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Density functional theory method for twisted geometries with
application to torsional deformations in group-IV nanotubes

Hsuan Ming Yua, Amartya S. Banerjeea,∗

aDepartment of Materials Science and Engineering, University of California, Los Angeles, CA 90095,
U.S.A

Abstract

We present a real-space formulation and implementation of Kohn-Sham Density Func-
tional Theory suited to twisted geometries, and apply it to the study of torsional de-
formations of X (X = C, Si, Ge, Sn) nanotubes. Our formulation is based on higher
order finite difference discretization in helical coordinates, uses ab intio pseudopotentials,
and naturally incorporates rotational (cyclic) and screw operation (i.e., helical) symme-
tries. We discuss several aspects of the computational method, including the form of the
governing equations, d ils of the numerical implementation, as well as its convergence,
accuracy and efficiency properties.

The technique presented here is particularly well suited to the first principles sim-
ulation of quasi-one-dimensional structures and their deformations, and many systems
of interest can be investigated using small simulation cells containing just a few atoms.
We apply the method to systematically study the properties of single-wall zigzag and
armchair group-IV nanotubes in the range of (approximately) 1 to 3 nm radius, as they
undergo twisting. For the range of deformations considered, the mechanical behavior
of the tubes is found to be largely consistent with isotropic linear elasticity, with the
torsional stiffness, ktwist, varying as the cube of the nanotube radius. Furthermore, for
a given tube radius, ktwist is seen to be highest for carbon nanotubes and the lowest for
those of tin, while nanotubes of silicon and germanium are found to have intermediate
values of this quantity close to each other. We also describe different aspects of the vari-
ation in electronic properties of the nanotubes as they are twisted. In particular, we find
that akin to the well known behavior of armchair carbon nanotubes, armchair nanotubes
of silicon, germanium and tin also exhibit bandgaps that vary periodically with imposed
rate of twist, and that the periodicity of the variation scales in an inverse quadratic man-
ner with the tube radius. These examples highlight the utility of the proposed method
in the accurate and efficient computational characterization of important nanomaterials
from first principles.

Keywords: Kohn-Sham density functional theory, helical symmetry, cyclic symmetry,
nanotube, torsional deformations, strain engineering.
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1. Introduction

Over the past few decades, the synthesis and characterization of novel nanomaterials
and nanostructures has blossomed into a major scientific and technological endeavor [1–4].
Such materials are usually associated with shapes and structures that are quite different
from crystalline materials, and they often display properties that are radically distinct
from the bulk phase. Consequently, a variety of computational techniques employing
different physical theories have been developed over the years, to aid in their design and
discovery [5–9].

A defining feature of the aforementioned class of materials is that they are of limited
spatial extent along one or more dimensions. This often makes it possible to sustain
unusual and/or large modes of deformation in such systems, without incurring material
failure. Since a variety of material properties of nanostructures, including, e.g., optical,
electronic and transport behavior are often strongly coupled to distortions in the ma-
terial’s structure, engineering the response of these systems through the application of
mechanical strains constitutes an active and important area of scientific research today
[10–15]. In particular, inhomogeneous strain fields — such as those associated with over-
all torsion (i.e., twisting) or flexure (i.e., bending) of the nanostructure, as well as those
arising from localized deformations such as wrinkles or corrugations, have often been used
to elicit fascinating electro-mechanical responses in such systems [16–19]. A persistent
issue however, is that there appears to be a paucity of systematic and efficient computa-
tional techniques that can model these systems as they are undergoing such deformations,
especially from first principles. We view the current contribution as an important step
in addressing this gap in the literature and present a real-space formulation and imple-
mentation of Kohn-Sham Density Functional Theory (KS-DFT) that is suited to twisted
geometries.

Systems associated with intrinsic twist are quite common among nanomaterials, with
chiral carbon nanotubes [20], nanocoils [21] and inorganic nanoassemblies [22] constituting
well known examples. Twisting is particularly relevant as a mode of deformation for quasi-
one-dimensional systems such as nanotubes, nanoribbons, nanowires and nanorods [23],
and can be an important route to engineering the properties of these materials through
the imposition of strain. In particular, imposition of twist naturally gives rise to so-called
helical potentials in achiral nanostructures, which can then cause these materials to dis-
play unusual transport properties and fascinating light-matter interactions [24]. Twisted
geometries also have found relevance recently in the context of quasi-two-dimensional
systems such as graphene bilayers [25–28], which are associated with strong electronic
correlations and superconductivity, as well as the use of screw dislocations to engineer
growth processes [29–31]. We anticipate that the simulation technique discussed in this
work will have broad relevance to most of the materials systems described above, while
being particularly consequential for the computational study of quasi-one-dimensional
systems and their deformations, from first principles.

The vast majority of first principles calculations being carried out today use KS-
DFT, as implemented using the pseudopotential plane-wave method [32–35]. While this
is a powerful computational technique for the study of periodic systems (such as crys-
tals) and their homogeneous deformations, it is fundamentally unsuitable for modeling
systems subjected to inhomogeneous strain fields (such as those associated with bend-
ing or torsion), that break periodic symmetry. Indeed, modeling such systems by use
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of the plane-wave method can result in the use of uncontrolled approximations and/or
performance and convergence (with respect to discretization parameters) issues that can
render the calculations infeasible. For example, plane-wave calculations of a quasi-one-
dimensional system that is undergoing twisting (Figure 1) will usually involve making
the system artificially periodic along the direction of the twist axis — thus resulting in
a supercell containing a very large number of atoms, as well as the inclusion of a sub-
stantial amount of vacuum padding in the directions orthogonal to the twist axis, so as
to minimize interactions between periodic images. Together, these conditions can make
such calculations extremely challenging even on high performance computing platforms,
if not altogether impractical.

Application of twist

Application of twist

Axis of twist

Figure 1: Depiction of a prototypical twisted geometry — a nanotube being subjected to torsional
deformation. Two views are shown.

It has been pointed out in the literature however, that the aforementioned computa-
tional issues related to the study of twisted or bent nanostructures can be avoided by
making use of the connections of such inhomogeneous strain states with non-periodic
symmetries [23, 36–44]. Specifically, as long as edge effects are unimportant in a system
under study, cyclic symmetries can be used to simulate bent nanostructures, while he-
lical symmetries can be used to simulate systems with twist. A key ingredient for such
an approach is the availability of efficient computational methods that can adequately
handle such non-periodic symmetries. Following this line of thought, we have been devel-
oping systematic first principles simulation techniques suited to the study of systems with
non-periodic symmetries [45]. In particular, we have developed ab initio methods that
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explicitly incorporate cyclic symmetries, and used this methodology to simulate bending
in nanoribbons [46] and sheets of two-dimensional materials [47]. More recently, we have
rigorously formulated and implemented a novel first principles computational technique
that explicitly accounts for helical symmetries [48]. We view the present contribution
as a follow up of this most recent development, and focus on the computational and
application aspects of the simulation technique in this work, in contrast to our earlier
contribution, which was largely concerned with the mathematical aspects. In particular,
salient features of the current contribution are as follows. We present in this work a
self-contained, intuitive derivation of the governing equations for systems associated with
twisted geometries and make connections with helical symmetries, while also allowing for
the possibility that such systems may have inherent cyclic symmetries. We describe the
details of our computational strategy, including discretization choices in real and recip-
rocal space, numerical linear algebra issues and choice of eigensolvers. We touch upon
specific aspects of our MATLAB based numerical implementation. We then discuss var-
ious features of the simulation method, including its convergence, accuracy, consistency,
computational efficiency and parallel scaling properties. Finally, we apply the method to
the study of torsional deformations of an important class of nanomaterials (i.e., nanotubes
from Group IV of the periodic table1) and investigate the electro-mechanical response of
these systems. Notably, the present contribution subsumes our earlier work on KS-DFT
for cylindrical geometries [47], and many of the results in that former contribution can
be derived as special cases of the results presented here for twisted geometries (by con-
sidering simulations with zero twist). Together, the present contribution, and our earlier
body of work extends symmetry adapted molecular dynamics and tight-binding based
computational methods developed in the literature for studying bent and/or twisted
nanomaterials, to the realm of first principles calculations.

The numerical technique described here employs finite difference discretization in heli-
cal coordinates2 which allows us to set up a computational domain in an annular region of
space. In turn, this enables us to carry out simulations of systems associated with twisted
geometries, while employing small unit cells containing just a few atoms. With this setup
in hand, we were able to carry out an extensive series of simulations involving zigzag and
armchair nanotubes of carbon, silicon, germanium and tin, with radii approximately in
the range of 1 to 3 nanometers. This enabled us to compare and contrast the properties
of these different materials, and also allowed us to extend some well-known qualitative
and quantitative features of the electro-mechanical properties of carbon nanotubes, to the
broader class of Group IV nanotubes. We would like to point out that these studies would
not have been possible without the use of a specialized computational method such as the
one presented here. We anticipate that the rich repository of simulation data produced
by our method can be utilized for the development of efficient, accurate, interpretable
machine learning models [55], in the near future.3

1In modern IUPAC convention this group is also referred to as Group 14. Elsewhere, this group is
also referred to as Group IVa or the Carbon group.

2We are aware of chemistry literature based on Linear Combination of Atomic Orbitals (LCAO)
methods [49–54], which have explored the use of helical and cyclic symmetries for studying nanostructures
of interest. The connection of such symmetries with deformation modes in nanostructures does not appear
to have been explored by these authors, as far as we can tell, and at any rate, these methods are quite
distinct from the real space technique presented here.

3After the submission of this manuscript, we were made aware of recent work [56] wherein the tech-
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The rest of this work is organized as follows. We derive the governing equations of
our method in Section 2. We discuss implementation aspects in Section 3. Results from
the computational method are presented in Section 4. Finally, Section 5 summarizes the
work and mentions ongoing and future research directions.

2. Formulation

In this section, we describe our formulation of Kohn-Sham density functional theory
for twisted geometries. We first lay out the notation used in the rest of the paper. In
what follows, eX, eY, eZ will denote the standard orthonormal basis of R3. The Cartesian
coordinates of a point p ∈ R3 will be denoted as (xp, yp, zp), i.e., x = xp eX+yp eY+zp eZ.
The corresponding helical coordinates (introduced later in Section 3.1) and cylindrical
coordinates of the point will be denoted as (rp, θ1p, θ2p) and (rp, ϑp, zp) respectively.
The coordinates of a generic point will be denoted as (x, y, z), (r, θ1, θ2) and (r, ϑ, z)
in Cartesian, helical and cylindrical coordinates respectively. Vectors and matrices will
be denoted in boldface, with vectors typically denoted using lower case letters (e.g., p)
and matrices using uppercase (e.g. Q). The symbol · will be often used as a generic
placeholder instead of specifying a variable explicitly (e.g. f(·) instead of f(x) or f(y)).
The notation L2(Ω) will be used to denote the space of square integrable functions over a
domain Ω. The inner product over such a space will be denoted as 〈·, ·〉L2(Ω). An overbar
will be used to denote complex conjugation (e.g. f(x)). Finally, |·| will be used to denote
the absolute value of a scalar, and ‖·‖ will be used to denote the norm of a vector or
function.

2.1. System specification: Computational domain, atomic configuration and symmetries
We consider a nanostructure aligned along eZ, the axis of twist, as the prototypical

system of interest. In order to avoid quantum finite-size effects and/or mechanical con-
straints at the edges due to the imposition of twist [40, 57] , we will assume that the
structure is infinite in extent along eZ. For the sake of simplicity, we will also assume
that the structure is of limited spatial extent along eX and eY, i.e., it is a quasi-one-
dimensional system. The large majority of nanomaterials for which twisted geometries
might be relevant as deformation modes, are included within the scope of the above set
of assumptions. These conditions imply that the system can be embedded in a cylinder
with axis eZ (or annular cylinder, if the system is tubular), of infinite height and finite
radius, and we will refer to this region of space as the global simulation domain.

