
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Inter-node Distance Estimation for Subsurface Drifting Hydrophones Using Ambient Acoustic 
Noise

Permalink
https://escholarship.org/uc/item/1xd4v20k

Author
Yeakle, Riley

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xd4v20k
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Inter-node Distance Estimation for Subsurface Drifting Hydrophones
Using Ambient Acoustic Noise

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Electrical and Computer Engineering - Intelligent Systems, Robotics, and Control

by

Riley Yeakle

Committee in charge:

Professor Ryan Kastner, Chair
Professor William Hodgkiss
Professor Truong Nguyen

2016



Copyright

Riley Yeakle, 2016

All rights reserved.



The Thesis of Riley Yeakle is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2016

iii



DEDICATION

To my family, and everyone who has supported me on my educational

journey.

iv



EPIGRAPH

The purpose of computing is insight, not numbers.

—Richard Hamming

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Motivating Problem . . . . . . . . . . . . . . . . . . . 1
1.2 Solution Approaches . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of Contributions . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Background and Related Work . . . . . . . . . . . . . . . . . . . 5
2.1 Ambient Noise in the Ocean . . . . . . . . . . . . . . . . . 5
2.2 The Time Domain Green’s Function . . . . . . . . . . . . . 6
2.3 The Wideband Ambiguity Function . . . . . . . . . . . . . 9
2.4 Noise Correlation SNR . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 Velocity Effects on the Noise Correlation Function . . . . . . . . 14
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 15
3.2 Correlation Directivity and Velocity Effects on a Single Source 18
3.3 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Developing a Useful Approximation . . . . . . . . . . . . . 24

3.4.1 Behavior of Endfire Sources . . . . . . . . . . . . . 24
3.4.2 Relationship to Stationary Noise Correlation Function 27

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . 28
3.5.2 Simulation Results . . . . . . . . . . . . . . . . . . 30

Chapter 4 Mobile Noise Correlation Function Design Space . . . . . . . . . 35
4.1 Noise Correlation SNR . . . . . . . . . . . . . . . . . . . . 36
4.2 Time Window Selection . . . . . . . . . . . . . . . . . . . . 37
4.3 Maximum Tolerable Velocity . . . . . . . . . . . . . . . . . 37

vi



Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



LIST OF FIGURES

Figure 2.1: Preprocessing pipeline used to compute the noise correlation func-
tion consisting of a bandpass step and phase extraction step. . . . 9

Figure 2.2: Example of a zero time delay error cut of the normalized ambiguity
function for a broadband, flat spectrum, Gaussian pulse. . . . . . 11

Figure 3.1: Example of receiver and source setup in a 2D plane. Sources s1
to sj are distributed around the receiver pair and represent active
sources at this instant in time. . . . . . . . . . . . . . . . . . . . 15

Figure 3.2: Histogram of relative velocities between AUEs from a past deploy-
ment demonstrates that our units tend to have low relative velocity
with respect to each other. . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.3: Receiver geometry showing endfire regions. Sources in these beams
contribute to correlation peaks at τ = ±R

c
under cross correlation. 18

Figure 3.4: Ratio of ambiguity function for a source in the endfire at zero delay
error to that of a source approaching from a different angle. . . . 20

Figure 3.5: Virtual source argument in pictures demonstrates how we can
represent a set of sources in the endfire region as a single virtual
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.6: Predicted and simulated correlation coefficients for a single re-
ceiver moving, with all sources distributed uniformly along the axis
between the two receivers. . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.7: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed in the endfire regions of the
receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.8: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically in the 2D plane of
the receivers, B = 400, fc = 300. . . . . . . . . . . . . . . . . . . 33

Figure 3.9: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically in the 2D plane of
the receivers, B = fc = 1000. . . . . . . . . . . . . . . . . . . . . 33

Figure 3.10: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically on the surface plane
10m above the receivers, B = 400, fc = 300. . . . . . . . . . . . . 34

Figure 3.11: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically on the surface plane
10m above the receivers with B = fc = 1000. . . . . . . . . . . . 34

Figure 4.1: Design surfaces over correlation bandwidth and time, showing SNR
objective for different fixed velocities. . . . . . . . . . . . . . . . . 40

Figure 4.2: Maximum tolerable velocity design space for a center frequency of
300Hz and a bandwidth of 400Hz. . . . . . . . . . . . . . . . . . 41

viii



Figure 4.3: Maximum tolerable velocity design space for a center frequency of
600Hz and a bandwidth of 800Hz. . . . . . . . . . . . . . . . . . 41

ix



ACKNOWLEDGEMENTS

First off, I’d like to thank the Kastner Research Group. It’s been an honor

working with this group for the past two years.

Next, I’d like to thank Prof. Bill Hodgkiss, whose expertise got me pointed in

the right direction on solving the problems presented in this work.

I’d especially like to thank my advisors Ryan Kastner and Curt Schurgers, and

lab partner Perry Naughton for their mentorship and collaboration. I am proud to

have them as co-authors on a submission to IEEE OCEANS 2016 which contains

elements of this work.

Finally, I’d like to give a special thanks to my long time mentor Ryan Kastner.

Ryan helped spark my interest in engineering and research before I even started my

undergraduate degree and has helped me pursue those interests ever since.

x



ABSTRACT OF THE THESIS

Inter-node Distance Estimation for Subsurface Drifting Hydrophones
Using Ambient Acoustic Noise

by

Riley Yeakle

Master of Science in Electrical and Computer Engineering - Intelligent Systems,
Robotics, and Control

University of California, San Diego, 2016

Professor Ryan Kastner, Chair

As the number of units in underwater sensor arrays grow, low-cost localization

becomes increasingly important to maintain network scalability. Methods using

ambient ocean noise are promising solutions because they do not require external

infrastructure, nor expensive on-board sensors. Here we extend past work in stationary

array element localization from correlations of ambient noise to a mobile sensor array.

After obtaining inter-node distance estimates using ambient noise correlations, these

distances can be used to determine a relative localization of an array of mobile

xi



underwater sensor platforms without introducing any external infrastructure or on-

board localization sensors.

