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Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be
attributed to in-field cytotoxicity by modulating the immune system. While complex, these
systemic effects can help tip the therapeutic balance in favor of treatment success or
failure. Engagement of the immune system is generally through recognition of damage-
associated molecules expressed or released as a result of tumor and normal tissue radiation
damage. This system has evolved to discriminate pathological from physiological forms of
cell death by signaling “danger.” The multiple mechanisms that can be evoked include a
shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote matura-
tion of dendritic cells and, in cancer treatment, the development of effectorT cell responses
to tumor-associated antigens. Control over these processes is exerted by regulatoryT cells
(Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort
to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis.
Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already
been sculpted in favor of tumor growth and against immune-mediated mechanisms for
tumor regression. Reversing this situation is a major challenge. However, recent data show
that removal of Tregs can tip the balance in favor of the generation of radiation-induced
anti-tumor immunity. The clinical challenge is to do so without excessive depletion that
might precipitate serious autoimmune reactions and increase the likelihood of normal tis-
sue complications.The selective modulation ofTreg biology to maintain immune tolerance
and control of normal tissue damage, while releasing the “brakes” on anti-tumor immune
responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for
cancer.

Keywords: radiation, danger,Tregs

RADIATION AND “DANGER” SIGNALING
Local RT has complex, systemic consequences (Formenti and
Demaria, 2009) that, if harnessed properly have the power to
significantly shape host-tumor relationships and ultimately affect
treatment outcome. This review will focus on those aspects of RT
that could translate into anti-tumor immunity, and their immune
regulation.

Tissues that have been damaged by radiation display vari-
ous “danger” signals to the immune system that can be secreted
and/or released into extracellular spaces. The so-called Damage-
Associated Molecular Pattern molecules (DAMPs; Shi et al., 2003;
Lotze et al., 2007; Curtin et al., 2009; Sato et al., 2009). What
characterizes DAMPs is that they are endogenous molecules that
signal through a set of common pattern recognition receptors
(PRRs; Matzinger, 2002; Lotze et al., 2007; Kawai and Akira,
2011), such as the Toll-like receptor (TLR) family (Medzhitov
et al., 1997; Beutler, 2009), nucleotide binding oligomerization
domain (NOD)-like, and retinoic acid inducible gene (Rig)-
like receptors (Meylan et al., 2006), and C-type lectins (Robin-
son et al., 2006). Once engaged, PPRs initiate signaling cas-
cades to establish communications between immune cells through
generally pro-inflammatory cytokine and chemokine networks.
The system has evolved to recognize and deal with dangerous

pathological situations, restore homeostasis, and to regenerate
and heal tissues (Schaue and McBride, 2010; Schaue et al., in
press).

Within tumors, DAMPs are generated by cell stress and death
during progressive growth and increasing vascular abnormalities,
and by oxidative damage and hypoxia (Ullrich et al., 2008; Sato
et al., 2009). DAMP signaling and the cytokines they generate
not only affect the content and function of innate immune cells
within tumors, but also can play critical roles in the generation of
adaptive immunity. This is because dendritic cells (DCs) have to
mature to be competent at antigen-presentation, which requires
pro-inflammatory “danger” signals (Banchereau and Steinman,
1998; Gallucci et al., 1999). Mature DCs are crucial for provid-
ing signal 2, the verification co-stimulatory signal that is needed
to translate signal 1 (antigen) into a T cell-mediated immune
response. Conversely, antigen-presentation in the absence of co-
accessory signaling leads to immune tolerance (Steinman et al.,
2003). In cancer treatment, the potential role of DAMP recogni-
tion and the initiation of adaptive anti-tumor immunity is seen in
breast cancer patients with defective TLR-4 signaling who are less
able to respond to standard therapy presumably because of a lack
in tumor immune eradication (Apetoh et al., 2007). There is how-
ever a possible negative side to this equation as all cells, including
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tumor cells, express DAMP receptors of varying types which can
drive tumor progression (Sato et al., 2009).