For most quasi-one-dimensional systems of interest, the infinite extent along eZ is
related to periodicity along this axis. Additionally, for many such systems, including
for example, the tubular structures considered in this work, there may be rotational
symmetries about the same axis. Let the atoms of the untwisted structure have positions:

Suntwisted = {p1,p2,p3, . . .} . (1)

The above assumptions on periodicity and rotational symmetry imply that there is a
periodic group consisting of translations along eZ:

Gperiodic =

{(
I |mτ eZ

)
: m ∈ Z

}
, (2)

niques presented by us here as well as our earlier contribution [48] have been implemented into an efficient
C/C++ framework.

5



a cyclic group of order N about eZ (consisting of rotations through multiples of the angle

Θ =
2π

N
):

Gcyclic =

{(
RnΘ |0

)
: n = 0, 1, . . . ,N− 1

}
, (3)

and a finite collection of points:

P =
{
rk ∈ R3 : k = 1, 2, . . . ,M

}
, (4)

such that the entire structure Suntwisted can be described as the action of the composite
group:

Guntwisted =

{(
RnΘ |mτ eZ

)
: m ∈ Z, n = 0, 1, . . . ,N− 1

}
, (5)

on the points in P , i.e.,

Suntwisted =
⋃

Υ∈Guntwisted,
k=1,2,...,M

Υ ◦ rk =
⋃
m∈Z,

n=0,1,...,N−1
k=1,2,...,M

RnΘ rk +mτ eZ . (6)

In the above equations, a symbol of the form
(
Q | t

)
denotes an isometry with rotation

Q ∈ SO(3) and translation t ∈ R3. Its action on a point x ∈ R3 can be written as:(
Q | t

)
◦ x = Qx + t . (7)

Additionally, RnΘ denotes the following rotation matrix with axis eZ:

RnΘ =

cos(nΘ) − sin(nΘ) 0
sin(nΘ) cos(nΘ) 0

0 0 1

 ,Θ =
2π

N
, (8)

I denotes the identity matrix and 0 denotes the zero vector. The scalar 0 < τ < ∞ is
the fundamental period of the group Gperiodic. We will refer to the points in P as the
simulated atoms. We will use Zk to denote the valence nuclear charge of the simulated
atom located at position rk.

Now let us suppose that the structure Suntwisted is subjected to a uniform twist of 2πα
radians per τ bohr along the axis ez, so as to result in the structure Stwisted with the
atomic positions:

Stwisted = {q1,q2,q3, . . .} . (9)

Since we are dealing with structures that extend to infinity along eZ, we may obtain the
deformed (twisted) configuration by prescribing a mapping of the form q = R 2παzp

τ

p, to
the undeformed one. Here, α ∈ [0, 1) is a scalar twist parameter, τ can be re-identified
as the pitch of the twist, and β = 2πα

τ
, is the rate of twist. Furthermore,

R 2παzp
τ

=

cos(2παzp
τ

) − sin(2παzp
τ

) 0

sin(2παzp
τ

) cos(2παzp
τ

) 0
0 0 1

 =

cos(βzp) − sin(βzp) 0
sin(βzp) cos(βzp) 0

0 0 1

 , (10)
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denotes a rotation matrix with axis eZ for which the (twist) angle depends on the coor-
dinate along eZ. At the atomic level, this implies [23, 36, 48] that the deformed structure
may be obtained from the undeformed one by replacing the group of translations Gperiodic
used to generate Suntwisted, by a group of screw transformations (or helical isometries),
i.e.:

Ghelical =

{(
R2πmα |mτ eZ

)
: m ∈ Z

}
. (11)

Here R2πmα denotes the following rotation matrix with axis eZ:

R2πmα =

cos(2πmα) − sin(2πmα) 0
sin(2πmα) cos(2πmα) 0

0 0 1

 . (12)

In other words, by replacing the composite group Guntwisted with:

Gtwisted =

{(
R(2πmα+nΘ) |mτ eZ

)
: m ∈ Z, n = 0, 1, . . . ,N− 1

}
, (13)

we may generate the structure with the prescribed amount of twist as:

Stwisted =
⋃

Υ∈Gtwisted,
k=1,2,...,M

Υ ◦ rk =
⋃
m∈Z,

n=0,1,...,N−1
k=1,2,...,M

R(2πmα+nΘ) rk +mτ eZ . (14)

In the above equations, R(2πmα+nΘ) denotes the following rotation matrix with axis eZ:

R(2πmα+nΘ) =

cos(2πmα + nΘ) − sin(2πmα + nΘ) 0
sin(2πmα + nΘ) cos(2πmα + nΘ) 0

0 0 1

 . (15)

Note that in this formulation, the structure continues to maintain its cyclic symmetries
even after twisting. Also note that the formula in eq. 14 (and similarly, eq. 6) is meant
to be species preserving in the sense that an atom in the simulated set P has the same
atomic number as its images under the isometries in Guntwisted (or Guntwisted).4 Also note
that by virtue of the above definitions, the group Gtwisted serves as a physical symmetry
group for the structure Stwisted in the sense that the action of any Υ ∈ Gtwisted on all the
points in Stwisted leaves it invariant (and similarly for Guntwisted and Suntwisted).

The group Gtwisted will play a central role in the rest of this work. Note that this
group subsumes the group Guntwisted in the sense that the latter can be recovered by
simply setting α = 0 in the former. In what follows, we will simplify notation a bit and
simply use G to denote this group. Further, we will use the notation:

Υm,n =
(
R(2πmα+nΘ) |mτ eZ

)
, (16)

4More specifically, if the atom at qk ∈ Stwisted has atomic number Z, then the simulated atom at rk′
which satisfies qk = Υ ◦ rk′ for some Υ ∈ Gtwisted also has atomic number Z. Similarly also for Suntwisted
and Guntwisted.
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to denote group elements from G. The action of Υm,n on a generic point in space is to
rotate it about axis eZ by angle 2πmα + nΘ while also translating it by mτ along the
same axis.

In subsequent sections, we will describe how the Kohn-Sham problem for the entire
twisted structure as posed on the global simulation domain, can be appropriately refor-
mulated as a problem over a fundamental domain (or symmetry adapted unit cell), such
that only the simulated atoms and the symmetry group G are involved in the resulting
equations. This symmetry adapted computational domain has to be a regular region of
space with sufficiently smooth boundaries that encompasses the simulated atoms and can
be used to tile the global simulation domain by the action of the group G. Furthermore,
this region should be minimal in the sense that the above tiling operation should not
produce intersecting volumes. In the context of the twisted tubular structures consid-
ered in this work, if the simulated atoms have radial coordinates lying between Rin and
Rout, the following region serves as an appropriate fundamental domain (expressed using
cylindrical coordinates):

D =
{

(r, ϑ, z) ∈ R3 : Rin ≤ r ≤ Rout,
2παz

τ
≤ ϑ ≤ 2παz

τ
+ Θ, 0 ≤ z ≤ τ

}
. (17)

The boundaries of the fundamental domain defined above can be expressed as:

∂D = ∂Rin

⋃
∂Rout

⋃
∂ϑ0

⋃
∂ϑΘ

⋃
∂Z0

⋃
∂Zτ . (18)

Here ∂Rin and ∂Rout denote boundaries related to the radial direction (i.e., the surfaces
r = Rin and r = Rout respectively), ∂ϑ0 and ∂ϑΘ denote (z-dependent) bounding surfaces
related to the angular direction (i.e., ϑ = 2παz

τ
and ϑ = 2παz

τ
+Θ respectively), and finally,

∂Z0 and ∂Zτ denote boundaries related to the eZ direction (i.e., the surfaces z = 0 and
z = τ respectively). Note that for no applied twist, the region D is simply an annular
cylindrical sector, i.e.,

D α=0 =
{

(r, ϑ, z) ∈ R3 : Rin ≤ r ≤ Rout, 0 ≤ ϑ ≤ Θ, 0 ≤ z ≤ τ
}
, (19)

and the boundaries ∂ϑ0 and ∂ϑΘ are then vertical surfaces perpendicular to the eY − eZ
plane. Figure 2 shows two views of the fundamental domain used for the simulations
used in this work and also highlights the boundaries described above. In what follows,
we will formulate suitable versions of the equations of Kohn-Sham theory as posed on
the simulation cell D and also elaborate on the conditions that have to be applied on
the bounding surfaces that make up ∂D. Our derivation of the governing equations pre-
sented here is largely heuristic, and a more nuanced, mathematically rigorous discussion
is available in [48].

2.2. Governing equations
2.2.1. Helical Bloch theorem and block-diagonalization of Hamiltonian

As described above (eq. 14), the atomic positions of the twisted structure can be
described as the orbit of a discrete group of isometries (i.e., the group G). Due to the
presence of such symmetries in the system, it follows under fairly general hypotheses [45–
48] that the ground state electron density for such a system is invariant under the same
symmetry group. Furthermore, the Kohn-Sham Hamiltonian for the system commutes
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∂Zτ

∂ϑΘ

∂ϑ0

∂Rin

Rin

Rout

∂Z0

Θ

τ

eX eY

eZ

∂Rout

(a) Front view

Rin
Rout

Θ

∂Z0

∂Zτ

∂ϑΘ∂ϑ0

∂Rout

∂Rin

τ

eX

eY

eZ

(b) Top view

Figure 2: Illustration of the symmetry adapted unit cell or fundamental domain D (domain boundary
lines in blue) of the twisted structure. The region D also serves as the computational domain for the
calculations presented in this work. A few contained atoms as well as various bounding surfaces of the
domain are also shown. For a tubular structure, the parameter Θ = 2π/N relates to the cyclic symmetry
of the structure. The parameter τ is related to the pitch of the applied twist.

with the symmetry operations of the group [58, 59]. Consequently, the eigenstates of the
Hamiltonian can be labeled using irreducible representations of the group G, and they
transform under action of the group in the same manner as the irreducible representa-
tions themselves do [45, 48, 58, 59]. Since the group G is Abelian, results from group
representation theory[60, 61] imply that the complex irreducible representations are one
dimensional. These are the so called complex characters of G, which, keeping in mind
that G is the direct product of the groups Ghelical and Gcyclic, can be expressed as (for
m ∈ Z, n ∈ {0, 1, 2, . . . ,N− 1}):

Ĝ =

{
e2πi
(
mη+nν

N

)
: η ∈

[
− 1

2
,
1

2

)
; ν ∈

{
0, 1, 2, . . . ,N− 1

}}
. (20)

In other words, for each value of η ∈ and ν as defined above, the character ζ̂ ∈ Ĝ is

a complex valued map on the group5, that assigns the value e2πi
(
mη+nν

N

)
to the group

element Υm,n ∈ G. Since any character ζ̂ ∈ Ĝ can be labeled using the pair (η, ν),
these can be also used to label the eigenstates of the Kohn-Sham Hamiltonian, and
other quantities related to its spectrum. Accordingly, we will use λj(η, ν), ψj(x; η, ν)
and gj(η, ν) to explicitly indicate the labels for the eigenvalues, the eigenvectors, and
the electronic occupations, respectively. Collections of the eigenvalues, eigenvectors and

5Ĝ is often referred to as the dual group of G in the mathematics literature [60, 61].
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electronic occupations will be denoted using Λ, Ψ and G respectively, i.e.:

Λ =

{
λj(η, ν) : η ∈

[
− 1

2
,
1

2

)
; ν ∈

{
0, 1, 2, . . . ,N− 1

}
; j = 1, 2, . . . ,∞

}
,

Ψ =

{
ψj(·; η, ν) : η ∈

[
− 1

2
,
1

2

)
; ν ∈

{
0, 1, 2, . . . ,N− 1

}
; j = 1, 2, . . . ,∞

}
,

G =

{
gj(η, ν) : η ∈

[
− 1

2
,
1

2

)
; ν ∈

{
0, 1, 2, . . . ,N− 1

}
; j = 1, 2, . . . ,∞

}
. (21)

Mathematical properties of the characters and the above discussion lead to a number
of important considerations that are worth mentioning at this point. First, as a conse-
quence of the orthogonality relations obeyed by the characters [60, 61] the eigenstates
associated with distinct characters are orthogonal to each other. This can be used to
cast the Hamiltonian (which commutes with the symmetry operations in G) in a sym-
metry adapted basis [59], such that it appears block-diagonal [45, 48]. Since the blocks
associated with distinct characters can be dealt with independently of each other and are
of reduced dimension compared to the full Hamiltonian (within any finite dimensional
approximation, e.g.), this implies that the problem of diagonalizing the Hamiltonian is
greatly simplified. Second, the fact that the eigenstates of the Hamiltonian transform
under symmetry operations in the same manner as the characters, implies that they obey
a Helical Bloch theorem [45, 48, 57, 62], i.e., for any Υm,n ∈ G:

ψj(Υ
−1
m,n ◦ x; η, ν) = e2πi

(
mη+nν

N

)
ψj(x; η, ν) , (22)

or equivalently:

ψj(Υm,n ◦ x; η, ν) = e−2πi
(
mη+nν

N

)
ψj(x; η, ν) . (23)

These relations can be used to deduce the conditions that need to be applied to the
boundary surfaces of the fundamental domain while formulating the Kohn-Sham problem.
Finally, in order to write down quantities that depend on all eigenstates cumulatively,
we need to account for contributions from each ζ ∈ Ĝ. This amounts to integrating
the eigenstate dependent quantities against a suitable integration measure over Ĝ, i.e.,

by forming sums of the form
1

N

N−1∑
ν=0

, along with integrals in η. As an example, if we

intend to compute the sum of the occupation numbers over all the electronic states in
the system, we need to evaluate:

s =

∫
I

1

N

N−1∑
ν=0

∞∑
j=1

gj(η, ν) . (24)

Here and henceforth, I is used to denote the set
[
− 1

2
, 1

2

)
.

