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Abstract 
How humans engage in goal-directed behavior within dynamic 
environments is still not completely understood. Pursuing 
goals in an environment that is characterized by constant 
unpredictable changes might be possible through the 
interaction of multiple layers of action control. A cognitive 
layer exerts situational control by selecting action intentions, 
while a motor control layer is responsible for execution. The 
motor layer informs the cognitive level, about disturbances 
during execution of these action intentions. We present an 
experimental dynamic environment, combining motor control 
manipulation and eye-tracking to investigate visuomotor 
grounding of cognitive processes. Our results indicate that 
inefficient motor control prompts strategic shifts in eye-
movement behavior, with fixations closer to a reference point 
under moderate motor noise and further away under increased 
noise. We further find fixational and smooth pursuit eye 
movements that can be directly mapped to pursued action 
intentions. These findings shed light on the changes in action 
selection caused by noise in the motor system and can be used 
in a next step to investigate moment-to-moment changes in the 
pursuit of action intentions under inefficient motor control. 

Keywords: situated action control; dynamic environments, 
control hierarchy; Sense of Control (SoC); sensorimotor 
integration; eye-movement control 

Introduction 
Situated action control is an intricate process that requires the 
interaction of various layers of control to enable goal-directed 
behavior within dynamic environments. Involved processes 
range from the selection of the action intention, over the 
decomposition of the intention into several motor commands, 
to their execution and thus the implementation of the action 
intention onto the environment (Grafton & Hamilton, 2007; 
Kahl et al., 2022). Each individual motor command is 
accompanied by a prediction, the sensorimotor consequence 
that is expected when the action is executed. The actual 
sensory feedback is then compared with the sensorimotor 
prediction (comparator model 3, Synofzik et al., 2008). If a 
mismatch between the two inputs is detected, i.e. if there is a 
prediction error, this negatively affects the feeling of being in 
control. This phenomenal experience is termed the Sense of 
Control (SoC) and helps the agent to identify self-produced 
changes in the environment.  

Goal-directed behavior is particularly challenging within 
dynamic environments. These are characterized by 
continuously evolving in unpredictable ways. Nevertheless, 
humans excel at this through their ability to seamlessly adapt 
action intentions in response to evolving circumstances, at 

times even giving up on an intention to pursue another one. 
What enables us to do that? The given references postulate 
that the SoC might be the main contributor to that ability. It 
is a key experience informing us as agents about the current 
instance and our ability to bring about changes in it. 

When experiencing changes in sensed control, the agent's 
behavior also changes. If the agent encounters difficulties in 
executing an action due to noise in motor control, leading to 
several prediction errors, it may adjust its original intentions 
to increase the chance of executing them successfully. Action 
intentions depend on the situation as it evolves, they are 
situated. Hence adapting the process of evaluating several 
possible options and finally selecting one is referred to as 
situational control (Pacherie, 2008). The interaction of these 
higher-level cognitive processes of action evaluation and 
selection with lower-level motor control processes is what is 
called situated action control. To our knowledge, however, 
there are no experiments in dynamic environments that 
investigate the effect of changes in action selection that stem 
from perturbing factors (predictable or uncertain) in motor 
control. We present here the newly developed Dodge 
Asteroids experimental environment (Heinrich et al., 2023) 
that features motor noise and situational complexity. 
Combining the Dodge Asteroids environment with eye 
tracking, we can assess action intentions that are allocated 
somewhere on the screen in relation to the agent as reference 
point. This experiment thus enables directly testing the 
changes in action intentions within dynamic environments 
and contributes to the evaluation and, if necessary, revision 
of models of action control already existent in literature. 