In this work we explore the effects of receiver mobility on inter-node distance

estimation via correlations of ambient acoustic noise. Through analysis and simulation,

we develop an exact solution along with a more tractable approximation to the peak

amplitude of the time-domain Green’s function between the two mobile receivers,

which provides an estimate of their spatial separation. Here we demonstrate that the

mobile noise correlation amplitude at the average time delay between the receivers

can be modeled with the wideband ambiguity function of a single sound source. We

then use this approximation to discuss selection of design parameters and their effects

on the noise correlation function.

This work acts as a piece in the larger problem of infrastructure-free localiza-

tion for mobile underwater sensor networks. Combining a relative localization from

this method with the absolute positions of several units could provide an absolute

localization of an entire array, without the need for external infrastructure.
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Chapter 1

Introduction

In this thesis I explore the problem of estimating distances between pairs of

subsurface drifting hydrophones through correlations of ambient acoustic noise. This

chapter introduces the motivating examples for this work, presents approaches to

solving these problems, and outlines the contributions of this thesis.

1.1 The Motivating Problem

Understanding the planet’s oceans is key because of the critical role they play

in our planet’s health. Ocean monitoring via sensor networks can be challenging

because of the difficulty of communicating with underwater sensor platforms. Beneath

the surface, devices no longer have access to radio communications, including GPS

which makes localization quite challenging.

The Scripps Institution of Oceanography Autonomous Underwater Explorers

(AUEs) are a swarm of drifting underwater sensor platforms which collectively sample

a large area densely in both space and time [1] [2]. After deployment, the AUEs

1
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adjust their buoyancy to follow a given depth profile, then drift with the currents

while recording temperature and acoustics. The challenge after retrieving the AUEs

at the end of their deployment is finding the path they took underwater. Past work

uses high frequency pings from surface buoys in the recorded audio to map the paths

of each individual drifter through the course of the deployment [3]. These surface

pingers are analogous to the satellites used in terrestrial GPS localization systems.

While the pingers provide a good localization solution for the mean time, ideally

we could localize the AUEs without introducing extra infrastructure. The pinger based

localization system is non-ideal because it limits the system’s scalability. Apart from

the extra equipment cost, surface currents and subsurface currents often differ, so the

pingers can drift away from the AUE swarm over time, limiting the duration of our

deployments.

Though the ultimate goal is to globally localize the AUE swarm, this thesis

will focus on the sub-problem of relative localization. Specifically we will address the

challenge of estimating inter-node distances between receiver pairs. From past work in

sensor network localization, we know that a set of pairwise distance estimates for all

the nodes in our network is sufficient to come up with a relative localization for the

network [4] [9]. This can then turn into a global localization solution if we know the

absolute positions of a few ‘anchor units’. Finding inter-node distances at different

times during the deployment using ambient sounds is a good place to start since we

have some promising results from geophysics to build upon.
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1.2 Solution Approaches

Our first approach in finding these pairwise distances is to directly apply past

work which shows that long term correlations of ambient noise recorded at two nearby

hydrophones can estimate the time-domain Green’s function (analogous to the impulse

response in linear systems theory) between the two receivers [5]. Here we will build

on past work by extending this theory to the mobile receiver case. This will give

us a handle on what sorts of mobility conditions we can estimate pairwise distances

between drifters under ideal sound field conditions.

After finding the effects of receiver velocity on our noise correlation function

we can find how velocity fits in with other design parameters in the noise correlation

process. For the stationary receiver case, we know from past work [6] that the

correlation window length and bandwidth both reduce the noise level seen in the

time-domain Green’s function. Thus in the stationary case, a good strategy would

be to use a long time window and large bandwidth. However, when our receivers are

mobile, longer time windows are not necessarily better. Understanding how receiver

velocity relates to the noise correlation function will allow us to relate the parameters

center frequency (fc), bandwidth (B), correlation window (T ), and velocity into a

design space which will predict the viability of noise correlation as a means of distance

estimation in a given environment.

1.3 Outline of Contributions

This thesis will:

• Explore how receiver velocity affects the noise correlation function and thus our
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ability to recover pairwise distances via ambient noise correlation.

• Present an approximation to the amplitude of the noise correlation function

at the time lag corresponding to the distance between the receivers using the

wideband ambiguity function for a single bandpass source on the axis passing

through the receivers.

• Analyze how these velocity effects will impact the choice of correlation parameters

like window length, center frequency, and bandwidth.

• Demonstrate how the results presented can be used to find the maximum tolerable

inter-node velocity for noise correlation function estimation to achieve a given

performance.



Chapter 2

Background and Related Work

This chapter introduces the past research that this thesis builds upon, including

ambient noise sources in the ocean, the noise correlation function as an approximation

to the time-domain Green’s function between receivers, and the wideband ambiguity

function, which describes the effects of receiver velocity on cross correlation of a single

source.

2.1 Ambient Noise in the Ocean

In this work, we are interested in inferring localization information on our

drifting receivers using natural sound sources in the ocean. Depending on the frequency

of interest, the ambient acoustic noise in the ocean comes from a variety of sources [7].

Seismic activity, shipping noise, surface agitation, and even bubbles all generate noise

in the ocean [7]. In particular, we will be interested in noise in the 100 to 1000 Hz

frequency range, a band typically dominated by shipping noise and surface agitation

[7]. While shipping noise can be used in the stationary receiver case to infer distance

5
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information between receivers via noise correlation [8], it requires long correlation

windows to overcome the strong directionality of the ship’s noise. Thus for this work,

we are primarily concerned with noise from biological sources and surface agitations.

2.2 The Time Domain Green’s Function

The key result this thesis builds on is the emergence of an estimate of the

time-domain Green’s function from correlations of ambient acoustic noise. The time-

domain Green’s function describes the propagation of a wave from one point in space

to another and is analogous to the impulse response used in linear systems theory. In

the context of sensor networks, the time-domain Green’s function (now referred to as

TDGF) between two receivers tells us how a source will propagate from one receiver

to the other and by knowing the direct path arrival and the speed of sound in our

medium, we can then estimate the distance between those two receivers.

The noise correlation function itself actually converges to an estimate of the

time-domain Green’s function, with the actual TDGF equivalent to the derivative

of the noise correlation function. In practice, the noise correlation function is close

enough to the actual TDGF that the approximation is worth the computational ease

of working with the noise correlation function rather than its derivative. Here I give

an intuitive explanation for the emergence of the TDGF from ambient acoustic noise

correlations, however interested readers may refer to [5] and [8] for rigorous derivation

as well as field experiments demonstrating successful estimation of distances between

receiver pairs.