2.2.2. Electronic free energy functional and Kohn-Sham equations for twisted structure
In what follows, we will consider the (twisted) system of interest to be one in which

the effects of spin can be ignored, and for which the electronic temperature is set at Te.
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This implies that the electronic occupations can be expressed in terms of the Kohn-Sham
eigenvalues as:

gj(η, ν) = fTe

(
λj(η, ν)

)
, (25)

with fTe

(
·) denoting the Fermi-Dirac function, i.e.,

fTe(y) =
1

1 + exp
(
y−λF
kBTe

) . (26)

Here λF and kB denote the system’s Fermi level and the Boltzmann constant respectively.
In order to motivate the correct form of the various terms of the governing equations for
the twisted structure, we will often refer to the simpler, more well known expressions
of these quantities for finite (or isolated) systems. We will denote these finite system
relevant quantities (scalar fields, energies, etc.) with a ◦ superscript.

For a finite system [47, 63], the electron density can be expressed in terms of the
Kohn-Sham eigenvectors and the electronic occupations as:

ρ◦(x) = 2
∞∑
j=1

g◦j |ψ◦j (x)|2 . (27)

Following the discussion above, this expression has to be modified for our case as:

ρ(x) = 2

∫
I

1

N

N−1∑
ν=0

∞∑
j=1

gj(η, ν) |ψj(x; η, ν)|2 dη . (28)

Note that the factor of 2 in the expressions above is due to ignoring electronic spin.
Further note that due to the Helical Bloch conditions obeyed by the Kohn-Sham eigen-
vectors (eq. 23), the expression above is invariant under the symmetry operations in G,
as is required of the ground state electron density.
• Electronic free energy: To derive the governing equations of Kohn-Sham theory for

our system, we take recourse to an energy minimization approach [47, 48, 64]. The
relevant quantity in this case, since the system is of an extended nature, is the ground
state electronic free energy per unit fundamental domain. We denote this quantity here
as F(G,Ψ,P ,D,G) to emphasize its dependence on the electronic occupation numbers,
the eigenstates, the positions of the simulated atoms, the fundamental domain and the
symmetry group G. Within the pseudopotential [8, 65] and Local Density Approximations
[66], we may express it as:

F(G,Ψ,P ,D,G) = Tkin(G,Ψ,P ,D,G) + Exc(ρ,D) + K(G,Ψ,P ,D,G)

+ Eel(ρ,P ,D,G) − Te S(G) . (29)

The terms on the right-hand side of the above expression represent (per unit fundamental
domain) the kinetic energy of the electrons, the exchange correlation energy, the nonlocal
pseudopotential energy, the electrostatic energy and the electronic entropy contribution,
respectively. We now elaborate on each of these quantities.
• Kinetic energy: The first term on the right hand side of the expression above is the

electronic kinetic energy per unit fundamental domain. For an isolated system (placed in
11



R3), this term can be expressed [47, 63] in terms of the Kohn-Sham eigenstates and the
occupations as:

T ◦kin =
∞∑
j=1

2 g◦j 〈−
1

2
∆ψ◦j , ψ

◦
j 〉L2(R3) =

∞∑
j=1

2 g◦j

∫
R3

−1

2
∆ψ◦j (x)ψ◦j (x) dx . (30)

For the system at hand, this is modified to read:

Tkin(G,Ψ,P ,D,G) =

∫
I

1

N

N−1∑
ν=0

( ∞∑
j=1

2 gj(η, ν)
〈
−1

2
∆ψj(·; η, ν), ψj(·; η, ν)

〉
L2(D)

)
dη .

(31)

• Exchange-correlation energy: The second term represents the exchange correlation en-
ergy per unit fundamental domain and is expressible using the Local Density Approxi-
mation (LDA) [66] as:

Exc(ρ,D) =

∫
D
εxc[ρ(x)] ρ(x) dx . (32)

Note that the above formulation does not preclude the use of more sophisticated exchange
correlation functionals such as the Generalized Gradient Approximation [67]. Since the
use of such functionals has little bearing on the subsequent discussion, we do not consider
them further in this work.
• Nonlocal pseudopotential energy: The third term on the right hand side of eq. 29

represents the nonlocal pseudopotential energy per unit fundamental domain. For a
finite system consisting of M◦ atoms located at the points {r◦k ∈ R3}M◦k=1, the non-local
pseudopotential operator in Kleinman-Bylander form [68] can be written as:

V ◦nl =
M◦∑
k=1

∑
p∈Nk

γk,p χk,p(·; r◦k)χk,p(·; r◦k) , (33)

in terms of the projection functions {χk,p(·; rk)}Nkp=1 and the corresponding normalization
constants {γk,p}Nkp=1 associated with the kth atom (located at yk). The nonlocal pseudopo-
tential energy in that case has the form:

K◦ = 2
M◦∑
k=1

∑
p∈Nk

γk,p

∞∑
j=1

gj

∣∣∣∣〈χk,p(·; rk), ψ◦j (·)〉L2(R3)

∣∣∣∣2 (34)

To obtain the analogous expression for the twisted structure, we consider the contri-
butions from the atoms located within the fundamental domain and all the electronic
states in the system [48] to get the nonlocal pseudopotential energy per unit fundamental
domain as:

K(G,Ψ,P ,D,G)

= 2
M∑
k=1

∑
p∈Nk

γk,p

∞∑
j=1

∫
I

1

N

N−1∑
ν=0

(
gj(η, ν)

∣∣∣∣〈χk,p(·; η, ν; rk), ψj(·; η, ν)
〉

L2(C)

∣∣∣∣2) dη . (35)

12



Here, the overlaps of the orbitals with the atom centered projectors are carried out over
the global simulation domain C, since the latter can have support extending beyond the
fundamental domain. With the aid of the Helical Bloch Theorem (eq. 23) and by using the
properties of the projection functions χk,p, the integral implicit in the above expression can
be reduced to the fundamental domain [47, 48], so that a more computationally convenient
expression for the nonlocal pseudopotential energy per unit fundamental domain reads
as:

K(G,Ψ,P ,D,G)

= 2
M∑
k=1

∑
p∈Nk

γk,p

∞∑
j=1

∫
I

1

N

N−1∑
ν=0

(
gj(η, ν)

∣∣∣∣〈χ̂k,p(·; η, ν; rk), ψj(·; η, ν)
〉

L2(D)

∣∣∣∣2) dη . (36)

The functions χ̂k,p in the equation above can be expressed as:

χ̂k,p(x; η, ν; rk) =
∑
m∈Z

N−1∑
n=0

χk;p

(
Υm,n ◦ x; rk

)
ei2π(mη+nν

N
) . (37)

• Electrostatic interaction energy: The fourth term on the right hand side of eq. 29
represents the electrostatic interaction energy per unit fundamental domain. This in-
cludes the Coulombic attraction between the electrons and the nuclei, as well as the
mutual repulsion between the electrons themselves. To express this term, it is useful to
introduce the net electrostatic potential Φ, which also appears in the Kohn-Sham equa-
tions (as part of the effective potential). To see how this can be done, we consider first
a finite system placed in R3, with nuclei located at the points {r◦k ∈ R3}M◦k=1. For this
example system, the net electrostatic potential Φ◦, can be expressed in terms of the total
charge of the (finite) system as:

Φ
◦
(x) =

∫
R3

ρ
◦
(y) + b

◦
(y)

‖x− y‖R3

dy . (38)

Here, ρ◦ represents the electron density and bfinite represents the total nuclear pseu-
docharge. The latter can be expressed in terms of the individual nuclear pseudocharges{
bk(x; r◦k)

}M◦
k=1

as:

b◦(x) =
M◦∑
k=1

bk(x; r◦k) , (39)

Note that for each atom, the pseudocharge (typically a smooth, radially symmetric,
compactly supported function) integrates to its valence nuclear charge, i.e.,∫

R3

bk(x; r◦k) dx = Zk . (40)

The connection between the potential Φ◦ and the electrostatic interaction energy is that
we may express the latter as:

E ◦el = max
Φ̃◦

{
− 1

8π

∫
R3

|∇Φ̃◦|2 dx +

∫
R3

(ρ◦ + b◦) Φ̃◦ dx

}
+ E ◦sc(r

◦
1, r
◦
2, . . . , r

◦
k) , (41)

13



and the scalar field Φ̃
◦ which attains the maximum in the above problem is precisely the

one presecribed using eq. 38. Note that the constant term E ◦sc(r
◦
1, r
◦
2, . . . , r

◦
k) is added as

a correction for self-interactions and possible overlaps of the nuclear pseudocharges [69].
It is independent of Φ̃◦ and does not play a role in the above optimization problem.

With the above discussion in mind, we may now introduce the net electrostatic po-
tential for the twisted structure using the electron density (eq. 28) and the net nuclear
pseudocharge associated with the system, in a manner that is analogous to eq. 38, i.e.,

Φ(x) =

∫
C

ρ(y) + b(y,P ,G)

‖x− y‖R3

dy , (42)

The net nuclear pseudocharge at any point in the global simulation domain can be ex-
pressed using the pseudocharges of the atoms in the fundamental domain as:

b(x,P ,G) =
∑
m∈Z

N−1∑
n=0

M∑
k=1

bk(x; Υm,n ◦ rk) , (43)

Note that since the electron density is group invariant, as is the net nuclear pseudocharge
(by construction), the total electrostatic potential for the twisted structure is group in-
variant as well. Thus, it suffices to compute this quantity over the fundamental domain,
in addition to specifying boundary conditions that are consistent with the group invari-
ance of the function. Following eq. 41, we now write the electrostatic interaction energy
per unit fundamental domain as:

Eel(ρ,P ,D,G) = max
Φ̃

{
− 1

8π

∫
D
|∇Φ̃|2 dx +

∫
D

(
ρ(x) + b(x,P ,G)

)
Φ̃(x) dx

}
+ Esc(P ,G,D) . (44)

The scalar field Φ̃ which attains the maximum in the above problem, is the same one
specified in eq. 42. The constant (i.e., Φ̃-independent) term Esc(P ,G,D) accounts for
self-interaction corrections and possible overlaps between pseudocharges. We omit the
details of this term here for the sake of brevity, and cite references [46, 63, 69] for relevant
details.
• Electronic entropy: Finally, the last term on the right hand side of eq. 29 deals with

the contribution of the electronic entropy to the free energy. Using Fermi-Dirac smearing,
for a finite system at electronic temperature Te, the electronic entropy can be represented
:

S◦ = −2 kB

∞∑
j=1

g◦j log(g◦j ) + (1− g◦j ) log(1− g◦j ) . (45)

Analogously, the corresponding term for the twisted structure reads as:

S(G) = −2 kB

∫
I

[
1

N

N−1∑
ν=0

∞∑
j=1

gj(η, ν) log
(
gj(η, ν)

)
+
(
1− gj(η, ν)

)
log
(
1− gj(η, ν)

) ]
dη .