Tumor RT certainly will increase the amount of DAMPs
released, but the extent to which it qualitatively and quantita-
tively changes DAMPs levels is not known, nor how such changes
will affect the immune responses that are made. Exacerbation of
the level of “danger” signaling in the tumor microenvironment
by RT has however the potential to activate innate immune cells
and link to the development of tumor antigen-specific, adaptive
immunity. In support, we, and others, have observed that radiation
can mature DCs, enhancing expression of numerous molecules
that further aid immune recognition, such as MHC class I and II
molecules, co-stimulatory CD80, cell adhesion molecules such as
ICAM-1, integrins, and selectins, and damage recognition mol-
ecules such as phosphatidyl serine (Santin et al., 1996; Morel
et al., 1998; Seo et al., 1999; Garnett et al., 2004; Reits et al., 2006;
Tyurina et al., 2011), in addition to creating a pro-oxidant, pro-
inflammatory milieu that encourages infiltration by immune cells
(Lorimore et al., 2001; Lugade et al., 2005, 2008; Matsumura et al.,
2008; Burnette et al., 2011). Overall, these responses seem to be
a deliberate attempt by the tissue to improve immune cell access
and to encourage immunogenicity and susceptibility to attack by
T lymphocytes and other immune cells (Garnett et al., 2004). For
example, irradiated tumor cells can show enhanced expression of
the death receptor Fas in vitro and in vivo, consequently sensi-
tizing tumors to antigen-specific cytotoxic T cells and, ultimately,
rejection (Chakraborty et al., 2003, 2004).

A case can therefore be made for cancer therapies like RT being
able to act as immune adjuvants, in addition to having direct anti-
tumor action (Roses et al., 2008). Such responses must be care-
fully controlled. Optimization of anti-tumor immune responses
following RT is not trivial and requires consideration of many
additional contributing factors.

RADIATION AS AN IMMUNE ADJUVANT
If RT can induce a pro-oxidant, pro-inflammatory microenvi-
ronment, one would expect that irradiated tumors often induce
measurable systemic immune responses that can lead to tumor
regression in preclinical models (Lugade et al., 2005; Lee et al.,
2009; Perez et al., 2009; Spanos et al., 2009). There are a few
encouraging reports indicating that humans receiving RT may
make increased immune responses when combined with other
immunostimulatory therapies (Nesslinger et al., 2007; Ferrara
et al., 2009; Stamell et al., 2012), with chemotherapy or even
alone (Schaue et al., 2008). In the last example, we showed that
circulating tumor-specific CD8+ T cells can rise in colorectal can-
cer patients toward completion of chemo-radiation with 45 Gy
and continuous 5-fluorouracil infusion (Debucquoy et al., 2006,
2009; Schaue et al., 2008). More general support for the view that
the immune system can be a powerful and independent prognos-
tic indicator of a good response to cancer therapies comes from
studies on T cells infiltration in solid tumors (Galon et al., 2006;
Pages et al., 2010) and from abscopal effects that can be attrib-
uted to the systemic development of immunity (Formenti and
Demaria, 2009; Stamell et al., 2012). Questions however remain
as to why tumor-specific responses are not always generated by
therapies, even within one tumor type, why some types of tumors

generate such responses only rarely, and the ultimate question of
why tumors continue to grow even in the presence of an immune
response that appears effective in vitro.

