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Abstract

Spin-Orbit Coupling, Broken Time-Reversal Symmetry, and Polarizability Self-Consistency
in GW and GW -BSE Theory with Applications to Two-Dimensional Materials

by

Meng Wu

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Steven G. Louie, Chair

Interactions (e.g., spin-orbit coupling (SOC), electron-hole, magnetic ordering, etc.) of-
ten give rise to dramatic new features in the excited-state physics of two-dimensional (2D)
materials. Advanced first-principles methods greatly deepen our understanding of these
interactions, and enable us to predict novel phenomena with high accuracy. In this dis-
sertation, I discuss the formalism of several new features – i.e., full-spinor wavefunctions,
magneto-optical (MO) effects, and self-consistency with vertex corrections in screening –
in the framework of the GW and GW plus Bethe-Salpeter equation (GW -BSE) methods,
the state-of-the-art many-body theoretical tools to explore condensed matter physics (Chap-
ters 1–4). These techniques are then applied to 2D materials of recent interest (Chapters
5–8). This dissertation not only aims to understand and predict the excited-state physics
of 2D materials with theory and first-principles calculations but also to elucidate relevant
experimental data when available. The contents of this dissertation are organized as follows:

• In Chapter 1, I briefly review some important concepts used throughout the disser-
tation: density-functional theory (DFT), many-body perturbation theory (MBPT),
dielectric responses, and 2D materials. In particular, I review the basics of DFT and
MBPT, from which the first-principles GW and GW -BSE methods are derived. Di-
electric responses of materials are introduced as an application of the linear response
theory to a many-electron system under external electromagnetic perturbations. Rel-
evant physical quantities measured in experiments are explained and connected to
first-principles calculations.

• In Chapter 2, I introduce the SOC effect in solids and the formalism of full-spinor
GW and GW -BSE methods. I focus on the total dielectric function, matrix elements
involving spinor wavefunctions, the macroscopic transverse dielectric function tensor
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calculated at the GW -BSE level, and matrix elements of the current operator. Bench-
mark results of the full-spinor GW and GW -BSE methods are also presented.

• In Chapter 3, I discuss the formalism of first-principles modeling of MO effects. The
basics of magneto-optics are introduced, emphasizing the magneto-optical Kerr effect
(MOKE) and Faraday effect (FE). MO signals are connected to the macroscopic trans-
verse dielectric function tensor that can be calculated from first principles. Since this
formalism will be applied to 2D magnetic insulators in Chapter 8, I also discuss the
definition of dielectric function in 2D materials.

• In Chapter 4, I present a new first-principles method – self-consistent with appropriate
polarizability GW (swapGW ). With swapGW , we can perform self-consistent GW cal-
culations and incorporate the effects of vertex corrections in the polarizability through
a BSE. Different self-consistent GW methods and the effect of vertex corrections are
reviewed in detail. Our implementation of the swapGW method is benchmarked using
bulk silicon.

• In Chapter 5, I demonstrate a new set of optical selection rules dictated by the winding
number of interband optical matrix elements, which is in fact due to a topological effect
on optical transitions in 2D materials [1]. These selection rules are later verified by
GW and GW -BSE calculations of gapped graphene systems.

• In Chapter 6, I present a work in collaboration with experimentalists to study the
strain engineering of the band gap in 2D InSe flakes [2]. We discover the ultrasensitive
tunability of the direct band gap in few-layer InSe flakes by photoluminescence spec-
troscopy. We also develop a theoretical understanding of the strain-induced band gap
change through first-principles DFT and GW calculations.

• In Chapter 7, I discuss the important roles of the excitonic exchange interaction and
SOC in reshaping the exciton states and modifying the optical properties of mono-
layer transition metal dichalcogenides [3]. Full-spinor GW and GW -BSE methods are
employed to demonstrate the exchange-driven mixing of exciton states in monolayer
MoS2. Our experimental collaborators use the 2D electronic spectroscopy (an ultra-
fast four-wave mixing spectroscopy technique) to demonstrate the intravalley exchange
interaction unambiguously in both time and frequency domains.

• In Chapter 8, I investigate the physical origin of giant excitonic and MO responses in 2D
ferromagnetic insulators [4]. We show, with the full-spinorGW andGW -BSE methods,
that excitonic effects dominate the optical and MO responses in the prototypical 2D
ferromagnetic insulator, monolayer CrI3. In this work, we also predict the sensitive
frequency- and substrate-dependence of MO responses by simulating the MOKE and
FE signals in realistic experimental setups.
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In addition to the projects mentioned above, I am also involved in three others during my
Ph.D. program, including two studies of heterojunctions made from one-dimensional (1D)
bottom-up-synthesized graphene nanoribbons [5, 6], as well as one study of orbital texture
in a 2D Mott insulator, monolayer 1T-TaSe2 [7]. The discoveries made in these works are
also interesting but do not seem to fit in the scope of this dissertation, and hence they are
not included.
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(k) MCD of absorbance (η) as a function of the photon frequency. η is set to zero
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8.4 MO signals calculated from first-principles dielectric functions. (a) P-MOKE
setup consisting of layers of vacuum, ferromagnetic monolayer CrI3, SiO2 film,
and semi-infinitely thick Si. Red arrows denote the out-of-plane magnetization,
which is pointing along the +z direction. Blue arrows denote the propagation
direction of light, and black double-headed arrows give the corresponding linear
polarization direction. Each orange ellipse denotes a polarization plane of the
electric field of light. (b) Calculated real part (solid lines) and imaginary part
(dashed lines) of both the diagonal εxx (red) and off-diagonal εxy (blue) dielectric
functions of ferromagnetic monolayer CrI3, using a monolayer thickness d = 6.6
Å. (c) Kerr angle θK (left, blue solid) and Kerr ellipticity χK (right, red dashed)
for the P-MOKE setup with a 285 nm SiO2 layer. (d) Kerr angle θK (left, blue
solid) and Kerr ellipticity χK (right, red dashed) for the P-MOKE setup in (a)
with semi-infinitely thick SiO2 layer. (e) P-MOKE and P-FE setup of a suspended
ferromagnetic bulk CrI3 layer with the directions of light propagation and mag-
netization similar to (a). (f) Calculated real part (solid lines) and imaginary part
(dashed lines) of both the diagonal εxx (red) and off-diagonal εxy (blue) dielectric
functions of ferromagnetic bulk CrI3. (g) Kerr angle θK (left, blue solid) and Kerr
ellipticity χK (right, red dashed) for the setup in (e) with infinitely thick ferro-
magnetic bulk CrI3. (h) Comparison between Faraday angle θF of a suspended
ferromagnetic monolayer CrI3 and extrapolated bulk value down to the monolayer
thickness (6.6 Å). An 80 meV energy broadening is applied. . . . . . . . . . . . 78

H.1 Absorbance and transmittance of a 2D material. The green rectangle denotes
the infinitely large 2D material with thickness d. The space above and below
the 2D material are vacuum. Propagation directions of incident, reflected, and
transmitted lights are denoted by the red arrows. Electric fields are denoted by
the blue arrows, of which the direction is the positive direction for each. The
positive direction of all the magnetic fields points into the page. The charge
current density J is assumed to be uniform within the 2D material and denoted
by the yellow arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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Chapter 1

Introduction

1.1 Density-functional theory

1.1.1 Kohn-Sham equation
The density-functional theory (DFT) is based on the Hohenberg-Kohn theorem [13]. It

states that: the ground-state wavefunction and the ground-state expectation value of any
observable physical quantity is a unique functional of the ground-state electron density.
Furthermore, the total energy as a functional of the density takes the minimum value at
the true ground-state density. This theorem, however, only proves the existence of such an
energy functional without giving any clue of its actual form. It turns out that, by mapping
the many-body problem to an effective one-body problem with an appropriately chosen
single-particle potential VKS(r) such that they have the same ground-state electron density,
we can construct a self-consistent procedure to calculate the ground-state density and energy,
as proposed by Kohn and Sham [14].

Such a noninteracting auxiliary problem can be described by a single-particle Schrödinger
equation [8, 15]: [

− ~2

2me

∇2 + VKS(r)
]
φi(r) = εiφi(r), (1.1)

where me is the electron rest mass, along with an electron density,

ne(r) =
occ∑
i

|φi(r)|2, (1.2)

where the summation goes over all the occupied states. The many-body wavefunction of
such a noninteracting system is nothing but a Slater determinant formed by all the single-
particle wavefunctions φi. We then introduce the exchange-correlation energy Exc[ne(r)] as
a functional of ne, which by its definition contains all the corrections beyond the Hartree
approximation to the many-body problem. By defining the exchange-correlation potential as
an derivative of Exc with respect to the variation of electron density, Vxc[ne(r)] = δExc/δne



CHAPTER 1. INTRODUCTION 2

and adding other ingredients, we can write down the famous Kohn-Sham equation as,[
− ~2

2me

∇2 + Vext(r) + VH[ne(r)] + Vxc[ne(r)]
]
φi(r) = εiφi(r), (1.3)

where VH is the Hartree potential, and Vext the external potential [8]. If we know the form
of Vext(r) (i.e., ionic potentials, external electromagnetic fields, etc.) and the exchange-
correlation energy functional Exc[ne(r)], the ground-state density and energy can then be
calculated self-consistently.

