induced by GM can result in geometrically nonlinear defor-

mation of tails, as displayed in Fig. 2.1. This coupling between the structural

deformation and the forces from the GM in the context of an articulated soft

robot is yet to be addressed in the literature. Notable prior works investigated

the force on thin rigid rods in viscous fluid [100] or GM [93, 86]. Here, we use

Discrete Elastic Rods (DER) [73, 78, 83] to capture the nonlinear deformation

of thin elastic rods in the presence of external forces. The accuracy of DER has

been established several times through prior works [103, 72, 104]. Previous

studies combined DER with hydrodynamic models in viscous fluids to investi-

gate the deformation and instability of a single helical elastic rod [72, 74]. All

of these studies considered only a single elastic rod that is deforming because

of hydrodynamic forces. Recently, we developed a model of multi-flagellated

robots operating near the air-fluid interface [66].

A wide variety of soft robots can be modeled as a network of elastic rods,

optionally connected to rigid bodies. Structures comprised of multiple elastic
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rods, e.g. elastic gridshell (also known as Cosserat net) [104] and flexible rod

mesh [105], have also been modeled with DER. The multi-rod gridshell simula-

tor [104] used stiff springs at the joints between two rods to impose constraints

and computed the spring forces explicitly. This requires a smaller time step

compared with an implicit approach and ignores the coupling of twisting and

bending modes [105] between two rods at the joints. In this study, we present

an algorithm that treats all the elastic and external forces implicitly in a network

of rods and accounts for the presence of a rigid head. We demonstrate that a

seemingly complex robot can be kinematically represented by a network of rods;

this rod-based presentation can be used to leverage the computational efficiency

of cutting edge tools like DER.

(a)

(b) (c) (d)

(e)

5 mm

5
 m

m

5 mm
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Figure 2.2: The compositive view of the experimental setup. (a) The robot with
n = 3 tails. The head is comprised of (b) a battery and (c) a motor. (d) A
circular disc with a circular array of holes (holes A1-A3) for gluing the tails with
Gorilla glue super glue, gel, and a centered hole (hole B) for inserting the motor
shaft. (e) The robot is placed inside a cylindrical tube full of granular medium
(transparent water beads in this work).
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2.3 Experimental design

The primary purpose of our experiments is to investigate the motion of a robot

propelled by multiple rotating elastic rods. We place emphasis on the conditions

and restrictions pertinent to RFT’s application to model the drag from granular

media. Keeping this goal in mind, we sequentially describe the design of the

robot, fabrication, experimental setup, and data analysis in the following. Effec-

tive soft flagella-propelled locomotion in GM needs a complex interplay between

the robot and GM, requiring back-and-forth iterations of robot design and GM

selection. This section will detail the final robot design, GM, and the induced

locomotion experiments.

2.3.1 Robot design

One of the prominent obstacles for light-weight small soft-robot design is the

compromise among its geometrical size, weight, and actuation force. A char-

acteristic process of robot design usually includes geometry design, actuator

design, and microcontroller design [106, 107] which are first, second, last step,

respectively. However, our robot started with function design. It originally con-

sisted of a PCB board on which one microcontroller, two regulators, one Blue-

tooth wireless interface, one IMU and one servo motor, but then the whole robot

body was too heavy for the soft tails to actuate because of the low actuation ef-

ficiency of soft tails. Therefore, some simplifications were made by taking the

geometrical size and weight into consideration and the robot we are using now

is shown in Fig. 2.2.

Fig. 2.2(a) shows a photograph of the soft robot which is a small, lightweight

(14 cm, 35 g) structure actuated by n number of soft elastic tails that are made

of Vinyl Polysiloxane (ZHERMACK Elite Double 32). It includes (1) a head with

two 3.7V 200mAh rechargeable 502025 LiPo batteries (Fig. 2.2(b)) and one DC
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geared motor (uxcell) with 3V nominal voltage (Fig. 2.2(c)), 0.35W nominal

power and 0.55A stall current, (2) multiple elastic tails, and (3) one 3D-printed

plate ((Fig. 2.2(d))) to hold those tails. The elastic tails are fabricated straight

using the molding and casting technique in [108]. The PVC tube mold is affixed

to a straight steel bar to hold the shape completely straight.

The changeable inner and outer diameters of PVC tube molds make the scale-

up or scale-down of our robot platform effortless. Inside the head, two batteries

are connected in parallel, making the entire structure symmetric. We design the

robot head as cuboidal to increase its ability to fluidize the GM in front of it.

It is empirically verified that a robot with a spherical head moves much slower

than one with a cuboidal head, as slippage occurs more frequently. The tails

are inserted and glued (using Gorilla super glue, gel) into a circular array of

holes on a 3D-printed plate and are driven by a motor via the shaft protruding

from the robot head. We vary the number of tails to explore its effect on the

translational speed, v, of our robot. The control parameter is the rotational

speed of the tails relative to the head, ωT . To modify it, we build robots with

different motors but identical other components. The motor’s rotational speed

decreases as the voltage supplied drops. To ensure that the motor rotates at a

constant speed, we fully charge the batteries before and after each 10-minute

experiment. During data analysis, we count the number of rotations with time

and verify that the methodology outlined above ensures a constant rotational

speed throughout each experimental trial. Moreover, the size and weight of

all motors are almost the same, 13 − 15g and (1.5 − 1.7) × 1.2 × 1.0 cm even

though they provide different rotational speeds. Since the size of batteries are

27× 20× 5.1 mm, decided by which the outer dimension is instead of the motor

size. When necessary, we wrap electrical tape around the motor to account for

the minor differences in size and weight among different motors.
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2.3.2 Granular medium & locomotion experiments

We choose water crystal beads as the GM to test the locomotion due to their

transparency. The robot can be seen from outside the medium and its move-

ment is recorded using a conventional digital camera (Nikon D3400) with a

frame rate of 29.98fps. The diameter of the beads in dry state is 2.5 mm, which

increases to db = 9.4 ± 0.4 mm after fully absorbing water. The size of beads is

determined by the amount of time they are placed inside water and reversible af-

ter dehydration. Due to this property, the water crystal beads can also be used to

investigate the performance of the robot, efficiency to be mentioned in Section

2.5.5 for example, related to the granular configuration, such as size, density

and homogeneity. When performing experiments, we use the beads fully ab-

sorbing water to keep their size consistent. Before experiments are carried out,

we dry their surfaces to decrease the possibility of slippage between the GM and

the robot. The volume fraction [6] – the ratio between the solid volume and the

occupied volume – is ≈ (1/6 πd3
b)/d3

b = 0.52. The volume fraction is stated to

control the response of GM to intrusion [6], and we will discuss how it might

be related to the “stick slip” in Section 2.5. As illustrated in Fig. 2.2(a), the

diameter of the beads is on the same order of magnitude as the diameter of the

tails. RFT is intended for grains considerably smaller than the size of the robot;

our choice of rather large grains is to test the limits of RFT.

Before deciding to use water beads, we tried packed foam beads (radius is

4.58 mm, density is 7.27 kg/m3), chia seeds, oatmeal, and white beads (radius is

1 mm, density is 15.35 kg/m3). Packed foam beads are too airy so they are not

able to provide enough propulsion for our robot while chia seeds are too slippery,

oatmeal is too dense so the friction it generates is larger than the propulsive

force it provides. White beads are neither too dense nor too airy so our robot

can move smoothly inside those beads, however, it is hard for us to capture
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where the robot is. To solve this problem, we put an LED on the robot head but

the light is blocked when the thickness of granular medium is too large. Also,

beads around are illuminated by the LED so it is still difficult to find the exact

location of our robot. Infrared camera is tried by us to help locate the robot

but it does not work for lights from LED. Therefore, water beads finally come

to our mind. An interesting question to ask regarding the choice of granular

medium talked above is: It seems that what we need is a kind of clear beads to

locate the robot, why water beads are not the first choice for us? If you look into

the definition of RFT, you will be aware that RFT was originally defined in low

Reynolds number of fluid. Consequently, the radius of granular medium should

be smaller than the radius of robot tails. However, from our description above,

it is clear that the radius of water beads is on the same order and even larger

than robot tails. As a matter of fact, this can help us extend the applications

of RFT if we can verify that RFT can be applied to explaining our experiments.

More details about experiment results will be discussed in Section 2.5.

In our case, we initially put our soft robot in a 2 m ×0.5 m ×0.5 m tank filled

with the 9.4 mm diameter water beads but it is shown that the robot moved

forward in a straight line but slowly in the tank. Therefore, We run our soft

robot in a cylindrical transparent tube with the length of 121.92 cm and radius of

5.3 cm, as shown in Fig. 2.2(e), filled with the same size water beads. However,

we fill the water beads up to 76cm rather than completely filling the tube in

order to allow the robot to have easier mobility. While attempting to allow for

freer mobility for the robot, we encounter the issue that the robot is not able to

be fully covered by the water beads. To counter this issue, we place one end of

the tube at a sloped angle (1.32◦). By solving this problem, we find ourselves

with another dilemma. The distribution of granular medium is not even under

gravity. To fix this, we try our best to shift the water beads evenly before every

experiment trial. The robot is initially positioned at one end near the center of
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the cross-section of the tube, meant to cancel the wall effect. Since the robot

is placed at the center of the tube, surrounded by compact granules against the

tube wall, the drag-induced lift mentioned in [109] is suppressed. Hence, the

rotation of tails propels the robot forward in a roughly straight line through the

GM. A bright yellow marker is attached to the black colored head and a black

marker is attached to one of the green colored elastic tails in order to count the

rotational speed of the robot head (ωh) and tail (ωt).

2.3.3 Data analyses

To capture the position of the robot, we used ffmpeg to transform videos recorded

to pictures every 10 or 30 seconds. Then, MATLAB was utilized to read those

pictures in which the head positions were tracked manually by us and draw the

track of points as the track went along. Also, we counted the rotation speeds

of robot head and tail per minute from the video and calculated the average of

head and tail rotation speed respectively.

2.4 Numerical model description

Following experiments, we develop a simulator in Sections 2.4(A-E) to simulate

the movement of the robot, with DDG simulating the structure by incorporating

RFT for the drag force on the flagllum and Stokes’s law for the force and torque

on the robot head. The material and geometric parameters of the robot are

given in Section 2.4(F).

2.4.1 Kinematics

Referring to Fig. 2.3(a), the first step in modelling the robot is to represent it

as a “stick figure". A number of nodes (circles in Fig. 2.3) are located along the

stick figure. Fig. 2.3(b) shows the nodes at the “joint" between the head and

tails (n = 2 in the figure). Node xa is unique since it is connected to n + 1
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Figure 2.3: Schematic of the discrete representation of a robot with n = 2 tails.
(a) Geometric parameters of the robot in undeformed state. Here, L1 = 2a is
the diameter of the robot head, L2 is the diameter of the disc connecting the
head and the tails, and L3 is the length of each tail. Dashed lines represent
rigid structure whereas solid lines correspond to flexible structure. Node xh
represents the location of the head. (b) A close-up of the “joint" node xa that
connects the head with tails. In this figure, d.b.E. indicates discrete bending and
twisting energy between adjacent edges,i.e., xhxa, xaxc, and xaxb. This is the
only node that is connected to more than two nodes. (c) A close-up of three
nodes, xj−1,xj, and xj+1, and two edges, ej−1 = xj − xj−1 and ej = xj+1 − xj.
The turning angle from edge ej−1 to ej is ϕj. The reference frame on ej is{
dj1,d

j
2, tj

}
and the material frame is

{
mj

1,m
j
2, tj

}
. The twist angle on edge ej

is θj.

nodes. All other nodes are connected to two nodes or a single node in case

of terminal nodes (open circles in Fig. 2.3(a)). As illustrated in Fig. 2.3(c), a

node xj is typically connected with two nodes xj−1 and xj+1. Details of concepts

“edge" (e.g. ej = xj+1 − xj), reference frame
{
dj1,d

j
2, tj

}
,and material frame{

mj
1,m

j
2, tj

}
are given in our previous work [66]. Reference frame is initialized

at time t = 0 and then updated at each time step of the simulation using time-

parallel transport. Detailed DER can be found [73, 78, 83]. A scalar quantity, θj,

is necessary per edge to obtain the material frame from the reference frame as

outlined in Fig. 2.3(c). Angle θj is the “twist angle". We follow the convention

of using subscripts to denote node-based quantities and superscripts for edge-

based quantities.
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The locations of the nodes, xj (0 ≤ j < N where N is the number of

nodes), and the twist angles, θj (0 ≤ j < Ne where Ne is the number of edges),

completely describe the configuration of the robot. For the robot studied in

this chapter, Ne = N − 1 (see Fig. 2.3(a)). The DOF vector for the robot is

q =
[
x0,x1,x2, . . . ,xN−1, θ

0, θ1, . . . , θNe−1
]T

, where the superscript T denotes

transpose. If a robot has N nodes, the size of q is ndof = 3N + Ne. Since

the robot deforms with time, the DOF vector is a function of time, i.e. q ≡ q(t).

Knowing the configuration of the robot at t = 0 (i.e. q(0) is known), the task at

hand is to compute q(t).

2.4.2 Macroscopic strains & Elastic energies

At time t = 0, the robot is undeformed with zero strains and the DOF vector is

q(0) ≡ q̄; hereafter, (̄ ) represents evaluation of a quantity in its undeformed

configuration. While the undeformed and initial configurations of the system

studied here are identical, this is not a required assumption for the simulation

scheme. Axial stretch, curvature, and twist are the macroscopic strains along

the structure.

The axial stretch, ϵj, in the j-th edge is

ϵj = ∥e
j∥

∥ēj∥
− 1. (2.1)

Curvature binormal is a vector representing the turn whose proof is given in Fig.

3.2 and Eqs. 3.6 - 3.11 in [83]:

(κb)j = 2ej−1 × ej

∥ej−1∥∥ej∥+ ej−1 · ej
. (2.2)

It turns out that ∥(κb)j∥ = 2 tan
(
ϕj

2

)
, where ϕj (in Fig. 2.3(c)) is the turning

angle. No curvature is associated with the terminal nodes. The curvature of

the osculating circle passing through xj−1,xj, and xj+1 is ∥(κb)j∥/∆l where
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∆l = ∥ej∥ = ∥ej−1∥. The scalar curvatures along the first and second material

directors are

κ
(1)
j = 1

2(mj−1
2 + mj

2) · (κb)j, (2.3a)

κ
(2)
j = 1

2(mj−1
1 + mj

1) · (κb)j. (2.3b)

Associated with every curvature is a twist that represents the rotation of

the material frame from one edge to the next. Eqs. 2.3a and 2.3b and follow-

ing equations were derived by [78] and a pedagogical exposition is available

in [83]. In Fig. 2.3(c), the twist at the j-th node is

τj = θj − θj−1 + ∆mj,ref, (2.4)

where ∆mj,ref is the reference twist, i.e. the twist of the reference frame as it

moves from the (j − 1)-th edge to the j-th edge [73].

The procedure to calculating this reference twist is discussed next. The first

director of the reference frame, dj−1
1 , is parallel transported from the (j − 1)-th

edge to the j-th edge to get dtmp. Parallel transport is the process of moving

the reference director from one edge to the next without twist; it involves the

following steps.

b = tj−1 × tj,

b̂ = b
|b|

,

n1 = tj−1 × b̂,

n2 = tj × b̂,

dtmp = (dj−1
1 · tj−1)tj + (dj−1

1 · n1)n2 + (dj−1
1 · b̂)b̂,

where tj−1 and tj are the tangents on the (j− 1)-th and j-th edges, respectively.
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The reference twist, ∆mj,ref, is the signed angle from dtmp to dj1 about tj.

The total elastic energy of the structure is the linear sum of stretching Es,

bending Eb, and twisting Et energies such that

Eelastic = Es + Eb + Et, (2.5)

where Es, Eb, and Et are the quadratic functions of strains

Es =
∑ 1

2EA
(
ϵj
)2
∥ēj∥, (2.6)

Eb =
∑ 1

2
EI

∆lj

[(
κ

(1)
j − κ̄

(1)
j

)2
+
(
κ

(2)
j − κ̄

(2)
j

)2
]
, (2.7)

Et =
∑ 1

2
GJ

∆lj
(τj − τ̄j)2 . (2.8)

Here,
∑

in Eq. 2.6 represents summation over all the edges and curvatures in

Eqs. 2.7 and 2.8. E is the Young’s modulus, A = πr2
0 is the cross-sectional area,

and r0 is the cross-sectional radius. EI = π
4Er

4
0 is the bending stiffness. G is the

shear modulus and GJ = π
2Gr

2
0 is the twisting stiffness. To model rigid compo-

nents of the robot, the bending stiffness is assumed to be large enough so that

the curvatures at the rigid nodes remain almost constant throughout the simu-

lation. For edges that are located on rigid parts (i.e. head and disc denoted by

dashed lines in Fig. 2.3(a)), the stiffness parameters EA, EI and GJ are set suf-

ficiently large to ensure negligible deformation. Equations of motion are state-

ments of the balance of forces. The internal forces in the robotic structure arises

from the elasticity of the material. In this paper, the rigid components (e.g. the

head and disc indicated by dashed lines in Fig. 2.3(a)) are assumed to be elastic

with high elastic stiffness so that their deformation is negligible compared with

the deformation in the flexible tails. The next sections discuss the strains in the

structure, the elastic energies associated with these strains, and the elastic and
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external forces in order. The Voronoi length ∆lj = 1
2

(
∥ēj−1∥+ ∥ēj∥

)
is associ-

ated with the j-th node. κ̄(1)
j and κ̄(2)

j are the material curvatures in undeformed

configuration, and where τ̄j is the undeformed twist along the centerline, This

stiffness is assumed to be sufficiently large for the rigid components.

The material of tails is nearly incompressible (i.e. Poisson’s ratio ν = 0.5)

and therefore G = E/3. Each internal node of a single elastic rod is associated

with a discrete bending and twisting energy. However, a “joint" node (xa in

Fig. 2.3(b)) has multiple associated discrete bending (d.B.E. in Fig. 2.3(b)) and

twisting energies. This observation is important during the implementation of

the simulation algorithm.

2.4.3 External forces using Resistive Force Theory

x
j

v
j

v
t

v
p

F
j

F
t

F
p

t
j
=(tj-1+tj)/2

x
j-1 x

j+1

Figure 2.4: Schematic representation of RFT.

In Fig. 2.4, we schematically represent a slender rod in the discrete setting

moving in the GM. The velocity, vj ≡ ẋj at point xj can be decomposed into two

parts: the parallel term vt = (vj · tj)tj and the perpendicular term vp = vj − vt,

where the tangent at the j-th node tj = 1
2(tj−1+tj) is the average of the tangents

along the two associated edges. The external force on the flagellar j-th node is

Fj = Ft + Fp, where the tangential and perpendicular forces that resist vt and

vp are
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Ft = −ηtvt∆lj, (2.9a)

Fp = −ηpvp∆lj, (2.9b)

the drag coefficients along the tangential and perpendicular directions [92] are

ηt = 2πµ/
[
log(2L

r0
)− 1

2

]
, (2.10a)

ηp = 4πµ/
[
log(2L

r0
) + 1

2

]
, (2.10b)

µ is the constant used to quantify the body-granule friction coefficient, and L is

the tail length(L = L3 in Fig. 2.3(a)).

The head rotates and translates as the robot moves. The rotational speed of

the head (ωh in Fig. 2.3) can be extracted from the time derivative of the twist

angle, θh, of the edge connecting x0 and xh, i.e. ωh ≡ θ̇h. The velocity of the

head is vh ≡ ẋh. If the head is spherical with radius a, the viscous drag on it

according to Stokes’s law is Fh = −6πµavh and an external torque on the edge

is Th = −8πµa3ωh. In our case, the robot head shape is not a sphere so we use

numerical coefficients, C1 and C2, to account for the shape. As a result, the drag

and torque are updated as follows

Fh = −(6πC1)µavh, (2.11)

Th = −(8πC2)µa3ωh. (2.12)

Overall, the GM is characterized by parameters C1, C2, and µ. If any of the

physical properties of the medium, e.g., grain size, changes, these parameters

will need to be updated.
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2.4.4 Simulation loop, equations of motion

In the simulation scheme, time is discretized into small time steps (∆t) and the

DOF vector, q, is updated at each time step. The equation of motion at the i-th

DOF to march from t = tk to t = tk+1 = tk + ∆t is

fi ≡
mi

∆t

[
qi(tk+1)− qi(tk)

∆t − q̇i(tk)
]

+ ∂Eelastic

∂qi
− f ext

i = 0, (2.13)

where i = 1, . . . , ndof, the old DOF qi(tk) and velocity q̇i(tk) are known, Eelastic is

the elastic energy evaluated at qi(tk+1), f ext
i is the external force (or moment for

twist angles) on the i-th DOF, and mi is the lumped mass at each DOF. Since the

dynamics of the system is dominated by viscosity with negligible influence of

inertia, the results presented in this paper do not vary with the mass parameters

as long as low Reynolds number is maintained. Note that Eq. 2.13 is simply a

statement of “mass times acceleration = elastic force + external force" at the

i-th DOF. Eq. 2.13 represents a system of ndof equations that has to be solved

to obtain the new DOF qi(tk+1). Once the new DOF is obtained, the new velocity

is simply q̇i(tk+1) = (qi(tk+1)− qi(tk)) /∆t.

Newton-Raphson method is used to solve the equations of motion. This

involves solving the linear system J∆q = f , where f is a vector of size ndof, the

i-th component of this vector can be computed from Eq. 2.13, and J is a square

Jacobian matrix for Eq. 2.13. The (i, j)-th component (i, j = 1, . . . , ndof) of the

Jacobian is

Jij = ∂fi
∂ξj

= Jinertia
ij + Jelastic

ij + Jext
ij , (2.14)

where
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Jinertia
ij = mi

∆t2 δij, (2.15)

Jelastic
ij = ∂2Eelastic

∂qi∂qj
, (2.16)

Jext
ij = −∂f

ext
i

∂qj
. (2.17)

Here, δij represents Kronecker delta. Evaluation of the gradient of the elastic

energy (∂Eelastic
∂qi

) as well as its Hessian (∂
2Eelastic
∂qi∂qj

) are well documented in [83, 78].

Algorithm 1 Discrete Simulation of Robots
Require: q(tk), q̇(tk) ▷ DOFs and velocities at t = tj
Require:

(
dj1(tk),dj2(tk), tj(tk)

)
, 0 ≤ j < Ne ▷ Reference frame at t = tk

Ensure: q(tk+1), q̇(tk+1) ▷ DOFs and velocities at t = tk+1

Ensure:
(
dj1(tk+1),dj2(tk+1), tj(tk+1)

)
, 0 ≤ j < Ne ▷ Reference frame at t = tk+1

1: function DISCRETE SIMULATION OF ROBOTS( q(tk), q̇(tk),
(
aj1(tk), aj2(tk), tj(tk)

)
)

2: τ̄h(tk)← ωT tk ▷ Actuation using Eq. 3.44
3: Guess: q(1) ← q(tk)
4: n← 1
5: while error > tolerance do ▷ Newton-Raphson iterations

6: Compute reference frame
(
dj1,d

j
2, tj

)(n)
▷ Parallel transport dj1(tk)

and dj2(tk) from . . .

7: ▷ . . . tj(tk) to tangent on j-th edge in q(n) to get
(
dj1
)(n)

and
(
dj2
)(n)

8: Compute reference twist ∆m(n)
j,ref at each internal node

9: Compute material frame
(
mj

1,m
j
2, tj

)(n)
▷ Eq. 3.30

10: Compute f and J ▷ Eqs. 2.13 and 2.14
11: ∆q ← J\f
12: q(n+1) ← q(n) −∆q ▷ Update DOFs
13: error← sum ( abs ( f ) )
14: n← n+ 1
15: end while

16: q(tk+1)← q(n)

17: q̇(tk+1)← q(tk+1)−q(tk)
∆t

18:
(
dj1(tk+1),dj2(tk+1), tj(tk+1)

)
←
(
dj1,d

j
2, tj)

)(n)

19: return q(tk+1), q̇(tk+1),
(
dj1(tk+1),dj2(tk+1), tj(tk+1)

)
20: end function
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Figure 2.5: (a) Discrete bending and twisting energy is located at xj. Both
the edges are pointing away from xj. (b) One of the edges (ej−1 in this case)
is flipped to slightly modify the kinematic representation. This representation
can be used to compute the gradient and Hessian of the bending and twisting
energies following analytical expressions available in the literature [78].

2.4.5 Main contributions & observations in the algorithm

The overall computational framework is summarized in the Algorithm above.

An important contribution of this study is the observation that the actuation

(e.g. rotation of motor) can be readily accounted for in the above framework

by updating the undeformed configurations with time. Typically, undeformed

configuration of a structure is fixed and assumed to be invariant through the

simulation. The strains in undeformed configuration (e.g. κ̄(1)
j , κ̄

(2)
j , τ̄j) are used

in calculation of elastic energies, their gradient (i.e. elastic forces), and Hessian.

However, in case of this robot, the rotation of the motor causes the undeformed

twist at the head node (xh) to vary with time. If the rotational speed of the motor

is ωT , we assume that the undeformed twist at the head node is τ̄h(tk) = ωT tk.

As this is a torque-free system, the head and tails of the robot will get actuated

at t0 and start rotating. This results in rotations of the head (ωh) and the tails

(ωt) along opposite directions such that |ωT | = |ωh| + |ωt|. The total rotational

speed, ωT , is a control parameter in this study.

The most computationally expensive part of the algorithm is solving the lin-

ear system. Observing and exploiting the sparsity of the Jacobian matrix, J,
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is important to reduce computing time. Referring to Fig. 2.3(c), the entire

structure is modelled as a series of stretching (e.g. one stretching spring is

between xj and xj+1) and bending-twisting springs (e.g. one bending-twisting

spring is constructed by xj−1,xj, and xj+1). The stretching energy of each spring

(Eq. 2.6) depends only on six DOFs (nodal coordinates of two nodes). For the

stretching spring on edge ej, these DOFs are xj and xj+1. The gradient vec-

tor
(
∂
∂q

[
1
2EA (ϵj)2 ∥ēj∥

])
has only six non-zero terms and the Hessian matrix(

∂2

∂q∂q

[
1
2EA (ϵj)2 ∥ēj∥

])
has only 6 × 6 non-zero terms. The bending and twist-

ing energies of each spring (Eqs. 2.7 - 2.8) depend only on eleven DOFs, i.e.

xj−1, θ
j−1,xj, θj, and xj+1 in case of the spring located at xj in Fig. 2.3(c). The

gradient vector and the Hessian matrix of these two energies therefore have

only eleven and 11 × 11 non-zero terms. The full expressions for the gradient

and Hessian terms are released [73, 83]; software implementation is also avail-

able [110]1. The simulation requires the gradient of external forces (Eq. 2.17)

expressed in Eqs. 2.9, 2.11, and 2.12. Their gradients with respect to the DOFs

can be trivially obtained. Note that Jext
ij is sparse. Since the expressions of all

the Jacobian terms can be analytically evaluated and incorporated into the soft-

ware, the simulation can use implicit method. In comparison with the explicit

method, the implicit method typically can converge at larger ∆t and requires

less computation time. This is our second contribution.