One issue that must be considered is that by the time ther-
apy is initiated tumors have already escaped the attentions of the
immune system. Multiple mechanisms have been described by
which this is achieved (Zitvogel et al., 2006; Whiteside, 2009). The
nature of the immune escape mechanism strongly influences the
tumor-host relationship, the tumor antigens that are expressed,
and probably the outcome of any therapeutic approach. For exam-
ple, even highly immunogenic tumors can grow progressively and
maintain strong tumor antigen expression if they generate pow-
erful suppressor T cells and macrophages (Howie and McBride,
1982; McBride and Howie, 1986; Iwai et al., 2002). On the other
hand, tumors may undergo immunoediting that selects for cells
lacking antigen expression during tumor development. In the for-
mer situation, tumors are more likely to respond to removal of
immune suppressor cells than in the latter. In some tumors, the
rate of tumor cell death and turnover could be critical in bal-
ancing the immune system so as to favor tumor growth. In this
case, simply changing this equation through aggressive therapies
may have a positive effect. In each of these scenarios, the tumor
antigens that are expressed are likely to differ in potency for stim-
ulating immunity and the suppressor mechanisms that have to be
overcome will vary in strength and type. This indicates that dif-
ferent strategies for potentiating tumor immunity may need to be
tailored to the existing state of the tumor-host relationship. Addi-
tional factors that might limit the generation of the “dangerous”
microenvironment and the extent of adaptive immunity to the
tumor include the nature of the vasculature, the degree of oxida-
tive stress, and the extent of hypoxia in a tumor (Conejo-Garcia
et al., 2004; Rius et al., 2008; Sitkovsky,2009; Facciabene et al., 2011;
Kandalaft et al., 2011). RT has been shown to change the tumor
microenvironment by causing vascular damage, inhibiting angio-
genesis, and enhancing chronic hypoxia at the expense of transient
hypoxia, with the newly generated hypoxic areas becoming infil-
trated with tumor-promoting macrophages (Dewhirst et al., 1990;
Garcia-Barros et al., 2003; Chen et al., 2009; Ahn et al., 2010; Kioi
et al., 2010). These crucial variables may shape the tumor response
to RT and vary with the tumor and its location (Chiang et al.,
2012).

The dose and delivery schedule for RT also influences the
development of anti-tumor immunity. For RT to be an immune
adjuvant there seems to be an optimal size of dose and dose per
fraction, with moderate dose fractions of around 5–6 Gy being
superior to 2 Gy fractions (Dewan et al., 2009; Schaue et al., 2012).
And in the case of the murine melanoma model, tumor-specific
immune responses following RT were found to inversely corre-
late with tumor size illustrating an interesting dichotomy in the
tumor-host relationship (Schaue et al., 2012). These findings gen-
erally support the belief that therapy-induced tumor damage can
translate into measurable immune activation.

LIMITING THE IMMUNE RESPONSE TO PROTECT SELF
The transition from the rapidly generated, innate immune
response to activation of the slower, more sophisticated adaptive
immune system is a critical step in the development of tumor
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immunity. Importantly, adaptive immunity tends to be polarized,
especially with respect to antigen-specific helper and regulatory T
cell subsets (Th/Tregs; Fernandez-Botran et al., 1988) that can ulti-
mately dictate immune-mediated regression or progression, most
often mediated through CD8+ T cell activation. CD4+ naïve cells
(Th0) recognize antigenic peptides on DCs through their T cell
receptor-CD3+ complexes and, based on the signals received, can
differentiate along one of at least four pathways to form Th1, Th2,
Th17, or iTregs. This dramatic cellular polarization is orchestrated
by the prevailing cellular microenvironment through a network of
transcription factors and microRNAs; T bet for Th1, GATA-3 for
Th2, RORgammat for Th17 cells, and Foxp3, miR-10a, miR-155
for Tregs (Zhu and Paul, 2010; Dang et al., 2011; Gao et al., 2012;
Takahashi et al., 2012).

