
Modeling Systems Using Side Channel Information

By

Bogdan Copos
B.S. (The College of New Jersey) 2012

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Dr. Sean Peisert, Chair

Dr. Matthew Bishop

Dr. Karl Levitt

Committee in Charge

2017

-i-

Copyright c© 2017 by

Bogdan Copos

All rights reserved.

Dedicated to my sister and parents

-ii-

Contents

List of Figures . vi

List of Tables . viii

Abstract . ix

Acknowledgments . x

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Thesis Statement . 3

1.4 Approach . 3

1.5 Motivating Example . 4

1.6 Definitions . 7

1.7 Organization of the Dissertation . 9

2 Related Work 10

2.1 Power Analysis . 11

2.2 Traffic Analysis . 16

2.3 High Performance Computing Activity . 19

2.4 Information Channel Bandwidth . 21

3 Early Work 23

3.1 Modeling User Behavior for Improved Network Efficiency in Android Appli-

cations . 23

3.2 Modeling Input Protocol for Unknown Binaries using Hardware Performance

Counters . 28

3.2.1 Finding Input . 28

3.2.2 Method Architecture . 30

3.2.3 Experiments and Results . 34

3.2.4 Conclusions on Finding Input Using Side Channels 36

-iii-

4 Monitoring High Performance Computing Platforms 37

4.1 Security in High Performance Computing Platforms 37

4.2 Power Analysis . 40

4.2.1 Initial Experiments and Observations 41

4.2.2 HPC Experiments . 43

4.2.3 Discussion and Future Work . 60

4.3 I/O Analysis . 62

4.3.1 Darshan . 62

4.3.2 Data Collection . 62

4.3.3 Methodology . 64

4.3.4 Findings . 65

4.3.5 Results . 69

5 Monitoring Internet of Things Platforms Using Side Channels 72

5.1 Background . 72

5.2 Experiment Setup and Devices . 74

5.3 Methodology . 75

5.4 Results . 77

5.5 Frequency Analysis . 81

5.6 Conclusion . 83

6 Side Channel Theory 84

6.1 Definition . 85

6.2 Model Definition . 87

6.3 Side Channel vs. Program . 89

6.3.1 Operation-To-Side-Channel Conversion 89

6.3.2 Side Channel Resolution . 93

6.3.3 Putting It All Together . 95

6.4 Information Loss . 95

6.5 Noise . 96

6.6 Turing Machine Side Channel Example . 97

-iv-

6.7 Limitations and Discussions . 101

6.7.1 Limitations . 101

6.7.2 Comparison with Entropy-Based Models 105

7 Towards Protecting Against Side Channels 106

8 Conclusion 111

8.1 Summary . 111

8.2 Limitations and Future Work . 113

8.3 Recommendations . 114

8.4 Closing Remarks . 116

References 117

Appendices 124

A HPC I/O Analysis: Darshan Features 125

B Side Channel Theory 127

B.1 Turing Machine Binary Counter Program . 127

-v-

List of Figures

3.1 Screenshot of user interface of the demo Android application, displaying “friends”

locations across a geographical map. 26

3.2 Diagram depicting the architecture of the finding input process. 30

3.3 Diagram visualizing the input strings being constructed throughout five consec-

utive time stages of the execution of InputFinder. 32

3.4 Diagram visualizing the user protocol state machine of one of the CGC programs,

with the backdoor highlight in red. 35

4.1 Diagram of current and voltage during the execution of OpenSSL SHA-1 hashing. 41

4.2 Diagram of the CPU, memory, and current behavior of a HPC compute node

during two stress tests . 42

4.3 This figure depicts the mangitude of current over time during the execution of the

Integer Sort (IS) and Fourier Transform (FT) benchmarks of the NAS Parallel

bench suite. 44

4.4 Diagram visualizing the mean-shifted distribution of the current magnitude time

series for each of the benchmarks. 45

4.5 Diagram describing the architecture of the time series analysis framework 46

4.6 Spectrograms of current magnitude time series representing two of the NAS

Parallel Benchmarks, the Block Tri-diagonal Solver (BT) and the Lower Upper

Gauss-Seidel Solver (LU). 48

4.7 Diagram depicting the variation in the classification success rate across the win-

dows of the MiniFE program. 53

4.8 Diagram visualizing the impact of noise on the average accuracy across all pro-

grams and a comparison of the classification results with random guessing and

mutual information . 56

4.9 Diagram visualizing how noise affects the recall (top) and precision (bottom) of

each individual program. 57

-vi-

4.10 Diagram of the number of instructions executed over time, during the execution of

two NAS parallel benchmarks, (a) Conjugate Gradient program and (b) Fourier

Transform program . 59

4.11 Boxplot and swarmplot representing the distribution of all 53 features across all

331 Darshan logs collected. 65

4.12 Diagram visualizing the I/O behavior of four different executions of the track3p

application. 66

4.13 Radar plots representing two Structured Grid programs. 67

4.14 Radar plots representing I/O behavior of seven computational dwarfs. Each

vertex of the radar plot represents a different feature. 67

4.15 Histogram of pairwise Euclidean distances between vectors representing programs

of the same computational dwarf. 69

5.1 Diagram visualizing connections and their size (bytes sent) made by the Nest

Thermostat to prominent destination over the span of three days. 76

5.2 Diagram showing NTP requests made by the Nest Thermostat over the span of

two days (Auto Away periods are marked by vertical bars) 80

5.3 Diagram showing frequencies of connection time series during mode transitions.

The windows before and after the events contain no relevant packets, hence no

frequency components. 82

5.4 Spectrogram of connections over a single day. 83

6.1 Diagram visualizing the case of n distinct side channel values and n distinct state

transitions. 90

6.2 Diagram depicting the case where each unique side channel value maps to mul-

tiple distinct state transitions. 91

6.3 Diagram visualizing the tape head location and contents at the beginning and

end of the binary program execution . 98

-vii-

List of Tables

4.1 Table listing classification results of clean current magnitude samples using the

full sample approach. 50

4.2 Table describing the results of classification of noisy current magnitude samples

using the window sets approach. The scoreless programs have execution times

too short for the selected window set size. 54

4.3 Table describing the breakdown of I/O libraries used across 54231 Darshan logs

from 108 total applications. 63

4.4 Table listing 18 most commonly executed scientific codes and their corresponding

computational dwarf. 64

-viii-

Abstract

Modeling Systems Using Side Channel Information

Side channel analysis is the process of examining information leaked by a computing device

during use, and leveraging such data to make inferences about various aspects of the system.

Historically, side channels have been exploited for malicious purposes, from inferring sensi-

tive data to infringing on the privacy of users. For example, power consumption has been

exploited to reveal secret cryptographic keys, and features of wireless network traffic have

been leveraged to reveal web browsing activity of a user. The goal of this dissertation is

not only to explore the potential of using side channels to determine what types of activity

a computing system is engaged in but also study the relationship between the operations

performed by the system and the side channel.

In this dissertation we present two key concepts: the application of side channel analysis

for security and privacy purposes, particularly for monitoring systems, and the development

of a model for defining the relationship between side channel information and the operations

performed by the system. The empirical studies presented in this dissertation demonstrate

that side channel information can be leveraged to monitor the behavior of systems and

describe advantages for doing so over alternative methods. In addition, we outline a model

that describes how the operations performed by a system are represented in side channel

information and how the information loss can be estimated. The goal of these two directions

is to expand the understanding of side channels, their benefits and drawbacks, from both

a practical point of view as well as theoretical. Our work shows how the outlined model

can measure the information loss in side channels while our empirical studies show that

despite information being lost, in many cases, side channels contain enough information to

successfully monitor the behavior of systems and provide a non-intrusive, minimal impact

method for doing so.

-ix-

Acknowledgments

Throughout my graduate school years, I have encountered many people, who have impacted

me in various ways. I am thankful for my adviser Dr. Sean Peisert. He has been extremely

supportive and encouraging and I am immensely grateful for the opportunity to work with

him. The experience has been incredibly rewarding and insightful. For all of their support

and insightful conversations, thank you to Professor Matt Bishop and Professor Karl Levitt.

It’s not often you have the honor and privilege to spend time and pick the brains of such

brilliant people.

To my family, without you I wouldn’t be me and I wouldn’t be here. Thank you for all

of you support and encouragement throughout the years. To my sister, thank you for always

being a role model and inspiring me to excel. Bunica, mersi pentru incurajare.

I’d also like to thank my friends, especially Henry Kvinge, Jonathan Ganz, Axel Saenz

Rodriguez.

This research used resources of the National Energy Research Scientific Computing Center

and was supported in part by the Director, Office of Science, Office of Advanced Scientific

Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. Other sources of funding include the National Science Foundation and funding

from theResearch Initiative for Scientific Enhancement (RISE) Program. Any opinions,

findings, conclusions, or recommendations expressed in this material are those of the author

and do not necessarily reflect those of the sponsors of this work.

This dissertation includes work presented in the following papers, with full permission

from all authors. The papers have either already been published or are currently in submis-

sion.

• “Inputfinder: Reverse Engineering Closed Binaries Using Hardware Performance Coun-

ters,” Bogdan Copos, Praveen Murthy, in Proceedings of the 5th Program Protection

and Reverse Engineering Workshop (PPREW), Los Angeles, CA, 2015.

• “Is Anybody Home? Inferring Activity From Smart Home Network Traffic,” Bogdan

Copos, Karl Levitt, Matt Bishop, Jeff Rowe, in Proceedings of the IEEE Computer

Society Security and Privacy Workshops (SPW), San Jose, CA, 2016.

-x-

• “Monitoring High Performance Computing Activity via Power Analysis” (in prepara-

tion)

• “Side Channel Bandwidth: Studying The Relationship Between Side Channel Infor-

mation and System Behavior” (in preparation)

-xi-

Chapter 1

Introduction

“What we call chaos is just patterns we haven’t recognized. What we call random

is just patterns we can’t decipher. What we can’t understand we call nonsense.

What we can’t read we call gibberish.”

— Chuck Palahniuk, “Survivor: A Novel”

1.1 Background

Side channel analysis is the process of examining information channels leaked by a computing

device during periods of activity and leveraging such data to make inferences about various

aspects of the system and its activity. Examples of side channels include both streams

(or waves) of physical particles, such as current, radiation and even sounds, as well as other

types of data such as timing information. Unlike other types of information, side channels are

naturally occurring and often cannot be countered. As such, side channel analysis presents a

unique, non-intrusive, and often covert method of extracting potentially private information

from a system.

At first glance, side channels are noise: “random” signals naturally leaked by various

entities. Yet, as the quote above suggests, noise is often information we cannot comprehend

and have yet to decipher. It did not take long for people to notice patterns in side channel

information. Studying these patterns led to discoveries that side channel information is of-

ten a reflection of the system’s activity. Historically, side channels have been exploited for

1

malicious purposes from inferring sensitive input to a program or system, to infringing on

the privacy of users. Dating back to 1950s, researchers proved that cryptography can be

compromised by analyzing data leaked from cryptographic devices. Academic publications

since have demonstrate how side channels can be leveraged for various purposes, from weak-

ening cryptographic implementations by inferring keys [1, 2, 3, 4], to identifying users’ online

browsing activity [5, 6, 7, 8], or even identifying keystrokes [9] or content of printer jobs via

acoustic emanations [10].

Undoubtedly side channel analysis has both security and privacy implications. Yet despite

the historic connotation as an attacker’s tool, side channel information is “dual use”. That

is, since it discloses information about the system and its activity, side channel information

can also have positive applications. Regardless of the application, it is important to study

the full potential and drawbacks of side channel information, for both security and privacy

reasons.

1.2 Problem Statement

With the increase in cyber-attacks, cyber security monitoring has become an essential com-

ponent of any institutions’ security framework. Researchers and computer scientists have

developed a variety of tools for collecting information about the activity of a system. Net-

work monitoring frameworks such as Bro [11] can be used to analyze incoming and outgoing

network traffic. System-level utilities also exists for identifying processes running as well as

other system attributes.

Cyber security monitoring is mostly ad hoc. To effectively monitor a system for security

and privacy reasons, every system component should be carefully monitored. However, most

security monitoring tools focus on specific attributes of a system. This has several implica-

tions. First, such detailed monitoring produces massive amounts of data whose processing is

costly. Additionally, most existing monitoring tools are intrusive and impose an overhead to

the system. Furthermore, intrusive monitoring tools increase the complexity of the system

maintenance process.

Ultimately, the purpose of monitoring tools is to record or generate data which provides

insight into the activity of the system. While side channels have historically been used for

2

nefarious purposes (violate the privacy of users or break security mechanisms), we examine

the potential of using side channels to determine what types of activity a computing system

or device is engaged in. This is useful in several scenarios including the monitoring of

corporate networks in which privacy has been waived and administrators are concerned with

inappropriate or illegal activity or in cases where the software operating on devices is not

controllable by device owners. Side channels have two major advantages over other forms of

monitoring due to the fact that they do not require software running on the system being

monitored: users cannot easily tamper with the collection and the collection of data may

have no (negative) impact on a system’s performance. Additionally, some side channels, such

as power, have the advantage of providing insight into both the behavior of the software and

hardware. As such, exploiting side channel information for security and privacy related

monitoring presents as a natural choice.

1.3 Thesis Statement

In this dissertation, we present a model and several empirical studies of leveraging side

channel information to monitor the behavior of a system for both privacy and security

reasons. Our model formally defines the relationship between side channel information and

the activity of a program. Unlike previous efforts which focus on information flow, in our

approach, by defining the relationship between side channel information and the activity of

a program, researchers can estimate how accurately a side channel reflects system activity

and specifically, the amount of information lost in the side channel.

1.4 Approach

Our goal is to expand the understanding of side channels and their benefits. Previous pub-

lished efforts have successfully demonstrated only one aspect of side channels. Specifically,

prior research has shown that based on the side channel information, it is possible to infer

the input to a particular program. That is, previous research shows that there exists a flow

of information from the input to the system and the side channel. In this dissertation, we

seek to study side channels in more depth, particularly focusing on the relationship between

the behavior of a program and a side channel.

3

In contrast to previous efforts, we study how control flow of the program is represented

in the side channel. This relationship can have many security and privacy implications.

As presented here, measuring this relationship can enable the leveraging of side channel

information as a method for building security monitors. Research questions concerning the

privacy and security implications of using side channel information to monitor the activity

of systems, including spying and reverse engineering of programs, are beyond the scope of

this dissertation and remain as future research problems.

To achieve our goal, we approach the problem in two ways. First, through empirical

studies, we expose previously uncovered benefits of using side channel information in various

settings, including the “Internet of Things” and high-performance computing platform. In

our experiments, we apply statistical analysis, supervised and unsupervised machine learning

algorithms to interpret and classify side channel data streams. Empirical studies, while

valuable, are case specific and fail to generalize the nature of the relationship and identify

important characteristics. In other words, the amount of information that can be interpreted

from the side channel depends on the frequency of the data collection and ultimately on the

relationship between the operations performed by the system and their footprint on the side

channel. As such, we outline a model designed to formally define this relationship.

Our model builds upon automaton theory to formalize the generation of side channel

information and help describe the relationship between the activity of a system and the side

channel. Specifically, our model allows us to identify the factors which affect the resolution

of this relationship and identify bounds on the resolution of information provided by the side

channel (with respect to the activity of the system). As a result, by applying our model,

researchers can determine how closely the side channel represents the control flow of the

program. Our model does not make any assumptions about the type of side channel, the

nature of the program, the hardware executing the program, or how side channel information

is collected (except the frequency at which information is collected).

1.5 Motivating Example

As a motivating example, consider the problem of monitoring Internet of Things devices.

Internet of Things (IoT) refers to a system of Internet-connected, networked, embedded

4

computing devices. These embedded devices are being inserted into everyday objects and

often play the role of sensors and actuators. For example, at the time of this writing,

there are a plethora of Internet of Things devices in many different settings, from homes

(e.g., “smart locks”) to industrial settings including the power grid and even manufacturing

facilities. Many of these devices can be controlled over the Internet, often via a mobile

application. The Internet connectivity and intrusive nature of these devices raise serious

privacy and security concerns. However, monitoring these devices and assuring security

properties is non-trivial and users are obligated to trust the developers and manufacturers

of these devices.

For the purpose of this example, let us consider a set of Internet of Things devices

all equipped with several hardware components including a central processing unit (CPU),

random access memory, limited physical storage drive, and a network card. Let us also

assume that a user has several of such devices, each with a different purpose, from a variety

of different manufacturers. From the user’s perspective, there is not much the user can do

to verify if the devices have been compromised or even check what the devices are doing.

The user must trust the manufacturer and companies involved in the production chain of

the devices.

However, even if most devices are implemented correctly and securely, Internet of Things

devices can communicate with each other through their environment, even when devices are

“incompatible” and do not utilize the same protocols. Without verifying all combinations

of devices from all manufacturers in every possible environment, it is difficult to guarantee

security of IoT platforms. On the other hand, monitoring devices across manufacturers

is challenging. Often devices do not use the same protocols or even technologies and are

therefore incompatible. A security monitoring device capable of deciphering the protocol of

a manufacturer may be useless for monitoring devices of another manufacturer.

The work presented in this dissertation attempts to demonstrate the side channel analysis

can provide assistance in such scenarios. In particular, we believe side channel analysis can

be leveraged as a method of non-intrusive security monitoring of various devices and systems.

In our example, despite the devices communicating different protocols, using different

technologies, and perhaps even different hardware components, all embedded devices have

5

shared characteristics. First, it is important to note that every hardware component con-

sumes electricity. In addition, due to physical characteristics of the circuitry (such as electri-

cal resistance), these devices also emit heat and electromagnetic radiation. Such emissions

are examples of off-system side channels. Side channels only exhibit themselves when the

device is running. Off-system side channels are streams of information that can be collected

without interacting with the system. In contrast, on-system side channel information is

collected by interacting with the device. It is important to note that side channels are not

limited to streams of physical particles. Even timing information can serve as a side channel.

In our example, a side channel shared by many IoT devices is the wireless network traffic.

Even if encrypted, features of the traffic such as size (in bytes) and even number and fre-

quency of transmissions can be used to characterize the behavior of a device. Some examples

are discussed in the background chapter, Chapter 2.

To extract more meaningful information from side channels, it is important to note

that the fluctuations in side channel information depend on the amount of work performed

by the hardware components. Consequently, side channel information is an indication of

the activities performed by the computer. By analyzing and extracting features from the

fluctuations in the side channel over time, it is possible to generate profiles describing various

states of the system.

For example, consider a “smart” thermostat IoT device. During its life-cycle, the device

performs several tasks. It may check the temperature and activate the heat-ventilation-air-

condition (HVAC) system accordingly. It may check online weather services for weather

predictions. It may contact time servers to get an accurate time. The behavior of these

default, periodic actions may look different than the behavior that occurs when the user

sends it a command to adjust the temperature. The behavior may different in several ways.

It is possible that the network traffic generated when a user sends a command is represented

by a different set of packets than the normal periodic traffic. Again, differences may be

observed in size and frequency. Similarly, it may be possible to differentiate between states

by looking at the power consumption of the device. For example, the thermostat may utilize

more power when the user changes the temperature since it has to receive the command,

process, verify the temperature, and possibly activate the HVAC system. On the other

6

hand, the power consumption at rest or during a minimal action such as checking time may

differ. Even memory operations can serve as an indicator of what the system is doing. For

example, if the device wants to save the user’s preferences any time they adjust the settings

or temperature, this may result in a different pattern of memory operations.

It is important to note, however, that the amount of information leaked about the sys-

tem’s activity depends on the relationship between the operations performed by the system

and the side channel. This relationship is described in more detail in Chapter 6 and it plays

a key role in distinguishing between states or operations of the system by solely relying on

side channel information.

One may argue that there are other methods for achieving the same goal. Our work

does not mean to diminish alternative approaches. We also believe our approach can be

used in supplement to other methods. However, we do argue that the approach presented in

this dissertation has several advantages over alternatives. First, our approach relies on side

channels which are readily available and naturally emitted by the system. As such, there

is no overhead in generating the data. Additionally, side channels, especially off-system

side channels, allow such monitoring to be done non-intrusively and are agnostic of the

underlying software and hardware. In a heterogeneous environment, such as that found in

IoT platforms, monitoring devices across manufacturers can only be done by relying on such

side channels (without the cooperation and coordination of manufacturers). In other words,

all electrical components utilize power and share this side channel (with the exception of

battery powered devices, where what is observable externally does not accurately represent

their consumption). While the analysis details may change, the overall approach is not

dependent on the characteristics of the hardware or software of the device.

1.6 Definitions

We define a side channel as an information channel generated by the physical implementation

of a system during the processing of some task. Side channels exhibit themselves in many

different forms. Although historically side channels present in physical particle streams (e.g.,

current, radiation, acoustics) have been most prevalent in literature, it is important to note

that side channels exhibit themselves in many different forms. Other side channel types

7

include encrypted network traffic and even timing information.

Side channels are closely related to covert channels. Covert channels are information

channels that are not intended for communication or information transfer but are used by

two parties to covertly communicate. As such, side channels can be thought of as a one sided

covert channel, where one party is the system and the other is the user recording the side

channel information.

Extracting useful patterns out of information channels is done through various data anal-

ysis techniques. There are two types of data analysis: statistical analysis and machine

learning. Statistical analysis leverages statistical features of the data to model it. Machine

learning is an analysis method that involves the use of artificial intelligence to create models

representing or predicting the data. Machine learning covers a variety of algorithms split

into two main categories: supervised and unsupervised. Supervised machine learning al-

gorithms are trained using labeled data. Unsupervised machine learning algorithms apply

various functions to the data in order to infer the underlying structure of the data. In

this dissertation, both statistical modeling and machine learning techniques (supervised and

unsupervised) are applied.

Shannon entropy is an information theoretic metric used to measure the amount of in-

formation in a noisy channel. Shannon entropy provides a method for describing the unpre-

dictability of information in each message and is defined by the following equation (1.1):

H(X) = −
n∑

i=0

p(xi) logb p(xi) (1.1)

The equation defines that the entropy of a data stream is defined by the sum of the

probabilities of each outcome, p(xi) multiplied by the logarithm of probabilities for each

outcome. Using this equation, it is possible to measure the amount of information contained

in an information channel. Consequently, Shannon entropy can be used to determine the

minimum number of bits needed to encode a string of symbols. We use Shannon entropy to

estimate the amount of information in side channel data and how it relates to the information

describing the control flow of the system.

Information flow is defined as the transfer of information from one entity to another. As

mentioned above, prior research efforts study the information flow between input to a system

8

and the side channel. In contrast, control flow is the sequence of steps (e.g., instructions,

functions, etc.) of an imperative program p during an execution with some input x.

Automata theory is a theoretical branch of computer science that studies abstract mod-

els of machines and the computational problems such machines are capable of solving. One

application of automatons is to allow researchers to describe and analyze the dynamic behav-

ior of systems. There are two classes of automatons based on their behavior: deterministic

and non-deterministic. A probabilistic automaton is a generalization of a non-deterministic

finite automaton, where the transitions between states have probabilities associated with

them. As a result, the transition function becomes a transition matrix. In our work, we

rely on automata theory to describe the generation of side channel information and how the

information relates to the operations performed by the system.

1.7 Organization of the Dissertation

This dissertation is organized as follows: Chapter 2 discusses related work and how the work

presented here differs. Chapter 3 presents some of the early work done in the exploration

of additional benefits of side channel information. Chapter 4 studies the use of various

side channels to monitor a High Performance Computing platform. Chapter 5 demonstrates

how side channel information can be used to monitor Internet of Things devices. Chapter 6

presents a model of side channel information and how it relates to system activity. Chapter 7

proposes future work, both with respect to interesting empirical studies as well as plans to

apply our model for defensive purposes. Finally, Chapter 8 presents our conclusions.

9

Chapter 2

Related Work

Side channels have a long history. Unlike in the digital age of the 21st century, finding and

gathering information in the past was difficult. As a result, people often found themselves

leveraging whatever little information was available to make inferences. The skill of inferring

secret and potentially private data from leaked information became especially valuable for

attackers. It presented a non-intrusive method of revealing private information about a target

without their consent and also often without the person or system gathering the information

having to expose themselves.

This negative connotation is portrayed in some of the earliest document side channel

attacks. For example, in 1956, the British intelligence agency MI-5 tapped the Egyptian

embassy telephone lines and tried to infer the settings of the Hagelin encryption machine

based on the sounds. Similarly, during the first World War, soldiers would measure the

power flowing over on-field telephone wires to infer messages exchanged by enemy parties.

This continued over time and evolved to exploitation of other side channels, As seen in the

early examples described above, side channel information became known as technology used

by attackers to spy and infringe on the privacy of others. This reputation of side channel

analysis persists even among recent academic research.

Since their initial discovery, researchers have explored side channels in various settings.

While side channels have many different applications, some of their main applications are

in power analysis and network traffic analysis. Due to their relevance to the work presented

in this dissertation, we will provide an overview of related works in those areas as well

10

as previous efforts in monitoring high performance computing (HPC) platforms and works

related to the study of side channel bandwidth.

2.1 Power Analysis

Electrical power is one of the earliest side channels identified. As such, power analysis has

a solid foundation of previous efforts. The majority of the efforts can be divided into two

categories, by their use. The first category encompasses bodies of work that leverage power

to infer information about a variety of systems.