Unlike the banded Jacobian in simulating a single elastic rod [78], the Ja-

cobian here is only sparse but not banded due to the “joint" node. Another

difference is the implementation of the gradient and Hessian of bending and

twisting energies. As in Fig. 2.3, the gradient and Hessian in [78] assume that

the tangent tj−1 points towards xj and the second tangent tj points forward

from xj. The assumption does not always hold in this paper. For example, as

represented in Fig. 2.3(b), we can have cases where both tangents (dashed ar-

1https://github.com/QuantuMope/imc-der
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rows) point away from xa, the “joint" node. In this case, we can simply flip the

first tangent (tloc = −tj−1) and use
{
dloc

1 = −dj−1
1 ,dloc

2 = dj2, tloc = −tj−1
}

as the

“local" reference frame on edge eloc = xj − xj−1. The reference frame on the

other edge ej remains unchanged as
{
dj1,d

j
2, tj

}
. Flipping the edge also implies

that the twist angle on eloc in this local frame is θloc = −θj−1. This local rep-

resentation in Fig. 2.3(b) can be used to compute the gradient and Hessian of

the bending and twisting energies at xj with respect to
{
xj−1, θ

loc,xj, θj,xj+1
}

following the analytical expressions in [78]. Prior to including these gradient

and Hessian terms in f (Eq. 2.13) and J (Eq. 2.14), we have to be mindful that
∂

∂θj−1 ( ) = − ∂
∂θloc ( ).

2.4.6 Physical parameters

The material and geometric parameters of the robot during experiments are:

Young’s modulus E = 1.2 × 106 N/m2, Poisson’s ratio ν = 0.5, density of the

robot is 1000kg/m3 (this is used to compute mi in Eq. 2.13), and cross-sectional

radius of tails r0 = 3.2 mm. The length of each flagellum is L3 = 0.111 m,

radius of the robot head is a = 0.02 m, and the diameter of 3D-printed circular

disc is L2 = 0.04 m. Time step is ∆t = 10−2 s and the length of each edge

on tails (in undeformed state) is ∥ēj∥ = 4.11 mm. We performed convergence

studies to ensure that the size of temporal and spatial discretization (∆t, ∥ēj∥)

has negligible effect on the simulation results. The parameters µ,C1, and C2 will

be fitted later in Section 2.5.3.

2.5 Results and discussion

MATLAB reads images extracted from the recorded videos in Section 2.3.2 in

sequence to track the positions of the robot, s, versus corresponding time points,

t, and the speed of the robot v = s/t. The number of turns the head and

tails of the robot rotate (Nh, Nt) are counted brute force, and used to calculate
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Figure 2.6: Position of the robot with time. (a1-a2) Snapshots from experiments
showing the location of a robot with n = 2 and ωtotal = 250 rpm at time t = 0
and t = 300 s. (b) Position, s, of the same robot as a function of time, t. Solid
line corresponds to the linear fit s = v t where v is the speed. (c) Position vs.
time of a robot with n = 4 and ωtotal = 208 rpm, where stick-slip dynamics is
prominent.

ωh = Nh/t, ωt = Nt/t. Recall from Fig. 2.1 that the motor embedded in the

head generates a rotational speed, ωT . The head and tails rotate in opposite

directions with rotational speeds of ωh and ωt such that ωT = ωh + ωt (ωT , ωh,

and ωt are all non-negative). The total rotational speed, ωT , is considered as

a control parameter in our study. The rotation of the tails generates an axial

propulsive force (see Fig. 2.3). The entire system uses this propulsive force to

move forward at a speed of v.

2.5.1 Threshold angular speed to move

Experiments reveal that there is a threshold below which the robot stays still

(v = 0) and above which it starts to move. This is explicable in terms of gran-

ular mechanics. Granular materials can behave solidly or fluidly. A threshold

angular speed is necessary to convert the medium’s behavior from solid to fluid.

This threshold ωT in our experiments is ≈ 50 rpm and thus there are no data

points at ωT ≲ 50 rpm. When ωT ≲ 50 rpm, the tails and head still rotate relative

to one another; however, the robot does not change its location. In this study,

the maximum total angular speed is ωT ≈ 250 rpm and the aforementioned

regime (ωT ≈ 50) is a relatively small part of the the overall parameter space. In
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simulations, we use RFT that does not consider this threshold. Nonetheless, the

simulation can capture the motion of the robot when v > 0. It is straightforward

to include this threshold in Section 2.4.4 by imposing boundary conditions on

the head. However, this will introduce new fitting parameters without signifi-

cantly improving the overall predictive ability of the simulation.

DC motors (uxcell), whose rated rotation speed with no load are 50 rpm, 75

rpm, 100 rpm, 150 rpm, 200 rpm and 250 rpm, are used. More off-the-shelf

DC geared motors with the same nominal voltage, power and stall current are

also available and they were tested in experiments. Their rated rotational speed

is 19 rpm, 25 rpm, 35 rpm respectively but they do not show up in Fig 2.7 as

they are below the threshold, not able to propel the robot to move. Note that

the rated rotational speed of motors are very likely different from the actual

rotational speed during experiments because of the deformation of tails due to

uncontrollable load difference. For example, the rated rotational speed of the

motor used in Figure 2.6 is 250 rpm with no load but ωT turned out to be 208

rpm when the robot was equipped with four tails.

2.5.2 Speed of the robot

We use the speed of the robot, v, along the axial direction as the primary perfor-

mance metric of the robot. This parameter will be used in subsequent sections

to study the effect of the total angular speed, ωT , and the number of tails, n. The

efficiency of the robot, η, will also be defined related with the speed, v. During

experiments, we used a digital camera to capture videos of the motion of the

robot. Figs 2.6(a1) and (a2) show two snapshots of a robot with n = 2 tails

and total rotational speed ωT = 250 rpm at t = 0 and t = 300 sec. The green

tails were marked with black markers, and the black head was marked with a

bright yellow marker. Aided by the transparency of the GM and the markers on

the robot, these videos were processed to extract the position of the robot, s, as
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a function of time. Fig. 2.6(b) presents the position of the robot as a function

of time. Closed triangles denote data from experiments, and the solid line rep-

resents a linear fit of the form s = vt. We observe that the robot moves at an

almost constant velocity of v ∼ 0.6 mm/s. This is expected from a solid body

moving inside a medium governed by RFT.

Fig. 2.6(c) shows the position of a robot with n = 4 tails and rotational

speed ωT = 208 rpm. The motion of the robot is now qualitatively different

from the one presented in Fig. 2.6(b). The robot continuously moves forward

in general but intermittently stays at the same position. This phenomenon is

reminiscent of stick-slip – sudden motion that occurs when two multiple bodies

are sliding past one another. At a larger number of tails (e.g., n = 4 and n = 5),

experimental observations indicate that the GM can get jammed (i.e., increase

in viscosity) and the robot frequently gets stuck. Interestingly, our experiments

(see Fig. 2.6(b)) indicate the robot can resolve the jamming on its own through

rotation (i.e., creating disturbance) for a few seconds. The periodic jamming or

stick-slip cannot be captured by RFT and we do not include this behavior in our

simulations. We focus only on robots with n = 2 and n = 3 tails that move at

a constant speed with time. Nonetheless, this indicates room for expanding the

theories for locomotion inside GM beyond RFT. Integrating such theories that

describe the viscosity as a function of the robot configuration and time into the

algorithm in Section 2.4.4 should be relatively trivial.

Granular media can present solid behavior in bulk through contact forces

and fluidlike features when disturbed. It is asserted that volume fraction of

sand varies between 0.57 and 0.64 depending on the history and a higher vol-

ume fraction means flowable-prone while a lower value means harder for the

granular media to be intruded [6]. We measured its volume fraction, 0.52,

meaning that it is easier for the beads to consolidate rather than flow, making

the happening possibility of “stick slip” higher. The robot can be mainly di-
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Figure 2.7: Comparison between experiment data and simulation results for the
relationship between(a) total rotation speed of head and tail and robot moving
speed; (b)total rotation speed of head and tail and rotation speed of head. The
red triangles and blue circles with error bars are experiment data when the tail
number is 2 and 3 respectively. The solid red line is the simulated outcome
associated with the fitting parameters, C1, C2, and µ whereas the dashed blue
line represents the simulation result predicted by the same fitting parameters.

vided into two parts, head and tails. Inspection from experiments showed when

the robot was stuck, its head rotation slowed down or stopped, helping with

the consolidation of the granular medium surrounding the head. During the

“stuck” phase, and in preparation for escaping, the robot tails rotate faster, pro-

viding larger propulsion, as well as redistribute the beads. More and more beads

around the tails contact and fluidize those ones adjoining the head, resulting in

speeding up internal stress release and robot escaping in the meanwhile. This

explanation can also be verified by experiment data in Fig. 2.6 (c). As you can

see, the slop, robot moving speed, is dramatically larger after the “stick slip”

than before.

2.5.3 Parameters fitting for simulations

We now move on to numerical simulations (details in Section 2.4) to model the

locomotion and deformation of the robot.
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Recall from Eqs. 2.11 and 2.12 that C1 and C2 are fitting parameters to

account for the shape and surface roughness of the head. In addition, µ is the

3rd fitting parameter. As detailed next, experimental data with a 2-tailed robot

(n = 2) are used to estimate C1, C2, and µ. Simulations are performed with these

parameters for n = 3; simulation results are then compared against experiments

for validation of the fitting process.

Figs. 2.7(a) and (b) present the speed of the robot, v, and the rotational

speed of the head, ωh, respectively, as functions of the total rotational speed,

ωT . The data for n = 2 and n = 3 are shown in the figures. The data (v vs.

ωT and ωh vs. ωT ) for n = 2 are used to obtain the best fit values of the fitting

parameters: C1 = 2.420, C2 = 0.039, and µ = 6.828. These parameters are then

used to simulate the locomotion of a robot with three tails. In Fig. 2.7(a), speed

vs. total rotational speed data show good agreement between experiments and

simulations. Fig. 2.7(b) shows the rotational speed of the head as a function of

total rotational speed and we find that, in both experiments and simulations, a

robot with n = 3 has a slightly larger head rotational speed than the one with

n = 2.

The slight mismatch between the experimental and simulation data can be

partially attributed to the assumptions made in the model. The fluid model as-

sumes that the drag force exerted by the GM can be expressed using RFT. The

structure model assumes that the tails are infinitesimally thin elastic rods. The

drag force and torque on the head are assumed to be linearly proportional to its

velocity and angular speed, respectively. Moreover, invariably there are exper-

imental errors, e.g. structural defects introduced during fabrication. Nonethe-

less, the reasonably good agreement between experiments and simulations sup-

port the validity of RFT in this case.
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2.5.4 Speed vs. number of tails

A counterintuitive discovery from Fig. 2.7(a) is that at a fixed value of the rota-

tional speed of the motor, ωT , the robot with 2 tails moves faster than the one

with 3 tails. Additionally, the speed vs. total rotational speed curve is nonlinear.

These observations point to the large structural deformation and strong coupling

between the head and tails. As the number of tails, n, increases, the rotational

speed of the head, ωh, increases (at a fixed value of ωT ). Since ωT = ωh + ωt,

this implies that the rotational speed of the tails, ωt, decreases as n increases.

The propulsive force generated by each tail (denoted as ft) therefore also de-

creases. However, two additional factors to be considered to understand the

overall speed, v, of the robot. First, the total propulsive force available is n ft

and even though increasing n reduces ft, it may (or may not) ultimately in-

crease n ft. Second, the total propulsive force is spent to overcome the drag on

the head and the tail. As n increases, the amount of propulsive force spent on

moving the tails forward also increases, and the propulsive force budgeted for

the head decreases. All of these factors above combined dictate the dependence

between the robot speed and the number of tails. Furthermore, our simulator

predicts that for a small parameter space, an intersection exists between the re-

lationship between the robot speed and the total rotational speed of the motor,

such that the robot with more flagella can run faster than the robot with fewer

flagella without experiencing “stick slip".

In the experiments presented herein, the set of physical parameters are cho-

sen in such a way that the speed decreases with the number of tails. However,

this is not universally true for this system. For example, consider a robot with

C2 → ∞ in which the head never rotates (i.e. ωh = 0) and the rotational speed

of the tail is always equal to the total rotational speed. Thus, ft is a function of

only ωT (rather than n). Then, the total propulsive force, n ft, increases with n
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(assuming ωT is fixed) and the speed of the robot is also expected to increase.

An absorbing thing found by us is when the number of robot tails is the same,

velocity of the robot keeps increasing with the growth of total rotational speed

of head and tail. Nonetheless, robot moving velocity increases sublinearly when

the total rotation speed is rising up, which might be explained by the fact that

our robot tails are soft so the whole system encounters high geometrical and

mechanical nonlinearity.

2.5.5 Efficiency

The efficiency, η, of the robot is defined as the ratio of propulsive force to propul-

sive torque. Since η is a non-dimensional quantity, we choose the radius of the

head, a, as the length scale. The expression for η is

η = |Fh|
|Th|

a = 6πC1µa
2v

8πC2µa3ωh
, (2.18)

where | · | denotes absolute value and expressions for Fh and Th can be found

in Eqs. 2.11 and 2.12, respectively.

The numerator represents the drag force exerted on the robot by the medium,

whilst the denominator gives the overall torque generated by the rotation of the

motor. We use the simulator to predict the variation of efficiency, η, with the ro-

tational speed, ωT , as exhibited in Fig. 2.8. The efficiency of a robot with n = 2

is non-monotonic and peaks at ωT ≈ 150 rpm. At this optimal rotational speed,

the robot moves the farthest per unit motor torque. Such a clear presence of

an optimal rotational speed in the operating range of the motor highlights the

need of a numerical simulator that can be used to design robots. Moreover, for

ωT ≲ 200rpm, the efficiency of a two-tailed robot is greater than the one of a

three-tailed robot. Beyond ωT ≳ 200rpm, the three-tailed robot outperforms the

two-tailed robot. These findings underline the high degree of nonlinearity in the
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functional dependence between the efficiency and the physical parameters (e.g.

n and ωT ).
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Figure 2.8: Variation of torque utilization efficiency versus the total rotational
speed of robot predicted by our simulator.

2.6 Summary and Outlook

In this work, a discrete differential geometry(DDG)-based simulation framework

was introduced where the robot is discretized into a number of mass-spring

systems, with discrete elastic (bending, twisting, stretching) energies associated

with each spring. The total elastic energy of the robot is the sum of all the

discrete elastic energies. At each DOF, the sum of elastic force (i.e. negative

gradient of the elastic energy) and external force is equal to the lumped mass

times acceleration of that DOF. The actuation of the robot (i.e. rotational speed

of the motor) is represented by a time varying natural strain. This approach

allows us to simulate the shape of the robot in a fully implicit manner.

We explore the physics of locomotion in GM with our simulation tool and

an articulated robot testbed with multiple elastic tails. RFT – originally devel-

oped to model the hydrodynamics of low Reynolds fluid flow – was used to
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model the external force exerted by the GM. This force can be easily integrated

into the simulation framework. Comparison between experiments and simula-

tions showed that RFT is reasonably valid for flagellated robots discussed here.

However, when the number of tails is large, “stick-slip" was observed and the

underlying assumption behind RFT was no longer valid. Note that other types

of external forces, such as gravity, hydrodynamics, and magnetic forces, can be

easily incorporated to our simulation framework.

The simulation tool, supported by experiments, shed light on the highly non-

linear functional dependence between the performance of the robot (e.g. speed

or efficiency) and the relevant physical parameters (e.g. number of tails). Some

counter-intuitive observations include the inverse relation between the speed

and number of tails of the robot. This happens when the robot is in a tube

with different titled angles, e.g. 8◦, 90◦, the results of which are not displayed

here because of the page limit. The non-monotonic dependence of efficiency on

the rotational speed of the motor highlighted the necessity of a design tool for

optimal control of the robot. The computational speed of the simulator can be

exploited to run parametric studies and identify the optimal design and control

of general articulated soft robots. The simulation tool, supported by experi-

ments, shed light on the highly nonlinear functional dependence between the

performance of the robot (e.g. speed or efficiency) and the relevant physical

parameters (e.g. the number of tails).

One of the most exciting aspects of this is that our simulator is able to simu-

late the dynamics of any articulated soft robots in real time and generate plen-

tiful data in a short time, which makes it possible for us to develop data-driven

method to assist people working on robotic design. For the experimental part,

we generalize a fast-fabricated method of building a low-cost functional articu-

lated soft robot testbed comprised of flexible filaments to help robot design opti-

mization. Researchers also benefit from investigating on movements in granular
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media or low Reynolds number fluid through timely verification of theories or

their ideas. In the near future, it may be possible to attach skin-like sensors to

the flagella and cameras to the head to detect their rotation and the relative

speed of the granular media relative to the flagellum. These signals can then

be utilized to enhance the RFT model by adding the slippage-related compo-

nent and the performance of the granular medium during the movement of the

robot. Thus, the granular media do not need to be transparent in order to locate

the robot and visualize its movement.
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CHAPTER 3

Mechanics-based Analysis on Flagellated Robots

We explore the locomotion of soft robots in granular medium resulting from the

elastic deformation of slender rods. A low-cost, rapidly fabricable robot inspired

by the physiological structure of bacteria is presented. Multiple elastic rods, our

model for flagella, are rotated at one end by the motor, and they deform due to

granular drag, propelling the robot forward. The external drag is determined

by flagellar shape, while the shape changes due to the competition between

external loading and elastic forces. In this coupled fluid-structure interaction

problem, interestingly, we observe that – depending on the physical parameters

of the system – increasing the number of flagella can decrease (design 1) or

increase (design 2) speed of the robot. This nonlinearity between propulsion

and physical parameters motivates us to analyze its mechanics using theory,

numerical simulation, and experiments. We present a simple Euler-Bernoulli

beam theory-based analytical framework that is capable of qualitatively captur-

ing both designs. Theoretical and experimental results match quantitatively un-

der small flagellar deformation. To account for the geometrically nonlinear de-

formation often encountered in soft robots and microbes, we implement a sim-

ulation framework that incorporates discrete differential geometry-based simu-

lations of flagella, a resistive force theory-based model for drag, and a modified

Stoke’s law for the hydrodynamics of the head. Comparison with experimental

data indicates that simulations can quantitatively predict the robotic motion in

both designs. Overall, the theoretical and numerical tools presented can shed

light on the design and control of this class of articulated robots in granular or
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fluid media.

We introduce the motivation in § 3.1 and then do the literature review in

§ 3.2. Next, we state and formulate the definition of the problem in § 3.3, fol-

lowing which is the methodology we use in § 3.4 to solve the problem. § 3.4

mainly is comprised of two big parts: beam theory-based analysis of the unteth-

ered soft-flagellated propulsion given in § 3 and DER-based numerical simula-

tion of flagellar locomotion of two different robot designs in § 3.4.2. Next, we

detail the experimental design in § 3.5. Subsequently, we extensively illustrate

our findings from experiments and their comparison against theoretical analyses

and numerical simulations in § 3.6. After that, this chapter is concluded in § 3.7

Eventually, the summary and outlook are presented in § 3.8. The content of this

chapter has appeared in Ref. [111].

3.1 Motivation

The motivation of our research is to investigate the mechanics of locomotion in

GM so the inspiration is similar to Ch. 2. The deeper inspiration of this chapter

relies on the result of Ch. 2. After figuring out how to use a fully-implicit DER-

based framework to simulate the performance of the locomotion in GM, we

discovered that it is possible to use a simple Euler-Bernoulli beam theory-based

framework to analytically express the relationship between measurable system

performance, e.g., the speed of the robot, and the control variables, e.g., the

rotational speed of the motor to which flagella are attached.

3.2 Literature review

Apart from animals capable of crawling, digging [112], slithering [101], swim-

ming [113], and gliding [89, 114] in environments, bacteria, one major group of

microorganisms, also inspire the development of novel and efficient robots. 90%

of marine bacteria[115] achieve efficient locomotion in a fluid through the ro-
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tation of a flagellum (a slender filament), exploiting the anisotropic drag to pro-

duce thrust and violating the constraints of the scallop theorem[21]. Flagellar

locomotion results from a non-trivial coupling between the geometrically non-

linear deformation in the flagellum and mechanics of the surrounding medium,

posing a challenging fluid-structure interaction (FSI) problem.

Theoretical study about flagellar propulsion dates back to 1955 when Taylor

[116] first analyzed the swimming of microscopic organisms. Over the last two

decades, numerous studies have studied flagellar propulsion in low Reynolds flu-

ids through experiments[40, 117, 118, 1, 86, 119], computation[120, 121, 26],

and theory[122, 123, 27, 124]. Recent investigations[125, 66] have modelled

the flagellum as a Kirchhoff elastic rod[126], and coupled to the fluid with hy-

drodynamic forces[5]. Jawed investigated the dynamics of a helical elastic flag-

ellum rotating in a viscous fluid[72] and near a rigid boundary[74]. However,

the role of the head and the flow generated by its motion and coupling with

the flagellum-induced flow are ignored. Huang performed simulations that uti-

lized flagellar buckling to change moving direction on a robot composed of a

mass-point head and uni-flagellum[75]. Our previous work[66] established an

untethered articulated robot that was composed of a rigid head and multiple

soft flagella and used discrete differential geometry to simulate the flagella and

resistive force theory[5] (RFT) to model the interaction force between the fluid

and flagella. Simulation and experimental results agreed well quantitatively.

Our robot also demonstrated the same behavior as bacteria, ii.e., head and flag-

ella rotating in the opposite directions[127] and circling when near the air-fluid

boundary.

RFT, initially used for analyzing the movements of microscopic organisms

in viscous fluids, is proved to apply to animal and robot locomotion on and

within granular media (GM) [6]. This builds an intimate link between the mi-

croscopic bacterial world and meter-sized animals in sand. The most recent
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studies [93, 128], on rotational intruders moving through GM conclude on the

empirical feasibility of applying modified and entirely empirical RFT, e.g., gran-

ular RFT [128]. These experimental studies demonstrate that RFT is simple

yet very effective in granular materials considering the complicated constitutive

features of granular matter such as nonlinearity and nonlocality. However, the

intruders in these works are rigid, inspiring our further study on the geomet-

rical design and efficiency study on robots with soft flagella in GM. Previously,

our other work modeled the locomotion of articulated soft robots in GM[125].

Leading design and control parameters of our untether robots are the rotational

speed of the embedded motor, the number of flagella, geometrical parameters of

flagella such as radius and length. Some counter-intuitive observations include

the inverse relationship between the speed and the number of flagella of the

robot in the representative setup (as shown in Fig.3.1(a1-a5)). This verifies that

the flagellar locomotion is the result of a complicated coupling between granular

mechanics and deformable bodies, a complex FSI problem. In summary, while

there exist works[86, 75, 66] that explore flagellar locomotion considering the

effect of the head, systematic simulations are required for more quantitative pre-

dictions, e.g., under what design and control parameters the maximal efficiency

of actuation is achieved. Furthermore, although a comprehensive simulation

framework is offered in our earlier work[125], elaborate equations suffocate

and make it difficult for designers to understand and predict the movement of

the system directly. Subsequently, a reduced model capable of qualitatively cap-

turing the relationship between the performance of flagellar locomotion in GM

versus the design space is required, hence avoiding the cumbersome trial and

error design process.

Here, we employ a structural robot design similar to that used in our pre-

vious work[125]: a palm-sized untethered robot composed of n ≥ 2 naturally

straight elastic rods and a rigid head housing a geared DC motor and batteries.
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Figure 3.1: Snapshots from simulation. The first row depicts the shape and
movement of the robot in design 1 where the robot speed decreases as the num-
ber of flagella increases from, n = 2, to n = 3 in panels (a1-a5). In contrast, the
second row illustrates the shape and movement of the robot in design 2 where
as the number of flagella, n, increases from two to three in panels (b1-b5), the
speed of the robot increases. In (a1-a5), the total rotational speed of the motor
ωT = 100.00 rpm, head rotational speed ωh = 95.47 rpm, and flagellar rotational
speed ωt = 4.53 rpm while for n = 3 in (a1-a5), ωT = 100.00 rpm, ωh = 97.49
rpm, and ωt = 2.51 rpm. In (b1-b5) and n = 2, ωT = 100.00 rpm, ωh = 44.06
rpm, and ωt = 55.94 rpm while ωT = 100.00 rpm, ωh = 56.98 rpm, and ωt = 43.02
rpm for n = 3 in (b1-b5). Black bar is 2 cm. Physical parameters are available
in Sec.3.4.3.

As illustrated in Fig. 3.1, the rotation of flagella induces the drag force from the

surrounding GM because of their flexibility. Flagellar deformation provides a

net propulsive force forward, which is zero in the case of straight rigid flagella.

Meanwhile, we implement two numerical frameworks, both of which employ

Resistive Force Theory (RFT) to model the drag on a collection of multiple elas-

tic rods and modified Stoke’s law to calculate the drag force and moment on the

head. In contrast, one uses Euler-Bernoulli beam theory, and the other applies
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discrete differential geometry (DDG) to simulate the flagellated robot structure.

When the motor rotates slowly, e.g., ωT ≤ 10 rpm, the deformation of the robot

flagella is linear, and the resulting propulsive force calculated using DDG sim-

ulation is nearly identical to that obtained from Euler-Bernoulli beam theory.

However, the beam theory fails to precisely capture the nonlinear deformation

of the robot flagella at high motor speeds, e.g., ωT = 250 rpm, DDG-based frame-

work is still capable of accurately representing the performance of the robot in

experiments. Due to the rod-based kinematic representation of the robot, this

computational tool is used to simulate flagellated robots even faster than real-

time. Additionally, our prior study uncovered a counterintuitive phenomenon,

the speed of the robot falls as the number of flagella rises (design 1), which is

captured by both the beam theory and DDG-based frameworks. However, the

beam theory-based framework predicts the existence of design 2, in which the

speed of the robot increases as the number of flagella grows. This prediction

is successfully confirmed experimentally after we modify the robot design and

radius of the GM. In summary, the simple overall Euler-Bernoulli beam theory-

based framework can qualitatively capture both designs of the complicated loco-

motion in GM, the intricate interaction between the robot and GM. In contrast,

the DDG-based framework is capable of quantitatively simulating the complex

locomotion in GM.