Theoretical Background 
The multiple layers contributing to situated action control 
refer to the different types of regulatory control namely 
situational control and motor control, both associated with a 
distinct SoC (Pacherie, 2008). They live on different levels of 
the control hierarchy. Situational control is ascribed to 
proximal planning (proximal intentions; Pacherie, 2008) and 
decision-making processes at higher cognitive levels, 
whereas motor control is exerted by the sensorimotor system 
(Figure 1). Humans are usually aware of their adaptation in 
planning and decision-making processes, while regulatory 
control at the motor level is automated and happens without 
the agent being aware (Hacker, 1986; Kahl et al., 2022). Kahl 
et al. (2022) precisely defined the internal processes of each 
level. At the top of the hierarchy, in the cognitive control 
layer, an action field is compiled that contains actions that 
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can be executed at that very moment to potentially solve the 
task at hand. Out of these action possibilities, one is selected, 
the action goal. The current SoC associated with higher-level 
situational control directly affects the composition of the 
action field and the selection process of the final action goal. 
For example, the action field under a decreased SoC will only 
consist of action possibilities that are particularly easy to 
implement, even with inefficient control. Likewise, an action 
goal is selected that is associated with a general high chance 
of success. The action goal is then given to the lower level in 
the hierarchy, the sensorimotor control layer. Here, the action 
goal is split into several detailed motor programs that 
ultimately lead to the implementation of the action goal, 
getting one step closer with every command. The 
sensorimotor prediction of each individual motor program 
and the sensory feedback perceived after its execution are 
entered into a sensorimotor grounded comparator model. The 
output of the comparator is the difference between the two 
inputs. A sensitivity range indicates at which size the 
difference will still be accepted as a match (Synofzik et al., 
2008). If the size of the difference falls outside this range, a 
prediction error has occurred. In this case, the SoC relating 
specifically to motor control is reduced. On the contrary, 
matches will lead to an increase of the low-level SoC. Thus, 
only large prediction errors or several consecutive prediction 
errors will lead to a significant drop in sensed motor control. 
The hierarchy has an awareness boundary in the form of the 
cognitive control layer threshold. The agent becomes aware 
of its insufficient motor control when the low-level SoC 
drops below a certain value in turn decreasing the high-level 
SoC. This can ultimately lead to abandoning the current 
action goal, building a new action field, selecting a new 
action goal, and its subsequent execution by the sensorimotor 
control layer. 

 
Figure 1: Depiction of two-layer architecture of the Kahl et 
al. computational model of situated action control (2022). 
Figure taken and adapted from Heinrich et al. (2023). 

This description of the internal processes implies that the 
moment-to-moment changes of the SoC are therefore 
determined by overcoming the two threshold values. 
However, testing these dynamics is a challenge. To measure 
when exactly prediction errors occur, methods such as EEG 
or fMRI would probably have to be used. Further, when 
exactly regulatory control is applied at the cognitive level 
would have to be tested using sensitive behavioral measures. 
However, some things have to be addressed first: how is 
behavior regulated from the cognitive level? This is exactly 
what we aim to investigate. For this, we will draw from the 
Kahl et al. (2022) model and investigate changes in action 
selection by measuring the differences in the properties of 
action goals that are executed in environments imposing 
different levels of motor noise. Since the model implies that 
action selection processes are adjusted when the motor 
system constantly detects error signals, we should be able to 
determine exactly how situational control, regulatory control 
at the cognitive level, looks like by comparing the mean 
values of action goal properties. 

Eye-Movement Control in Situated Action 
The visual system is incredibly efficient at recognizing 
possibilities to act (Gibson, 1966). That means that visual 
perception is influenced by top-down processes that account 
for the motor repertoire of the agent (Gibson, 1977). At the 
same time, eye movements precede other bodily actions 
(Land, 2004, 2006). They guide goal-directed behavior 
directing attention towards crucial information needed by the 
motor system to prepare and execute the individual 
movements (Rothkopf et al., 2016; Wilmut et al., 2006). 
When grasping for an object for example, the eyes monitor 
how each individual motion reduces the distance between the 
hand and the object. Often peripheral vision will be enough 
to verify the accuracy of the grasping movement. Especially 
because humans can draw from other sensory information 
like proprioception as well. But the eyes will still be the most 
accurate sensors we can use for guiding manual movements. 
That is why we often glance shortly towards the object when 
reaching for it while facing something else. This is based on 
the neural coupling of eye and other bodily movements which 
has also been shown for steering in natural driving tasks 
(Marple-Horvat et al., 2005; Wilson et al., 2007), although in 
general eye-movement control is strongly adapted to the task 
and context at hand (Land & Hayhoe, 2001). 

