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Synopsis
The long-term use of calcium hydroxide and the recent increase in the use of hydraulic calcium-
silicate cements as direct pulp-capping materials provide important clues in terms of how
reparative dentin may be induced to form a “biological seal” to protect the underlying pulp tissues.
In this review article, we will discuss clinical and molecular perspectives of reparative dentin
formation based on evidence learned from the use of these pulp-capping materials. We will also
discuss the emerging role of calcium as an odontoinductive component in these pulp-capping
materials.

Keywords
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l. INTRODUCTION

Dental caries is the most prevalent infectious oral diseases experienced by more than 90% of
adults in the United States 1:2. A quarter of U.S. populations do not have dental insurance 3,
and more than 60% of underserved areas are still in need of dentists 4. Considering these
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potentially unidentified individuals, it is expected that almost all individuals may have
experienced dental caries at least once in their lifetime.

Due to its high prevalence, removing dental caries is one of the most common procedures
performed in routine dental practices. During caries removal, deep caries penetrating
through the enamel and dentin frequently leads to either indirect or direct pulp-capping
procedures in order to induce tertiary (reactionary or reparative, respectively) dentin
formation . Several pulp capping materials, including calcium hydroxide [Ca(OH), or CH]
and hydraulic calcium silicate cements (HCSCs) such as mineral trioxide aggregate (MTA),
are used for this purpose. For indirect pulp capping, these materials are placed on the
“unexposed” pulp to enhance reactionary dentin formation from the existing odontoblasts at
the dentino-pulpal complex (DPC). In contrast, direct pulp capping refers to placing the
pulp-capping materials on the “exposed” pulp — where odontoblast layers are breached — to
enhance reparative dentin formation mediated by odontoblast-like cells differentiated from
dental pulp stem cells (DPSCs) at the materio-pulpal complex (MPC).

Unlike indirect pulp capping which usually has predictable clinical outcomes, direct pulp
capping has outcomes that are often variable depending on the operator technique, the
material properties, and the host pulpal responses. In direct pulp capping the ultimate goal is
to preserve the underlying pulp and maintain pulp vitality by regenerating reparative dentin
at the MPC, which functions as a “biological seal” to protect the underlying pulp tissues, to
increase the life expectancy of the tooth, and to improve the overall oral health. A successful
pulp capping procedure can avoid more invasive and expensive dental treatment such as root
canal therapy. Therefore, it is important to optimize direct pulp-capping techniques, improve
biocompatibility of the materials, and enhance biological responses of the pulp tissues in
order to maximize regeneration of reparative dentin.

Here, we will discuss the current status of different types of direct pulp-capping materials
with specific focuses on CH and HCSCs due to their extensive clinical utilization and
substantial amounts of available studies. We will then attempt to delineate molecular
mechanisms by which reparative dentin forms based on the common properties of these
pulp-capping materials, as well as known bone-grafting materials. Finally, we will suggest
possible roles of calcium ions (Ca2*) in the formation of mineralized tissues including
reparative dentin and bone.

II. CLINCAL PERSPECTIVES: PULP-CAPPING MATERIALS IN PULPAL

THERAPY

1) Calcium hydroxide (CH)

CH was first introduced to the dental profession in 1920s, and has long been recognized as
the gold standard pulp-capping material 6-8. Early clinical studies including over 2,300 cases
of direct pulp capping showed 80-90% success rate 6. Recent review of literature revealed
that the overall success rates, as mostly determined by an asymptomatic tooth without
radiographic lesions, fall between 68.5%-80.1% within a two-year follow-up period but
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drops to 58.7-76.3% after ten years %12, As such, the use of CH as a direct pulp-capping
material is frequently performed (Figure 1).