3.3 Problem Statement

In this work, we analyze flagellated locomotion in GM, a typical FSI problem,

using a mechanics-based approach. As a result, both the experimental and the-

oretical aspects of the problem involve two primary components, the GM (fluid

part) and the robot (structure part). A GM must be selected to complement the

architecture of the untethered flagellated robot. Internal friction between gran-

ules prevents the robot head from fluidizing the granules in front and propelling
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forward, whereas insufficient friction results in ineffective flagellar propulsion.

Internal friction during locomotion is correlated with the phase transition of

GM from solid to fluid, which is governed by temperature and volume fraction

(VF)[129] - the ratio of solid to occupied volume. The less effort required to

modify the VF of GM, the better for investigating the locomotion in GM. Apart

from the volume fraction of the GM, other physically controllable parameters

include the shape and material friction of the head, as well as the number, ra-

dius, length, and stiffness of the flagella and the rotational speed of the motor.

Among them, the number, n, and the rotational speed of the motor, ωT , are the

most precisely trackable with the least effort owing to the design simplicity of

the robot and experiments. Their effect on the translational speed of the robot,

v, is explored and will be displayed in Sections 3.6.1 and 3.6.3.1.

The entire robot structure consists mainly of active multiple soft elastic flag-

ella and a rigid passively actuated head, all of which rotate along the long axis

of the robot. The case where the flagella are fixed at a 3D-printed plate with

uniform external drag forces applied is analogous to the case of a cantilever

beam with a uniformly distributed load. In what follows, first, we outline the

Euler-Bernoulli beam theory-based mechanics analysis of the untethered robot,

including (1) the external loading from the GM onto flexible flagella and (2)

the drag force on the head. Beam theory qualitatively captures the two cases

in which increasing n can either accelerate or retard the speed, v. Whichever

happens, in reality, is determined by the intricate balance of the competition

between the external loading and elastic forces. According to experimental evi-

dence, the result is closely related to the robot head and motor speed design, ωT .

Second, we introduce a numerical model of the robot in which the robot struc-

ture is represented by a network of Kirchhoff’s rods[126]. Finally, we present

experiments conducted to quantify the propulsive speed of this class of flagel-

lated robots in Section 3.5.
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Figure 3.2: Schematic showing the velocities and induced resistive forces on
one flagellum rotating at a constant rotational speed ωt on the robot moving
forward at a velocity of vh. The coordinate system (O− x− y− z) is fixed at the
center of the 3D-printed plate; the flagellum starts at s = 0, propagates along
the x-direction until the end (s = L), and is divided into a series of nodes. Each
node (numbered based on differential geometry) is characterized by its tangen-
tial direction t and its velocity v direction; k-th node (with coordinate x(s))
experiences a force Fext

k that propels the robot forward (along −y-direction).
The flagellum rotates at an angular speed of ωt, clockwise as viewed from the
+y-axis, while the head rotates in the opposite direction at an angular speed of
ωh.

3.4 Methodology

3.4.1 Beam theory based analysis of propulsion

Benefiting from the elasticity property, the soft flagella of the robot bend out of

the long axis, and the drag force generated by the surrounding granules pro-

duces a component in the -y direction as displayed in Fig. 3.2, propelling the

robot forward.

3.4.1.1 Clamped flagellum fixed in space

For illustration, one flagellum of the robot in a discrete setting moving in the GM

is displayed in Fig. 3.2. Hereafter, unless otherwise stated, all the parameters,

e.g., forces, are associated with one flagellum. Consider a node x(s) along the
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flagellum, where s ∈ [0, L] is the arc-length parameter and L is the length of the

flagellum. At the steady state, the magnitude of the velocity vector at x(s) is

defined as

v = ∥v∥ = ∥ωt ×Rdr∥ = ωtRd, (3.1)

where v is along −y axis, ωt stands for the rotational speed of flagella, r is the

radial unit vector, and Rd is the radius of 3D printed plate holding soft flagella.

The velocity, v at this point can be decomposed into two parts: the parallel term

vt = (v · t)t = vtt and the perpendicular term vp = v− vt, where vt = −v sin θ t

and t represents the tangent at the point, whose direction is shown in Fig. 3.2.

Inspired by Texier et al. [93], the drag force exerted on the flagellum by the GM

is modeled by resistive force theory (RFT) and is dependent on the rotational

speed of the motor, ωt,and thus, v. The drag is broken down into components

normal and tangential to the segment axis, with two corresponding force co-

efficients, and its dependence on the shape of the object, e.g. the diameter,

is demonstrated[130]. Additionally, the work[131] considers the effect of the

geometry of the soft filament while modeling the local drag. As a result, the

tangential and perpendicular force constants (force per unit length) from the

medium that resist vt and vp are

ft = −ηtvt, (3.2a)

fp = −ηpvp, (3.2b)

where the drag coefficients, one along the tangential direction and one along

the perpendicular direction are

ηt = 2πµ
log(2L

r0
)− 1

2
(3.3a)

ηp = 4πµ
log(2L

r0
) + 1

2
, (3.3b)
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where µ is the coefficient constant that quantifies the robot-granule friction as

a function of the granule size and the inertia and surface friction of the head,

and L and r0 are the length and radius of each flagellum, respectively. The drag

force constant of external forces at node x(s) is

Fext = ft + fp. (3.4)

Note that Fext depends on the granular pressure and the velocity of nodes on

flagella. Then, the component of Fext along the x-axis (i.e., antiparallel to veloc-

ity) is

pt = −ηtvt sin θ − ηp (−v − vt sin θ) , (3.5)

where

sin θ = dw√
dy2 + dw2 , (3.6)

and

cos θ = dy√
dy2 + dw2 . (3.7)

The transverse displacement of a flagellum, which is modeled as a beam is w(s).

Assuming a small deflection, w(s) ≈ w(y) where w(y) represents the flagellar

deflection along the y-axis. We ignore the effects of head translation in this

section; they will be discussed in the following section. The drag force can

be split into y- and x-components; the former produces propulsive force, while

the latter produces a torque that rotates the head. Given our definition of the

direction of y-axis, the force constant of propulsive force is as follows along −y:

q = (ηp − ηt)ωtRd sin θ cos θ. (3.8)
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Without ignoring any higher order terms, i.e. sin2 θ, the x-axis force constant is

formulated:

pt = EI
d4w

dy4 = (ηt − ηp)v sin2 θ + ηpv, (3.9)

where EI is the bending stiffness of the beam (i.e. the flagellum).

3.4.1.2 Clamped flagellum moving at constant speed

During the robotic movement, in addition to the flagella, its head is also rotating

and translating. Assuming the robot moves along the y-axis at speed vh, we

rewrite its velocity as

v = −ωtRdx̂− vhŷ, (3.10)

where x̂, ŷ are the unit vectors in the direction of the x-axis and y-axis, respec-

tively. The force constant of viscous drag force is:

fh = −ηtvtht− ηp
(
vh − vtht

)
, (3.11)

and its component along y-axis is

qh = (ηp − ηt) vh cos2 θ − ηpvh. (3.12)

Adding qh to Eq. 3.8, we get the final drag force

q = (ηp − ηt)
(
ωtRd sin θ cos θ + vh cos2 θ

)
−ηpvh.

(3.13)

We integrate this across the length of the flagella to compute the total propulsive

force. Its component along the x-axis is

ph = (ηt − ηp) vh sin θ cos θ. (3.14)
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Adding this solution to Eq. 3.9, we get the following expression for the force

constant along x-axis:

p = pt + ph = EI
d4w

dy4 , (3.15)

= ηpv +
(ηt − ηp)

(
v
(

dw
dy

)2
+ vh

(
dw
dy

))
(

dw
dy

)2
+ 1

. (3.16)

We used the bvpfcn function in MATLAB to solve this nonlinear fourth order

differential equations with boundary conditions

w(0) = 0, w′(0) = 0, w′′(L) = 0, w′′′(L) = 0, (3.17)

where the prime ( ′) indicates differentiation with respect to y. Since the head-

induced effect is taken into account and no approximations about the flagellar

deflection are made during the calculation, this design is referred to as nonlinear

beam (NLB) regime. However, by making some simplifying assumptions, we can

achieve a more straightforward, closed-form solution. If we assume that the

flagellum is slightly deflected to be treated as an Euler-Bernoulli beam, then

sin2 θ ≈ 0 and cos2 θ ≈ 1. This enables us to simplify the solution and achieve

linear approximation, referred to as linear beam (LB) regime. The curvature

in Euler-Bernoulli beam theory is approximated as d2w
dy2 and

(
dw
dy

)2
terms are

assumed to be negligible compared with 1. The boundary conditions on the

beam are Eq. 3.17. The deflection of a LB is, therefore, calculated as follows

w(y) = pty
2(6L2 − 4Ly + y2)

24EI , (3.18)

and pt here is obtained as follows by omitting the sin2 θ term in Eq. 3.9:

pt = ηpv = ηpωtRd. (3.19)
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Hence, the simplified total force along x-axis is

Fx = ηpωtRdL. (3.20)

The linear propulsive force is likewise simplified as

q = (ηp − ηt)ωtRdw
′(y)− ηtvh, (3.21)

and the total propulsive force is

Fp = (ηp − ηt)ωtRdw(L)− ηtvhL. (3.22)

Note that we can neglect the head velocity in these equations because it has

been experimentally proved to be small. The deflection of LB, NLB, and NLB w/o

head (nonlinear beam without head) is compared in Fig. 3.7 and Section 3.6.4.

In addition, the head experiences a resistive force due to its translation and

rotation. The viscous drags due to its translation and rotation are

Fp = −C1(6πµRhvh), (3.23)

Tp = −C2(8πµR3
hωh), (3.24)

respectively, where 6πµRhvh is the drag force and 8πµR3
hωh is the torque on a

perfectly spherical object in a low Reynolds number fluid according to Stokes’

law and vh = ẋ1 is the velocity of the head, and ωh = θ̇0 is the rotational speed of

the head. The coefficients C1 and C2 are included because our robot head is not a

sphere; given the difficulty of measuring C1, C2, and µ during experiments, they

are used as fitting parameters (see Section 3.6.2) to match the experimental

and simulation results in Section 3.6. Furthermore, this flagellated robot system

is balanced in terms of both force and torque. As a result, the propulsive force
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generated by the flagella should be equal to the drag force on the head, Fp =

∥Fp∥, and the torque actuating the rotational movement of n flagella should

also be equal to the moment on the head. Using Fp =
∫ y=L
y=0 q(y)dy, or the

corresponding linear approximation in Eq. 3.22, we can compute the velocity:

vh = nFp
C16πµRh

, (3.25)

where Rh is the radius of the robot head. Next, we calculate the rotation speed

of the head, ωh, based on the torque balance. To compute this, we need the

torque generated by Fx, which is given by

Tp = nRdFx, (3.26)

where Fx =
∫ y=L
y=0 pt(y)dy, or with the linear approximation from Eq. 3.20. Given

that the torque generated by the flagella (in Eq. 3.26) must be equal and in the

opposite direction of the torque on the head in Eq. 3.24, we can compute the

rotational speed of the head:

ωh = nRdFx
C28πµR3

h
. (3.27)

Plug Eq. 3.6 into Eq. 3.9, we obtain pt as a function of only y and ωt, denoted

as pt = f(y, ωt) and thus Fx = f(ωt). Then, from Eq. 3.27, we find that ωh is a

function of ωt whereas the remaining parameters are constants. In addition, one

of control parameters in experiments is the rotational speed of the motor ωT:

ωT = ωh + ωt. (3.28)

Note that ωh and ωt here are scalars, but the rotational directions of the head

and flagella of the robot are opposite. In conclusion, we have two equations

for two unknown variables ωt and ωh, allowing us to solve the propulsion of the
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Figure 3.3: Discrete schematic diagram of a robot with two flagella. (a) Ge-
ometry of the robot in its undeformed state. Here, Lh = 2Rh is the diameter
of the robot head, Lp is the diameter of the 3D-printed plate bridging the head
and flagella, and L is the length of each flagellum. Dashed lines represent the
rigid structure, while solid lines represent the elastic structure. The node x1
specifies the center of the head, i.e. its location. (b) A general close-up view
of three adjacent nodes, xk−1,xk, and xk+1, and two edges, ek−1 = xk − xk−1
and ek = xk+1 − xk. The turning angle, ψk, between the two edges results in
bending energy and the rotation of the material frame from one edge to the
next results in twisting energy. The reference frame on ek is

{
dk1,dk2, tk

}
and the

material frame is
{
mk

1,mk
2, tk

}
. The twist angle from the first material director

associated with tk−1 to the next material director associated with tk is θk. (c)
A close-up of the “T"-shape joint node x2 that connects the head to the flagella.
d.B.E. indicates discrete bending and twisting energy. Only the joint node, x2, is
connected to more than two nodes.
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entire system. From these two variables, all other parameters, such as vh and

Fp (by combining Eqs. 3.22 and 3.25) can be calculated. We emphasize that

the overall framework includes not only the flagellar propulsion based on beam

theory but also the head motion based on Stokes’ law.

3.4.2 Numerical method of flagellar locomotion

In this section, we present the numerical simulation framework in which the

robot structure is modeled as a network of connected Kirchhoff elastic rods. The

elastic energies of this structure are thereby the linear sum of bending, twisting,

and stretching energies, the negative gradient of which is the elastic forces on

each degree of freedom (DOF). The implicit Euler method is used to solve equa-

tions of motion (EOM) in which the external drag forces from the GM on each

DOF are modeled through RFT. When ωT is small, locomotion parameters ob-

tained from this simulation, e.g., velocity, propulsive force, and deflection, are

compared to those obtained from analytical equations based on Euler-Bernoulli

beam theory described in Section 3.4.1. Furthermore, the simulation results of

DDG are shown to match quantitatively with experimental data, validating the

method itself.

3.4.2.1 Discrete Differential Geometry (DDG)

Fig 3.3 is a discrete representation of a robot with a rigid head and 3D-printed

plate and n straight elastic flagella (n = 2 in the figure). The numerical values

for physical parameters will be given in Section 3.6.2. Along the schematic dis-

cretization, there are a collection of N nodes (circles in Fig. 3.3), x0,x1, ...,xN−1,

attached via N − 1 thin elastic rod vectors, ek = xk+1 − xk(k = 0, 1, ..., N − 2),

called edges (the lines between two adjacent nodes). Hereafter, we use sub-

scripts for node-based quantities and superscripts for edge-based quantities. As

shown in Fig. 3.3(b), the head is discretized into x0,x1,x2, with node x2 denot-

ing the one at the head-flagella junction. It is a unique node that is connected
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to n + 1 additional nodes. All other nodes are connected to two nodes, or to a

single node in case of the last node at the end of each flagellum, denoted by an

open circle.

Rather than being just a single vector, each edge (see Fig. 3.3) is also equipped

with two corresponding sets of orthonormal reference frames to track its rota-

tion, a reference frame
{
dk1,dk2, tk

}
and a material frame

{
mk

1,mk
2, tk

}
; both of

them share the tangent tk = ek/∥ek∥ as one of the directors (∥ · ∥ represents the

Euclidean norm of a vector). The reference frame serves as a frame initialized

at time t = 0 and updated at each subsequent time step via time-parallel trans-

port, as illustrated in Fig. 3.3(c), the material frame can be calculated in terms

of a scalar twist angle, θk. The detailed transformation expression between the

reference and material frames can be found in Du et al.[125] and Jawed et

al.[83]. For this class of flagellated robots, the DOF vector is constituted of node

positions and twist angles formulated as follows

q =
[
x0,x1,x2, . . . ,xN−1, θ

0, θ1, . . . , θNe−1
]T
, (3.29)

where Ne is the total number of edges in the entire robot, which in this work

is N − 1 (see Fig. 3.3(a)), and the superscript T stands for transpose. q has a

dimension of ndof = 3 × N + Ne. Since q completely defines the configuration

of the robot whose deformation varies with time, the DOF vector is a function

of time, i.e. q ≡ q(t). At time t = 0, the robot is undeformed and the DOF

vector is q(0) ≡ q̄; in the following, (̄ ) represents evaluation of a quantity in

the undeformed configuration. The strain calculations coming next all rely on

the DOF vector q.

mk
1 = dk1 cos θk + dk2 sin θk (3.30a)

mk
2 = −dk1 sin θk + dk2 cos θk (3.30b)
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Based on this kinematic representation, we will sequentially discuss the for-

mulation of elastic energies and forces, external forces, and simulation loops.

3.4.2.2 Elastic energies and forces

The total elastic energy of a flagellated robot structure is the linear sum of

stretching, bending, and twisting energies:

EE = Es + Eb + Et, (3.31)

where Es, Eb, and Et are the stretching, bending, and twisting energies, respec-

tively.

Elastic energies of a structure are associated with the corresponding macro-

scopic strains, axial stretch, curvature, and twist[132]. The stretching energy

associated with each edge is related to the axial stretch of the edge. Axial stretch

is the change in length of an edge, normalized by the undeformed length. The

axial stretch, ϵk, of edge ek is

ϵk = ∥e
k∥

∥ēk∥
− 1, (3.32)

where ∥ēk∥ is the undeformed edge length. Given this axial stretch, the stretch-

ing energy along edge ek is

Ek
s = 1

2EA
(
ϵk
)2
∥ēk∥ (3.33)

where E is the Young’s modulus, A = πr2
0 is the cross-sectional area of the

flagella, and r0 is the flagellar radius. The total stretching energy of the robot is
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the sum of individual stretching energies, i.e.

Es =
Ne∑
k=1

Ek
s . (3.34)

For edges on the rigid head and disk, the stretching stiffness EA is set to be

sufficiently large to ensure that deformation is negligible.

Bending energy is related to curvature, a node-based quantity that is related

to the turning angle, ψk, displayed in Fig. 3.3(c). Note that curvature is applied

to all nodes except terminal nodes, and the curvature binomial for node xk is

(κb)k defined as the following vector

(κb)k = 2ek−1 × ek

∥ek−1∥∥ek∥+ ek−1 · ek
, (3.35)

where ∥(κb)k∥ = 2 tan
(
ψk

2

)
. The scalar curvatures along the first and second

material directors, calculated using the curvature binomial, are

κ
(1)
k = 1

2(mk−1
2 + mk

2) · (κb)k, (3.36a)

κ
(2)
k = 1

2(mk−1
1 + mk

1) · (κb)k. (3.36b)

The bending energy is then calculated according to the equation

Eb =
∑ 1

2
EI

∆lk

[(
κ

(1)
k − κ̄

(1)
k

)2
+
(
κ

(2)
k − κ̄

(2)
k

)2
]
, (3.37)

where
∑

indicates summation over all the discrete bending energies, ∆lk =
1
2

(
∥ēk−1∥+ ∥ēk∥

)
is the Voronoi length for the k-th node, κ̄(1)

k and κ̄
(2)
k are the

material curvatures in the undeformed configuration, and EI = π
4Er

4
0 is the

bending stiffness of the rod. For the rigid robotic head and 3D-printed plate, the

value of bending stiffness EI is assumed to be so large that the curvatures at the

rigid nodes remain nearly constant throughout the simulation.
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Finally, the twisting energy is related to the relative rotation of the material

frames between two adjacent edges, i.e. twist. The twist at the k-th node is

τk = θk − θk−1 + ∆mk,ref, (3.38)

where ∆mk,ref is the reference twist, which is the twist of the reference frame as

it moves from the (k − 1)-th edge to the k-th edge. The method by which we

calculate this reference twist is detailed at the end of Section 4.2 in our previous

work[125].

The twisting energy is then calculated according to the equation

Et =
∑ 1

2
GJ

∆lk
(τk − τ̄k)2 , (3.39)

where τ̄k is the undeformed twist along the centerline, G is the shear modulus,

and GJ = π
2Gr

2
0 is the twisting stiffness. For the rigid components, the twisting

stiffness is sufficiently large. Additionally, we assume that the material of flagella

is nearly incompressible (i.e. Poisson’s ratio ν = 0.5), so G = E/3.

In summary, at each DOF qk, the elastic forces (affiliated with nodal position)

and elastic moments (affiliated with the twist angles) are

F E
k = −∂EE

∂qk
, (3.40)

where k = 0, 1, ...,ndof− 1.

In a single elastic rod, each internal node is associated with a discrete bend-

ing and twisting energy. However, in this paper, the flagellated robot is repre-

sented as a network of rods and a “T"-shape joint node. This node is associ-

ated with multiple discrete bending and twisting energies(denoted as d.B.E in

Fig. 3.3(b)). In order to simulate the dynamics of the robot, EOM for each DOF

is required, which includes not only elastic forces but also external forces. Con-
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sequently, we illustrate how we model the external forces from the GM onto the

robot in the next section.

3.4.2.3 Fully-implicit simulation

In order to simulate the locomotion of the robot, time is discretized into small

time steps of size ∆t. At each time step tj, the DOF vector q is updated. Using

the following equations of motion (EOM), the k-th DOF marches from t = tj to

t = tj+1 = tj + ∆t:

mk

∆t

[
qk(tj+1)− qk(tj)

∆t − q̇k(tj)
]
− F E

k − F ext
k = 0, (3.41)

where qk(tj) and q̇k(tj) are the known DOF and velocities at the previous time

step, respectively, EE is the elastic energy evaluated at tj+1, F ext
k is the external

force (or torque for twist angles) on the k-th DOF, and mk is the lumped mass at

the DOF. The external drag force exerted by the GM onto the flagella are detailed

as Eqs. 3.2- 3.4 in Section 3.4.1.1.The external drag force and torque onto the

head are calculated through Eqs. 3.23 and 3.24. Only the subscript k needs

to be added to denote the force/torque at k-th node. Because the dynamics

of this system is dominated by drag forces with negligible influence of inertia,

the results presented are not mass dependent as long as low Reynolds number

is maintained. Eq. 3.41 represents the collection of ndof equations that has to

be solved to get the new DOF qk(tj+1). Essentially, this equation is a statement

of “mass times acceleration = elastic force + external force" at the k-th DOF.

Once qk(tj+1) is updated, the velocity at time tj+1 is determined as q̇k(tj+1) =

(qk(tj+1)− qk(tj)) /∆t.

The EOM are solved using the Newton-Raphson method, i.e.

J∆q = f , (3.42)
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where f is a vector of size ndof, the k-th component of this vector can be com-

puted from Eq. 3.41, and J is a square matrix representing the Jacobian for

Eq. 3.41. The (k, i)-th element in the Jacobian matrix is

Jki = ∂fk
∂ζi

= mk

∆t2 δki + ∂2EE

∂qk∂qi
− ∂F ext

k

∂qi
, (3.43)

where δki represents Kronecker delta, the terms are gradient of inertia, elastic

forces, and external forces, respectively, in the order shown in Fig. 3.41. Well-

documented evaluation of the gradient of the elastic energy (∂EE
∂qk

) as well as its

Hessian ( ∂2EE
∂qk∂qi

) can be found in Jawed et al.[83] and Bergou et al.[78].

3.4.2.4 Remarks on algorithm

Next, we summarize the novelty of our algorithm for simulating a robot with

multiple flagella described above. Note that solving Eq. 3.42 is the most com-

putationally expensive part of the entire simulation procedure. It is crucial to

notice the sparsity of the Jacobian matrix, J, and exploit its sparsity during the

solution process[133], which helps reduce the computation cost. If the struc-

ture to be simulated is a single elastic rod (unlike a network of rods in this

paper), the Jacobian is banded, and the time complexity of this algorithm is

O(N)[78]. However, the Jacobian in this paper is not banded due to the pres-

ence of the joint node x2 in Figs. 3.3(a)(c). Referring to Fig. 3.3(b), the entire

structure is a combination of stretching springs (e.g., one stretching spring is

between xk and xk+1) and bending-twisting springs (e.g., one bending-twisting

spring is between xk−1,xk, and xk+1). The stretching energy of each spring

(Eq. 3.33) only depends on six DOFs (nodal coordinates of two nodes). For

the stretching spring on edge ek, these DOFs are xk and xk+1. The gradient

vector
(

∂
∂q

[
1
2EA

(
ϵk
)2
∥ēk∥

])
has only six non-zero terms and the Hessian ma-

trix
(

∂2

∂q∂q

[
1
2EA

(
ϵk
)2
∥ēk∥

])
has only 6× 6 non-zero terms. As for the bending

and the twisting energies of each spring (Eqs. 3.37 - 3.39), they are only de-
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pendent on eleven DOFs, i.e. xk−1, θ
k−1,xk, θk, and xk+1 in case of the spring

at xk in Fig. 3.3(b). As a result, the gradient vector and Hessian matrix corre-

sponding to these two energies contain only eleven and 11× 11 non-zero terms,

respectively. The complete expressions for the gradient and Hessian terms are

available in works[73, 83, 134]; the coding implementation can also be found

in open-source repositories[103, 134, 110].

Last but not least, a crucial contribution of this study is the observation that

the actuation of the robot, e.g., the rotation of the motor, can be readily ac-

counted for in the framework above by updating the undeformed configurations

with time. Normally, the undeformed configuration of a structure is fixed and

assumed to remain constant throughout the simulation. The strains in unde-

formed configuration (e.g., κ̄(1)
k , κ̄

(2)
k , τ̄k in Eqs. 3.36a, 3.36b, and 3.39) are

used in calculation of elastic energies, their gradient (i.e. elastic forces), and

Hessian. However, in this class of robots, the rotation of the motor causes the

undeformed twist at the head node (x1) to vary with time. At each time step

tj, the robot is actuated by updating the undeformed twist of the first node

according to the rotational speed of the motor, ωT :

τ̄0(tj) = ωT tj. (3.44)

This actuation causes the rotations of the head (ωh) and the flagella (ωt) along

opposite directions such that |ωT | = |ωh|+ |ωt|. The total rotational speed, ωT , is

a control parameter in this study while the other one is the number of flagella,

n.

3.4.3 Physical parameters

The following session will illustrate how we vary the robot design and experi-

mental setup to realize designs 1 and 2. Remember that design 1 corresponds to

the phenomenon that the propulsive speed of the robot decreases as the num-
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ber of flagella increases, whereas design 2 reverses this phenomenon. Because

the robot designs utilized in these two designs are different, we will provide the

geometric and material parameters of the robots during experiments as follows.

Hereafter, if we do not specify which design the parameters apply to, they apply

to both. The number of flagella is n = 2 or 3 and each flagellum has a length of

L = 0.111 m (design 1) and L = 0.089 m (design 2), a radius of r0 = 3.2 mm, a

density of 1000kg/m3 (which is used to compute mi in Eq. 3.41), a Young’ mod-

ulus E = 1.2 × 106 N/m2, and Poisson’ ratio ν = 0.5 (incompressible material).