The first insight in developing the theory of ambient noise correlation is that

the cross correlation function has a well-defined directivity pattern, meaning it is
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sensitive to sources originating from certain directions more than others. To see this,

consider the following scenario, two receivers r1 and r2 separated by a distance R in a

2D plane. Under cross correlation, an source will give us an peak centered at time

ds1−ds2
c

where dsi is the distance from the source to receiver i. As a function of angle

of approach θ0, defined with respect to the axis between our receiver pair, the time

delay produced by a single source under cross correlation is given by:

τs =
R

c
cos(θ0) (2.1)

Thus, we expect sources near the axis of the receivers (θ0 ≈ 0 and θ0 ≈ π)

to produce delay estimates closer in time to each other than those near θ0 = ±π
2
.

Consequentially, we expect larger correlation peaks to build up near τ corresponding

to θ0 ≈ 0 or π than anywhere else. Specifically, this τ is ±R
c

gives the time of flight

from one receiver to the other. As demonstrated in [8], the relative proportion of

sources contributing to the correlation peak at τ = ±R
c

can be modeled using the

directivity of the correlation function. Using this, the authors in [8] show that the

ratio of ‘coherent’ sources (sources contributing to a correlation peak at τ = ±R
c
),

versus ‘incoherent’ sources (those contributing to correlation peaks elsewhere) can be

expressed as:

Ratio(θ0) =

√
2πfc
c
R

(
1 +

1

12

(
B

fc

)2
) 1

4

sin(θ0) (2.2)

where θ0 is the angle of approach. In an isotropic sound field (meaning uniformly

distributed source locations), the number of coherent sources is far greater than any

θ0 corresponding to a different time difference of arrival. Thus by correlating over
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long time windows the noise correlation function produces roughly symmetric peaks

at τ = ±R
c
.

Borrowing vocabulary from [8] and [9], we use the term ‘endfire’ to refer to the

region around θ ∈ {0, π} for which sound sources make a significant contribution to

the correlation peak at τ = ±R
c
. We can define this region more specifically using

the directivity of the cross correlation function between our receivers and choosing

the angle θendfire to be the effective beamwidth of the beam centered on θ = 0 or

equivalently θ = π.

An important factor in the success of this technique is the actual distribution

of the sounds in our environment. Though proven to work in common ocean ambient

sound environments, like surface noise [8], this technique is sensitive to dominant

sound sources. As shown in [8], dominant sources like shipping noise can bias the peak

locations of the noise correlation function. This is especially relevant in the mobile

receiver case examined in this thesis in which we cannot use long correlation windows

to compensate for strong sources in the environment.

To get the cleanest correlation results, past work (and this work) implements the

following preprocessing pipeline shown in Figure 2.1 to compute the noise correlation

function. After preprocessing, we compute the noise correlation function using:

Cy1,y2(τ) =
1

T

∫ T/2

−T/2
y1(t)y2(t− τ)dt (2.3)

NCFy1,y2(τ) =
Cy1,y2(τ)(

1
T

∫ T/2
−T/2 y

2
1(t)dt

) 1
2
(

1
T

∫ T/2
−T/2 y

2
2(t− τ)dt

) 1
2

(2.4)

In preprocessing, the bandpass step gives us control over what sorts of ambient
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Figure 2.1: Preprocessing pipeline used to compute the noise correlation
function. The bandpass step allows us to focus on a specific noise frequency
band, and the whitening step prevents the correlation from being biased by
dominant frequency components.

sounds we look at, and we’ll later see has an effect on our system’s resilience to receiver

velocity. The whitening step in which we extract the phase of the received signal

ensures that our correlation process does not get dominated by any strong frequencies.

Since we’re only interested in the location of our peak, not so much its amplitude, we

don’t lose information necessary to estimate the distance between receivers by doing

this.

2.3 The Wideband Ambiguity Function

In finding how receiver velocity will affect the noise correlation function, it’s

key to understand how receiver velocity affects the correlation between two receivers

of a single source. Because of its strong applicability to detection of moving targets

with reflected radar pulses, this is a well studied problem.

For a single source, this problem is modeled by the wideband ambiguity

function, originally developed for studying radar responses to high velocity targets

using broad spectrum radar pulses [10]. The ambiguity function describes the matched
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filter response of a delayed and Doppler mismatched pulse. In computing the noise

correlation function over a single source, we are essentially running a matched filter

across our receivers and thus the wideband ambiguity function describes how our

correlation will behave with receiver velocity and delay errors. Since we are interested

in wideband signals in this work, Woodward’s original ambiguity function [11], which

uses a constant frequency shift to approximate Doppler mismatch is not suitable.

As shown in [10] for a single source s, the wideband ambiguity function for cross

correlation can be written as:

A(τ, β) =

∫
s(t)s∗(β(t+ τ))dt (2.5)

In particular we will be interested in the normalized version of this function

for a broadband, flat spectrum, Gaussian signal. Normalized in this case meaning we

want to know the correlation coefficient between the original signal and the Doppler

shifted and delayed signal. In [12] the authors compute the normalized ambiguity

function for just that signal and find the following:

ρ(γ = 0, µ̇) =
1

2b
[Si((a+ 1)b)− Si((a− 1)b)] (2.6)

with:

Si(x) =

∫ x

0

sinx

x
dx

and a = 2
fc

, and b = π
2
(Bµ̇T ), where fc denotes the center frequency of our signal, B

denotes its one-sided bandwidth, and T denotes the length of our correlation window,

γ indicates the delay error, and µ̇ denotes the rate of change for the time delay between

our two receivers. For a single mobile receiver, µ̇ = vrel
c

and for two mobile receivers it
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is given as
1+

v2
c

cos(θ2)

1+
v1
c

cos(θ1)
− 1.

Figure 2.2: Example of a zero time delay error cut of the normalized
ambiguity function for a broadband, flat spectrum, Gaussian pulse.