Kocher et. al. demonstrate that the power consumption of encrypting devices during

computation is strongly correlated to the instructions executed and the state of its internal

registers [12]. Specifically, using relatively simple devices, the authors show that voltage dif-

ferences can be sampled at frequencies as high as 1GHz. Using the Data Encryption Standard

(DES) symmetric-key encryption algorithm as an example, the authors show how both sim-

ple power analysis (SPA) and differential power analysis (DPA) can yield information about

a device’s operations and even cryptographic key values. In simple power analysis, variations

in the power consumption measurements collected during a cryptographic operation are di-

rectly interpreted and mapped to certain parts of the operation. In contrast, differential

power analysis looks at power consumption measurement collected both during and before

(or after) the operation occurs and uses signal processing techniques to filter the noise from

the signal and build a model for the operation. In the paper, the authors demonstrate that

given a set of power consumption measurements taken during a cryptographic operation, it

is possible to visually identify the 16 DES rounds. The paper also describes that at a 3.5714

MHz sampling rate, it is possible to differentiate between instruction types. The authors

argue that while information about the different stages of the DES can be obtained, SPA

does not expose any information about the key. However, the authors show that unlike SPA,

DPA is not hindered by low power consumption variations in hardware implementations of

symmetric cryptographic algorithms and can be used to infer key material.

Similar to Kocher’s work, Carmeli et. al. take advantage of bugs in hardware and power

consumption of a device to analyze its operations at various stages and retrieve secret infor-

mation [13]. The authors expand the work of Boneh et. al. [14] who show that anomalous

11

side effects of hardware bugs, which can be considered side channels, may be leveraged by

an attacker to induce faults. Boneh et. al. provide a theoretical model for breaking cryp-

tographic implementations which use the Chinese remainder theorem by leveraging random

hardware faults. On the other hand, Carmeli et. al. show in practice how the Intel division

bug, a bug which produces slightly inaccurate results on some inputs, can be leveraged to

extract the secret key used during the decryption of a cipher-text using the RSA public-key

cryptographic algorithm.

The second type of power analysis efforts originate from the rapid development of cities

and towns throughout the world. As populations grew and energy demand increased, electric

companies have become extremely concerned with the limitations of the power grid infras-

tructure. One way of relieving the stress on the power grid is by managing the distribution

and use of power more efficiently; yet considering the dynamic nature of power demand,

such a task is nontrivial. To combat such issues, researchers started using power analysis

methods to monitor and understand how energy is being used by households. This area of

research became known as non-intrusive load monitoring (NILM) and it describes methods

for generating fingerprints for various electric loads in a given household. One of the earliest

efforts is that of Hart et. al. [15]. The authors describe in detail NILM techniques and

determine which should be considered in future studies. Specifically, the authors apply sig-

nal processing techniques on complex power (real and reactive power) of the total loads to

estimate the number of and nature of the individual loads. The authors introduce the switch

continuity principle which states that “in a small time interval, [...] only a small number

of appliances change state in a typical load” and build their NILM algorithm based on this

principle. Their approach analyzes the power traces for significant changes in the current

or voltage. Given the time and size of these changes, the authors can determine which

appliance is turned on (or off) or in use, given prior knowledge of their models. Although

their prototype only uses an on/off model, the authors also describe two other appliance

operational models, which are finite state machine and continuously variable. Using these

three models, the authors argue that it is possible to adequately represent multiple appliance

types. The paper also discusses the intricacies of utilizing different methods and data types

(e.g., current versus voltage versus power) for generating signatures and even considers the

12

NILM in the context of a communication model, where appliances are “transmitters” with

the wiring as the communication “channel”.

While the previously discussed work analyzes the aggregated load, other prior efforts ex-

plore energy disaggregation techniques for identifying individual electric loads of a household

from the total aggregated load.

Zia et. al. use the framework of hidden Markov models (HMM) to capture the structure

of individual power loads of various appliances [16]. To disaggregate a total load, the authors

merge permutations of previously learned individual models into a single HMM and compare

it to the HMM of the total load. The generation of a HMM has two stages: structure

modeling and parameter estimation. Structure modeling is concerned with defining the

states, whereas the parameter estimation step is responsible for estimating the transition

probabilities. While the parameter estimation is performed automatically using training

data, the authors manually predetermine the topology of the states.

While a hidden Markov model can capture the power consumption as a stochastic process,

it is hampered by changes in the operation cycle of an application (e.g., due to seasonal

changes or devices with continuously variable loads). To overcome such limitations, Zhong

et. al. use a new model called an interleaved factorial non-homogenous hidden Markov

model to more accurately model how appliance usage varies over the day [17]. The non-

homogeneous property of their model allows for transition probabilities between states to

change over time. The interleaved feature imposes a constraint that at most one chain

changes state between any two consecutive time steps. To test their model, the authors used

a set of power traces sampled every 2 to 10 minutes, from 251 different households, over

the span of multiple days. Their model performs best when compared to using a factorial

hidden Markov model, a factorial non-homogeneous hidden Markov model, or an interleaved

hidden Markov model.

To encourage future exploration of NILM, research have also produced public data sets for

testing of energy disaggregation techniques [18, 19] as well as open source toolkit specifically

designed to enable comparing of energy disaggregation techniques [20].

Thus far, the prior work mentioned focuses on identifying when and which devices are

in use in a given household. Researchers have also worked on determining how devices are

13

used and infer activity of residents in a household.

For example, Bauer et. al. [21] build a simple device, iSensor, to measure current and

induced voltage and show that by placing such a device between the plug of an appliance

and the socket, it is possible to identify various activities such as water boiler use, fridge

door opens, and the use of many kitchen appliances. The device measures the current

consumption using electromagnetic induction and uses an analog-to-digital converter (ADC)

to digitalize the induced voltage. The authors use ADC peak values and build feature

vectors for each device using statistical values such as sum, maximum, minimum, average

and variance. Using a feature vector of size five the authors are able to distinguish between

different devices and their operating modes. For example, based on the ADC values and

the duration, the authors are able to determine both if the water boiler is running and

how much water is being heated by the appliance. To evaluate their approach the authors

ask several users to utilize the appliance in different ways while the appliances are being

monitored. Using the measured data and prior observations from testing of the appliances,

the authors try to correctly recognize the actions performed by the users. Their evaluation

reports accuracy ranging from 66% to 100% depending on the appliance and use mode.

Researchers at Cornell University and the University of California Berkeley leverage the

demand-response property of the smart grid to infer private information about the resi-

dents of a household [22]. Specifically, the authors show that using a real (or active) power

monitor with 1 Hz sampling frequency and 1-watt resolution, it is possible to estimate the

presence/absence, sleep/wake cycle, appliance use of the residents, as well as other events

such as showers and even meal preparations. To achieve this, the authors use a NILM algo-

rithm that analyzes the power consumption data and performs edge detection. Once switch

events (i.e., appliance turning on/off) are identified using edge detection, their approach uses

cluster matching to classify each switch event against a database of load signatures. With

the events labeled, a behavior extraction routine infers the activity of the residents. To

determine the accuracy of their approach, the authors compare their results against camera

data. While their work assumes that the attacker has a list of the appliances present inside

the household as well as a database of on/off fingerprint events for each of the appliances,

publicly available libraries exist with generic appliance fingerprints that can be used to match

14

against an unknown load signature.

Clark et. al. [23] use load monitoring to identify web pages accessed by users within a

household. Web browsers often use hardware acceleration to aid in the rendering of rich user

interfaces. Considering this, the authors leverage information about the power consumption

during the downloading and rendering of websites due to changes in the graphics display and

use this information to infer the web browsing activity of users. Specifically, the authors use

a sensor to monitor AC current consumption and transform these current time series in the

frequency domain using Fourier transform. To build feature vectors, the Fourier transform

of each current magnitude trace is split into 500 segments each 250 Hz wide. Each segment

represents the presence of the signal within one 250 Hz slice of the spectrum. These feature

vectors are then used to train support vector machines (SVMs). Using two different com-

puters (a laptop and a conventional desktop), the authors tested their approach by visiting

50 popular webpages. After training the SVM using 45 samples per website and testing

on another 45 samples, the classifier achieves 87% accuracy. The authors’ approach also

shows promising results in various scenarios such as lower sampling rate of their measuring

device (from 250 kHz down to 100 kHz), accessing webpages using a VPN service, accessing

webpages via wired and wireless connections, and even accesses of cached web pages.

More closely related to our work, power consumption data has also been used to study

the execution of programs. Isci et. al. [24] present a method for identifying phases in

program power behavior and determining points in the execution of the program that cor-

respond to such phases. The authors argue that programs exhibit changes in their behavior

throughout their execution, which constitute phases of the program’s execution. To build a

representation of such phases, the authors use performance counters and a sensor for mea-

suring total processor power consumption. As a program executes, their framework is able

to estimate power attributes of each processor component using a combination of the per-

formance counter information and the measured power consumed. Using this approach, the

authors are able to generate what they call a power vector that represents the estimated

power values for 22 processor components such as trace cache and integer execution unit.

This power vector is populated at each sample point. To determine if two sample execution

points are the same, the authors compute the similarity matrix using the raw and normalized

15

power vectors of the two sampled points. To compute the distance between the two power

vectors, the Manhattan distance algorithm is used. This approach allows them to identify

similar phases of the program executions. The authors also demonstrate how their approach

can be used to define a program “signature” by first grouping similar execution points using

a thresholding algorithm based on the aforementioned technique. Once similar execution

points are grouped, a few “representative” power vectors are selected from each group to

generate the program “signature.” The authors use the gzip benchmark to demonstrate their

approach.

2.2 Traffic Analysis

Side channel attacks in IP network traffic have been extensively studied in the past. Traffic

analysis attacks were highlighted in “Attacks of the SSL 3.0 protocol” [8], by Wagner et al.,

who show how the URL of an HTTP GET request is leaked in SSL due to the inability of the

cipher-texts to disguise the plaintext length. Over time, researchers have applied statistical

modeling and machine learning techniques to a variety of data features in order to advance

the efforts of traffic analysis. Some of these efforts are described below.

Cheng and Avnur [7] show that websites can be fingerprinted by performing traffic anal-

ysis of SSL encrypted web browsing traffic. In their work, the authors assume the attacker

is on the same network as the target user. Additionally, the attacker is capable of sniffing

the network using a tool such as tcpdump, a popular command-line packet analyzer. For

identification of the website visited, their approach leverages only information about the size

of the packets exchanged between two endpoints. Also, the authors consider the fact that

Web users often follow several links on a website before leaving, and use this observation to

devise a link analysis algorithm with a window size of three samples. In other words, for a

given sample observed at time t, their algorithm also analyzes the samples at time t− 1 and

t + 1. The authors also consider using hidden Markov models but determine the technique

is inadequate since user behavior can vary (e.g., a user may backtrack, only follow a link

and leave the page, etc.), which is not permitted by HMMs. To evaluate their approach, the

authors run a user study as well as simulations using different web access patterns and even

some countermeasure techniques, such as packet padding, fixed packet size and caching. The

16

accuracy of their approach shows that even in the presence of some countermeasures, it is

possible to identify the website accessed using traffic analysis. Other research efforts expand

beyond the use of length metrics for traffic analysis. These [25, 26, 27, 28, 29, 30] leverage

various features including source and destination attributes (e.g., address, port), protocol,

and even timing information (e.g., duration of connections, burst rate of transmissions).

Efforts have also focused on discovering countermeasures for such attacks. Luo et. al. [31]

propose a configurable client side system, named HTTPOS, capable of applying a variety

of traffic transformation techniques. HTTPOS implements two strategies to defend against

traffic analysis attacks. A diffusion strategy is designed to introduce features as to cause

the classification algorithm to perform poorly. A confusion strategy aims at manipulating

features related to one web page to resemble a different web page. To this end, HTTPOS is

capable of manipulating several features including packet size, web object and flow size, and

timing of packets. These manipulations are possible by leveraging HTTP and TCP options.

To evaluate HTTPOS, they use 100 of the most popular websites and test it against four

different attack methods. Specifically, the four attacks use number and size of web objects,

inter-arrival times and packet size, flow direction and packet size, and sequences of packets

respectively. The results of their evaluation show that the accuracy of the four attacks drop

significantly, in some cases to 0% for all 100 websites. Other efforts [32, 33] explore other

countermeasure techniques, all varying by the method used (e.g., traffic padding, traffic

masking) and location of enforcement (i.e., server side, client side, or both).

More recently, in “Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Coun-

termeasures Fail” [5], Dyer et. al. provide the first comprehensive analysis of previously

proposed traffic analysis countermeasures and show why they fail to protect against attacks.

The authors show that nine countermeasures such as fixed packet size, fixed packet period-

icity, and even traffic morphing techniques are vulnerable to attacks. To prove this, they use

a näıve Bayesian classifier and a support vector machine classifier based on total connection

time, bandwidth, and the size of bursts.

For example, using a test data set, the authors show that the accuracy of their classifier

drops to 5% only after adding countermeasures that impose a 400% overhead in the number

of bytes sent during the connection.

17

While most efforts present practical methods, researchers have also taken a theoretic

approach to traffic analysis attacks. An example is the work of Backes et. al. [34] who

take a formal approach to traffic analysis attacks and develop a mathematical model which

represents an application’s web traffic and can be used to derive security guarantees for the

application. The authors consider network traffic as an information channel and model the

network traffic for any given application using a directed labeled graph. The nodes of the

graph represent the states of the application while the edges correspond to user actions. The

patterns of the application web traffic are also reflected in the graph representation through

vertex labels. Given such a graph, the authors are not only able to represent a web application

but also a series of “fingerprints” for the application through the mapping of vertices to

observable events (denoted by the vertex labels). Furthermore, users’ traversal of the website

can be represented by a path in the graph and can be defined by the set of observations

denoted by the graph. The authors take this model to show how network fingerprints can

be composed and how such fingerprints affect the security of a web application.

While the publications described above use traffic analysis only to identify websites ac-

cessed by a user, applications of traffic analysis techniques expand beyond that, both with

respect to objectives and features used. The following are examples of such. Dusi et. al. [35]

detect application-layer tunnels by using statistical features of connections such as packet

size, inter-arrival time between consecutive packets, and number of packets. Kohno et. al.

[36] leverage differences in TCP and ICMP clock skewness to fingerprint remote physical de-

vices. Some researchers use channel state information values to recognize keystrokes [9] and

even identify human presence indoors [37]. In wireless networks, channel state information

provides information about the channel regarding phenomena such as scattering, fading, and

power decay. This information plays an essential role in building reliable connections.

In our work, we consider encrypted network traffic as a side channel and we show how

it can be used to model and monitor the behavior of Internet of Things (IoT) devices.

In contrast to network traffic generated by a user on a desktop machine, IoT devices are

delivered with pre-programmed firmware that defines a relatively small and finite set of

network calls that the device is capable of making. This property makes this problem

different than other types of side channel attacks against IP network traffic that we have

18

come across.

In our literature search, we were able to identify only one paper [6] analyzing wireless

home automation communications. The authors conduct analysis on two installations of

the HomeMatic home automation system and try to infer the user behavior based on the

network traffic from these systems. Specifically, without prior knowledge of the HomeMatic

installations, they use the content of communications between devices to not only identify

the devices within the home, but also user behavior. The authors define any communication

event as a tuple of four elements: source address, destination address, message type, and

message content. For any time window, their approach looks at all events occurring and

perform correlation analysis to determine events which occur together. Since they leverage

content of decrypted communications, their work relies less on side channels and more on

deep packet inspection.

2.3 High Performance Computing Activity

Previous work has also focused on studying various aspects of activity on high performance

computing (HPC) platforms. Considering the expenses required to operate and maintain

such a massive computing platform, researchers are interested in identifying bottlenecks both

in the platform and in the programs in hopes for a more efficient use of the resources. To

this extent, a large number of efforts have focused on studying and identifying I/O behavior

of HPC applications.

For example, Liu et. al. [38] present an approach for reliably estimating the user-

applications’ bandwidth needs. The authors claim that using such an approach, it is possible

to identify I/O intensive jobs and use this information to optimize the scheduling of jobs on

a HPC platform. The authors leverage the fact that applications exhibit periodic bursts of

I/O activity. To capture this phenomena, their approach applies a wavelet transform to I/O

statistics reported by RAID controllers in order to generate per application I/O signatures.

Their approach also performs noise reduction, given multiple samples for the same program.

The authors evaluate their approach on both a set of pseudo-applications and a large-scale

scientific application and compare their approach to one based on dynamic time warping,

presented in a previous work. Dynamic time warping refers to an algorithm which aims to

19

align two time series by warping the time until a match is found. The evaluation shows that

their approach not only outperforms the alternative but also imposes a lower overhead.

Similarly, Luu et. al. [39] analyze the I/O behavior of applications across multiple

runs on an HPC platform and analyze the evolution of applications across time and across

platforms. The authors rely on data from a scalable HPC I/O characterization tool named

Darshan. Darshan aims to capture an accurate picture of application I/O by profiling POSIX,

MPIIO and HDF5 I/O operations. In this work, the authors are not interested in generating

signatures or models for applications based on Darshan data, but rather using Darshan data

to identify I/O related bottlenecks in scientific applications. By mining Darshan logs, the

authors are able to make a number of observations regarding the I/O behavior operations.

For example, the authors discover that very low I/O performance is the norm for most apps

on such HPC platforms. Additionally, they are able to determine that the I/O resource

usage is most often dominated by a small number of application and that POSIX I/O is

more widely used than parallel I/O libraries.

Other efforts have attempted to identify running applications using various data sources.

Peiser [40] and Whalen et. al. [41, 42] use the concept of “computational dwarfs” to build

a technique for classifying programs based on their computation type. Researchers pre-

viously showed that the patterns of communication and computations across all scientific

applications can be captured by 13 models or computational dwarfs [43]. Considering this

observation, the authors study the relationship between the 13 computational dwarf classes

and patterns in Message Parsing Interface (MPI) function calls in HPC applications. MPI

is a communication protocol which enables the communication between processors in a mas-

sively parallel computer. To classify applications into computation dwarf classes, the authors

consider the communication patterns as a graph, where nodes are processors and MPI func-

tion calls are represented as edges between the nodes. Once the graph is composed, the

authors can extract features describing the graphs such as node degree (i.e., number of edges

connected) and node centrality (i.e., importance of a node in a graph). These features are

able to capture information about which and how nodes (and associated ranks) commu-

nicate. With the features extracted, the authors apply machine learning techniques (e.g.,

clustering, näıve Bayes, hidden Markov models) and show that applications can be classified

20

into computational dwarf classes with accuracy over 90%.

Similarly, DeMasi et. al. [44] attempt to classify high performance codes by leveraging

information available in performance logs. Specifically, the authors use both timing infor-

mation and communication measurements. Timing data determines where each program

spends its time (e.g., user, system, MPI calls). Communication measurements allow the

researchers to determine total time spent for various communication commands, the number

of calls made from the commands, the percent of MPI time accounted by the commands,

and the wall time spent for the execution of the commands. As with the work of Whalen

et. al., the data used for building models is clean data in that each performance log only

contains information regarding one program and as such, it is free of noise. To capture the

model of an application, the authors apply the rule ensemble method, which refers to the

combination of many simple base learners into a larger model. Evaluation of their approach

shows that HPC codes can be identified with 93% accuracy.

2.4 Information Channel Bandwidth

Researchers have previously studied information channels and the amount of information

communicated by a given channel, also known as the channel’s bandwidth. Most of the

previous work in this area studies covert channel bandwidth. Millen et. al. [45] look at covert

channels relative to information flow and formalize the idea of measuring covert channel

capacity using Shannon’s theory of entropy. Costich et. al. [46] analyze the covert channel of

a multilevel secure database that uses a two-phase commit protocol to guarantee atomicity

of transactions. The covert channel is introduced if two components communicate with

each other via selectively aborting transactions. The authors study the capacity of this

covert channel in order to understand how it can be reduced to improve security. Other

efforts [47, 48] perform studies of covert channel bandwidth in various settings including

multilevel secure operating systems and interrupted-related channels.

Kang et. al. [49] focus on combating covert channels. In this work, the authors introduce

a pump used for controlling communication between two processes. The pump uses buffers

that handle and processes messages between two processes at a rate which reduces the

bandwidth of the covert channel compared to direct communication between those processes.

21

Other efforts [50] focus on automatically detecting side channels.

However, some previous works exploring side channels look into the amount of informa-

tion exposed by such information channels. In [51], Micali et. al. build a comprehensive but

general model for defining and delivering cryptographic security in the presence of side chan-

nel attacks. In their work, they formally define side channels in terms of a Turing machine

and show how some basic properties of traditional cryptography do not hold in a physically

observable setting. Although their work does not explicitly study the bandwidth of side chan-

nels, their model attempts to construct pseudorandom generators and encryption schemes

that have no distinguishable effect on side channels. Implicitly, this property of the model

aims at limiting the amount of information (i.e., bandwidth) exposed by side channels during

the execution of cryptographic algorithms. Standaert et al.[52] build upon this work and

evaluate the effect of physical leakages with a combination of security and information theo-

retic measurements . Goguen and Meseguer [53] consider side channels as channels enabling

information flow. To this extent, they introduce a general automaton theoretic approach

to modeling secure systems, specifically focusing on the concept of noninterference. The

authors define noninterference as the scenario where the actions of one group of users have

no effect on what another group of users can see. Using automaton theory the authors define

a system as a state machine consisting of users, states, commands, outputs, and capability

tables. This framework is then used to show how security policies can be generated to define

which information flows are not permitted and how such a security policy can be reduced

to a set of noninterference assertions. Sutherland [54] defines the concept of nondeducibility

and presents a simple model of information and inference, giving an instantiation of the

model to state machines and applies the instantiation to a simple example. In his work,

Sutherland aims to formally define information and the meaning of inferring information

from other information. These formal definitions of side channels consider side channels as

implicit or explicit information flows and build frameworks to guarantee security policies

against side channels attacks for cryptographic devices. To the best of our knowledge, no

previously published work looks at how accurately the information exposed by side channels

reflects system activity.

22

Chapter 3

Early Work

Early in our work, we began exploring side channels in various settings. The intent of the

projects described below was to explore novel beneficial uses for side channel information.

We begin by describing a project in which we use side channel information to infer user

interests within the scope of a smart phone application and leverage these inferences to op-

timize network usage of the application. Next we present work that leverages side channel

information to reverse engineer the protocol for user interaction with an unknown binary.

By performing these exploratory projects, we gained valuable insight into the depth of infor-

mation available in side channels. This insight helped us develop our formal model for side

channel information.

3.1 Modeling User Behavior for Improved Network Ef-

ficiency in Android Applications

When building a smart phone application, developers must consider a variety of implicit

and explicit desires that users may have about what the application does and does not

do. Aside from the application’s key features and usability of those features, smart phone

users value battery life and network data consumption highly. Considering that the LCD

display is one of the largest consumers of battery power, there is little developers can do to

help with power consumption. On the other hand, developers can apply various methods

for diminishing the network data usage footprint of an application. Specifically, developers

may implement efficient network transmission strategies. For example, instead of sending

23

raw data, it is more efficient to use compression algorithms. If possible, it may also be

advantageous to buffer packets and send them in batches rather than send each individually

on arrival. This implies a compromise between the responsiveness of the application and

data consumption.

While existing approaches can decrease the network usage of an application, such ap-

proaches fail to consider the users and their behavior. In this part of our work, we show

another approach for diminishing network data consumption by leveraging patterns in the

users’ interaction with the application and using that knowledge to create a more intelligent

network management framework. In this scenario, the side channel is the users’ interaction

with the application and it is leveraged to improve the network efficiency of Android ap-

plications. Specifically, we develop a framework and a proof of concept for Android that

tracks user activity (e.g., scrolling through UI window) in an application in order to deter-

mine user’s interests (i.e., user profile). The user profile is then used to limit the amount of

information the application downloads from the server during the application’s runtime.

The framework uses callback functions of the Android WebView component to monitor

the scrolling movements of the user. A WebView component is a browser-like widget that

allows HTML content to be displayed. WebViews are often used by developers to deliver

a web application as part of a client application. To enable additional features and cus-

tomization, the Android platform defines callback functions for several WebView events.

For example, there are callbacks for overriding URL loading, introducing logic before and

after the loading of a page, and even scrolling events, including movements and clicks. Our

framework leverages scrolling callbacks in order to monitor users’ movements.

For the framework to be valuable, it must not introduce significant degradations in over-

head and performance of the application. This requirement impacts two aspects of our

framework: user profile management and data download process.

The user profile contains information about the preferences of the user. These preferences

are inferred from the scrolling actions of the user. Our framework uses a Bloom filter to store

the user profile. A Bloom filter is a space efficient probabilistic data structure. Bloom filters

are usually represented as an m bit array. When an element is added to the structure, k

different hash functions are used to map the element to locations in the bit array. Each hash

24

function maps the element to one (and only one) of the m array positions. To test if an

element is a member of a Bloom filter, the hashing functions are used on the target element

and the appropriate index locations of the bit array are checked. This is what makes Bloom

filters probabilistic. If all bits are marked, we can determine with very low false negative

rate that the target element is contained by the Bloom filter. It is important to note that

depending on the hash functions, it may be impossible to guarantee that a given element is

a member of the filter (due to collisions).

Bloom filters are an ideal data structure in this application for several reasons. We wish

to contain information about the user’s preferences in a compact way. Additionally, the

framework should aim to impose minimal runtime overhead, when checking data against

the user’s profile. Last, the framework should not greatly impact the user experience of

the application. To that extent, the low false negative property of Bloom filters is also

appropriate since a false negative would cause bad user experiences. This is because a false

negative would prevent the framework from fetching all of the information of possible interest

to the user. As a result, the framework will then have to fetch the data as the user scrolls

to that particular area, which imposes a slowdown.