Referring to Fig. 3.3, the radius of the robot head is Rh = 0.02 m (design 1)

and Rh = 0.015 m (design 2), and the diameter of 3D-printed circular plate is

Lp = 0.04 m (design 1) and Lp = 0.03 m (design 2). Recall that parameters

C1, C2 and µ in Eqs. 3.25 and 3.27 are fitting parameters and will be fitted

later in Section 3.6.3.1. The time step used in this paper is ∆t = 10−2 s and the

length of each edge on flagella (in undeformed state) is ∥ēk∥ = 4.11 mm. Con-

vergence studies were performed to ensure that the size of temporal and spatial

discretization (∆t, ∥ēj∥) has negligible impact on the simulation performance.

3.5 Experimental Design

As the flagellated locomotion is an intricate interplay between the elasticity of

the flagella and hydrodynamic loading from the surrounding GM, our experi-

ments considered both the robot design and selection of GM for propulsion. The

robot is placed inside a transparent cylindrical tube filled with GM as shown

in Fig. 3.4 (a). Before finalizing the cylindrical tube as the container, we ini-

tially placed the robot at the midline of the height in a rectangular tank of

50×50×40cm or a circular tube with a radius of 25mm, but the robot moved

closer and closer to the surface of the GM because of a drag-induced lift[6]

though the robot was manufactured as symmetrically as possible.
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Figure 3.4: The compositive perspective of the experimental system for design
2. The one for design 1 can be found as Fig. 2 in our previous work[125]. Here,
(a) the robot maneuvers inside the GM, which is contained inside a transparent
cylindrical tube. (b) the robot is comprised of n = 2 flagella and a conic head.
(c) A circular 3d-printed plate bridges the flagella with the head. The head
consists of three components: (d) chrome steel bearing balls, (e) batteries and
(f) a motor.

3.5.1 Robot structure

Given that Euler-Bernoulli beam theory in Section 3.4.1 predicts the presence of

designs 1 and 2, experiments were performed to realize the prediction. Similar

to the compact and lightweight robot used to realize design 1 (see Fig. 2 in our

prior work[125]), the photograph in Fig. 3.4(b) depicts our robot for design 2

realization, which is propelled by n soft elastic flagella. It consists of four dis-

tinct components: multiple straight elastic flagella, Fig. 3.4(c) one 3D-printed

circular plate attached to the motor shaft that protrudes from the robot head to

hold flagella, and a head embedded with Fig. 3.4((d)) eight steel bearing balls

(G25 Chrome Steel-AISI 52100) with an approximate diameter of 7.74 mm and

mass of 2.06 grams, Fig. 3.4((e)) two 3.7V 200mAh rechargeable 502025 LiPo

batteries (from Du litter energy battery), and Fig. 3.4((f)) one DC geared motor

(from uxcell) with a nominal voltage of 3V, a power output of 0.35W, and a stall
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current of 0.55A. Inspired by natural creatures such as scorpions, snakes, and

sand lizards, which have heads that are not spherical but more triangular, the

head of our robot is designed as a cuboid (see Fig. 2 in Du et al.) or nose cone

(see Fig. 3.4(b)). According to Euler-Bernoulli beam theory-based analyses, il-

lustrated in Section 3.4.1.2, a smaller ωh is advantageous for the realization of

design 2. As a result, compared to the previous cuboid head design, the head

in Fig. 3.4(b)) has not only a different shape but also higher inertia and a more

frictional surface. Metal balls in Fig. 3.4((d) are added to increase the inertia.

Both head shapes contribute to the fluidization of the GM in front of the robot.

To fabricate the elastic flagella, we applied the molding and casting techniques

developed by Lazarus et al.[135] and Miller et al.[108]. The silicone-based rub-

ber (vinylpolysiloxane from Elite Zhermack) injected into a PVC tube (e.g., from

VWR International) mold and the inner and outer diameters of the PVC tube are

the same as in our previous work[125], 3.175 and 6.35 mm. The radius of elastic

flagella can be varied by using PVC tubes with different inner and outer diam-

eters, allowing our robot platform to be effortlessly scaled up or down. The

relationship between n and robot speed v is investigated in detail and will be

explained in Section 3.6.1.

The spinning soft flagella propel the robot at a rotational speed of ωt. Since

the torque is system-balanced, the head is then actuated at a rotational speed

of −ωh. The control parameter is the rotational speed of the flagella relative

to the head, ωT = ωt + ωh. To vary ωT , we replaced the geared motors while

maintaining the other components the same instead of adding an encoder, which

would significantly increase the robot size. The size and weight of all the motors

are almost the same, (15-17) × 12 × 10 mm (L×W×H) and 13-15g even if

they supply different ωh. When necessary, we added electrical tapes around

the motor to account for the small differences in size and weight for different

motors. Moreover, the value of ωt is proportional to the battery voltage and
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will decrease when the voltage drops. Subsequently, to maintain a constant ωt,

we fully charged the batteries before each experiment and recharged them after

each approximately ten-minute experimental trial.

3.5.2 Granular medium

A granular medium has to be chosen to complement the untethered flagellated

robot design. Too much internal friction between granules prevents the robot

head from fluidizing the granules in front and propelling forward, while too little

friction results in insufficient flagellar propulsion. Internal friction during loco-

motion is correlated with the phase transition of GM from solid to fluid, which

is controlled by temperature and volume fraction (VF)[129]. The less effort re-

quired to alter the VF of GM, the more beneficial it is for studying the locomotion

in GM. Apart from the reason mentioned above, we chose gel soil water crystal

beads (from EBOOT) as the GM for their transparency. Robotic performance,

e.g., the robot position and the rotational speeds of head and flagella, could be

viewed outside the medium using a traditional digital camera (Nikon D3400).

The beads had a diameter of 2.5 mm when dried and df = 9.4 ± 0.4 mm when

completely saturated with water. The size of beads is controllable by adjust-

ing the time they are submerged in water and is reversible after dehydration.

During experiments, the robot for design 1 ran in the GM with df = 9.4 ± 0.4

mm whereas the one for design 2 ran in the GM with df = 5.2 ± 0.4 mm (see

Fig. 3.4(b)). The corresponding VF values were approximately 0.52 and 0.54. In

the former case, v decreases as n decreases (design 1), while in the latter case,

the converse (design 2) is true. Throughout all experiments in designs 1 or 2,

the temperature variation of GM is kept to a maximum of 0.5 degrees, and the

granule configuration, including size, density, and homogeneity, is maintained.
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3.5.3 Locomotion in granular medium

We used a transparent acrylic cylindrical tube (from FixtureDisplays, Amazon)

with an inner radius of 53 mm and an axial length of 1220 mm as the reser-

voir for the GM to conduct the locomotion experiments. The tube was filled

with GM and placed horizontally, perpendicular to the direction of gravity. Be-

fore each experiment trial, we placed the robot at one end at the center of the

cross-section of the tube. Since the force applied by the GM on the robot in

the cylindrical tube is axially symmetric, the confinement effect of the relatively

close bounding wall is canceled out. As the robot was positioned at the center

and thus surrounded by compact granules, the drag-induced lift[6] was sup-

pressed. Hence, the robot actuated by the rotating flagella would move in GM

along a roughly straight line. The video camera captured this movement at a

frame rate of 29.98 fps. In addition, both the head and flagella were marked

with markers of a different color than the corresponding robot components. For

instance, as shown in Fig. 3.4(b), a black marker was attached to the yellow-

colored head, and a red marker was attached to one of the dark green colored

elastic flagella. Together with the GM’s transparency, this operation ensured the

accuracy of counting the rotational speeds of the robot head (ωh) and flagella

(ωt) and locating the position of the robot, s in recorded experimental videos.

3.6 Results and discussion

Recall that there are two control parameters in our study, the total rotational

speed of the motor embedded in the head, ωT , and the number of flagella, n. As

shown in Fig. 3.1, when the motor is powered on, the actuation from the motor,

ωT , is split into a constant rotational speed of the head, ωh, and flagella, ωt, and

the relationship ωT = ωh + ωt is always satisfied (ωT , ωh, and ωt are all non-

negative values). Because the system is torque-balanced, the head and flagella

rotate in opposite directions. The net propulsive force is the residual of the
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propulsion generated by flagellar deformation (with the deflection w) and the

drag on the head and flagella from the GM, propelling the entire robot forward

(along with −y direction) at speed v as illustrated in Fig. 3.2. In this section, we

display the result comparison among the experiments and beam theory-based

and DER-based numerical simulations. Since there are two designs, the sections

below cover two sets of fitting parameters, experimental data, and numerical

results.

3.6.1 Speed of the robot

The speed of the robot is the rate of change of its position with respect to the

corresponding time interval, i.e. v = ∆s
∆t . Except in some cases where sometimes

the position of the robot remains unchanged (and “jamming" happens) when

the number of flagella is large (e.g., n = 4 and n = 5), the position of the robot

increases proportionally with time. Hence, v is a constant throughout each ex-

periment trial. Since we apply RFT to model the hydrodynamic forces onto the

robot from the GM, periodic “jamming" phenomenon cannot be captured by our

simulator. We focus only on robots with n = 2 and n = 3 flagella that maintain a

constant v over time. However, “jamming" (i.e. the viscosity of the GM in front

of the head increases) can be effortlessly modeled as a function of the robot

configuration and integrated into the DER-based simulator. We exhibit experi-

mental results in Figs. 3.5(a)(b) (design 1) and (c)(d)(e)(design 2). To obtain

each data point ((ω̄T , v̄) in Fig. 3.5(a)(e) and (ω̄T , ω̄h) in Fig. 3.5(b)(d) where

v̄ = vηpL
4/(EI) and ω̄h = ωhηpL

3/(EI) ), we randomly selected three separate

one-minute sequence from every ten-minute experimental trial, repeated the

operation for three different experimental trials, processed the data for every

one-minute sequence, and calculated the average and variance (of nine val-

ues). Notice that there are no data points between ω̄T = 0 and ω̄T ≈ 200 in

Figs. 3.5(a)(b) and ω̄T = 0 and ω̄T ≈ 18 in Figs. 3.5(c)(d). This is because we
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observed from experiments that if ωT is below a threshold (ωsT ), the robot would

stay stationary (v = 0) but started to move continuously otherwise. The thresh-

old changed depending on the robot design, such as the shape, surface friction

and inertia of the robot head and flagellar length. For example, ωsT ≈ 50 rpm

(ω̄T ≈ 200) for the robot used in design 1[125] while ωsT ≈ 33 rpm (ω̄T ≈ 18)

for the robot in design 2.

Note that the robots for designs 1 and 2 have distinct characteristics, such

as the length of flagella L, and all data in Fig. 3.5 normalized and hence di-

mensionless. Normalization involves design parameters, L for example. As a

result, though the ranges of ω̄T in Fig. 3.5(a)(b) and (c)(d) are seemingly dif-

ferent, they really overlap quite a bit (ωT = 0 − 250 rpm in Fig. 3.5(a)(b) and

ωT = 0 − 100 rpm (Fig. 3.5c)(d)). To keep the same number of data points,

and make ωT low enough for Euler-Bernoulli beam theory to apply, we did not

include any additional data in Fig. 3.5(c)(d).

3.6.2 Parameter fitting for simulations

Next, we will show the DER-based and beam-based numerical simulation re-

sults for locomotion modeling. Recall that C1 (in Eqs. 3.25 and 3.23) and C2 (in

Eqs. 3.27 and 3.24) are two fitting parameters to account for the shape and sur-

face roughness. Additionally, µ, the constant used to quantify the body-granule

friction coefficient, is the third fitting parameter. As detailed next, C1, C2, and

µ in both designs 1 and 2 were generated from experimental data of 2-flagellar

locomotion, and the same values were used in simulations to predict 3-flagellar

locomotion. The predicted outcomes were compared to the corresponding ex-

perimental data and validated the fitting process.

The normalized total rotational speed of motor, ω̄T , compares the period of

angular rotation to the elasto-viscous relaxation time, T̄ = ηpL
4/(EI), where

EI is the bending modulus of the flagella and ηp is the drag coefficient along the
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Figure 3.5: Comparison among the experimental data, DER-based simulation
results and nonlinear Euler-Bernoulli beam(NLB)-based framework prediction.
(a) (c) The plot of normalized robot movement speed v̄ versus normalized
total rotational speed of the robot ω̄T ; (a) Comparison of experimental data,
DER-based simulation results and beam-based calculation in design 1, (c) com-
parison of experimental data and DER-based simulation outcomes of design 2,
(e) beam-based framework prediction of the appearance of design 2 after point
D; (b)(d) The plot of normalized rotational speed of the robot head ω̄h versus
normalized total rotational speed of the robot ω̄T ; (b) Comparison of experi-
mental data, DER-based simulation results and beam-based calculation in de-
sign 1, (d) comparison of experimental data, DER-based simulation outcomes
and beam-based framework prediction result of design 2.

perpendicular direction [131], i.e. ω̄T = ωTηpL
4/(EI). Similarly, the rotational

speed of the head is normalized as ω̄h = ωhηpL
4/(EI) and the velocity of the

robot is normalized as v̄ = vηpL
3/(EI). In Figs. 3.5(a)(b) (for design 1), we

plot the normalized speed of the robot, v̄, versus the normalized total rotational

speed of the motor, ω̄T and normalized rotational speed of the head ω̄h versus ω̄T ,

respectively. All the experimental data, DER-based and beam-based simulation

results for n = 2 and n = 3 are shown in the figures. The experimental data (v̄

vs. ω̄T and ω̄h vs. ω̄T ) for n = 2 were adopted to determine the best fit values
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of the fitting parameters: C1 = 2.420, C2 = 0.039 and µ = 6.828 (for design

1). These parameter values were then applied into the numerical simulators to

simulate the locomotion performance of n = 3. In design 2, the same technique

was applied in Figs. 3.5(c)(d) to find the fitting parameters that minimize the

fitting error between experimental and DER-based simulation results : C1 =

28.750, C2 = 0.938 and µ = 2.125 (for design 2). Figs 3.5(a)(c) demonstrate

a high degree of agreement between experiments and DER-based simulations.

The robot designs for designs 1 and 2 are distinct, and the relevant physical

parameters were detailed in Section 3.4.3.

The following modeling assumptions can partially cause the slight disparity

between the experimental and simulation results:

• In this fluid (i.e., the granular medium) structure (i.e., the robot) interac-

tion modeling of robot locomotion, we assume that RFT can characterize

the drag from the GM (the fluid).

• The structure model (DER) assumes that the flagella are infinitesimally

thin elastic rods.

• It is assumed that the drag force acting on the head is considered to be

linearly proportional to the velocity, and torque on the head is linearly

proportional to its angular speed.

In addition, inevitably, there are experimental errors, structural defects intro-

duced during fabrication, for instance. Nevertheless, the reasonable consistency

between experiments and simulations suggests the validity of RFT in this con-

text.

3.6.3 Speed vs. robot geometry

To quantify the effect of geometrical design, e.g., the number n and length L of

flagella, we perform a parameter sweep along the angular velocity to systemat-
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ically study the mechanical response of robots in both designs.

3.6.3.1 Speed vs. number of flagella

After performing the first round of experiments and data processing, we ob-

served a counter intuitive phenomenon from Fig. 3.5(a) that the robot with two

flagella (n = 2) moved faster than the one with three flagella (n = 3), at the

same value of ω̄T . Moreover, the relationship between v̄ versus ω̄T is nonlinear.

We then used the optimal set of fitting parameters described in Section 3.6.2 to

perform the beam-based framework calculation; the results ((v̄ vs. ω̄T and ω̄h vs.

ω̄T )) are plotted in Figs. 3.5(a)(b). We denote points A and B in Fig. 3.5(a) as

the intersection of beam-based and DER-based simulation results for n = 2 and

n = 3 in design 1, respectively. As can be observed, the beam-based simulation

results are close to DER-based simulation results when ω̄T is less than the value

at point A (n = 2) and point B (n = 3), but deviate in other cases. All these

observations indicate the significant flagellar deformation and the tight coupling

between the head and flagella.

Nonetheless, the beam-based mechanics analysis framework in Section 3.4.1.1

tells us that if there is no head or the head is fixed along the x-axis (in Fig. 3.2),

Fp will increase proportionally to the increase in n. The propulsive speed of

the robot, as illustrated in Fig. 2, is the result of a complex battle between the

projection of vt along −x (propulsion) and the sum of Fp in Eq. 3.23 and the

projection of vp along −x (friction force). Section 3.4.1.2, on the other hand,

elucidates that the effect induced by the head is one of the reasons for the differ-

ence between designs 1 and 2. Notice that ω̄h occupies more than 80% of ω̄T in

Fig. 3.5(b), indicating the majority of the increment in ω̄T is spent growing ω̄h.

As a result, to achieve design 2, which is predicted by the beam-based frame-

work, we have to slow down the rotational speed of the head, ωh. Referring

to Eq. 3.24, this suggests that while the torque keeps the same, the product of
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Figure 3.6: Comparison between DER-based simulation results and Eu-
ler-Bernoulli beam-based framework prediction in terms of flagellar number and
length. (a)(b) The plot of robot movement speed v̄ versus total rotational speed
of the robot ω̄T ; (a) corresponds to design 1, while (b) corresponds to design 2.
In the abbreviated legend, “D" stands for DER-related results and “B" represents
results from the nonlinear beam theory-based framework; the number follow-
ing “D"/“B" represents the length of each flagellum in millimeters(mm), “n2"
denotes two flagella and “n3" denotes three flagella. For example, “D130n2"
stands for the results of a DER-based simulation of a robot with two 130mm
flagella.

C2 and µ should be larger. As shown in Fig. 3.5(d), the ratio of ω̄h to ω̄T in

design 2 drops to around 55%. Meanwhile, the product of fitting parameters

C2 and µ for design 2 is greater than the product for design 1 as mentioned in

Section 3.4.3, which makes physical sense and highlights the predictive capa-

bility of our beam-based framework to help with design and motion prediction.

Section 3.5.1 details how this was accomplished by updating the robot design in

design 2 relative to the one utilized in design 1. We performed experiments with

the updated robot design and the results are shown in Figs. 3.5(c)(d). Note that

all of the results that pertain to beam theory in Fig. 3.5 are NLB w/o head, as

illustrated in Section 3.4.1.2. As mentioned in the last session, when n equals

two, the parameter fitting technique was leveraged to match the experiments

and simulations. Point C in Fig. 3.5(c) stands for the conjunction of DER-based

simulation results of n = 2 and n = 3. Experimental data point out that a
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two-flagellar robot moves slower than a three-flagellar robot while all other pa-

rameters remain constant. There is no evident difference in v̄ between n = 2

and n = 3 simulation results for values of ω̄T smaller than the value at point

C, which was captured by experiments. However, beam-based prediction does

not show design 2 in Fig. 3.5(c) but it demonstrates design 2 when we increase

the range of ω̄T as shown in Fig. 3.5(e). Furthermore, our goal of reducing

the proportion of ω̄h taken from ω̄T is verified in Fig. 3.5(d). In Fig. 3.5(e),

we display the beam-based framework predictions with the fitting parameters

C1 = 28.750, C2 = 0.938 and µ = 2.125 plugged in. Here, D represents the

watershed point, beyond which the robot with n = 3 moves faster than the

robot with n = 2 and vice versa. The beam-based prediction follows the same

trend with the DER-based simulation in Fig. 3.5(c) even though the watershed

points are drastically different. Also, the magnitudes of v̄ and ω̄h predicted by

the beam-based framework are a lot larger than those obtained from experi-

ments and DER-based simulation. This further supports our assertion that robot

locomotion involves large flagellar deformation and close interaction between

the head and flagella. In summary, the simple beam-based analytical framework

qualitatively captures the relationship between the speed of the robot and the

number of flagella, though not quantitatively.

One more thing that needs our attention is the nonlinear increment of slope

in Fig. 3.5(a). Both slopes for n = 2 and n = 3 initially increase in magnitude

until they reach a point after which they begin to decrease in magnitude. We

refer to the point for n = 2 as point E and the one for n = 3 as point F . The

points E and F are conspicuous because, at these points, the unit magnitude

increase in ω̄T turns into the steepest increase in v̄, indicating the maximum

efficiency of the robot locomotion is reached. The same phenomenon happens

in design 2 (see Fig. 3.5(c)). Last but not least, point E is near point A and F

is in the neighborhood of point B. This could mean that an increase in large
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flagellar deformation implies a decline in locomotion efficiency.

3.6.3.2 Speed vs. flagellar length

As previously stated, the data in Fig. 3.5 has been normalized. To help readers

visualize the physical scenarios, we plot the simulation results from DER and

NLB in Fig. 3.6, which depicts the relationship between the speed of the robot v

in terms of each flagellar length, L, and the total rotational speed of the motor,

ωT . As illustrated in Fig. 3.6(a)(design 1), DER demonstrates that when the

number of flagella, i.e. n is fixed, the distinction between DER and nonlinear

beam theory (NLB) becomes more discernible as flagella become longer. When

ωT is small, DER results indicate that v grows as the value of L increases, but

this trend breaks down when ωT is big. In comparison, NLB behaves more con-

sistently and linearly, i.e. when n is constant, v increases with the growth in L.

These observations make sense in light of the fact that we previously acknowl-

edged that DER is capable of capturing the nonlinearity of flagellar deformation,

whereas NLB is not. The DER results displayed in Fig. 3.6(b)(design 2) show

that as L increases, the difference between v of n = 3 and n = 2 does not al-

ways increase, but in the range of ωT presented, v of n = 3 is greater than v of

n = 2. In comparison to Fig. 3.5(c), NLB predicts the appearance of design 2

after a threshold is reached. However, this threshold becomes smaller when L

is larger. In reality, we tested designs 1 and 2 on robots with n = 4 and n = 5

flagella. Nonetheless, “jamming" happened from time to time randomly. Hence,

only simulation data are presented here.

3.6.4 Deflection of beam end

In the last session, we state that the simulation results from the beam-based

framework (NLB w/o head design in Section 3.4.1.2) are qualitatively compat-

ible with both experimental and DER-based simulation results. We also em-

phasize the importance of substantial flagellar deformation in relation to the
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performance of robot locomotion. Consequently, in Fig. 3.7, we compare beam-

based deflection in three regimes, LB, NLB, and NLB w/o head as described in

Section 3.4.1.2. The simulation parameters are identical to those for design 1

in Section 3.4.3 and to the fitting parameters for design 1 in Section 3.6.2. As

seen in Eq. 3.18, the effect of the head in the flagellar deflection is ignored in

regime LB, so the rotational speed of the flagella, ωt is chosen as the indepen-

dent variable. To see more noticeable difference in flagellar deflection among

three regimes, we picked the scenario with larger flagellar deformation, design

1, and the corresponding fitting parameters to compute ωh in NLB and NLB w/o

head regimes. As seen in Fig. 3.7, when ωt is relatively small (ωt ≲ 5 rpm

and ω̄T ≲ 20), the flagellar deformation drops to the LB regime introduced in

Section 3.4.1.2 and the difference in deflection of the end of the beam (flag-

ella) among the three regimes is subtle (≲ 5%). Moreover, as can be observed

in Fig. 3.7, the deflection of the end of the beam in regime NLB w/o head is

almost always equal to that in NLB throughout the range of ω̄T . This corrob-

orates our statement that the head velocity-induced effect could be ignored in

Section 3.4.1.2.

3.7 Conclusion

In this study, we designed a low-cost experimental setup, an untethered robot

actuated by multiple soft flagella moves in granules. Meanwhile, we developed

two numerical simulators, one based on Euler-Bernoulli beams and the other on

discrete differential geometry (DDG) framework, to simulate the performance

of the articulated locomotion in granular media (GM). Both numerical tools

use resistive force theory (RFT) to model the drag force exerted by the GM

on the robot and Stokes’ law to model the external force/moment applied to

the robot head by the GM. Initially, experiments unveiled a counterintuitive

phenomenon: the robot’s speed decreases as the number of flagella increases
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1 and to the fitting parameters in Section 3.6.2 for design 1.

(design 1). However, the beam-based simulator predicts the existence of the

converse case (design 2) on the condition that the rotational speed of the head

is suppressed to be zero. The robot design was then modified to slow down the

rotational speed of the robot head.

The DDG-based simulator models the robot into a composition of Kirchhoff

elastic rod and discretizes it into a series of mass-spring systems. As a conse-

quence, the elastic energy of the robot structure is the linear sum of the discrete

elastic energies associated with each spring, which include the stretching and

coupled bending and twisting energies. At each time step, the equations of

motion formulated can be summarized as follows: at each degree of freedom

(DOF), the sum of elastic forces (i.e., the negative gradient of elastic energies)

and external forces equals the lumped mass multiplied by the acceleration of

that DOF. Especially, the actuation of the robot (i.e., the rotational speed of the

motor) is modeled by a time-varying natural strain (twist) at the node standing

for the head. This method enables us to simulate the robot locomotion fully

implicitly.
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Both beam-based and DDG-based frameworks capture designs 1 and 2 suc-

cessfully. Although the beam-based simulator can quantify only the trend in

both designs while the DDG-based method accurately reproduces experiments,

it is still exhilarating because the simple beam theory-based analysis depicts

the complicated locomotion system. Simultaneously, the discrepancy between

beam-based prediction and experiments indicates the large flagellar deforma-

tion and nontrivial coupling between the head and flagella. Additionally, both

simulators, validated experimentally, shed light on the highly nonlinear func-

tional relationship between the locomotion performance, such as speed and ef-

ficiency, and its physical parameters, such as the number of flagella. The non-

linear dependency of the speed of the robot concerning the rotational speed of

the motor necessitates the development of a design tool for optimal control of

this class of robots. Last but not least, thanks to the simplicity of the beam-

based analysis framework and the computational efficiency of the DDG-based

simulator, they can be exploited to perform parametric studies and identify the

optimal design and control this class of articulated robots as long as they lo-

comote through the GM. We chose a smooth and soft GM with a large particle

diameter.

3.8 Summary and Outlook

We have introduced a simple analytical framework based on Euler-Bernoulli

beam theory to study the dynamics of rather complicated untethered robot with

multiple soft flagella. In the meantime, we presented simulation results from

a numerical framework that is based on DDG, given in Ch. 2. The qualitative

system performance was successfully captured by the simple analytical frame-

work, which serves as the ground truth for validating the results acquired from

DDG-based simulations. One thing to emphasize is that such a simple analytical

framework is able to anticipate the existence of two trends in the performance of
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the robot: alternative robot head designs can sometimes boost robot speed with

an increase in the number of flagella and reduce robot speed in other situations.

The simplicity of this analytical framework can be adaptable to investigate the

locomotion in viscous fluids as well. Moving forward, it would be interesting to

apply this method to predict limbed locomotion of soft robots in 3D.