Following this line of reasoning, situational control at the 
cognitive level is grounded in eye-movement control. More 
specifically periods in which the eyes remain relatively still 
at a particular location within the environment may indicate 
action goals that are pursued. Additionally, contrary to the 
continuous stream of data corresponding to the position of an 
agent within an environment, eye movement data can be 
divided into individual events of fixations and smooth 
pursuits allowing us to assess individual action goals. 

In this paper, we address the research question of whether 
key top-down processes involved in situated action control 
can be identified through visuomotor behavior. For this, we 
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relate composing an action field to general visual exploration 
and pursuing an action goal to maintaining fixational and 
smooth pursuit eye movements of specific properties. Our 
assumption is therefore that if we combine a dynamic 
experimental environment with eye-tracking, it will allow us 
to assess action goals that are actively pursued. 

Thus, we developed the Dodge Asteroids environment 
(Heinrich et al., 2023), a spaceship themed computer game 
which is inspired by the simulation environment of Kahl et 
al. (2022). Participants steer a spaceship and have to avoid 
crashing into oncoming obstacles that are randomly placed 
throughout the environment. The agent, the spaceship that is 
controlled by participants, stays at screen center at all times. 
All the while the participants gaze is being tracked. Within 
the environment, participants will encounter drift, a 
consistent motor influence from either side indicated by a red 
bar. Additionally, we manipulate motor control by 
introducing input noise, inaccurate control over the agent. 
The two environmental features of drift and input noise are 
opposites in how clearly they can be assigned to a definite 
environmental variable (with drift being predictable in its 
perturbing effect which can be assigned to the red bar, and 
input noise being unpredictable and occurring constantly). As 
eye movements and the task of steering are closely linked, we 
expect specific changes in oculomotor control and its 
underlying cognitive processes induced by input noise. 

Hypotheses 
Scanning the surrounding environment for action 
possibilities is done by visual exploration. The assumption is 
that under reduced motor control efficiency, individuals may 
adopt a more constrained or focused visual exploration, 
concentrating on action possibilities that are more likely to be 
realized. More precisely, hypothesis H1 states that higher 
input noise is associated with fixational eye movements being 
initiated closer to the agent. 

Furthermore, we expect to be able to identify fixational or 
smooth pursuit eye movements that indicate action goals and 
feature the following traits: i) They are not foveating the 
spaceship or an obstacle, but rather empty space because they 
aim at a potential future location for the agent, and ii) over 
the period in which the fixation or smooth pursuit is 
maintained, the distance between the gaze location and the 
agent gradually decreases. This is because motor control is 
exercised explicitly with the goal of reducing the distance. 
Due to the agent being static at the screen center, a smooth 
pursuit foveating the goal position within the environment 
will approach the agent, i.e. the screen center. We refer to 
these as foveated action goals, as they combine fixational and 
smooth pursuit eye movements, and we expect that when 
facing input noise, they happen in a more confined space. 
First, we hypothesize that also in foveated action goals higher 
input noise is associated with smaller distances to the agent 
(H2a). Second, higher input noise is associated with greater 
distances to obstacles (H2b). This reflects the selection of 
action goals that are more likely to be successfully 
implemented without crashing. Both distances are assessed at 

the time of initiation of the foveated action goal. Lastly, we 
expect higher input noise to be associated with generally 
shorter durations in foveated action goals (H2c). This is due 
to the fact that while an action goal is being pursued, input 
noise causes to deviate too far from the path. The pursued 
action goal no longer appears to be realizable and is therefore 
abandoned. The fixation or smooth pursuit is then cancelled, 
and a new one is initiated somewhere else, which indicates 
the newly selected action goal. Additionally, this effect may 
also stem from the reduced distance to the agent which leads 
to the overall smooth pursuit taking less time to reach its goal. 
We assume this also to happen when drift appears on screen 
while an action goal is pursued. The sudden appearance alters 
the instance in a way that the current action goal is no longer 
effective and is consequently abandoned. 

Additionally, we relate every eye movement with the 
complexity of the situation in which it was executed. Here we 
assume that an increasing number of obstacles visible on the 
screen will elicit the same effects as input noise. 