The important result is the emergence of T cell subsets
that, while they are antigen-specific, exert much of their influ-
ence through distinctive effector cytokine profiles that influence
bystander non-immune and immune cells alike, depending upon
their cytokine receptor patterns. Th1 cells respond primarily to
IL-12 to produce IFN-γ, GM-CSF, and TNF-α and are impor-
tant for assisting cytotoxic CD8+ T cell-mediated responses that
can eliminate tumors. They also activate macrophages to express a
pro-inflammatory phenotype that can be cytotoxic to tumors. Th2
cells, in contrast, are stimulated primarily by IL-4 to produce IL-4,
IL-5, IL-6, IL-13, and IL-25. They assist B cells in the generation
of antibodies that form allergic responses. Th17 cells differenti-
ate in response to IL-6 or IL-22 to produce IL-17, IL-21, IL-22,
IL-23, and GM-CSF. Th17 cells have been implicated in the patho-
genesis of many chronic inflammatory and autoimmune diseases
(Waite and Skokos, 2012). The concept that distinct functional T
cell subsets exist as balanced forces to maintain homeostasis has
established validity and has been extended to CD8+ T cells,“classi-
cally” activated M1, and “alternatively” activated M2 macrophages
and DC1/DC2 DCs (Czerniecki et al., 2001; Van Ginderachter
et al., 2006), although there is some controversy as to the degree
of reprogramming that is possible within these other immune cell
types.

As crucial for tumor immunity and as life-saving as any of
the above immune players are, the mutual antagonism that exists
between different Th subsets in itself is insufficient to control the
immune system, which can cause extensive tissue damage if left
unrestrained, as in chronic inflammation, autoimmune, and aller-
gic reactions. Tregs (also known as suppressor T cells) are the
major players in preventing excessive damage to self (Peterson,
2012) and they represent that other side of the immunological
coin from Th cells. The presence of T cells that could suppress
antigen-specific inflammatory T cell activity was first recognized
by Gershon and Kondo (1971), who called the phenomenon
“infectious immunological tolerance.” Plagued by lack of appro-
priate markers for T cell subpopulations, the Treg field fell into
disrepute for many years, but re-emerged with the discovery of
Tregs that are now known to fall into two major subsets of natural
(nTregs) and induced (iTregs). These have largely non-overlapping
distinct antigen recognition repertoires (Haribhai et al., 2009,
2011). Unlike Th cells, both Treg subsets focus on recognition
of “self” antigens to maintain peripheral immunological toler-
ance and exert homeostatic control over inflammation through

release of immunosuppressive cytokines (Bluestone and Abbas,
2003; Curotto de Lafaille and Lafaille, 2009).

TREGS MAKE US TOLERANT OF OUR SELF AND OF OTHERS
The importance of Tregs in maintaining peripheral self-tolerance,
preventing autoimmune disease, and limiting inflammation and
immunity (Sakaguchi, 2004; Shevach, 2004) is exemplified by
the havoc caused in their absence, ranging from excessive lym-
phoproliferation, immune, and inflammatory tissue damage, to
death. For example, a loss-of-function mutation in the essential
regulator of Tregs, the forkhead box transcription factor Foxp3,
leads to a lethal autoimmune and inflammatory disorder in the
“scurfy” mouse and the IPEX syndrome (Immune dysregulation
Polyendocrinopathy Enteropathy X-linked Syndrome) in humans
(Fontenot and Rudensky, 2005; Chatila, 2009). Interesting in this
context is the fact that high fractionated doses of radiation deliv-
ered to the lymphoid system of mice also generates autoimmunity
(Sakaguchi et al., 1994).

Tregs function in widely diverse scenarios to control other T
and B lymphocyte subsets, DCs, and macrophages, as well as non-
immune cells. Although T cell receptor recognition and activation
is through cognate antigen, suppression in their immediate envi-
ronment can be rather indiscriminate, at least in vitro (Shevach,
2009). They use various immunosuppressive effector mechanisms,
any one of which may be favored under specific conditions (Pil-
lai et al., 2011). These include cell-to-cell contact, the release of
cytokines such as IL-10, IL-4, IL-35, and/or TGF-β, and the pro-
duction of adenosine that drives cAMP elevation and inhibition
of T effector cells (Chen et al., 2005; von Boehmer, 2005; Deaglio
et al., 2007; Shevach, 2009; Efimova et al., 2011). By generating
an anti-oxidant/adenosinergic microenvironment, Tregs are tissue
protective and the antithesis of pro-oxidant acute inflammation.