This function represents the zero delay error cut of the ambiguity function of

the matched filter over two receivers, which describes the correlation peak as a function

at time delay τ = D and relative Doppler shift across each receiver µ̇. An interesting

feature of the ambiguity function is that for some signals, it shows a phenomenon

called ‘range-Doppler coupling’ in which the maximum value of the ambiguity function

for a given velocity is not at the zero delay error time. In this work, we will focus on

the zero time delay cut of the ambiguity function, however in future developments,

this is something to keep in mind.

In Chapter 3 we will use the wideband ambiguity function to develop a theory

on how receiver velocity will affect the emergence of the time-domain Green’s function

from the correlations of many ambient noise sources.
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2.4 Noise Correlation SNR

After finding the relationship between receiver velocity and noise correlation

value at τ = ±R
c
, we’ll be interested in finding how mobility affects the noise correlation

signal to noise ratio. Combining past work on the signal to noise ratio of the noise

correlation function with mobility loss we’ll be able to address the issue of choosing a

correlation time window that is both long enough for our distance estimate to emerge,

but short enough to not be destroyed by receiver mobility.

In [9], the authors study the signal to noise ratio of the noise correlation

function as a distance estimator. The signal to noise ratio (SNR) for this this problem

is defined as:

SNR =
1

2

(
NCF (τ+)

std(NCF (τ))τ>10τ+
+

NCF (τ−)

std(NCF (τ))τ<10τ−

)
(2.7)

The authors then show this signal to noise ratio is proportional to the following:

SNR ∝

(√
BT√
kcR

)
e−αR (2.8)

where kc is the wavenumber corresponding to our center frequency fc, and α measures

our bottom loss absorption.

In this work we are interested in just the terms that relate to the correlation

parameters we have some control over, B, fc, and T . Thus, we will focus on:

SNR ∝

(√
BT√
fc

)
(2.9)

when relating the choice of correlation parameters to SNR under receiver mobility.
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Looking at 4.1 we can see that the SNR for stationary receivers is increasing with the

time-bandwidth product and decreasing with increasing center frequency, indicating

that a large bandwidth and time window, with a low center frequency will yield the

best results.



Chapter 3

Velocity Effects on the Noise

Correlation Function

This chapters develops theory on how the noise correlation function will degrade

as a function of receiver velocity then presents simulation results which test those

ideas. We begin by developing an exact solution of the noise correlation function under

receiver velocity where we find the normalized ambiguity function for our individual

sources embedded in some expectations over the actual distribution of sources. Since

this provides little insight into how receiver mobility affects the noise correlation

function, we then develop an approximation which treats sources in the endfire region

as a single ‘virtual source’. This approximation describes the effects of velocity on

the noise correlation function in a much simpler context, yielding insight into how we

expect the noise correlation function to behave with mobile receivers.

14
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Figure 3.1: Example of receiver and source setup in a 2D plane. Sources s1
to sj are distributed around the receiver pair and represent active sources at
this instant in time. Receivers r1 and r2 are separated by a distance R and
each have velocity vi along the axis passing through the pair.

3.1 Problem Formulation

We make the following assumptions to develop our theory on the effects of

receiver mobility during noise correlation:

• Our sources are stationary in space

• Our sources are transient in time

• Our sources are generated from uncorrelated Gaussian processes with mean 0

and variance σ2
s

• Our sources have a flat spectrum extending beyond the bandwidth over which

we correlate

• All sources propagate in a single direct path from source to receiver and undergo

attenuation due to spherical spreading proportional to 1
r

where r is the distance

traveled from the source’s origin

• In correlation preprocessing, we use fmin ≥ 100Hz
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• There are a large number of sound events over our correlation time window

• Our receiver velocity is significantly less than the speed of sound in the medium

• Receiver velocity is taken with respect to the axis through the receivers

These assumptions form the simplest case that is still interesting for describing

the effect of receiver motion on the noise correlation function. Sources that are

stationary in space and transient in time is reasonable given our previous discussion of

our noise sources of interest. Our assumption of correlation bandwidth smaller than

the noise bandwidth is reasonable so long as we choose our bandwidth and center

frequency in a manner consistent with the actual spectrum of ambient ocean noise.

Given our practical application of the AUEs, our assumption of small relative velocity

is very reasonable since they are all carried by the subsurface currents. For example,

in a previous deployment of the AUEs we found that the units tend to move less

than 0.2m/s with respect to each other over 12 second intervals as shown in Figure

3.2. The constraint of fmin ≥ 100Hz ensures that our correlation directivity intuition

holds since low frequencies exhibit much less directivity than higher frequencies.

We choose to take the receiver velocity along the axis because in a relatively

uniform spatial distribution of short sound events, the relevant velocity term is how

much the receivers move with respect to each other since the sound field looks the same

in all directions. In a more directional sound field, the rotation of the receivers would

be important because it would affect the distribution of sources in the endfire regions

over time. However, strongly directional sound fields tend to distort the emergence of

the time-domain Green’s function from correlations of ambient noise, so this method

is unsuitable for those environments.



17

Figure 3.2: Histogram of relative velocities between AUEs from a past
deployment demonstrates that our units tend to have low relative velocity
with respect to each other.

The weakest assumption here for practical environments is that of direct

path propagation with spherical spreading loss. The underwater acoustic channel

is very complex and highly variant over different environments. However, for these

experiments our goal is to build insight into the behavior of the noise correlation

function in the presence of receiver mobility. These more complex models may be

appropriate if the fundamental theory we develop here fails to capture the general

behavior of the noise correlation function elsewhere.
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3.2 Correlation Directivity and Velocity Effects on

a Single Source

In this section we explore how receiver velocity and correlation directivity affect

the relative importance of sources approaching from different angles θ0. Without

receiver motion, sources close to θ0 ∈ {0, π} have the biggest contribution to the noise

correlation function at τ = ±R
c
. However when the receivers are moving, the receivers

have the highest relative velocity to sources on the axis and thus these sources will

experience the most velocity loss. Our goal here is to distil these competing effects in

order to choose an appropriate model for sources in the endfire region.

Figure 3.3: Receiver geometry showing endfire regions. Sources in these
beams contribute to correlation peaks at τ = ±R

c
under cross correlation.