(46)

14



• Kohn-Sham Equations: With the expressions for the various energy terms in place,
we write the electronic ground-state energy for the twisted structure as the following
minimization problem:

FGround
State

(P ,D,G) = inf.Ψ,GF(G,Ψ,P ,D,G) , (47)

with the added constraints that:

1. the orbitals in Ψ are helical Bloch states, namely, they obey eq. 23 and are or-
thonormal over the fundamental domain for each ζ ∈ Ĝ, i.e.:

〈ψj(·; η, ν), ψj′(·; η, ν)〉L2(D) = δj,j′ , (48)

and,

2. the number of electrons per unit fundamental domain is a fixed number, i.e.,∫
D
ρ(x) dx =

2

N

N−1∑
ν=0

∫
I

∞∑
j=1

gj(η, ν) = Ne . (49)

The Euler-Lagrange equations corresponding to the above variational problem are the
Kohn-Sham equations for the twisted structure, as posed on the fundamental domain.
For j ∈ N, η ∈ I and ν = 0, 1, . . .N− 1, we may express them as:

HKS ψj(·; η, ν) = λj(η, ν)ψj(·; η, ν) , (50)

with HKS denoting the Kohn-Sham operator, i.e.:

HKS ≡ −1

2
∆ + Vxc + Φ + Vnl . (51)

Here, Vxc denotes the exchange correlation potential:

Vxc =
δExc(ρ,D)

δρ
= εxc + ρ

dεxc
dρ

, (52)

Φ (as introduced in eq. 42) denotes the net electrostatic potential arising from the elec-
trons and the nuclear pseudocharges, and obeys the Poisson equation:

−∆Φ = 4π
(
ρ+ b(·,P ,G)

)
, (53)

while Vnl denotes the non-local pseudoptential operator (specifically, its (η, ν) compo-
nent), and can be expressed in terms of the functions χ̂k,p (introduced in eq. 37) as:

Vnl =
M∑
k=1

∑
p∈Nk

γk,p χ̂k,p(·; η, ν;xk) χ̂k,p(·; η, ν;xk) (54)

Note that the use of eq. 53 in lieu of eq. 42 is preferable for practical calculations since
computationally inconvenient non-local integrals that appear in the latter equation are
avoided [47, 69–71]. Together, eqs. 50 - 54, along with eq. 48 and 49 form the governing
equations for our system and need to be solved self-consistently.
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2.3. Boundary Conditions
The unknown fields in the governing equations above are the orbitals ψj(·; η, ν) ∈ Ψ

and the electrostatic potential Φ. Since these fields are posed on the fundamental domain
D, we need to augment the governing equations with boundary conditions on the surfaces
that make up ∂D. By using the conditions in eq. 23 on the orbitals, and observing that
the symmetry operation Υ1,0 =

(
R2πα | τ eZ

)
maps ∂Z0 to ∂Zτ , while the operation

Υ0,1 =
(
RΘ |0

)
maps ∂ϑ0 to ∂ϑΘ, we arrive at:

ψj(x ∈ ∂Zτ , η, ν) = e−2πiηψj(x ∈ ∂Z0, η, ν) , (55)

ψj(x ∈ ∂ϑΘ, η, ν) = e−2πi ν
Nψj(x ∈ ∂ϑ0, η, ν) . (56)

Concurrently, since the net electrostatic potential is invariant under all symmetry oper-
ations in G, it obeys the boundary conditions:

Φ(x ∈ ∂Zτ ) = Φ(x ∈ ∂Z0) , (57)
Φ(x ∈ ∂ϑΘ) = Φ(x ∈ ∂ϑ0) . (58)

The above equations leave the boundary conditions on the surfaces ∂Rin and ∂Rout un-
specified. As far as the wavefunctions are concerned, we may enforce Dirichlet boundary
conditions on these surfaces, by appealing to the decay of the electron density along the
radial direction [47, 48]. This gives us:

ψj(x ∈ ∂Rin, η, ν) = ψj(x ∈ ∂Rout, η, ν) = 0 . (59)

On the other hand, the electrostatic potential Φ may not decay to zero quickly along the
radial direction. Therefore, it is more prudent to set Φ(x ∈ ∂Rin) and Φ(x ∈ ∂Rout) by
direct evaluation of eq. 42 by using a modified version of the Ewald summation technique
[72]. In practical calculations however, this correction may be sometimes ignored [48] in
favor of Dirichlet boundary conditions on those surfaces.

2.4. Other quantities of interest at self-consistency
At the end of the self consistent field iterations, a number of other quantities may

be computed from the converged electronic states. For instance, we may obtain a more
accurate estimate (i.e., one that is less sensitive to self-consistency errors) of the Kohn-
Sham ground state electronic free energy (per unit fundamental domain) by using the
Harris-Foulkes functional [73, 74] instead of eq. 29. This can be written for the twisted
structure, using quantities expressed over the fundamental domain as:

FHF(Λ,Ψ,P ,D,G) = 2

∫
I

1

N

N−1∑
ν=0

∞∑
j=1

λj(η, ν) gj(η, ν) dη + Exc(ρ,D)

−
∫
D
Vxc(ρ(x))ρ(x) dx +

1

2

∫
D

(
b(x,P ,G)− ρ(x)

)
Φ(x) dx

+ Esc(P ,G,D)− Te S(Λ) . (60)

Note that the first term on the right hand side of the above equation is the electronic
band energy.
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For ab initio molecular dynamics or structural relaxation calculations, atomic forces
need to be calculated. The Hellmann-Feynman forces on the atom located at rk in the
fundamental domain can be computed about the ground-state as:

fk = −∂F(G,Ψ,P ,D,G)

∂rk

∣∣∣∣
Ground
State

=
∑
m∈Z

N−1∑
n=0

(R2πmα+nΘ)−1

∫
D
∇bk

(
x; (Υm,n ◦ xk

)
Φ(x) dx− ∂Esc(P ,G,D)

∂rk

− 4
∞∑
j=1

(∫
I

1

N

N−1∑
ν=0

gj(η, ν)
∑
p∈Nk

γk;pRe.

{[∫
D
χ̂k,p(x; η, ν; rk)ψj(x; η, ν) dx

]

×
[ ∫
D
ψj(x; η, ν)

∂χ̂k,p(x; η, ν; rk)

∂rk
dx

]})
dη .

(61)

Note that since the forces are derivatives of a free energy which is invariant with respect to
the symmetry operations in G, it follows that the force on an atom Υm,n◦rk located outside
the fundamental domain can be evaluated in terms of the force on its counterpart in the
fundamental domain as (R2πmα+nΘ)−1fk [36]. Thus, to perform structural relaxations on
the twisted structure, it suffices to concentrate on the atoms in the fundamental domain
and drive their forces to zero.

Finally, the electronic density of states which often offers useful information about
the electronic properties of a material under study, can be computed at an electronic
temperature Te as [75]:

ℵTe(E) = 2

∫
I

1

N

N−1∑
ν=0

( ∞∑
j=1

f ′Te

(
E − λj(η, ν)

))
dη , (62)

with f ′Te
(·) denoting the derivative of the Fermi-Dirac function.

3. Implementation

We now discuss different numerical and computational aspects of the implementation
of the above methodology.

3.1. Use of helical coordinates
The equations in Section 2 above are expressed in a manner that do not make any ex-

plicit reference to a coordinate system. For numerical implementation purposes however,
it is useful to introduce a coordinate system that is commensurate with the geometry
of the twisted structure and the symmetries of the system. The helical coordinate sys-
tem, introduced in [45, 48] is well suited for these purposes. If a point p in the global
simulation domain C has Cartesian coordinates (xp, yp, zp) and cylindrical coordinates
(rp, ϑp, zp), then the corresponding helical coordinates (rp, θ1p, θ2p) are defined as:

rp =
√
x2
p + y2

p , θ1p =
zp
τ
,

θ2p =
1

2π
arctan2(yp, xp)− αzp

τ
=
ϑp

2π
− αzp

τ
. (63)
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The helical coordinates reduce to the usual cylindrical coordinates when the twist pa-
rameter of the system is 0 and the pitch τ is set to unity. The inverse relations:

xp = rp cos
(
2π(αθ1p + θ2p)

)
, yp = rp sin

(
2π(αθ1p + θ2p)

)
, zp = τ θ1p , (64)

map the helical coordinates of p to their Cartesian counterparts.
The coordinate transformations introduced above can be used to map the curvilinear

coordinate system associated with the twisted structure, to a rectilinear one in which
computations are simpler to set up. Specifically, the relations in eq. 64 above map the
cuboid (Rin, Rout) × (0, 1) × (0, 1/N) to the fundamental domain D. In particular, the
bounding surfaces of the fundamental domain can be described in helical coordinates as
r = Rin (for ∂Rin), r = Rout (for ∂Rout), θ1 = 0 (for ∂Z0), θ1 = 1 (for ∂Zτ ), θ2 = 0
(for ∂ϑ0) and θ2 = 1/N (for ∂ϑΘ). Furthermore, the symmetry operation Υm,n maps the
helical coordinates of a point p from (rp, θ1p, θ2p) to (rp, θ1p +m, θ2p + n

N
).

In order to express the equations in Section 2.2 in helical coordinates, we need the
the Laplacian operator, the Cartesian gradient and the integral of a function (over the
fundamental domain) expressed in helical coordinates. For a function f(r, θ1, θ2) these
take the form [48]:

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

τ 2

∂2f

∂θ2
1

− 2α

τ 2

∂2f

∂θ1∂θ2

+
1

4π2

(
1

r2
+

4π2α2

τ 2

)
∂2f

∂θ2
2

, (65)

∇f =

(
∂f

∂r
cos
(
2π(αθ1 + θ2)

)
− ∂f

∂θ2

sin
(
2π(αθ1 + θ2)

)
2πr

)
eX

+

(
∂f

∂r
sin
(
2π(αθ1 + θ2)

)
− ∂f

∂θ2

cos
(
2π(αθ1 + θ2)

)
2πr

)
eY

+

(
1

τ

( ∂f
∂θ1

− α ∂f
∂θ2

))
eZ (66)∫

x∈D
f(x) dx =

∫ r=Rout

r=Rin

∫ θ1=1

θ1=0

∫ θ2= 1
N

θ2=0

f(r, θ1, θ2) 2πτr dr dθ1 dθ2 . (67)

Upon expressing the Kohn-Sham orbitals as ψj(r, θ1, θ2; η, ν), the above expressions allow
the governing equations and boundary conditions to be expressed in helical coordinates
exclusively. For numerical implementation purposes however, it is convenient to work
with functions that are completely invariant under symmetry operations instead of being
invariant upto a Bloch phase, as the orbitals are. To this end, we write:

ψj(r, θ1, θ2; η, ν) = e−2πi(ηθ1+νθ2) uj(r, θ1, θ2; η, ν) , (68)

where the functions uj(r, θ1, θ2; η, ν) are group invariant. In terms of these auxiliary
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functions, the governing equations over the fundamental domain are:

− 1

2
∆uj(r, θ1, θ2; η, ν)− 2iπ

τ 2
(να− η)

∂uj(r, θ1, θ2; η, ν)

∂θ1

− 2iπ

(
α

τ 2
(η − να)− ν

4π2r2

)
∂uj(r, θ1, θ2; η, ν)

∂θ2

+

(
ν2

2r2
− 2π2

τ 2

{
να (2η − να)− η2

}
+ Vxc(r, θ1, θ2) + Φ(r, θ1, θ2)

)
uj(r, θ1, θ2; η, ν)

+ e2πi
(
ηθ1+νθ2

)
Vnl e−2πi

(
ηθ1+νθ2

)
uj(r, θ1, θ2; η, ν) = λj(η, ν)uj(r, θ1, θ2; η, ν) , (69)

− 1

2
∆Φ(r, θ1, θ2) = ρ(r, θ1, θ2) + b(r, θ1, θ2;P ,G) (70)

ρ(r, θ1, θ2) = 2

∫
I

1

N

N−1∑
ν=0

∞∑
j=1

gj(η, ν) |uj(r, θ1, θ2; η, ν)|2 dη , (71)

gj(η, ν) = fTe

(
λj(η, ν)

)
,

2

N

N−1∑
ν=0

∫
I

∞∑
j=1

gj(η, ν) = Ne (72)

The boundary conditions6 are:

uj(r = Rout, θ1, θ2; η, ν) = uj(r = Rout, θ1, θ2; η, ν) = 0 ,

uj(r, θ1 = 0, θ2; η, ν) = uj(r, θ1 = 1, θ2; η, ν) ,

uj(r, θ1, θ2 = 0; η, ν) = uj(r, θ1, θ2 =
1

N
; η, ν) . (73)

Φ(r = Rout, θ1, θ2) = φRout , Φ(r = Rin, θ1, θ2) = φRin ,

Φ(r, θ1 = 0, θ2) = Φ(r, θ1 = 1, θ2) ,

Φ(r, θ1, θ2 = 0) = Φ(r, θ1, θ2 =
1

N
) . (74)

3.2. Approximation of infinite series in governing equations
The governing equations as posed above, contain series sums over infinite numbers of

terms which need to be truncated for the purposes of numerical implementation. Such
infinite sums not only appear explicitly while summing over an infinite number of elec-
tronic states (eqs. 71, 72), but also implicitly in the calculation of quantities such as the
net pseudocharge (eqs. 70, 43) and the nonlocal pseudopotential operator (eqs. 69, 54,
37). We now describe our strategies for dealing with such quantities.