Most Tregs are naturally occurring, functionally mature
CD4+CD25hiFoxp3+ Tregs (nTregs) that are “hard-wired” with
respect to their immune repertoire through thymic development
and are already primed for suppressive function. In contrast,
CD4+CD25− naïve T cells can be converted outside the thymus
into CD4+CD25hiFoxp3+ Tregs, and are therefore called inducible
or adaptive, iTregs. Induction can be a result of exposure to low
doses of antigen, IL-2, and TGF-β (Apostolou and von Boehmer,
2004; Curotto de Lafaille et al., 2004). Given these differences in
origin, it is not surprising that recombinase-deficient mice can
generate iTregs but have no nTregs (Curotto de Lafaille et al., 2001;
Mucida et al., 2005).

The functional distinction between iTregs and nTregs has still
to be fully established, but they do not share the same workload
in controlling the adaptive immune response. Overall, the reg-
ulatory phenotype of iTregs and their Foxp3 expression is less
stable than that of nTregs possibly due to differences in epige-
netic regulation and microRNA miR-10a availability (Floess et al.,
2007; Takahashi et al., 2012). Their gene expression profiles are
not identical (Feuerer et al., 2010). Molecular studies indicate that
nTregs, but not iTregs, express Helios, an Ikaros family transcrip-
tion factor (Thornton et al., 2010) and are activated by TNF-α
(Housley et al., 2011) and by IL-6, the latter converting them to
Th17 cells that can mediate potentially pathogenic autoimmunity
(Xu et al., 2007). iTregs resist such Th17 conversion (Zheng et al.,
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FIGURE 1 | Systemic immune control is exerted through the combined
effort of thymically derived, naturally occurring nTregs, and peripherally
induced iTregs that have specificity for “self” antigens but with distinct,
minimally overlappingTCR repertoires. Both Treg pools depend heavily on
the transcription factor FoxP3 and on IL-2 with TGF-β providing additional

stimulation. While both Treg subsets contribute to immune suppression,
iTregs seem to be selectively involved in mucosal surfaces. Radiation therapy
drives an increase in Tregs that may limit potential anti-tumor immunity and
aid tumor escape on one side but that may also nurture normal tissue
recovery on the other.

2008). These differences may be important in that there is some
evidence that iTregs exert control of inflammatory responses at
normal mucosal surfaces while nTregs appear more important for
mediating self-tolerance and tumor immune escape (Sakaguchi,
2004, 2005; Curotto de Lafaille and Lafaille, 2009; Haribhai et al.,
2011; Rosenblum et al., 2011; Josefowicz et al., 2012; Figure 1).
There is a distinct possibility that RT might differentially affect
these Treg subpopulations, but this has yet to be established.

RADIATION EFFECTS ON IMMUNITY IN VIVO
The concept that RT is purely immunosuppressive because lym-
phocytes are very radiation sensitive is out-moded. While scientific
wisdom indicates that lymphocytes are very radiosensitive, subsets
differ in this regard and because all immune cells can be induced
by radiation itself, as well as by DAMPs, cytokines, and other stim-
uli to respond at the molecular level, RT is clearly better regarded
as being immunomodulatory. In very general terms, a spectrum
of radiosensitivity exists from B cells through naive Th cells, NK
cells, T memory cells (Belka et al., 1999), Tregs, and DCs to radiore-
sistant macrophages, with a tendency toward apoptosis denoting
a more radiosensitive phenotype and non-proliferative cells and
activated lymphocytes being more radioresistant (McBride et al.,

2004). As a result of blood flow through the field, even local RT will
have a purely physical cytotoxic effect of the circulating immuno-
cyte pool, which will vary with the tissue, and the delivery time and
dose. Induced responses in tumor and normal tissues, and in the
immune cells themselves add considerable additional complexity
to the immune equation. The usual radiobiological parameters
such as dose, dose rate, fraction size, and radiation quality are per-
tinent in all cases. Further, if chemotherapy is also given, different
drugs are expected to target different immune cell populations,
again with dose and scheduling being important parameters.