The above-mentioned procedure is in principle exact, but we still need an approximate
Vxc[ne] to start with. In the local-density approximation (LDA), we assume that for a system
with slowly varying ne(r), the exchange-correlation potential V LDA

xc can be approximated as
a function of the local electron density, such that,

ELDA
xc [ne] =

∫
dr ne(r)εhom

xc [ne(r)],

V LDA
xc (r) ≡ δELDA

xc
δne

= εhom
xc [ne(r)] + ne(r) dεhom

xc (ne)
dne

∣∣∣∣∣
ne(r)

,
(1.4)

where εhom
xc (ne) is the exchange-correlation energy of a homogeneous electron gas with density

ne. The exchange energy of a homogeneous electron gas is given by [16] (with α = 2/3 in
the Slater’s Xα method),

εhom
x = −3q2

e

4

( 3
π

)1/3
n1/3
e , (1.5)

which leads to the LDA exchange potential,

V LDA
x (r) = −q2

e

( 3
π

)1/3
n1/3
e (r). (1.6)

Note that throughout this dissertation, qe denotes the elementary charge of electron qe =
−e = −1.602176 × 10−19 C. As for the correlation part, various parameterized analytical
forms have been used by the community, e.g., the Ceperley-Alder data [17] with Perdew-
Zunger [18] parametrization, etc.

In the generalized gradient approximation (GGA), the exchange-correlation energy is
written as a function of both the density and the gradient of the density,

EGGA
xc =

∫
dr f(ne(r),∇ne(r)). (1.7)

Some popular GGA exchange functionals used in solids include the Perdew-Wang [19],
Perdew-Burke-Ernzerhof (PBE) [20], and Perdew-Burke-Ernzerhof revised for solids (PBEsol)
[21] parametrizations, etc.

Until now, we have assumed that the system is non-magnetic: that is, the density of spin-
up and spin-down electrons are equal. These non-magnetic systems can be characterized
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by the electron density alone. In magnetic systems, however, we need both spin-up and
spin-down densities. It can be shown that the Kohn-Sham equation can be generalized to
spin-polarized systems as follows [22, 23],

∑
σ′

{[
− ~2

2me

∇2 + VKS(r)
]
δσσ′ −

1
2geµBσσσ

′ ·BKS(r)
}
φiσ′(r) = εiσφiσ(r), (1.8)

where BKS(r) is an effective magnetic induction. Consider a simpler case with a uniform
magnetic field or collinear spin polarization, the spin-up and spin-down densities can be used
instead of the total electron density and magnetization density. In this case, the Kohn-Sham
equation is given by,[

− ~2

2me

∇2 + Vext(r) + VH[ne(r)] + Vxc;σ[n↑(r), n↓(r)]− 1
2geµBσB

]
φiσ(r) = εiσφiσ(r),

(1.9)
where the spin-resolved exchange-correlation potential Vxc;σ is defined by the following deriva-
tive of Exc,

Vxc;σ[n↑(r), n↓(r)] ≡ δExc[n↑(r), n↓(r)]
δnσ(r) , σ =↑, ↓ . (1.10)

LDA can still be used here to get an approximate expression of the spin-dependent Exc, as
named by the local-spin-density approximation (LSDA). In this approximation, the exchange-
correlation energy can be written as,

ELSDA
xc [n↑, n↓] =

∫
dr εxc[n↑(r), n↓(r)]ne(r) (1.11)

The exchange contribution is simply the summation of contributions from each spin, because
there is no exchange between electrons with different spin polarization,

ELSDA
x [n↑, n↓] = 1

2
(
ELDA

x [2n↑] + ELDA
x [2n↓]

)
. (1.12)

Parametrization of the correlation energy can be performed in different forms, such as the
Perdew-Zunger, von Barth-Hedin [23], and Vosko-Wilk-Nusair [24] parameterizations, etc.

1.1.2 Pseudopotentials
Another equally important ingredient in first-principles modeling of materials is the

electron-ion interaction described with pseudopotentials. The theory of pseudopotentials
is based on the Phillips-Kleinman cancellation theorem [25]: the wavefunctions of the va-
lence and higher-energy electronic states are expected to be smooth away from the atomic
sites and oscillatory with atomic character in the core region, and it is possible to derive a
pseudopotential that guarantees the orthogonality between the valence electronic states and
the implicitly included core electronic states [8]. This formalism justifies the intuition that
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only valence electrons participate in the chemical bonding, while core electrons are mostly in-
active. Pseudopotentials eliminate the core electrons from the Kohn-Sham equation, remove
the original strong electron-ion interaction, and therefore allow the use of simple basis sets
(e.g., plane waves) for a numerical solution with nice convergence behavior. In general, the
construction of first-principles pseudopotentials involves first solving the all-electron (AE)
Kohn-Sham equation (including both core and valence states) for a given atom in a particu-
lar configuration. Given the AE wavefunctions, a set of pseudowavefunctions can be built by
some standardized pseudization procedures (e.g., connection to AE wavefunctions beyond a
radius, smoothness up to high-order derivatives, norm-conserving or not, parameterization,
etc.). Pseudopotentials can then be constructed by inverting the Schrödinger equation using
the AE eigenvalues of valence states and corresponding pseudowavefunctions. To ensure
the transferability of pseudopotentials, it is important to “unscreen” them by removing the
electronic contributions arising from VH and Vxc, because these components are specific to
a particular configuration. The resulting potentials are called ionic pseudopotentials and
they are widely used in first-principles calculations (DFT and beyond) for different physical
properties in different chemical environments [26, 27].

The combination of DFT and the first-principles pseudopotential method prove to be
very effective and versatile in investigating a wide range of materials (e.g., molecules, solids,
nanostructures, interfaces, etc.) and various ground-state properties (e.g., electronic, struc-
tural, vibrational, etc.) [8, 27, 28, 29]. As long as a physical quantity (e.g., Born effective
charge, piezoelectric tensor, dynamical matrix, etc.) can be formulated as changes in the
total energy in response to some perturbations, it can be reasonably modeled by DFT.
With DFT, it is possible to make direct and quantitative comparison with experiments or
to predict certain phenomena before any measurements.

1.1.3 The band gap problem
Even though the charge density and the total energy of the ground state can be accu-

rately calculated by DFT, it is important to point out that the Kohn-Sham eigenvalues and
eigenstates in Eq. (1.1) cannot be interpreted as the actual quasiparticle energies and wave-
functions in real systems. It is because Kohn-Sham eigenvalues are just Lagrange multipliers
used in the variational problem of minimizing the energy functional. In fact, this leads to
the famous band gap problem of DFT as shown in Fig. 1.1. The band gap is an important
quantity of semiconductors and insulators, and it is defined by,

Eg ≡ (EN−1 − EN)− (EN − EN+1), (1.13)

where EN is the ground-state total energy of the neutral system with N electrons, and EN±1
is the ground-state total energy of the charged system with N±1 electrons. The size of band
gap will have a huge influence on the dielectric screening and optical properties of materials.
However, DFT suffers from the notorious band gap problem: the Kohn-Sham band gaps EKS

g
of semiconductors and insulators are usually much smaller (by about 40%) than experimental
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Figure 1.1: Comparison of calculated band gaps from DFT and from first-principles GW
approach with experimental values for conventional semiconductors and insulators. This
figure is adapted from Ref. [8].

band gaps (also called quasiparticle band gap EQP
g ). For some narrow-gap semiconductors,

such as Ge and InSb, DFT could even give a metallic ground state [30, 31, 32]. In solids, the
change in the electron density (∆ne) upon adding or removing an electron is on the order of
10−20 of the existing density ne. It has been shown in Ref. [33] that EQP

g and EKS
g differ by

a constant ∆xc,
lim

∆ne→0
EQP

g = EKS
g + ∆xc, (1.14)

where ∆xc is given by,

∆xc ≡ lim
∆ne→0

(Vxc[ne + ∆ne]− Vxc[ne −∆ne]) . (1.15)

That is, if the exact Exc is used, we would expect a discontinuity in Vxc with respect to
the ground-state ne in the neutral system. However, in LDA or similar approximations of
Vxc, we assume a continuous functional with respect to ne, which leads to ∆xc = 0. In this
way, the band gap problem is deeply rooted in the formalism of DFT and some higher-level
theories are needed to solve this problem. The good news is that Kohn-Sham eigenvalues
and eigenstates could serves as a reasonable starting point or an “educated guess” for more
sophisticated and higher-level calculations of excited-state properties, such as quasiparticle
bandstructure [9, 30] and optical properties [34, 35]. One such solution is the GW method,
first proposed by Hedin [36] and later formulated from ab initio and applied to real materials
by Hybertsen and Louie [9, 30]. In the GW method, we replace the local or semilocal static
Vxc by an nonlocal frequency-dependent non-Hermitian self-energy operator Σ which well
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captures the discontinuity of ∆xc and yields good agreement with experiments [9, 30, 37].
Figure 1.1 compares the calculated band gaps from DFT and those from the first-principles
GW method as well as with experimental band gaps for conventional semiconductors and
insulators [8]. A brief review of the GW method is presented in the following sections.