For our framework to be practical, it must also not impact the user experience. Users

are dynamic and their preferences may evolve over time. To account for this property, we

use an overlapping time window approach. Specifically, at any given time, the Bloom filter

only contains information gathered over a finite., customizable time window. To be relevant

and efficient, time is only measured when the application is the main window in focus on

the smart phone. Aside from accounting for dynamic behavior of users, this approach also

guarantees that the size of the Bloom filter is limited.

We also consider concerns regrading user privacy. Leveraging side channels such as user

behavior to infer user preferences could be construed as a violation of user privacy. To

protect the user, our framework is integrated within the smart phone application and the

Bloom filter representing the user profile need never be transmitted. This statement does not

hold against malicious application developers. Although methods exist, defense mechanisms

against such attacks are beyond the scope of this work.

To test our framework, we developed a proof of concept. The proof of concept is an

25

Figure 3.1: Screenshot of user interface of the demo Android application, displaying “friends”
locations across a geographical map.

Android application that allows the user to see the location of several “friends” on a map.

The application is shown in Figure 3.1. The application has a WebView component that

displays a geographic map and “friend” locations that are displayed as pins. The “friends”

locations are programmatically controlled and randomly generated by the server.

The locations of the “friends” change at random time intervals. The application is de-

signed to periodically query the server for fresh data. This updating process can be done

either while the app is in the background or when the app becomes active. Without the

framework, at startup, the application downloads the location of all “friends” and caches it.

In the case where the framework is enabled, the application only requests and downloads

the location of “friends” in sections of the map of interest to the user as defined by the

user profile generated by the framework. For example, supposed that the user is located in

California and they have “friends” in Berkeley, San Francisco, Lake Tahoe, and Los Angeles.

If the user scrolls to the Berkeley and San Francisco areas of California, the framework will

only request data for those geographic locations and not for the Lake Tahoe and Los Angeles

areas.

To achieve this, the server must allow for querying of certain data points, in this case,

26

based on geographic location. During testing of the framework, our framework was able to

reduce the amount of network data up to 30%. This figure comes from comparing the total

amounts of data consumed by the two versions of the demo application, with and without the

framework. It should be noted that the savings in network data usage is dependent on the

user behavior. If the user’s behavior is such that it includes all data points (i.e., “friends”),

the use of the framework does not introduce any advantage.

Our framework has certain limitations. One limitation is with respect to the type of

applications. Currently our framework only works well when data is overlaid on top of a

WebView (as the case with pins displayed on a map). Another limitation is that there

must be cooperation between the framework and the application server. This is not a major

constraint since generally both the smart phone application and the application server are

created by and under the control of the same developers. Some of these limitations could

be eliminated with some extensions of the framework. The framework could be improved to

even handle dynamic websites. To achieve this, the framework would be embedded into the

WebView library and would have the framework logic integrated with the DOM parser. As

in the demo application, the framework would monitor a user’s behavior and build a user

profile. For example, the framework could attempt to identify if the user is interested in

images and perhaps even what type of images. It should be noted that the current WebView

has an option which allows for images to not be downloaded. However, such a limited binary

option may not accurately reflect users’ preferences and may result in a bad user experience.

The DOM parser is responsible for parsing the Document Object Model tree of a webpage

and fetching the required content. With the help of the framework, the DOM parser could

only fetch objects that are of interest to the user by consulting the user profile generated

by our framework. We believe the approach presented here can help reduce the network

footprint of smart phone applications more than current approaches are capable of.

While the framework may not be suitable for all types of applications, we believe it is

important to consider users’ preferences and behavior. These features are often reflected in

various side channels and can be leveraged for beneficial purposes.

27

3.2 Modeling Input Protocol for Unknown Binaries us-

ing Hardware Performance Counters

Side channels present other beneficial opportunities as well. As previous research efforts

show, side channel information can be used to infer input to a system. In this part of the

dissertation, we show how side channels can also be leveraged to infer input for unknown

binaries 1

3.2.1 Finding Input

Testing is an important step in the software development process. Aside from quality as-

surance purposes, testing can also discover security vulnerabilities in a program. However,

thorough testing of a program is nontrivial. Most developers use documentation to interact

with the program and exercise its functionality. Yet documentation can also be incomplete.

Static and dynamic analysis techniques can provide some assistance with this problem.

Static analysis can be applied to extract user-commands the program understands. This

can be a complicated process and often requires source code. While there are a number of

dynamic program analysis techniques available, their effectiveness depends heavily on the

completeness of the test suite applied during the analysis process and assumptions about the

source of information being used for the side channel attack. Test suites are either manually

created by developers or automatically generated by fuzzers or symbolic executioners. As

is the case with documentation, when manually created, it is possible that the test suites

are not complete. At the same time, while fuzzers can be effective, they can take a long

time to run exhaustively and unless combined with symbolic execution or branch monitoring,

provide poor code coverage. Symbolic execution, despite being successful, also has limitations

such as (in some cases) manual modification of source code, scalability issues (linear-time

for linear constraints over rationals). To make matters worse, constraint solvers also have

innate limitations especially when it comes to solving Boolean formulas (decidable but NP-

hard), linear constraints over rationals and integers (decidable, NP-hard), and non-linear

constraints over integers (undecidable).

1This work was published in the proceedings of the 5th Program Protection and Reverse Engineering
Workshop (PPREW-5) of the Annual Computer Security Applications Conference (ACSAC).

28

In this part of the work, we introduce a new method and its implementation called

InputFinder, for generating valid user-input for closed binaries. The method relies on mon-

itoring the amount of work the processor performs as a response to user input. We consider

this to be a side channel since we are not monitoring the program itself but rather the

hardware and its response to the program execution. This new method could be useful in

autonomous vulnerability scanning systems, for reverse engineering unknown binaries, or as

a complement to fuzzers or symbolic execution engines.

The majority of software programs accept input, perform transformations on the input,

and output results. However, most programs do not accept completely random input. Input

usually passes through an input validation filter. These filters are snippets of code responsible

for distinguishing between valid or good input (i.e., input the program was constructed to

understand and accept) and bad input (i.e., input which is not useful or does not follow the

desired format). Although validation mechanisms can be very sophisticated, they are often a

combination of string comparisons and conditional statements. Our method exploits changes

in the number of user-land instructions retired during multiple executions with varying inputs

to make inferences about the program’s validation mechanism. These changes reflect different

execution paths of the program as a response to both valid and invalid input.

It is important to observe that even if the computer performs more work, it does not

necessarily imply the input is correct. To understand this, consider the trivial example where

the input validation mechanism is composed of a series of nested conditional statements.

Each depth level of the conditional statements verifies one index location of the input string,

from 0 to n where n is the length of the string. The computer will perform less work if

the input string passes the first conditional statement than if it does not. In other words,

if the first character of the input string does not satisfy the first conditional statement, the

execution iterates through all of the remaining conditional statements at the first level of

depth. This example shows how more computations do not imply validity of the input.

Our method leverages the following assumption: Out of the total set of printable charac-

ters, only a small subset will be valid at any index location of the input string. Specifically,

for our approach to work, the subset of valid characters at any index of the input string,

has to be 1
2
× |C| where C is the set of printable characters. Based on this assumption, the

29

Figure 3.2: Diagram depicting the architecture of the finding input process.

control flow paths of any invalid character should be the same, while the control flow path of

valid characters will differ. If most printable characters are invalid, our method can trivially

identify the set of valid characters (i.e., characters that exhibit a different control flow path).

3.2.2 Method Architecture

The architecture of InputFinder is depicted in Figure 3.2. Our approach is uses two steps:

1. valid input strings generation

2. protocol state machine generation

The first component exploits hardware performance counters to build valid input for

closed binaries. Specifically, as the program is given various inputs, InputFinder records

the number of instructions retired during the program’s execution for each input and uses a

statistical measure to infer the program’s expected input. The instructions retired represent

the subset of instructions executed which leave the Retirement Unit once execution has been

deemed correct (i.e., the instructions which actually impact the program). The Retirement

Unit is responsible for assuring the correctness of the execution due to out-of-order processor

pipeline. Specifically, once the execution order has been deemed correct, the unit writes the

results of speculatively executed instructions into registers and removes them from the re-

order buffer. These instructions are then deemed retired. As such, the number of instructions

30

retired differs from the number of instructions executed by a processing unit. Because of the

out-of-order CPU pipeline, a CPU may execute more instructions than necessary (e.g., as a

result of wrong branch prediction).

Since our input finding method works by leveraging information about how much work

the processor performs during input validation, it does not depend on a particular platform,

format (i.e., binary, source, etc), or method of obtaining input (e.g., stdin, arguments, net-

work socket, file I/O). However, there are some constraints. The underlying method does not

work if the user input is transformed (e.g., hashed) before validation. The implementation

of our method also has some additional drawbacks. Our current implementation can only

handle programs whose input is interpreted as a string (or a set of characters). The user

input can have many components, however, there may not exist any internal dependencies

between the components (e.g., value of one component defines the length of another com-

ponent). If the input is composed of multiple components, the program must process the

components sequentially in order for our method to work. The same hardware counters are

used by InputFinder to also find the expected input size and to categorize the expected input

based on type.

Figure 3.3 visualizes the process of building input strings. Multiple outgoing arrows

represent a process forking. The steps of the process are outlined below. Starting with an

empty string, s :

1. InputFinder executes the program once for every printable character and records the

number of user-land instructions retired by the program with the given input. The

input is a string concatenation of the string s and the current printable character.

The Unix perf utility is used for monitoring the number of instructions retired. Note

that InputFinder does not record the total number of instructions but only user-land

instructions. The reason is that, in contrast to user-land instructions, the total number

of instructions retired can vary greatly from execution to execution for various reasons

(e.g., branch prediction, cache). The Expect extension to the Tcl scripting language

is used for automating the program interaction.

2. Once all executions have been completed (one for each character), the mode number

31

Figure 3.3: Diagram visualizing the input strings being constructed throughout five consec-
utive time stages of the execution of InputFinder.

of instructions retired is computed across all executions. The mode is defined as the

value that appears most frequently in the set of recordings.

3. Next is the filtering stage which is responsible for identifying characters likely to be part

of a valid input string at the current index. Under the assumption that most characters

are not valid for the current index, InputFinder gathers all characters with the number

of instructions retired outside the range of the mode +/- an epsilon value. These

characters represent valid characters for the current index of the input string. The

epsilon value accounts for small variations in the hardware counters. While the initial

reaction is to expect a valid character to result in more instructions retired than a non-

valid character, this is not always the case. As discussed earlier, the input validation

mechanism can be complex and can vary in behavior. The validation mechanism may

verify input against all accepted input strings before denying the provided input. Such

a scenario results in more instructions retired for invalid input than valid input.

4. For each valid character c, InputFinder forks, with every child process repeating steps

1-4, starting with c + s as the initial input string, where the symbol “+” signifies

concatenation. If no valid characters are found, the end of a valid input string has been

reached and the string is recorded. If the current index is 0 and no valid characters

have been found, the given binary has no predefined input commands.

This process continues until all child processes fail to identify valid characters and grace-

fully terminate.

32

For improved results and increased code coverage, it is important to determine whether

the program only responds when a user-program interaction protocol is abided by. Con-

sider, for example, a database management program. Without first selecting a database and

perhaps even a table, some commands such as INSERT or SELECT (or their equivalent)

have no effect. We develop the second component of InputFinder to address this issue.

Specifically, this component uses the valid input strings generated previously to identify

the expected orderings (or permutations) of the discovered input strings, and constructs a

protocol state machine. This enables the generation of a more thorough test suite.

The process can be split into three steps.

1. All of the possible combinations of user inputs (given the discovered input strings) are

generated.

2. The inputs are passed to an instrumented version of the binary, which outputs a single

execution trace for each execution (one execution per permutation of input strings).

3. To determine the correct input protocol, the execution traces are compared.

To generate all of the possible combinations of user inputs, all permutations of the discov-

ered input strings are enumerated. The permutations range in size (i.e., number of strings)

from 2 to n, where n = |input strings set|. However, enumerating all possible permutations

of the discovered input strings may not be enough. Consider cases where the user input

is composed of two (or more) strings where the first string is a command and the rest are

arguments. Now also imagine that the arguments of an input string depend on the previ-

ously entered string. To cover such cases, for each permutation, we test each input string

for arguments (using the previously mentioned input finding technique). For example, for a

given permutation {AUTH, SET}, our tool will first try to identify arguments for the AUTH

input string. Without finding the correct argument for the AUTH command, the execution

of SET will not affect the program’s state. Let us assume our approach was successful in

identifying a single argument, 0, for the AUTH string. Now, the tool will attempt to find

arguments for SET but with AUTH 0 as the first entered user input. Again, this ensures

that our approach identifies arguments for strings that depend on previously entered strings.

33

The resulting permutations of strings (and their arguments) are also passed through

the instrumented binary in order to collect execution traces. The binary is instrumented

with Intel’s Pin tool [55] which logs the starting address of every basic block executed,

as a function of time. A basic block is a set of instructions with a single entry and a

single exit point. Once all permutations of a given size have been executed, the dynamic

similarity test analyzes the resulting execution traces. Each execution trace is split into

sections, each sections associated with the program processing one of the input strings of the

input permutation. These sections are delimited by a short sequence of specific basic blocks

which are executed right before the reading and processing of the user input. To determine

the correct or expected input string permutation, the execution trace section of the last

command in a permutation is compared against the execution trace sections of that same

command, in the same index of the permutation. Under the assumption that the execution

of the last command will exhibit a different behavior given the correct prior user inputs, our

approach identifies which input string permutation causes the execution trace section of the

last command to differ from other execution sections of the same command, in the same

index of the permutation. If such a permutation is discovered, it is added to the protocol

state machine.

3.2.3 Experiments and Results

In order to determine its effectiveness, our approach was tested on 24 x86 binaries from

the DARPA Cyber Grand Challenge (CGC) Example set [56]. The tool described here was

designed in preparation for the Cyber Grand Challenge, hence this test set was a natural

choice. While designed specifically for this challenge, the programs implement a variety of

real-life services such as a palindrome detector, interactive game, image compressor, and a

multipass protocol implementation (i.e., RFID payment card binary protocol). Cyber Grand

Challenge binaries are 32-bit x86 binaries in the CGC format. There are a few differences

between CGC binaries and ELF binaries. The CGC format has a slightly different header

and does not allow dynamic linking. To isolate the challenge environment from the rest of

the world, the organizers of the CGC created a custom-Linux derived operating system that

has no signals, no threads, and only seven system calls. At the time of this writing, there

were only 24 CGC binaries available, all of which were used for the analysis of our approach.

34

Figure 3.4: Diagram visualizing the user protocol state machine of one of the CGC programs,
with the backdoor highlight in red.

Analyzing the source code showed that out of the 24 binaries, 21 had predefined valid

input strings. Our approach found input strings for 13 of the 21 binaries and categorized the

input correctly for 100% of the 13 binaries. The running time varied between a few minutes

and an hour, depending on the number and length of the valid input strings discovered. Our

method was able to determine the input length for 19 of the 24 binaries. Note that our

approach was able to find the expected input length even if it was not able to find valid

input. Additionally, our method was able to determine inputs that caused crashes for 5 of

the binaries. In all cases, the input caused a buffer overflow and caused the binary to exit

unexpectedly.

Using our approach, we were also able to identify an authentication backdoor for one

of the binaries. The binary implements a protocol that is initiated by the user sending the

“HELLO” command. The user protocol stat machine is visualized in Figure 3.4 and the

authentication backdoor is highlighted in red (edge from node START to node S4, repre-

sented by the AUTH command). Once the user enters this command, the program generates

a passcode and echoes it to the user. This passcode may be used by the user to authenticate.

35

The authentication must happen and enables the user to use the full functionality of the

program. InputFinder was able to detect an authentication backdoor, where if the user does

not type “HELLO”, authentication can be done using the character zero (i.e., 0).

3.2.4 Conclusions on Finding Input Using Side Channels

While the method presented here has many advantages, it also has a few limitations. The

input finding implementation presented is only capable of finding input for programs that

interpret the user input as a string (or series of characters). The method presented cannot

handle cases in which input is composed of multiple inter-dependent fields. As an example,

the method presented fails in cases where the input is composed of multiple fields and the

value of a field determines the length of another field or in cases where binaries validate

input fields out of order. Such failures were observed in the evaluation of InputFinder.

InputFinder does not handle binaries which accept non-printable input (e.g., hex characters,

binary, etc.), although we believe our method could be extended to also cover non-printable

input. Perhaps the most significant drawback of our method is the runtime complexity.

For any given binary, to find valid input strings (without valid arguments), the runtime is

O(nm), where n is the length of the longest valid input string in the valid input string set

and m is the total number of valid input strings accepted by the program. The process can

be parallelized but it is ultimately limited by the number of hardware performance counter

registers.

Despite these limitations, this study further supports the claim that side channels expose

valuable information. It is also important to note that in our experiment, the side channel

information is agnostic of the operating system, architecture and even binary format. The

work presented above also shows that there is a relationship between the activity of the

system during the execution of a program and the side channel information and lays the

foundation for the following chapters.

36

Chapter 4

Monitoring High Performance

Computing Platforms

In the previous chapter, we demonstrate how side channels, particularly hardware perfor-

mance counters, can be exploited to learn about a program’s response to (user) input, and

consequently identify valid inputs that the program accepts. Ultimately, our work shows

that in some cases, it is possible to infer changes in the control flow of a program based on

side channel information.

In this chapter, we develop that idea further. However, instead of using side channels to

infer properties of a program, we use side channel information as a “fingerprint” for programs

and use these fingerprints to detect what programs are running on a given HPC system.

Specifically, we demonstrate how side channel information can be used to characterize and

identify the load of a high-performance computing platform.

4.1 Security in High Performance Computing Platforms

With the rise in the availability of data, scientists across the world are in desperate need

of computing facilities capable of handling such massive amounts of information. Due to

high costs of operating and maintaining such high performance computing (HPC) platforms,

only a few fortunate institutions are able to build and provide such facilities. Additionally,

the financial overhead imposes pressure on these institutions to achieve maximum efficiency.

From a cyber security standpoint, this presents several challenges.

As with most systems, the users are among the biggest threats to security and efficiency.

37

Most high performance computing platforms are intended to be utilized by researchers for

scientific purposes. Guaranteeing ethical user behavior is non-trivial. In some cases, such

as at the Lawrence Berkeley National Laboratory, both procedural and technical measures

are taken to assure these valuable resources are used as intended. When applying for access

to the HPC platform, researchers are asked to provide a list of scientific codes that will be

used. These codes may be reviewed by system administrators. Additionally, user agreements

are used to legally force users to abide by the rules of ethical use of the super computing

facilities.

Yet enforcing the user agreement is challenging, especially in real-time. Once access

is granted, users could misuse the facilities for various reasons such as running electronic

currency miner software or botnets. Incidents of such breaches of user agreement and ethics

have been documented [57].

From a technical standpoint, determining what program is running on a given system is

challenging. Monitoring tools can expose a variety of information regarding the behavior of a

system. On the other hand, monitoring tools provide minimal insight into the computation

type of a particular process. Static and dynamic analysis techniques can provide some

assistance, especially in the absence of obfuscation. However, aside from being intrusive,

such analysis is difficult and time consuming.

Our work is motivated by the problem of providing HPC system administrators with

a non-intrusive monitoring alternative capable of identifying what programs are running.

Specifically, in this chapter, we show how side channel information can be used as a non-

intrusive alternative method to monitor activity on high performance computing platforms.

Programs, at runtime, can be described by the sequence of instructions executed, the

contents of registers, and the input provided to the program. If we wish to fingerprint

programs using side channel information, it is important to consider side channels that

reflect CPU and memory activity.

Aside from identifying individual programs, in an HPC environment it may be sufficient

to determine if a particular program is performing a particular type of computation. To this

extent, our work is inspired by the observation made by Phil Colella regarding patterns in

computation of various scientific applications. In 2004, Colella observed that most scientific

38

and engineering codes exhibit one of seven distinct patterns in terms of computation and

communication activity [58]. He named these patterns computational dwarfs or motifs.

Formally defined, a computational dwarf is a pattern of communication and computation

common to applications which share that computation type. In his work, Colella highlights

that despite variations in implementations, codes of a particular dwarf share the underlying

pattern in communication and computation. Inspired by Colella, researchers from Berkeley

have expanded the list of computational dwarfs to thirteen [43], as listed below (original

seven in bold):

• Dense Linear Algebra

• Sparse Linear Algebra

• Structured Grids

• Unstructured Grids

• Spectral Methods

• N-Body Methods

• MapReduce

• Combinational Logic

• Graph Traversal

• Dynamic Programming

• Backtrack and Branch-and-Bound

• Graphical Models

• Finite State Machines

In our work, we study how patterns in computations and I/O are represented in side

channel information and demonstrate that side channel analysis can be used to identify

running programs.

39

4.2 Power Analysis

Historically, electrical power has been one of the most popular side channels. All electronic

systems use power to operate. In physics, power is defined as “the rate of doing work”. As

discussed in Section 2.1, power presents researchers and scientists with a non-intrusive way

of determining how much work a system performs. Consequently, this information may be

used to make various inferences regarding the system.

In our work, we analyze power consumption of high performance computing nodes and

study how computation patterns of programs are manifested in this side channel. Our

objective is to study these patterns and leverage them as fingerprints for program behaviors

(i.e., anomaly detection). This will enable identification of a program given a power signature

sample.

While power is a reflection of the amount of work performed by a system, there are

several challenges with using power signature as a fingerprint for programs. The optimiza-

tion techniques, both hardware and software, built into modern systems can impact power

consumption. For example, branch prediction can cause a differente number of instructions

to be executed between two executions of the same program using identical input (e.g., in-

crease in the number of instructions executed when prediction is incorrect). In addition,

the location of the sensor can play a significant role. Measuring the power consumption at

the CPU (e.g., via intrusive probes) will result in different readings than when the power is

measured at the system unit level, or even further, at the rack level. In the latter case, it

is important to consider how the architecture of power adapters and supplies can affect the

power measurements.

For our experiments, we leverage data recorded from a high frequency micro-phasor

measurement unit (µPMU) [59]. µPMU devices are capable of providing synchronous voltage

and current data, for all three phases. The data is sampled at 512 samples/cycle but reported

as root mean squared data at 120 Hz.

These devices are designed to be placed in-line with the system’s power supply (or cable

powering the system). For example, in our setting, a single µPMU is used to monitor the

power distribution unit (PDU) that powers a HPC compute rack of 36 Condo compute nodes.

In some cases, it is possible that multiple PDUs provide power to a single rack. In such cases,

40

Figure 4.1: Diagram of current and voltage during the execution of OpenSSL SHA-1 hashing.

to achieve full resolution into the power consumption of the nodes, two measurement devices

are required.

4.2.1 Initial Experiments and Observations

We begin our study by performing several small scale experiments using common programs,

such as hashing tools, stress-test scripts, video encoding utilities, and even a prime factor-

ization program. The objective of these experiments was to determine how system behavior

impacts power consumption. In particular, we are interested in the impact of overall system

activity on current and voltage as well as individually, the impact of CPU and memory

activity on current and voltage.

Hashing is an established method of stress-testing modern processors. For our testing, we

rely on the OpenSSL speed SHA-1 hashing utility. This program performs SHA-1 hashing

for 3 seconds for several block sizes, in increasing order. Figure 4.1 shows the current and

voltage data collected during a single execution of the OpenSSL tool. In the figure, we can

see that the current magnitude time series resembles a step function. The edges of the step

functions are aligned with the beginning and end of the experiment. On the other hand, the

variations in voltage are minor (hundredths of a Volt) and show no recurrent pattern. Other

than the behavior at the 25 second mark, we see no relationship between the current and

voltage. From the figure, it is immediately obvious that current best follows the behavior of

the CPU. Voltage must be relatively constant as to not cause electronic failures. Examining

the power data from the µPMU during the execution of the OpenSSL speed SHA-1 hashing

program we can observe that current magnitude best follows the behavior of the program.

41

(a)

(b)

Figure 4.2: (a) CPU stress test shows that the amount current drawn increases with the
utilization in CPU (b) During a memory stress test, we see that current drawn also increases
although there is some level of CPU utilization

We continue by studying the differences in current footprint between CPU and memory

activity. To achieve this, we utilize the stress UNIX utility to impose heavy loads on the

system and compare the impact on current consumption. The stress utility is a simple C

program designed to stress-test various aspects of the system, including CPU, memory, and

disk [60]. Since the compute nodes are not equipped with disk drives, we focus solely on

CPU and memory.

Figure 4.2 depicts the results of the test. In Figure 4.2a the current magnitude, CPU,

and memory utilization are depicted during a CPU-only stress test. Specifically, the utility

spawns 2, 4, and 8 workers consecutively, each for 60 seconds. Each worker performs square

root operations, an operation known for its CPU intensity. The diagram shows how the

current magnitude increases as the CPU load increases. We also see that the memory

overhead is minimal.

The same utility is used to impose a memory-intensive task. In this case, the utility

spawns 1, 2, and 4 workers consecutively, each for 60 seconds. For a memory test, the workers

perform a series of malloc()/free() operations, for 256MB. In Figure 4.2b, we see the current

measured during the execution of the test, as well as memory and CPU utilization. Looking

at the figure, we can see how the amount of current drawn is also impacted by memory

activity. It is important to note that there is also some CPU activity during the execution

of this task.