The ability of radiation to differentially modulate T cell sub-
sets was in fact observed by North, Hellstroem, and others more
than 30 years ago. They showed that sublethal, whole-body irradi-
ation eliminated suppressor T cells leading to partial or complete
tumor regression in immuno-competent, but not in immuno-
incompetent, mice (Hellstrom et al., 1978; Tilkin et al., 1981;
North, 1986). The same subset appeared sensitive to low dose
cyclophosphamide (Bonavida et al., 1979; Awwad and North,
1989). This introduced the concept of metronomic low dose
chemotherapy treatment that might assist elimination of immune
suppressor cells, but angiogenesis and other cells are also possi-
ble targets (Penel et al., 2012). In contrast to these studies, we
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and others have shown that Tregs are relatively radioresistant
(Kusunoki et al., 2010; Nakatsukasa et al., 2010; Qu et al., 2010;
Weng et al., 2010; Kachikwu et al., 2011). A possible explanation
for this discrepancy lies in the fact that the timing of the radiation
exposure post-tumor implantation was critical in North’s experi-
ments and that a Treg subpopulation may have been induced that
became sensitive to radiation. Although Tregs have often been
considered inherently anergic, robust Treg proliferation has been
observed after stimulation (Walker, 2004). The sensitivity of Tregs
to chemo- and radiotherapy in cancer patients is of great clini-
cal interest but largely unknown. The suggestion is that there are
immune mechanisms of action as an alternative to direct cyto-
toxicity, although at present there are no definitive data. In fact,
there may be other immune targets such as the myeloid cells that
can be induced following RT and whose elimination enhances
radiation-induced tumor regression (Ahn et al., 2010).

What we do know is that the tumor-specific immune responses
made by cancer patients receiving RT appear to be held in check
by increases in the systemic Treg pool (Schaue et al., 2008). We
have seen this phenomenon also in murine tumor models mice
treated with radiation (Schaue et al., 2012). Interestingly, radi-
ation can increase Treg representation even in the absence of
a tumor (Cao et al., 2009; Kusunoki et al., 2010; Nakatsukasa
et al., 2010; Qu et al., 2010; Billiard et al., 2011; Kachikwu et al.,
2011). This can be interpreted as a response to control radiation-
induced inflammation and normal tissue damage. One possible
mechanism is through induction and activation of the powerful
immune-suppressive cytokine TGF-β by RT (Martin et al., 2000),
which is known to boost Tregs (Chen et al., 2003; Beal et al.,
2012; Takahashi et al., 2012). In addition, we were able to detect
radiation-enhanced expression of the ectonucleotidase CD39 on
the Treg population, which has also been observed in treated can-
cer patients (Mandapathil et al., 2009). Adenosine production
through nucleotide catabolism by CD39 and CD73 is probably the
most primitive immunosuppressive response to “danger.” Adeno-
sine has long been known to play a critical, non-redundant role
in the protection of normal tissues from collateral damage dur-
ing inflammation (Cronstein, 1994), including radiation-induced
tissue damage (Hosek et al., 1992;Pospisil et al., 1993, 1998; Hou
et al., 2007), where it plays a protective role (Hofer et al., 2002).
Support for this scenario comes from the observation that tis-
sue derived adenosine acting through its receptor A2AR drives
Tregs and limits autoimmune tissue destruction (Zarek et al.,
2008).

INHIBIT THE INHIBITORS TO WIDEN THE
RADIOTHERAPEUTIC WINDOW?
The existence of tumor-induced immunosuppressive T cells and
myeloid cells has been known for decades (Howie and McBride,
1982) and Tregs may influence the development of suppressor
macrophages through cytokine release. It has taken longer for the
concept that the immune system is under continuous negative reg-
ulation to be recognized and that loss of these important control
mechanisms under steady state conditions can augment inflam-
mation and autoimmunity. Importantly, tools are now available
for investigating the role of these subsets in RT settings and for
modifying their influence.