Noting that the relative velocity of our receivers with respect to a source off the

axis is less than the axis source case, we see that when our receivers are moving, there

are two competing effects driving the correlation amplitude of sources coming from

direction θ0. While sources near the axis of the receivers experience the most velocity

distortion, they also make the biggest contributions to the noise correlation function.
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One way to think about the effects of different sources on the noise correlation is to

assign a weight to each source based on its angle of approach to the receiver pair. This

weight can be broken into two components, the correlation directivity effect, and the

velocity distortion effect.

The amplitude of the noise correlation function is proportional to the number

of sources making significant contributions to each specific time lag. From [8] we know

that the ratio of the area enclosed by the endfire beam to a non-endfire direction θ0 is

Ratio(θ0) =

√
2πfc
c
R

(
1 +

1

12

(
B

fc

)2
) 1

4

sin(θ0) (3.1)

This ratio comes from formulating approximations for the directivity of the cor-

relation function for endfire and non-endfire beams, using those to compute beamwidth

angles for on and off endfire angles, then finding the ratio of the two terms. Note that

this relationship holds only for θ0 off the endfire line. We can also think of this ratio

as the correlation directivity weight of a source in the endfire compared to another

beam.

With one moving receiver we can write the relative velocity of the receiver with

respect to a source s approaching from an angle θ0 as vi cos(θi) we can then express

the overall velocity weight for a source approaching from various angles for a fixed

receiver velocity using the normalized wideband ambiguity function as:

ρs

(
0,
vi
c

cos(θ0)
)

(3.2)

Let V (θ0) be the ratio of the velocity loss for a source on the endfire to the

velocity loss of a source in the far field approaching from the angle θ0. This captures
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the relative weighting of a source due to receiver velocity, which we can write this as:

V (θ0) =
ρ
(
0, vi

c

)
ρ
(
0, vi

c
cos(θ0)

) (3.3)

Figure 3.4 shows an example of this dropoff for receiver velocities of v1 = 0

and v2 = 0.1.

Figure 3.4: Ratio of ambiguity function for a source in the endfire at zero
delay error to that of a source approaching from a different angle. This shows
that in the endfire region the velocity effect is small, but increases as we move
farther off axis.

Combining equations 3.1 and 3.3 to form a total weight for a given source

in the endfire compared to a source in another beam as Ratio(θ0)V (θ0) we can see

that for small θ0 in our endfire beam, the velocity weighting term stays near one.

Thus for sources in the endfire region, the correlation directivity dominates the overall

weight for a given source, while in the θ = ±π
2

region, the reduced distortion from the

smaller source-receiver relative velocity has a noticeable effect on the contribution of
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the source to the correlation function.

3.3 Exact Solution

Here we build on the previous section to relate the normalized ambiguity

function for a single source ρ(γ = 0, µ̇) to the noise correlation function at time

τ = ±R
c

in the presence of constant receiver velocity.

In a field of j sound sources, we can write the signal received at receiver i as:

xi(t) =
N∑
j=1

αi,jsj((βi,j(t+ µi,j) +Dj) (3.4)

where αi,j is the attenuation between source j and receiver i, βi,j is the time scaling

between source i and receiver j (with βi,j = (1 + vi
c

cos(θi,j)), µi,j is the time delay for

the source traveling to the receiver at the start of correlation, and Dj is the start time

of source j.

Next, we define the following:

σ̂y =

√√√√∫ T
2

−T
2

y2(t)dt (3.5)

as the square root of the energy of a signal y(t).

Next, we have the correlation coefficient ρy1,y2(τ) given by:

ρy1,y2(τ) =
1

σ̂y1σ̂y2

(
1

T

∫ T
2

−T
2

y1(t)y2(t− τ)dt

)
(3.6)

Finally, let y′(t) be the ideal bandpass filtered version of y(t), as performed

in the noise correlation pre-processing step before whitening. We can then relate the
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noise correlation function to the velocity correlation coefficients for each individual

source in our field as follows:

NCFx1,x2(τ, t, v1, v2) = ρx′1,x′2(τ) (3.7)

=
1

σ̂x′1σ̂x′2

1

T

∫ T
2

−T
2

x′1(t)x
′
2(t− τ)dt (3.8)

Then, since we assume uncorrelated sources, the cross terms in the product

x′1(t)x
′
2(t− τ) cancel and we are left with:

1

σ̂x′1σ̂x′2

N∑
j=1

α1,jα2,j
1

T

∫ T
2

−T
2

s′1,j(t)s
′
2,j(t− τ)dt (3.9)

Since s′1,j and s′2,j are related as time scaled and shifted versions of each other, we can

replace the integral with their normalized ambiguity function to obtain:

1

σ̂x′1σ̂x′2

N∑
j=1

α1,jα2,jσ̂s′1,j σ̂s′2,jρs′1,j ,s′2,j(τ, µ̇j) (3.10)

Next, we break this down a bit further to gain insight as to how this varies from

the noise correlation function for stationary receivers. The key is in understanding

the σ̂x′i term. Using our given equations for xi, this reduces to:
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σ̂x′i =

√√√√ N∑
j=1

α2
i,jσ

2
s′i,j

(3.11)

=

√√√√NE

[
α2
i,j2

∫ fmax

fmin

1

|βi,j|2

∣∣∣∣Sj ( f

βi,j

)∣∣∣∣2 df
]

(3.12)

with Sj(f) as the Fourier transform of sj(t). Applying a change of variables of g = f
βi,j

and assuming a constant magnitude of Sj(f) for fmin

βi,j
≤ f ≤ fmax

βi,j
we obtain:

σ̂x′i =

√
Nσ̂2

s′j
E

[
α2
i,j

β2
i,j

]
(3.13)

= σs′

√
NE

[
α2
i,j

β2
i,j

]
(3.14)

We then apply this back to 3.10 to obtain:

NCFx1,x2(τ, t, v1, v2) =

∑N
j=1 α1,jα2,jσ̂s′1,j σ̂s′2,jρs′1,j ,s′2,j(τ, µ̇j)

Nσ2
s′

√
E
[
α2
1,j

β2
1,j

]
E
[
α2
2,j

β2
2,j

] (3.15)

Noting that the numerator converges to its expected value for large N as well,

we finally obtain:
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NCFx1,x2(τ, t, v1, v2) =
E
[
α1,jα2,jσ̂s′1,j σ̂s′2,jρs′1,j ,s′2,j(τ, µ̇j)

]
σ2
s′

√
E
[
α2
1,j

β2
1,j

]
E
[
α2
2,j

β2
2,j

] (3.16)

=
E
[
α1,j

β1,j

α2,j

β2,j
ρs′1,j ,s′2,j(τ, µ̇j)

]
√
E
[
α2
1,j

β2
1,j

]
E
[
α2
2,j

β2
2,j

] (3.17)

3.4 Developing a Useful Approximation

While Equation 3.16 gives us an exact expression for the noise correlation

function between two moving receivers in a sound field with a known distribution, it

is not particularly insightful in this form. Here we develop an approximation relating

the noise correlation function amplitude at the average receiver separation over T

as a function of velocity to the correlation coefficient of a single source across the

two receivers. Approximating the noise correlation function under receiver velocity in

this way will allow us to use our the matched filter ambiguity function for a single

broadband source to describe the behavior of the noise correlation function for mobile

receivers.