In order to truncate sums involving an infinite number of electronic states, we may
assume — as is commonly done in the literature [77, 78], that the electronic occupation
numbers decay to zero beyond the lowest Ns electronic states. In effect, this implies that
sums over the index j in equations 71 - 72 run from 1 to Ns (instead of 1 to∞), and that
a set of Ns eigenvalue problems for each value of η and ν, as posed in eq. 69, have to be
considered. In practical calculations when the electronic temperature is less than a few

6The use of Rin > 0 is well justified for tubes with large enough radii (based on wavefunction decay
effects or the nearsightedness principle [76], for example), such as the ones considered in this work. This
has the added benefit of being able to computationally avoid the coordinate singularities in the Laplacian
at the origin, without incurring any performance or accuracy issues.
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thousand Kelvin, the number of states Ns can be related to the number of electrons per

unit cell Ne as Ns =
⌈
cs ×

Ne

2

⌉
, with the constant cs chosen to be between 1.05 and 1.20

[78].
The infinite sums involved in calculation of the net pseudocharge and the non-local

pseudopotential operator both arise due to summations over individual atoms in the
fundamental domain, as well as their repeated images under the group G (eqs. 43, 54,
37). However, we observe that the functions being summed in these cases are always
centered about the atoms in question, and they have the property of being compactly
supported in a small spherical region of space around the atom (i.e., the functions bk(·)
in eq. 43 and χk;p(·) in eq. 37 all have this property). Thus, the contribution of such
terms to the fundamental domain is zero beyond a few terms of the series expressed in
eqs. 43 and 37, and the infinite summations in these expressions can be reduced to a set
of values of m and n that are near zero.7

3.3. Discretization Strategy
The equations above need to be discretized in real space (i.e., over the fundamental

domain D) as well as in reciprocal space (i.e., over the set Ĝ). We now describe our
strategies for addressing each of these issues.

3.3.1. Real space discretization of the fundamental domain
We use a higher order finite difference scheme [47, 48, 63, 64, 79–82] for real space

discretization. Since helical coordinates have the property of “unwrapping” the funda-
mental domain D to a cuboid, a convenient meshing of the computational domain can
be attained by choosing equispaced points in the r, θ1 and θ2 directions. Accordingly,
we choose Nr, Nθ1 and Nθ2 grid points along these directions (respectively), and observe
that the corresponding mesh spacings hr, hθ1 , hθ2 satisfy:

Nr hr = Rout −Rin , Nθ1 hθ1 = 1 , Nθ2 hθ2 =
1

N
. (75)

We will often refer to the quantity h = Max.
(
hr, τhθ1 , 2π

(
Rin+Rout

2

)
hθ2

)
as the overall

mesh spacing for a particular level of discretization. We index each finite difference node
using a triplet of natural numbers:

(i, j, k) ∈ {1, 2, . . . ,Nr} × {1, 2, . . . ,Nθ1} × {1, 2, . . . ,Nθ2} , (76)

and we use f (i,j,k) to denote the value a function f at the grid point i, j, k. The grid point
with indices (i, j, k) is associated with the radial coordinate ri = Rin + (i − 1) ∗ hr, θ1

coordinate θ1j = (j− 1) ∗ hθ1 and θ2 coordinate θ2k = (k− 1) ∗ hθ2 . The total number of
real space grid points is ND = Nr ×Nθ1 ×Nθ2 .

To discretize equations 69 - 72 using the finite difference scheme, we require expressions
for first and second order derivatives, as well as a quadrature rule to compute integrals

7This typically involves m = ±1,±2,±3, etc., from the helical symmetry operations, and n =
1, 2, 3,N− 1,N− 2,N− 3, etc. from the cyclic symmetry operations.
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over the fundamental domain (e.g., to evaluate the action of Vnl on a given function).
The expressions for the first order derivatives are:

∂f

∂r

∣∣∣∣(i,j,k)

≈
no∑
p=1

(
wfirst
p,r

(
f (i+p,j,k) − f (i−p,j,k)

))
,

∂f

∂θ1

∣∣∣∣(i,j,k)

≈
no∑
p=1

(
wfirst
p,θ1

(
f (i,j+p,k) − f (i,j−p,k)

))
,

∂f

∂θ2

∣∣∣∣(i,j,k)

≈
no∑
p=1

(
wfirst
p,θ2

(
f (i,j,k+p) − f (i,j,k−p))) . (77)

The expressions for the second order derivatives are:

∂2f

∂r2

∣∣∣∣(i,j,k)

≈
no∑
p=0

(
wsecond
p,r

(
f (i+p,j,k) + f (i−p,j,k)

))
,

∂2f

∂θ2
1

∣∣∣∣(i,j,k)

≈
no∑
p=0

(
wsecond
p,θ1

(
f (i,j+p,k) + f (i,j−p,k)

))
,

∂2f

∂θ2
2

∣∣∣∣(i,j,k)

≈
no∑
p=0

(
wsecond
p,θ2

(
f (i,j,k+p) + f (i,j,k−p))) ,

∂2f

∂θ1∂θ2

∣∣∣∣(i,j,k)

≈
no∑
p=1

wfirst
p,θ2

[{ no∑
p′=1

wfirst
p′,θ1

(
f (i,j+p′,k+p) − f (i,j−p′,k+p)

)}

−
{ no∑
p′=1

wfirst
p′,θ1

(
f (i,j+p′,k−p) − f (i,j−p′,k−p))}] . (78)

In the above expressions, no denotes half the finite difference order, s denotes r, θ1 or θ2,
and the finite difference weights wsecond

p,s and wfirst
p,s can be expressed as [83]:

wsecond
0,s = − 1

h2
s

no∑
q=1

1

q2
,

wsecond
p,s =

2(−1)p+1

h2
s p

2

(no!)
2

(no − p)!(no + p)!
for p = 1, 2, . . . , no ,

wfirst
p,s =

(−1)p+1

hs p

(no!)
2

(no − p)!(no + p)!
for p = 1, 2, . . . , no . (79)

Finally, the expression for evaluating integrals over the fundamental domain is:

∫
x∈D

f(x) dx ≈ hrhθ1hθ2

Nr∑
i=1

Nθ1∑
j=1

Nθ2∑
k=1

2πτri f
(i,j,k) . (80)

3.3.2. Reciprocal space discretization
As is evident from the governing equations, many quantities of interest (including

the electron density, for example) involve accumulating sums from each of the characters
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ζ ∈ Ĝ. Since this is equivalent to computing sums of the form
1

N

N−1∑
ν=0

and integrals over

the set I, we need a suitable scheme for discretizing the set Ĝ. Accordingly, we perform
quadratures over the set Ĝ using:

1

N

N−1∑
ν=0

∫
I

f(η, ν) dη ≈ 1

N

N−1∑
ν=0

Nη∑
b=1

wb f(ηb, ν) . (81)

In the above expression, in accordance with the Monkhorst-Pack scheme [84], the quadra-
ture nodes ηb are equi-spaced, while the corresponding quadrature weights wb are uniform.
Effectively, the above scheme discretizes the set G using NK = Nη ×N representative re-
ciprocal space points. By use of time reversal symmetry [47, 48, 85], it is possible to
reduce the number NK by a factor of 2, which helps in cutting down computational wall
time in practical calculations.

3.4. Solution strategies for the discretized equations and MATLAB implementation
The governing equations for the twisted structure represent a set of coupled nonlinear

eigenvalue problems. We use self consistent field (SCF) iterations accelerated via Periodic-
Pulay extrapolation [86] to solve them in this work. The total effective potential (i.e.,
Vxc + Φ) is used as the mixing variable. Solution of the Poisson equation associated
with the electrostatic field (eq. 70) is carried out using the Generalized Minimal Residual
method (GMRES) [87], and an incomplete LU factorization based preconditioner [88] is
used to accelerate convergence of the GMRES iterations. Solution to eq. 72 is carried out
using a nonlinear equation root finder [89].

As a consequence of the discretization choices and other simplifications outlined pre-
viously, there are NK linear eigenvalue problems, each of dimension ND, that have to be
solved on each SCF iteration step. Furthermore, for each of these eigenvalue problems,
the lowest Ns eigenstates have to be determined via a suitable diagonalization process.
Due to our use of finite differences, the discretized Hamiltonian operators (at each value
of η and ν) are non-Hermitian, even though the original infinite dimensional operators
they represent are not. This is a well known issue that arises while approximating differ-
ential operators such as the Laplacian in curvilinear coordinates using finite differences
[46, 47, 90]. In practice, this issue is mitigated by a combination of factors. First, as
the mesh spacing h is made finer, and/or the degree of the finite difference discretization
no is made larger, the discretized operators approximate their infinite dimensional coun-
terparts more closely. Consequently, the discretized operators become more Hermitian
(i.e., the norm of the difference between the operator and its Hermitian conjugate goes
to zero), the eigenvalues have small imaginary components, and conventional iterative
methods for obtaining the spectrum of a sparse symmetric Hamiltonian [91–93] can be
employed for diagonalization. Indeed, for the discretization parameters used to produce
the results in this work, the imaginary parts of the Hamiltonian eigenvalues are small
enough that they can be ignored without any deleterious effects on the stability or qual-
ity of the simulations. Second, by choosing eigensolvers that can handle non-Hermitian
problems in a robust manner, even calculations involving relatively coarse meshes (i.e.,
for which the Hamiltonian is well conditioned, but might have some eigenvalues with non-
vanishing imaginary parts), or problems with poorly conditioned Hamiltonian matrices
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(which can arise if a system with a large amount of prescribed twist is being studied) can
be performed.

Keeping the above factors in mind, our implementation employs a combination of the
Generalized Preconditioned Locally Harmonic Residual (GPLHR) method [94], as well
as iterative diagonalization based on Chebyshev polynomial filtered subspace iterations
(CheFSI) [91, 95, 96]. Due to the ability of GPLHR to employ preconditioners (based
on incomplete LU factorization, e.g.), the method can be particularly effective in han-
dling poorly conditioned Hamiltonian matrices — i.e., for problems in which the CheFSI
method tends to use relatively large polynomial filter orders. For such problems, we have
also observed that GPLHR generally requires fewer iterations to reach SCF convergence,
when compared to CheFSI, and between 5 to 8 iterations of the method are sufficient per
SCF step. Nevertheless, for the systems considered in this work, we found that Cheby-
shev polynomial filter orders in the range 60 to 80 were adequate in guaranteeing stable,
well converged simulations, and in this scenario the CheFSI method generally required
shorter wall-times-to-solution overall. Thus, for the bulk of the simulations presented in
this work, CheFSI was the method of choice. We show examples of the SCF convergence
behavior for two example systems using CheFSI and GPLHR in Figure 3.
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Figure 3: Examples of SCF convergence using CheFSI and GPLHR methods in Helical DFT. The
armchair silicon nanotube has radius 0.96 nm, and was subjected to a twist of 5.67 degrees/nm. The
zigzag carbon nanotube has radius 0.70 nm, and was subjected to a twist of 4.27 degrees/nm.