Methods 

Dodge Asteroids Experimental Environment 
We implemented the simulation environment of Kahl et al. 
(2022) as an experimental environment using Python (Van 
Rossum & Drake, 2009) and the PyGame package (Shinners, 
2011). The now termed Dodge Asteroids environment runs 
with 60 FPS. An agent automatically traverses downwards 
through a funnel with walls on both sides. Obstacles are 
randomly distributed (uniform distribution with bounds equal 
to width and height of environment). Participants are tasked 
to make it to the bottom end of the environment without 
crashing into the walls or obstacles. They can steer the agent 
horizontally to avoid crashing using the Y and M keys on the 
keyboard (QWERTZ layout). A single trial consists of one 
attempt solving the environment regardless of crash or 
successful completion. 

The environment has a width of 720 pixels and a height of 
9000 or 18000 pixels. Automatic downwards traversal of the 
agent is 6 pixels each frame. The agent itself and the obstacles 
are 36 pixels in width and height. While solving the 
environment, participants encounter the two experimental 
manipulations, drift and input noise. Drift can be best 
described as wind coming from either side. In every frame 
within a drift section, the agent is pushed 3 pixels to either 
side. The sections as well as drift directions are indicated by 
red bars. Every aspect of drift in this experiment (when it 
applies and its effects) is meant to be highly predictable. Input 
noise directly affects the motor control of the participants. 
Contrary to drift, the effects of input noise are unpredictable. 
Without input noise horizontal movement of the agent will be 
6 pixels each frame when participants steer the agent to either 
direction. In case of input noise however, the horizontal step 
between frames is sampled from a normal distribution 
centered above the normal step size of 6 pixels and with 
standard deviation being either 3 or 6 pixels, depending on 
the input noise level (weak and strong respectively). 
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The experiment was presented on a 28” ASUS PB277Q 
screen with a resolution of 1920x1080 pixels. The refresh rate 
was equal to the FPS of the Dodge Asteroids environment, 
60Hz. Participants were seated with their heads rested in a 
chin rest 80cm away from the screen. We tracked their gazes 
using a ViewPixx TRACKPixx eye-tracker (VPixx 
Technologies, Saint-Bruno, QC, Canada) that recorded 
locations of both eyes with a sampling rate of 2,000Hz. As 
static reference point, the position of the agent on screen was 
fixed, with the agent remaining at position x = 954 and y = 
270 pixels at all times (referring to the upper left corner of 
the sprite). Therefore, movement of the environment, either 
passive by automatic traversal through free fall and drift or 
active by steering, resulted in the environment moving 
around the agent. This way new objects appeared at the 
bottom of the screen and moved upwards until they again 
disappeared at the top (for reference, it takes roughly 2.45s 
for an object that appears on the bottom to disappear again at 
the top of the screen). At the bottom of the screen, a grey bar 
was drawn with 270 pixels height and spanning the whole 
width of the screen to prevent participants from moving their 
gaze beyond the screen. The table on which the setup is 
mounted is adjustable in height. This way, the chin rest and 
therefore the participants' faces always remain at the same 
height relative to the screen. 

Procedure 
Before we conducted the experiment, we random generated 6 
different levels of the Dodge Asteroids environment. This 
was done in order to obtain a large number of different 
instances, which we can compare between participants. We 
generated 3 of the levels with a length of 9000 pixels and the 
other 3 with a length of 18000 pixels. Within the levels we 
placed a number of 12 to 168 obstacles with their x and y 
positions randomly sampled from a uniform distribution 
bounded by the level borders. 4 to 18 drift sections were 
randomly placed within each level, their starting y position 
also sampled uniformly from the length of the individual 
level. The length of drift sections was kept constant at 270 
pixels. All of the 6 levels were played with all of the different 
input noise levels (no vs. weak vs. strong) and with drift 
either turned on or off. Therefore, each level was played in 6 
different configurations. 

While playing, only a small section of the entire 
environment is shown at any one time, the observation space 
(enlarged section on the left of Figure 3). An example level 
is shown on the right-hand side of Figure 3. 

All 36 level configurations were presented in random 
order. Per level configuration participants were given 3 
attempts. In case of a crash, the configuration was again 
presented at a later point during the experiment. If all 3 
attempts resulted in a crash, the configuration was removed 
from the participant's experimental sequence. We did that to 
prevent participants from familiarizing with the specific 
instances (constellations of obstacles and drift sections) 
within the level. Before the start of the experiment, the eye-
tracker was calibrated for every individual participant using 

a 9-point grid. After a training level of 36000 pixels length, 
the actual level configurations were presented. Before each 
level configuration the eye-tracker was recalibrated using a 
5-point grid. This allowed for breaks between each trial if 
needed in which participants could disengage from the chin 
rest. On average, participants played for 31.12 minutes, 
ranging from 26.21 to 36.38 minutes. 