3.4.1 Behavior of Endfire Sources

We first note that only sources inside the endfire beam will make significant

contributions to the noise correlation function. Sources outside this beam (approaching

from an angle greater than θendfire) do not make a meaningful contribution to the

noise correlation peak at τ = +R
c

(which we will refer to as τ+). For mobile receivers,

this peak appears centered on the average time difference from one receiver to the
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Figure 3.5: Virtual source argument in pictures demonstrates how we can
represent a set of sources in the endfire region as a single virtual source. (a):
We begin with a set of sources in the endfire region (b): Due to the small
angle of sources in the endfire region, we can nudge off-axis sources onto
the axis through the receivers with approximately the same effect on the
receivers. (c): Now that the receiver velocity with respect to all these sources
is the same we can replace the sources with a single virtual source with a
time series equivalent to the sum of the axis sources. After noise correlation
preprocessing, this behaves the same as the collective effect of all the endfire
sources.

other over the course of the correlation because the ambiguity function is maximum

at that time. Note that the net effect of these sources as heard by receiver i can be

written as:

xi(t) =
∑
j∈E+

αi,jsj(βi,j(t+Di,j)) (3.18)

where E+ denotes the set of sources in the endfire beam corresponding to τ+.

The key insight in developing our approximation is that these sources in the

endfire beam collectively can be approximated with a single source. Recall that

βi,j = 1 + vi
c

cos(θi,j) and that in an endfire beam, cos(θi,j) is near 1 for all sources

and both receivers. Thus, we can approximate βi,j in the endfire region using this

small angle approximation for cosine as βi,j ≈ 1 + vi
c

, removing the dependence on

θ for the velocity term. Physically, this approximation is equivalent to nudging all

endfire sources onto the axis passing through the receivers. This new process behaves

like a single source on the axis passing through the receivers since the received signal
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x(t) is the same if we replace the set of sources now on the axis with a single source

equal to a linear combination of the individual sources on the axis. Since the orginal

sources are all Gaussian, this virtual source is as well.

Finally, to demonstrate the applicability of the Gaussian matched filter wide-

band ambiguity function to the model, we show that after pre-filtering, the virtual

source produces a pre-correlation term with flat power spectrum over a given band-

width. For a single source with receiver motion, in the frequency domain we get the

following:

Si,j(f) =

∣∣∣∣ 1

βi,j

∣∣∣∣Sj ( f

βi,j

)
e−j2πfDi,jβi,j (3.19)

From 3.19 we can see that the receiver motion either expands or contracts the

original source spectrum by a relatively small amount since for low receiver velocity

βi,j ≈ 1 since we assume that vi
c
� 1. By linearity of the Fourier transform, we

can then see that the received signal spectrum for a set of sources will be a slightly

dilated version of the original spectrum. After bandpassing out our frequencies of

interest and whitening via extracting the Fourier transform phase, we’re left with

spectral properties matching what we would see in the stationary case. Therefore

we can approximate the set of sources in the endfire beam during the correlation

window as a single virtual source. The mobile noise correlation function for this virtual

source is then given by the normalized wideband ambiguity function for a broadband,

flat spectrum source. Next, we relate this approximation back to the full field noise

correlation function to predict the noise correlation function value at τ = ±R
c

in the

full noise field case.
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3.4.2 Relationship to Stationary Noise Correlation Function

Under this virtual source argument, we are approximating the net effect of all

our endfire sources with a single axis source. We now need to show what happens

to this function when we include the noise from sound sources outside the endfire

beam. Combining this approximation for the sources in our endfire beam with the

exact solution presented in equation 3.16 we get:

NCF (τ+, v1, v2) ≈

∑
j∈E+

[
α1,j

β1,j

α2,j

β2,j

]
N

√
E
[
α2
1,j

β2
1,j

]
E
[
α2
2,j

β2
2,j

]ρ(0, µ̇axis) (3.20)

The term in front of the normalized ambiguity function cut ρ(0, µ̇axis) can be

approximated as a constant A. Since we assume v
c
� 1, we have βi,j ≈ 1 and thus this

front term is approximately constant. We know at zero velocity this approximation

should be equal to the exact expression for the noise correlation function over the

given distribution of sound sources. Since ρ(0, 0) = 1 for our virtual source, we have:

A = NCF (τ+, v1 = 0, v2 = 0) (3.21)

Thus we can approximate the noise correlation function as:

NCF (τ+, v1, v2) ≈ NCF (τ+, 0, 0)ρ(0, µ̇axis) (3.22)

which holds as long as our low velocity assumption is correct, and as demon-

strated in Figure 3.2, this is reasonable for the AUEs.

The proposed approximation does two important things. First, it decouples
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the effects of receiver velocity from the actual distribution of sound sources in our

environment. Second, it shows the behavior of the noise correlation function at our

time of interest looks like a scaled version of the behavior of a single source on the

axis passing through the receivers.

3.5 Simulations

To confirm the proposed hypotheses on the noise correlation function’s behavior

under receiver velocity, we present simulation results. These results show our proposed

virtual source model for the noise correlation function under receiver velocity holds

well as a first order approximation.

3.5.1 Simulation Setup

Each simulation scenario begins with picking a distribution of sound sources

and a set of paths for each receiver. We select the start and end position of each

receiver for each velocity such that halfway through the correlation the receivers

are the same distance apart. This ensures that we always have the same average

separation over the correlation window regardless of the receiver velocity.