We have implemented the above methods and algorithms in a computational pack-
age called Helical DFT. The current version of the code is largely written in MATLAB
[97], with certain key routines (including Hamiltonian matrix-vector products, sections
containing multiple nested loops, etc.) written in C to alleviate speed and/or mem-
ory footprint issues. The code makes use of MATLAB’s vectorization capabilities, and
achieves parallelization by performing diagonalization of the Hamiltonian for different
values of η and ν simultaneously over multiple computational cores. Helical DFT is ca-
pable of performing structural relaxation by use of the Fast Intertial Relaxation Engine
(FIRE) algorithm [98] as well as ab initio molecular dynamics simulations by use of a
velocity Verlet integrator [99].
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4. Simulations and Results

4.1. Computational Platform
All simulations involving Helical DFT were run using a dedicated desktop workstation

(Dell Precision 7920 Tower) or single nodes of the Hoffman2 cluster at UCLA’s Institute
for Digital Research and Education (IDRE). The desktop workstation has an 18-core Intel
Xeon Gold 5220 processor (24.75 MB cache, running at 2.2 GHz), 256 GB of RAM and a
1 TB SATA Class 20 Solid State Drive (SSD). Each compute node of the Hoffman2 cluster
has two 18-core Intel Xeon Gold 6140 processors (with 24.75 MB cache, running at 2.3
GHz), 192 GB of RAM and local SSD storage. MATLAB version 9.7.0 (R2019b) was used
for the simulations. Compilation of C language routines was carried out using MinGW (on
the workstation) and GCC (on the Hoffman2 nodes) software suites. Interfacing between
MATLAB and C language routines was carried out by means of MATLAB’s MEX and
Coder frameworks, while parallelization was achieved by use of using MATLAB’s Parallel
Computing Toolbox.

4.2. Simulation Parameters
We used an SCF iteration convergence tolerance of 10−6 in the total effective potential

(relative residual). The Periodic Pulay mixing scheme [86] used a history of 7 iterations,
the mixing parameter was set at 0.2, and Pulay extrapolation was performed on every
alternate SCF step. GMRES iterations for the Poisson problem was carried out till the
residual dropped below 10−9 on every SCF step. We employed an electronic temperature
of Te = 315.77 Kelvin in the Fermi-Dirac function (this corresponds to about 1 milli-
Hartree of smearing), and included 2 extra states at each value of η and ν to accommodate
fractional occupancies. We used Troullier-Martins norm conserving pseudopotentials [65]
and Perdew-Wang parametrization [100] of the Local Density Approximation [66]. We
used a 12th order finite difference discretization scheme (i.e., no = 6 in eqs. 77, 78, 79)
and diagonalization via CheFSI used filters of order 60 to 80. Determination of spectral
bounds within the CheFSI method used MATLAB’s eigs function [101] with a relatively
loose tolerance of 10−2. For the nanotube simulations described here, we ensured a gap
of 10 to 11 Bohrs between the atoms located within the fundamental domain, and the
boundary surfaces ∂Rin and ∂Rout, in order for the electron density and the wavefunctions
to decay sufficiently in the radial direction8. Real space and reciprocal space discretization
parameters were chosen on a case by case basis, as described later.

4.3. Materials Systems: Group IV Nanotubes
Nanotubes and other similar systems are particularly well suited for study using the

methods described in this work. We choose single walled nanotubes of carbon, sili-
con, germanium, and tin as materials systems for investigation here. These systems are
used for carrying out numerical validation studies, and due to their technological im-
portance, also for gaining insights into their properties by the use of our method. Such
one-dimensional nanostructures from Group IV of the periodic table can be described in

8We have carried out tests regarding the effect of the amount of vacuum padding (i.e., distance
between Rin or Rout and the atoms of the structure) on the energies and forces, and have observed the
deviations in these quantities drop to 10−5 or so (in atomic units) at a vacuum padding of about 8 Bohr,
for the systems considered here. In our actual simulations, we use a somewhat larger vacuum padding
of 10− 11 Bohrs and the tube radii are also chosen accordingly.
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terms of a “roll-up” procedure [102], starting from their two-dimensional sheet counter-
parts (i.e., graphene, silicene, germanene and stanene). We collectively refer to these one-
and two-dimensional materials as X (X = C, Si, Ge, Sn) nanotubes, and Xenes, respec-
tively. Both these classes of materials have been intensely studied in recent years through
both experimental and computational methods, due to their association with fascinating
materials properties [103–107, 107–109, 109–142]. In particular, the electronic properties
of deformed carbon nanotubes have received extensive treatment in the literature through
theoretical and computational means [62, 135, 143–150]. Although a few computational
studies on the electronic structure of the larger class of Group IV nanotubes are also
available [47, 132, 151–153], as far as we can tell, this work is the first to investigate
from first principles, the behavior of these materials under torsional deformations, and
to extend some well known results for carbon nanotubes to the broader class of Group
IV nanotubes.

By using the roll up construction on the Xene sheets (see Figure 4), we can represent
untwisted tubes using just four atoms in the fundamental domain [23, 36, 47], and a twist
can be prescribed on the system by choosing a non-zero value of α. Depending on the
direction of rolling, the untwisted tubes can be classified as armchair or zigzag, and the
fundamental period τ of the untwisted tubes in these cases are

√
3 a and 3 a , respectively,

with a denoting the (planar) interatomic distance among the X atoms. Furthermore, the
cyclic group order N can be expressed in terms of the nanotube radius via the relation
NL = 2πRavg.. Here L =

√
3 a and 3 a, for armchair and zigzag cases, respectively, and

Ravg. denotes the average radial coordinate of the atoms in the fundamental domain. For
subsequent simulations, we adopted the values of the parameter a, as well as the out of
plane buckling parameter δ, as reported in [47]. We include the values of the parameters
in Table 1 for the sake of having a self contained presentation here.9

Material a (Angstrom) δ (Angstrom)
Graphene 1.407 -
Silicene 2.200 0.404

Germanene 2.232 0.566
Stanene 2.522 0.699

Table 1: Equilibrium lattice parameters of Xene sheets, as obtained from [47], and used in subsequent
Helical DFT simulations.

4.4. Convergence, accuracy and efficiency studies
We begin with a discussion of the convergence properties of our numerical imple-

mentation with respect to discretization parameters. We choose armchair nanotubes of
carbon (radius = 1.07 nm, N = 16), silicon (radius = 0.97 nm, N = 9), germanium

9To compute these parameters, the relaxed ground state structure of the Xene sheets (single layer)
was computed using the plane-wave DFT code ABINIT [33, 154]. The same pseudopotentials, exchange
correlation functional and electronic temperature were used between ABINIT and Helical DFT. Energy
cutoffs between 40 and 60 Ha, 30 × 30 × 1 k-points, and a cell vacuum of 25 Bohr in the direction
orthogonal to the sheets, were employed. At the end of the geometry relaxation procedure, the atomic
forces and the cell stress were of the order of 10−5 Ha/Bohr and 10−8 Ha/Bohr3, respectively. The
agreement of these parameters with existing literature is quite good [47], thus lending confidence to the
physical properties of the X nanotubes as revealed via our simulations.
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Figure 4: Roll-up construction of untwisted X nanotube, starting from Xene sheet. Atoms in the
fundamental domain are shaded and are the same ones conventionally used for carrying out simulations of
(planar) Xenes using orthogonal unit cells. The parameter a represents the planar interatomic distance,
δ represents the out of plane buckling parameter, and in-plane and out-of-plane atoms are shown in
alternate colors.

(radius = 1.73 nm, N = 16) and tin (radius = 0.99 nm, N = 8), as example systems.
We apply a twist to each of these systems by setting α between 0.003 and 0.006 (this
corresponded to between 2.47 and 8.86 degrees/nm of imposed rate of twist). With all
the other parameters of the computational method fixed to values described earlier, the
only remaining quantities that can dictate the accuracy of the numerical solutions are
fineness of the real and reciprocal space discretizations. Accordingly, we study the con-
vergence behavior of the ground state energy and the atomic forces as a function of the
mesh spacing h, and the number of reciprocal space points Nη used in the calculations.
The results are shown in Figure 5. For the mesh convergence study, we used h = 0.15
Bohr to evaluate the reference value while computing errors, while for studies involving
convergence with respect to reciprocal space discretization, we used Nη = 21 as reference.

From the figures, we see that the numerical method converges systematically in each
of the cases under study. By fitting straight lines to the convergence data with respect
to h, we observed slopes between 5.5 and 6.5 which are somewhat lower than values
observed for finite difference calculations using (untwisted) cylindrical coordinates [47].
We are also able to estimate that a mesh spacing of about h = 0.3 Bohr, and a value of
Nη = 15 are more than sufficient to reach chemical accuracy thresholds in all cases (i.e.,
10−3 Ha/atom in the energies and 10−3 Ha/Bohr in the atomic forces), and we used these
discretization choices in structural relaxation calculations in subsequent sections. Figure
6 shows the consistency of the forces and the energies as computed by Helical DFT at
this level of discretization (i.e., numerical derivatives of the free energy per unit cell as
computed via eq. 29, yield the atomic force as computed via eq. 61). To compute the
energies and band structures of relaxed structures, we employed the finest discretization

26



0.20.30.40.50.60.7

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Mesh spacing h (Bohr)

Er
ro

r
in

gr
ou

nd
st

at
e

en
er

gy
(H

a/
at

om
) Sn

Si
Ge
C

(a) Convergence of ground state energy
w.r.t. real space discretization

0.20.30.40.50.60.7

10−6

10−5

10−4

10−3

10−2

10−1

Mesh spacing h (Bohr)

Er
ro

r
in

at
om

ic
fo

rc
es

(H
a/

B
oh

r)

Sn
Si
Ge
C

(b) Convergence of atomic forces w.r.t. real
space discretization

1 3 5 7 9 11 13
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Nη

Er
ro

r
in

gr
ou

nd
st

at
e

en
er

gy
(H

a/
at

om
)

Sn
Si
Ge
C

(c) Convergence of ground state energy
w.r.t. reciprocal space discretization

1 3 5 7 9 11 13
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Nη

Er
ro

r
in

at
om

ic
fo

rc
es

(H
a/

B
oh

r)

Si
Sn
Ge
C

(d) Convergence of atomic forces w.r.t. re-
ciprocal space discretization

Figure 5: Convergence behavior of the numerical method for X nanotubes, with respect to real space
and reciprocal space discretization parameters. The error in the forces is the magnitude of the maximum
difference in all the force components on all the atoms. Dotted lines indicate straight line fits.

parameters that we could reliably afford within computational resource constraints. This
corresponded to the choices h = 0.25 Bohr and Nη = 21.