One of the most clinically relevant functions of CH is the facilitation of reparative dentin
formation. Histological studies of pulp-capped teeth revealed a thin layer of coagulation
necrosis in the pulp due to the irriation from high pH 1314, Mild inflammation, cellular
debris and calcium-protein granules were observed below the superficial necrotic layer onto
which the eventual dentin bridge formed. While detailed mechanisms remain elusive, the
superficial necrosis was believed to be vital for initiation of dentin-bridge formation 7:14-16,
It was also suggested that CH facilitates reparative dentin formation through the creation of
an alkaline environment and an increased availability of calcium ions 7:14.17:18,

However, there are several disadvantages. CH dressings dissolve clinically within 1-2

years 1920 The susceptibility to dissolution by acid and tissue fluid presented a problem
during subsequent acid-etch resin restoration 21. CH lacks inherent adhesion to dentin, but in
newer formulations, may bind to dentin via urethane dimethacrylate, which also partially
adds resistance to acid dissolution 22. The most prominent issue with CH is that 89% of
dentin bridges formed contained tunnel defects 2923, Considering that the dissolution of the
dressing leaving a void beneath the restoration, these “tunnel defects” present a high risk for
microleakage, leading to bacterial reinfection, persisting pulpal inflammation and necrosis.
These disadvantages may potentially be linked to notable variation in outcomes and a
decrease in clinical success rate over follow-up time 210, Consistent with such notions,
numerous studies reported that the success rate of pulp capping with CH varies significantly,
ranging from 13 to 95% 2426,

In summary, CH remains favored by practitioners for pulpal therapy due to its excellent
antimicrobial activity and capacity to form reparative dentin. However, tunnel defects and
progressive dissolution compromise the integrity of reparative dentin, and these shortfalls
call into questions about the use of CH as a long-term pulp therapeutic agent.

calcium-silicate cements (HCSCs)

Mineral trioxide aggregate (MTA), a prototype HCSC, was first introduced in early 1990s by
Torabinejad and his coworkers 27:28, |t was initially recommended as a root-end filling
material but subsequently used in various clinical applications such as pulp capping,
pulpotomy, apexogenesis, apical barrier formation, and repair of root perforations 29. The
main composition of MTA is tricalcium silicate, dicalcium silicate, tricalcium aluminate,
bismuth oxide and calcium sulfate dehydrate. MTA is hygroscopic; its setting requires and is
not adversely affected by the presence of water 39, which is a central and unique advantage
that contrasts with existing dental materials.

Increasing lines of evidence support a notion that MTA confers superior clinical outcomes.
Although some reports showed insignificant clinical outcomes with MTA when compared to
CH 31, other clinical studies showed more favorable success rates with MTA than

CH 12:32-34 | some of these studies, the success rates of direct pulp capping using MTA
have been reported to exceed more than 90% 35-37. In addition, success rates seem to be
maintained over long follow-up periods with MTA 333738 'which was different from CH’s
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showing time-dependent decline in success rates 3940, Therefore, more pulp capping
procedures are being performed using HCSCs (Figure 2).

The superior clinical outcomes of MTA are attributed to its physical properties: flexural
strength, compressive strength, and push-out strength as well as antimicrobial effect,
radiopacity, dimensional stability, and tolerance to moisture 4. In addition, MTA has shown
to have better sealing properties 3942, biocompatibility 4344 and osteogenic/odontogenic
differentiation capacity 4246, As the type of pulp capping material was shown to be the
single most important factor influencing the pulpal survival rate among others 34, these
properties contribute to its favorable clinical outcomes.

Similar to other biomaterials, however, MTA displays some limitations: discoloration, long
setting time, difficulty in manipulation, and high cost 2°. A long setting-time (e.g., 2 h
45min) is one of the major drawbacks of MTA, which may delay the completion of the
treatment in a single appointment in the clinic. Indeed, the prototype MTA requires
temporization of the tooth to achieve the proper hardness before final restoration, which
creates another potential problem of microleakage or reinfection while the temporary is in
place #7. Discoloration is another major drawback especially when it is used on the anterior
teeth, requiring additional treatment such as bleaching 8. A tooth-colored white MTA was
developed to overcome this limitation; however, unexpected tooth discoloration has also
been reported by this white MTA 49:50, Furthermore, handling of MTA is another challenge
for clinicians, which potentially discourages its routine use in clinical applications.