1.2 Many-body perturbation theory
Electronic structure in solids is a typical many-body problem, involving a huge number

(∼ the Avogadro’s constant) of electrons, ions, as well as under various external fields. The
most systematic and elegant approach to this problem is based on the quantum field theory
and the many-body perturbation theory (MBPT) (also called the Green’s function method)
[36, 38, 39, 40], from which the GW and GW -BSE methods are derived. MBPT is probably
one of the most powerful, predictive and versatile formalisms in physics. This section is just
a sketch of important concepts and conclusions most relevant to the development of the GW
and GW -BSE methods, and we only focus on the Green’s function formalism for electrons in
the following. More details and other topics about MBPT can be found in several excellent
reviews and textbooks [8, 40, 41, 42, 43, 44].

We start from a general Hamiltonian Ĥ for a system of interacting electrons under an
external potential Vext(x) [8, 41, 42, 45]:

Ĥ =
∫

dx ψ̂†(x)
[
− ~2

2me

∇2 + Vext(x)
]
ψ̂(x) + 1

2

∫
dxdx′ v(r, r′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x),

(1.16)
where x = {rσ} and

∫
dx = ∑

σ

∫
dr. The spin-resolved electron density operator is defined

as, n̂e(x) ≡ ψ̂†(x)ψ̂(x). The Coulomb interaction is given by, v(r, r′) = q2
e

4πε0|r−r′| , where ε0
is the vacuum permittivity.

The time-ordered single-particle Green’s function G in the zero-temperature formalism is
defined as:

G(12) ≡ (− i
~

)〈Ψ0|T [eiĤt1/~ψ̂(x1)e−iĤt1/~eiĤt2/~ψ̂†(x2)e−iĤt2/~]|Ψ0〉
〈Ψ0|Ψ0〉

≡ (− i
~

)〈Ψ0|T [ψ̂(1)ψ̂†(2)]|Ψ0〉
〈Ψ0|Ψ0〉

,

(1.17)

where 1 ≡ {x1t1}, T is the time-ordering operator, and |Ψ0〉 the ground state of an interacting
system with the Hamiltonian in Eq. (1.16). Throughout the following derivation, the time-
dependence of the field operator ψ̂(1) comes from the Hamiltonian in Eq. (1.16),

ψ̂(1) ≡ ψ̂(x1, t1) = eiĤt1/~ψ̂(x1)e−iĤt1/~. (1.18)

Note that the following discussion also applies to the finite-temperature G, as shown in Ref.
[39]. After a time Fourier transform with respect to t1 − t2 (Sec. A), we get G(x1,x2;ω),
defined in the frequency domain.
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The retarded single-particle Green’s function GR is defined as,

GR(12) ≡ (− i
~

)Θ(t1 − t2)〈Ψ0|{ψ̂(1), ψ̂†(2)}|Ψ0〉
〈Ψ0|Ψ0〉

, (1.19)

where the commutator {A,B} ≡ AB + BA is for fermionic operators. In the following,
quantities without an explicit R superscript are all time-ordered. Applications of retarded
correlation functions, including GR, will be discussed in the next section of dielectric re-
sponses. The single-particle Green’s function is at the center of MBPT because (i) the
Feynman rules are simpler for G than for other operators, and (ii) the expectation value
of any single-particle operator in the ground state of the system can be calculated using
G [41]. In this dissertation, we will adopt the functional derivative approach [39, 40, 45]
to reduce the many-body problem to the solution of a coupled set of nonlinear integral
equations. This approach avoids the cumbersome conventional diagrammatic expansion of
relevant quantities.

We first add an external time-dependent local potential ϕ to the Hamiltonian in Eq.
(1.16) in order to perturb the system,

Ĥ ′(t) ≡
∫

dx ψ̂†(x)ϕ(x, t)ψ̂(x). (1.20)

This perturbation potential will go to zero at the end of our derivation. Since there is an
extra term in the Hamiltonian,

Ĥ ′′(t) ≡ Ĥ + Ĥ ′(t), (1.21)

we adopt the interaction picture from now on,

Ĥ ′I (t) ≡ eiĤt/~Ĥ ′(t)e−iĤt/~, (1.22)

and introduce the S matrix,

Ŝ ≡ exp
{
− i
~

∫ ∞
−∞

dt Ĥ ′I (t)
}
. (1.23)

The generalized single-particle Green’s functions with respect to Ĥ ′′(t) is then,

G(12) =
(
− i
~

) 〈Ψ0|T [Ŝψ̂(1)ψ̂†(2)]|Ψ0〉
〈Ψ0|T [Ŝ]|Ψ0〉

. (1.24)

When we take the limit of Ĥ ′ → 0, the S matrix will be reduced to an identity operator.
We now introduce a total potential Vtot averaged over the many-body ground state |Ψ0〉 as,

Vtot(1) ≡ ϕ(1) +
∫

d2 v(12)〈n̂e(2)〉 = ϕ(1)− i~
∫

d2 v(12)G(22+), (1.25)
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where v(12) = v(r1, r2)δ(t1 − t2), 〈n̂e(2)〉 ≡ 〈Ψ0|n̂e(2)|Ψ0〉 = −i~G(22+), 2 = {x2t
+
2 }, and

t+2 = t2 + η with η → 0+. We relate Vtot to the external potential ϕ by introducing the
reducible polarizability χ and the inverse dielectric function ε−1 as functional derivatives:

χ(12) ≡ δ〈n̂e(1)〉
δϕ(2) , (1.26)

ε−1(12) ≡ δVtot(1)
δϕ(2) = δ(12) +

∫
d3 v(13)χ(32). (1.27)

Eq. (1.27) can be inverted to get,

ε(12) = δ(12)−
∫

d3 v(13)χ?(32), (1.28)

where we have defined the irreducible polarizability χ? as,

χ?(12) ≡ δ〈n̂e(1)〉
δVtot(2) . (1.29)

The screened Coulomb interaction W is defined intuitively as,

W (12) ≡
∫

d3 ε−1(13)v(32). (1.30)

Combine Eqs. (1.27), (1.29) and (1.30), and we get the following expressions of W ,

W (12) = v(12) +
∫

d(34) v(13)χ(34)v(42)

= v(12) +
∫

d(34) v(13)χ?(34)W (42)
(1.31)

The electron self-energy Σ, the Hartree term ΣH and the mass operator M(12) are defined
as follows,

Σ(12) ≡ ΣH(12) +M(12), (1.32)

ΣH(12) ≡ δ(12)
∫

d2 v(12)〈n̂e(2)〉, (1.33)

M(12) ≡ i~
∫

d(34)v(13)δG(14)
δϕ(3) G

−1(42). (1.34)

Σ drives the equation of motion of G,[
i~

∂

∂t1
+ ~2

2me

∇2
1

]
G(12)−

∫
d3 Σ(13)G(32) = δ(12). (1.35)

By defining a noninteracting single-particle Green’s function G0(12) at the absence of the
Coulomb interaction, Eq. (1.35) can be reformulated into the Dyson’s equation,

G(12) = G0(12) +
∫

d(34)G0(13)Σ(34)G(42). (1.36)
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The irreducible three-point vertex function Γ? is defined as,

Γ?(123) ≡ −δG
−1(12)

δVtot(3) = δ(12)δ(13) +
∫

d(4567) δM(12)
δG(45) G(46)G(75)Γ?(673), (1.37)

M can then be expressed as an integral involving G, Γ?, and W :

M(12) = i~
∫

d(34)G(13)W (41)Γ?(324). (1.38)

χ? is also related to Γ? according to,

χ?(12) = −i~
∫

d(34)G(13)G(41)Γ?(342). (1.39)

Until now, we get the well-known Hedin’s equations [36, 40] for a system of interacting
electrons:

G(12) = G0(12) +
∫

d(34)G0(13)Σ(34)G(42), (1.40)

Γ?(123) = δ(13)δ(23) +
∫

d(4567)δM(12)
δG(45) G(46)G(75)Γ?(673), (1.41)

χ?(12) = −i~
∫

d(34)G(13)G(41)Γ?(342), (1.42)

W (12) = v(12) +
∫

d(34) v(13)χ?(34)W (42), (1.43)

M(12) = i~
∫

d(34)G(13)W (41)Γ?(324) = Σ(12)− ΣH(12). (1.44)

This set of equations build up a large self-consistent loop involving the single-particle Green’s
function G, irreducible vertex function Γ?, irreducible polarizability χ?, screened Coulomb
interaction W and mass operator M .