42

4.2.2 HPC Experiments

4.2.2.1 Hardware and Software Setup

Our final objective is to identify programs running on a HPC platform given samples of power

data. To recreate the real-life environment as closely as possible, we run scientific benchmark

programs on a compute rack at the Lawrence Berkeley National Laboratory. The rack is

part of the “Lawrencium” compute platform and it includes 36 Condo compute nodes. Each

node is equipped with quad-core Intel Xeon E5530 processors and 24 GB of random access

memory. The nodes are inter-connected using QDR InfiniBand, a well-established computer-

networking communications standard for HPC platforms. The nodes are not equipped with

any physical storage drives. Our application test suite is comprised of the NAS Parallel

Benchmarks (NPB) [61] and the Trinity-8 Procurement benchmarks [62]. The NPB are a

small set of programs, derived from computational fluid dynamics applications, designed to

evaluate the performance of parallel supercomputers. These benchmarks implement scien-

tific computations, similar to codes that are usually executed by scientists. Specifically, the

benchmarks used in our analysis represent a block tri-diagonal (BT) solver, conjugate gra-

dient (CG) program, embarrassingly parallel (EP) code, fast Fourier transform (FT) kernel,

integer sort (IS) program, scalar penta-diagonal (SP) solver, lower-upper Gauss-Seidel (LU)

solver, and a multi-grid (MG) application. The NPB define eight problem size classes (i.e.,

S, W, A, B, C, D, E, F in increasing order of complexity). The problem size class defines

the input and parameters used during execution and consequently adjust the complexity of

the computation. For example, class S is for small-scale experiments, while class W is for

workstation size and class F represents the largest test problems. In our experiments, we

compile the codes of version 3.3.1 for problem size classes C and D. We use two problem size

classes since for class C, the execution of a few programs is relateively short (i.e., few sec-

onds). At the time of this writing, there are twelve benchmarks total, eight of which we use

in our analysis. Four of the benchmarks are eliminated because they either are not available

for larger problem sizes or are designed to test I/O performance, which is not visible to our

power sensors, since they have visibility only to CPU racks.

The NERSC-8 Trinity Procurement benchmarks are a set of programs created by the

National Energy Research Scientific Computing Center (NERSC). NERSC designed this set

43

Figure 4.3: This figure depicts the mangitude of current over time during the execution of
the Integer Sort (IS) and Fourier Transform (FT) benchmarks of the NAS Parallel bench
suite.

of mini-applications to mimic the behavior of real applications and uses these benchmarks

for system evaluation and acceptance testing. We use 4 Trinity programs in our analysis: a

parallel algebraic multi-grid solver for linear systems (AMG), 3D Gyro-kinetic Toroidal code

(GTC), finite element generation, assembly and solution code (MINIFE), neutral particle

transport application (SNAP).

For each program we gather several samples by running each program independently

multiple times. Since these applications are designed as benchmarks, the input is constant

between runs.

Before performing our analysis, we examine the current fingerprint of these benchmarks.

Figure 4.3 visualizes the current magnitude time series for two of the NAS parallel bench-

marks. From the diagrams, we can determine that both time and frequency domain features

44

Figure 4.4: Diagram visualizing the mean-shifted distribution of the current magnitude time
series for each of the benchmarks.

can be used to describe the time series.

As Figure 4.4 shows, the distribution of the mean-shifted current magnitude differs

across the programs. Some programs, such as the Block Tri-diagonal (BT) program have a

Gaussian-like distribution, while others have distributions that are almost bimodal.

The programs were executed concurrently and as such, we believe the noise to be similar

between at least any two consecutive programs.

4.2.2.2 Analysis Framework

Side channel analysis is not a trivial process. Despite the power of the machine learning

algorithms, there is a substantial amount of finesse involved in machine learning, particularly

with pre-processing the data and feature engineering. The classification results of our analysis

are the product of a long iterative process involving failed experiments followed by minor

adjustments.

Although there is an abundance of machine learning libraries, there is a lack of frame-

works for conducting machine learning experiments, especially time series analyses. In most

cases, when performing such analyses, researchers will test different pre-processing (e.g.,

standardization, normalization, scaling) techniques as well as different sets of features. Too

often, this results in redundant code, despite the similarity in the overall process.

Motivated by the lack of time series analysis frameworks, we design and implement

a customizable time series analysis framework in Python. Our framework leverages the

observation that the analysis process is always comprised of the same iterative steps. The

difference between two experiments lies not in the overall workflow of the analysis process

45

Figure 4.5: Diagram describing the architecture of the time series analysis framework

but rather in the details of the analysis. As shown in Figure 4.5, our framework defines

the analysis process as a sequence of ten steps: Prepare, Window, Split, Noise Addition,

Scaling, Feature Extraction, Filtering, Train, Test, and Result Processing. The framework

is analogous to a Java interface, except some functions are predefined while others can be

defined by the user.

These ten stages were selected carefully to keep the framework general while also enabling

customization. The framework defines two types of analysis components: predefined and

customizable. Additionally, each component is either optional or mandatory. For example,

any time series analysis involving machine learning should include a mandatory step where

the data is split into training and testing sets. This step is predefined by the analysis

framework, although the user can control the split percentage.

Other mandatory steps, such as feature extraction, are fully customizable by the user.

This enables users to easily adjust the feature set. The analysis framework also provides

other potentially interesting features, such as windowing and generation of synthetic noisy

samples (by adding samples together). The windowing step divides a time series sample

into windows of user-defined length. Window overlapping is also supported. Each analysis

component is defined by one (or more) function(s). If the component is customizable, the

user must provide a reference to the function to be used. The only requirement is that the

user considers the format of the function input and the function output.

46

To create an experiment, the user must initially define functions for each analysis com-

ponent. Once these functions are defined, a single experiment can be composed using only

a few lines of code by instantiating a new analysis object and providing the appropriate

parameters. To alter the experiment, the user can instantiate a new Analysis object with

a different set of parameters. For example, changing the pre-processing function is done by

replacing a single parameter. Similarly, the feature set used by the classifier is defined by a

list of user-defined feature extraction functions. This list is provided as an argument to the

Analysis instance and modifying the contents of this list results in a new experiment.

The framework guarantees that code redundancy is reduced and allows users to focus on

the details of the analysis steps, rather than engineering the entire process.

4.2.2.3 Feature Selection

For our analysis we rely on machine learning to build fingerprints for programs based on

features of their current time series. Specifically, we rely on both time and frequency domain

features.

Selecting time domain features is non-trivial. The well-known Anscombe’s quartet ele-

gantly describes this problem. Specifically, Anscombe’s quartet presents four data sets that

share statistical metrics, some of which are identical (i.e., mean, variance) while others are

extremely close. Examining the violin plots depicted in Figure 4.4, it becomes evident that

particular statistical metrics, such as minimum and maximum values are quite similar for

some programs.

Additionally, time domain features are very sensitive to noise. In our problem setting,

noise refers to the fact that the amount of current consumption, as measured, is a holistic

representation of the system’s activity. In other words, the current magnitude time series

reflects all of the jobs running across all rack nodes. To establish a representative set of time

domain features, we compare their distribution across all samples from all of the programs.

The following features represent the final set of time domain features: maximum value,

percentiles, auto-correlation coefficients with different lag values, standard deviation, empir-

ical cumulative distribution function, stationary coefficient, discriminant function analysis,

absolute energy, and ratio of variance to standard deviation.

As evident in the visualizations of the current magnitude time series, many samples

47

Figure 4.6: Spectrograms of current magnitude time series representing two of the NAS
Parallel Benchmarks, the Block Tri-diagonal Solver (BT) and the Lower Upper Gauss-Seidel
Solver (LU).

exhibit distinct frequency patterns. To visualize this more clearly, we generate spectrograms

for two of the NAS parallel benchmarks. A spectrogram is a visual representation of the

spectrum of frequencies of a signal over time. Figure 4.6 shows that the signal representing

the current consumption of the Block Tri-diagonal solver benchmark has strong components

in the 1.1, 3.5, and 4.5 Hz frequencies (i.e., horizontal lines from 300 to 1000 seconds at

y = 1.1, 3.5, 4.5). On the other hand, the signal of the Lower Upper Gauss-Seidel solver

benchmark is composed mostly of signals of 2 and 3 Hz frequencies.

For our feature extraction, we focus on three types of frequency analysis: discrete Fourier

transform, power spectral density, and wavelet analysis. In comparison with discrete Fourier

transformation, power spectral density estimates the power of various frequency components

of a signal. To compute power spectral density, we apply Welch’s method [63] to each

sample. We use the implementation found in the SciPy [64] Python library (version 0.18.1).

Welch’s method is used to estimate the power of a signal at different frequencies and it does

this by performing windowed short term discrete Fourier transform. Instead of using the

raw power spectral density values, we extract the top four peak values (both frequency and

corresponding power spectral density).

Any frequency analysis which leverages Fourier transform suffers of the problem of bal-

ancing time and frequency resolution. On the other hand, wavelet analysis does not suffer of

this problem and can often be more successful in decomposing a signal. To perform wavelet

48

transformation, we leverage the Ricker wavelet function. We use the implementation found

in the SciPy [64] Python library (version 0.18.1). For our features, we extract coefficients

are different width values for the wavelet function. Ultimately, for our classification, we rely

solely on wavelet coefficients.

As mentioned above, feature selection is a meticulous process that requires a lot of ex-

perimenting and finesse. The final features are selected using two types of analysis. First, we

perform distribution and variance analysis of the feature values across the different samples

in order to identify and remove features with values shared by many types of programs.

We also use Gini impurity to determine how each feature contributes to the labeling of a

sample. Gini impurity is a method used during the building of decision trees to measure the

prediction power of the features. Gini impurity aims to measure the homogeneity of features

and it does this by estimates how likely it is to mis-label a sample if the label is assigned

randomly according to the distribution of the labels determined by the feature. When a

feature is able to narrow down the label to only one option, its Gini index is 0. When there

are multiple labels and each has an equal probability, the index is 1. Therefore, features

with low index values are more valuable in classifying data.

After thorough examination of the features and several experiments, we converged on a

set of 24 total feature values.1

4.2.2.4 Classification Methodology

For classification, we rely on the random forest machine learning algorithm. A random forest

is an ensemble learning algorithm often used for multi-class classification. The random forests

are constructed during the training phase. Specifically, to grow a random forest, subsets of

features are selected (with replacement) and decisions trees are created for each feature

subset. The label of the target sample is determined by the mode of the decision tree

predictions. Unlike decision trees which are very susceptible to over-fitting, random forests

reduce the bias by using a bagging process. Bagging occurs at two levels: data selection

and variable selection. Using bagging, the construction of each tree uses a different subset

of data and as well as a different subset of variables.

In our experiments, we rely on the scikit-learn [65] (version 0.17.1) Python machine

1Some features (e.g., percentiles, wavelet coefficients) have multiple feature values

49

Table 4.1: Table listing classification results of clean current magnitude samples using the
full sample approach.

Program Precision Recall F Score

BT 92.86 94.45 0.94

CG 82.85 92.62 0.87

EP 88.18 88.59 0.88

FT 96.00 99.00 0.97

IS 97.27 97.35 0.97

LU 88.75 98.75 0.93

MG 99.09 89.15 0.94

SP 92.00 82.23 0.87

AMG 100.00 97.65 0.99

GTC 100.00 100.00 1.00

MINIFE 100.00 100.00 1.00

SNAP 98.75 96.47 0.98

learning library for both the random forest implementation as well as tools to process results

(e.g., compute accuracy, precision, recall scores). The modular and robust design of the

scikit-learn library fits our analysis framework adequately.

As an initial test of our objective as well as a baseline comparison for our approach, we

first classify clean, full samples. Clean refers to the fact that only one program was executed

by the rack during the collection of the current data. Full simply means that we use the

entire current time series sample representing the execution of a program, from beginning

to end. The results are described in the Table 4.1. Overall, the classification achieves 94.5%

accuracy with an approximate out-of-bag (OOB) error of 5%. As the table shows, most

programs have precision and recall in the range of 90 to 100%. Precision is a representation

of the fraction of retrieved entities that are relevant while recall represents the fraction of

relevant entities retried. More simply put, precision gives us the ratio of true positives to the

sum of true positives and false positives. On the other hand, recall computes the number

of entities of a particular class correctly classified (true positives) out of all entities of that

50

class (true positives and false negatives). It is important to make two other observations.

The NERSC-8 benchmarks, listed at the bottom of the graph, have higher scores than those

of the NAS parallel benchmarks. This may be explained by the higher resource utilization

exhibited by those programs, which translates to more prominent features in their current

footprint. Tangentially, the results show that some programs are more easily identifiable

than others, particularly CG, EP, and SP. The current magnitude time series for these

benchmarks are also visually similar and examination of the confusion matrix shows that

these three benchmarks are often mis-classified as each other.

4.2.2.5 Noisy Experiments

Our approach thus far neglects the issue of noise. We define “noise” as disturbances in the

data recorded by the µPMU data due to natural phenomenon or due to other processes

running on the computing platform. Although we refer to concurrent tasks as “noise”, in a

normal, production HPC platform, it is rare for only one job to run on on a single rack at a

given time. Considering the µPMU is monitoring a 36 node rack, it is normal for the sensor

to capture the power consumption of several jobs at any given time.

Noise introduces an additional challenge. When programs are executed serially, it is

relatively trivial to determine the beginning and end of a new task. In contrast, when

programs are executed concurrently, establishing the start and end of a new program is

difficult. One option is to identify abrupt spikes and sags in the current time series. However,

correctly associating each spike with its corresponding sag is non-trivial, even if considering

the magnitude of such changes. In our experiments, many of the NAS parallel benchmarks

exhibit similar magnitude changes at the start and end of the execution.

To combat these challenges, we modify our approach by splitting each sample into equal-

length windows. The key idea is similar to Hart’s switch continuity principle. The switch

continuity principle states that “in a small time interval, we expect only a small number

of appliances to change state in a typical load” [15]. We believe similar principle to also

apply in our setting. In other words, we believe that in small time intervals, even if several

programs are running in parallel, only a small subset of the programs are exhibiting a change

in behavior.

Despite improvements in noisy classification, by treating each window independently

51

some information about order and time-dependency is lost. We attempt to introduce some

of that information into our vectors by grouping windows into sets of consecutive windows.

In other words, we construct feature vectors using n smaller feature sub-vectors, each sub-

vector describing one of the n consecutive windows. Each sub-vector is composed of the

above mentioned 24 features.

When using window sets, our classification will label each window set. As expected, a

program sample is composed of several window sets. Consequently, we label each sample

using by the majority of the window set labels. In the case of a tie, we remove the correct

label from the set of predicted labels and pick the predicted label with the highest count.

We choose to do this as a way to enforce fairness. It is important to note that the strategy

used for assigning sample label can easily be modified.

Experiments support our hypothesis that coupling windows together produces better

results. Particularly, the average accuracy for full sample, windows, and window sets classi-

fication are 98.48%, 93.12%, 98.86% respectively. To provide a fair comparison, these results

only reflect 6 of the 12 programs. The 6 programs are the only programs with runtime

duration longer than 18 seconds (minimum of two sets of windows, with three 3-second

windows). As expected, the accuracy drops when going from full samples to windows but

improves when classification is performed on window sets. Our experiments also show that

the average accuracy drops significantly more when performing classification on full samples

versus windowed sets. For example, for noisy samples generated by combining two samples

(one target, one noise), the full sample classification average accuracy drops to 47% (from

98%) whereas the window sets classification average accuracy decreases to 81.06% (from

98%). As expected, classification of window sets samples is more resistant to noise.

Despite these improvements, some windows are mis-classified. We perform several exper-

iments to determine the root cause of these mis-classifications. Our hypothesis is that some

windows represent segments of power signatures that are common among many different

programs (“common” windows). Visual examination of the current signatures shows that

many programs exhibit windows during which activity is seemingly constant, without any

apparent pattern or identifying behavior.

To test our hypothesis, we perform two tests. First, we study the prediction score for

52

Figure 4.7: Diagram depicting the variation in the classification success rate across the
windows of the MiniFE program.

windows of each program. The objective is to identify for each program, which windows are

mis-classified. Next, we examine the confusion matrices to determine how windows are mis-

classified. In particular, we wish to determine if the mis-classifications are spread throughout

multiple labels or whether given our features, windows of certain program sub-groups are

indistinguishable.

The results indicate that our hypothesis is true for short windows (i.e., 1-2 seconds).

As Figure 4.7 shows, certain windows are classified with higher success rate than others.

However, after performing several experiments with various window sizes, we determine

that the false positive and false negative rates depend on the window size. As the size of

windows increases, there are fewer windows mis-classified. While the mis-classification when

using short windows span multiple labels, the opposite occurs as the window size increases.

Specifically, the confusion matrices show that mis-classified windows do not spread across

several classes.

To replicate noisy, real-life behavior, we generate synthetic noisy samples by combining

electrical current samples of various programs. The synthetic samples are constructed by first

selecting a target sample from the pool of samples. Then we randomly select a “noise” sample

from the subset of samples with label other than the target sample and convolving it with

the target test sample starting at a random location. It is important to make the location

at which noise gets introduced random. The purpose of this is to mimic the unpredictable

behavior of new programs beginning their execution. We choose to create noisy samples

synthetically in order to minimize our usage of the HPC rack.

53

Table 4.2: Table describing the results of classification of noisy current magnitude samples
using the window sets approach. The scoreless programs have execution times too short for
the selected window set size.

Program Precision Recall F Score

BT 79.55 86.48 0.82

CG - - -

EP 24.82 65.65 0.33

FT - - -

IS - - -

LU 72.81 98.45 0.83

MG 88.89 44.14 0.59

SP 78.98 66.78 0.72

AMG 99.57 96.60 0.97

GTCMPI 94.30 64.78 0.78

MINIFE 96.83 94.30 0.97

SNAP - - -

4.2.2.6 Results

We first train our random forest model on clean window-sets and test on the synthetically

generated noisy samples. As previously mentioned, the level of noise refers to the number of

“noise” samples added to the target sample.

Table 4.2 describes the results of classification of noisy samples with noise level of 1.

The results presented below reflect a window size of two seconds with four windows per

window set. Unfortunately some of the benchmarks have short run-times (e.g. IS program

runs for less than 10 seconds) and are excluded from classification. As the table shows,

the scores vary, although the classification approach performs well for a few programs. One

interesting observation is that the classification performs better for the Trinity benchmarks,

than compared to the NAS Parallel programs. This observation as well as others are discussed

in more detail in Section 4.2.2.8.

It is important to note that these results reflect the classification of samples after each

54

sample is labeled based on the labels of its window sets. In other words, for every sample, we

classify the window sets and collect the predicted labels. The sample is then labeled using

the majority of the predicted window sets labels. In most cases, for a given samples, 70%

of the window sets are correctly classified. This depends on the noise type and level. In

some cases, as expected, the noise drowns out the target sample and causes classification to

perform poorly.

We also perform tests to analyze how classification performs as the level of noise is in-

creased. In Figure 4.8, we visualize average accuracy, across all programs, as the noise level

increases. In addition, the performance of our classifier is compared with two baselines. As

a lower bound, our results are compared to a random guessing strategy (visualized by a

red dotted line). As an upper bound, the classification results are compared to the aver-

age mutual information between clean target samples and the corresponding synthetically

generated noisy samples. Mutual information is an information theoretic measure of the de-

pendence between two random variables. Specifically, it uses entropy to quantify the amount

of information obtained about one random variable, given another random variable. In our

experiments, we use mutual information to measure how much information is lost after noise

is added to a sample. For each sample, we compute the mutual information between the

original target “clean” sample and the corresponding “noisy” sample used during classifica-

tion. The mutual information is displayed in Figure 4.8 using a dashed green line. From the

figure, we can see that our classification performs considerably better than a naive random

guessing strategy and is relatively close to the the upper bound described by the mutual

information metric.

To better understand our results, in Figure 4.9, we visualize the precision and recall for

each individual program.

We make several observations from Figure 4.9. First, we can see that for most programs

recall decreases faster compared to precision as the noise level is increased. In most cases,

noise causes more false negatives than false positives, causing recall to decrease more than

precision. We also can see that precision varies for some programs as the noise increases.

We believe this to be a side effect of the randomness involved in the noisy sample generation

process. Specifically, the “noise” is added at a random location within the target sample.

55

0 1 2 3 4
Concurrent Programs

0

20

40

60

80

100
A

cc
u
ra

cy
 (

%
)

Accuracy vs. Noise Level

RF

random guess

mutual info

Figure 4.8: Diagram visualizing the impact of noise on the average accuracy across all
programs and a comparison of the classification results with random guessing and mutual
information

The value of the random location generated will affect how many window sets of the target

sample will be tainted and consequently mis-classified. This side effect is diminished as the

number of experiments increases.

Another interesting observation is that the precision and recall for some programs, such as

AMG and GTCMPI, decreases slower than for other programs as the level of noise increases.

Manual analysis shows that in many cases the noise samples drown out the target sample.

In particular, the NERSC-8 programs tend to drown out the NPB benchmarks. This is

explained by the fact that the NERSC-8 programs utilize significantly more resources hence

producing more prominent patterns in their power signatures. Consequently, adding the

NPB programs as noise has little impact on the classification.

4.2.2.7 Results Evaluation

Our results are evaluated using two separate methods. We use the out-of-bag (OOB) score to

estimate the prediction error of the random forest classifier. Specifically this method allows

us to estimate the prediction error on window sets. As mentioned previously, we aggregate

the predictions for window sets for a single sample into one prediction, based on the majority

of the window set labels. The out-of-bag method works by constructing trees using different

bootstrap samples from the original data. After the trees are constructed, they are tested

using the remaining samples which were not used during classification. The average OOB

score for full clean sample classification is 96% (or 4% OOB error). For windowed-sets

classification the average OOB score is approximately 95% (or 5% OOB error).

56

0

20

40

60

80

100
R

e
ca

ll
Scores vs. Noise

0 1 2 3 4
Noise Level

0

20

40

60

80

100

P
re

ci
si

o
n
(%

)

amg2013

lu.C.16

bt.C.16

mg.D.16

miniFE.x

gtcmpi

sp.C.16 ep.D.16

Figure 4.9: Diagram visualizing how noise affects the recall (top) and precision (bottom) of
each individual program.

We further validate our results using the three-fold cross validation technique. For each

experiment, the samples are divided into three equal size “folds” and the experiment consists

of three classification runs, where training is performed on two of the three folds and testing

is done on the remaining fold. The experiment is repeated several times, especially for noisy

scenarios (since the placement of the noise is randomly chosen). The results presented here

are the averaged scores across several such runs.

4.2.2.8 Program Behavior and Prediction Success Rate

The results presented above demonstrate that our approach is capable of identifying certain

programs more than others, even in the absence of noise. Indeed, the current magnitude time

series for samples with low precision and recall are visually similar. Manual analysis of the

features and classification result supports this and shows that our classification approach

fails to distinguish between certain programs. The machine learning and features used

undoubtedly drive the success rate of classification. However, we argue that the success of

classification techniques is limited to a large extent by the data. Thus we wish to understand,

at a more fundamental level, the factors driving the ability to classify programs based on

57

their current signatures.

Considering our objective, there are several factors which can impact the classification

rate:

• Sampling rate: How does frequency of power data impact classification?

• Program behavior: How does the behavior of a program affect classification? Are

there patterns or observations about a program’s behavior that improve its chances of

being identified given its power footprint?

• Other components: What role do other components, both hardware and software,

play into our analysis?

To help answer these questions, we leverage hardware performance counters. Performance

hardware counters are special-purpose hardware registers used by processors to record hard-

ware events. These registers can be programmed by a user to record several hardware events,

for example the number of instructions retired. Most modern CPUs are equipped with such

counters.

As mentioned previously, our analysis is built on the observation that programs’ behav-

ior can be described by a permutation of CPU intensive and I/O intensive periods. In our

analysis, the hardware performance counters provide us with high-resolution data about a

program’s behavior (e.g., number of instructions executed, memory activity, etc.). Specif-

ically, we are interested in hardware counters regarding CPU and I/O (mainly memory)

activity. Although there may be other factors at play, comparing the hardware counter with

the power data provides insight into the relationship between power consumption and system

behavior. Additionally, the performance hardware counter information can be collected at

relatively high frequencies (compared to the µPMU 120 Hertz power data).

Unfortunately, access to performance counters is not enabled for the high performance

compute nodes used in our analysis. As such, for these experiments we rely on a separate sys-

tem, a conventional desktop. The desktop is equipped with Intel Quad Core Q660 processor,

4GB of random access memory, and is running Ubuntu 14.04.4 LTS (generic 3.13.0-86 Linux

kernel). We also execute the same benchmarks on the desktop and compare the (physical)

current signatures with those obtained from the HPC rack.

58

(a)

(b)

Figure 4.10: Diagram of the number of instructions executed over time, during the execution
of two NAS parallel benchmarks, (a) Conjugate Gradient program and (b) Fourier Transform
program

Our experiments enable us to make two observations. Earlier in this chapter (see Fig-

ure 4.2), we showed that the current consumption follows behavior of CPU (and memory to

a lesser extent). However, as Figure 4.10 depicts, there are patterns in CPU behavior, with

respect to the number of instructions retired, that are not visible in the power data. For

example, in Figure 4.10a we can see frequent dips in the number of instructions executed for

the Conjugate Gradient NPB program. This pattern is absent from the current magnitude

time series data.

There are two possible factors can explain this. First, there is a large discrepancy between

the sampling rate of our power sensor and the operating frequency of the CPU. As a result,

only significant changes in the CPU activity will be captured by the µPMU data. Second,

it is possible that the power distribution and supply units limit the resolution of the power

59

data. This would not be a limiting factor if the power measurement technique involved

probing the processors directly.

Other observations can be made by further comparing the performance hardware counter

time series data of various programs. For example, it is apparent that even at the relatively

higher performance counter sampling rate, programs that have higher classification rate

exhibit greater changes in the magnitude of instructions retired. Also, it is important to

note that the programs with the highest classification success rate exhibit variations in the

behavior throughout their execution. For example, although there is a distinct visible pattern

for the Conjugate Gradient program (Figure 4.10a), the pattern persists throughout the

execution. On the other hand, a program like the Fourier Transform program (Figure 4.10b)

manifests a few different patterns through it’s execution.