Since the expiration of the MTA patent in 2013, a number of different HCSCs were
introduced. Similar to MTA, these materials share common physicochemical and
biocompatible properties but are claimed to have improved characteristics 1. For example,
Biodentine (Septodont, Saint-Maur-des-Fosses, France) and Endocem (Maruchi, Wonju,
Korea) are fast-setting HCSCs with the setting time of 12 min and 4.5 min, respectively.
Biodentine has a shortened setting time with the addition of a setting accelerator (CaCl,) and
the removal of the liquid component 2, whereas Endocem has small particle sizes that
increase surface contact with water, resulting in fast setting and ease of manipulation 53,
Another improvement is the replacement of the opacifier with bismuth oxide to zirconium
oxide 455, Because bismuth oxide causes MTA discoloration after light irradiation in an
oxygen-free environment %6, the zirconium oxide-containing HCSCs, such as Endocem,
RetroMTA (BioMTA, Seoul, Korea), Biodentine and Endosequence (Brasseler USA,
Savannah, Ga.) are suggested as better choices for esthetic reasons. Additional improvement
includes better handling properties; Endosequence (Brasseler USA, Savannah, Ga.) is a
premixed, ready-to-use syringeable paste that is condensable, which make them user-
friendly with an ease of handling and application. It also has a demonstrated strength and
biologic effect similar to MTA 7.

Despite the rapid increase in newly developed HCSCs with multiple modifications in their
compositions, there are insufficient studies to experimentally support whether they are
superior or even comparable alternatives to MTA. Although HCSCs are evidently promising
for pulp-capping materials, more clinical, pre-clinical, and molecular studies are needed to
define the clinical efficacy for regenerating the pulp for reparative dentin formation.
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Emdogain is an enamel matrix derivative (EMD) product extracted from the Hertwig’s root
sheath during porcine tooth development. Originally developed to promote regeneration of
periodontium %8, Emdogain has been proposed in several recent studies as a potential pulp
capping material °%89. Amelogenins, the major components of EMD, can mimic epithelial-
mesenchymal interactions by triggering the release of various growth factors and cytokines
such as BMP and TGF-B, which in turn promote differentiation of mesenchymal stem cells
in the pulp into odontoblast-like cells 61:62, |n addition, EMD may also enhance dentin
mineralization since osteoblast-like cells reportedly upregulate mineralization-inducing
genes upon treatment with Emdogain 3. In the context of pulp capping, EMD may facilitate
formation of thicker reparative dentin barrier compared to CH, as was indeed proven in
several animal studies 64.65. However, with the limited number of human studies available,
the efficacy of Emdogain is debatable in comparison to CH %6-68_ A blinded randomized
clinical study on experimentally exposed human pulp showed ineffective hard tissue barrier
formation by Emdogain, although post-operative symptoms were less frequent compared to
CH 67, More pulpal inflammation was also associated with Emdogain treatment. Two other
studies on primary teeth %8, and partial pulpotomy in permanent teeth 66 failed to establish
superiority of reparative dentin formation by Emdogain. Of note, these studies consisted of a
limited sample size (<45 subjects) and short follow-up period (3—12 months). Hence, the
clinical efficacy and safety of Emdogain as a pulp capping material is inconclusive at best
and requires further investigation.

4) Growth factors and matrix-derived proteins

Since the turn of the century, several bioactive materials for pulp capping alternatives have
been proposed and have been reviewed elsewhere . Growth factors (BMPs, IGF-1, EGF,
FGF, TGF, PDGF-BB) and matrix-derived proteins (BSP) may stimulate reparative dentin
formation that is comparable or even superior to CH, but appropriate delivery carrier and
dosage need to be considered for controlled reparative dentin regeneration. The limited half-
life also necessitates the need for multiple applications, which may incur high cost. As such,
studies for efficacies of these bioactive molecules in pulp capping remain to be determined
in the /n vitro and animal study stages.