Also, scaling power requirements for locomotions moving in harsher GM-like

sand will be an interesting challenge.
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CHAPTER 4

Simple flagellated soft robot framework for

locomotion comprehension near air-liquid interface

A wide range of microorganisms, e.g. bacteria, propel themselves by rotation of

soft helical tails, also known as flagella. Due to the small size of these organ-

isms, viscous forces overwhelm inertial effects and the flow is at low Reynolds

number. In this fluid-structure problem, a competition between elastic forces

and hydrodynamic (viscous) forces leads to a net propulsive force forward. A

thorough understanding of this highly coupled fluid-structure interaction prob-

lem can not only help us better understand biological propulsion but also help

us design bio-inspired functional robots with applications in oil spill cleanup,

water quality monitoring, and infrastructure inspection. Here, we introduce

arguably the simplest soft robot with a single binary control signal, which is ca-

pable of moving along an arbitrary 2D trajectory near air-fluid interface and at

the interface between two fluids. The robot exploits the variation in viscosity to

move along the prescribed trajectory. Our analysis of this newly introduced soft

robot consists of three main components. First, we fabricate this simple robot

and use it as an experimental testbed. Second, a discrete differential geometry-

based modeling framework is used for simulation of the robot. Upon validation

of the simulation tool, the third part of this study employs the simulations to

develop a control scheme with a single binary input to make the robot follow

any prescribed path.

We introduce the motivation in § 4.1, followed by relevant literatures in
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§ 4.2. We provide details on experiments and simulations in § 4.3. In § 4.4,

we list the relevant physical parameters that affect the motion of the robot.

Next, a simple control scheme that needs a single binary input for the robot to

pursue the desired motion path is given in § 4.5. Eventually, § 4.6 concludes the

paper and points out the potential future work. The content of this chapter has

appeared in Ref. [66].

4.1 Motivation

Inspired by the inherent structural compliance of living creatures, soft swimming

robots are designed to be lifelike and better emulate the movement of creatures

in nature. Such soft robots often exploit structural deformation for functional-

ity. Propulsion of bacteria by rotation of flexible tail-like flagella [16] is a source

of inspiration for soft robot design. Flagella-propelled bacteria have been cited

to be the “most efficient machines in the universe” [136] as they can swim at

speeds up to tens of body lengths per second. Interestingly, large deformation

and buckling in flagella can be used to control the swimming direction of bac-

teria [1]. Bacteria were found to swim in circles near close boundaries [127],

walls for example. The underlying cause was found to be the different drag coef-

ficents on the sides closer to and further from the boundary. Bacteria were then

discovered to show circular motion as well near the air-fluid interface [137].

We aim to develop functional robot with soft flagella. While running the robot

in viscous fluids and it is challenging to make the robot neutrally buoyant, we

found that the robot always trying to turn rather than moving straight. Finally,

it turned out that it was due to the uneven distribution of the viscosity of viscous

fluids. This discovery benefited from our modeling and its integration into fast-

running soft robot simulator, which will be illustrated in details in this chapter.

In this chapter, we adopt this paradigm of using deformation for functional-

ity in soft structures. The number of flagella on our flagellated robot platforms is
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variable effortlessly. Not only can these platforms demonstrate exceptional and

adaptable mobility for applications in biologically-inspired field robotics, but

they can also serve as a testbed for elucidating the locomotion of soft biological

species. Due to the existing limits in simulating the dynamics of soft material

systems, the design and operation of soft robots are frequently based on ardu-

ous trial and error, and it can be challenging to reconcile qualitative findings

to underlying concepts of kinematics, mechanics, and tribology. Advancement

of the research in this field will considerably benefit from this computational

framework for generic soft robot modeling that can aid in design, control, and

experimental analysis. The speedy simulator as a tool for users to design practi-

cal cheap robots to function in fluid or granular medium.

The remainder of this chapter is organized as follows. We give relevant

released work in §4.2. After that, in §4.3, we provide details on experiments

and simulations in §4.3. In §4.4, we list the relevant physical parameters that

affect the motion of the robot. Next, a simple control scheme that needs a single

binary input for the robot to pursue the desired motion path is given in §4.5.

Eventually, §4.6 concludes this chapter.

4.2 Literature review

The typical fluid flow around a swimming bacterium is of low Reynolds number,

around 10−4, where the viscous force dominates the inertial counterpart owing

to the small size of bacterial cells. Scallop theorem [62] establishes that a mo-

tion invariant under time reversal cannot achieve net propulsion in this regime.

Flagellar propulsion is a mechanism that overcomes this barrier. A flagellar bac-

terium consists of a cell body and one or more flagella; a rotary motor generates

relative rotation between the cell body and the flagella. This rotation creates a

net propulsive force forward. Typically, bacterial flagella are helical and their

propulsion has been extensively studied [94]. In these studies, the viscosity and
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density of the fluid medium are usually assumed to be constant. However, in

practice, such ideal fluid medium is not feasible. Near the boundary between

fluid and air (or at the interface between two immiscible fluids), viscosity and

density both vary spatially. We will show that this variation in viscosity can be

exploited to build a very simple robot (composed of naturally straight flagella)

that is capable of following any prescribed trajectory near the boundary. Fig. 4.1

shows snapshots of the robot moving along a triangular trajectory. This simple

low-cost robot with a single binary control input can have applications in ocean

oil spill cleanup, water quality monitoring, and pipe inspection. Interestingly,

it has been reported that the motion of flagellated bacteria near air-liquid in-

terface is circular [137]. If the angular velocity of the motor is constant in the

robot introduced in this study, its trajectory is also circular.

v

t = 230s |𝝎𝒕| = 80.33 rpm
|𝝎𝒉| = 63.33 rpm

N= 4, l = 11 cm

t = 0st = 90st = 160s

t = 161s t = 450s

𝝎𝒕

𝝎𝒉

Figure 4.1: Snapshots of the robot (top view) moving along a triangular tra-
jectory. Number of tails N = 4; tail length l = 11 cm; angular velocity of tail
and head is 80.33 and 63.33rpm, respectively. The sign of the angular velocity
is flipped at specific timepoints to achieve the triangular trajectory. Trajectory
design is discussed in Section 4.5.

Due to the simplicity of the robot, it is amenable to miniaturization. A vari-

ety of robots have been developed in microscale for propulsion in marine envi-

ronments. Microscale mobile robot fabrication, such as artificial bacterial flag-
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ella [138, 139], is restricted by the key bottleneck: miniaturization of power

source and onboard actuation. The corresponding control strategies are often

dependent on external magnetic field. While our prototype robot is centimeter-

sized, we use a viscous fluid medium (glycerin) to maintain low Reynolds num-

ber. The findings are mostly presented in non-dimensional form and do not

depend on the size of the system (as long as the Reynolds number is low). In

the future, the simplicity of the proposed robot design can be exploited to de-

velop untethered autonomous micro-robots.

In this work, we develop an economical centimeter-scale, simple-to-assemble,

and self-contained robot comprised of a cylindrical head and a rotating disk con-

taining two or more soft polymeric tails, actuated by the motor within the head.

The motor generates a relative rotation between the head and the tails; there-

fore, the robot head and tails rotate in opposite directions. The magnitude of

the angular velocities are determined by the torque balance of the system. The

rotation leads to hydrodynamic (viscous) forces on the soft tails leading to elas-

tic deformation; this deformation generates a net propulsive force that is used

by the robot to translate in fluid. If the robot is in an infinite fluid bath, the

direction of motion is parallel to the axis of the cylindrical head. However, in

practice, such fluid bath with uniform viscosity and density is not practical. We

exploit this variation and the robot (under constant angular velocity) moves

along a line that is slanted with the axis of the head. Depending on the sign of

the angular velocity, the robot moves clockwise or anti-clockwise along a circle.

By periodically switching the sign of the angular velocity, the robot achieves a

net translation along a straight line. We show that the robot can move along a

straight line simply by switching the angular velocity; a constant angular veloc-

ity lets the robot make a turn. A simple control law is designed where the robot

approximates a prescribed trajectory by a piece-wise linear function. To under-

stand the physical principles, a simulation tool is developed where the structure
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is modelled using the Discrete Elastic Rods (DER) algorithm [78, 83] and the

fluid forces are implemented using Resistive Force Theory (RFT) [92]. We show

that elementary physics can be used to explain the propulsion mechanism of this

robot.

Our contributions are as follows. We introduce a simple untethered soft

robot that exploits variation in viscosity and elastic deformation in its tails to

follow a pre-planned trajectory. A complete framework comprising of experi-

ments, simulations, and controls is described to study the flagellated robot. The

simulation tool is faster than real-time on a contemporary computer and can be

used to generate data to formulate a control strategy. The physics behind the

locomotion is elaborated. The simplicity of the robot and the small number of

moving parts can eventually lead to miniaturization of this robot.

4.3 Methods

5mm

5mm5mm

5mm

(a)

(b)

(c) (d)

(e)

Figure 4.2: Compositive view of the experimental setup. (a) The robot with
n = 4 tails in glycerin (top view). The head is comprised of (b) a DC geared
motor, (c) a battery, (d) a 3D printed circular disc connecting the tails to the
rotating motor shaft, and (e) a microcontroller to control the rotational speed
of the motor.

In this section, we first introduce the framework of our low-cost simple robot

design, consisting of a rigid head and multiple soft polymeric tails, which are

called flagella in reference to the bacterial structure. The motor, which is em-
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Figure 4.3: (a) Circular movement of the robot in glycerin. (b) Trajectories of
the robot head (solid and dashed circles) when the robot starts from the same
place but with different signs of the angular velocity of the motor.

bedded in the head with its shaft protruding out, actuates the tails to rotate

along the long axis of the robot body. A series of experiments using this robot as

a testbed were conducted with the number of tails, length of tails, rotation di-

rection, and speed of head and tails as variables. Our DER-based simulation has

successfully simulated the dynamics of a single rotating flexible flagellum [74].

We therefore aim to leverage the simulation to deepen our understanding of the

hydrodynamics when the robot is near the air-fluid boundary and the robot’s

movement. Through parameter fitting, we match the experimental and simula-

tion results obtained from our DER-based simulator in conjunction with RFT. It

turns out that they match almost perfectly quantitatively.

4.3.1 Robot design and experimental setup

Motion of flagellar bacterial propulsion near the air-liquid interface is circu-

lar [137]. Our experiments are primarily designed to investigate the hydrody-

namics and the movement of soft flagellated robot near the air-fluid boundary

with the tail number, tail length, rotation orientation, head velocity, and tail

velocity all changing. The design of the robot presented in this paper is a proto-

type of an untethered system that integrates a full set of functional elements: a
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palm-sized self-contained robot, low Reynolds number fluid (i.e. glycerin), and

a rectangular tank. It is not yet entirely designed for any specific realistic appli-

cation. Instead, it serves as the starting point for the development of a family of

untethered robots with elastic tails in viscous fluid.

Glycerin with a density of 1.26 g/mL and viscosity µ0 = 1.49 Pa-s at 25◦C is

selected as the fluid medium. The density of our lightweight and compact robot

is slightly less than that of glycerin and it remains submerged near the air-fluid

boundary. The robot in Fig. 4.2 is comprised of a head, multiple elastic tails,

and a 3D-printed plate attached to the motor shaft to hold these tails. The robot

head is a cylinder with a radius of 1.6cm and height of 6cm, which contains in-

side (b) one DC geared motor (uxcell) with 3V nominal voltage, 0.35W nominal

power and 0.55A stall current (c) one 3.7V 200mAh rechargeable 502025 LiPo

batteries, and (e) a 5V, 16MHz adafruit pro trinket. The motor is embedded in-

side the head with its shaft protruding out, and its rotation direction and speed

are controlled by changing the PWM value in the program running in the trin-

ket. The radius of the cylindrical head is R = 1.6cm. Some copper wires are

attached to the outer surface of the robot head to make it balanced horizontally.

During all experiments, the robot’s tails are fully submerged in glycerin while

30% of the head is exposed to the air. In order to count the rotation speed of

robot’s head and tails clearly and conveniently, we stick a colored marker on one

side of the robot’s head and one of its tails. A digital camera (Nikon D3400) is

used to record the robot’s movement from the bird’s eye view with its lens facing

right down. The tails are made from Vinyl Polysiloxane using well established

molding and casting techniques [72]. The Young’s modulus is E = 1.2 MPa [72]

and cross-sectional radius is r0 = 3.2 mm. Since the material is near incompress-

ible (Poisson ratio ν ≈ 0.5), the shear modulus is G = E/3. In order to generate

enough of experimental data for parameter fitting in simulations, we vary the

number of tails, N = 2, 3, 4, 5, and the length of tails, l = 5, 7, 9, 11, 13, 15 cm,
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with a DC geared motor mentioned above actuating the tails with a rated angu-

lar velocity of 150 rpm. Note that the actual angular velocity of the motor varies

depending on the number of tails and is not necessarily 150 rpm, which ensures

a Reynolds number < 10−1.

4.3.2 Experiment trials

Images are extracted from the recorded experimental videos for data processing.

Fig. 4.3(a) shows the trajectories of the tip of the robot head and the tip of a

tail for a constant value of angular velocity of the motor (ω = 143.66 rpm). The

rotation directions of the robot head and tails around the long axis (i.e. axis

of the cylindrical head) are opposite, as the system is untethered and torque-

balanced. If the magnitude of the angular velocities of the head and the tail are

ωh and ωt, respectively, and the angular velocity of the motor is ω, then |ωh| +

|ωt| = |ω|. The torque on the robot’s head is balanced by the torque on the tails.

As illustrated in Fig. 4.3(a), we also find that the whole robot circles around

the vertical axis that is perpendicular to the air-fluid interface (y-axis in Fig.

4.5(a)) when its motor rotates unidirectionally, clockwise or counterclockwise.

The open circle are the trajectory of the tip of robot tails; these points are fitted

to the solid circle with the cross sign as the center. Similarly, the dashed circle is

the circle fit to the trajectory of the tip of the robot head with the cross sign as

the center.

Next, when we flip the sign of the angular velocity of the motor from the

same initial orientation, the robot turns to circle around the vertical axis in the

opposite direction. Specifically, as shown in Fig. 4.3(b), the solid and dashed

circles are the trajectories of the robot head when the whole robot circles clock-

wise and counterclockwise (about the vertical y-axis), respectively. In both the

cases, the initial orientation is along the dash-dot line. These two circles have

the same radius but do not coincide with each other. To understand this, note
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that the angle, θ, between the long axis of the robot (dashed line in Fig. 4.3(b))

and the tangential direction of the circular trajectory is not 90◦. As a result, if

the tip of the robot’s head starts to rotate from point A and rotates counter-

clockwise along curve AB first and then rotates along curve BC after flipping

the rotation direction of the motor, the robot will move forward and generate

a translational movement. The net translation is the line segment AC. In sum-

mary, periodically switching the angular velocity ω of the robot between positive

and negative values (keeping the same magnitude) results in a net straight-line

trajectory. If the angular velocity of the robot about y-axis is ωyr, the robot will

make a turn by an angle α if the motor’s angular velocity is maintained at ω for

a period of α/ωyr. Note that ωyr is a function of various geometric, material, and

fluid parameters (See Section 4.4). This is where a comprehensive simulation

tool and a physics-based understanding, to be discussed in the next section, can

guide us to develop a control law.

4.3.3 Numerical Simulation
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Figure 4.4: (a) Discrete representation of the soft robot. (b) Three nodes, two
edges, and the associated reference and material frames.

We develop a numerical simulation based on the Discrete Elastic Rods (DER)
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Figure 4.5: (a) Schematic showing drag dF on the cylindrical head when the
head is rotating along its long axis (z-axis). (b) Normalized viscosity as a func-
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R
.

method; a tutorial exposition to DER can be found in Ref. [83]. Since the sim-

ulation framework we developed in this chapter is very similar to the one in

Ch. 2, please refer to § 2.4. The key difference and thus contribution in numer-

ical methods of the present chapter and previous work (§ 2.4) is to model the

effect of open boundary onto the locomotion. In DER, the robot is discretized

into n nodes, as shown in Fig. 4.4(a). There are three nodes (x0,x1, and x2)

on the head and equal number of nodes on each tail (for illustration purposes,

only one leg is shown in Fig. 4.4(a)). It is necessary to have three nodes on the

head to model actuation using a natural twist that varies with time (more on

this later in this section). Two adjacent nodes, xk and xk+1, are connected by

an edge, ek = xk+1 − xk. Three adjacent nodes and the intermediate two edges

form an elastic rod. Partial discretization is shown for illustration purpose only.

O is the center of the robot head while OJ stands for the protruded motor shaft,

JC denotes half of the 3D printed circular disc, and J is the center of the 3D

printed disc.

Fig.4.4(b) is a closeup showing how DER works for the elastic rod comprised

of three nodes (blue, black, and grey dots in the dashed rectangle), xk−1, xk, and

xk+1, and two edges ek−1 and ek where ek = xk+1 − xk (1 ≤ k ≤ N − 1). Each

edge is associated with an orthonormal reference frame, {tk,dk1,dk2}, and an

orthonormal material frame, {tk,mk
1,mk

2}. Both of these frames are adapted,
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i.e. the first director tk is the unit vector along the edge ek. The simulation

moves forward with time taking small steps of ∆t. During the simulation loop,

the reference frame is updated through parallel transport in time. We omit the

details of time parallel transport; Ref. [83] includes a pedagogical introduction

to this method. Since the material frame shares a common director tk with the

reference frame, only a scalar angle θk (see Fig.4.4(b)) is necessary to describe

the material frame. The degrees of freedom (DOF) vector of the robot is then

q = [x0,x1, . . . ,xn−1, θ
0, θ1, . . . , θm−1], where n is the number of nodes and m is

the number of edges. The total number of DOF is ndof = 3n+m.

The core of the simulation is a solver (integrator) of following equations of

motion.

miq̈i = F e
i + F h

i , (4.1)

where mi is the lumped mass at the i-th DOF, qi is the i-th element of the DOF

vector, F e
i is the i-th element of the ndof-sized elastic force vector Fe, and F h

i

is the i-th element of the ndof-sized external (hydrodynamic) force vector Fh.

Hereafter, dot ˙( ) represents derivative with respect to time.

First, we describe the elastic forces. The elastic energy is composed of three

modes: stretching, bending, and twisting. Each component is given by

Es
k = 1

2EA
(xk+1 − xk

ēk
− 1

)2
|ēk|

Eb
k = 1

2EI(|κk − κ0
k|)2 1

lk

Et
k = 1

2GJ(|τk − τ 0
k |)2 1

lk

(4.2)

where EA = Eπr2
0, EI = πEr4

0/4, GJ = πGr4
0/2, |ēk| is the length of edge

ek in the undeformed state, κk is the curvature vector at node xk (related to

the turning angle ϕk in Fig. 4.4(b)) while κ0
k is the undeformed curvature for the

same node, τk is the integrated twist (related to θk+1−θk in Fig. 4.4(b)) while τ 0
k
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represents the natural twist at node xk, and lk = (|ēk−1|+ |ēk|)/2 is the Voronoi

length of the node in undeformed state. Moreover, integrated twist at time ti

can be expressed as τ ik = δθk + τ k(ti) where δθk = θk(ti)− θk(ti−1) and τ k is the

reference twist [78]. The total elastic energy is Ee = ∑
k E

s
k + ∑

k E
b
k + ∑

Et
k.

The elastic force vector is simply Fe = − ∂
∂qE

e.

It is important to note that the elastic stiffness parameters are not the same

throughout the rod. These parameters for the soft tails are described in the

previous section. However, as the head and disc are rigid (OJC portion in

Fig. 4.4(a)), we set the values of EA,EI,GJ on this segment to be very large

so that no deformation takes place.

In order to mimic actuation by the motor rotating at an angular velocity

ω(t), we set the natural twist of the second node (τ 0
1 ) at the beginning of each

iteration to be

τ 0
1 (t) = ω(t). (4.3)

Next, we describe the formulation of the hydrodynamic force (i.e. viscous

drag) vector Fh.

Hydrodynamic force on robot head: The cylindrical head with radius R is

translating with a velocity ẋ1 and rotating about its axis with an angular velocity

of ωh ≡ θ̇0. The hydrodynamic drag on a cylinder (external force on x1 in DER)

can be decomposed into two parts:

F = Fv(ẋ1) + Fω(ωh), (4.4)

where Fv(ẋ1) and Fω(ωh) are the drag forces due to translation and rotation,

respectively. The former quantity is a function of the translational velocity, ẋ1,

of the head while the latter is a function of the angular velocity, ωh.

108



0 50 100 150 200 250
0

20

40

60

80

100

120

140

0 50 100 150 200 250 300
0

20

40

60

80

100

120(a) (b)

Norm. angular velocity of motor, Norm. angular velocity of motor, 

N
o
rm

. 
a
n
g
u
la

r 
v
el

o
ci

ty

N
o
rm

. 
a
n
g
u
la

r 
v
el

o
ci

ty

Exp Sim Exp Sim
ω̄h , N=3
ω̄h , N=4
ω̄yr , N=3
ω̄yr , N=4

ω̄h , N=2
ω̄h , N=5
ω̄yr , N=2
ω̄yr , N=5

Figure 4.6: (a) Experimental and simulation data on ω̄h and ω̄yr as functions
of the normalized angular velocity of the motor, ω̄, at two different values of
the number of tails (N = 3 and 4). This data are used to estimate Ct, Cr, Cyr.
(b) Same data from experiments and simulations but with N = 2 and 5. In
simulations, the estimated values of Ct, Cr, Cyr from (a) were used.

Drag due to the translation on a sphere is given by Stokes’ law as

Fv = −6πµ0Rẋ1, (4.5)

where R is the radius of the spherical object and ẋ1 is the velocity of the object

relative to the fluid. Since the robot head is cylindrical and there is no closed

form expression for drag on a cylinder, we use a numerical coefficient Ct (to be

evaluated through data fitting) to express the drag as

Fv = −Ct6πµ0R ẋ1. (4.6)

For the robot studied in this paper, the viscosity varies along the vertical direc-

tion. Fig. 4.5(a) shows a schematic of the head and x − y − z is the body fixed

frame. The vertical direction y is perpendicular to the air-fluid interface. This in-

terface where the viscosity changes rapidly from µ0 (fluid) to 0 (air) is at y ∼ R.

The fitting parameter Ct in Eq. 4.6 also depends on the functional relationship

between viscosity µ and vertical position y.

Critical to the propulsion of this soft robot is the drag force Fω originating

from this variation in viscosity.
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The viscosity µ is a function of the y-coordinate, i.e. µ = µ̂(y). The specific

functional form of µ does not matter as we will be using fitting parameters. We

pick the following expression for viscosity,

µ = µ0
1

1 + exp
(
k
(
y−h
R

)) , (4.7)

where h is the location (close to the inter-medium boundary) where glycerin

starts to mix with air and k is the “sharpness" of the transition from µ = µ0 to

µ = 0. In Fig. 4.5, we used h = 0.7R and k = 20. Note that Eq. 4.7 is an

analytical approximation to the Heaviside function.

Referring to Fig. 4.5, a small area element dA = Rdθdz on the surface of the

cylinder rotating at an angular velocity of ωh (along the z-axis) is picked. The

magnitude of the force on this infinitesimal element is

dF ∼ µωh Rdθdz, (4.8)

with its direction along negative êθ, which is the unit vector along the tangential

direction. The force along the x axis is

dFx ∼ dF sin θ = µωh sin θ Rdθdz, (4.9)

and the force along the y axis is

dFy ∼ −dF cos θ = −µωh cos θ Rdθdz. (4.10)

The horizontal component (x axis) of the total force on the cylinder with
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length L is obtained by integrating dFx;

Fx ∼
∫ L

z=0

∫ 2π

θ=0
µωh sin θ Rdθdz, (4.11)

=⇒ Fx = −1.403µ0ωhRL. (4.12)

Since we do not know the exact form of µ = µ̂(y), a fitting parameter Cyr is

used and Eq. 4.12 can be reformulated as

Fx = −Cyrωhµ0RL. (4.13)

The vertical component (y axis) of the total force is

Fy ∼ −
∫ L

z=0

∫ 2π

θ=0
µωh cos θ Rdθdz = 0, (4.14)

i.e. there is no vertical hydrodynamic force.

In summary, the hydrodynamic drag on the head (applied on the center of

mass of the head) due to rotation (ωh) is

Fω(ωh) = −Cyrωhµ0RLêx. (4.15)

The hydrodynamic moment on the head (applied on the first edge θ0 in DER)

is

Fω = −Cr8πωhµ0R
3, (4.16)

where Cr is a numerical prefactor (fitting parameter in our study). Note that if

the head was spherical, we would have Fω = −8πωhµ0R
3.

Hydrodynamic force on tails: The hydrodynamic force on the nodes be-

longing to the soft tails is formulated using RFT [92, 100]. The force on node
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Figure 4.7: (a) Prescribed circular trajectory (dashed line) and real path (solid
line) viewed from top. (b) Prescribed rectangular path (dashed line) and the
real path of the robot (solid line). In (a) and (b), position has been normalized
by tail length, l. Corresponding control signals (angular velocity) with time for
(a) circular and (b) square trajectories.

xk (moving with velocity ẋk) is

FRFT = −µ∥ (t · ẋk)tlk − µ⊥[ẋk − (t · ẋk)t]lk, (4.17)

where t is the tangent vector on node xk, lk is the Voronoi length (described

earlier), and µ∥ = 2πµ0/[log(l/r0)− 1
2 ] and µ⊥ = 4πµ0/[log(l/r0)+ 1

2 ] are the RFT

drag coefficients along the tangential and perpendicular directions.

The expressions of the forces in Eqs. 4.4, 4.16, and 4.17 are used to populate

the external force vector Fh of size ndof.

Parameter fitting: As mentioned in Section 4.3.2, the tail length at each tail

number varies from 5 − 15 cm in experiments and we have 6 data-points for a

specific tail number. Now that the hydrodynamic forces on the robot have been

analyzed, there are three numerical prefactors (Ct, Cr, and Cyr) that need to be
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obtained from data fitting. Our fitting strategy is to take the experimental data

for N = 3 and N = 4 tails and find the set of parameters (Ct, Cr, and Cyr) that

result in the best match between experiments and simulations. To evaluate the

fitness of a given set of parameters, we use the following metrics: (i) angular

velocity of the head, ωh and (ii) angular velocity of the robot around the vertical

axis, ωyr. In the experiments, we used the same motor with a full PWM value

signal sent by the microcontroller. As we vary the length of the tails, the actual

angular velocity of the motor, ω, changes. Fig. 4.6(a) presents ωh and ωyr as

functions of ω. All other parameters (except l) are kept fixed.