 
Figure 3: Visualization of an instance within a run in the 
Dodge Asteroids environment (figure taken from Heinrich et 
al., 2023). For visualization purposes, the agent (green 
spaceship) is displayed here at the actual position within the 
environment (not screen center). The complete environment 
for this run is shown on the right. Obstacles are scattered 
throughout the instance. The red bar signals drift that is 
directed to the right. 

Variables & Data Analysis 
To investigate the effects of input noise in eye-movement 
control, we used a velocity-based algorithm to detect 
fixations within the data samples of the eye-tracker. Rows 
were flagged as fixations when both eyes traveled less than 
or equal to 1.25 pixels between samples for at least 25 
consecutive samples. Overall, we detected 67794 fixations 
that potentially included smooth pursuit eye movements due 
to the nature of the visualization. We verified our remaining 
data set by filtering saccades in a next step. For this, we used 
an established velocity-based saccade detection algorithm 
(Engbert & Kliegl, 2003; Engbert & Mergenthaler, 2006). 
Samples within the data were marked as a saccade when they 
exhibited a minimum amplitude of 0.5° in eye travel and 
exceeded a velocity threshold for at least four successive data 
samples (0.002ms). We computed the velocity threshold with 
a multiplier λ = 6. This step led to no actual filtering of the 
data; therefore all 67794 fixations were included in the 
analysis. 

To determine the exact location of fixations, we calculated 
the center point of the x and y coordinates of both eyes. 
Distances to objects on the screen (agents or obstacles) were 
computed from the fixation location to the center of the object 
and are given in visual degrees. Second, we assessed fixation 
durations. To do this, we took the difference in time between 
the first and last frame in which the fixation was detected. 
Each fixation is related to the number of obstacles visible on 
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screen at the beginning of the fixation and the input noise 
level applied in the trial in which the fixation happened. 
These two variables (N visible obstacles & input noise level) 
are used as fixed effects predicting the assessed variables. For 
each individual prediction we explore participant ID and the 
number of visible drift tiles at the time the fixation was 
initiated as random effects. 

Analyses were done using (generalized) linear mixed 
models with the help of the MixedModels package (Bates, 
2015) within the Julia programming language version 1.9.3 
(Bezanson et al., 2017). Based on box-cox distributional 
analyses (Box & Cox, 1964), distance to the agent and the 
closest obstacle, and duration of fixations and smooth 
pursuits were transformed to the logarithmic scale. We 
explored random effects for each model individually, 
referring to the Bayesian information criterion (Chakrabarti 
& Ghosh, 2011) for model selection. First, models were fitted 
using the REML criterion. Then non-singular models were 
tested against each other, and the final selected model was 
fitted again using the maximum likelihood criterion. To 
ensure robustness of effects across samples, the selected 
model was subjected to a parametric bootstrap with 10000 
replications. Hypothesis testing was based on the overlap of 
the 95% highest density confidence interval of the obtained 
bootstrap values with the 0-line (no overlap indicates a 
significant effect). The Random module’s 
MersenneTwister(36) was used for replicability of the results. 

We specified contrasts for input noise so that the first 
comparison is always made between weak input noise and no 
input noise, and the second comparison is made between 
strong input noise and weak input noise. 

Results 
To investigate visual exploration under various degrees of 
noise in motor control (H1), we build a model predicting the 
distance to the agent with the fixed effects being the number 
of obstacles on screen and the level of input noise. The final 
selected model included random intercept effects for the 
number of visible drift tiles and participant ID. It further 
included a random slope effect for the number of visible 
obstacles on both random intercepts individually. No 
correlation between random effects was allowed. The 
confidence intervals of the parametric bootstrap revealed 
significant effects for both levels of input noise. Compared to 
no input noise, weak input noise significantly decreased the 
distance to the agent [-0.036, -0.008]. However, compared to 
weak input noise, strong input noise led to an increase in the 
distance to the agent [0.001, 0.030]. The number of visible 
obstacles did not affect the predicted variable [-0.028, 0.026]. 