4.2.3 Discussion and Future Work

As our results reflect, we believe it is possible to identify programs based on their power

signature. It is important to note that some programs may drown out others, less resource

intensive programs. We do not believe this to be a critical limitation. Our current approach

may not be able to determine when a user is running a small script for non-scientific purposes,

but it would be able to detect users running computationally intensive applications such as

bitcoin miners.

From our experiments, we also deduce the window size can play a significant role in

detection. While our window size was limited by the durations of the benchmarks executions,

most HPC jobs are considerably longer, allowing for much larger window sizes.

In the future, we plan on continuing the work described above. First, we would like to

test our classification approach on more programs, especially on the HPC platform. We hope

to capture power consumption for real compute jobs from production HPC platforms and

test our approach on the new data. Most of the work done to this point is analysis in the

frequency domain using the raw data. However, we believe accuracy could be improved by

filtering noise. In our work, “noise” is any concurrent program or device impacting power

consumption that is unrelated to the target program. One of the most common ways of

filtering noise in signals is using spectral subtraction. In spectral subtraction, the signal

spectrum is adjusted using noise spectrum in a manner that improves the average signal-to-

60

noise ratio (SNR). In our case, we believe that the best way of estimating the noise spectrum

for a given sample is by looking at the period before and after that sample (execution of the

program). Using that noise spectrum, we can adjust the signal spectrum to optimize the

SNR.

Additionally, we are interested in studying the relationship between classification accu-

racy and the distance between the sensor and the computing resource. In other words, we

would like to determine how “far” the µPMU can be placed from the target computing rack

and still obtaining a reasonable level of accurately with respect to fingerprinting running

programs. The “distance” component has two main attributes: noise and loss of signal.

There are significant differences when comparing the power consumption of a compute rack

to that of an entire building. Buildings have hundreds of devices and machines that introduce

considerable noise. However, it is also important to study how the loss of signal affects our

approach and how the modeling techniques must be adapted to account for it. In summary,

this study would have two contributions: demonstration of the ability to fingerprint activity

on HPC platforms using power-related data and the study of impact of “distance” on the

accuracy of such fingerprinting.

61

4.3 I/O Analysis

As presented above, CPU and memory activity of a program are reflected in the current

drawn by the system during the execution of said program. In the next part of the work,

we describe analysis performed on I/O data pertaining to programs in order to classify the

activity.

4.3.1 Darshan

In a high performance computing (HPC) setting, efficiency is a priority. As a result, collecting

data about the activity must be done with minimal overhead. Darshan [66] is a lightweight,

scalable I/O characterization tool designed by Argonne National Laboratory specifically for

HPC environments. It is implemented as a set of user space libraries which are linked to the

source code during the linking phase of the build process. As such, Darshan does not require

source code modification, works for both static and dynamic complication, and requires no

additional supporting infrastructure.

Darshan captures information regarding POSIX, MPIIO, STDIO, HDF5, PNETCDF,

BG/Q, and Lustre I/O operations that an application performs. In this study, we focus

solely on POSIX I/O operations. This is because the other I/O libraries are rarely used

by applications, as shown by Table 4.3. Features include number of operations, size of

operations, time of first and last operation of a particular type, access patterns, and even

switches between read and write operations. For file I/O operations, the Darshan log includes

the name of the file. Each Darshan log generated also includes information about the job

identification number, the start and end time of the job and the number of MPI processes

utilized. Additionally each log is named such that it contains the name of the user who

submitted the job, the program name, the date and also timing information.

4.3.2 Data Collection

Data was collected from the National Energy Research Scientific Computing (NERSC) cen-

ter, where Darshan is enabled by default on two of their systems. There are two possible

sources for data. One source is by executing benchmark applications. Benchmarks are an

easy way of generating data, however compared to real scientific applications, their behavior

is predictable. The second possible data source is by analyzing Darshan logs generated as

62

Type % of logs % of apps

POSIX 99.8% 78.7%

Lustre 53.1% 63.8%

MPI 9.28% 29.6%

PNETCDF 1.1% 7.4%

HDF5 0.3% 10.1%

STDIO 0% 0%

BG\Q 0% 0%

Table 4.3: Table describing the breakdown of I/O libraries used across 54231 Darshan logs
from 108 total applications.

a result of compute jobs submitted by researchers. In comparison to the logs generated by

benchmark tests, these Darshan logs provide a more realistic representation of the applica-

tions’ behavior. Additionally, using these logs, the variance in behavior between executions

of the same application (but with different input and/or parameters) can be studied. In our

work, we focus on logs created as a result of researchers’ compute jobs.

For our study, we examined 54,231 Darshan logs representing researchers’ compute jobs

over 30 days and 108 unique applications. Both application name and user name were

extracted from the Darshan log names. It should be noted that two logs may share an

application name but vary in their content (i.e. different inputs and parameters can cause

the same program to behave differently).

As mentioned, each Darshan log represents one execution of a particular application. We

assign a computational motif label to each Darshan log. This process was done manually

by researching the application (by name) and inferring its computational motif based on the

descriptions found. Out of the total 108 applications, we were able to classify 18 applica-

tions into only seven computational dwarfs, representing 1683 Darshan logs. Due to time

constraints, we select a maximum of 30 samples per program, if available. A total of 331

logs were used for the analysis. Some other applications included popular unix utilities, pre-

processing tools, or scientific codes that we were not able to label with confidence. Table 4.4

lists the applications and the computation dwarf label assigned.

63

Computational Dwarf Application

Dense Linear Algebra pstg3r, scalapack

Sparse Linear Algebra superlu

Spectral Methods getsfcensmeanp

N-Body Methods gem, lammps, pmemd

Structured Grids cactus, castro, hyperclaw3d, milc,

nyx3d, pflotran, shengbte, wrf.exe

Unstructured Grids gtc, suolsontest

Map Reduce, Monte Carlo mcnp6, track3p

Table 4.4: Table listing 18 most commonly executed scientific codes and their corresponding
computational dwarf.

4.3.3 Methodology

Darshan provides over 90 features for POSIX I/O. Many of these features reflect the pro-

gram’s logic (and its implementation). Such I/O features should be considered in our study.

However, other features may also be impacted by factors unrelated to the program (e.g.,

operating system, file system, and even I/O load of the system during the execution of the

program). We carefully select a subset of the total POSIX I/O features.

It is important to note that in some cases, comparing the values for a feature between two

Darshan logs has little, if any, value. Two applications may exhibit different I/O behaviors,

with respect to both the number of operations and timing of operations. An applications

may read input from one or several files; it may write debugging information to a file. Even

if the two logs represent the same application, the two executions may differ (e.g., due to

differences in input size), causing the Darshan features to take different values. To combat

these shortcomings, instead of analyzing the data provided directly by Darshan, we leverage

the Darshan data to generate a total of 53. These features include total count of number of

operations, histogram of read/write operations (with respect to size) as well as ratios (e.g.,

the average number of bytes per read() operation, the number of sequential reads/writes per

total read/write count, etc.) which aim to abstract away some differences in I/O behavior.

We believe these features are more useful in identifying patterns in I/O behavior. The

64

Figure 4.11: Boxplot and swarmplot representing the distribution of all 53 features across
all 331 Darshan logs collected.

complete list of features is listed in Appendix A.

Figure 4.11 visualizes the distribution values (logarithmic Y axis scale) for all features

across all 54,231 Darshan logs collected. While the distribution does not unveil clusters, it

does show that the values for each feature do vary. To determine if this data can be used

to classify a program as a member of a particular motif, we continue to examine how these

features vary between executions of the same program, programs of the same computational

dwarf, and finally between dwarfs.

4.3.4 Findings

For the Darshan data to be representative of the computational motif encompassed by an

application, we expect several conditions to hold. First, we expect all programs of the

same computational dwarf to exhibit some pattern(s). In order to successfully differentiate

between computational dwarfs, we expect variations in the Darshan data (or computed

features) across dwarfs.

After several experiments, we are able to make several observations, specifically:

1. Executions of the same program may exhibit different I/O behavior

2. Programs of the same computational dwarf exhibit different I/O behavior

3. Programs across different computational dwarfs exhibit different I/O behavior

We discuss each observation in more detail below.

4.3.4.1 Comparison of Executions of The Same Program

Analyzing the NERSC Darshan logs, we can observe that the I/O behavior of some applica-

tions vary between runs. We use the binary name component of the Darshan log filename to

65

Figure 4.12: Diagram visualizing the I/O behavior of four different executions of the track3p
application.

identify logs representing the same application. This may happen due to the input provided

to the application, including parameters or even due to the way the application was compiled

(if built from source). Figure 4.12 depicts the POSIX I/O behavior of four samples of the

same application, track3p. Track3p is a 3D parallel particle tracking code for multi-pacting

and dark current simulations. In this figure, each radar plot represents an individual Dar-

shan log (i.e. execution of the program). Each vertex of the radar plot is associated with

one of the 53 POSIX features. In the radar plot, each POSIX feature has a value in the

range [0, 1]. To achieve this, we find the maximum value for each feature across all of the 331

and normalize each feature using its respective maximum value. This makes the comparison

of features across different entities easier. In the figure, we see two types of differences in

the pattern. One difference is in the length of the radius (i.e., value of feature). The other

difference is in the subset of dominant features that reflect the behavior of the program. The

former difference is not as concerning as the latter; differences in values for a feature may

exist for several reasons. However, differences in prominent features tell us that the programs

behave differently. Similar differences were observed for other scientific applications.

4.3.4.2 Comparison of Programs of Same Computational Dwarf

Despite differences in executions of the same program, we can also see variations in the

behavior of applications of the same computational dwarf. For every application, the features

were normalized as before, using the maximum value across all logs, and averaged across all

the program’s logs. Figure 4.13 depicts the POSIX I/O behavior of three applications of the

same computational dwarf, structured grids. Similar to the previous figure, this diagram

also highlights differences not only in the magnitude of features but also differences in the

66

Figure 4.13: Radar plots representing two Structured Grid programs.

Figure 4.14: Radar plots representing I/O behavior of seven computational dwarfs. Each
vertex of the radar plot represents a different feature.

prominent I/O features of the applications. For example, comparing the second and third

plots, we can see that the magnitude of feature 38 (number of POSIX stats operations) is

different. Additionally we also see that some features (e.g., 20, 23, 25) are dominant features

in the third plot, representing the pflotran application, yet appear absent in the behavior

depicted in the second plot of the milc application.

4.3.4.3 Comparison of Computational Dwarfs

Additionally, we investigated Darshan logs of applications from different computational

dwarfs in order to determine if there are clear differences in the I/O behavior across im-

67

plementations of computational dwarfs. For this analysis step, we used many of the same

features as described above. Figure 4.14 depicts the behavior of seven computational dwarfs.

This figure shows that most computational dwarfs share similar characteristics with respect

to their POSIX I/O behavior. Furthermore, in the process of building this figure, we observe

that the patterns for some computational dwarfs, change as more programs are added to

the set of samples representing the dwarfs. This observation further emphasizes the lack of

patterns across programs of the same computational dwarf and the lack of differentiating

behavior across dwarfs.

To further test for patterns in our data, we apply a density-based unsupervised clustering

algorithm. Density-based clustering algorithms aim to find high density areas separated by

areas of low density. This approach has several advantages. The algorithm scales well

for very large number of clusters and number of samples per cluster. It also does not

assume that clusters have a flat geometry or even sizes. Density-based clustering algorithms,

however, do require two parameters: min samples and ε. min samples defines the minimum

neighborhood size. The value for min samples is selected based on knowledge of the data.

For example, we know in our data set, some dwarfs are only represented by a single program.

Consequently, we set this value to 1. ε represents the maximum distance between two samples

for them to be considered in the same cluster. The value of ε is determined by looking at the

Euclidean distance between points of the same partition. In other words, for every partition

(e.g. computational dwarf), we calculate pairwise Euclidean distance between the parts.

Then, we analyze the ε values across all partitions and choose a value such that for most

samples, the algorithm will be able to find neighbors. The histogram depicted in Figure 4.15

shows that most vectors have at least one neighbor of the same class within an Euclidean

distance of 0.1.

We apply the clustering algorithm in two different ways. First, we generate a feature vec-

tor representing every program in seven computational motifs: Sparse Linear Algebra, Dense

Linear Algebra, Spectral Methods, N-Body Methods, MapReduce, Unstructured Grids, and

Structured Grids. In other words, for every program, we take the feature vectors of all

Darshan logs for that program and average them. The clustering algorithm identified four

clusters, however the clusters did not have any significance. One cluster contained six of

68

Figure 4.15: Histogram of pairwise Euclidean distances between vectors representing pro-
grams of the same computational dwarf.

the computational motifs and the other three clusters represented different programs of the

Structure Grid motif. We also evaluated the homogeneity, completeness, and the adjusted

mutual information score. Homogeneity is a metric between 0 and 1 which uses ground-truth

class labels as a reference to determine how many clusters contain only data points which

are members of a single class. Completeness tells us whether all members of a given class

are elements of a single cluster. The adjusted mutual information score is a metric used

to measure how much overlap there is between cluster (i.e., if clusters share members of

the same class). It is adjusted such that it accounts for the fact that a few larger clusters

usually have more mutual information than many small clusters. The values of these scores

are 0.096, 0.234, and -0.140 respectively.

Our second approach, takes individual feature vectors for every single Darshan log and

cluster them. For our second approach, we adjust the value of min samples since now we

more samples per class (each computational dwarf is represented by at least one program,

each with several Darshan logs). The clustering algorithm was able to detect 23 clusters

(despite only having 18 programs across seven dwarfs). The homogeneity and completeness

of the clusters were poor, 0.262 and 0.237 respectively. However, the results do show that in

some cases, Darshan logs representing the same program are clustered together.

4.3.5 Results

The observations above lead us to believe that classifying programs into computational

dwarfs using Darshan data as presently collected on the machines that we were observing

is not be feasible. In our experiments, we fail to see patterns in programs of the same

computation type. Additionally, we can see that the pattern (as visualized by the radar

69

plots) of a computational dwarf changes as more samples (i.e., programs) are introduced.

The clustering results further support our observations. The results are not surprising.

File I/O behavior is not intimately related to the underlying computation performed by a

system. On the other hand, inter-process communication or message parsing interface (MPI)

communication may be, as shown by [42, 41].

On the other hand, our clustering results (second approach) hint at the possibility of

identifying the underlying program based on Darshan data. While the behavior across exe-

cutions of the same program may vary, in most cases the behaviors share common elements

and the differences are in the magnitude of features (not the set of dominant features). We

verified this by computing the pairwise Euclidean distance between samples of the same

program and compare those values with the pairwise Euclidean distances between samples

of one program versus all other programs. On average, the Euclidean distance between sam-

ples of the same programs were smaller than the Euclidean distance to samples of different

programs. More investigation is needed.

There are several concerns with the data provided by Darshan. The lack of time series

data makes it difficult to recreate a clear image of the program’s I/O behavior during its

execution. Additionally, Darshan provides a significant amount of POSIX I/O behavior,

which mostly relates to file I/O. We believe that file I/O behavior may not be representative

enough of the underlying computation performed by the application.

4.3.5.1 Limitations and Future Work

Our study has some limitations. Despite our best efforts, it may be possible that some

executables were misclassified as the wrong computational dwarf. However, in most com-

parisons, there was little consistency between any two entities.

One may question our conclusion due to the näıve clustering approach used, which relies

on Euclidean distance for identifying similar entities. Due to the severity in variations in

the behavior of programs of the same dwarf, we have little reason to believe a more complex

approach (such as neural networks) would perform better without overfitting the data.

Some applications may have options which causes the program to produce additional

output. Considering our objective, such I/O operations introduce noise to the data, which

may cause their respective I/O behaviors to differ. We do not have any mechanism for

70

detecting this. It is non-trivial to determine which subset of entities (e.g., files) are important

for such analysis and which introduce noise.

While we may not be able to infer the computational motif, we believe that identifying

some individual programs based on I/O data may be possible. One possible approach is

to break down the I/O behavior contained by a Darshan log for a program into a series of

partial, per file(/entity) I/O behaviors. To identify the program behind an unknown Darshan

log, machine learning could be leveraged to identify the label for each partial I/O behavior.

These labels may then be used to label the unknown log using a majority-rule method.

With respect to future work, we believe that it may be possible to classify a program

into computational dwarf using CPU and memory activity information. We believe such

information to be more closely related to the program’s underlying computation type. CPU

and memory activity information can be collected through hardware performance counters

with low overhead in comparison to binary instrumentation techniques.

71

Chapter 5

Monitoring Internet of Things

Platforms Using Side Channels

“... purchasing 10-20 different services from 10-20 different vendors using 10-20

different apps with 10-20 different user interfaces. If that’s the way IoT goes, it

will be a long tough slog to Nirvana.”

– Bob Harden, Principal, The Harden Group

Previously we showed how side channel information can provide insight into the behavior

of a program. In this part of the work, we show how side channel analysis can be used as

a non-intrusive, device and technology-agnostic method for modeling and monitoring the

behavior of heterogeneous Internet of Things (IoT) devices.

5.1 Background

The Internet of Things has become increasingly popular in both industrial and personal

settings. Despite such devices invading our lives, many individuals do not understand the

implications and intricacies of the Internet of Things.

“Internet of Things” is a phrase used to describe a platform of inter-connected, networked,

computerized components. Such platforms are comprised of three types of components:

sensors, actuators, and the “smarts”. Sensors are devices which collect information about

users and/or the environment. This information is then processed by the “smarts”. The

“smarts” represents the platform and resources intended to process the sensor data and

72

extract some meaningful information from it. In some cases, the “smarts” reside directly

on the devices but increasingly they are located in the cloud. The processed information is

sent from the “smarts” to actuators, which are devices designed respond to the data and

perform a task. Sensors and actuators are often the same device. For example, in home

automation, smart thermostats are both sensors since they collect temperature information

and actuators since they control heat-ventilation-air-conditioning (HVAC) systems.

From a security and privacy standpoint, the combination of intrusive sensing abilities

and Internet connectivity raises many concerns. Recent events demonstrate the need to

secure IoT, yet introducing security mechanisms to such platforms is nontrivial. Securing

IoT platforms is also a multi-faceted problem and it concerns not only securing the devices

but also the “smarts” and the transmission of potentially private and sensitive data between

devices and the “smarts”.

At the time of this writing, security researchers as well as industry partners are discussing

the possibility of creating a government agency responsible for regulating and certifying the

Internet of Things. Other groups have been formed to design and implement standards

for various aspects of the IoT, including communication protocols. The changes proposed

require time before they will be adapted into existing IoT platforms. In the meantime, the

state of IoT security continues to be poor and attacks on IoT platforms are on the rise.

In this part of the dissertation, we present a method for monitoring IoT sensors and

actuators. Our method is not intended as a replacement for the proposed standards and

certifications but rather as supplementary security mechanisms that can be applied in many

settings without many modifications.

IoT devices are very heterogeneous in nature. Devices are spread across several producers,

built using components from a plethora of manufacturers, utilize a wide variety of (often

proprietary) protocols, and operate on different, often incompatible platforms. Considering

all of the differences, it is extremely challenging, if not impossible, to create a single security

solution for all IoT devices.

It could be argued that only one security monitoring device per platform is necessary.

There are several problems with this. An obvious problem is the cost imposed on users.

Perhaps more concerning is the explicit and implicit interactions between devices of the

73

same manufacturers and across various manufacturers. Without accounting for all possible

combinations of devices, attack vectors could be missed. Overall, the lack of consistency

makes it difficult to achieve a holistic view of a given IoT network.

Our method is based on the observation that, despite their differences, IoT devices have

common characteristics. IoT devices are limited in their computing capabilities and rely

heavily on network communications. While the network communications are often (although

not always) encrypted, they present a technology and protocol-agnostic side channel for

monitoring devices. In this part of our work, we investigate how device-to-device and device-

to-cloud smart home network traffic can be used to monitor the state of the IoT devices.

Recalling our definition of side channels as information exposed as a result of the program’s

execution on a physical computer, we categorize the encrypted smart home network traffic as

a side channel since the value of the individual packets (the content) provides no insight into

the state of the devices. Unlike deep-packet introspection, our method does not rely on packet

content, but rather uses patterns in communication and packet attributes to infer the state

of the devices. In our study, we apply traffic analysis techniques on network traffic generated

by devices from Nest Labs [67], a subsidiary of Alphabet Incorporated [68], to identify key

events in the life-cycle of the devices. Traffic analysis is the process of intercepting and

analyzing network packets in order to deduce information from patterns in communication.

5.2 Experiment Setup and Devices

The experiments involve two smart home devices, the Nest Thermostat version 2 [69] and the

Nest Protect smoke and carbon dioxide detector version 2 [70]. These devices are equipped

with motion sensors and designed to detect human presence, in order to learn the daily

schedule of the household occupants. The Nest Thermostat has several operation modes:

Home, Auto Away, Away. The Home mode is designed to best accommodate the user,

based on their preferences. The Auto Away mode is automatically activated when the device

establishes that the household occupants are away. We believe motion sensor data from the

Thermostat is used to determine the presence of occupants. The Away mode can be manually

enabled by the user via the Thermostat or the smart phone application. The Nest Protect

is also equipped with a light ring, called Pathlight, which activates when it is sufficiently

74

dark and human presence is detected. The events described above are communicated to the

server and are presented to the user through a mobile application.

Our goal is to identify network patterns that allow us to infer information about the state

of the devices. Specifically, we are interested in the occurrence of events such as Thermostat

operation mode transition (i.e., Home to Auto Away and vice versa), motion detection,

smoke alarm activation and Pathlight turning on.

5.3 Methodology

For analysis, we collect encrypted network traffic from the devices over the span of 60 days.

The packet captures are consolidated into connection logs using the Bro [11] utility. In our

analysis, we are interested in unique behavior that occurs during an event. While this can

be extracted by looking at individual packet sizes (barring any re-transmissions), the same

information is preserved when aggregating packets into single connections. This also has

the additional side benefit of decreasing the number of entities processed during our analysis

(i.e., there are fewer connections than packets). As mentioned, when considering connections

as opposed to packets, it is important to consider re-transmissions, since they can impact

the results. We observe a negligible number of retransmits in our traces.

Of the data, we analyze approximately 60% of the connection logs during our learning

phase (i.e., discovering patterns) and use the remaining logs for testing.

Initially, we study the characteristics of the network traffic originating from the two

devices. The Nest Thermostat communicates with 14 different hosts per day, on average.

Protocols used include HTTP, NTP, DNS, SSL/TLS and ICMP. HTTP requests are used

to obtain weather information and provide no value for our objective. For our analysis we

ignore packets with protocols other than NTP and SSL/TLS. While the address of some

remote services such as DNS and NTP change over time, some of the contacted IP addresses

remain the same, particularly those for Nest cloud services. Figure 5.1 visualizes time series

data of connections made by the Thermostat to one of the most frequented hosts. Each point

represents a connection made by the Thermostat defined by the number of bytes transmitted.

The figure highlights several characteristics. First, there are visible patterns with respect to

the size of connections (i.e., payload bytes sent by the device). We see several instances of

75

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Time (hours)

0

1000

2000

3000

4000

5000

6000

Pa
yl

oa
d

By
te

s
Se

nt

Figure 5.1: Diagram visualizing connections and their size (bytes sent) made by the Nest
Thermostat to prominent destination over the span of three days.

packets of 1500, 2900 and 5700 bytes. The diagram also depicts temporal patterns. We can

see that certain connections are made regularly. Additionally, we can see irregular bursts of

connections.

To identify patterns in the encrypted network traffic, we leverage correlation analysis.

Our correlation analysis uses a sliding time window approach with time windows of 10 seconds

and a window displacement of 2 seconds. We build an N ×N correlation matrix where N is

the number of unique connections. A connection is defined by the destination IP address and

the number of bytes sent by the source (i.e., Nest device). The matrix describes the number

of occurrences of any two connections over the whole observation time. More precisely, the

value of a given entry (i, j) in the correlation matrix is equal to the number of instances

connections i and j occurred together in a 10-second time window. We create a mapping

between connections and indices in the correlation matrix. To increase time efficiency, we

also generate the SHA-256 hash of each connection (defined by the destination IP address and

bytes sent) for connection equivalence comparisons. A two-dimensional correlation matrix

76

allows us to find pairs of correlated connections. The same approach is extend to a three

dimensional matrix to allow the discovering of sets of three correlated connections.

Once the correlation matrix has been generated, we filter out some of the correlated

connections. To begin with, we eliminate all connections with low correlation (i.e., num-

ber of occurrences lower than three). We determine that connections which rarely occur

together are insignificant and can be disregarded. We also wish to discount regularly or fre-

quently occurring connections. While such regular connections may provide useful insight,

it is harder to correlate them with device state due to their regularity. Such connections

may appear to be highly correlated with other connections simply because of the number

of occurrences, however the relationship between such connections may have no special sig-

nificance. Distinguishing between significant and insignificant correlations in such cases is

nontrivial. For example, one of the most frequent connections made by the Nest Thermostat

is to IP address 54.204.245.223 with 2826 bytes sent. This connection shows up in the top

12 most correlated connection pairs. To carefully filter out some of these correlations, we

perform two tests. First, to identify regularly occurring, correlated connections, we look

at the difference between the time stamps of when the connections occur together. If this

difference is consistent (plus/minus a small threshold), we ignore these connections. We also

look at frequency of each connection and for a given pair of correlated connections, if both

connections are very frequent, we ignore the correlation.