The best fitting parameter set that realizes the smallest error, 14.8%, between

experimental and simulation results in Fig. 4.6(a) is Ct = 4.0 ± 0.33, Cr =

2.06 ± 0.156, Cyr = 6.0 ± 0.5. After the application of this fitting parameter

set, the predicted simulation results for 2 and 5 tails turn out to match well with

experiments with a 10% error as shown in Fig. 4.6(b). This agreement indicates

that the physics of this robot has been captured using the hydrodynamic model

presented earlier in this section.

We then apply the attained fitting parameters to predict values of ωh and

ωyr when the number of robot tails is 2 and 5, as in Fig. 4.6(b). During the

experiments, even though we use the same motor with a full PWM value signal

sent by the microcontroller, once the tail number and tail length change, the

output torque of the motor will vary as well, causing a change in the actual

angular velocity. This means that our simulator can only generate the same

number of datapoints as experiments to fit both results because there are two

variables changing in the simulation input at the same time, l and ω. As a result,

we only represent the simulation outcome by discrete datapoints in Fig. 4.6.
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4.4 Parameter space

In this section, we list the relevant physical parameters that affect the motion

of the robot. Note that there is an intrinsic time-scale [131] in this problem

µl4/EI. We use this time-scale to normalize various quantities (overbar repre-

sents normalization), e.g. ω̄ = ωµl4/EI is normalized angular velocity of the

motor and t̄ = tEI/[µl4] is normalized time. The set of physical parameters that

describe the system is {Ct, Cr, Cyr, l/R, L/R, l/r0, ω̄, N}; these are the inputs to

our simulation tool. The angular velocity is a function of time. The simulation

outputs the trajectory of the robot with time. In the next section, we will address

the inverse problem where ω̄ has to be computed, given a prescribed trajectory.

The output of the simulation (i.e. trajectory of the robot) when ω̄ is constant

with time can be encapsulated with two parameters: ω̄yr and Ryr/l, where Ryr is

the radius of the circle in Fig. 4.3(b). If the sign of the angular velocity is flipped

every T seconds, the output can be captured by θ (Fig. 4.3(b)) and effective

speed v (distance traveled along a straight line per unit time).

4.5 Control for path planning

In this section, we present two examples of the inverse problem where the tra-

jectory (circle and square) is prescribed and the angular velocity of the motor

has to be computed. All the physical parameters are the same as those in Sec-

tion 4.3: {Ct, Cr, Cyr, l/R, l/r0} = 3.0, 2.8, 2.0, 6.875, 34.375. The intrinsic time-

scale is µ0l
4/(EI) = 2.207 seconds. Number of tails is N = 2.

In the first example in Fig. 4.7(a), the robot starts from point A and needs

to follow a circular path (the radius of this circle is not equal to Ryr). Here,

we introduce one of the simplest possible control schemes (Fig. 4.7(c)) where

the angular velocity of the motor is either ωH or ωL (ωH = −ωL). We rather

arbitrarily choose ωH = 10 (and ωL = −10). The remaining task is to compute
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the timepoints (t1, t2, . . . in Fig. 4.7(c)) at which the angular velocity has to

be switched. To make the robot swim along a circle, the motor first rotates

counterclockwise for normalized duration t1, causing the robot to traverse a

clockwise arc of angle θ. Then, the motor rotates clockwise for a marginally

shorter duration t2 − t1, causing the robot to move through a slightly smaller

arc of angle θ − ∆θ. This input, alternating between a short counterclockwise

rotation and a longer clockwise rotation, is repeated to form a zig-zag circular

path in Fig. 4.7 (c).

In the second example in Fig. 4.7(b), the robot has to follow a rectangular

trajectory. It is obvious that the robot will follow a straight line if ω̄ switches

between ωH and ωL every T seconds. In Fig. 4.7(d), this is the case when the

robot has to follow a straight line (0 ≤ t̄ ≤ tC , tD ≤ t̄ ≤ tE, tF ≤ t̄ ≤ tG,

tH ≤ t̄ ≤ tI). Once the robot arrives at one corner of the rectangular path, C as

displayed in Fig. 4.7(b), the motor keeps rotating in one direction (time from

tC to tD) until the robot finishes turning 90◦ and it reaches point D. The same

protocol of turning is applied at points E,G, and I.

4.6 Conclusions and future work

In summary, we built a framework comprised of a simple untethered soft robot,

a numerical simulator, and a simple control scheme that enables the robot to fol-

low any prescribed trajectory. Our low-cost, easy-to-assemble, untethered soft

flagellated robot offers a convenient and practical platform for users to study

hydrodynamics near the air-liquid interface in viscous fluid. The robot is able

to follow any prescribed 2D trajectory through a simple control method with a

single binary input. In addition to the low cost, this simplicity points to possible

miniaturization of the robot. As the size of the robot gets smaller, viscous effects

start to dominate and the flow approaches low Reynolds number. The propul-

sion mechanism of the proposed robot relies on low Reynolds assumption and
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provides a blueprint for micro-robots.

A future direction of research is to exploit the efficiency of the simulator

to train a neural network that models the input - output relationship of this

problem. In reality, we have publications to be pushed out already. That neural

network then can serve as an inverse design to formulate the control signal,

given the prescribed trajectory. For example, if the user requires a robot capable

of swimming near the air-fluid interface at a speed of approximately 1 cm/s, our

network is able to output the corresponding physical and material parameters,

such as the number of flagella required, their cross-sectional radius, lengths,

and Young’s modulus. Further, our framework may be used to investigate if

imperfection can be utilized for functionality, i.e. whether the fact that certain

flagella are shorter than others can help the robot steer or not.
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CHAPTER 5

Like bacteria: untethered underwater robots

exploiting flagellar instability for steering

Uni-flagellar bacteria are discovered to steer by buckling their hook, the flag-

ellar base. This mechanism has never been validated by robotic experiments

due to the coupled difficulty of making underwater robots compact, neutrally

buoyant and functional with a compliant flagellum. We are the first to verify it:

when a helical flagellum rotates along its axis, the robot moves forward straight

and steers when the flagellum buckles in a viscous fluid. Moreover, we use our

untethered soft robot to investigate the relationship between the flagellar buck-

ling threshold and its geometrical and material properties. Simultaneously, we

develop a discrete differential geometry (structure) - Regularized Stokeslet Seg-

ments method (flagellar hydrodynamics) - Stokes’ law (head hydrodynamics)

simulator to model the locomotion. Simulations are validated against exper-

iments. We also release a gimbal-based design (tethered) and a simple but

practical approach to characterize the mapping between buckling thresholds of

tethered and untethered robots to make flagellar robot design adaptable. This

approach alleviates the pain of finding a motor whose rotational speed covers

the buckling threshold with enough torque by saving roughly 2
3 of experimental

time. Furthermore, the robot is too underactuated [140] to be controlled to

follow a 3D trajectory robustly by flagellar buckling alone; hence, we propose

a “mass-transformer" mechanism to aid in out-of-plane movement. Overall, our

comprehensive framework including physics-based modeling, motion planning,
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and control is a recipe for untethered flagellar robots that can reach any 3D

destination.

Our model system is comprised of a spherical rigid head and a helical elastic

flagellum.

The locomotion is an intricate interplay between the elasticity of the flagel-

lum, the hydrodynamic loading, and the flow generated by the moving head.

This flagellated system follows a straight path if the angular velocity of the flag-

ellum is below a critical threshold. Buckling ensues in the flagellum beyond

this threshold angular velocity and the system takes a nonlinear trajectory. We

consider the angular velocity as the control parameter and solve the inverse

problem of computing the angular velocity, that varies with time, given a de-

sired nonlinear trajectory. Our results indicate that bacteria can exploit buckling

in flagellum to precisely control their swimming direction. We describe the un-

derlying motivation and relevant literature in § 5.1. The numerical simulation

procedure is detailed in § 5.4.2. The buckling instability of helical filament and

a data-driven approach for the trajectory design are in § 5.4. We conclude a

summary and point out potential directions for future research in § 5.7. The

content of this chapter has appeared in Ref. [75].

5.1 Motivation

Bacteria achieve propulsion in Stokes regime fluid flow (Reynolds number ≪

1) [141] by rotating one or more helical slender filaments, i.e., flagella. This

propulsion is the result of a rather complicated fluid-structure interaction (FSI)

between the flagellar structural flexibility and the viscous forces imposed by

the surrounding flow. This FSI problem may induce geometrically nonlinear

deformation, which can be exploited for functionalities, such as turning [1],

bundling [142, 143], tumbling [144], and polymorphic transformations [145].

The bundling and unbundling between multiple flagella contribute to bacterial
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reorientation, which is essential for multi-flagellar bacteria to climb chemical

gradients in search of nutrition or escape toxins [146].

5.2 Literature review

Although flagellar propulsion has been extensively studied, it was not until re-

cently that the instability of the hook was discovered to be utilized to steer by

uni-flagellar bacteria such as Vibrio alginolyticus [1]. We name this mechanism

as “buckle-to-turn”. Previous studies investigating simulations [26, 72] demon-

strate that the hydrodynamic force of the flow can cause the flagellum or hook

to buckle; however, an untethered robot with a flexible flagellum that can repli-

cate bacterial “buckle-to-turn" has not yet been described, let alone such kind

of robots that can achieve a preplanned 3D trajectory. A scaled-up millimeter

or centimeter robot that could do so seamlessly would be a great experimental

tool for researchers investigating bacterial mechanics and would guide the de-

sign of micro-flagellated robots that have enormous potential in targeted drug

delivery [2]. Macroscale flagellar robots can also be utilized as cost-effective oil

spill skimmers, pipeline inspection, and fishing baits [147].

The propulsion of uni-flagellum-propelled systems such as bacteria and our

bacteria-inspired robot, consists of three factors: (1)elasticity of the flagellum,

(2)flagellum-induced flow, and (3)the hydrodynamics of the head. Flagellar

propulsion has been well theoretically and computationally investigated. Firstly,

the flagellum is modeled as a Kirchhoff elastic rod [81] while the flagellum-

generated hydrodynamics in a viscous fluid are modeled by Resistive Force The-

ory (RFT) [92, 5]. This framework demonstrated that the flagellum can ex-

perience buckling instability when its rotational frequency surpasses a thresh-

old [26]. Nonetheless, RFT only matches qualitatively with experiments regard-

ing the phenomenon because it is a local hydrodynamic force model, ignoring

the interaction between the flow induced by distant flagellar portions [5, 100,
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148]. More recently, the instability of a flexible helical rod rotating in a viscous

fluid was studied [72] by combining Discrete Elastic Rods (DER) [73, 83] - a

fast algorithm introduced by the computer graphics community to simulate the

dynamics of slender structures in movies, such as fur and hair, and Lighthill’s

slender body theory (LSBT) - a long-range hydrodynamic force model. This

DER-LSBT framework was validated quantitatively against experiments using

a scaled-up clamped flagellum (not a robot). The same framework was then

used to study the propulsion and instability of a rotating helical rod subjected

to an axial flow [149] and the effect of a close rigid boundary on flagellar

propulsion [74]. Under the postulation that flagellar buckling is critical for

changing the swimming direction of uni-flagellar propulsion [1], the framework

was further enhanced to model the trajectory of bacteria-inspired uni-flagellar

robots [75]. The simulator also predicted that robots with one soft flagellum can

follow any prescribed trajectory by changing a single scalar input - the flagel-

lar angular velocity. Nonetheless, experiments with untethered robots to verify

this prediction are missing because of the challenge of developing underwater

robots that are compact, neutrally buoyant, and functional with a soft flagellum.

To retain mobility while avoiding the edge effect in a glycerin tank with a low

Reynolds number, the robot must be untethered, neutrally buoyant, and small.

Furthermore, if the flagellum is too soft, it does not provide sufficient propulsion

and does not buckle otherwise. Moreover, the simulation framework above uses

LSBT, which has twofold weaknesses: (i)Because of the discontinuity between

the local and nonlocal hydrodynamic terms in the formulation of LSBT, numeri-

cal issues appear when simulating the interaction among segments on the rods,

i.e., when the rod buckles and some of its segments approach others. (ii)The

spatial discretization in the LSBT-DER architecture [72] is determined by the ra-

tio between the flagellar arclength, and the cross-sectional radius. The distance

between two consecutive nodes on the rod must be sufficiently small, about less
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than twice the cross-sectional radius. This causes the simulation’s computing

speed to be slow.

5.3 Definition of the problem

Experiments [1, 143] and simulations [72, 26] have demonstrated that the hy-

drodynamic force can cause buckling of the flagellum or the hook [150, 151,

152]. Refs. [72, 75] demonstrated that flagellar buckling could be triggered if

the rotational speed of the motor actuating the flagellum exceeds a threshold.

In this article, we assume that the hook and flagellum are made of the same ma-

terial to simplify the fabrication of untethered soft flagellated robots, the same

idea as Ref. [72]. Bacteria-inspired flagellated robots are typically controlled

by external magnetic field [153, 154], electric field [155], acoustic excitation

waves [43], and chemically powered propulsion [156, 157, 158]. Buckling, on

the other hand, can be induced in any elastic material simply by changing a

single scalar variable – the rotational speed of the flagellum [72].

Thawani et al. [86] incorporated the effect of the head on the locomotion

of a model uniflagellar bacterium; however, the flagellum was assumed to be

rigid. We seek to bridge this gap and incorporate all the three aforementioned

components to demonstrate that the buckling instability can be used by the

uniflagellar system to follow a prescribed 3D trajectory.

Here, experimentally, we create an untethered robot with a soft flagellum,

called BacteriaBot, that replicates bacterial “buckle-to-turn" mechanism and can

achieve any 3D trajectory via flagellar buckling with the aid of an internal dy-

namic mass redistribution system. The flagellar buckling is simply triggered by

the rotational speed change of a motor, a scalar. BaceriaBot is arguably the

world’s simplest autonomous soft robot in contrast to other released bacteria-

inspired flagellated robots that are controlled by an external electric [159] or

magnetic field [138], acoustic excitation waves [160, 161], or chemically driven
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propulsion [61]. Thanks to our modular design and mature fabrication tech-

niques in our precision model experiments, the error between theoretical calcu-

lations and experimental implementations is within 0.1 grams.

Computationally, we develop a numerical framework that incorporates (i)

discrete differential geometry (DDG) to model the robot structure, (ii) state-of-

the-art long-range hydrodynamic force model - Regularized Stokeslet Segments

(RSS) method [28] on the flagellum, and (iii) Stokes’ law for the viscous forces

on the robot head. In contrast to aforementioned LSBT, RSS has two main

strengths: (i) a continuous flow field with no numerical issues [5] when two

rod segments get closer and even contact with each other. (ii) Unlike the DER-

LSBT framework [75], in which the spatial discretization length is determined

by the ratio of the flagellar arclength to the cross-sectional radius, the spatial

discretization in our DDG-RSS framework can be much coarser. Hence, the

computation of our simulator is more than an order of magnitude faster than

DER-LSBT. We quantify the relationship between flagellar geometrical proper-

ties and its buckling threshold (ωbt), which is further employed to validate the

numerics against experiments. Due to the computational efficiency of our sim-

ulator, it can be used as an efficient tool for designing robots, e.g., finding the

smallest cheapest motor by predicting the motor torque needed to actuate a flag-

ellum with specific physical parameters and the motor rotational speed needed

to cover ωbt .

Moreover, we propose an ingenious tethered gimbal configuration and map

the tethered and untethered ωbt . This saves around 2
3 of the trial-and-error ex-

ploratory voyage of a motor with a maximum rotational speed of ωbt , substan-

tially easing the arduous nature of the process. To make the robot system more

robust, the mass center and buoyancy center should be further away, yet they

should almost intersect if the robot needs to flip. This irreconcilable contra-

diction makes design a robot capable of autonomously and robustly reaching
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a 3D destination impossible. This is ascribed to the innate nature of flagellar

robots - highly underactuated and uncontrollable of the direction of flagellar

buckling. As a result, inside the robot head, we develop a mass redistribution

system based on a screw mechanism that is activated by sensing signals from an

embedded Inertial Measurement Unit (IMU). We refer to this mechanism as a

“mass-transformer". This mechanism is vital when the robot needs to move out

of plane, i.e., when ascending or diving. We then implement it in our DDG-RSS

simulator by enforcing a force-coupled torque and quantify the map between

the speed the mass transforms and the angular velocity that the robot head tilts.

This map tells us how fast and how long the mass needs to be moved if the

robot is desired to steer towards a specific direction and thus enables online

control of the robot to reach a 3D destination. Overall, our study develops an

underwater BaceriaBot, arguably the world’s simplest autonomous soft robot

to mimic bacterial “buckle-to-turn" mechanism and introduces a comprehensive

framework for physics-informed modeling, motion planning, and control of a

fully untethered soft robot. The framework enables offline co-design of the ge-

ometrical and material parameters of the robot, as well as closed-loop motion

planning and control for generic soft flagellar robots. The quantitative match

between experimental and simulation results demonstrate our computational

framework is effective not only in low Reynolds number fluid Re<0.1 but also

can be a useful tool for robot design and control in Re 0.2. The gimbal-pinned

flagellum is used instead of clamped flagellum because of its higher similarity to

the untethered soft flagellar robots, the flagellum is affected by the disturbance

by the part above the hook.

The effect of gravity is a common issue encountered in almost all underwater

robot design because it is undoable for perfect match between the gravity and

buoyancy. Our simulator can also take care of it by an “added-mass" approach

that will be described in §5.4.2.1. Numerical tools should be able to take care
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of this, especially for soft robots such our soft flagellated robots. This is be-

cause recent research has showed significant difference of the performance of

the robot, such as its velocity, between the scenarios where the robot head is

ahead of flagellum and the robot tail (flagellum).

5.4 Results

In this section, we first present two sets of platforms in §5.4.1: a gimbal setup

and an untethered robot consisting of a rigid cylindrical head and a soft helical

flagellum. The gimbal setup is for collecting data of the performance of a pinned

rotating flexible flagellum to tune the regularization parameter of RSS method

in our numerical framework against experimental results. Subsequently, we ex-

hibit the untethered robot we designed and developed that can utilize buckling

to steer. Meanwhile, we present how only one tuning parameter in RSS is tuned

to match the buckling threshold in simulations and experiments. After that, a

head is added to the tethered robot. Next, we briefly describe our simulation

framework and offer details about how it quantitatively captures the flagellar

buckling of our fully untethered soft-flagellar robot. Third, we discuss how the

simulator helps predict the buckling threshold of the untethered robot, assisting

us to find the motor whose rotational speed covers the buckling threshold. Next,

we propose “mass-transformer" mechanism to redistribute the mass inside the

robot head and enable the untetehred robot to follow any 3D preplanned trajec-

tory together with flagellar buckling and embodied IMU perception. The total

time for each trial of buckling threshold test is 500 seconds. We realize that the

simulated speed of the robot stabilize after 30 seconds so to speed up the data

fitting process, we set up the total simulation time as 41 seconds.
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5.4.1 Desktop-scale experimental system design

The robot is comprised of a rigid head and a soft flagellum that rotate in the op-

posite directions while achieving the translational movement. Experimentally,

the design and development of untethered robots is a time-consuming back-and-

forth process of trial-and-error. The pain could be relieved if the modeling of this

type of system is simple and can work as a predictive tool to guide experiments.

However, the fact contradicts desires. As mentioned in § 1 of this Thesis, the

complexity of modeling of untethered soft flagellated robots resides in the intri-

cate coupling between nonlinear geometry, which includes structural instability,

and hydrodynamics. In comparison, investigations using tethered robots (with-

out the head) are considerably simpler. After three years of intermittent work

on the design and development of untethered soft flagellated robots, we have

discovered the practical framework displayed in Fig. 5.1. The rationale is to first

develop tethered experiments and explore the underlying mechanics, and then

add the robot head experimentally and investigate its effect from the mechan-

ics side. The first step is to develop a simple tethered experimental setup and

get the buckling threshold of a flagellum with specific geometrical and physical

parameters. Second, we develop simulations to match the above experiments.

Next, we add a robot head for effective untethered locomotion but without flag-

ellar buckling. After that, we add the effect of the head into simulations to

match experiments. Finally, as the physics of untethered locomotion are fully

comprehended, the validated simulators can be utilized to predict what system

modifications are necessary to achieve “buckling-to-turn".

Different from the experimental setup used in [72], in which a flagellum

is clamped to a motor and spun at a constant rotational speed, we designed a

gimbal with degrees of freedom most similar to a robot with a free head, as

shown in Fig. 5.4. The experimental system setup for desktop-scale experiments
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Figure 5.1: The flow chart to be followed to design from tethered robots and
untethered soft-flagellated robots to achieve flagellar buckling.
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is classified into tethered (§5.4.1.1) and untethered setups (§5.4.1.2).

5.4.1.1 Tethered setup

Reynolds number of the flagellated bacterial locomotion [62] is defined as fol-

lows

Re = ρmr0ωtRt

µ
, (5.1)

where ρm is the density of the glycerin, r0 is cross-sectional radius of the flag-

ellum, ωt is the rotational speed of the flagellum, Rt is the radius of the helical

flagellum, and µ represents the viscosity of glycerin that heavily relies on its

temperature [72]. It can be seen that the parameters with a larger controllable

space are r0 and Rt. As the design process of the robot is troublesome with trial

and error. Moreover, our goal is not only a robot that is capable of buckling to

turn, but also capable of locomotion. Therefore, when Rt increases, r0 should

typically also be larger because the buckling threshold of the flagellum is too

low if r0 is too small and thus it is less feasible for the robot to propel forward.

Eq. 3.23 will show that the drag force acting on the robot head is proportional to

its radius, RH . As a result, RH is smaller, the drag on the robot head is reduced

and thus the swimming efficiency of the robot is increased. More importantly,

in order to analogize the mechanics of bacteria, the Reynolds number must be

kept low, i.e., Re < 10−1. As a result, R and r0 should be as small as possible.

Fig. 5.4(a) depicts our experimental setup: a tethered(clamped at a gim-

bal)/untethered robot swimming in viscous glycerin. The robot consists of a

rigid 3D-printed (PLA) head with an inner structure illustrated in Figs. 5.6- 5.8

and a soft helical flagellum. As a model for flagella, we fabricate a series of

elastomeric rods with vinylpolysiloxane (VPS) [108] by independently varying

each of the geometric parameters (axial length, l, helix radius, R, pitch, λ, and

cross-sectional radius, r0, or area moment of inertia, I = πr4
0/4) and material

properties (the Young’ modulus, E). By updating the 3D-printed mold whose
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Figure 5.2: Picture of a PVC tube mold wrapping around a 3D-printed mold. Dp

represents the diameter of the PVC tube, the distance between the two consec-
utive crests is Ls, which equals the pitch of the helical flagellum.

Figure 5.3: 3D-printed indented ( 1 , 2 , 3 , 5 ) and outdented supports
( 4 ) with different axial length, l, helix radius, R and pitch, λ to hold PVC
molds for polymeric flagellar fabrication.
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parameters are shown in Fig. 5.2: the diameter of the PVC tube is Dp, and the

parameters of the support are: Ls = λ ≪ Dp and its diameter Ds equals the

diameter of the robot head Dh, i.e., Ds = Dh.

We apply the method introduced in Ref. [162] and analyze the shape of a

suspended annulus [162] of the flagellum to determine the value of E corre-

sponding to various polymers. The flagellum was assumed to be incompress-

ible (Poisson’ ratio, ν ≈ 0.5). During fabrication [108], a polyvinyl chloride

(PVC) tube was wrapped about a 3D-printed indented ( 1 , 2 , 3 , 5 ) and

outdented supports ( 4 ) supports as shown in Fig. 5.3. It is experimentally

verified that if the ratio of λ to R, i.e., λ
R

, is large to a certain extent, the devi-

ation of flagellar fabrication is smaller if indented supports are used instead of

outdented supports assuming the wall thickness of the PVC tubes is fixed. The

density of the flagellum was adjusted to match the density of glycerin by adding

fine iron fillings (SHINCO) of radius ≈0.04 mm to the VPS polymer, prior to

casting. Once cured and demolded, the flagellum was either pinned at one end

to the gimbal (tethered) or clamped at the 3D-printed plate, immersed in a bath

of glycerin.

Referring to Fig. 5.4, it can be seen that 1 a helix whose deformation is

captured by 2 two perpendicular cameras (top and side). It is clamped to a

DC motor that is equipped with two encoders and embedded into a 3 gimbal

(whose CAD is shown in (b) with its rotational axes marked in dashed lines).

The helix is fully submerged in viscous glycerin that is contained in 4 a tank

(122cm×45cm×51.5cm). a single DC motor (uxcell)(in Fig. 5.4(d)) with an en-

coder is embedded within the gimbal ( 3 in Fig. 5.4(a)). The motor is actuated

by an external 5 DC power supply, whose speed is measured by the encoder,

calculated and read by the board with 6 an Arduino Uno, and then transferred

to 7 a laptop with a monitor capable of displaying the readings. With the mo-

tor speed shown on the screen, we are able to control the rotational speed of
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the motor precisely (≈ 0.01 rpm). In this way, the buckling threshold can be

measured accurately.

Three rulers are used to measure the coordinates of each point on the robot

( 8 the ruler used to measure the displacement of the robot in the x direction,

9 the vertical ruler for measurement of the displacement in the z direction,

and one placed at the bottom of the tank measuring displacements in the y

direction but not shown in this figure). Note that ruler 9 is fixed as part of the

80-20 frame, which is composed of two primary parts, 10 , which is clamped

onto the wooden station and serves as a guide for the other (movable) part.

The camera 2 providing a top view and the stick to which 3 the gimbal is

mounted are attached to the movable part. We closely regulate the viscosity of

the glycerin in the tank by monitoring its temperature with 11 a temperature

probe and by placing ice bags in the tank.