Next, we come to a discussion of verification of the numerical method against results
produced by standard, widely used plane-wave codes such as ABINIT [33, 154]. As
described earlier, this can be an arduous endeavor since such codes may require a very
large number of atoms to be included in the periodic unit cell, in order to mimic the
systems being simulated via Helical DFT. Moreover, in order to accurately accommodate
the boundary conditions implemented in Helical DFT, a large amount of vacuum padding
has to be often employed in the plane-wave code unit cell, and nanotube-like structures
tend to encase a large amount of vacuum as it is. These factors together can result in slow
convergence of the electrostatics problem, as well as, poor conditioning of the systems of
equations being solved by the plane-wave code. The latter issue, in turn, leads to SCF
convergence problems which tend to worsen if calculations at high accuracies are required
(i.e., upon using a large value of Ecut for the plane-wave code). With these factors in
mind, we chose the armchair carbon and silicon nanotube systems described above for
comparison against ABINIT. For the former, we did not prescribe any twist and use a 64
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Figure 6: Consistency of the energies and forces as calculated by the Helical DFT code. For this
test, a relaxed configuration of an armchair silicon nanotube (radius = 0.96 nm) subjected to a rate
of twist = 5.67 degree/nm was chosen. One atom in particular was then translated along eX, eY and
eZ directions (one direction at a time). The force components on the atom were obtained both via
computing the derivative of a spline fit of the energy at each configuration, and direct evaluation of
eq. 61. The absolute value of the difference is shown in each case. The agreement is O(10−4) Ha/Bohr
or better in all configurations, giving us confidence the results produced by the code.

atom unit cell. For the latter, we prescribed a twist of α = 0.1, and used a 360 atom unit
cell. While dealing with these systems in ABINIT, periodicity was naturally enforced
along the Z axis, Dirichlet boundary conditions were enforced along the X and Y axes by
padding with a large amount of vacuum, and an SCF preconditioner (diemac option in
ABINIT) was used to deal with instabilities associated with spatial inhomogeneities in the
periodic unit cell. Helical DFT was made to use four atom unit cells for both examples.
For each of these model systems, we observed that the energies (in Ha/atom) and the
forces (in Ha/Bohr), from ABINIT and Helical DFT agreed with each other to O(10−4),
thus giving us confidence in the accuracy of the results produced by our method.10

Based on the above tests, we were also able to observe that even a well optimized
plane-wave code like ABINIT can take up to orders of magnitude more in simulation
time (measured in c.p.u. hours) compared to Helical DFT, when simulations of nanotube
structures (particularly, ones with imposed twist) are desired. This makes our compu-
tational method a particularly attractive choice in the first principles characterization of
such systems. The relative efficiency of our method stems from the use of a coordinate
system and a computational domain that are well adapted to the geometry of the twisted
structure, and also from the appropriate use of symmetry. To highlight the latter aspect,
we considered again the silicon nanotube system subjected to a twist of α = 0.1. We

10Convergence and accuracy properties of the Helical DFT code have also been discussed in our earlier
contribution [48]. However, the materials systems considered in this work are different from [48], and
so, we include this discussion here for the sake of a self-contained presentation. In particular, carbon
is known to be associated with somewhat hard pseudopotentials and these studies helped us determine
the appropriate discretization parameters for this element, so that numerically accurate predictions of
electromechanical properties of carbon nanotubes could be made.

28



used Helical DFT to calculate the ground state electronic structure of this system by
considering the following four equivalent scenarios:

(a) No helical or cyclic symmetries (360 atom unit cell with α = 0 and periodicity along
eZ, Nη = 1 and only ν = 0 considered).

(b) Only cyclic symmetries (40 atom unit cell with α = 0 and periodicity along eZ,
Nη = 1 and ν = 0, 1, . . . , 8 considered).

(c) Only helical symmetries (36 atom unit cell with α = 0.1, Nη = 10, and only ν = 0
considered).

(d) Both cyclic and helical symmetries considered (4 atom unit cell with α = 0.1,
Nη = 10 and ν = 0, 1, . . . , 8 considered).

The single core wall times required for each SCF step, and computation of the atomic
forces at the end of the SCF iterations are compared in Figure 7.

From these plots, it is clear that the SCF wall time is approximately 20 times lower
for the case with full symmetry adaptation, when compared to the case in which no cyclic
or helical symmetries were used. Even more drastically, the computational wall time for
the calculation of the force is about 3 orders of magnitude lower for the former case, when
compared to the latter. These computational advantages tend to be even more dramatic
for simulations in which the angle of twist is relatively low (e.g. α = 0.0005 to 0.005), and
such cases tend to arise routinely while probing the torsional response of the nanotubes
in the linear elastic regime, as described in the next section.

Finally, we show in Figure 8 the strong scaling behavior of the numerical implementa-
tion. We use case (d) described above for this study. We see that up to 16 computational
cores, the code has a strong scaling efficiency of about 60 %. This follows the strong
scaling efficiency of the CheFSI step closely, since this forms the dominant computational
cost in every SCF step (see Figure 7(a)). The scaling of the force computation step is far
worse, dropping to about 10 % at 16 cores. In general, the scaling behavior is expected
to improve for problems with a larger number of η and ν points (e.g. for simulations
of nanotubes of large diameter) since the current version of the code only uses paral-
lelization over different values of η and ν. Improvement of the scaling behavior of the
code, particularly by use of domain decomposition and band parallelization techniques
in conjunction with the MATLAB Parallel Server framework (to enable deployment over
distributed memory computers) is the scope of future work.11

11As pointed out to us by an anonymous reviewer, these scaling performance figures suggest that the
Helical DFT code is heavily memory bound in the regime in which the data was collected, and therefore,
perhaps a better metric might be to estimate the percentage of total peak performance. However,
estimating this number involves calculation of the number of floating point operations performed during
the operation of the code, and this can be somewhat challenging due to the use of both MATLAB and
C source code. Furthermore, due to the lack of internal MATLAB routines for estimating flops, only
tools developed by the MATLAB user community can be employed. We ran tests using the Lightspeed
suite [155] and we focused only on one the core routines of the code, i.e., the matrix vector-product
implementation. Our tests suggest that on the 18-core Intel Xeon Gold 5220 processor, the core routines
reached about 10.7 % of the peak performance (peak performance data obtained from the Intel website
[156]), which is not entirely unexpected due to the large amount of data movement operations associated
with the calculation [157].
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Figure 7: Influence of symmetry adaptation on computational wall times (single core). Numbers appear-
ing in the plots above indicate the total time per SCF step and the total time for computation of the
forces (both quantities normalized).

4.5. Computation of torsional stiffness from first principles
We now turn to demonstrations of the use of our computational method for evaluation

of materials properties from first principles. We first concentrate on the mechanical
response and evaluate the torsional stiffness of the X nanotubes in the linear elastic
regime, ab initio. We choose 9 to 10 nanotubes of each material, about half of which
are of zigzag type and the other half armchair. The nanotubes all had radii in the range
1 to 3 nm, approximately. To carry out these simulations, we choose a four atom unit
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Figure 8: Strong scaling behavior of the Helical DFT code.

cell for the untwisted nanotube in each case, and perform structural relaxation using
the FIRE algorithm [98] till all force components on all the atoms in the simulation
cell dropped below 10−3 Ha/Bohr. We then successively increase α to impose twist,
and in each case re-perform structural relaxation (see Figure 9 for some examples of the
relaxation procedure). To avoid the appearance of torsional instabilities, we ensured that
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Sn zigzag tube, radius = 1.22 nm, rate of twist = 2.38 degrees/nm
Si armchair tube, radius = 1.07 nm, rate of twist = 2.36 degrees/nm
Ge armchair tube, radius = 1.07 nm, rate of twist = 2.33 degrees/nm
C zigzag tube, radius = 0.70 nm, rate of twist = 4.26 degrees/nm

Figure 9: Examples of ab initio structural relaxation of twisted structures using Helical DFT.

the prescribed rate of twist on the system was less than about 4.5 degrees per nanometer
[36], and this corresponded to choosing α between 0.0005 and 0.005. We express the

amount of applied twist per unit length of the tube (i.e., the rate of twist) as β =
2πα

τ
,

and compute the twisting energy per unit length of the structure as the difference in the
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ground state free energy per unit fundamental domain between the twisted and untwisted
configurations (after atomic relaxation is carried out in both cases), i.e.:

Utwist(β) =
N

τ

(
FGround

State
(P∗∗,D,G|β)−FGround

State
(P∗,D,G|β=0)

)
. (82)

Here, G|β and G|β=0 denote the symmetry groups associated with the twisted and un-
twisted structures, respectively. Also, P∗∗ and P∗ denote the collections of positions of
the atoms in the fundamental domain, after relaxation in each case. For each of the nan-
otubes, we verified that mechanical response was in the linear regime, by fitting Utwist(β)
to a function of the form Utwist(β) = c × βq and observing that q ≈ 2.0 holds. We show
a few examples in Figure 10. Next, using the above data, we estimated the twisting
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Figure 10: Dependence of twist energy per unit length on angle of twist per unit length (i.e., rate of
twist) for two representative classes of nanotubes. Dotted lines indicate straight line fits of the data to
an ansatz of the form Utwist(β) = c× βq.

stiffness of each nanotube, defined as:

ktwist =
∂2Utwist(β)

∂β2

∣∣∣∣
β=0

. (83)

For each category of nanotube (i.e., armchair or zigzag, and type of material), we then
studied the variation of ktwist with the nanotube radius (computed as the average of the
radial coordinates of all atoms in the fundamental domain), by using a fit of the form:

ktwist = κ×Rp
tube . (84)

The results from this procedure are shown in Figure 11 and the values of κ and p obtained
in each case are displayed in Table 2. Note that generation of this torsional response data
required hundreds of individual simulations, which would not have been possible without
the use of a specialized computational method such as the one presented here.

A few comments are in order at this stage. First, we observe that the value of the
exponent p is nearly 3 in every case. This suggests that the torsional response of the
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Figure 11: Variation of torsional stiffness ktwist (eV-nm) with tube radius Rtube (nm). Both axes are
logarithmic. Dotted lines correspond to ktwist = κ×Rptube with fitted parameters for κ (eV/nm2) and p
(Table 2).

X Type κ (eV/nmp−1) p
C Armchair 5905.76 2.992
C Zigzag 5859.81 2.990
Si Armchair 909.34 3.026
Si Zigzag 923.78 2.986
Ge Armchair 837.12 3.018
Ge Zigzag 829.57 3.012
Sn Armchair 418.23 3.144
Sn Zigzag 508.83 2.984

Table 2: Torsional stiffness parameters for the X nanotubes, with ktwist = κ×Rptube

tubes is consistent with linear elasticity theory, in which ktwist for a thin elastic tube with
unit length, radius Rtube, thickness t, and shear modulus G can be expressed as GtπR3

tube
[158]. From this, it is possible to estimate the thickness-normalized shear modulus (i.e.,
Gt) of the Xene sheets as κ/π. Second, by comparing the different values of κ, we see
that they span an order of magnitude across the different elements. In particular, for a
given radius, ktwist is the highest for carbon nanotubes and the lowest for those of tin,
while nanotubes of silicon and germanium have intermediate values of this quantity close
to each other. Third, for each material, the torsional response is quite similar in the
armchair and zigzag directions with variations less than about 1.5%, except for the case
of tin, in which case the variation is more substantial. This largely isotropic torsional
response for the Xene nanotubes is quite distinct from the bending response of their sheet
counterparts, which show strong anisotropic behavior that is correlated with the value
of the normalized buckling parameter (i.e., δ/a) for each material [47]. Our findings on
the mechanical response of carbon nanotubes under torsion are broadly consistent with
earlier studies for this material that used empirical potentials or tight-binding calculations
[36, 38], although the value of κ reported here is lower from [36], where Tersoff potentials
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were used [159].
Finally, we mention in passing, the effects of atomic relaxation. In general, if relax-

ation is not performed after the imposition of twist, the value of ktwist for the system tends
to be higher. The degree of variation can be quite different depending on the material
involved. For carbon nanotube systems, we observed that ktwist for an unrelaxed system
was typically higher by a factor of about 1.08, whereas for silicon nanotubes, this factor
had the higher value of about 1.38. Generally, these higher values of ktwist also imply
higher values of κ by the same factors, although the value of the exponent p continues to
be about 3, when the fitting in eq. 84 is used.

4.6. Investigation of electronic properties of nanotubes undergoing torsional deformation
We now discuss the variation in electronic properties of nanotubes as they are subject

to twisting. Due to the ability of our computational method to use symmetries connected
with the system, electronic band-diagrams along both η and ν can be obtained from
Helical DFT. Moreover, the eigenvalues λj(η, ν) as j is held constant and η, ν are varied,
can be plotted as a two-dimensional surface. Since η and ν serve to label the set of
characters, and are natural quantum numbers for twisted structures, they serve to provide
a clean and intuitive interpretation of the electronic states of the system, and allow easy
identification of the size and type of band-gaps. In contrast, the traditional band diagram
for a quasi-one-dimensional system using a periodic method can be far more complicated,
even for an untwisted structure. We show some examples of this contrast in Figures 12
and 13.
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Figure 12: Conventional band diagram for an untwisted armchair Si nanotube of radius 2.96 nm.