As we analyzed the fixations in more detail, we noticed that 
many of the fixations seemed to have a very specific purpose. 
Participants moved their gaze further down in areas that lay 
ahead of the agent, only keeping the agent in peripheral 
vision. They then initiated fixations that lasted on average 
0.39 s and remained at the relative position within the game 
environment foveating empty space and moving along with 
the environment. These fixations always approached the 

agent over time, effectively falling into the categorization of 
smooth pursuits. Therefore, exerted motor control via key 
presses served to bring the gaze location closer to the agent. 
Before the smooth pursuit could finally reach the agent, it was 
canceled, and the gaze was again allocated to the lower half 
of the screen. We defined a set of filter conditions from the 
above eye-movement behavior (smooth pursuit initiated on 
lower half of the screen in empty space, at least 5° away from 
the agent, and the distance between smooth pursuit location 
and agent being less when the smooth pursuit is terminated 
than at its initiation) and filtered the data set accordingly. The 
resulting data set, called foveated action goals, comprised a 
total of 42315 smooth pursuits. The following analyses are 
based only on these foveated action goals. 

We again build a model predicting the distance to the agent 
(H2a). We entered the number of visible obstacles and input 
noise level as fixed effects. The final selected model included 
the number of visible drift tiles and participant ID as random 
intercept effects. No random slope effects were included. 
Number of visible obstacles significantly decreased the 
distance to the agent [-0.012, -0.01], as did weak input noise 
compared to no input noise [-0.034, -0.016]. Compared to 
weak input noise, strong input noise increased the distance to 
the agent [0.029, 0.047]. 

Further investigating how action goals are selected from a 
more confined space in the visual environment, we built a 
model that predicts the distance to the closest obstacle (H2b). 
Here we entered input noise level as single fixed effect. We 
needed to control for variance caused by the number of 
visible obstacles because more obstacles on screen will 
automatically lead to a smaller distance between foveated 
action goal location and the closest obstacle. We therefore 
explored a random intercept effect for the number of visible 
obstacles in addition to the number of visible drift tiles and 
participant ID. All of these were included in the final selected 
model. No random slope effects were included. The obtained 
highest density confidence intervals revealed no significant 
effect for the comparison between weak input noise and no 
input noise [-0.008, 0.011], nor for the comparison between 
strong input noise and weak input noise [-0.012, 0.007]. 

Finally, we tested what leads to foveated action goals being 
pursued for shorter periods of time (H2c). We entered the 
number of visible obstacles, input noise level, and 
additionally drift tile onset during the foveated action goal as 
fixed effects into the model predicting foveated action goal 
duration. The final selected model included a random 
intercept effect for participant ID and a non-correlating 
random slope effect for the number of visible obstacles on 
participant ID. Here the β-values obtained by the parametric 
bootstrap revealed that the number of visible obstacles 
increases foveated action goal duration [0.005, 0.021]. No 
effect for the comparison between weak and no input noise 
was found [-0.006, 0.024], however strong input noise led to 
shorter foveated action goal durations compared to weak 
input noise [-0.035, -0.004]. Lastly, when a drift tile appeared 
on screen while the smooth pursuit was executed, it resulted 
in longer foveated action goal durations [0.426, 0.515]. 
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All the above results relating to changes in motor control 
efficiency can also be found in Table 1. It contains the name 
of the contrast and the corresponding boundaries of the 95% 
confidence interval of the β-values obtained from the 
parametric bootstrap. Significant effects are indicated. 
 

Table 1: Main results for input noise. 
 