5.4.1.2 Untethered setup

Making underwater untethered robots neutrally buoyant so that the effect of

gravity on their movement direction is insignificant is the first obstacle to over-
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Figure 5.4: Experimental setup of tethered flagllated robots in glycerin for buck-
ling threshold exploration and untethered flagellated robots for “buckling-to–
turn" exploration. (a)Photograph of the experimental setup: 1 a helix whose
deformation is captured by 2 two perpendicular cameras (top and side). It is
clamped to a DC motor that is equipped with two encoders and embedded into
a 3 gimbal (whose CAD is shown in (b) with its rotational axes marked in
dashed lines). The helix is fully submerged in viscous glycerin that is contained
in 4 a tank (122cm×45cm×51.5cm). The motor in the gimbal is powered by

5 a DC power supply whose voltage is adjustable to alter the rotational speed
of the motor actuating the helical flagellum, during which the flagellar buckling
threshold can be found. The rotational speed of the motor is read by 6 an
Arduino Uno board connected to 7 a laptop with the serial monitor displaying
the real-time rotational speed of the dc motor. Based on this information, the ex-
perimenter can immediately read the flagellar velocity when buckling happens.
Three rulers are used to measure the coordinates of each point on the robot ( 8
the ruler used to measure the displacement of the robot in the x direction, 9
the vertical ruler for measurement of the displacement in the z direction, and
one placed at the bottom of the tank measuring displacements in the y direction
but not shown in this figure). Note that ruler 9 is fixed as part of the 80-20

frame, which is composed of two primary parts, 10 , which is clamped onto the
wooden station and serves as a guide for the other (movable) part. The camera
2 providing a top view and the stick to which 3 the gimbal is mounted are

attached to the movable part. We closely regulate the viscosity of the glycerin

in the tank by monitoring its temperature with 11 a temperature probe and by

placing ice bags in the tank. Two types of untethered robots 12 and 13 are

displayed in this figure. Untetethered robot 13 is designed first with electronic
components and counterweights compactly arranged inside the robot head to

achieve the “mass-transformer" mechanism. Then, robot 12 that has no slider

in its head but has the same radius as robot 13 is developed. Robot 12 simply

goes up, but robot 13 plans its motion by buckling its flagellum and employing
the“mass-transformer" when a sharp turn (e.g., a flip) is necessary; (c) the side
view showing how the gimbal is mounted to a stick (marked in the red rectan-
gle) that is attached to the movable part of the 80-20 frame; (d) the top view
illustrating how the dc motor with encoders is embedded in the gimbal. See text
for the properties of rod and fluid.
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come (challenge I). The experimental setup for untethered soft flagellated robots

( 12 and 13 ) is illustrated in Fig. 5.4. Note that the gimbal-based arrange-

ment is not required for research with untethered robots. In untethered experi-

ments, two types of untethered robots 12 and 13 are displayed in this figure.

For untethered research, we only require a robot, two cameras, three rulers, a

temperature probe, and a tank. Untetethered robot 13 is designed first with

electronic components and counterweights compactly arranged inside the robot

head to achieve the “mass-transformer" mechanism. Then, robot 12 that has

no slider in its head but has the same radius as robot 13 is developed. Robot

12 simply goes up, but robot 13 plans its motion by buckling its flagellum and

employing the“mass-transformer" when a sharp turn (e.g., a flip) is necessary;

Eq. 4.6 demonstrates that the drag on the robot head is a linear function of the

radius of the robot head, Rc. Hence, structure within the head of an untethered

robot must be compact, which is the second challenge of underwater untethered

soft flagellated robots (challenge II). As our objective is not only to establish the

simplest testbeds for researchers to study flagellar propulsion in viscous fluids,

but also to push the robot towards full autonomy for 3D motion planning and

controllable locomotion. There is no optimum orientation for the flagellum due

to the fact that its density is matched to the density of glycerin during fabrica-

tion. The neural buoyancy of the robot is therefore dependent on the neutral

buoyancy of the robot head. Additionally, although the robot gets propelled by

its flagellum, the head decides the orientation of the robot when the robot is

under the “push" mode [163] because the robot is in the “head-tail" (i.e., head

moving in front of the tail) moving mode [164]. Bacterial head was proved

to be prolate [165, 166, 167, 168]. Experiments have demonstrated that the

greatest space utilization reaches its maximum when the robot head is cylindri-

cally shaped as displayed in Fig. 5.5 with its exploded view depicted in Fig. 5.7,

given that most components inside it are rigid. It is well acknowledged that the
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relative position of the center of mass (COM) and center of volume/buoyancy

(COV) determines its robustness. Furthermore, the placement of COM beneath

COV is required for the robot to move vertically, which makes it difficult for the

robot to travel horizontally with stability. In order to enable the robot to plan its

motion to reach any point in the 3D space, we have to design the COM of the

robot head beneath its COV. Moreover, we have to evaluate the relationship be-

tween the distance between them and how much flagellar buckling can change

the orientation of the robot head. Their quantitative relationship is explored

and offered in the coming publication.

Eventually, it turns out that a mass-redistribution mechanism is needed within

the robot head is required for the robot to follow any 3D prescribed trajec-

tory. For this purpose, we conceived mechanism similar to electromagnetic cat-

apults to move balls based on the orientation of the robot head measured by an

IMU. Yet, the mechanism is too complicated to be fit into a compact robot head

and controlling the movement of the ball is difficult. Finally, we designed a

lead screw-nut-based mechanism, called “mass-transformer", to redistribute the

mass on a slider (whose details are illustrated in Fig. 5.6 encapsulated as 7

in Fig. 5.7) within the head. To enable the 1 IMU to detect the orientation of

the head in real time as the self-embodied feedback and avoid tangled wire con-

nections between the movable parts on the slider and the fixed parts inside the

caps, the components that are held onto the slider ( 3 a 3D-printed housing)

are: 1 an IMU (ADXL345), 2 a microcontroller (Adafruit Pro Trinket 5V or

customized soft PCB board), 4 a DC motor (uxcell, 3V), 5 Tungsten weights

working as counterweights, and 6 two Vintrons 3.7V 140mAh LiPo batteries.

5 are the most dense and cost-effective off-the-shelf weights. Integrating the

components on the housing ensured experiment repeatability, which is vital con-

sidering the sensitivity of underwater robot experiments to neutral buoyancy.

There are two motors inside the head of the untethered robot, one (embed-
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ded in the slider 7 in Fig. 5.7) for the “mass-transformer" mechanism (with

a threaded shaft), and the other for actuating the flagellum ( 11 in Fig. 5.7).

Both motors are connected to 2 and controlled by PWM signals. Note that 2

is chosen over boards with comparable capacity, such as Arduino Nano, Adafruit

ItsyBitsy M0 Express, and Adafruit Trinket M0, due to its greater aspect ratio,

which reduces R and thus the drag on the head. Consequently, r0 is decreased,

ensuring the locomotion in a low Reynolds number regime according to Eq. 5.1.

The most important reason of choosing this board is that it has two sets of in-

terrupt pins that are needed to independently control the rotational directions

and speeds of two motors within the head. 6 Two LiPo batteries are linked in

parallel to match the voltage range of motors and store enough power for the

robot to operate several hours before needing to get recharged. Fig. 5.7 repre-

sents the exploded view of the robot body SOLIDWORKS model. The robot body

consists of three outer parts, 8 a PLA head cap, 9 a PLA shell, and 10 a PLA

tail cap. At the center of a 8 , there is a nut embedded and fixed. Together

with 7 the assembled slider, they contribute to the “mass transformer". The

components of “mass transformer" are arranged in such a way to maximize the

axisymmetry of the robot head. “Mass transformer" enables precise and robust

control of the moving distance of the housing. The actual development of the

robot is demonstrated in Fig. 5.8. Untethered soft flagellated robot design and

fabrication is delicate, and thus the following tips and tricks (highlights) are

suggested during the robot design and fabrication:

• Two “noses" (as denoted in Fig. 5.5) are extended out to give ample travel

to the assembled slider ( 7 in 5.7) for mass redistribution. This inge-

nious design decreases Rc substantially. In addition, counterweights such

as solder can be wrapped around the noses for delicate density matching;

• Two “L"-shape locks are designed on 8 and 10 (in Fig. 5.7) to prevent
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the relative rotation between 8 , 10 and 9 . Therefore, it helps water-

proof the connection between caps and the body;

• “Mass-transformer" mechanism is designed to redistribute the mass inside

the robot head to follow any 3D preplanned trajectory;

• The length of each wire is fixed for all robot fabrications. For reproducible

trials, we did our best to maintain the location of wires with tiny toler-

ances, and to maintain the robot’s neutral buoyancy;

• Two slots are carefully crafted inside the tiny robot head to prevent mass

rotation and reduce friction between the moving assembled slider and the

body wall;

• Batteries and microcontroller (two sets of interrupt pins) should be com-

patible;

• Electrical pins (marked in red rectangles in Fig. 5.8) are exposed out of

10 the tail cap to conveniently test the robot statically and dynamically

without repeated disassembly and reassembly.

• During the robot design and fabrication, components must be positioned

within the robot head to make it centrosymmetric;

• While designing the head, COM and COV in SOLIDWORKS should be

matched around the head center;

• The outer shell ( 9 in Fig. 5.7) is coated with Krylon K05160107 Color-

Master and with wax (which is fluidic when applied) sealing the connec-

tion between caps and the body (for waterproofing).

It is observable that the design and fabrication of the robot head is meticulous

and sort of pulling one hair affecting the whole body. Counterweight holder
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Figure 5.5: SOLIDWORKS model of an untethered soft flagellated robot.

should be exposed to conveniently match the density of the robot and glycerin

(designs 1 and 2). Using digital imaging, we reconstructed the deformed con-

figurations of the flagellum and quantified its dynamics. To ensure constant and

reproducible values for the viscosity, we placed one thermometer to inspect the

temperature of the glycerin bath and to use ice bags to accurately control the

temperature within±0.5◦C. Due to the difficulty of cooling down all the glycerin

evenly inside the tank for a higher viscosity, the viscosity of glycerin is only con-

trolled to be µ [Pa · s] = 1.03(± 0.07 Pa · s). The density of glycerin is ρm = 1.24

g/cm3, and our rods had a roughly the same but slightly higher density (≲ 3%)

than glycerin.

Due to the internal torque balancing, the robot’s head and flagellum rotate

in the opposite direction, just like bacteria. The component of the drag along

the robot’s moving direction on a helical flagellum that rotates along its long

axis propels is the propulsive force, generates a translational movement (the

direction of which is denoted by the red arrow).

Neutral buoyancy is closely related to waterproofing, which has historically

been one of the most significant obstacles for underwater robotics. We con-

quered this by meticulously modularizing components in the robot head and the-

oretically balancing force and torque during the design and fabrication stages.

Even every wire has its location to stay so that experiments are repeatable after
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Figure 5.6: Exploded view of SOLIDWORKS model of the slider within the robot
head. The slider consists of 1 an IMU that detects the orientation of the robot
head, and 2 a microcontroller mounted onto 3 a 3D-printed housing, at-
tached, on which are also attached 4 a DC motor (uxcell) with a threaded

shaft, 5 Tungsten weights, and 6 two Vintrons 3.7V 140mAh LiPo batteries.

Figure 5.7: Exploded view of the robot body SOLIDWORKS model. The robot
head is comprised of 7 an assembled slider located inside the head, 8 a PLA

head cap, 9 a PLA shell, and 10 a PLA tail cap. 11 a DC motor actuating

the tail – flagellum is embedded inside 10 .
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Figure 5.8: Picture of the actual development of the robot head (the head cap
is not included). The pins marked in red rectangles are electrical pins exposed

out of ( 10 in Fig. 5.7) the tail cap to conveniently test the robot statically and
dynamically without repeated disassembly and reassembly.

disassembly and reassembly. Technically, we sprayed the PLA head with thin

waterproof paints (Krylon K05160107 ColorMaster) and then applied heated

fluidic wax to seal the connection between the body of head and the two caps.

Before each experiment is conducted, the robot is slowly placed in the de-

sired initial position and alignment (robot perpendicular to the bottom of the

tank). We used, as far as possible from the bottom of the tank (rigid boundary

condition) and the glycerin-air interface (open boundary condition) such that

the motion is not significantly disturbed by boundaries. The motion is recorded

with a video camera (920 x 1080 pixels, Nikon D3400, 60 frames per second).

The speed of the robot is obtained by measuring its displacement in time. The

location of the robot is denoted by the location of the head, determined using

software MATLAB; the speed is deduced from the position of the head using a

central difference scheme.

5.4.2 Fully implicit DDG-RSS-Stokes’ numerical framework

We develop a fully-implicit DDG-RSS framework to simulate the dynamics of

the robot. Our numerical framework combines three components: (i) Discrete
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Differential Geometry (DDG) approach [73, 83, 72, 67] to describe the structure

and geometrically nonlinear deformation of flexible filaments, flagella [66, 67];

(ii) Regularized Stokeslet Segments (RSS) method for the nonlocal hydrody-

namic force produced by slender structures in viscous fluids, i.e., a flagellum in

glycerin [28]; and (iii) Stokes’ law for the viscous drag exerted on the cylin-

drical robot head. Our software implementation will be released as a GitHub

repository. The details of this DDG-based tool was introduced in §1.3. Our

DDG-RSS-Stokes’ numerical framework starts with a discrete representation of

the robot. We provide a schematic diagram of the robot in experiments and

simulations in Fig. 5.9 to explain both the experimental (Fig. 5.9(a)) and nu-

merical setup (Fig. 5.9(b)). The configuration of the robot is fully described by

the locations of N nodes (with lumped masses): xj = [xj, yj, zj] (0 ≤ j < N

where N is the number of nodes), and the twist angles, θj (0 ≤ j < Ne where

Ne is the number of edges and Ne = N − 1 for the robot studies in this paper).

The N nodes correspond to N − 1 edges, e0, . . . , eN−2 such that ej = xj+1 − xj.

From here, we use subscripts to denote node-based quantities and superscripts

for edge-based quantities. Every two adjacent nodes contribute to a stretching

spring. Every three neighboring nodes form a torsional spring. Consequently,

each node is associated with bending, stretching, and twisting energies. The

DOF vector for the robot is q =
[
x0,x1,x2, . . . ,xN−1, θ

0, θ1, . . . , θNe−1
]T

, where

the superscript T denotes transpose. Note that two nodes, nodes 0 and 1, are

used to discretize the head and node 2 is the conjunction point of the motor

shaft and 3D-printed plate. The length of edges e0 and e1 are identical and

equals the radius of the head, RH in Fig. 5.9(b). Note that the RH is decided by

Nodes 2 and 3, and edge e2 represent the 3D-printed plate that holds the soft

flagellum, so the length of e2 equals the radius of the helix, Rx. Edge e3 stands

for the flagellar base, hook [1], so its length, L3, is changeable. Because of the

fact that the robot head and 3D-printed plate are rigid, edge e2 is enough to
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Figure 5.9: Geometry of the soft flagellated robot with a rigid cylindrical head.
(a) In experiments, the robot is neutrally buoyant in glycerin. The propulsive
force generated by the flagellum is Fp. The total rotational speed of the motor
actuating the flagellum is the sum of the rotational speed of the robot head,
ωh, and the flagellum, ωt, i.e., ωT = ωh + ωt. The direction of vector g denotes
the direction of gravity. (b)The geometry and the geometrical discretization
of the robot by DDG. The robot head is represented by nodes x0 and x1 and
the bending, twisting, and stretching springs comprised of edges e0 and e1(not
shown). The two dashed white lines (against the black circle that stands for a
virtually equivalent head with the same volume as the original cylindrical head)
denote the discretization of the robot head. The length and radius of the rigid
cylindrical head is LH and Rc, respectively. The length of the flexible hook (a
part of the flagellum) is Lh = ||x4 − x3||. The radius and pitch of the helical
flagellum is Rt and λ, respectively. The axis length of the flagellum is Lt. Note
that the coordinate axis system Xb−Yb−Zb is the one associated with the world
frame and it apply to both (a) experiments and (b) simulations.
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represent the 3D-printed plate and the plate need not be finely discretized. All

remaining nodes with locations x4 to xN−1 represent the soft helical flagellum

and fall on a helical shape in their undeformed state at time t = 0 and the length

of each edge on the flagellum is the same.

Each edge, ej, has an orthonormal adapted reference frame
{
dj1,d

j
2, tj

}
,

and material frame
{
mj

1,m
j
2, tj

}
, whose details can be found in our previous

work [66]. Given that the head has a greater mass, the masses mj(0 ≤ j < N)

of all nodes other than nodes 0 and 1 on the head are identical while experi-

mental measurements tell us that m0 = m1 = 10mx.

Similarly, the head is rigid and thus the axial stiffness EA of the stretching

springs S0, S1, as well as bending stiffness EI = π
4Er

4
0 and twisting stiffness

GJ = π
2Gr

2
0, of torsional springs T0, T1, T2 are 1,000 times those of other springs.

In above equations, E is the Young’s modulus, G is the shear modulus, A = πr2
0

is the cross-sectional area, and r0 is the cross-sectional radius of the flagellum.

The elastic energy associated with springs in the robot can be computed

from the strains, the details of which are illustrated in Section IV-B of our prior

work [67]. The total elastic energy of the robot is the linear sum of (1) stretch-

ing energies Es = ∑js=N−2
js=0 Ejs

s , (2) bending energies Eb = ∑jb=N−2
jb=1 Ejb

b , and

(3) twisting energies Et = ∑jt=N−2
jt=1 Ejt

s , the formulations of which are Eqs. 6-8

in [67]. Note that our robot’s geometry here are significantly different with

our previous released work [72, 75, 66, 67] because of the existence of robot

head, flagellar hook, and uni-flagllum (no “joint" node as introduced in [67]).

The elastic stretching, bending, and twisting forces exerted on each node can

be calculated as the negative gradient of corresponding elastic energies. We

use a natural twist associated with edge e1 that varies with time to model the

actuation - a rotating motor. This operation is ingenious because it is a vivid

description of actuators and does not add artificial energies, as boundary condi-

tions do. On nodes 3 to N − 1, external forces are the nonlinear hydrodynamic
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force from the viscous fluid that is modeled by the RSS method, while on nodes

0 and 1, external forces are the drag forces and torques from the viscous fluid

that is modeled by Stokes’s law. These forces are used in equations of motion,

which are fully implicitly solved for the next time step. See Section 5.6 for a

deep discussion of the simulator solving dynamics. The above framework ap-

plies to the untethered soft flagellated robot. For the gimbal setup, we could

have remove node 0 and related degrees of freedom, i.e., its position vector and

twist angle. However, to make the numerical framework boundary conditions

are applied to fix the x, y, z coordinates the first node

The values of parameters inside the simulator is listed in the table below.

The denotations below are consistent with those in Fig. 5.9.
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λ (m) 0.036

Rt (m) 0.018

RH (m) 0.018

Lh(m) 0.0188

C1 1.8

C2 1.37

r0(m) varying

E varying

ν 0.5

deltaTime (s) 1e-4

totalTime (s) 500

tolerance 0.01

maxIter 100

ρm (kg/m3) 1240

gVector 0.0 0.0 0.0

µ 1.03

ϵ 1.03r0

omegaHigh 5.0

omegaLow 0.0

timeHigh 1.0

timeLow 0.0

axisLengthInput 0.144

deltaLengthInput 5e-3

render 1

gimbal 1

saveData 1
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Figure 5.10: Orientation of the robot head versus the relative position between
its center of mass (COM) and center of volume (COV).

5.4.2.1 “Added mass" method for simulating uneven mass distribution

Uneven mass distribution is the most common issue encountered during fab-

rication, and it has a significant impact when it occurs along the long axis of

the cylindrical robot head. This is because it will directly cause the mismatch

between the center of mass (COM) and center of volume/buoyancy (COV). As

illustrated in Fig. 5.10, COM and COV must coincide for the robot to be able

to swim horizontally with stability. Consequently, during the design phase in

SOLIDWORKS, we match them by carefully arranging the components (and

thus masses). However, it was experimentally confirmed that even if there is

only 0.01mm between them, the robot head will transition from an unstable

(horizontal) orientation to a stable equilibrium (vertically). As the head is the

robot’s navigator, it controls the robot’s direction. This procedure is expensive

to reverse because flagellar buckling is insufficient to flip the robot from vertical

to horizontal position. We develop a “mass-transformer" mechanism so that the

robot can be controllable to follow a prescribed 3D trajectory. The mass redis-

tribution is achieved by controlling the rotational speed and time of the motor

4 in Fig. 5.6. Correspondingly, “mass-transformer" can be simulated through

a time-varying “added mass" method.

In the simulator, the robot is discretized and represented in Fig. 5.9(b). The
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torque generated by the uneven distribution of the head is simulated by adding

an extra mass onto nodes x0 and x2 to form a force couple/moment. Our robot

head is assumed to be radially symmetric, which is empirically confirmed by

the fact that the robot head and flagellum always rotate at a constant speed.

The COM of the robot head can be measured by placing the cylinder-shaped

head on a thin blade that functions as a pivot, and then two halves separated

by the pivot will be balanced by the lever principle. The COV is determined as

the midpoint along the length of the cylinder. As exhibited in Fig. 5.10, if the

distance between COM and COV is l, extra mass added onto nodes x0 and x2 are

calculated as follows:

Ma = ρmπLHR
2
c l/2

LH/2
= ρmπR

2
c l, (5.2)

where ρm has the same meaning as Eq. 5.1. The mass unevenness of the flagel-

lum can also be simulated in a similar manner, albeit it can be avoided by the

use of accurate fabrication techniques.

Compared to the previous work [73, 83, 72, 67], our simulation framework

has several highlights:

1. The actuation, e.g., rotation of the motor, is readily embedded in the DDG

approach by updating the natural twist with time, which is different from

typical DDG-based simulators where undeformed configuration of a struc-

ture is fixed and assumed to be invariant through the simulation. Hence,

our simulator is fully implicit and can thus converge at a larger time step,

requiring less computation time;

2. We are the first to develop a DDG-RSS-Stokes’ simulation framework for

simulating untethered locomotion in viscous fluids that incorporates state-

of-the-art RSS method, which is continuous and has no requirements for

discrete edge length, to model the nonlinear hydrodynamic force by taking
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into account the interaction among (even distant) nodes on soft filaments.

Furthermore, we demonstrate its precision by systematic desktop-scale ex-

periments. We further investigate and validate the applicability of this

framework in Reynolds number ≈ 0.2, which cannot be considered a low

Reynolds number regime;

3. We develop an “added-mass" method in the aforementioned DDG-RSS-

Stokes’ framework to consider the most common problem in experiments –

uneven mass redistribution and adapt it to simulate the controllable mass-

redistribution mechanism – “mass-transformer".

5.4.3 Characterization of tethered flagellar buckling threshold

Since untethered locomotion involving flagellar buckling is a complicated sys-

tem to model, we must first validate the simulation framework introduced above

in a tethered setup before applying it as a predictive tool for finding a motor

that can buckle the flagellum. For this, we developed a frictionless gimbal with

degrees of freedom (DOF) as shown in Fig. 5.4(b). Compared to prior stud-

ies [72], the gimbal-based system will allow the gimbal-pinned “head" to have

as many DOF as an untethered robot. This reduces the difference between the

tethered configuration learned by the simulation and the untethered locomotion

for which the simulation is used to estimate performance.

r0 (mm) ωt (rpm) Re

0.792 1.1034 0.0020

1.188 1.4551 0.0039

1.584 3.0375 0.0109

1.980 7.3607 0.0330

2.376 12.6588 0.0683

2.772 25.2744 0.1590

3.168 36.9887 0.2659
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5.4.3.1 Effect of geometrical parameters

We varied the radius and number of pitches of the flagellum to change its geo-

metrical parameters and investigated their effect on the buckling threshold. The

results are displayed in Figs. 5.12 and 5.11. The similarity between experimental

data (in filled triangles) and simulation data (in hollow triangles) in Figs. 5.12

and 5.11 indicates that DDG-RSS successfully captures the hydrodynamics from

the surrounding fluid on the flagellum. Also, the result makes physical sense:

in general, the flagellar buckling threshold, ωb, increases with flagellar radius

whereas decreases with flagellar pitch number, N . One thing deserves our no-

tice is that there exists a falgellar radius turning point before which ωb reduces

with the increase of r0 and after which ωb grows with the growth of r0.

Figure 5.11: The flagellar buckling velocity VS. flagellar radius

5.4.3.2 Effect of Young’s modulus

In addition to modifying flagellar geometrical characteristics, we modified its

physical property, Young’s modulus and plotted the results in Fig. 5.13. Again,

experiments and simulations match nicely. ωb becomes larger as the flagellum

stiffens.
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Figure 5.12: The flagellar buckling velocity VS. number of flagellar pitches.
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Figure 5.13: The flagellar buckling velocity VS. Young’ modulus of the flagellum.

5.4.4 Characterization of untethered flagellar propulsion velocity versus

the rotational motor speed

Since the robot’s head shape is not perfectly spherical and there might be slip-

page between the robot head and the fluid, fitting parameters are required to

calibrate Stokes’ law, which will be explained in greater details in §5.6.3. Fitting

parameters are determined from matching some experimental and simulation

results. The same set of parameters is then incorporated into the DDG-RSS-
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Figure 5.14: Parameter fitting to match the experimental data (triangles and
circles) and DDG-RSS-Stokes’ simulation results (solid, dashed, and dash-dot-
ted lines) of untethered robots with a flagellum made of PLA and Shore 32
VPS with (a)the speed of the robot, v, versus the total rotational speed of
the tail motor, ωT , and (b)the rotational speed of the robot head versus ωT .
Using a PLA flagellum (solid line) and Shore 32 VPS (dashed line), the un-
tethered robot has a pitch of 3.5. The Young’s modulus of PLA is 4.107GPa
and Shore 32 (experimentally measured) is 1.225MPa. Fitting parameters C :
Ct = 1.80± 0.02, Cr = 1.37± 0.025 can realize the smallest fitting error between
experimental and simulation results. Next, dash-dotted lines plot the predicted
results of an untethered robot with a 3.5-pitch flagellum made of Shore 22 VPS
(with a Young’s modulus of 0.77MPa). The vertical black dashed line marks ωT
(≈ 67 rpm), the point at which the flagellum buckles, denoted by ωtT .
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Stokes’ framework to predict the performance of systems with parameters that

the simulator has never seen. The theoretical framework is validated if the

predicted performance matches experiments accurately. We fitted the exper-

imental and simulation data for untethered robots with a 3.5-pitch flagellum

made of PLA and Shore 32 VPS and identified the following fitting parameters:

Ct = 1.80 ± 0.02, Cr = 1.37 ± 0.025. The Young’s modulus of PLA and Shore

32 is experimentally measured as 4.107GPa and 1.225MPa, respectively. The

least fitting error between experimental and simulation results can be achieved.