lll. MOLECULAR PERSPECTIVES: COMMON PROPERTIES OF PULP-

CAPPING

MATERIALS

Pulpal wound healing including reparative dentin formation is a multi-factorial, complex
process that is orchestrated by discrete but overlapping steps of migration, proliferation, and
mineralization of pulp cells 70. Unlike reactionary dentin, which is formed by existing
odontoblasts, reparative dentin is formed by odontoblast-like cells presumably differentiated
from DPSCs when the pulp becomes exposed and the existing odontoblastic layers are
breached. At the cellular level, these DPSCs are expected to migrate to and proliferate on the
MPC, ultimately undergoing odontogenic differentiation to form reparative dentin.

Although both CH and HCSCs are thought to be odontoconductive by functioning as
scaffolds for proper execution of these processes by DPSCs, clinical and molecular studies
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suggests evidently that they are also odontoinductive such that these materials can stimulate
DPSCs to undergo odontogenic differentiation and mineralization. Therefore, identifying the
factors released from pulp-capping agents that regulate DPSCs to form reparative dentin and
defining the fundamental molecular mechanisms by which DPSCs respond to these pulp-
capping agents are critically important for regenerating reparative dentin and creating a
“biological seal.”

As was discussed previously, there exist a number of pulp-capping materials that are
clinically proven to induce reparative dentin formation in human. Based on this historical
evidence, some of the properties are suggested to play key roles in regenerating reparative
dentin. These properties include:

1. high pH,
2. anti-bacterial activity, and
3. calcium ion release.

Alkaline environment (high pH) is known to promote osteogenic differentiation and bone
formation 71:72. Conversely, acidic environment is demonstrated to inhibit bone

formation 3. Alkaline phosphatase, an important enzyme in initiating calcification, allows
for the increase in local concentration of inorganic phosphate at an alkaline pH 74. Because
CH is a water-soluble compound that dissolves upon contact with tissue fluid and releases
hydroxyl anions (OH™) to increase pH to 12-13, it was suggested that such alkaline pH
attributes to reparative dentin formation by CH 7>~77. Similarly, HCSCs were also
demonstrated to create a high-pH environment as the end product of the chemical reaction is
CH 78—80_

Although an alkaline environment is essential for creating an osteoinductive environment,
mineralization is highly sensitive to pH change; alkaline phosphatase activity peaks at pH
7.37 and significantly diminished above this physiologic level 73. Furthermore, pH above 8.0
was shown to inhibit mineralization process both 7 vitro and in vivo 8182, Because
measuring the precise pH at or around the interfaces between pulp-capping materials and
pulp tissue is technically challenging, further investigation is needed to clarify the actual
effects of high pH on reparative dentin formation /in vivo.

2) Anti-microbial activity

One of the clinical advantages of CH as a pulp medicament largely derives from its
antimicrobial activity due to OH™ release (pH up to 12.5). The highly reactive hydroxyl
radicals along with the raised pH can cause damage to the cytoplasmic membrane and DNA
of bacterial microorganisms 8384, In addition, the high pH may also provide anti-
inflammatory effect, via denaturation of proinflammatory cytokines 8 and stimulation of
regulatory 1L-10 86, Sustained attenuation of bacterial irritation and inflammatory response
in turn may provide a conductive environment for reparative dentin formation. However,
such effects are indirect; the removal of bacterial organisms does not actively contribute to
reparative dentin formation. Therefore, it remains to be elucidated whether anti-microbial
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activity of the dental pulp-capping materials is a molecular determinant in reparative dentin
formation.

3) Calcium ions (Ca?*)

Although Ca%* is one of the major constituents released by both CH and HCSCs 7887, the
role of Ca2* in reparative dentin formation is largely underexplored. An earlier study
demonstrated that, when CH with radiolabeled Ca2* was used as a direct pulp-capping
material on pulp-exposed teeth in dogs, radiocalcium was not found in the reparative dentin
area, suggesting that Ca2* necessary for formation of reparative dentin matrix itself is not
derived from CH but from the pulp 8. However, emerging evidence supports a notion that
Ca?* plays indispensable roles not only in formation of mineralized matrixes but also in
transduction of the intracellular signaling pathway that are involved in maintaining and
regulating normal biological processes 899, Indeed, recent studies suggested that Ca2*
released from biomaterials is one of the key factors mediating mineralization process /87
and that Ca2* released from pulp-capping materials may be an active component in
reparative dentin formation.