While filtering narrows the search space, it does not produce the desired patterns. To

learn the patterns, we obtained the exact time of the occurrences of the events of interest from

the Nest web interface. Having such information available, we were able to draw associations

between connections (or sets of two and three connections) and the occurrence of an event.

To finally select between patterns of one, two, and three connections, we choose the patterns

with the best accuracy.

5.4 Results

Our analysis was successful in discovering network traffic patterns for the Nest Thermostat

operation mode switch, the Nest Protect smoke alarm trigger, and the Nest Protect Pathlight

activation. Additionally, we were able to make an interesting observation relating to the

77

distribution of NTP requests. To verify the validity of our findings and obtain accuracy

measurements, we automatically test the remaining 21 days of network traffic for the presence

of the discovered patterns. The results of this test were compared against the ground truth,

obtained from the Nest web interface. As mentioned earlier, a user can login to the Nest web

interface and obtain a log of events (e.g., mode change, smoke alarm) and their associated

time of occurrence, as recorded by the devices.

The details of each finding and the accuracy results are described below independently.

• Mode Transition One of the events of interests was the transition between modes

of operation in the Nest Thermostat. If the transition between modes was reflected in

a unique identifiable pattern in the network communications between the Nest Ther-

mostat and the Nest severs, such a pattern could be used to infer information about

the occupancy status of a building. Our correlation analysis discovered a number of

sets, of both sizes two and three, of correlated connections that occur during the Ther-

mostat’s transition from Home to Auto Away. The connections are identified by the

destination IP address 54.204.245.223 and sizes of 1375, 1391, and 2911 bytes. The

correlated connection sets were comprised of permutations of these three connections.

However, it should be noted that the set of three correlated connections had the best

accuracy rate.

The transition in the opposite direction is identified by connections of to the same

destination IP address. However, in this case, the connections have different sizes,

specifically 1663, 1631, 1711, 1786, and 1819 bytes. In contrast to the transition from

Home to Auto Away, in this case the single connections which occur at the time of the

mode transition represent the mode transition the best. In other words, there are no

sets of two or three correlated connections which occur during this mode transition.

For the transition between Home and Auto Away modes, our analysis resulted in 88%

precision and 82% recall (23 true positive, 3 false positives, 5 false negatives). For the

transition in the opposite direction, from Auto Away to Home, the 86% precision and

46% recall (13 true positives, 2 false positives, 15 false negatives) . Further manual

analysis showed that in cases where there are multiple transitions throughout a sin-

78

gle day, transitions after the second or third instance sometimes do not produce the

identified pattern.

• Pathlight Activation Another event of interest was that of the Nest Protect Pathlight

activation (i.e., light turning on). Using the correlation analysis, we were able to

identify a set of SSL connections of certain sizes (with respect to number of payload

bytes sent by the device to a particular IP address) which are observed together only

when the device senses motion and the Pathlight activates.

Validation testing shows 50% accuracy (100% sensitivity). The sensitivity is a measure

of the true positive rate. In other words, it expresses the proportion of positives that

are correctly identified. This implies that the 50% accuracy rate is due to only False

Positives (i.e., no False Negatives). Manual investigation shows that all of the False

Positives occur due to the fact that the same unique connections repeat exactly 30

minutes after the initial occurrence. We are unable to explain why this occurs.

• Smoke Alarm Our correlation analysis shows that two SSL connections of sizes 805

and 662 (with respect to payload bytes sent by the device) occur together only when

the device detects smoke and triggers the smoke alarm. Manual verification shows that

there were no False Positives or False Negatives in our pattern recognition.

When checking the validity of the network pattern associated with the smoke alarm

triggering, our tests show 100% accuracy. The analyzer correctly identifies all 5 in-

stances of the smoke alarm being triggered, with zero False Negatives and zero False

Positives.

• NTP Requests When looking at characteristics of the network traffic, we were sur-

prised to observe such a high number of NTP packets. Unfortunately, the correlation

analysis wasn’t able to identify any relationship between NTP requests and the mode

of the Thermostat. However, manual investigation revealed that there is a discrepancy

in the frequency of NTP requests generated between when the Nest Thermostat is

operating in Home mode and when it is in Auto Away mode. Figure 5.2 shows the

occurrences of NTP requests during two days.

79

Figure 5.2: Diagram showing NTP requests made by the Nest Thermostat over the span of
two days (Auto Away periods are marked by vertical bars)

As mentioned earlier, one of the features of the Nest Thermostat is the ability to learn

a user’s schedule for energy optimization. Our hypothesis is that the device updates

the Nest servers with motion (or lack of) activity, which includes a time stamp. To

guarantee the accuracy of the time stamp, the Nest Thermostat will use NTP to

synchronize its clock. For example, the thermostat will report to the server that the

user is home or that the user is not home in comparison with activity from the previous

day.

To test our hypothesis, we use a simple Support Vector Machine (SVM) approach.

Specifically, connection logs are split into non-overlapping one hour periods. To build

the feature vector, for each period, we compute the number of NTP requests during

that period. Periods between hours of 12 AM and 6 AM are ignored due to lack of

user activity and random distribution of NTP requests. Each hour period used for the

learning process is also labeled as 0 or 1 (i.e., 0 means Home whereas 1 represented

the device being in Auto Away mode).

80

Testing of the SVM model shows 81% accuracy with some false positives (i.e., device

was identified to be in Auto Away mode when it was not). To improve accuracy one

could build a model where confidence in the classification adjusts over time according

to the observations made. It should be noted that there was no strict schedule in the

user’s times of arrival and departure. The start and end times of the Auto Away modes

varied.

5.5 Frequency Analysis

Our approach leverages the size of connections (in terms of bytes sent). Time domain

features are fairly fragile. For example, our approach can be defeated trivially by padding

all connections to the same size. However, our observations, particularly those depicted in

Figures 5.1 and 5.2, suggest frequency analysis may also disclose information regarding the

devices’ state. Specifically, we wish to determine how the frequency of connections varies

over time, and whether there is a change in the frequency during the occurrence of an event.

Unlike time domain features, the frequency of connections cannot easily be adjusted. To

avoid degradations in quality of service, many connections need to be established when a

particular event and may not be buffered (e.g., notification of fire alarm or door unlocking

event should not be delayed).

To enable such frequency analysis, we aggregate connections into 100 millisecond win-

dows. This is done to replicate a regular data sampling approach. We represent each window

as a single “connection” of size equal to the sum of all connections which occurred within

that time window. It should be noted the destination address is ignored.

We begin by performing frequency analysis on 40-second windows, centered at the time

of a mode-switch event. We compare the results with the frequency spectrum of windows

immediately before and after the event window. Figure 5.3 shows the frequencies of two

windows, one for the Home to Auto Away transition and one for the transition in the

opposite direction. It is important to note the lack of activity in the windows before the

event and after. This observation held for most transitions, especially for the windows before

the transition from Auto Away to Home mode. In our experiments, we also noticed that the

frequencies during the event transition windows varied, even among windows representing

81

Figure 5.3: Diagram showing frequencies of connection time series during mode transitions.
The windows before and after the events contain no relevant packets, hence no frequency
components.

the same mode transition.

Additionally, we generate spectrograms of the Nest Thermostat connection time series for

multiple days. Spectrograms are a visual representation of how the frequency spectrum varies

over time. Our spectrogram uses a grey scale to show changes in frequency. In Figure 5.4,

we see both the raw connection time series (top) and corresponding spectrogram for a single

day. The beginning and end of Auto Away periods are marked by green dashed lines (at

approximately 63000 and 83000 seconds) and red dashed and dotted lines (at approximately

3400 and 78000 seconds). The spectrogram shows changes in the frequency spectrum during

the mode transitions, as well as at other times. Specifically, directly below the vertical lines

representing the mode transition events (in the top plot), we see slightly darker vertical lines

in the spectrogram, signifying change in frequency. Despite the identification of changes

in the frequency of network transmissions we were unable to identify particular frequencies

which describe an event. Even for the state transitions, the frequencies observed during the

transitions varied. Due to limited ground truth information about the device’s action and

states, we cannot explain some of the other observations.

82

Figure 5.4: Spectrogram of connections over a single day.

5.6 Conclusion

Our approach has several limitations. First, we rely on a single side channel: encrypted

network traffic. Aside from the evaluation performed, it is difficult to identify exactly what

the devices are doing. In other words, without the decrypted traffic, it is impossible to

determine whether the connections made during various events that we identify as “unique”

are truly representative of the event occurring. Decrypted traffic would also allow us to better

explain the few false positives observed as well as some of the other interesting behavior. As

described above, in our analysis we do not rely on sophisticated machine learning although

we believe it would be interesting to explore what patterns machine learning techniques can

reveal.

Finally, our approach demonstrates how key events in the behavior of the Internet of

Things devices could be identified using patterns in the network traffic. Our study shows

that time domain features such as the size of connections can provide insight into the behavior

of the devices. Additionally, we show that frequency analysis can also provide additional

useful information.

Initial results of the work presented here were published and received the Best Paper

Award in the proceedings of the 2016 Mobile Security Technologies (MoST) workshop of the

IEEE Symposium on Security and Privacy.

83

Chapter 6

Side Channel Theory

In this dissertation, through our empirical studies, we aim to demonstrate that side chan-

nel information can often be used to monitor the behavior of various systems for security

purposes. We argue that there are many advantages to this approach. Side channels are

readily available and monitoring them has minimal, if any, overhead on the performance of

the system. Side channels are also agnostic of the hardware, software stack, and technology

used by the system. For example, all electrical devices consume power. Perhaps most im-

portantly, monitoring devices via side channel analysis is non-intrusive, and in many settings

(e.g., Internet of Things and other heterogeneous platforms) it is the most feasible option.

Yet, such side channel analysis is not always successful. Despite advanced data analysis

methods, side channels fail to provide useful information regarding the system’s behavior.

However, we believe the issue is often not with the analysis process but rather lies within

the side channel information. The challenge is that side channel information does not simply

expose the contents of registers or the operations performed by the system. Side channel

information is (usually) an indirect, obscured representation of the operations performed

by the system. The ability to model the system’s behavior may be heavily dependent on

how much of the behavior is defined by the operations performed in comparison with the

input provided. Additionally, side channels are often noisy. To this extent, it is crucial

to consider the relationship between the operations performed by the system and the side

channel information. Particularly, it is important to note that information is lost during the

translation from system activity (i.e., operations) to side channel.

84

The work presented in this chapter is motivated by this observation as well as the lack of

metrics for describing the relationship between system activity and side channel information.

Specifically, in this chapter, we study how and why information is lost during the translation

from sequence of operations to the sequence of theoretical side channel values. This allows

researchers to understand the uncertainty associated with identifying system state transitions

(i.e., sequences of operations), and consequently, states in the side channel.

In this chapter, we lay the foundation for an automata theory based model which aims to

describe the relationship between system activity and side channel information. In summary,

our model provides assistance with questions such as:

• In theory, how well does side channel information reflect the behavior of a program?

• What is the relationship between the side channel information and the execution of a

program (and what variables does it depend on)?

Researchers can use our model as an initial step of a side channel analysis project, to esti-

mate the theoretical relationship between system activity and the side channel information.

For example, our model can be leveraged to solve the following problems:

• estimate the theoretical loss of information regarding system activity in the side channel

• measure and compare the theoretical effectiveness of side channel defense approaches

6.1 Definition

Before we dissect the relationship between side channel information and the activity of a

system, we must define “side channel information”. Specifically, we must establish how side

channel information relates to the activity of a system and how it is generated. We define side

channel information as information leaked by the system during the execution a program

on a physical system. There are two types of side channels.

1. on-system side channels: information that is collected from a device, through either

physical or remote access to the system

2. off-system side channels: information that is collected by physically monitoring the

system without interacting with it

85

Although side channels do not exhibit themselves until a program is executed on a phys-

ical implementation of a system, we can build an abstract model representing a system, the

execution of a program, and the generation of side channel information. An abstract model

also has the benefit that it does not make any assumptions about the type of system, the

program being executed, or the nature of the side channel. Our model builds upon existing

automata theory models and defines the execution of a program P with input x (denoted

Px) on a physical implementation of a system as the following finite state machine:

Definition 6.1.1. A state machine M consists of the following sets and functions:

• set S: “states” with distinguished states start, end representing the initial and ending

states

• set Σ: “input alphabet”

• set Γ: “side channel alphabet”

• state transition function δ : S → S × Γ

The model above achieves two goals. First, it defines the execution of Px on system M as

a sequence of states separated by state transitions. Second, the model defines side channel

information as a sequence of values generated when the system exhibits a state transition.

In other words, when the system changes states, whether to a new state or the current state,

a side channel value is generated. It should be noted that if the state transition results in

the current state being repeated, the same side channel value will again be generated. Our

model defines a state transition as one (or many) operations to be performed by the system.

Using this model, the execution Px produces two traces of information. One trace is

a sequence of states exhibited during the execution. The second trace represents the side

channel information.

Definition 6.1.2. The execution of program Px on machine M , as defined above, produces

the following two finite traces:

• state trace T is a finite sequence of alternating states and transition labels ending

with the end state [start, t0, s0, ..., sn−1, tn, sn, end], where si ∈ S and ti represents the

86

transition from si−1 to si. For every triple sj−1, tj, sj of the form (state, transition,

state) appearing in the sequence, there must be a transition in M from state sj−1 to

sj labeled tj

• side channel trace V is a finite sequence [v1, ..., vn], where vi ∈ Γ. Each value in this

sequence represents the side channel value produced as a result of the operation(s)

performed during the corresponding state.

It is important to note that there is a one-to-one ratio between the number of state

transitions ti ∈ T and the number of side channel values vi ∈ V . In the rest of the work, we

ignore the state labels of the state trace and focus solely on state transitions. In our model,

states are abstract concepts to support the finite state machine representation. States do

not represent system operations and as such do not impact side channels. Additionally, our

model assumes the execution of the program halts.

6.2 Model Definition

The model above defines how side channel information is generated and its relationship to

the execution of a program but fails to describe the details of this relationship. Specifically,

we wish to answer the following question:

Given a sequence of observed side channel values V and a priori knowledge of

the operations encompassed by Px, TPx , what is the theoretical probability that

the side channel information represents the sequence of operations exhibited by

program Px?

Or more formally:

What is Pr[TPx |V] ?

To answer this question, it is essential to consider three characteristics:

• operation-to-side-channel conversion

• side channel resolution

87

• noise

Generally speaking, side channel information is generated by some component(s) (hard-

ware or software) as a consequence of the work performed by the system during the execution

of the program. More accurately, each side channel value is a function of the operations per-

formed by the components during a given state transition. An operation is the system-level

unit of work whose processing causes the generation of the side channel information. The

meaning of operation depends on the side channel and the system. If the target side channel

is power consumption of a processor, an operation is equivalent to a CPU/GPU instruction

or memory/storage operation. When considering encrypted network traffic as a side channel,

an operation could be the transmission (or lack of) of a single packet. Our model does not

make assumptions about the meaning of operations except that there exists a relationship

between the operation and the side channel considered.

The operation-to-side-channel conversion property considers the correspondence between

the set of states transition functions ti and the side channel alphabet Γ. In other words, it

aims to determine whether or not each unique state transition is represented by a distinct

side channel value.

It should be noted that our model aims to measure the correspondence between side

channel values and state transitions. A state transition is not strictly limited to a single

system-level operation. This depends on the granularity used to define states and state

transitions. A user interested in modeling the behavior of a program’s execution may de-

fine states in several ways. At the highest granularity level, any program could be defined

by two states: RUNNING and NOT RUNNING. In most cases, such a definition has little

value. Alternative options include defining a state relative to functions and consequently

defining state transitions the operations encompassed by those functions. The level of ab-

straction of the state definition determines how many system-level operations are included

in a single state transition. As such, the higher abstraction, the more system operations

(e.g., instructions) are encompassed in a single state transition.

This property alone has no impact our model if it is possible to capture every side channel

value for every operation performed by the system. However, due to factors like the high

operating frequency of the system or the side channel recording method, it may not be

88

possible to collect high resolution information. The operating frequency of a system refers

to the rate at which the system performs basic units of work. An example of the operating

frequency is the frequency at which a processor (such as a CPU) is running, often stated in

gigahertz. Per our definition of the state machine M , the ratio of the number of side channel

values to the number of state transitions exhibited during the execution of Px is one. To

account for this, we define the side channel resolution property (Section 6.3.2) which allows

for flexibility in the frequency of the side channel collection method and the definition of

state transitions (with respect to number of operations).

Furthermore, side channels are often “noisy”. In other words, the side channel informa-

tion reflects the work performed by many components of the system, not only the target

component. For example, the power consumption of a processor is defined by the load im-

posed by the target program as well as other concurrent tasks. The noise also impacts how

well a program’s behavior is reflected in a given side channel.

6.3 Side Channel vs. Program

We begin by discussing each property separately. Once explained, we describe how the

properties can be combined and used to estimate the relationship between system activity

and side channel information.

6.3.1 Operation-To-Side-Channel Conversion

The operation-side-channel conversion property defines the relationship between individual,

distinct operations performed by the system and their footprint on the side channel. As such,

for this section, we assume that each state transition ti is associated with a single system

operation and we use the terms “state transition” and “operation” inter-changeably. The

side channel resolution property, discussed in the next section, eliminates this assumption.

We now consider the possible scenarios for the correspondence between the side channel

values and each unique state transition. In the ideal case, the values of the side channel

and the possible set of system operations is represented by an isomorphism (i.e., bijective

morphism). An isomorphism is a map that preserves distinctness and relations between

elements of a set: each element of its co-domain is mapped to at most one element of the

domain. As shown in Figure 6.1, given a stream of observed side channel values, it is possible

89

Figure 6.1: Diagram visualizing the case of n distinct side channel values and n distinct state
transitions.

to infer exactly the sequence of operations (consequently, states) exhibited by the system.

As such, the side channel models the behavior of the system and indirectly the execution of

program Px perfectly.

We now consider the cases where the ratio between the side channel values and the system

operations is represented by a one-to-many function. Under this scenario, given a sequence

of side channel values, the precise sequence of state transitions exhibited cannot be inferred.

This is depicted in Figure 6.2. Instead, for each side channel value, there is some uncertainty

around the precise state transition exhibited.

Based solely on the side channel trace observed during the execution, the state transi-

tions exhibited by the system can be modeled as a probabilistic state machine. In other

words, given the uncertainty regarding the specific operation that the observed side channel

represents at any given time, we model the execution Px using a probabilistic state machine

(as opposed to the finite state machine alternative used in the one-to-one correspondence

scenario).

A probabilistic state automata is a tuple A = 〈QA,Σ, δA, IA, FA, PA〉 where:

• QA is a finite set of states

• Σ is the alphabet

• δ ⊆ QA × Σ×QA is a set of transitions

• IA : QA → R (initial-state probabilities)

• PA : δA → R (transition-state probabilities)

90

Figure 6.2: Diagram depicting the case where each unique side channel value maps to multiple
distinct state transitions.

• FA : QA → R (final-state probabilities)

IA, PA and FA are functions such that
∑

q∈QA

IA(q) = 1, and

∀q ∈ QA, FA(q) +
∑
α ∈ Σ, q′ ∈ QAPA(q, a, q′) = 1

Using our model we can now address questions regarding the relationship between the

side channel information and the behavior of the program, specifically:

Given priori knowledge of TPx (i.e., the sequence of state transitions of Px), and

a sequence of observed side channels V , what is the probability Pr(SPx|V)?

The answer to this question lies within the structure of the probabilistic state machine.

There are two ways of approaching this problem.

One method iterates through the sequence of observed side channel values V and repre-

sents the state transitions of the system during the execution of Px as a tree structure (as

shown in Figure 6.2). Each possible state permutation is represented by a path from the

root of the tree (i.e., start) to a leaf. Out of all possible state permutations depicted by this

91

tree structure, only one represents the target program. This assumes that the execution of

the target program is deterministic and may neglect optimization techniques such as branch

prediction. The probability that the sequence of observed side channel information V rep-

resents program Px is proportional to the number of paths from root to leaf (consequently,

number of leaves). If there are n observed side channel values (i.e., n state transitions)

and each observed side channel value v represents exactly m possible state transitions, the

probability is equal to 1/(mn) (i.e., the number of leaves in the tree). This assumes that

every distinct side channel values maps to the same number of unique states transitions.

This assumption may not always hold. It may be possible that the mapping from distinct

side channel values to unique state transitions varies from one side channel value to another.

In this case, we can provide a lower and upper bound of probability based on the average

of the smallest and largest number of state transitions per side channel values (i.e., branch

factor of the nodes in the tree structure). This estimation assumes no dependency between

any two state transitions.

A better method is to use the probabilities of the probabilistic state machine defined

above and calculate the result. This method accounts for dependencies between any two

state transitions and achieves a more accurate result.

Knowing the trace TPx , priori knowledge about dependencies between state transitions,

and a sequence of observed side channel values V , we can calculate the probability that

Pr[TPx|V] as such:

Pr[TPx|V] = Pr[s0 → q1] Pr[q1 → q2]...Pr[qk−1 → qk]

There is an advantage to representing the above problem using probabilistic state ma-

chines (PSM). Particularly, by allowing the user to define the probabilities of the edges, it

is possible to control the number of total possibilities considered. Every edge in the PSM

represents a state transition. Simply put, this representation allows the user to leverage

knowledge about dependencies between state transitions. For example, if each state transi-

tion encompasses an x86 instruction, it is well known that two disable interrupts (i.e., sti)

can not occur sequentially. This restriction can be reflected in the PSM by adjusting the

probabilities of the state transitions accordingly (i.e., setting the probability to 0).

92

Additionally, when the probabilistic state machine lists all possible permutations of state

transitions of length n, all programs of n operations are encompassed. In some cases, this may

not be necessary. In controlled, real-world environments, the number of unique programs

operating on a given system is limited. Consider for example, a high-performance computing

environment where side channel analysis is leveraged to monitor the activity of a compute

node. Despite the large number of users, only a few hundred unique codes (i.e., programs)

are executed. It is reasonable that the user wishes to find the probability that the observed

side channel values represents one of the many known codes (as opposed to all possible

programs). In such a case, it is possible to adjust the probabilities of the PSM based on a

priori knowledge about the set of codes executed on the system.

6.3.2 Side Channel Resolution

Until now, our model assumes that every observed side channel value vi (as defined in

Definition 6.1.2) reflects a single state transition. We also restrict a state transition to

represent a single system operation. This assumption may not always hold. As previously

mentioned, it may not always be possible to collect side channel information at the same

rate as the operating frequency (e.g., processor clock rate) of the system. In such cases, a

single state transition encompasses several system operations. This affects our model in the

following way: every state transition observed side channel value may represent more than

one system operation.

Our model can be adjusted to reflect this observation. We begin by distinguishing be-

tween per-operation side channel values and observed side channel values. Per-operation

side channel values represent changes in the side channel due to the execution of a single

operation. An observed side channel value is the sum of one or more per-operation side

channel values. Formally:

Definition 6.3.1. The observed side channel value vt at time t is a sum of the individual

per-operation side channel values oi in the interval [t− 1, t):

vt =
m∑
i=0

oi,m ≥ 1

93

Given this, the task or even operations performed by the system cannot be directly

inferred from a sequence of observed side channel values. Instead, we must first determine

the number of permutations (with repetition) of m operations the observed side channel value

can represent. We assume the number of operations which contributed to the observed side

channel values is known (or can be estimated). Specifically, we are interested in the number

of m-sized per-operation side channel values configurations which sum to the observed side

channel value vt.

This problem is similar to the counting coin problem, where given coin denominations,

we wish to find the number of coin combinations that generate the target sum. However,

there are two differences. The counting coin problem determines the number of combina-

tions, whereas our problem requires the number of permutations (permutations of the same

instructions represent different programs). Assuming the number of operations executed is

known, we wish to know permutations of a fixed size m.

To solve this problem, we leverage generating functions composed of variables with expo-

nents equal to the per-operation side channel values. Generating functions count weighted

objects. In our problem, the weights represent side channel values. The variable exponents

of the formal power series described by the generating function are the side channel values.

The coefficient of a variable represents the number of configurations of per-operation side

channel values that sum to the observed side channel value. For example, x1 represents a

side channel value of 1 and xM represents a side channel value of M .

As an example, assume that the set of per-operation side channel values O = 1, 5, 10 and

we are interested in the number of ways various sums of m = 3 operations can be obtained.

The generating function becomes:

f(x) = (x1 + x5 + x10)3

Using this generating function, the number of configurations of m operations that can

sum to S is defined by the coefficient av of the xv term. Continuing with the example above,

the number of permutations of three operations that can sum to 25 is 3, according to the

coefficient of the x25 term. However, only one of those permutations represents the sequence

of side channel values generated by the target task. Therefore, the probability that the

94

observed side channel value represents the sequence of operations performed during state

transition before state st of the target program px is:

Pr[st|v] =
1

av

6.3.3 Putting It All Together

The side channel resolution property defines a method for counting the number of ways

distinct per-operation side channel values can be combined to reach a target observed value.

As described by the operation-to-side channel property, a distinct side channel value can

represent multiple different operations. Therefore, the probabilities computed by these two

properties must be combined to determine the theoretical probability that a sequence of

observed side channel values represents the execution of a particular program. More formally,

the probability is defined as:

Pr[px|v] =

|t|∏
i=1

(
Pr[si|v] ∗

|si|∏
j=1

Pr[actionj|oj]
)

where |si| represents the number of operations per state transition/observed side channel

value, actionj represents the j-th action/operation of state transition prior to state si and

oj represents the per-operation side channel value.