1.3 The GW method
The most important approximation of the GW method is to take the zeroth order vertex

(i.e., no vertex corrections) in Eq. (1.41),

Γ?(123) = δ(13)δ(23), (1.45)

which leads to the irreducible polarizability within the random-phase approximation (RPA),

χ?(12) = −i~G(12)G(21), (1.46)

and the iconic GW mass operator,

M(12) = i~G(12)W (21). (1.47)
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The number of self-consistent Hedin’s equations are now reduced to four. Underneath the
simple look of the GW method, it is actually one of the conserving approximations, as
discussed by Kadanoff and Baym [46, 47], which means it is expected to satisfy the general
(number, momentum, and energy) conservation laws.

As discussed before, the band gap problem of DFT was successfully resolved by the
development of the first-principles GW method for quasiparticle excitations by Hybertsen
and Louie [9, 30]. In real materials, W is usually much weaker than the bare Coulomb
interaction, which leads to the laudable accuracy and versatility of the GW method [8].
Even though the GW method is much simpler than the original Hedin’s equations, we still
need further approximations for a realistic calculation. In practice, DFT results are usually
used as a starting point for the GW method by replacing the many-body wavefunctions by a
Slater determinant of Kohn-Sham eigenstates. This allows us to evaluate the GW self-energy
(mass operator) as a first-order perturbation with respect to the Kohn-Sham eigenvalues,

εQP
nk = εKS

nk + 〈nk|M(εQP
nk )− Vxc|nk〉. (1.48)

It has been shown that the overlap between DFT-LDA and quasiparticle wavefunctions is
greater than 99.9% in some conventional semiconductors and insulators [9]. Moreover, the
full self-consistency is often out of reach for real materials and therefore further approxima-
tions have to be adopted, such as the one-shot GW method (also called the G0W0 method).
In the G0W0 method, both G0 and W0 are constructed using Kohn-Sham eigenvalues and
eigenstates in the quasiparticle approximation. G0 is given by,

G0(x1,x2;ω) =
∑
nk

φKS
nk(x1)(φKS

nk(x2))∗
~ω − εKS

nk + iη sgn(εKS
nk − εF) , η → 0+, (1.49)

where εF denotes the Fermi level and sgn is the sign function. After space and time Fourier
transforms (Sec. A), W0 can be constructed from the RPA (denoted by the superscript of
0) irreducible polarizability χ?;0 with Kohn-Sham eigenvalues and eigenstates,

χ?;0G1G2(q;ω) = 1
NkΩ

∑
cvk

〈v(k − q)|e−i(q+G1)·r1 |ck〉〈ck|ei(q+G2)·r2 |v(k − q)〉
~ω − (εKS

ck − εKS
v(k−q)) + iη

−〈ck|e
−i(q+G1)·r1|v(k + q)〉〈v(k + q)|ei(q+G2)·r2|ck〉

~ω + (εKS
ck − εKS

v(k+q))− iη

 , η → 0+,

(1.50)

where Nk is the number of k-points in the Brillouin zone and it is also equal to the number of
unit cells used in the Born–von Kármán boundary condition [8], and Ω is the volume of a unit
cell. Equation (1.50) is the famous Adler-Wiser expression of the RPA polarizability [48, 49].
The evaluation of the GW self-energy correction can be performed either by incorporating
the full frequency dependence of χ?, and hence ε−1, through a numerical integral [11] or by
employing the generalized plasmon-pole model of ε−1 with a sum-rule constraint [9].
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1.4 Dielectric responses
In this section, we discuss the microscopic theory of dielectric responses in solids using

the linear response theory. When an external electromagnetic perturbation is switched on,
several physical quantities of the material may change accordingly. One external field cou-
ples directly to an observable (e.g., the scalar potential couples to the charge density and
the vector potential couples to the charge current density) such that their product serves
as a perturbation Hamiltonian. When the external field is relatively weak, the change in
the expectation values of those directly related observables is proportional to the field am-
plitude and to the corresponding susceptibility (as a special correlation function). These
susceptibilities can be calculated as retarded correlation functions of the equilibrium system
[41, 42, 50, 51, 52]. Electromagnetic perturbations represent many state-of-the-art experi-
mental characterization techniques in solid state physics: electron energy-loss spectroscopy
using the scalar potential of external electrons; linear optics using the vector potential of
external photons; transport measurements using the external electric field; magnetic neutron
scattering using the magnetic field of neutrons, etc.

Here, we use the linear response theory to study a system of interacting electrons with
mass me and charge qe moving under the influence of a total vector potential A(r, t) and an
external scalar potential ϕext(r, t) [42, 45]. The perturbation Hamiltonian in the Schrödinger
picture is given by,

Ĥ ′(t) = −qe
∫

dr
[
ĵp(r) + ĵd(r, t)

]
·A(r, t) + qe

∫
dr n̂e(r)ϕext(r, t)

= −
∫

dx
[
Ĵp(r) + Ĵd(r, t)

]
·A(r, t) +

∫
dr ρ̂(r)ϕext(r, t),

(1.51)

where ĵp (Ĵp = qeĵp) refers to the paramagnetic particle (charge) current density and ĵd

(Ĵd = qeĵd) refers to the diamagnetic particle (charge) current density. ρ̂ = qen̂e refers to
the electron charge density. Detailed discussion of current operators can be found in Sec. B.

In the following, we introduce four different susceptibilities that will be used in the linear
responses of induced charge density and induced charge current density. First, let’s define
the deviation operators for the charge density and paramagnetic charge current density,

ρ̂′(1) ≡ ρ̂(1)− 〈Ψ0|ρ̂(1)|Ψ0〉, (1.52)
Ĵ ′p(1) ≡ Ĵp(1)− 〈Ψ0|Ĵp(1)|Ψ0〉, (1.53)

with the following identities,

[ρ̂′(1), ρ̂′(2)] = [ρ̂(1), ρ̂(2)] , (1.54)[
ρ̂′(1), Ĵ ′p(2)

]
=
[
ρ̂(1), Ĵp(2)

]
, (1.55)[

Ĵ ′p(1), Ĵ ′p(2)
]

=
[
Ĵp(1), Ĵp(2)

]
. (1.56)
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The retarded reducible susceptibilities (density-density, current-density, density-current, para-
magnetic current-current) can be defined as follows,

χR(12) ≡
(
− i
~

)
Θ(t1 − t2)〈Ψ0| [ρ̂′(1), ρ̂′(2)] |Ψ0〉

〈Ψ0|Ψ0〉
, (1.57)

←−χ R(12) ≡
(
− i
~

)
Θ(t1 − t2)

〈Ψ0|
[
Ĵ ′p(1), ρ̂′(2)

]
|Ψ0〉

〈Ψ0|Ψ0〉
, (1.58)

−→χ R(12) ≡
(
− i
~

)
Θ(t1 − t2)

〈Ψ0|
[
ρ̂′(1), Ĵ ′p(2)

]
|Ψ0〉

〈Ψ0|Ψ0〉
, (1.59)

←→χ p;R(12) ≡
(
− i
~

)
Θ(t1 − t2)

〈Ψ0|
[
Ĵ ′p(1), Ĵ ′p(2)

]
|Ψ0〉

〈Ψ0|Ψ0〉
, (1.60)

where [A,B] = AB − BA is the commutator for bosonic operators. Their time-ordered
counterparts are defined as,

χ(12) ≡
(
− i
~

) 〈Ψ0|T [ρ̂′(1)ρ̂′(2)] |Ψ0〉
〈Ψ0|Ψ0〉

, (1.61)

←−χ (12) ≡
(
− i
~

) 〈Ψ0|T
[
Ĵ ′p(1)ρ̂′(2)

]
|Ψ0〉

〈Ψ0|Ψ0〉
, (1.62)

−→χ (12) ≡
(
− i
~

) 〈Ψ0|T
[
ρ̂′(1)Ĵ ′p(2)

]
|Ψ0〉

〈Ψ0|Ψ0〉
, (1.63)