Unlike its role in dentin formation, Ca2* in bone formation is well documented. High
amounts of extracellular Ca2* induced expression of alkaline phosphatase (ALP),
osteocalcin (OC) and osteopontin (OP) in pre-osteoblast cells 91.92, Furthermore,
extracellular Ca2* also induced osteoblast differentiation and mineralization both /n vitro
and 7n vivo 9% indicating that Ca2* alone has a de novo characteristic to induce
osteogenic differentiation.

To enhance bone formation /in vivo, biomaterials such as hydroxyapatite (HA), tricalcium
phosphates (TCP), or biphasic calcium phosphates (BCP), a mixture of HA and TCP, are
frequently used as scaffolds for bone grafting %6. Although these materials are known to be
osteoconductive in nature by serving as scaffold for bone growth, they are also suggested to
be osteoinductive; these materials by themselves actively stimulate differentiation of pre-
osteoblastic cells to osteoblasts and formation of new bone 97:98, Interestingly, all of these
materials are highly enriched with Ca2* 99, and their capacity to induce bone formation
seems to differ depending on the amount of Ca2*. Indeed, Ca/P ratio of TCP is 1.67 when
that of HA is 1.5, and TCP is capable of releasing more Ca2* than HA 190, Furthermore,
Barradas et al. demonstrated that TCP induces more bone formation than HA both /n vitro

and /n vivo, and such difference is primarily attributed to high solubility of TCP to release
Ca2+ 101

Similar to osteoblasts, extracellular CaZ* also induce odontogenic differentiation of dental
mesenchymal cells. Ca2* treatment alone induced osteogenic gene expression, such as
osteopontin and BMP2 in dental pulp cells 102.103 Mizuno er a/. also showed that Ca2*
released from CH stimulated fibronectin gene expression in dental pulp cells, a mechanism
that may induce differentiation of these cells to become mineralized tissue forming cells 104,
Elevated Ca2* is also known to stimulate differentiation and mineralization of other dental
mesenchymal cells such as cementoblasts by increasing fgf-2 expression 105,
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At the molecular level, extracellular CaZ* level is detected by the calcium sensing receptor
(CaSR), a seven-transmembrane homodimer receptor that belongs to the C family of the G-
protein-coupled receptor superfamily. An activated CaSR elicits intracellular signaling
pathways that ultimately lead to migration, proliferation and differentiation of cells 106,
Recently, it was shown that CaSR mediates osteogenic differentiation and mineralization of
bone marrow mesenchymal stromal cells 107. However, the presence of CaSR in bone-
forming cells is controversial 198, and osteoblasts derived from CaSR-null mice remained to
possess osteogenic differentiation potential 109110 Further, another study demonstrated that
inhibition of CaSR further induced, rather than suppressed, Ca?*-mediated osteogenic
differentiation 111, suggesting that CaSR is dispensable in osteogenic differentiation and
mineralization.

Ca?* itself is an important intracellular signaling molecule, and there exist different types of
Ca?* channels that regulate intracellular Ca2* level 112, Among them, L-type voltage-gated
calcium channel was shown to be associated with Ca*-mediated osteogenic differentiation
and mineralization 113-116_ Similarly, recent studies showed that L-type calcium channel
plays a key role in differentiation of dental pulp stem cells and periodontal ligament

cells 111117 However, L-type voltage-gated calcium channel is a large transmembrane
multi-protein complex that mediates Ca2* influx in response to membrane depolarization via
voltage differences 112, As such, it remains to be elucidated as to how membrane
depolarization links to differentiation and mineralization of osteoblasts and odontoblasts.