Sources are generated using independent bandpassed standard normal processes

for a duration of 0.1 seconds. The spatial distribution of sources varies from experiment

to experiment, however the distribution of start times is distributed uniformly over

the experiment time window in all cases.

To propagate the sources to each receiver, we use the model in which the signal
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received is given by:

si,j(t) =

(
1

1 + d

)
sj

((
1 +

vrel
c

)
(t+D)

)
(3.23)

which corresponds with our receiver having a constant velocity with respect to the

source (reasonable since our sources are short in duration and our receivers move

slowly) and attenuation due to spherical spreading ≈ 1
d

where d is the distance from

source to receiver. The 1
1+d

attenuation factor ensures that a source at 0 distance

from our receiver experiences no attenuation and corresponds with a source origin

power of σ2
s = 1.

Holding the source distribution constant, we generate audio as heard by each

receiver for a set of constant velocities. We then repeat the experiment with a new

realization of the source positions and start times for a set number of trials depending

on the variance inherent in the distribution. For example, results from isotropic

distributions tend to be noisier than those with sources only in the endfire beams, so

we perform more trials on the isotropic distributions in order to increase the certainty

of our results.

In simulation we explore the following source distributions:

1. Sources on the axis passing through the receiver pair

2. Sources distributed in the 2D endfire regions of the receiver pair

3. Sources distributed isotropically over the 2D plane containing the receivers

4. Receivers at constant 10m depth, sources distributed isotropically in a 2D plane

at the surface
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Case 1 serves as a verification of our intuition that sources on the axis behave like

a single virtual source on each side of the receiver pair. Case 2 serves to demonstrate

that our proposed approximation holds for sources in the endfire beams of the receivers.

Cases 3 and 4 demonstrate the most realistic cases in which we test to see how well our

approximation holds in isotropic sound field cases. Based on our previous discussion

of noise from surface agitation, Case 4 is the most representative of a scenario we

expect to see in practice.

After computing the empirical noise correlation function values for each value

in each trial, we compute the mean and standard deviation of the estimates which we

use to form 90% confidence intervals for the average noise correlation amplitude of

each receiver pair velocity across our set of source distribution realizations. This gives

us a relative sense of certainty about these empirical estimates.

These simulations are intended to demonstrate that our model does indeed

reflect the behavior of the noise correlation function in a simple environment.

3.5.2 Simulation Results

First, we confirm our previous argument that the noise correlation function of

a set of sources along the axis passing the receivers is well modeled by the ambiguity

function of a single source on the axis.

Figure 3.6 demonstrates that as predicted, sources on the axis passing through

our receiver pair can be modeled with a pair of virtual sources, one for each endfire

beam of our receiver pair. Note that our peak value for the correlation is not equal

to 0.5 for sources along the axis, due to the correlation pre-processing and sources

between the two receivers contributing to peaks not at τ = τ+ or τ = τ−.
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Figure 3.6: Predicted and simulated correlation coefficients for a single
receiver moving, with all sources distributed uniformly along the axis between
the two receivers. This confirms our intuition that many sources along the
axis between the receivers behaves like a single source.

Next, we demonstrate that a field composed of only sources in the endfire

beams is approximated by the ambiguity function for a single virtual source on the

axis passing through the receivers.

Though not as good an approximation as the axis case, here we can see that

our approximation holds reasonably well. In this case, the approximation tends to

underbound the experimental bounds by a narrow margin. In the higher center

frequency and bandwidth cases, the peak noise correlation value drops off much faster

as a function of receiver velocity, but the approximation holds much more tightly

because of the narrower endfire beamwidth in these cases.

In the cases with isotropically distributed noise, we start to see some interesting

effects. Our approximation holds reasonably well for different bandwidths and center

frequencies (Figures 3.8, and 3.9).
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Figure 3.7: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed in the endfire regions of the receivers. Blue
line shows predicted values while red dots with 90% confidence intervals shows
simulated results.

Finally, we get to the most realistic case of sources residing in a plane above

the receivers, corresponding with surface noise above receivers at constant depth. Like

the previous two cases, we see that our predicted noise correlation value tends to

underbound the experimental data by a small margin. This is acceptable from a

design perspective because it allows us to choose our correlation parameters such that

we will achieve slightly better than predicted performance. Similar to the 2D case

we see that our approximation works well in the surface noise case (Figures 3.10 and

3.11).
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Figure 3.8: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically in the 2D plane of the receivers,
B = 400, fc = 300. Blue line shows predicted values while red dots with 90%
confidence intervals shows simulated results.

Figure 3.9: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically in the 2D plane of the receivers,
B = fc = 1000. Blue line shows predicted values while red dots with 90%
confidence intervals shows simulated results. We see here that increasing the
center frequency makes the amplitude drop off faster with velocity.
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Figure 3.10: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically on the surface plane 10m above
the receivers, B = 400, fc = 300. Blue line shows predicted values while red
dots with 90% confidence intervals shows simulated results.

Figure 3.11: Simulated and predicted noise correlation amplitude for varying
velocities with sources distributed isotropically on the surface plane 10m above
the receivers with B = fc = 1000. Blue line shows predicted values while red
dots with 90% confidence intervals shows simulated results.



Chapter 4

Mobile Noise Correlation Function

Design Space

This chapter explores the implications of our proposed mobile noise correlation

function approximation on the choice of window length, bandwidth, and center

frequency for computing the noise correlation function. From past literature we know

that in the stationary case, longer correlation windows result in a higher SNR for

our correlation peaks. However, from the results presented in Chapter 3, we know

this is not the case when our receivers are mobile. To find the ideal correlation

window, we apply past knowledge about the noise correlation SNR with our proposed

approximation to estimate the optimal correlation time window for a given set of

receiver velocities.