←→χ p(12) ≡
(
− i
~

) 〈Ψ0|T
[
Ĵ ′p(1)Ĵ ′p(2)

]
|Ψ0〉

〈Ψ0|Ψ0〉
. (1.64)

Retarded and time-ordered susceptibilities are related in many ways, as discussed in Sec. C.
Note that all the susceptibilities in Eqs. (1.61)–(1.64) refer to the charge density or charge
current density instead of particle density or particle current density, and they are marked
in bold to emphasize the difference. With the Kubo-Greenwood formula, the induced charge
density and the induced charge current density due to electromagnetic fields can then be
expressed with these susceptibilities,

ρind(1) =
∫

d2χR(12)ϕext(2)−
∫

d2−→χ p;R(12) ·A(2), (1.65)

and

J ind(1) =
∫

d2←−χ R(12)ϕext(2)− q2
e

me

ne(1)A(1)−
∫

d2←→χ p;R(12) ·A(2)

=
∫

d2←−χ R(12)ϕext(2)−
∫

d2←→χ R(12) ·A(2),
(1.66)

with the definition of the total current-current susceptibility,

←→χ R(12) ≡ q2
e

me

ne(1)δ(12) +←→χ p;R(12). (1.67)
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1.4.1 Longitudinal dielectric function and electron energy-loss
spectroscopy

In electron energy-loss spectroscopy (EELS), a material is hit by a beam of electrons
with a narrow range of kinetic energies. Some electrons will encounter inelastic scattering,
in which they lose energy and get deflected. The electron energy-loss spectrum can be
roughly split into three different regions: zero loss, low energy loss (up until about 50 eV in
energy loss) and high energy loss. Different scattering mechanisms dominate each region:

• Zero-loss peak: the elastic scattering is responsible for the zero-loss peak in EELS.
Elastic scattering is a process where an incident electron is scattered by an atomic
nucleus. Due to the great mass difference between an electron and a nucleus, the
energy exchange between the incident electron and the nucleus is small.

• Low-loss spectrum: inelastic scatterings from valence electrons and other quasiparti-
cles (e.g., plasmons, excitons, etc.) contribute to the low-loss spectrum, which contains
information about the bandstructure and dielectric properties of the sample.

• High-loss spectrum: the energy loss from the core shell excitation process can be
much higher, which is due to the fact that the binding energies of core shell electrons
are around hundreds or even thousands of eV. If sufficient energy from an incident
electron is transferred through an inelastic scattering process, a core shell electron can
be excited to an unoccupied state above the Fermi level and shows up as an ionization
edge.

We are interested in the low-loss spectrum where quasiparticle excitations play an important
role. During an inelastic scattering, the momentum transfer is unnecessarily zero and it is
possible to detect the change in both the energy and momentum in a carefully done EELS
measurement. To model EELS in the low-loss region, we need to consider the scattering
of an incident electron by the electrons in the solid. A general assumption is that the
interaction between an incident electron and the existing electrons can be written as a
summation of pairwise potentials [15], ∑i ϕ(r−ri), where i denotes all the existing electrons
in the solid. Incident electrons within an infinitesimal patch of cross-sectional area dσ will
be scattered into a corresponding infinitesimal solid angle dΩ. The differential inelastic
scattering cross section d2σ

dωdΩ characterizing both the momentum transfer and the energy loss
is then proportional to the dynamical structure factor S(q;ω), which is further related to
the imaginary part of the macroscopic component (G1 = G2 = 0) of the density-density
susceptibility χR through the fluctuation-dissipation theorem [53],

d2σ

dωdΩ ∝ S(q;ω) ∝ −ImχR
00(q;ω). (1.68)
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Recall the definition of the time-ordered inverse dielectric function in Eq. (1.27), we define
its retarded counterpart as the longitudinal dielectric function [48, 49, 54, 55, 56, 57, 58],

εR;−1(12) = δ(12) +
∫

d3 v(13)χR(32) = δ(12) + 1
q2
e

∫
d3 v(13)χR(32), (1.69)

where χR ≡ q2
eχ

R according to Eq. (1.57). In this way, we define the dimensionless energy-
loss function L as,

L(q;ω) ≡ −Im εR;−1
00 (q;ω). (1.70)

εR;−1
00 (q;ω) is calculated by taking the time and space Fourier transforms (Sec. A) of Eq.
(1.69) and only keeping the macroscopic component.

1.4.2 Transverse dielectric function and optical spectra
In linear optics, a beam of low-energy photons (usually in the optical spectrum) is shined

on the materials. These photons can be either absorbed, transmitted or reflected, which
leads to different optical spectra such as absorption and reflection spectra. The light inten-
sity is kept low enough such that dielectric responses stay in the linear regime and therefore
relevant signals are proportional to the amplitude of the electric field of light. Once a photon
is absorbed by an insulating sample, an electron-hole pair can be created with Coulomb in-
teraction. These interacting electron-hole pairs are called excitons, and they could strongly
modify the optical spectra going beyond the noninteracting picture. In particular, bound
excitons show up below the fundamental band gap in the absorption spectrum and deter-
mine the so-called optical band gap, as shown in Fig. 1.2. Typical exciton binding energies
are around 50 meV in conventional bulk semiconductors [8]. Unlike impurity-trapped bound
states, excitons are usually delocalized and be able to propagate in the material. Tradi-
tionally, excitons are classified as Wannier excitons where the electron and the hole are
weakly bound (exciton radius is larger than the unit cell), and Frenkel excitons where the
electron-hole interaction is strong (exciton radius is smaller than the unit cell).

In this section, we use the linear response theory and the microscopic Maxwell’s equations
to model the response of a crystal to external electromagnetic fields of light. To avoid the
discussion of surface charge and current, we introduce the polarization field P which is
related to the induced charge density,

∇ · P = −ρind. (1.71)

The electric displacement vector D is defined as,

D ≡ ε0E + P ⇒ ∇ ·D = ρext. (1.72)

The induced current in the most rigorous form is given by,

J ind = ∇×M + ∂P

∂t
, (1.73)
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Figure 1.2: (a) Schematic of exciton energy levels. Quasiparticle bandstructure with band
gap Eg and an exciton state at energy Eex are indicated. (b) Sketch of the absorption spec-
trum of a dipole-allowed direct-gap semiconductor with the lowest three excitonic transitions
shown. This figure is adapted from Ref. [8].

whereM is the magnetization field. Within the optical frequency range, it is a good approx-
imation to assume that the magnetic permeability is just equal to that of the vacuum, i.e.,
µ = µ0, and therefore,M ≈ 0. In this way, we can only focus on the electric field and ignore
the magnetic field. We decompose these physical quantities into their Fourier components
(e.g., D(r, t) ⇒ DG(q;ω)), and compute how the system responds. To be specific, we are
interested in the macroscopic dielectric function tensor, εM(q;ω) ≡ εαβM (q;ω) = εαβ00 (q;ω), as
given in the following expression,

Dα
0 (q;ω) =

∑
β=x,y,z

εαβM (q;ω)Eβ
0 (q;ω), ∀α = x, y, z. (1.74)

We start from the definition of D in terms of E and P ,

D = ε0E + P ⇔DG = ε0EG + PG, (1.75)

and the induced current from the variation of P ,

J ind = ∂P

∂t
⇔ J ind

G = −iωPG. (1.76)

And then we define a perturbing electric field EP following Ref. [45],

EP ≡ −∇ϕext − ∂A

∂t
. (1.77)
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This perturbing electric field is useful to simplify Eqs. (1.65) and (1.66),

ρind
G =

∑
G1

χR
GG1ϕ

ext
G1 −

1
iω

∑
G1

−→χ R
GG1 ·

[
EP
G1 + i(q +G1)ϕext

G1

]
= − 1

iω

∑
G1

−→χ R
GG1 ·E

P
G1 ,

(1.78)

and
J ind
G =

∑
G1

←−χ R
GG1ϕ

ext
G1 −

1
iω

∑
G1

←→χ R
GG1 ·

[
EP
G1 + i(q +G1)ϕext

G1

]
= − 1

iω

∑
G1

←→χ R
GG1 ·E

P
G1 .