6.4 Information Loss

The model above provides an upper limit on the probability that a given sequence of observed

side channel represents a particular execution of a program. Another benefit of the model, is

that it can help determine the theoretical loss of information for a side channel measured while

running a program. Shannon entropy is a natural tool for calculating this. Shannon entropy

is an information theoretic method for measuring the amount of information associated with

a random variable and is defined by the following formula:

H(X) = −
n∑

i=0

p(xi) logb p(xi)

Shannon entropy can be leveraged to represent the amount of information lost in a side

channel. As our model indicates, a program is represented by a sequence of operations

95

(e.g., instructions) and its entropy Hpx can be trivially computed. We can also generate the

expected side channel values by converting each operation to its appropriate side channel

value. Given this sequence of expected side channel values, we can easily compute the entropy

of the side channel Hsc. Consequently, the amount of information lost in the side channel is

defined by the ratio of the entropy of the side channel and the entropy of the program:

Loss = 1− Hsc

Hprogram

In practice, the results may vary due to noise and other factors.

6.5 Noise

The construction and definition of our model assumes the side channels do not contain noise.

In this setting, noise is defined as the contributions to the side channel by other software or

hardware components of the system running at the same time as the target program. For

example, noise can be introduced by other tasks executing on the system at the same time

as the target program. Noise can also be introduced by hardware components of the system

that are unrelated to the execution of the target program but impact the same side channel.

Considering desktop power consumption as a side channel, the readings between any two

time steps is a combination of both multiple software and hardware components. From a

hardware perspective, the power consumption of a standard desktop computer is affected by

the CPU, memory, disk drives as well as fans and lights. However, CPU, memory, and disk

utilization are driven by several concurrent processes, including operating system tasks.

It is important to note that noise may differ between time steps. In the desktop power

consumption example, not all hardware components have the same impact on the power

consumption. Furthermore, operating system tasks may be less CPU intensive than the

targeted program.

There are two ways of accounting for noise. In the ideal case, each component contributing

to the side channel is considered independently and can be described using our model.

However, this ideal case may not always be feasible and increases the complexity of the

model. The other alternative treats noise as a stochastic process. To reflect the latter, we

expand on our previous definition of the measured side channel value:

96

Definition 6.5.1. The collected side channel value vt at time t is a sum of the individual

per-operation side channel values oi pertaining to program Px plus a random value C:

vt =
m∑
i=0

oi + Ct,m ≥ 1

Additional research is required to study the impact of noise and develop accurate methods

for accounting for noise.

6.6 Turing Machine Side Channel Example

To demonstrate the value of the above model, we describe a theoretical example. Specifically,

we describe how our model can be applied to a physical implementation of a Turing machine.

A Turing machine is a mathematical model of a hypothetical computing machine that can

be used to simulate any computer algorithm. A Turing machine is composed of the following

main hardware components: tape head, tape motor, and an infinite tape. The set of possible

actions to be performed by our Turing machine include, and are limited to, movements of

the tape head (left and right), read operation, write operation, as well as unary arithmetic

operations. We denote these operations as: movr, movl, read, write, add, sub, mul, div.

Implementing a physical Turning machine is impossible due to the requirement of an

infinite tape. Furthermore, Turing machines are not very practical, due to their inefficient,

sequential operating nature. Yet, despite the physical limitations, we can imagine that a

physical implementation of a Turing machine consumes power to perform various operations.

Below, we apply our model to a hypothetical physical implementation of a Turing machine

and consider power consumption as the side channel. While the power consumption values

are arbitrarily selected, the differences between power consumption across various operations

are based on realistic expectations. For example, even in modern hard drive technologies,

read operations are less power intensive than write operations. It is also logical that moving

the tape head takes the same amount of power regardless of the direction. Specifically, for

our hypothetical case study, we make the following assumptions:

• Head movement actions consume equal amount of power, 5 power units

• Read operations require 2 power units

97

Figure 6.3: Diagram visualizing the tape head location and contents at the beginning and
end of the binary program execution

• Write operations require 3 power units

• Read and write operations may only use binary symbols (i.e., 0 and 1)

• Addition and subtraction operations require 1 power units

• Multiplication and division operations require 7 power units

In our case study, we leverage our model to measure how well power describes the behavior

of the Turing machine during the execution of a binary counter program. The binary counter

program reads the binary number starting at the current tape location and increments it by

one, overwriting the input with the incremented value. The Turing machine pseudocode for

the program is listed in Appendix B.1.

Let us consider the execution of the binary counter program with decimal “11” (i.e.,

“0b1011”) as input. Figure 6.3 visualizes the location of the tape head and the contents

of the tape at the beginning and end of the execution of the binary counter program. The

execution involves twelve steps during which the Turing machine will move the tape to the

rightmost position, read the contents of that cell, increment the value read, and write the

result. After the result is written, the tape will move left and modify the contents of the

tape as needed, due to the carry. Per the definition of our model, the execution of the binary

counter program would produce the following state transition trace:

T = {movr,movr,movr, read, add, write,movl, read, add,

98

write,movl, read, add, write,movl}

Given the side channel values per operation defined above, the execution of the binary

counter program with decimal 11 as input will produce the following side channel trace:

V = {5, 5, 5, 2, 1, 3, 5, 2, 1, 3, 5, 2, 1, 3, 5}

For reasons of simplicity, we first assume we can observe one side channel value per state

transition. We also assume our side channel information is collected at the same frequency

as the operation frequency of the Turing machine (i.e., one operation per side channel value).

Due to the assumption made regarding the power consumption of each operation, it is

trivial to see that the state transitions exhibited by the Turing machine cannot be precisely

inferred. Starting with the first side channel value of 5, there is uncertainty whether it

represents a left or right tape head movement. As such, there is a 50% chance the side

channel value represents the first state transition of the execution of the binary counter

program with input “11”. In total, per our model, the probability that the observed side

channel values represent the execution of the binary counter program is:

Pr[TPx|V] = Pr[movr|5] ∗ Pr[movr|5] ∗ Pr[movr|5] ∗ Pr[read|2] ∗ Pr[add|1] ∗ ... ∗ Pr[movl|5]

Pr[TPx|V] = 0.5 ∗ 0.5 ∗ 0.5 ∗ 1 ∗ 0.5 ∗ ... ∗ 0.5

Pr[TPx|V] ≈ 0.002 = 0.2%

This value represents the probability that the side channel trace observed V represents

the execution of the binary counter program out of all of the possible programs that produce

the same trace.

In the case study above, we assume we can collect power information at the same rate as

the Turing machine’s operating frequency. Depending on the speed of the Turing machine,

99

this may not be feasible. Considering the length (in terms of operations) of the execution of

the program, let us consider the case where each side channel measurement contains m = 3

operations. The observed side channel sequence now becomes:

v = {15, 6, 8, 10, 9}

To calculate the probability that the observed side channel trace represents the execution

of the counter program with input (decimal) “11”, we apply the side channel resolution

property and adjust the computation accordingly. First, we write the generating function

that will help us compute the sums :

g(x) = (x1 + x2 + x3 + x5 + x7)3

Expanding this function results in:

g(x) = x21 + 3x19 + 6x17 + 3x16 + 10x15 + 6x14 + 12x13 + 9x12+

+15x11 + 12x10 + 13x9 + 9x8 + 9x7 + 7x6 + 6x5 + 3x4 + x3

As described previously, the exponent represents the observed side channel value and the

coefficient represents the number of configurations of per-operation side channel values that

sum to that observed value. For example, given the first observed side channel value of 15,

the coefficient of x15 is 10. In other words, there are ten ways to compute the value 15 using

the sets of pre-defined per-operation side channel values.

To compute the probability that observed trace V represents the execution of the binary

counter program, we must combine the probabilities:

Pr[s1|v1] ∗ ... ∗ Pr[s5|v5] =

=

(
Pr[5, 5, 5|15] ∗ Pr[movr|5] ∗ Pr[movr|5] ∗ Pr[movr|5]

)
∗ ...

∗
(

Pr[1, 3, 5|5] ∗ Pr[add|1] ∗ Pr[write|3] ∗ Pr[movl|5]

)
=

= 1.98 ∗ 10−8

The computed probability is low but it is important to note that our computation consid-

ers all possible programs (with the same number of operations) that would have produced

100

the same side channel trace. In certain settings, where the set of programs executed by

the systems are known, such broad computation may not be of interest. For example, if

we know (or expect) that only the binary counter and an unary subtraction programs are

executed on our Turing machine, we can improve our calculation. Specifically, since between

the two programs, only the execution of the binary counter program with input “11” can

generate the observed side channel sequence V , we can be 100% certain that V represents

the execution of our target program.

Using our model, it is also possible to estimate the amount of information lost in the

translation from the system operations to side channel. In the example of the binary counter

program, given the sequence of state transitions and respective side channel values, we

compute the following entropies:

T = {movr,movr,movr, read, add, write,movl, read, add,

write,movl, read, add, write,movl}

for which,

Hp = 2.32193

and

V = {5, 5, 5, 2, 1, 3, 5, 2, 1, 3, 5, 2, 1, 3, 5}

with

Hsc = 1.92193

Consequently, the theoretical amount of information loss becomes:

Loss = 1− Hsc

Hprogram

= 1− 1.92193

2.32193
= 0.1723

6.7 Limitations and Discussions

6.7.1 Limitations

In our attempt to build a model that treats a sufficiently wide variety of systems and side

channels, we make several assumptions. These assumptions may impact the results of ap-

plying the model in certain settings. It is important to note that due to the definition and

construction of our model, our ability to model the system’s behavior heavily depends on

101

how much of the system’s behavior is defined by the input data and how much is defined by

the operations. In other words, two identical sequences of operations may represent different

program executions, depending on their input (e.g., addition program; same instructions but

different executions when inputs are different).

We suspect that our model could be applied to the IoT/Nest devices traffic analysis work

if more information was available. Specifically, our model relies on a sequence of system

operations and an equal-length sequence of side channel values both of which are assumed to

be known. When performing network traffic analysis, the sequence of packet transmissions

represents the sequence of system operations. An option for the side channel could be the

size of the packets. However, despite having network traces, it is difficult to distinguish

between two packets/connections of the same size. It is important to note that just because

two packets or connections have the same total payload size, it does not mean their contents

are equal. Having access to decrypted network traffic would eliminate this problem.

Unfortunately we are also unable to apply our model to the Darshan I/O study due to the

lack of time series information. Darshan provides aggregate information about I/O activity

and our model requires time series (i.e., sequences) data of operations performed as well as

side channel measurements.

Circumstantial lack of data hindered our ability to apply our model to the previously

mentioned experiments. On the other hand, while the HPC power analysis work meets all of

the pre-requisites of our model, there are several complications involved with applying the

model. First, it is important to note that in our HPC power analysis work, we are measuring

the power consumption of the power distribution unit feeding the HPC rack. This has several

implications. On one hand, it means that we are measuring the power consumption of all

of the hardware components across all nodes of that HPC rack. This extends beyond CPU

power consumption to memory, as well as network chips and other hardware components.

Moreover, by measuring the power consumption at that location, the power consumption

is also affected by the power distribution unit and the power supplies. For any meaningful

results, our model would need to be applied to all of the components contributing to the

power consumption. In addition, the relationship between CPU’s execution of instructions

and power consumption would need to be studied at a physical level. We also would like

102

to note that determining the power footprint of each individual application is non-trivial.

Researchers have attempted to characterize the energy per instructions in a few and rare

cases [71] yet, aside from the fact that they are dealing with energy (not power), such

attempts are only estimates.

In addition to those concerns, there are several software and hardware optimizations im-

plemented that affect the application of our model to the HPC power analysis experiment.

Our model assumes that the execution of a program with a given input Px is deterministic.

In modern computers, this is not true in the sense that two execution of the same program

with identical inputs do not necessarily result in the same sequence of instructions being

executed. This is due to a number of optimizations including branch prediction and cache

status. It is also important to note that the number of instructions retired is not the same

as the number of instructions executed. In other words, in some cases the computer exe-

cutes more instructions than needed for the current execution (due to branch prediction).

These additional instructions, while not representative of the program’s execution, also con-

tribute to the power consumption observed and further affect the relationship between power

consumption and the program’s behavior.

Hardware optimizations such as dynamic frequency scaling further complicate matters.

Dynamic frequency scaling refers to the dynamic (“on the fly”) adjustment of the micro-

processor’s operating frequency based on the workload. This optimization is designed to

reduce power consumption and decrease the temperature of the microprocessor during peri-

ods of low computation. Combined with the large variety in the latency of microprocessor

instructions, in the case of power analysis, it is impossible to determine exactly how many

instructions contributed to a single µPMU measurement (reminder: the µPMU reports data

at 120 Hertz, compared to GHz frequencies of modern CPUs).

As previously stated, in most cases the model is only able to compute a theoretical

estimate of the information loss. However, due to the above mentioned challenges, even if

the per-instruction power consumption is known and the number of instructions per power

measurement is estimated, the computed information loss would be considerably inaccurate.

We wish to highlight that our model makes assumptions about the number of operations

which contributed to the generation of a single side channel value. This assumption is

103

reflected in the side channel resolution property. The generating functions define use N to

constraint the number of operations that have contributed to the generation of a side channel

value. However, we believe this assumption can be eliminated at the expense of accuracy

and the generating functions can be adjusted. If we wish to only impose an upper limit on

the number of operations that contribute to a given side channel value, we can modify our

approach such that each per-operation side channel value is defined by a generating function

fo(x) =
m∑
i=0

xoi =
1− xo(m+1)

1− xo

Consequently, the generating function for selecting per-operation values o ∈ O that total to

the observed side channel value v is:

g(x) = fo1(x) · fo2(x) · ... · fon(x) =
1− xo1(m+1)

1− xo1
· 1− xo2(m+1)

1− xo2
· ... · 1− xon(m+1)

1− xon

Expanding these generating functions, the number of ways in which per-operations values

o ∈ O can sum to the observed side channel value v is equal to the coefficient av of xv.

However, this approach will not provide all of the permutations. Alternatively, it is possible

to adjust a dynamic programming-based approach to count the number of solutions.

It is important to note that our model does not account for all possible optimizations.

Considering these limitations, when applying our model to a real scenario, it is important

to note that the probability computed by our model is a theoretical upper bound. In other

words, optimizations and various noise levels may further decrease the probability that a

given sequence of observed side channel values represents a particular sequence of system

operations.

We believe the model presented in this dissertation can be expanded. First, we believe

it is important to study and address problems regarding the relationship between state

transitions and states. In other words, it may be possible that two state transitions for two

sets of different states represent the same sequence of operations. In such cases, despite being

able to infer the state transition from the side channel information, there is still uncertainty

regarding the state exhibited by the system. Furthermore, we believe additional research is

required in order to study the limitations described above.

104

6.7.2 Comparison with Entropy-Based Models

Intuitively, Shannon’s entropy is a natural way to measure the loss of information for a

side-channel measured while running a program. It could be argued that Shannon’s entropy

could be used directly by defining the measure the amount of information lost in the side

channel as a ratio of the entropy of the measured side channel sample and the entropy of

the program:
Hsc

Hprogram

As in our model, the entropy of the program is computed by representing the program

as a sequence of operations. On the other hand, the entropy of the side channel Hsc can be

computed using real-life side channel samples.

The advantage of this approach is that is uses real observations and as such, it naturally

accounts for noise. Using repeated experiments, the average expected information loss can

be trivially computed.

However, there are some concerns with this approach. Shannon’s definition of entropy,

H(X) = −
∑n

i=0p(xi) logb p(xi), applies to a discrete random variable X with possible values

x1, x2, ..., xn and probability mass function P (X). The discrete nature of the random variable

is important for this definition and despite generalizations of the definition for continuous

random variables, there are concerns associated with using such definitions for measuring

side channel entropy. Perhaps most important, the entropy of a side channel is dependent on

the measurement method, specifically the precision and sampling rate. Similar to our model,

entropy-based models also suffer of the need to synchronize the beginning of the execution

of a task with the start of a side channel sample. As such, the entropy is not intimately

linked with the underlying computational process but rather a reflection of the technology

and method used to measure the side channel.

On the other hand, our model starts by defining the relationship between individual

system-level operations performed and the side channel. By doing so, our model provides

researchers with the theoretical loss of information measure, agnostic of the side channel sam-

pling rate and other attributes. We believe our model can be further extended to eliminate

some of the limitations, in particular with regard to noise.

105

Chapter 7

Towards Protecting Against Side

Channels

“Technology is, of course, a double edged sword. Fire can cook our food but also

burn us.”

— Jason Silva

The objective of this dissertation is two fold. First, it explores novel applications of

side channel analysis. In this process, it demonstrates how side channel analysis is a viable

and efficient method for non-intrusive monitoring of systems, even in heterogeneous settings.

Specifically, the work contained in this dissertation shows how side channel information can

be leverage for monitoring systems for security and privacy purposes. In addition, we present

a theoretical model that describes the relationship between the activity of a target system

and a given side channel.

Most of the dissertation presents side channel analysis as a cyber security monitoring

tool. Yet, as previous efforts show, side channel analysis information can be exploited with

malicious intent – it is “dual use,” as it is sometimes called. Without a stretch of imagination,

it is trivial to envision how approaches presented in this dissertation can be used for malicious

purposes, such as spying and beyond. For example, the approach used to monitor Internet

of Things devices could also be used by attackers as an eavesdropping method to determine

human presence or discover other sensitive information about the users. The approaches

106

used to monitor activity of high-performance computing facilities could be leveraged by a

nation-state to spy on the activity of foreign or domestic entities.

As cyber security researchers, it is our responsibility to consider both types of use cases

of security tools. To this extent, it is important to continue exploring potential benefits and

drawbacks of side channel analysis. Potentially interesting experiments include the use of

side channel analysis for reverse engineering of programs and identifying trojans or attacks

at runtime using side channel information.

Regardless of the application and intent, it is important to understand the relationship

between side channel information and the activity of a system. Our model lays the foundation

for describing this relationship and we believe additional research is needed to expand and

refine our model. Empirical studies are also needed to discover novel applications of side

channel analysis. For example, in this dissertation we show how the control flow of a program

is exhibited in side channel information. This can have many implications. It may be

valuable to determine whether a program can be reverse-engineered solely from side channel

information. Furthermore, studying the application of side channel analysis for control flow

integrity purposes could prove valuable.

It is especially important to consider this problem from a defensive perspective. As

previous research shows, side channel analysis has grave security and privacy implications.

Combined with the ubiquitous nature of side channel information, cyber security researchers

are presented with important challenges.

From our experiences with side channel analysis, we believe the best side channel de-

fense mechanism is a defense-in-depth approach, implemented at multiple levels. The side

channel analysis defense problem is composed of two main problems: access to side channel

information and entropy of side channel information.

Preventing the collection of side channel information is non-trivial. Side channels expose

information about a system’s activity, which may be considered sensitive information. As

such, it is natural to consider side channel information as information that flows from a

high security level to a lower level, similarly to the Bell-LaPadula (BLP) model [72]. The

Bell-LaPadula model is a model that relies on state machines to describe and enforce access

control in government and military applications. The model focuses on data confidentiality

107

and defines both subjects and objects as having security levels. In the side channel problem

setting, the program and hardware executing the program maintain a high security level.

However, given the availability and nature of side channel information, it may be possible

that any entity, despite their security level, may observe and collect this information. In

the case of on-machine side channels, the side channel information may be “readable” by

any system user. For example, any user on the system may be able to collect system wide

performance counter data. For off-machine side channels, the information is “readable” by

any user who has physical access to the room where the computer resides (or even further).

As an example, power consumption of a server may be measured by individuals who do not

have digital access to the server but have physical access to the server room or the building

where the server resides. In this regard, it is possible to consider side channels as a specialized

subset of covert channels. Specifically, we can think of side channels as a singleton, one-way

covert channel, where one party is the computing system which “writes” information to the

side channel and the user who is only capable of performing “reads” of the side channel

information. In our definition, a user has the following capabilities, depending on the side

channel type.

1. For on-machine side channels, the following assumptions are made:

• the user can access and record side channel information (either by physical or

remote access to the computing system)

2. For off-machine side channels, the following assumptions are made:

• the user does not have access, physical or remote, to the computing system

• the user can collect side channel information non-intrusively while not being in

contact with the target computing system

From this perspective, the problem of side channel information is both an information

flow and inference problem. The inference problem occurs when sensitive information can

be disclosed from non-sensitive information. While this problem has mainly been studied in

database settings, the problem of side channel analysis is no different. Previous researchers

108

have studied various aspects of these problems. For example, Goguen and Meseguer [53] in-

troduce a general automaton theoretic approach to modelling secure systems. In their work,

they distinguish between security policies and systems and provide a simple language for

defining security policies. This language is based on the concept of non-interference which

states that the actions of one group of users are non-interfering with another group, if the

actions of the first group has no effect on the second group. While, their approach does not

deal with inferences “either logical or statistical, of unauthorized information from informa-

tion which is authorized”, we believe the concept of non-interference can be extended to fit

to the side channel defense problem. Specifically, the leakage of information via side chan-

nels can be described in terms of interference, the semantically opposite of non-interference.

Formally defined, the concept of non-interference in our problem setting can be defined as

follows:

A computing system is non-interfering with a group of users if the operations

performed by said system has no effect on what the users can see.

Other related efforts [73, 74, 54] study the problem of information flow control. We believe

these ideas can be applied to the problem of restricting access to side channel information.

However, controlling the collection of side channel information may not always be plausi-

ble. As history shows, breaches occur despite security measures. Consequently, it is impor-

tant to consider the second aspect of defending against side channel attacks: side channel

entropy. Specifically, it is important to tackle the problem of minimizing the entropy of side

channel information by both enforcing regularity or adding noise.

Theoretical models can help describe properties of the relationship between side channel

and system activity, as they relate to security and privacy. While our model provides re-

searchers with a starting point, more research is needed to develop methods for measuring

the impact of side channel attacks. Having established appropriate metrics and models, the

next step is to implement and test empirically.

Researchers have studied covert channels and explored defensive mechanisms to minimize

the capacity of covert channels. As mentioned earlier in this dissertation, a side channel

is a one-way covert channel, where the system produces information and a user listens.

Consequently, defensive approaches for combating side channel analysis can be inspired from

109

previous efforts in covert channel analysis and steganography. Generally speaking, defensive

approaches may include both software and hardware implementations. Software defense

techniques include disguising approaches which aim at making all programs indistinguishable

from each other, with respect to their representation in the side channel. Some work in this

domain has been done; for example, the work presented by Ambrose [75] introduces random

operations to mask the side channel footprint of a target program. Their approach, while

effective, introduces an overhead of almost 30% in both runtime and average energy. In

the future, we would like to explore the effect of code obfuscation techniques and compiler

optimizations on side channel analysis. Preliminary experiments showed that different C

compiler optimizations cause distinct power signatures for the execution of the same program

with identical input. Such techniques have been extensively studied in specific domains yet

we believe they can be of value in this new setting. Software-level defense mechanisms

must be customizable and balance the trade-off between security and overhead. In some

cases, such as the Internet of Things and other embedded devices, introducing noise into

the side channel may result in depletion of limited resources. Hardware defense mechanisms

such as those presented by Grabher and Ambrose [76, 77] can also help protect against side

channel attacks. As the authors describe, hardware-based techniques minimize the runtime

overhead compared to software approaches. However, hardware approaches require hardware

modifications, sometimes even software revisions, and are often less customizable.

A supplemental defense strategy could be to exploit weaknesses in the machine learning

or statistical inference process usually associated with side channel analysis. In machine

learning, adversarial examples are carefully crafted inputs provided to machine learning

algorithms to cause the model to make a mistake. Adversarial examples are analogous to

optical illusions, but for machines. Recent research has shown adversarial examples are quite

successful [78]. Currently, the success of adversarial examples is dependent on the machine

learning approach used. Additional research is required to investigate the robustness of such

approach for defending against side channel attacks.

110

Chapter 8

Conclusion

8.1 Summary

In this dissertation, we present methods for leveraging side channel information to perform

non-intrusive monitoring of systems. Throughout the dissertation, we present several em-

pirical studies that showcase the advantages of using side channel analysis for monitoring

systems. Specifically, we demonstrate that our method is not only non-intrusive, but can also

be used to monitor heterogeneous devices (as is the case with Internet of Things platforms).

We also show that relying on side channel information enables a platform and software

agnostic method for monitoring systems for security and privacy reasons.

To showcase the robustness and broad range of applications of our approach, throughout

our empirical studies, we cover a variety of side channels in a number of different platforms.

For example, in our work (Chapter 4), we show that by analyzing the power consumption of

a high performance computing platform, it is possible to identify what program is running,

in the presence of limited noise. Furthermore, in Chapter 5, we show that by analyzing

encrypted network traffic, it is possible to identify different states of Internet of Things

devices, without any prior knowledge. Through our empirical studies, we demonstrate that

side channels can contain enough information regarding system activity to serve as a non-

intrusive method for monitoring the behavior of systems and can even act as an input to

intrusion detection systems.

As shown by our empirical studies, side channels are often noisy information channels.

Additionally, side channel information is an altered representation of particular aspects of

111

the system’s behavior. For example, encrypted network traffic can help describe the network

behavior of a system but provides no insight into the CPU and memory activity. Motivated

by this observation, we lay the foundation for a theoretical model that aims to describe this

relationship. The model uses automata theory to define how side channel information is

generated and how it relates to the operations performed by the system. Specifically, our

model considers three factors essential to such side channel analysis:

1. impact of each individual system operation on the side channel

2. impact of side channel collection rate on the accuracy of differentiating between states

3. impact of multiple components (hardware and software) simultaneously affecting the

side channel (noise)

While further research is needed to improve the robustness of our model, we show how our

model can be used in some cases to compute the theoretical probability that a given side

channel sample represents a particular program. Additionally, our model shows how it is

possible to apply entropy and compute the theoretical loss of information between a sequence

of operations performed by the system and the observed side channel sample.