Recent studies identified another class of calcium channel, Orail, that regulates intracellular
Ca?* level and Ca2*-mediated signaling pathway in most non-excitable cells 118, Orail is an
essential subunit of Ca2* release-activated Ca2* (CRAC) channel that mediates CaZ* influx
via the store-operated Ca2* entry (SOCE) mechanism. Although Orail is extensively studied
and characterized in immune cells 119, recent studies showed that it plays a critical role in
mediating bone formation. In particular, Orail-null mice exhibited osteoporotic phenotypes,
and disruption of Orail function in osteoblasts suppressed osteogenic differentiation and
mineralization 120-122_ Similarly, Sohn et a/. recently demonstrated that Orail also plays an
indispensable role in odontogenic differentiation and mineralization 123, When Orail was
knocked down in dental pulp stem cells (DPSCs), these cells exhibited not only incompetent
Ca?* influx (Fig. 3) but also inability to undergo odontogenic differentiation and
mineralization as demonstrated by alkaline phosphatase staining and activity as well as
alizarin red staining (Fig. 3). More importantly, transplantation of DPSCs harboring Orail/
E106Q, a dominant negative form of Orail, caused no formation of mineralized nodules /n
vivo, indicating that Orail is required for odontogenic differentiation and mineralization
both /n vitro and in vivo. Further studies on the role of Orail in reparative dentin formation
warrant closer examination.

IV. FUTURE PERSPECTIVES AND CONCLUSIONS

Although a substantial numbers of clinical and molecular studies support the use of CH and
HCSCs for direct pulp capping, achieving clinically successful outcomes in a reproducible

and reliable manner still requires more investigations. Such shortfalls may be due, in part, to
the lack of thorough understanding in the fundamental mechanisms of pulpal wound healing
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and reparative dentin formation. Many pulp-capping animal models were previously used to
better understand the mechanisms of reparative dentin formation 124-126: however, pulp-
capping studies in large animals are usually observational in nature. For this reason,
transgenic or knockout mice that have an overexpressed or deleted gene of interest in an
inducible and cell-type specific manner would help in expediting our understanding in
reparative dentin formation at the molecular level (Figure 4) 127:128,

Due to the favorable clinical outcomes with the prototype MTA, its derivative products are
widely available with modifications to their compositions. Nonetheless, their relative
efficacy, or even their toxicity, is still far from complete understanding. Further comparative
studies on validating and standardizing the effects of different HCSCs also warrant closer
examination.

CH and HCSCs are odontoconductive by functioning as scaffolds onto which DPSCs
migrate, proliferate, and differentiate to form reparative dentin. Clinical and preclinical
studies support a notion that they are also odontoinductive as they also stimulate DPSCs to
form reparative dentin. It would be beneficial and effective to incorporate bioactive materials
as one of their constituents to further potentiate odontoconductive and odontoinductive
properties of the pulp-capping materials.

Historically, CH has been used as a pulp-capping material, and its efficacy has proven to
protect the exposed pulp based on clinical experiences for many decades. Recently
introduced HCSCs have increasingly gained popularity due to improved physical and
chemical properties to enhance reparative dentin formation. Nonetheless, many practitioners
still prefer complete removal of the pulp once exposed rather than pulp-capping placement,
primarily due to apprehension that they would be perceived as an “incompetent dentist” for
the unsuccessful outcomes and multiple subsequent visits should the pulp capping fails.
Because successful direct pulp capping is largely dependent on operator technique, material
properties, and the host pulpal responses, it is important to recognize the importance of, and
to optimally maximize the merits of each component so that reparative dentin can be
regenerated in a predictable and reproducible manner. In this regard, more studies are
needed at the clinical, preclinical, and molecular levels to improve each component.
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KEY POINTS

Direct pulp capping is often performed on the exposed pulp after deep
caries removal in order to induce reparative dentin, a physical barrier
that functions as a “biological seal” to protect the underlying pulp
tissues and maintain pup vitality.