(1.79)

where we have used the Ward identities in Sec. D. Plug Eqs. (1.76) and (1.79) into Eq.
(1.75), and we will get,

DG = ε0EG + 1
−iω

J ind
G = ε0EG −

1
ω2

∑
G1

←→χ GG1 ·EP
G1 . (1.80)

On the other hand, EP is related to the total electric field E by,

Ep = E +∇ϕind, ∇2ϕind = −ρ
ind

ε0

⇔EG = EP
G + (q +G)

ε0ω(q +G)2

∑
G1

−→χ R
GG1 ·E

P
G1 = EP

G + (q +G)(q +G)
ε0ω2(q +G)2 ·

∑
G1

←→χ R
GG1 ·E

P
G1 ,

(1.81)
where the Ward identities are used again. Employ the macroscopic approximation of EP,
EP
G = δG0E

P
0 , and we will get,

E0 = EP
0 + qq

ε0ω2q2 ·
←→χ R

00 ·EP
0 =M ·EP

0 , (1.82)

whereM≡Mαβ(q;ω) is given by,

Mαβ(q;ω) = δαβ +
∑
γ

qαqγ
ε0ω2q2

←→χ R;γβ
00 (q;ω), ∀α, β = x, y, z. (1.83)

Luckily, the inverse matrixM−1 has a closed form [45],

(
M−1

)αβ
= δαβ −

1
ω

qα
−→χ R;β

00
ε0q2 + χR

00
, (1.84)

which leads to an explicit relation between D0 and E0,

D0 =
[
ε01−

1
ω2
←→χ R

00 + 1
ω2

←−χ R
00
−→χ R

00
ε0q2 + χR

00

]
·E0, (1.85)
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where 1 ≡ δαβ is an identity tensor.
In summary, the macroscopic transverse dielectric function tensor is given by,

εM = ε01−
1
ω2
←→χ R

00 + 1
ω2

←−χ R
00
−→χ R

00
ε0q2 + χR

00
. (1.86)

1.5 Bethe-Salpeter equation (BSE)
The Bethe-Salpeter equation (BSE) was initially proposed in 1951 [59] to study the

bound-state problem for two interacting Fermi-Dirac particles considering relativistic effects.
It finds many applications in different branches of theoretical physics, and particularly it can
be used to describe different kinds of bound states in condensed matter, such as excitons
(bound state of an electron-hole pair) [34], polarons (phonon-dressed electrons) [60], etc.
The application of BSE to studying excitons from first principles was pioneered by Rohlfing
and Louie [34, 35].

Because we need to study a two-particle problem, it is intuitive to introduce the two-
particle Green’s function G2,

G2(1234) ≡
(
− i
~

)2 〈Ψ0|T [Ŝψ̂(1)ψ̂†(2)ψ̂(3)ψ̂†(4)]|Ψ0〉
〈Ψ0|T [Ŝ]|Ψ0〉

, (1.87)

as well as the two-particle correlation function L,

L(1234) ≡ −G2(1234) +G(12)G(34). (1.88)

By generalizing the local potential in Eq. (1.20) to a nonlocal instantaneous potential
ϕ(12) = ϕ(x1,x2; t1)δ(t1 − t2) such that,

Ĥ ′(t) =
∫

dxdx′ ψ̂†(x)ϕ(x,x′; t)ψ̂(x′), (1.89)

we can relate L with G using the following expression,

L(1234) = δG(12)
δϕ(43) = −

∫
d(56)G(15)δG

−1(56)
δϕ(43) G(62)

= G(14)G(32) +
∫

d(5678)G(15)G(62) δΣ(56)
δG(87)

δG(87)
δϕ(43)

= L0(1234) +
∫

d(5678)L0(1265)Ξ(5678)L(8734).

(1.90)

The noninteracting two-particle correlation function L0 and the interaction kernel Ξ are
defined as follows,

L0(1234) ≡ G(14)G(32), (1.91)

Ξ(5678) ≡ δΣ(56)
δG(87) . (1.92)
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Eq. (1.90) is the BSE for L. Note that L is preferred over G2 because it gets rid of those
disconnected diagrams in G2 [41] and it is directly related to the susceptibilities introduced
in Eqs. (1.61) – (1.64) [45]:

χ(12) = −i~q2
eL(11+22+), (1.93)

←−χ (12) = −q
2
e~2

2me

{
(∇1 −∇1′)L(11′22+)

}∣∣∣
1′=1+

, (1.94)

−→χ (12) = −q
2
e~2

2me

{
(∇2 −∇2′)L(11+22′)

}∣∣∣
2′=2+

, (1.95)

←→χ p(12) = i~3q2
e

4m2
e

{(∇1 −∇1′)(∇2 −∇2′)L(11′22′)}|1′=1+

2′=2+
, (1.96)

where 1+ = {x1t
+
1 } and 2+ = {x2t

+
2 }.

The BSE formalism is usually combined with the GW method, and therefore it is often
called the GW -BSE method, which is among the most accurate first-principles methods
available to calculate optical properties of real materials. It has proven very effective in
dealing with bulk semiconductors, metals, low-dimensional materials and nanodevices [61].
By combining Eqs. (1.47) and (1.92), we get the interaction kernel at the GW level [34, 45,
46],

Ξ(1234) = i~
δ

δG(43) (ΣH(12) +G(12)W (21))

= −i~δ(12)δ(43)v(14) + i~δ(1, 4)δ(23)W (21)
+ i~G(12)

[
W (24)W (31+) +W (23)W (41+)

]
G(34)

≈ −i~δ(12)δ(43)v(14) + i~δ(14)δ(23)W (21),

(1.97)

where we have ignored terms with quadratic order of W . Those higher order terms corre-
spond to the change of dielectric screening upon excitation, and it is assumed to be negligible
in semiconductors and insulators [34]. In Eq. (1.97), we identify two kernels: the one with
the bare Coulomb interaction is called the exchange kernel,

Ξv(1234) ≡ −i~δ(12)δ(43)v(14), (1.98)

and the one with the screened Coulomb interaction is called the direct kernel,

ΞW (1234) ≡ i~δ(14)δ(23)W (21). (1.99)

The direct kernel can be reduced to an attractive Coulomb potential when the electron-hole
separation is large, and it is largely responsible for the exciton binding energy in semicon-
ductors and insulators [34, 45]. The repulsive exchange kernel, on the other hand, is usually
much smaller than the direct kernel in bulk semiconductors and it is responsible for the
longitudinal-transverse splitting of excitonic states and mixing of different spin-polarized
states [45]. The exchange kernel is proportional to the wavefunction overlap between the
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electron and the hole, and it plays an important role in low-dimensional materials where the
quantum confinement forces the electron and the hole to come close to each other [8, 62].
One caveat here is that directly solving Eq. (1.90) cannot give the answer to Eq. (1.86).
We need to introduce another two-particle correlation function L̃ in order to calculate the
macroscopic transverse dielectric function. To do so, we first split the exchange kernel into
a short-range part ΞSR

v and a long-range part ΞLR
v ,

ΞLR
v (1234) ≡ −i~δ(12)δ(43)vLR(14), with vLR

G (q) ≡ δG0v0(q),
ΞSR
v (1234) ≡ Ξv(1234)− ΞLR

v (1234).
(1.100)

L̃ satisfies a BSE with the kernel ΞSR
v + ΞW such that,

L̃(1234) = L0(1234) +
∫

d(5678)L0(1265)
[
ΞSR
v (5678) + ΞW (5678)

]
L̃(8734). (1.101)

L̃ is related to L through the following expression,

L(1234) = L̃(1234) +
∫

d(5678)L̃(1265)ΞLR
v (5678)L(8734). (1.102)

Equation (1.101) is shown diagrammatically in Fig. 1.3.

Figure 1.3: Top line: Bethe-Salpeter equation (BSE) for the two-particle correlation function
L̃. Bottom line: approximate interaction kernels of the BSE in the top line, including the
direct kernel ΞW and the short-range exchange kernel ΞSR

v . Arrowed lines denote single-
particle Green’s functions G. The wavy line denotes the screened Coulomb interaction W
while the dashed line denotes the short-range part of the bare Coulomb interaction v. All
the quantities are time-ordered.
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Using the Ward identities, we can prove the following identities between the susceptibil-
ities derived from L̃ and L,

←̃−χ 00 =
←−χ 00

1 + χ00
ε0q2

, (1.103)

and
←→χ p

00 − ←̃→χ
p
00 = 1

ε0q2
←̃−χ 00
−→χ 00. (1.104)

Combine Eqs. (1.103) and (1.104), and set everything to be retarded, we can get a simpler
expression of Eq. (1.86) [45, 58, 63],

εM(q;ω) = ε01−
1
ω2
←̃→χ

R
00(q;ω). (1.105)

In practice, we solve the BSE for L̃ instead that for L, and then construct ←̃→χ from L̃ to
calculate Eq. (1.105).

To facilitate first-principles GW -BSE calculations, we ignore the dynamical effects in ΞW

such that W is approximated by its instantaneous component [34],

W (1, 2) ≈ W (x1,x2)δ(t1 − t2). (1.106)

The approximations made in Eqs. (1.97) and (1.106) will in principle violate the conservation
law, but numerous numerical results based on these approximations agree quite satisfactorily
with experiments [34, 35, 61].