Our work differs from previous side channel analysis work. At a high level, previous efforts

prominently treat side channel information as an attack vector. Consequently, the majority

of the previous efforts exploit side channel information to break the security of systems (e.g.,

recover private cryptographic keys) and even infringe on the privacy of users (e.g., infer web

browsing activity or printed information). In this dissertation, we aim to show that side

channel information can be beneficial, even for security purposes such as system monitoring.

At a deeper level, previous efforts focus on the information flow between the input to a

program (or system) and the side channel information. In contrast, the work presented in

this dissertation studies how control flow information is reflected in side channel information.

In our experiments, we leverage the relationship between the operations performed by the

system and the side channel information to enable the monitoring.

112

8.2 Limitations and Future Work

In this dissertation, we also present some negative results. One such instance is our attempt

to use Darshan I/O characterization data to classify programs into computational dwarf

classes. In addition, in our HPC power analysis experiments, we show that noise can have a

significant impact on the accuracy of identifying running programs.

The reasons for failure vary from experiment to experiment. For example, the negative

results of our Darshan experiment are mostly explained by the lack of relationship between

I/O operations performed by a system and the underlying computation type performed

by the system. In other words, the POSIX I/O operations performed by a program are not

representative of the underlying algorithm implemented by the program. For a more detailed

explanation, we redirect the reader to Section 4.3.5.1. As stated above, in our HPC power

analysis experiments, while we can identify programs running with very high accuracy when

monitoring a single node (or when only one process is running at a time), the accuracy drops

when these conditions change. In such cases, noise is the primary culprit.

It is important to note that there are innate limitations to relying on side channel in-

formation for monitoring the behavior of a system, as described in Chapter 6. Side channel

information is rarely a direct representation of the operations performed by the system. As

such, information is often lost when translating system operations to a sequence of side chan-

nel values. In addition, side channels are often controlled by many hardware and software

components. Properties of the relationships between hardware and software components im-

pact the resolution of side channel information with respect to the control flow of a program.

In many ways, extracting useful information from side channels is similar to signal pro-

cessing problems. With respect to side channel analysis, noise refers to the fact that the side

channel is often a representation of the work performed by several components of the sys-

tem. In our work, we do not study the potential of noise filtering techniques in this setting,

although we believe it may be valuable.

Our work has revealed several questions about the benefits and drawbacks of such side

channel analysis. Despite featuring a variety of side channels, in each experiment we rely

solely on a single side channel for our analysis. We believe there are benefits of using mul-

tiple side channels although this often comes at the cost of intrusiveness. When considering

113

multiple side channels, we believe it is important to consider the amount of additional in-

formation each side channel can contribute. For example, for our experiment involving the

monitoring of IoT devices, we believe power analysis would be extremely valuable and a

great complement to the traffic analysis. These two complimentary side channels would

provide information about both network activity as well as CPU and memory behavior of

the devices. It is also important to note that performing power analysis of IoT devices and

other embedded devices would be relatively simple compared to the HPC power analysis

performed in our experiments (especially considering the single-application nature of such

devices).

As described in Chapter 7, we believe the work presented in this dissertation merely

begins to explore a new path. Our empirical studies and theoretical model are pixels in

the larger picture. Continuing with the theme of the work presented in this dissertation,

we believe additional research efforts are needed to explore the benefits of side channel

analysis for anomaly and intrusion detection. From a theoretical point of view, we believe

additional research is needed to study the limitations of our model and extend the model.

From a practical standpoint, while we present such side channel analysis as an advantageous

opportunity, it can also be used with malicious intents. Additional work is required to

develop models that defend against such side channel analysis.

8.3 Recommendations

While side channel information can provide valuable insight into the activity of a system,

processing and extracting meaningful information is non-trivial. As evident from the empir-

ical studies described in this dissertation, the analysis can vary greatly, depending on the

objective, setting and the nature of the side channel. Our model describes the complexity

of the relationship between system activity and side channel information. Despite these

challenges, there are measures researchers can consider to facilitate such analysis.

Our recommendations are inspired by both our experiences and our model. These rec-

ommendations apply to the selection, collection, and preprocessing stages of the analysis

process. Aside from our recommendations, the success rate will vary depending on the

analysis methods used. We describe our recommendations below in detail:

114

• Side Channel Selection: In most settings, researchers will have several side chan-

nels available for processing. It is important to consider how each side channel is

generated and how it relates to the researcher’s objective. In particular, the research

should establish which system operations are most descriptive of behavior of the tar-

get program/system for their purpose and how those operations affect the different

side channels. For this part of the process, it is important to consider our model and

the properties described. At the same time, researchers should consider the difficulty

involved with recording each side channel. Off-system side channels can be collected

passively and non-intrusively, yet may contain more noise.

• Side Channel Collection: Once the target side channels have been selected, it is

important to consider two things about the collection of side channel information.

Whenever possible, it is best to get as close to the source generating the side channel

information as possible. For example, when performing power analysis for monitoring

of CPU activity, ideally the power consumption would be collected at the processor.

While this may not always be acceptable, it is worth considering as the amount of noise

tends to increase with the distance from the source. At the same time, the sampling

rate of the side channel is very important. As our model describes the side channel

resolution has a significant impact on the success rate.

• Side Channel Preprocessing: In some cases, it may be possible to filter the side

channel information. When performing such analysis, a set of system operations are

selected. These operations should be representative of the system/program’s activity.

When possible, we recommend that the number of these representative system oper-

ations be kept as small as possible. For example, in our traffic analysis of Internet of

Things work, we filter connections of various protocols since they contribute no value

for our mission. Unfortunately, this may not always be possible, as with the high

performance computing platform power analysis study.

115

8.4 Closing Remarks

Regardless of the application and intent, side channel information provides valuable insight

into the activity of a system. This information should be considered as both an opportunity

and a threat and should be explored from both a theoretical and practical viewpoint. As an

opportunity, side channel information presents a non-intrusive, reliable, technology agnostic

method for monitoring systems. Unlike other approaches, side channel information can

provide a holistic view of a heterogeneous ecosystem. Other beneficial applications of side

channel analysis include the potential to disclose information regarding both software and

hardware activity. As a threat, this dissertation highlights the extent of information provided

by side channels and the severity of the impact on security and privacy.

116

References

[1] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other

systems,” in Advances in Cryptology, vol. 96, 1996, p. 104113.

[2] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Networks,

vol. 48, no. 5, pp. 701–716, 2005.

[3] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of mod-

ular exponentiation in smartcards,” in Proceedings of the International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 1999, pp. 144–157.

[4] R. M. Avanzi, “Side channel attacks on implementations of curve-based cryptographic

primitives.” International Association for Cryptologic Research ePrint Archive, vol.

2005, p. 17, 2005.

[5] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, I still see you:

Why efficient traffic analysis countermeasures fail,” in Security and Privacy (SP), 2012

IEEE Symposium on. IEEE, 2012, pp. 332–346.

[6] F. Mollers, S. Seitz, A. Hellmann, and C. Sorge, “Short paper: Extrapolation

and prediction of user behaviour from wireless home automation communication,”

in Proceedings of the 2014 ACM Conference on Security and Privacy in

Wireless Mobile Networks. ACM, 2014, pp. 195–200. [Online]. Available: http:

//doi.acm.org/10.1145/2627393.2627407

[7] H. Cheng and R. Avnur, “Traffic analysis of SSL encrypted web browsing,” 1998.

[8] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” in Proceedings of the

2nd USENIX Workshop on Electronic Commerce Proceedings, 1996, pp. 29–40.

[9] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recognition using WiFi sig-

nals,” in Proceedings of the 21st Annual International Conference on Mobile Computing

and Networking. ACM, 2015, pp. 90–102.

117

http://doi.acm.org/10.1145/2627393.2627407
http://doi.acm.org/10.1145/2627393.2627407

[10] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, “Acoustic side-channel

attacks on printers.” in Proceedings of the 19th USENIX Security Symposium, 2010, pp.

307–322.

[11] V. Paxson, “Bro: A system for detecting network intruders in real-time,” Computer

Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[12] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology.

Springer, 1999, pp. 388–397.

[13] Y. Carmeli, “On bugs and ciphers: New techniques in cryptanalysis,” Ph.D. dissertation,

Technion, 2015.

[14] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking cryp-

tographic protocols for faults,” in Proceedings of the International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 1997, pp. 37–51.

[15] G. W. Hart, “Nonintrusive appliance load monitoring,” in Proceedings of the IEEE,

vol. 80, no. 12. IEEE, 1992, pp. 1870–1891.

[16] T. Zia, D. Bruckner, and A. Zaidi, “A hidden Markov model based procedure for identi-

fying household electric loads,” in Proceedings of the 37th Annual Conference on IEEE

Industrial Electronics (IECON). IEEE, 2011, pp. 3218–3223.

[17] M. Zhong, N. Goddard, and C. Sutton, “Interleaved factorial non-homogeneous hidden

Markov models for energy disaggregation,” arXiv, 2014.

[18] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges, “BLUED:

A fully labeled public dataset for event-based non-intrusive load monitoring research,”

in Proceedings of the 2nd KDD workshop on data mining applications in sustainability

(SustKDD), 2012.

[19] J. Gao, S. Giri, E. C. Kara, and M. Bergés, “PLAID: A public dataset of

high-resoultion electrical appliance measurements for load identification research:

Demo abstract,” in Proceedings of the 1st ACM Conference on Embedded

118

Systems for Energy-Efficient Buildings, 2014, pp. 198–199. [Online]. Available:

http://doi.acm.org/10.1145/2674061.2675032

[20] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and

M. Srivastava, “NILMTK: An open source toolkit for non-intrusive load monitoring,”

in Proceedings of the 5th International Conference on Future Energy Systems, 2014, pp.

265–276. [Online]. Available: http://doi.acm.org/10.1145/2602044.2602051

[21] G. Bauer, K. Stockinger, and P. Lukowicz, “Recognizing the use-mode of kitchen appli-

ances from their current consumption.” in Proceedings of the European Conference on

Smart Sensing and Context (EuroSSC). Springer, 2009, pp. 163–176.

[22] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker, “Inferring personal information

from demand-response systems,” in Proceedings of the IEEE Symposium on Security &

Privacy, vol. 8, no. 1. IEEE, 2010, pp. 11–20.

[23] S. S. Clark, H. Mustafa, B. Ransford, J. Sorber, K. Fu, and W. Xu, “Current events:

Identifying webpages by tapping the electrical outlet,” pp. 700–717, 2013.

[24] C. Isci and M. Martonosi, “Identifying program power phase behavior using power

vectors,” in Proceedings of the IEEE International Workshop on Workload Characteri-

zation. IEEE, 2003, pp. 108–118.

[25] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, “Privacy vulnerabilities in

encrypted HTTP streams,” Lecture Notes in Computer Science, p. 1, 2006.

[26] A. Hintz, “Fingerprinting websites using traffic analysis,” in Privacy Enhancing Tech-

nologies. Springer, 2003, pp. 171–178.

[27] M. Liberatore and B. N. Levine, “Inferring the source of encrypted HTTP connections,”

in Proceedings of the 13th ACM Conference on Computer and Communications Security.

ACM, 2006, pp. 255–263.

[28] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu,

“Statistical identification of encrypted web browsing traffic,” in Proceedings of the IEEE

Symposium on Security and Privacy. IEEE, 2002, pp. 19–30.

119

http://doi.acm.org/10.1145/2674061.2675032
http://doi.acm.org/10.1145/2602044.2602051

[29] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting: attacking

popular privacy enhancing technologies with the multinomial näıve-Bayes classifier,” in

Proceedings of the 2009 ACM Workshop on Cloud Computing Security. ACM, 2009,

pp. 31–42.

[30] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fingerprinting in onion

routing based anonymization networks,” in Proceedings of the 10th annual ACM work-

shop on Privacy in the Electronic Society. ACM, 2011, pp. 103–114.

[31] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and R. Perdisci, “HTTPOS: Sealing

information leaks with browser-side obfuscation of encrypted flows.” in Proceedings of

the Network and Distributed System Security Symposium (NDSS), 2011.

[32] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient defense

against statistical traffic analysis.” in Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2009.

[33] X. Fu, B. Graham, R. Bettati, W. Zhao, and D. Xuan, “Analytical and empirical anal-

ysis of countermeasures to traffic analysis attacks,” in Proceedings of the International

Conference on Parallel Processing. IEEE, 2003, pp. 483–492.

[34] M. Backes, G. Doychev, and B. Köpf, “Preventing side-channel leaks in web traffic:

A formal approach.” in Proceedings of the Network and Distributed System Security

Symposium (NDSS), 2013.

[35] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter: Detecting

application-layer tunnels with statistical fingerprinting,” Computer Networks, vol. 53,

no. 1, pp. 81–97, 2009.

[36] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device fingerprinting,” in

Proceedings of the IEEE Transactions on Dependable and Secure Computing, vol. 2,

no. 2. IEEE, 2005, pp. 93–108.

[37] T. Xin, B. Guo, Z. Wang, M. Li, and Z. Yu, “Freesense: Indoor human identification

with WiFi signals,” arXiv, 2016.

120

[38] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic identification of

application I/O signatures from noisy server-side traces,” in Proceedings of the 12th

USENIX Conference on File and Storage Technologies (FAST 14), 2014, pp. 213–228.

[39] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat, S. Byna,

and Y. Yao, “A multiplatform study of I/O behavior on petascale supercomputers,”

in Proceedings of the 24th International Symposium on High-Performance Parallel and

Distributed Computing. ACM, 2015, pp. 33–44.

[40] S. Peisert, “Fingerprinting Communication and Computation on HPC Machines,”

Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-3483E, June 2010.

[41] S. Whalen, S. Engle, S. Peisert, and M. Bishop, “Network-theoretic classification of

parallel computation patterns,” International Journal of High Performance Computing

Applications, vol. 26, no. 2, pp. 159–169, 2012.

[42] S. Whalen, S. Peisert, and M. Bishop, “Multiclass classification of distributed memory

parallel computations,” Pattern Recognition Letters, vol. 34, no. 3, pp. 322–329, 2013.

[43] K. Asanovic et al., “The landscape of parallel computing research: A view from Berke-

ley,” 2006.

[44] O. DeMasi, T. Samak, and D. H. Bailey, “Identifying HPC codes via performance logs

and machine learning,” in Proceedings of the First Workshop on Changing Landscapes

in HPC Security. ACM, 2013, pp. 23–30.

[45] J. K. Millen, “Covert channel capacity,” in Proceedings of the IEEE Symposium on

Security and Privacy. Oakland, CA, 1987, pp. 1540–7993.

[46] O. L. Costich and I. S. Moskowitz, “Analysis of a storage channel in the two phase

commit protocol,” in Proceedings of the Computer Security Foundations Workshop IV.

IEEE, 1991, pp. 201–208.

[47] S.-P. Shieh et al., “Estimating and measuring covert channel bandwidth in multilevel

secure operating systems,” Journal of Information Science and Engineering, vol. 15,

no. 1, pp. 91–106, 1999.

121

[48] R. Gay, H. Mantel, and H. Sudbrock, “An empirical bandwidth analysis of interrupt-

related covert channels,” International Journal of Secure Software Engineering (IJSSE),

vol. 6, no. 2, pp. 1–22, 2015.

[49] M. H. Kang and I. S. Moskowitz, “A pump for rapid, reliable, secure communication,”

in Proceedings of the 1st ACM Conference on Computer and Communications Security.

ACM, 1993, pp. 119–129.

[50] P. Chapman and D. Evans, “Automated black-box detection of side-channel vulnera-

bilities in web applications,” in Proceedings of the 18th ACM conference on Computer

and communications security. ACM, 2011, pp. 263–274.

[51] S. Micali and L. Reyzin, “Physically observable cryptography,” in Proceedings of the

Theory of Cryptography Conference. Springer, 2004, pp. 278–296.

[52] F.-X. Standaert, T. G. Malkin, and M. Yung, “A formal practice-oriented model for the

analysis of side-channel attacks,” International Association for Cryptologic Research,

vol. 134, no. 2006, p. 2, 2006.

[53] J. A. Goguen and J. Meseguer, “Security policies and security models,” in Proceedings

of the IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA: IEEE

Computer Society, 1982, p. 11.

[54] D. Sutherland, “A model of information,” in Proceedings of the 9th National Computer

Security Conference. DTIC Document, 1986, pp. 175–183.

[55] C.-K. Luk et al., “Pin: Building customized program analysis tools with dynamic

instrumentation,” vol. 40, no. 6, pp. 190–200, Jun. 2005. [Online]. Available:

http://doi.acm.org/10.1145/1064978.1065034

[56] DARPA, “Cyber grand challenge binaries,” https://github.com/CyberGrandChallenge/

samples, 2014–2015.

[57] T. Trader, “US researcher caught mining for bitcoins on NSF

iron,” HPC Wire. [Online]. Available: https://www.hpcwire.com/2014/06/09/

us-researcher-caught-mining-bitcoins-nsf-iron/

122

http://doi.acm.org/10.1145/1064978.1065034
https://github.com/CyberGrandChallenge/samples
https://github.com/CyberGrandChallenge/samples
https://www.hpcwire.com/2014/06/09/us-researcher-caught-mining-bitcoins-nsf-iron/
https://www.hpcwire.com/2014/06/09/us-researcher-caught-mining-bitcoins-nsf-iron/

[58] P. Colella, “Defining software requirements for scientific computing,” 2004.

[59] A. M. et. al., “PQube phasor measurement unit,” Power Standards Lab. [Online].

Available: http://pqubepmu.com/

[60] C. King, “stress-ng.” [Online]. Available: http://kernel.ubuntu.com/∼cking/stress-ng/

[61] D. H. Bailey et al., “The NAS parallel benchmarks,” International Journal of High

Performance Computing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[62] NERSC, “NERSC-8 trinity procurement benchmarks.” [Online]. Available: http:

//www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/

[63] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: a

method based on time averaging over short, modified periodograms,” in Proceedings of

the IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2. IEEE, 1967, pp.

70–73.

[64] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for

Python,” 2001–. [Online]. Available: http://www.scipy.org/

[65] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

[66] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 characterization

of petascale I/O workloads,” in Proceedings of the IEEE International Conference on

Cluster Computing and Workshops. IEEE, 2009, pp. 1–10.

[67] “Nest Labs: Home automation company,” https://nest.com, 2017.

[68] “Alphabet Inc.” https://abc.xyz/, 2017.

[69] “Nest Thermostat,” https://nest.com/thermostat/meet-nest-thermostat/, 2017.

[70] “Nest Protect: Smoke and CO Alarm,” https://nest.com/smoke-co-alarm/

meet-nest-protect/, 2017.

123

http://pqubepmu.com/
http://kernel.ubuntu.com/~cking/stress-ng/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/
http://www.scipy.org/
https://nest.com
https://abc.xyz/
https://nest.com/thermostat/meet-nest-thermostat/
https://nest.com/smoke-co-alarm/meet-nest-protect/
https://nest.com/smoke-co-alarm/meet-nest-protect/

[71] E. Grochowski and M. Annavaram, “Energy per instruction trends in Intel micropro-

cessors,” Technology@Intel Magazine, vol. 4, no. 3, pp. 1–8, 2006.

[72] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical foundations,”

DTIC Document, Tech. Rep., 1973.

[73] D. Von Oheimb, “Information flow control revisited: Noninfluence= noninterference+

nonleakage,” in Proceedings of the European Symposium on Research in Computer Se-

curity. Springer, 2004, pp. 225–243.

[74] J. Rushby, Noninterference, transitivity, and channel-control security policies. SRI

International, Computer Science Laboratory, 1992.

[75] J. A. Ambrose, R. G. Ragel et al., “RIJID: random code injection to mask power

analysis based side channel attacks,” in Proceedings of the 44th ACM/IEEE Conference

on Design Automation. IEEE, 2007, pp. 489–492.

[76] P. Grabher, J. Grobschadl, and D. Page, “Non-deterministic processors: FPGA-based

analysis of area, performance and security,” in Proceedings of the 4th Workshop on

Embedded Systems Security. New York, NY, USA: ACM, 2009, pp. 1:1–1:10. [Online].

Available: http://doi.acm.org/10.1145/1631716.1631717

[77] J. A. Ambrose, R. G. Ragel, S. Parameswaran, and A. Ignjatovic, “Multiprocessor infor-

mation concealment architecture to prevent power analysis-based side channel attacks,”

IET Computers & Digital Techniques, vol. 5, no. 1, pp. 1–15, 2011.

[78] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physi-

cal world,” in Proceedings of the ACM Computing Research Repository (CoRR), vol.

1607.02533, 2016.

124

http://doi.acm.org/10.1145/1631716.1631717

Appendix A

HPC I/O Analysis: Darshan Features

Below we list the features, with the corresponding index as depicted in the violin plots, used

for the Darshan I/O analysis:

0 POSIX_SIZE_READ_100K_1M

1 POSIX_SIZE_READ_10M_100M

2 POSIX_CONSEC_READS/READS

3 POSIX_SIZE_WRITE_0_100

4 POSIX_SIZE_READ_10K_100K

5 POSIX_STRIDE3_STRIDE

6 POSIX_SIZE_READ_4M_10M

7 POSIX_SIZE_READ_100M_1G

8 BYTES/WRITE

9 POSIX_STRIDE4_STRIDE

10 POSIX_ACCESS1_ACCESS

11 POSIX_ACCESS4_ACCESS

12 POSIX_RW_SWITCHES/TOTAL

13 READ_MAX/READ_BYTES

14 POSIX_SIZE_WRITE_100K_1M

15 POSIX_SIZE_READ_1K_10K

16 POSIX_SIZE_READ_1M_4M

17 SEEKS

18 POSIX_CONSEC_WRITES/WRITES

19 POSIX_STRIDE2_STRIDE

20 OPENS

21 POSIX_FSYNCS

22 POSIX_SIZE_READ_1G_PLUS

23 POSIX_STRIDE2_COUNT

24 POSIX_ACCESS2_ACCESS

25 POSIX_SIZE_READ_100_1K

26 POSIX_STRIDE1_STRIDE

125

27 POSIX_STRIDE1_COUNT

28 POSIX_ACCESS3_COUNT

29 POSIX_SEQ_WRITES/WRITES

30 POSIX_SIZE_WRITE_1G_PLUS

31 POSIX_MMAPS

32 POSIX_SEQ_READS/READS

33 POSIX_SIZE_WRITE_100_1K

34 POSIX_STRIDE4_COUNT

35 POSIX_SIZE_WRITE_1M_4M

36 POSIX_SIZE_WRITE_10K_100K

37 POSIX_SIZE_READ_0_100

38 POSIX_STATS

39 WRITE_MAX/WRITE_BYTES

40 POSIX_ACCESS3_ACCESS

41 WRITES

42 POSIX_ACCESS2_COUNT

43 POSIX_STRIDE3_COUNT

44 POSIX_SIZE_WRITE_10M_100M

45 POSIX_SIZE_WRITE_4M_10M

46 READS

47 POSIX_ACCESS1_COUNT

48 POSIX_SIZE_WRITE_100M_1G

49 POSIX_FDSYNCS

50 BYTES/READ

51 POSIX_SIZE_WRITE_1K_10K

52 POSIX_ACCESS4_COUNT

126

Appendix B

Side Channel Theory

B.1 Turing Machine Binary Counter Program

The pseudo-code below represents a Turing machine implementation of a binary counter

program:

main () {

n o d i g i t s = 0

whi le True :

move head r ight ()

n o d i g i t s += 1

carry = 0

counter = 0

whi le True :

i f counter != 0 and (car ry == 0 or counter > n o d i g i t s) :

break

// read input d i g i t

d i g i t = read ()

i f counter == 0 :

// f i r s t d i g i t (no car ry)

r e s u l t = (d i g i t + 1) mod 10

127

e l s e :

r e s u l t = (d i g i t + carry) mod 10

i f r e s u l t == 0 :

car ry = 1

e l s e :

ca r ry = 0

wr i t e (r e s u l t)

move head le f t ()

counter += 1

}

128

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	Problem Statement
	Thesis Statement
	Approach
	Motivating Example
	Definitions
	Organization of the Dissertation

	Related Work
	Power Analysis
	Traffic Analysis
	High Performance Computing Activity
	Information Channel Bandwidth

	Early Work
	Modeling User Behavior for Improved Network Efficiency in Android Applications
	Modeling Input Protocol for Unknown Binaries using Hardware Performance Counters
	Finding Input
	Method Architecture
	Experiments and Results
	Conclusions on Finding Input Using Side Channels

	Monitoring High Performance Computing Platforms
	Security in High Performance Computing Platforms
	Power Analysis
	Initial Experiments and Observations
	HPC Experiments
	Discussion and Future Work

	I/O Analysis
	Darshan
	Data Collection
	Methodology
	Findings
	Results

	Monitoring Internet of Things Platforms Using Side Channels
	Background
	Experiment Setup and Devices
	Methodology
	Results
	Frequency Analysis
	Conclusion

	Side Channel Theory
	Definition
	Model Definition
	Side Channel vs. Program
	Operation-To-Side-Channel Conversion
	Side Channel Resolution
	Putting It All Together

	Information Loss
	Noise
	Turing Machine Side Channel Example
	Limitations and Discussions
	Limitations
	Comparison with Entropy-Based Models

	Towards Protecting Against Side Channels
	Conclusion
	Summary
	Limitations and Future Work
	Recommendations
	Closing Remarks

	References
	Appendices
	HPC I/O Analysis: Darshan Features
	Side Channel Theory
	Turing Machine Binary Counter Program