Although calcium hydroxide (CH) has been used as the “gold standard”
pulp-capping material for many decades, recently introduced hydraulic
calcium-silicate cements (HCSCs) such as mineral trioxide aggregate
(MTA) have increasingly gained popularity due to their superior
material properties that are biocompatible, odontoconductive, and to
certain degree, odontoinductive.

These pulp-capping materials confer capacity to induce reparative
dentin by providing an alkaline environment and anti-bacterial activity;
however, increasing lines of evidence support a notion that the release
of calcium ions (Ca2*) actively induces in reparative dentin formation
by eliciting intracellular Ca2* signaling pathways.

Among the intracellular Ca2* regulators, ORAI1 protein was recently
shown to have an indispensable role in odontogenic differentiation and
mineralization in dental pulp stem cells by regulating Ca2* influx.

Successful clinical outcomes of direct pulp capping depend on the
operator technique, the material properties, and the host pulpal
responses. Therefore, it is important to develop strategies that
maximize the efficacy of each component for regenerating reparative
dentin in a predictable and reproducible manner.
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Figure 1. Direct pulp capping on #18 using CH
(A) Pre-operative clinical photograph of #18. (B) OB preparation with exposed MB pulp

horn. (C) Dycal placement on the exposed pulp. (D) Fuji Lining LC placement as a liner
directly on the Dycal. (E) Fuji Il LC placed as a base on #18. (F) Composite restoration on
#18. (G) Pre-operative radiograph of #18. (H) Post-operative radiograph of #18. (1)
Periapical radiograph of #18 at follow-up after 2% years.
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Figure 2. Direct pulp capping on #14 using HCSCs
(A) DO preparation with exposed pulp. (B) Cotton pellet soaked with 3.5% NaOCI. (C)

Hemostasis achieved at the pulp-exposed area. (D) Placement of bioceramics on the exposed
pulp. (E) Fuji Plus placement as a base directly on the HCSCs. (F) Composite restoration on
#14. (G) Pre-operative radiograph of #14. (H) Post-operative radiograph of #14. (1)
Periapical radiograph of #14 at the follow-up after 1'% years.
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Figure 3. The calcium channel, Orail, plays an indispensable role in odontogenic differentiation
and mineralization

(A) Quantitative real-time polymerase chain reaction (QRT-PCR) of ORAI1 expression
following knockdown experiment in DPSCs, showing efficient suppression of ORAIL in
DPSC/ORAI1sh cells but not in DPSC/CTLsh cells. (B) Measurement of intracellular Ca2*
level in DPSCs, confirming inhibition of Ca2* influx when ORAI1 expression is suppressed
in DPSCs. (C) Alkaline phosphatase (ALP) staining of DPSCs following treatment with
basal medium (BM) and bone-forming induction medium (IM) for 5 days, demonstrating
inhibition of ALP activity important for odontogenic differentiation. (D) Alizarin red
staining of DPSCs following treatment with basal medium (BM) and bone-forming
induction medium (IM) for 14 days, demonstrating inhibition of odontogenic mineralization.
(E) Ectopic mineralized-tissue formation of DPSC/CTL cells but not DPSC/E106Q cells
harboring dominant negative form of ORAI1, demonstrating indispensable role of ORAI1 in
vivo. (F) Quantification of ectopic mineralized-tissue formation in vivo. (G) ALP staining of
a tooth prepared from Orail*/* and Orai1™~ mice. From Sohn S, Park Y, Srikanth S, et al.
The Role of ORAIL in the Odontogenic Differentiation of Human Dental Pulp Stem Cells.
Journal of Dental Research 2015;94(11); with permission.
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Figure 4. Schematic diagram of molecular mechanisms that govern reparative dentin formation
by CH or HCSCs at the MPC

CH and HCSC:s release hydroxyl group (OH™) and increase local pH at the MPC, creating
alkaline environment that induces anti-bacterial activity and potentially promotes
odontogenic mineralization. CH and HCSCs also release calcium ions (Ca2*), eliciting
intracellular signaling pathways that ultimately promote odontogenic differentiation and
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mineralization.
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