Since our goal is to calculate ←̃→χ according to Eq. (1.96), it is then intuitive to study
L(11′22′) with 1′ = x′1t

+
1 and 2′ = x′2t

+
2 . In this case, both sides of Eq. (1.101) only depend

on the time difference t1− t2 and it is possible to do a time Fourier transform of Eq. (1.101)
and then invert it to get a closed expression of L̃,

L̃−1(x1,x
′
1;x2,x

′
2;ω) = L−1

0 (x1,x
′
1;x2,x

′
2;ω)−

[
ΞW (x1,x

′
1;x2,x

′
2) + ΞSR

v (x1,x
′
1;x2,x

′
2)
]
.

(1.107)
Note that the interaction kernels are frequency-independent.

1.6 Two-dimensional (2D) materials
In 2D materials, electrons or holes are free to move parallel to the interface, but highly

confined in the perpendicular direction. In recent two decades or so, the discovery of atom-
ically thin solid materials has attracted huge interest in different fields of condensed matter
physics, materials science, chemistry, electrical engineering, etc. Ever since the successful
exfoliation of monolayer graphene [64], the size of the 2D materials family has grown enor-
mously, and now we have a myriad of 2D materials, including metals [64, 65], semiconductors
[66, 67, 68, 69], insulators [70, 71], magnets [72, 73, 74], topological materials [75, 76, 77],
superconductors [78, 79, 80], Mott insulators [7, 81], etc. [82, 83] It is now even possible to



CHAPTER 1. INTRODUCTION 21

stack different 2D materials together and create van der Waals heterostructures with exotic
properties and promising applications [84].

Recent years have also seen an outburst of first-principles studies of 2D materials, at
the DFT level and beyond. With the development of first-principles GW and GW -BSE
methods, researchers were able to discover and investigate a lot of fascinating excited-state
physics in various 2D materials, such as nonhydrogenic Rydberg series of exciton states [85],
environmental screening effects [62], exciton dispersion relations [86], dark exciton states
[87], 2D plasmonics [88], etc. The reduced dimension introduces weakened overall dielectric
screening, enhanced many-electron correlation and excitonic effects, as well as topological
effects in the electronic structures of 2D materials. In this dissertation, I focus on the appli-
cation of the first-principles GW and GW -BSE methods to the quasiparticle bandstructure,
excitonic effects, exotic optical selection rules, strain engineering, as well as optical and
magneto-optical properties of 2D semiconductors and insulators.
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Chapter 2

Full-spinor GW and GW -BSE methods

2.1 Spinor wavefunctions and spin-orbit coupling
In materials consisting of heavy elements, relativistic effects cannot be ignored. Spin-orbit

coupling (SOC), derived from the perturbation theory of the Dirac equation [89], describes
the interaction between a particle’s spin with its motion within the external potentials (ionic
potentials, external electromagnetic fields, etc.). SOC is an important effect in condensed
matter physics, exhibiting itself in various phenomena, such as the Dresselhaus effect [90],
the Rashba effect [91, 92, 93], spin-valley locking [94, 95], topological phases [96, 97, 98, 99],
etc. The SOC Hamiltonian,

ĤSOC = ~2

4im2
ec

2σ · ((∇Vext)×∇), (2.1)

is spin-dependent, and therefore spin may not be a good quantum number once HSOC is
added to the Kohn-Sham equation. In this way, we have to introduce the two-component
spinor Bloch waves,

φnk(x) ≡
(
φ↑nk(r)
φ↓nk(r)

)
= 1√

Nk

eik·r
(
u↑nk(r)
u↓nk(r)

)
= 1√

NkΩ
∑
G

ei(k+G)·r
(
C↑Gnk
C↓Gnk

)
, (2.2)

instead of the scalar one,

φnk(r) ≡ 1√
Nk

eik·runk(r) = 1√
NkΩ

∑
G

ei(k+G)·rCGnk. (2.3)

Note that ĤSOC stil respects the time-reversal symmetry, and therefore the Kramers’ theorem
(Sec. F) still holds in non-magnetic systems with SOC.

In practical DFT calculations with pseudopotentials, we have three different types of
treatment of SOC: namely, non-relativistic (NR), scalar-relativistic (SR), and fully relativis-
tic (FR). In the NR case, relativistic effects are not included in the construction of pseu-
dopotentials. In the FR case, the relativistic AE Kohn-Sham equation is solved for atoms
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and the SOC term is incorporated in the pseudopotentials. In the SR case, the relativistic
AE Kohn-Sham equation is transformed into an equation for the large component only and
then averaged over relevant spin-orbit components with the same orbital angular momentum
quantum number l [100].

Previous GW and GW -BSE studies of materials with heavy elements usually treated
SOC as a perturbation on the results without SOC [62, 85, 87]. This approach could get
quantitatively good results when the systems have extra symmetries (e.g., a mirror symme-
try) to guarantee that the spin is a good quantum number, such that there is a well-defined
correspondence between spinor Bloch waves and scalar Bloch waves. To treat general systems
involving heavy elements with arbitrary crystal symmetry, a rigorous full-spinor formalism is
required. The formalism of the GW and GW -BSE methods introduced in the last section is
very general and able to deal with spinor wavefunctions. In this section, we focus on possible
pitfalls and several technical details about the full-spinor GW and GW -BSE methods.

2.2 Total dielectric function
Naïvely, one expects to take a 2 × 2 tensor form of the polarizability and the dielectric

function in the spinor case, with tentative forms of εG1G2;σ1σ2(q;ω) and χG1G2;σ1σ2(q;ω),
respectively. For example, the RPA polarizability can be written as,

χ0;?
σ1σ2(r1, r2; t1 − t2) = −i~Gσ1σ2(r1, r2; t1 − t2)Gσ2σ1(r2, r1; t2 − t1). (2.4)

However, this practice is totally unnecessary because the bare Coulomb interaction v is blind
to the spin (i.e., no spin indices in the expression):

vG1G2;σ1σ2(q) = δG1G2

e2

ε0

1
|q +G1|2

= δG1G2vG1(q). (2.5)

Recall Eq. (1.31),
W (12) = v(12) +

∫
d(34) v(13)χ(34)v(42). (2.6)

If we take time and space Fourier transforms of Eq. (2.6) and plug in Eq. (2.5), we will get,

WG1G2;σ1σ2(q;ω) = vG1G2;σ1σ2(q;ω) +
∑
G3G4
σ3σ4

vG1G3;σ1σ3(q;ω)χG3G4;σ3σ4(q;ω)vG4G2;σ4σ2(q;ω)

= vG1(q)δG1G2 + vG1(q)
(∑
σ3σ4

χG1G2;σ3σ4(q;ω)
)
vG2(q) = WG1G2(q;ω),

(2.7)
which means W is also spin-blind. χ? and χ are therefore independent of spin indices. In
this way, we only need to calculate the total polarizability by summing over all the four
entries in the tensor form,

χ?G1G2(q;ω) =
∑
σ1σ2

χ?G1G2;σ1σ2(q;ω), (2.8)
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as well as the total dielectric function,

εG1G2(q;ω) = δG1G2 − vG1(q)χ?G1G2(q;ω). (2.9)

2.3 Matrix elements involving spinor wavefunctions
In theGW andGW -BSE methods, we frequently encounter the following matrix elements

via a Fourier transform,

〈n1(k − q)|e−i(q+G)·r|n2k〉

=


∑
G1G2 C

∗
G1n1(k−q)CG2n2k

1
Ω
∫

Ω dξ ei(−G1−G+G2)·ξ, scalar.∑
G1G2;σ C

σ;∗
G1n1(k−q)C

σ
G2n2k

1
Ω
∫

Ω dξ ei(−G1−G+G2)·ξ, spinor.
(2.10)

Note that the integrals are within a unit cell. Because the Fourier-transformed density
operator e−i(q+G)·r is spin-diagonal, we only need to consider the inner product with the
same spin component. The cost of each matrix element double in the spinor case. Besides,
the number of bands also doubles in the spinor case compared with that in the scalar case,
which leads to more matrix elements to be calculated in the spinor case. For example, the
number of BSE matrix elements in the spinor case will be 16 times that in the scalar case,
which means the computational cost of diagonalization of the BSE matrix in the spinor case
will be 64 times that in the scalar case.