35
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4.1 Noise Correlation SNR

As discussed in Chapter 2, we know the noise correlation function in the

stationary case is proportional to:

SNR ∝

(√
BT√
fc

)
(4.1)

Applying the mobile case approximation from Equation 3.22 (NCF (τ+, v1, v2) ≈

NCF (τ+, 0, 0)ρ(0, µ̇)) in the mobile case to this SNR expression, we get:

SNR ∝

(√
BT√
fc

)
ρ(0, µ̇) (4.2)

∝

(√
BT√
fc

)
1

BTµ̇

[
Si

(
πµ̇T

(
fc +

B

2

))
− Si

(
πµ̇T

(
fc −

B

2

))]
(4.3)

∝ 1√
BTfcµ̇

[
Si

(
πµ̇T

(
fc +

B

2

))
− Si

(
πµ̇T

(
fc −

B

2

))]
(4.4)

This demonstrates that the noise correlation signal to noise ratio in the constant

velocity case does not monotonically improve with increasing time windows. In terms

of optimization, this provides us with an objective we can maximize over to get the

best possible signal to noise ratio for given conditions. Also, noting that receiver

velocity does not change the noise level in the region outside of the time-domain

Green’s function response, our signal amplitude drops with ρ(0, µ̇). Thus, given a

minimum SNR we can use this to compute the maximum tolerable inter-node velocity

such that we can recover a distance estimate between our receivers.
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4.2 Time Window Selection

An interesting implication of this approximation is that we can use our knowl-

edge of the single source ambiguity function to find the optimal correlation time

window and bandwidth about a given center frequency in order to maximize our

signal to noise ratio for a given receiver velocity. Most importantly, this illustrates the

hypothesized ideal time window selection problem in which we want to pick a time

window long enough for our correlation process to produce results but short enough

for the receiver geometry to remain relatively constant. Figure 4.1 demonstrates this

by showing the SNR objective surface over a set of possible bandwidth and time

window values for different receiver velocities. We can see from this that as our

velocity increases we must also decrease the time window to obtain the best results.

Furthermore, as velocity increases, our sensitivity to the ideal time window increases

as well.

As Figure 4.1 shows, we are almost always better off choosing larger bandwidth.

Thus when choosing our correlation parameters in practice, we should choose the

largest bandwidth which admits only the ambient sound sources we are interested in

using.

4.3 Maximum Tolerable Velocity

Suppose we have a system in which we can successfully estimate distances

between our receivers so long as the noise correlation function is a times its value in

the stationary case for a ∈ [0, 1]. We can formulate the maximum tolerable inter-node
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velocity problem then as:

max
vrel

(vrel) (4.5)

subject to: (4.6)

a ≤ ρ

(
0,

1− vrel
2c

1 + vrel
2c

− 1, fc, B, T

)
(4.7)

T ∈ [Tmin, Tmax] (4.8)

fc ∈ [fmin, fmax] (4.9)

B ∈ [Bmin, Bmax] (4.10)

(4.11)

Given a range of parameter choices, this problem yields the maximum tolerable

inter-node velocity for our system. Due to the non-convexity of constraint (4.7), this

problem is difficult to solve directly. A strategy one could pursue instead would be to

choose B and fc based on environmental conditions, then performing a brute force

optimization on Equation 4.5 since the condition (4.7) is reasonably easy to compute

directly. After finding the maximum tolerable velocity, there may be many possible

time windows which meet a certain level of performance. In general, one should use

the largest time window possible which meets the velocity requirements of the system

because it takes time for the noise correlation to converge to its expected value [6].

To find the maximum tolerable velocity for a given fc and B we can trace the

contour corresponding with our minimum performance requirement to its maximum

velocity. As long as the corresponding time window is long enough for the noise

statistics to converge well enough, we now have the tolerable velocity maximizing

design. As mentioned before if more than one time window satisfies the design
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requirements, we should choose the largest one so that the noise statistics have as

much time as possible to converge. Figure 4.2 shows an example of a design space

corresponding with B = 400, fc = 300, with a noise statistics which take at least 15

seconds to converge. We can see that the maximum feasible velocity for a minimum

ρ(0, µ̇) = 0.8 is around 0.12 m/s, which is achievable with a time window of 15 seconds.

Figure 4.3 shows a design space with a higher center frequency of fc = 600Hz and

bandwidth B = 800Hz and we can see that since ρ(0, µ̇) drops off much faster with v,

we have a much lower maximum tolerable velocity than the previous case.
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Figure 4.1: Design surfaces over correlation bandwidth and time, showing
SNR objective for different fixed velocities. B is increasing on the y axis and
T is increasing on the x axis, with fc = 300. On the z axis, yellow (lighter)
indicates a higher value for the SNR objective. (a): At 0 velocity, our best
time and bandwidth are the maximum we can choose. (b): At v = 0.05
m/s the optimal time window is no longer the longest possible window. (c):
Increasing the receiver velocity to v = 0.1m/s our optimal time window is
again smaller, however optimal bandwidth remains the largest we can choose.
(d): At v = 0.15m/s we can see that near optimal B, T , more bandwidth is
better, however in the upper right of this plot (low B, high T ) there are cases
where increasing bandwidth does not improve the SNR at the given velocity.
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Figure 4.2: Maximum tolerable velocity design space for a center frequency
of 300Hz and a bandwidth of 400Hz. Z axis indicates ρ(γ = 0, µ̇) for the
given receiver pair relative velocity and correlation time window.

Figure 4.3: Maximum tolerable velocity design space for a center frequency
of 600Hz and a bandwidth of 800Hz. Z axis indicates ρ(γ = 0, µ̇) for the
given receiver pair relative velocity and correlation time window.



Chapter 5

Conclusion

In exploring the effects of receiver mobility on inter-node distance estimation via

correlations of ambient noise we’ve demonstrated that we can model the mobile noise

correlation problem using the wideband ambiguity function. By approximating the set

of noise sources in the endfire beams of our receiver pair as a single virtual source, we

can reduce the problem of finding the noise correlation function of a mobile receiver

pair to solving the normalized wideband ambiguity function of a single source on the

axis through the receivers. Through simulation on common sound source distributions

we’ve shown that with appropriate scaling this approximation predicts the amplitude

of the mobile noise correlation function reasonably well, typically underbounding the

simulated values by a small margin. We then demonstrated how this approximation

can be combined with past work on the SNR of the noise correlation function for a

stationary set of receivers to choose correlation parameters like bandwidth and time

window. We provided two examples of this, one showing the time and bandwidth

parameters which maximize the SNR for a given receiver velocity and center frequency,

and one showing the maximum tolerable velocity and the largest time window which

42
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achieves the required performance.
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