Experimental data for an untethered robot with a PLA flagellum are plotted as

triangles in Fig. 5.14 while the corresponding simulation results are plotted as

continuous lines. Fig. 5.14(a)plots the speed of the robot, v [m/s], versus the to-

tal rotational speed of the tail motor, ωT ; Fig. 5.14(b) plots the rotational speed

of the robot head, ωh [rpm], versus ωT [rpm]. Experimental data for an unteth-

ered robot with a Shore 32 flagellum are plotted as circles in Fig. 5.14 while the

corresponding simulation results are plotted as dashed lines. Next, dash-dotted

lines plot the predicted results of an untethered robot with a 3.5-pitch flagellum

made of Shore 22 VPS (with a Young’s modulus of 0.77MPa). The vertical black

dashed line marks ωT (≈ 67 rpm), the point at which the flagellum buckles,

denoted by ωtT . We did not measure the 3.5-pitch flagellum made of Shore 32

VPS. Rather, we conducted experiments on an untethered robot with a Shore 22

VPS flagellum with 3 pitches this is because we want to see the prediction ac-

curacy of the simulator for an untethered locomotion with a different geometry

(e.g., number of pitches) and stiffness (Young’s modulus). Amazingly, Fig. 5.14

demonstrates the accuracy of DDG-RSS-Stokes’ framework. The vertical black

line in Fig. 5.14(a) also denotes the flagellar buckling threshold, ωtT . Comparing

Fig. 5.15(a) with Fig. 5.14(a), we can observe that ωtT is larger for a 3-pitch

Shore 22 VPS flagellum than for a 3.5-pitch one.

One more thing to deserve our attention is that before flagellar buckling
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Figure 5.15: Predicted (with fitting parameters C ) performance of untethered
robots with a 3-pitch Shore 22 VPS flagellum versus experimental results: (a)the
speed of the robot, v, versus the total rotational speed of the tail motor, ωT , and
(b)the rotational speed of the robot head versus ωT .

occurs, the propulsion efficiency of a robot with a flexible flagellum (e.g., Shore

32 VPS) is the same to that of a robot with a rigid flagellum (e.g., PLA).

5.4.5 Map from tethered to untethered: locomotion performance

Users can first apply the gimbal-based setup to find the flagellar buckling thresh-

old (calibrating the DDG-RSS framework) and then add a robot head but do not

involve flagellar buckling, after which the DDG-RSS-Stokes’s framework is ver-

ified. The results above validated our DDG-RSS-Stokes’ simulation framework.

Therefore, the simulator can work as a predictor to predict the performance

of untethered locomotion. Consequently, our simulator can then forecast the

performance of robots with a flagellum with different geometrical and physical

parameters. Further, it is capable of determining a motor with a rotational speed

exceeding the flagellar buckling threshold with the same robot head.
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5.4.6 “Mass-transformer" for autonomous motion planning

Although we prove that flagellar buckling enables the robot to turn and recon-

figure, the movement (direction and orientation) of the robot is not completely

controllable due to underactuation. The rotational direction and speed of the

motor are controllable. Plus, the initial shaft position where the motor starts to

rotate is also controllable. If the flagellum is isotropic and the aforementioned

controllable parameters are set to identical values, the robot should follow the

same trajectory. However, because of fabrication and experimental errors such

as the flagellar fabrication flaw, the trajectory of the robot is not identical even if

the controllable parameters are set the same. As a consequence, to advance the

robot’s autonomy, we designed and developed “mass-transformer" mechanism

explained in § 5.4.1.2.

5.5 Discussion

Our results demonstrate that the structural instability, i.e., flagellar buckling en-

ables the robot to steer but it has a limited capability to fully control the robot’s

direction. This kind of robots has applications in fishing baits, oil spill cleanup,

water quality monitoring, and infrastructure inspection. Our research intends

to develop an untethered robot with a soft flagellum that can serve as a simple

yet functional testbed for replicating bacterial behavior and comprehending the

fundamental mechanics of bacterial locomotion. The movement of the robot

should drop in the low Reynolds number regime. Because of this, the robot was

designed to be as simple and compact as feasible. To be employed in practice,

this type of robots must be enlarged, which is feasible due to the fact that our

robot is amenable to dimensional scaling, customization to specific needs, and

fabrication via accessible additive manufacturing techniques. In the near future,

we will investigate the robot’s scalability.
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We integrated “mass-transformer" inside the robot head to enable the robot

to reach any 3D destination. This is merely the starting effort showing the poten-

tial of our robot’s 3D motion planning capability. Similar to the concept in [1],

our robot’s simplicity makes it an ideal platform for rapidly generating a huge

quantity of data in a short time, which can be further learned by machine learn-

ing algorithms for 3D motion planning [152]. This is made possible by a trait

of our robot, which is controllable by updating a sequence of motor rotational

speeds.

5.6 Materials and Methods

Our study includes the fabrication and simulation of the robot; therefore, this

section is primarily divided into two parts, experiments and simulations. The

robot has two major structural components: a hard robot head and a soft poly-

meric flagellum. Hence, we have § 5.6.1 and § 5.6.2 to describe important de-

tails of specialties of the development of our robot. Following these two sections

are the numerical implementations of simulating the robot in §5.6.3, §5.6.4, and

§5.6.5. Each time step in the simulator is essentially to solve a linear system,

which can be under ill-conditioned. To solve the ill-conditioned cases, we intro-

duce the idea of how to use a preconditioning method in §5.6.6. In the end, we

report how to plan the motion of the robot in §5.6.7.

5.6.1 Flexible circuit design and fabrication

As mentioned in Section 5.4.1, the compactness of the robot head is critical for

efficient propulsion. Aside from the IMU and the ATmega328P chip, which can-

not be produced as soft, the remainder of the circuit is soft-made to reduce the

head radius. We customized the flexible printed circuit board (PCB) that can

actuate and control two motors, as well as read readings from IMU while with

pins for extension. Furthermore, we fabricated our soft, custom-designed PCBs
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Figure 5.16: Our customized PCB board design and final board fabrication. All
operations, from board design in EAGLE to chemical etching and final soldering,
are performed in-house (done in the lab). The PCB now functions flawlessly and
can be wrapped around the robot’s head.

by following the steps below in order. On a sheet of paper, we first adhered

a small piece of high-temperature Kapton tape. Then, using solid ink, a Xerox

Phaser 8860/8860 printer was used to print the circuit onto the previously pre-

pared paper. The circuit was then etched with a solution consisting of a 1:2

volume ratio of hydrochloric acid and hydrogen peroxide. Other parts will be

eliminated with the exception of the circuit covered by solid ink. Lastly, elec-

tric components, such as Schottky diodes, resistors, and LEDs, are soldered onto

the circuit wires with a hot air gun airflow (Rework Station 500◦C Soldering

Station Adjustable). The circuit design and the ultimate outcome is depicted in

Fig. 5.16. In summary, the circuit that functions flawlessly is completely cus-

tomized by us.

5.6.2 Rapid prototyping of soft polymeric flagella

The silicone-based rubber VPS (Elite Double 22 and 32; Zhermack) flagellum

used in experiments were cast using polyvinyl chloride (PVC) tubes as molds. To

fabricate flagella that are neutrally buoyant with glycerin, we added iron fillings
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while mixing the base and catalyst of VPS (Elite Double 22 and 32; Zhermack)

in a 1:1 mass ratio. The normal curing time of VPS is around 20 minutes.

Before injecting the mixture into a PVC mold, air bubbles are extracted from the

mixture using a dryer vent. Iron fillers were added to the VPS (base) prior to the

catalyst to prolong the operational duration by lengthening the curing period. In

a mixture of iron and VPS, iron fillings account for 10.3% by mass. We combined

fine iron fillers (Eisco Labs) with the VPS base before adding the catalyst. We

then injected this final mixture into PVC tubes that had been wrapped around a

3D-printed support. After the mixture has cured, we carefully cut and demolded

the PVC tubes.

5.6.3 Fully-implicit DDG-based simulation of system dynamics

We give details of how the robot geometry is discretely represented in § 5.4.2.

The force and torque on the cylindrical head are described by Stoke’s law. The

drag on a rigid sphere moving through a viscous fluid is

Fv = −6πµRẋ1, (5.3)

where R is the radius of the sphere, µ is the dynamic viscosity of the glycerin,

and ẋ1 is the velocity of the object relative to the fluid. Due to the irregular

shape of the robot head and the lack of a closed form expression for the drag,

we use a numerical coefficient Ct (to be evaluated through data fitting) to model

the drag as

Fv = −Ct6πµ0R ẋ1. (5.4)

As shown in Fig. 5.5, the shape of robot head is finalized irregular after numer-

ous trials as designs such as spherical or perfectly cylindrical head requires a

larger radius and thus cause a larger drag based on Eq. 5.4.
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5.6.4 Regularized Stokeslet Segments method-based hydrodynamics mod-

eling

In this section, we present the relation between the velocity of each node on the

flagellum and the corresponding hydrodynamic force applied. Note that RSS

is only applied onto N − 3 nodes (nodes with DOF of [x3, . . . ,xN−1]) on the

flagellum (in Fig. 5.9).

RSS is a regularization [169] of fundamental singular solution of Stokes flow,

which describes the flow induced by a singular point force [170]. In RSS, the

velocity u(x̃) at the position being evaluated x because of a regularized force

f(x) applied at x is as follows

8πµu(x̃) =
(

1
R

+ ϵ2

R3

)
f(x) + (f(x) · r)r

R3 , (5.5)

where µ is the fluid viscosity, r = x̃ − x, R2 = |r|2 + ϵ2, and ϵ is the regularized

parameter, which usually takes the value of ... Consider an edge, for instance,

the one connecting nodes xi and xi+1 with an edge length of ∆l. A point on this

edge should be located at xα = xi − αv (with v = xi − xi+1 and |v| = ∆l).

As displayed in Fig. 5.17, we assume a linear force density, fα = fr_i −

α(fr_i+1 − fr_i), along the centerline of the segment, such that the velocity at

location x̃ due to the linear force density is

8πµu(x̃) = ∆l
∫ 1

0

[
1
Rα

+ ϵ2

R3
α

fα + (fα · rα)rα
R3
α

]
dα, (5.6)

where rα = x̃ − xα and R2
α = |rα|2 + ϵ2. Assuming that fα is a polynomial of α,

the velocity u(x̃) in Eq. 5.6 can be formulated as [28]

(8πµ/∆l)u(x̃) = fr_i(T0,−1 + ϵ2(T0,−3)+ fr_i+1(T1,−1 + ϵ2T1,−3)+
3∑

n=0
fnTn,−3, (5.7)
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Figure 5.17: Notations associated with the flow u(x̂) at point x̂ generated by a
line segment from x0 to x1. Note rα = x̂− xα and v = x0 − x1.

where coefficients fn are obtained as follows

f0 = (fi · ri)ri, (5.8a)

f1 = (fi · v)ri + (fi · ri)v + (fi+1 · ri)ri, (5.8b)

f2 = (fi · v)v + (fi+1 · ri)v + (fi+1 · v)ri, (5.8c)

f3 = (fi+1 · v)v. (5.8d)

The Tk,l terms in Stokeslet Segments can then be computed by integrating over
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α:

T0,−1 = 1
∆l log[Rα∆l + (rα · v)]|10, (5.9a)

T0,−3 = − 1
Rα[Rα∆l + (rα · v)]

∣∣∣∣∣
1

0
, (5.9b)

T1,−1 = Rα

(∆l)2

∣∣∣∣∣
1

0
− (ri · v)

(∆l)2 T0,−1, (5.9c)

T1,−3 = − 1
Rα(∆l)2

∣∣∣∣∣
1

0
− (ri · v)

(∆l)2 T0,−3, (5.9d)

T2,−3 = − α

Rα(∆l)2

∣∣∣∣∣
1

0
+ 1

(∆l)2T0,−1 −
(ri · v)
(∆l)2 T1,−3, (5.9e)

T3,−3 = − α2

Rα(∆l)2

∣∣∣∣∣
1

0
+ 2

(∆l)2T1,−1 −
(ri · v)
(∆l)2 T2,−3. (5.9f)

Before applying RSS directly to a discrete slender rod-like structure, let us pro-

vide the expression of the velocity of a point x̃ along a curve with an arclength

s (and arclength of L) on a continuous rod in a force field:

8πµu(x̃) =
∫ L

0

[
1
R

+ ϵ2

R3 f + (f · r)r
R3

]
ds. (5.10)

Now, we move on to the case of our discrete robot with N − 3 nodes and N − 4

edges on the flagellum. The discretized version of Eq. 5.10 is the following

8πµu(x̃) =
N−2∑
j=3

(Aj
1fj + Aj

2fj+1), (5.11)

where Aj
1 and Aj

2 are 3x3 matrices shown below:

Aj
2 = |vj|[(T j,j+1

1,−1 + ϵ2T j,j+1
1,−3 ) + T j,j+1

1,−3 (rjrTj ) + T j,j+1
2,−3 (rjvTj + vjrTj ) + T j,j+1

3,−3 (vjvTj )],

(5.12a)

Aj
1 = |vj|[(T j,j+1

0,−1 + ϵ2T j,j+1
0,−3 ) + T j,j+1

0,−3 (rjrTj ) + T j,j+1
1,−3 (rjvTj + vjrTj ) + T j,j+1

2,−3 (vjvTj )]− Aj2.

(5.12b)
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Eq. 5.12 is then used to build a linear system

U = AF (5.13)

that expresses the relation between the velocity along the flagellum and the

force density applied on it. Here, U = [ẋ3, ẋ1, . . . , ˙xN−1]T is the velocity vector

of nodes on the flagellum. Note that each node on the flagellum satisfies the no-

slip boundary condition, i.e., the velocity at each node equals the viscous fluid

velocity there. F = [f3, . . . , fN−1]T is the force density vector. The hydrodynamic

force at j-th node is

Ft
j = fj∆lj, (5.14)

with ∆lj being the Voronoi length (in Fig. 3.1 in [83]).

5.6.5 Numerical implementation of “mass-transformer"

The entire control logic of the system is as follows: the robot moves in a straight

line when the flagellum remains straight, buckles its flagellum to turn a small

angle (e.g., 15 degrees), and applies the “mass-transformer" to efficiently turn

more than 90 degrees as this involves the switching between the two equilibrium

states (horizontal and vertical). Back and forth time and energy-consuming

experiments can help contribute to gain general feelings about how the robot

should be controlled to realize a prescribed trajectory, including the control of

“mass-transformer". To precisely control and forecast the robot’s trajectory, the

“mass-transformer" must be accurately modelled in order for it to accurately fol-

low any predetermined route. In reality, “mass-transformer" is simulated using

the “added mass" method explained in §5.4.2.1.
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5.6.6 Preconditioning for correcting the inaccurate simulator

In our simulator, we evaluate the fluid forces, f from the velocity from the

velocities, u, at each of the N nodes on a rod. The force vs. velocity relation

from Eqs. 3.42 and 2.14 is generated as follows

U = AF, where


U3(p−1)+k = upk,

F3(m−1)+n = fmn .

(5.15)

In the linear system, 1≤p,m≤ N (across the nodes) and 1≤k, n≤ 3 (spanning

across three Cartsian dimensions, i.e., x, y, z). The matrix A has size 3N × 3N ,

and its expression is provided as follows

The logic is to solve the inverse problem of computing the forces represented

by F knowing the matrix A and velocities denoted by U. If A is close to singular,

numerical issues will appear. While solving this linear system, we follow the

strategy below to avoid numerical issues.

We assume that the force varies smoothly with the arc-length, s, and fmn can

be written as a polynomial of arc-length, s, such that

fmn =
P∑
r=1

prn(sm
L

)r−1, (5.16)

where prn are the coefficients, P−1 is the degree of the polynomial. This assumes

that the system may be adequately described by P degrees of freedom, similar

to a singular value decomposition (SVD) procedure. The value of P is chosen as

≈ N/3, and sm is the arc-length parameter associated with node m. The force

vector F can currently be expressed as

F = CP∗, (5.17)
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where P3(r−1)+n = prn and C is a 3N × 3P sized matrix. The entries of the matrix

C can be calculated from Eq. 5.16. The force-velocity relation of Eq. 5.15 can

now be written in a decomposed way as follows

U = A∗P∗, where A∗ = AC, (5.18)

which is solved with SVD to obtain P∗. The force vector, F, is then readily aquired

from Eq. 5.17. The above method is called preconditioning. After applying it,

we need to perform error evaluation. The error, E, associated with the above

solution can is estimable from

E = ∥U− AFs∥
∥U∥

, (5.19)

where Fs is our solution to Eq. 5.15, and ∥ · ∥ stands for the Frobenius norm.

This error usually decreases with the number of reduced forces, N∗, increases;

nonetheless, computational cost increases with increasing N∗. We observed that

N∗ ≈ N/3 yields an error of E ⪅ 5% at a reasonable computational cost. This

is related to the uncertainty in our measurements of critical buckling velocity,

ωb, and the maximum propulsive force, was estimated to be the mean of this

error, E, across all the time steps. Our solutions in this chapter did not need this

preconditioning method because A is not that close to singular.

5.6.7 Closed-loop 3D motion planning

The overall robot is an underactuated system because only the direction, speed,

and the starting orientation of the tail motor are controllable. Without the fab-

rication error of flagellum, the simulator predicts that the trajectory of the robot

is fully controllable by controlling the above parameters. Controlling the tail

motor to determine the direction of flagellar buckling and the motor for the

realization of a "mass-transformer" is primarily involved. The results will be
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released in the coming publication.

5.7 Summary and Outlook

The objective of this chapter is to develop robots for scientific exploration, specif-

ically flagellar locomotion in viscous fluids. Experimentally, we designed an

untethered underwater robot with a rigid head and flexible flagellum that can

swim in a straight path and steer by leveraging structural instability, such as

flagellar buckling in a fluid with a low Reynolds number, the same life envi-

ronment as bacteria. The flagellum is actuated by a motor rotating along the

long axis of the flagellum, and flagellar buckling is triggered by a sudden rise

in the rotational speed of the flagellum [72]. The development of an unteth-

ered underwater robot is intricate due to the numerous challenges involved: 1.

making the robot waterproof and neutrally buoyant, 2. developing the robot

as compact as possible to decrease its drag, 3. keeping the center of mass and

buoyancy as close as possible at the original orientation, and 4. finding a flag-

ellum with right geometrical and physical parameters. We demonstrate that

although flagellar buckling can change the robot’s movement direction to some

amount, it is not powerful enough for the robot to turn over. As a result, the-

oretically speaking, a desired robot’s trajectory is controllable simply using one

control parameter - angular velocity. However, due to experimental errors such

as the uneven distribution of mass on the flagellum and the robot head, the

“mass-transformer" mechanism within the robot head is required for the robot

to achieve any preplanned trajectory.

Computationally, we have introduced a DDG-RSS-Stokes’ computational frame-

work to simulate the geometrically nonlinear deformation of soft filament and

bio-locomotion of uniflagellar soft robot moving in a low Reynolds fluid envi-

ronment. The computational framework fully accounts for three components:

elasticity of the flagellum, long-range hydrodynamic forces on the flagellum,
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and the flow due to the head. Due to the intricacy of such robots, the robot

design process is an arduous procedure involving trials and errors. In contrast

to untethered robots, tethered ones are far less challenging. In order to facil-

itate the understanding of flagellar locomotion and to aid in the search for a

motor whose rotational speed exceeds the flagellar buckling threshold, a sim-

ple platform is established. Keeping as many degrees of freedom as possible, we

designed a gimbal-based system to emulate the performance of untethered loco-

motion as closely as possible. We first demonstrated that DDG-RSS simulation

is capable of modeling the flagellar buckling threshold at the tethered setup.

Then, Stokes’s law is augmented onto the DDG-RSS framework. The excellent

agreement between experimental and simulated data of the robot’ speed and

the rotational speed of the head and flagellum validates the DDG-RSS-Stokes’

architecture. Then, the effect of the head size on the motion of the entire system

and the instability of the flagellum is further quantified. The size of the head

appears to play a substantial impact in flagellar propulsion, according to our

findings. We then studied how this instability may be used to control the swim-

ming direction of uniflagellar bacteria and robots. Supported by the robustness

and efficacy of the numerical tools, we performed systematic parameter sweeps

to quantify the relationship between the turning angles and the the angular ve-

locity varies with time. The results are used to solve the problem of making a

prescribed turn by varying the angular velocity with time. A series of such turns

can therefore be employed to follow any desired three-dimensional trajectory.

Such robots will only need a single control input, resulting in a simplified

control strategy. Our research on the underlying mechanics and control rule

could be applied to bacteria on a small scale. Moreover, we explore two distinct

trajectory control schemes that are coupled with the flagellar physical and geo-

metrical properties: 1.after each turn, we allow the flagellum to relax to its un-

buckled helical state before considering another turn, and 2.the rotational speed
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of the motor actuating the flagellum is in the following order: ω1 ≪ ωt, ω2 ≫ ωt,

and ω3 < ωt. In the future, the numerical tool can be combined with machine

learning to create more generic model-based control strategies. Importantly, we

employed a long-range hydrodynamic force model, and our framework may be

extended to investigate multi-flagellated systems. In these more complicated

systems, numerical simulation can serve as the data source for data-driven ma-

chine learning models. We believe that our numerical results will encourage

further research on all of these fronts in order to promote a fundamental un-

derstanding of the biophysics of microbes and facilitate the building of superior

functional soft robots.
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CHAPTER 6

Conclusion

We have presented investigations into several representative projects that dy-

namically model untethered soft flagellated locomotion in viscous fluids and

granular media. We developed a variety of robot designs, including multi-

flagellated robots and uni-flagellated robots, for use in the granular media, near

the air-fluid interface, and in viscous fluids.

In Ch. 2, we use articulated soft robots as an experimental platform to ex-

plore the locomotion in granular media (GM). Numerically, the same DDG-RFT-

Stokes’ framework is applied again to model the hydrodynamics of locomotion

moving through GM. Numerical and experimental results match quantitatively

with each other when the number of flagella is two or three, validating the

applicability of RFT in GM. However, “stick-slip" or “jamming", i.e., the robot

randomly gets stuck at the same position with time passing, happens when the

number of flagella turns four or five. The simulator fails to capture this, which

proves the limitation of RFT in GM. Moreover, our main finding is that increas-

ing the number of flagella from two to three decreases the speed of the robot.

This is kind of counter intuitive, proving the complexity of flexible flagellar lo-

comotion, the competition between the drag and propulsion. This indicates that

our simulator is potentially applicable for unknown physics exploration. We

find that there is an optimal rotational speed at which maximum efficiency is

achieved. This highlights that our validated simulator can be used as a design

tool for soft robots.

In Ch. 3, we implemented an Euler-Bernoulli beam-based analytical frame-
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work that is both simple and capable of capturing the performance of the robot

in GM. Fundamentally, a basic beam-based analytical framework may adequately

represent the qualitative performance trend of such complex systems. In any

case, this framework is not intended to quantitatively characterize the system;

rather, it serves as a ground truth to ensure that the simulation results of the

DDG-based simulator make physical sense.

In Ch. 4, we introduce arguably the simplest soft multi-flagellated robot with

a single binary control signal, which can move along an arbitrary 2D trajectory

near air-fluid interface and at the interface between two fluids. Our work ex-

plores the performance of flagellar propulsion near an open boundary instead

of a closed boundary such as walls as the former is much less explored[74, 127]

compared to the latter while the former has wide applications such as flagel-

lated robots that are used as baits, and tools for oil spill cleanup, water quality

monitoring, and infrastructure inspection. The robot is propelled by several

motor-actuated soft flagella that are naturally straight but deformed once actu-

ated. The propulsion comes from the structural compliance of polymeric flag-

ella. Then, we develop a DDG-based simulator that can simulate actuators such

as a rotating motor that actuates the flagellum. Experimentally, we find that

the robot swims in circles near the air-fluid/fluid-fluid interface, the same as

bacteria [127]. An important contribution of our simulation in this study is the

observation that the actuation (e.g., rotation of motor) can be readily accounted

for in a DDG-based framework by updating the undeformed configurations with

time, which typically is fixed and assumed to be invariant through the simula-

tion. The hydrodynamic force from the viscous fluid onto the flagella is modelled

by RFT. Stokes’ law is applied to model the force and torque on the cylindrical

robot head. Theoretical analysis and DDG-RFT-Stokes’ numerical simulations

tell us that this behavior is caused by the uneven distribution of viscosity of the

glycerin near the interface. Our simulations show quantitative agreement when
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compared against experiments. We investigate the performance of the robot

versus the number of flagella. Our results demonstrate that though our robot

looks nothing like a rod, our simulator is able to capture the dynamics of our

robot relatively accurately. Additionally, our robot is capable of following any

2D prescribed trajectory through a binary control signal. Due to the geometri-

cal simplicity, our computational framework is able to run faster than real time

on a modern desktop, suggesting that our numerical approach moves a promis-

ing step toward a computational framework for soft robotic engineering. In the

end, we briefly propose the idea of incorporating machine learning with our

fast-running simulator as a handy inverse design tool of flagellated robots. The

high computational efficiency of our simulator enables it as a tool of this class

of robot.

In Ch. 5, we developed the first untethered underwater robot with a flexi-

ble polymeric flagellum that replicate bacterial utilizing structural instability for

functionality, i.e., “buckling-to-turn" mechanism. Additionally, we show the ef-

fect of flagellar geometrical and physical properties on the performance of flag-

ellar propulsion. To expedite the development of painless untethered robots,

we implemented a gimbal-based setup and verified the logic to systematically

investigate the underlying mechanics. We showed the effect of the head size on

flagellar buckling. In addition, we demonstrate that while bacteria use buckling

to steer, flagellar buckling is likely insufficient for a robust robotic system to fol-

low any 3D prescribed route, especially when flipping itself over. As a result, we

develop a “mass-transformer" mechanism to make the robot system robust and

be able to reach a destination in the 3D space. Additionally, we are the first to

demonstrate that the state-of-the-art continuous hydrodynamic model Regular-

ized Stokeslet Segment (RSS) method can accurately model the hydrodynamic

force on a rotating flagellum on an untethered robot (with a rigid head). We

develop a numerical framework that incorporates (i) DDG to account for the
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elasticity of soft flagellum, (ii) RSS for the long term hydrodynamic flow by the

rotating helical flagellum, and (iii) Stokes’ law for the hydrodynamics induced

by a spherical head. Our modular robot design enables researchers to use it

as testbeds for studying generic flagellar propulsion. The “mass-transformer"

mechanism together with simple flagellar buckling control scheme can be used

for developing autonomous underwater robots for exploration and exploitation

of new environments.

In conclusion, we developed various untethered soft multi- and uni-flagellated

robots that can move or navigate through granular media or viscous fluids.

They have significant application potential for oil spill cleanup, monitoring wa-

ter quality, and infrastructure inspection. Researchers can use them as simple

but practical testbeds to learn the mechanics of general flagellar locomotion in

granular media and viscous fluids and to investigate how it is affected by the

robot’s physical and geometrical parameters and the environment, such as the

density of granular media, the viscosity of the fluid, and the presence of bound-

aries. Simulators based on discrete differential geometry (DDG) were proposed

concurrently. Due to the rapid execution and adaptability of our simulation

frameworks, researchers are able to investigate flagellar locomotion, utilize our

simulator to quickly generate a huge quantity of data, and combine machine

learning algorithms to analyze the data for inverse design and control of robots.
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