Hypothesis Contrast 95% CI bounds 
H1 weak vs. no input noise [-0.036, -0.008] * 

(distance 
to agent) 

 

strong vs. weak input noise [0.001, 0.03] * 

H2a weak vs. no input noise [-0.034, -0.016] * 
(distance 
to agent) 

 

strong vs. weak input noise [0.029, 0.047] * 

H2b weak vs. no input noise [-0.008, 0.011] 
(distance 

to 
obstacle) 

 

strong vs. weak input noise [-0.012, 0.007] 

H2c weak vs. no input noise [-0.006, 0.024] 
(fixation 
duration) 

strong vs. weak input noise [-0.035, -0.004] * 
drift tile onset (yes vs. no) [0.426, 0.515] * 

 

Discussion 
In this article we have introduced a new experimental 
environment. It allows us to investigate the interaction of 
different levels of control in a dynamic context. Furthermore, 
it can be combined with eye-tracking to implicitly measure 
key cognitive processes that are involved and how exactly 
top-down regulatory control looks like. The results of our 
study shed light on the changes in goal-directed gaze 
allocation within dynamic tasks, particularly in the context of 
situated action control. Drawing upon theoretical foundations 
from Grafton and Hamilton (2007), Kahl et al. (2022), and 
Synofzik et al. (2008), our investigation explores the 
interplay between noisy motor control and statistics of 
fixational and smooth pursuit eye movements. 

Our first hypothesis (H1) proposed that higher input noise 
is associated with fixations initiated closer to the agent. The 
findings align with this hypothesis, revealing that increased 
input noise correlates with shorter distances to the agent. This 
result suggests that under conditions of reduced motor control 
efficiency, participants tend to concentrate their visual 
exploration closer to the agent. This focused gaze allocation 
might reflect a strategy to monitor small but unpredictable 
motor perturbations. Though, this only held true for weak 
input noise. Strong input noise, which is associated with large 
motor perturbations, triggered even longer distances. In 
foveated action goals, we observed the same nuanced 
responses to weak and strong input noise. Here again weak 
input noise elicited an effect that agrees with our hypothesis 
(H2a). In contrast, strong input noise led to foveated action 
goals being initiated further away. This surprising result 

raises questions about top-down regulatory control strategies 
that are temporarily being adopted here. 

We found no effect of input noise on the distance to 
obstacles (H2b). Participants did not initiate foveated action 
goals further away from obstacles when they had less 
accurate control over the spaceship. They did not allocate 
their gaze in a way that would reflect selecting action goals 
that might be safer to pursue and it needs to be investigated 
whether this effect is inherent to our experimental 
environment or whether it can be generalized. Nevertheless, 
we could show that input noise leads to shorter duration in 
foveated action goals (H2c). This may be because input noise 
lead to straying too far of the path of realizing the action goal 
and thus abandoning it. Contrary to our hypotheses, the 
sudden appearance of a drift tile increases foveated action 
goal duration. This indicates that changes to the continuously 
evolving instance could easily be factored into motor control 
giving no need to abandon the action goal. Drift simply led to 
participants taking longer to reach the intended location, 
resulting in longer durations. But how much of this can be 
attributed to the fact that the perturbing effect of drift is 
predictable? With respect to top-down regulatory control 
processes, it might be worth to analyze general strategies of 
how drift is countered by steering the spaceship in specific 
ways in more detail (horizontal positioning in preparation to 
drift onset). This is an aspect that we would like to investigate 
in future experiments in which we introduce different types 
of uncertainty and manipulate the predictability of 
environmental features. 

The complexity of the visual environment emerged as a 
crucial factor influencing visual exploration in general but 
also foveated action goals. The number of obstacles 
significantly impacted location and duration of fixations and 
smooth pursuits, emphasizing the role of the configuration of 
the visual scene in shaping participants' gaze behavior. This 
is not surprising but can lead to interesting interactions 
between motor perturbations of different uncertainty and the 
environmental complexity. 

We expanded on the concepts of the Kahl et al. 
computational model by exploring the implications of 
sensorimotor grounding of the cognitive control functions 
featured in the model. More specifically, we investigated how 
elicited fixational and smooth pursuit eye movements reflect 
the composition of the action field and the action goal that is 
actively pursued. Finally, we showed the effects of changes 
in motor control on eye movement behavior, which allows 
inferences about the effects on top-down regulatory control.  

Our findings could be incorporated into a computational 
model, that is based on the theoretical assumptions of Kahl et 
al. (2022) and features the two distinct thresholds of the 
sensitivity range for sensorimotor error signals and the 
awareness boundary. Model simulations could predict when 
exactly top-down regulatory control is initiated within a trial. 
Model output of eye-movement control might be fitted to 
human data. Ultimately, this enables a time-dependent 
investigation of the individual components of situated action 
control. 
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