Armed with the above tools, we study the variation in the bandgaps of nanotubes as
they are subjected to twisting. For reasons explained later, we mainly concentrate on
investigations related to armchair X nanotubes, although we also briefly comment on our
findings related to zigzag X nanotubes subsequently. The behavior of carbon armchair
nanotubes in particular, has received much attention in the literature [62, 135, 143, 144],
and serves as an important benchmark against which our results can be validated. Such
nanotubes are known to be metallic [143, 144, 160] although in practical calculations, a
vanishingly small bandgap at the location η = 1

3
, ν = 0 (or equivalently, η = −1

3
, ν = 0)
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(a) 2D surface plot of the eigenvalues λj(η, ν), for j = 8.
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(b) Symmetry adapted band diagram in η, along
ν = 0. Plot is symmetric about η = 0 due to time
reversal symmetry.
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Figure 13: Visualization of electronic states for the untwisted armchair Si nanotube (radius 2.96 nm)
using results from Helical DFT. Compare this to Figure 12.

may be observed [47]. Upon twisting, armchair carbon nanotubes undergo a metal-to-
semiconductor transition, with the characteristic feature that the bandgap-versus-rate-
of-twist plot has a slope of 3 t0Rtube in the linear regime (i.e., in the neighborhood of zero
twist). Here t0 is the tight-binding hopping parameter for carbon [62]. Using armchair
carbon nanotubes of radii 1.08, 1.48 and 1.88 nm as examples, we used Helical DFT
to compute the slope of the bandgap-versus-rate-of-twist plot in the linear regime and
obtained values of t0 between 2.6 and 3.0 eV (see Figure 14). These agree well with the
literature [62, 144, 161], giving us confidence in the quality of our subsequent simulations.
Upon twisting these nanotubes further, the band gap is known to further increase and
then decrease, as the tube alternates between metallic and semiconducting states, and
the period of oscillation (of the band gap versus rate of twist plot) is theoretically known
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to be [62, 135, 143, 144]:

ξtheoryperiod =
a

R2
tube

. (85)

Here a denotes the carbon-carbon bond length (see Table 1). Using Helical DFT, we were
able to compute the electronic density of states near the Fermi level and qualitatively
verify the metal-to-semiconductor transitions in the armchair carbon nanotubes as they
are twisted (see Figure 16(a)). To verify that Helical DFT also reproduces the quantitative
aspects of the variation, we fit the band gap data from Helical DFT, to a general sine
curve of the form:

band gap = s1 sin

(
2πα

s2

+
2π

s3

)
+ s4 , (86)

from which, the period of oscillation may be computed as:

ξfitperiod =
2πs2

τ
=

2πs2√
3a

. (87)

We verified that ξfitperiod and ξtheoryperiod are in close agreement in all cases under study (see
Figure 14 for a specific example). An alternate means of quantifying this agreement,
following [62], is to equate ξfitperiod and ξtheoryperiod , and estimate the bond length a, from this
instead. In other words, by writing:

s2 =

√
3 a2

2πR2
tube

, (88)

or more generally,

s2 = σ ×Rµ
tube , (89)

we may evaluate the exponent µ and the constant σ from a plot of s2 versus Rtube, and
from this, we may further estimate the bond length as:

afit =

√
2πσ

3
1
4

. (90)

Using this procedure, we arrived at µ = −1.98, and afit = 1.37 angstrom, both of which
are very close to the expected values of −2.00 and 1.40 angstrom, respectively. These
results give us further confidence in the quantitative results obtained using Helical DFT.

Turning to the broader class of armchair group IV nanotubes (i.e., X = Si, Ge, Sn) we
make the following observations using the data obtained from Helical DFT. In general,
these nanotubes are semiconducting, with a direct band gap located at the same position
as the armchair carbon nanotubes, i.e., η = 1

3
, ν = 0 (or equivalently, η = −1

3
, ν = 0) for

untwisted tubes. Upon twisting, these tubes also undergo periodic oscillations in their
band gaps,12 although the amplitudes of the oscillations are generally more muted than

12The location of the band gap initially continues to be the same as that of the untwisted tube, but
then it transitions to small values in ν (i.e. ν = 1, 2, etc.), while remaining at the same location in η
(i.e., η = 1

3 ). Thus, for relatively small twists, the band gap continues to be a direct one. Upon further
application of twist however, the band gap becomes indirect and the eigenvalue just above the Fermi
level is associated with a different value of ν as compared to the eigenvalue just below the Fermi level,
although the value of η associated with these eigenvalues continues to be 1

3 .
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Figure 14: Analysis of the variation of band-gap with applied twist, using an armchair carbon nanotube
example (Radius = 1.07 nm). The straight line fit near zero enables the evaluation of the tight-binding
hopping parameter t0, which comes out to be 2.897 eV, in close agreement with [62, 144, 161]. The
sine curve fit (in the non-linear response region) enables evaluation of the periodicity in the band gap
variation and yields ξfitperiod = 0.1154 rad/nm. The theoretical value from eq. 85 is ξtheoryperiod = 0.1217
rad/nm, in close agreement.

the case of armchair carbon nanotubes, and we did not observe metal-to-semiconductor
type transitions for most tubes. For tubes with larger radii however, the untwisted states
can be associated with vanishingly small band gaps to begin with — owing to the decay
relations obeyed by the band gaps [47, 132], and these tubes are likely to be practically
metallic at room temperature. Therefore, changes to the band gap upon application
of twist can be more easily discerned (See Figures 13 and 15 for an example involving
an armchair silicon nanotube). To quantify the periodic changes in the band gaps, we
obtained the period of oscillation in each case using the sine curve fitting procedure
outlined above (eq. 86), and computed the power law dependence of the period on the
tube radius by means of eq. 89 (see Figure 17). The values of c and µ so obtained are
shown in Table 3.

The results are clearly suggestive of the fact that the period of variation of the band
gap scales in an inverse quadratic manner with the tube radius for all armchair X nan-
otubes. We also observed that evaluation of eq. 90 using the values of σ shown in Table
3 leads to quantities that are fairly close to the values of a shown in Table 1, for each
armchair X nanotube, suggesting that the theoretical relation in eq. 85 is generally valid
for this entire class of nanotubes.

Finally, we touch upon our investigations related to zigzag X nanotubes. These can be
of different “types” [47, 143], i.e., Type I, II or III, depending on whether mod(N, 3) = 1, 2
or 0. In general, zigzag X nanotubes, barring Type III carbon variants, are semiconduct-
ing [47, 162], and the untwisted tubes have direct bandgaps located at the following
values of η and ν – Type I carbon nanotubes: η = 0, ν = N−1

3
; other Type I nanotubes:

η = 0, ν = N+2
3

; Type II nanotubes: η = 0, ν = N+1
3

; Type III nanotubes: η = 0, ν = N
3
.

We found that the band gaps of Type I and II zigzag X nanotubes tend to have a rather
limited response to torsional deformations, consistent with earlier observations made re-
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Material σ (Å−µ) µ
Carbon 0.52 -1.98
Silicon 1.86 -2.10

Germanium 1.91 -2.09
Tin 1.34 -1.91

Table 3: Parameters for the scaling law s2 = σ×Rµtube for armchair X nanotubes. Here, s2 is the bandgap
oscillation parameter as defined in eq. 86. The value of µ in each case is close to −2.00, suggesting that
the period of variation of the band gap scales in an inverse quadratic manner with the nanotube radius
for these tubes.

(a) 2D surface plot of the eigenvalues λj(η, ν), for j = 8.
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(b) Symmetry adapted band diagram in η, along
ν = 1. Location of band gap highlighted by blue
rectangle.
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Figure 15: Visualization of electronic states for twisted armchair Si nanotube (radius = 2.96 nm), for
0.94 degree per nanometer of applied twist. A small bandgap of about 0.11 eV opens up in this case.
Location of band gap (η = 1/3, ν = 1) has been highlighted by blue rectangle in sub-figure (b) and a
zoomed in view is available in sub-figure (c). The surface plot in sub-figure (a) also looks noticeably
different from Figure 13 (a).
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(a) Carbon nanotube, radius = 1.07 nm
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(b) Silicon nanotube, radius = 2.96 nm

Figure 16: Variation in the electronic density of states near the Fermi level, for some armchair X
nanotubes, when subjected to twist. The carbon nanotube undergoes a clear metal-to-semiconductor
type transition upon twisting, as evidenced by the value of ℵTe(·) falling to zero at the Fermi level. Other
armchair Xene nanotubes (including the silicon nanotube shown here) do not show such stark variations,
although changes in the electronic structure are clearly induced by the application of twist.

garding zigzag carbon nanotubes specifically [135, 143, 144]. For most of these types of
materials, the band gaps are non vanishing at zero twist for even relatively large radii
tubes and the subsequent changes to their band gaps due to twisting are fairly small at the
levels of torsional deformation we considered. This tends to cause issues in discriminating
between actual changes to the band gaps due to deformation, and the numerical noise
associated with the simulations. Therefore, although we did observe oscillatory patterns
in the band gap versus rate of twist plots (see Figure 18 for an example) we found it
difficult to extract scaling laws from this data unambiguously. Out of all the different
zigzag X nanotubes however, the Type III variants of carbon are metallic, especially at
larger radii (i.e., when curvature effects are minimal) [47, 163], and we observed such
tubes to be quite sensitive to torsional deformations. Similar to the case of armchair
nanotubes, we observed these tubes to show oscillatory behavior between metallic and
semiconducting states (see Figure 18), and an analysis of the period of variation of the
band gap (using eq. 86 and 89) yielded µ = −1.98, thus suggesting an inverse quadratic
dependence on the radius. A thorough re-investigation of scaling laws in the electronic
response of zigzag X nanotubes, by making use of more accurate numerical techniques
(based on spectral methods [164, 165], for instance) remains the scope of future work.

5. Conclusions

In summary, we have presented a computational technique that allows systems asso-
ciated twisted geometries to be simulated efficiently and accurately from first principles.
We have formulated the symmetry adapted governing equations, laid out numerical imple-
mentation strategies and detailed various aspects of our implementation. Our technique
uses a higher order finite difference discretization scheme based on helical coordinates,
employs ab initio pseudoptentials and can be used to simulate quasi-one-dimensional
systems, as well as their deformations, conveniently and without needing major com-
putational resources. As an application of our method, we have systematically studied
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Figure 17: Variation of band gap with applied twist for armchair X (= Si, Ge, Sn) nanotubes. Sub-figures
(a), (b) and (c) include data from Helical DFT, as well as sine curve fits (dotted lines) used to determine
the band gap oscillation parameter s2 (eq. 86). Sub-figure (d) explores the variation of this parameter
with the tube radius (eq. 89). The slope of each of the straight line fits is close to −2.00, suggesting that
the period of variation of the band gap scales in an inverse quadratic manner with the nanotube radius.

the behavior of single wall zigzag and armchair group-IV nanotubes in the range of (ap-
proximately) 1 to 3 nm radius, as they undergo twisting. Through an extensive series of
simulations, we have demonstrated how certain mechanical properties of these nanotubes
can be extracted from first principles using our technique, and we have also elucidated
different aspects of the variation in the electronic properties of these materials as they
undergo torsional deformation. In particular, using our simulations, we have been able to
extend some well-known features of the electro-mechanical properties of carbon nanotubes
to the broader class of Group IV nanotubes.

As a follow up of this work, we aim to employ the computational technique dis-
cussed here for the study of other nanotube materials, including multi-wall elemental
nanotubes, and those made from transition metal dichalcogenides. An efficient C/C++
implementation of the computational method which makes use of domain decomposition
and band parallelization (in addition to the currently implemented parallelization in η
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Figure 18: Variation of band gap with applied twist for some zigzag nanotubes. Data from Helical DFT,
as well as sine curve fits (dotted lines) are included. For most zigzag X nanotubes, particularly of Types
I and II, the band gap changes little with twist. Sub-figure (a) shows examples of this using Type II tin
nanotubes. In contrast, Type III zizag carbon nanotubes (sub-figure (b)) are metallic in the absence of
twist and show more pronounced oscillatory changes between metallic and semiconducting states upon
being twisted.

and ν), to improve scaling and computational wall time performance is the scope of on-
going and future work. Concurrently, the development of an efficient spectral scheme
[164, 165] in the spirit of [166], which overcomes some of the inherent limitations of
the current finite difference technique is also an area of active investigation. Finally,
a long term goal associated with applications of the current computational method in-
volves the design and discovery of exotic materials phases which show strong coupling
between mechanical deformations (such as twist and extension/compression) and other
electronic/optical/magnetic/transport properties.
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