There are numerous reports that myeloid-derived suppressor
cells (MDSC) and Treg levels are elevated in the peripheral circula-
tion of cancer patients. They are also increased in lymphoid organs
and tumors of tumor-bearing mice (Howie and McBride, 1982;
Chen et al., 2009). Further, systemic depletion of Foxp3+ Tregs
enhances natural as well as vaccine-induced anti-tumor T cell
responses (Liyanage et al., 2002; Curiel et al., 2004; Dannull et al.,
2005; Miller et al., 2006), as does targeting CD11b+ myeloid cells
(Ahn et al., 2010). It is now generally accepted that a rise in MDSC
or Tregs in a patient’s blood or tumor is often associated with
poor outcome and that this can be attributed to their immuno-
suppressive and/or tumor growth promoting effects. The possible
exceptions are colorectal and head and neck cancers (Ladoire et al.,
2011; Deleeuw et al., 2012), which may indicate greater microbial
involvement in these sites. Also, it is difficult to reliably conclude
that a rise in Tregs is a negative prognostic indicator if simulta-
neous measurements are not made in cytotoxic immune cells, the
reason being that any pro-inflammatory response is likely to solicit
an adaptive compensatory response (Litjens et al., 2012; Tang et al.,
2012). In this sense, Tregs may be considered as another immuno-
logical readout that mirrors the development of cytotoxic effector
T cells, further supporting the general thesis that radiation can be
an immune adjuvant (Schaue et al., 2008). Both Tregs and myeloid
suppressor cells may be viewed as wound healing responses to
tissue damage, only in this case the damage is caused by tumor
growth.

From an immunological perspective, the challenge for cancer
RT is to create an immunologically permissive environment. This
is complex with many pre-existing and induced negative regu-
latory barriers to be overcome. The size of the challenge will
vary with the pre-existing tumor-host environment, the clinical
stage and type of tumor, the condition of the patient, and many
other variables. These hurdles will vary in height and it may not
be possible to generate observable responses in all cases. How-
ever, some approaches to unmasking the adjuvanticity of RT show
considerable promise.

One of the most effective ways to overcome such barriers is
through broad Treg targeting with anti-CD25 antibody and/or
immunotoxin or anti-CTLA-4 antibody (Leach et al., 1996; Rasku
et al., 2008; Hodi et al., 2010; Byrne et al., 2011; Mellman et al.,
2011). Enhanced anti-tumor immunity in general and the effec-
tiveness of RT in particular have been shown (Demaria et al.,
2005; Kachikwu et al., 2011; Postow et al., 2012). Currently, the
extent of any Treg subset selectivity in these approaches is not
known, nor whether radiation-induced normal tissue complica-
tions are increased. The use of anti-CTLA-4 as a monotherapy
(Phan et al., 2003; O’Day et al., 2007; Yang et al., 2007; Weber
et al., 2009), for example, is associated with some toxicity and
should be used with caution when combined with other therapies.
Furthermore, there are suggestions that Foxp3 may not always be
a desirable target in every cancer setting because Foxp3+ T cell
infiltration does not always predict poor prognosis, for example
in colorectal cancer, and because Foxp3 appears to act as a tumor
suppressor gene when expressed in non-immune tissues (Deleeuw
et al., 2012; McInnes et al., 2012). The influence of myeloid cells
may be decreased by colony stimulating pathways on which they
depend (Ahn et al., 2010; Vincent et al., 2010), but once RT or
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chemotherapy is over, both are likely to rebound, which may be
the best time to target these brakes on the development of anti-
tumor immunity. The potential power of these immunological
approaches is very appealing and they may be enhanced even
more in the future by more selective targeting of tumor-specific
Treg TCRs with antibodies to eliminate those driving immune
suppression or with cytokines that could enhance macrophage

anti-tumor action or drive Tregs into an effector mode (Byrne
et al., 2011).
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