2.4 Macroscopic transverse dielectric function tensor
We use Kohn-Sham eigenstates to transform the BSE in Eq. (1.107) from the coordinate

representation into the Bloch-wave representation (Sec. E),

L̃−1
λµ;αβ(ω) = L−1

0;λµ;αβ(ω)−
[
ΞW ;λµ;αβ + ΞSR

v;λµ;αβ

]
. (2.11)

L−1
0 and the interaction kernels in the Bloch-wave representation are given by,

L−1
0;λµ;αβ(ω) = −i~δλβδµα(nα − nβ)[~ω − (εβ − εα)], (2.12)

ΞW ;λµ;αβ = i~
∫

dx1dx2 φ
∗
λ(x1)φµ(x2)φ∗α(x2)φβ(x1)W (x1,x2;ω = 0), (2.13)

ΞSR
v;λµ;αβ = −i~

∫
dx1dx2 φ

∗
λ(x1)φµ(x1)φ∗α(x2)φβ(x2)v(r1, r2), (2.14)

where nα is the occupation number for the state φα, and the indices λ, µ, α, and β label the
Bloch waves. The size of the BSE matrix in the Bloch-wave representation can be very large,
which poses a formidable challenge for numerical diagonalization algorithms. To make our
life easier, it is often the case that the Tamm-Dancoff approximation (TDA) is used to get
rid of 3/4 of the matrix elements [34, 41]. To be specific, we only keep those band-to-band
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transitions with positive transition energy in Eq. (2.12): that is, only the transitions from
a valence state (nα = 1) to a conduction state (nβ = 0) are considered. Negative-energy
solutions of the full BSE are inferred from the corresponding positive-energy solutions, and
the coupling of these two sets of solutions is ignored. It is widely recognized that, for bulk
semiconductors and metals, the TDA only introduces a very small error in the calculated
optical properties. However, in the case of low-dimensional systems with incident light
polarized along a confined direction, the TDA may incur large errors [101, 102].

Moreover, from the translational symmetry of the crystal,

χ(r1 +R, r2 +R;ω) ≡ χ(r1, r2;ω), (2.15)

where R is a lattice vector, we know that a center-of-mass momentum Q can be assigned to
label the eigenvalues and eigenstates from the solution of BSE [86]. Under these considera-
tions, the BSE for one Q can be reformulated as an eigenvalue problem in the Bloch-wave
representation,

ASQcvk(εck − εv(k−Q)) +
∑
c′v′k′

ASQc′v′k′〈cv,k;Q|K|c′v′,k′;Q〉 = ASQcvkΩSQ, (2.16)

where K ≡ 1
−i~(ΞW + ΞSR

v ) is the conventional interaction kernel in the unit of energy
[34]. For an eigenstate |SQ〉, ASQcvk denotes the amplitude of each free electron-hole pair
|cv,k;Q〉 = φ∗v(k−Q)φck involving a valence state φv(k−Q) and a conduction state φck. If we
are only interested in the Q → 0 limit, as in the case of optical absorption, the Q index
can be dropped. In this way, we only consider direct transitions where the electron and hole
states have the same k. Equation (2.16) can then be simplified as,

AScvk(εck − εvk) +
∑
c′v′k′

ASc′v′k′〈cv,k|K|c′v′,k′〉 = AScvkΩS. (2.17)

The exciton eigenstate |S〉 = ∑
cvkA

S
cvk|cv,k〉 = ∑

cvkA
S
cvkφ

∗
vkφck is a coherent superposition

of free electron-hole pairs at different k-points, as shown in Fig. 2.1.
The eigenvalues ΩS and eigenstates |S〉 from the diagonalization of Eq. (2.17) can be

used to construct εαβM (q → 0;ω),

εαβM (q → 0;ω)

= ε0δαβ(1−
ω2
p

ω2 )− 1
ω2NkΩ

∑
S

〈0|ĵαp |S〉〈S|ĵβp |0〉
[

1
~ω − ΩS + iη

− 1
~ω + ΩS + iη

]
.

(2.18)

where η → 0+, α, β = x, y, z. Matrix elements of the paramagnetic current operator is given
by,

〈0|ĵαp |S〉 =
∑
cvk

AScvk〈vk|ĵαp |ck〉. (2.19)
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Figure 2.1: Schematic of an exciton state as a coherent superposition of free electron-hole
pairs at different k-points. This figure is adapted from Ref. [8].

To avoid numerical instability around ω = 0, we calculate the imaginary part first using the
expression,

Im εαβM (q → 0;ω) = π~2

NkΩ
∑
S

1
Ω2
S

〈0|ĵαp |S〉〈S|ĵβp |0〉δ(~ω − ΩS). (2.20)

And then the real part of εαβM can be easily evaluated using the Kramers-Krönig relation,

Re εαβM (q →;ω) = Re εαβM (q → 0;∞) + 1
π
P
∫ ∞
−∞

dω′ Im εαβM (q → 0;ω′)
ω′ − ω

= ε0δαβ −
~2

NΩ
∑
S

1
Ω2
S

〈0|ĵαp |S〉〈S|ĵβp |0〉
(~ω − ΩS)

(~ω − ΩS)2 + η2 .

(2.21)

We also follow the convention and define the relative dielectric function tensor (also called
the relative permittivity),

ε(ω) ≡ εM(q → 0;ω)/ε0, (2.22)

as a ratio relative to the vacuum permittivity ε0.
If scalar wavefunctions are used, we can rearrange band indices such that two consecutive

degenerate states have exactly the same real-space wavefunction, but with opposite spin
polarization. The selection rule of direct and exchange kernels then gives us a simple form
of the BSE matrix. If we perform an unitary transformation from the original band-to-band
transition into spin-singlet and spin-triplet electron-hole pairs, we will have a block-diagonal
form of the BSE matrix, where spin-singlet states and spin-triplet states can be calculated
separately, as discussed in Ref. [34].
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2.5 Matrix elements of the paramagnetic current
density operator

In this section, we discuss how to evaluate matrix elements of the paramagnetic current
density operator 〈vk|ĵαp |ck〉 in Eq. (2.19). With a local potential, the matrix element can
be expanded as,

〈vk|ĵαp |ck〉 = 〈vk|−i~qe2me

(−→
∂α −

←−
∂α
)
|ck〉

= −i~qe2me

∫
dx1 [φ∗vk(x1)(∂αφck(x1))− (∂αφ∗vk(x1))φck(x1)] ,

(2.23)

where ←−∂α acts on the left function and −→∂α acts on the right one. It is easy to prove that Eq.
(2.23) can be simplified using the momentum operator p̂ = −i~∇,

〈vk|ĵαp |ck〉 = qe
me

〈vk|p̂α|ck〉. (2.24)

In a DFT calculation with semilocal pseudopotentials [103], however, we need to add the
contribution from the nonlocal part of the pseudopotential VNL to the original p̂,

p̂→ −i~∇− ime

~
[r, VNL]. (2.25)

2.6 Benchmark
In this section, we benchmark our implementation of the full-spinor GW and GW -BSE

methods on a conventional semiconductor, bulk silicon. Implementation in support of the
spinor wavefunctions in association with SOC is tested against the experimental absorption
spectrum. The experimental lattice constant a = 5.43 Å is used. We use ONCVPSP pseu-
dopotentials with the PBE exchange-correlation functional [104, 105]. DFT calculations are
performed using the Quantum ESPRESSO package [106, 107]. GW and GW -BSE calculations
are performed using the BerkeleyGW package [108].

We first compare the DFT bandstructure using NR, SR, and FR pseudopotentials shown
in Fig. 2.2. These three bandstructures look almost the same in Fig. 2.2a. The indirect
band gap at the DFT-PBE level is calculated to be 0.57 eV, 0.55 eV, and 0.54 eV for NR, SR,
and FR, respectively. These band gap values are far smaller than the experimental value of
1.12 eV (at 300 K) and 1.17 eV (at 0 K) [109]. The spin-orbit splitting of the valence bands
at Γ is calculated to be 48.5 meV in the FR case as shown in Fig. 2.2b, in good agreement
with the experimental value of 42.6 ∼ 44.1 meV [110, 111, 112, 113].

We then use the FR DFT results as a starting point to calculate the GW self-energy
correction at the G0W0 level on an 8 × 8 × 8 k-grid. The dynamical screening effect is
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Figure 2.2: (a) DFT-PBE bandstructures of bulk Si using the non-relativistic (NR, red
solid), scalar-relativistic (SR, blue dashed), and fully relativistic (FR, yellow dash-dotted)
pseudopotentials, respectively. GW calculations are performed at the G0W0 level with the
generalized plasmon-pole model [9]. (b) The same bandstructures in (a) around Γ.

incorporated through the generalized plasmon-pole model [9]. The dielectric function is
computed with a cutoff energy of 10 Ry. A total of 400 bands are used in calculating the
dielectric function and the self-energy correction. A linear interpolation method [34] is used
to get the quasiparticle bandstructure shown in Figs. 2.3 and 2.4. We obtain a fundamental
quasiparticle band gap of 1.17 eV, in excellent agreement with experiment. The spin-orbit
splitting of the valence bands at the Γ point is 49.9 meV after the self-energy correction,
barely changed from the DFT value of 48.5 meV as shown in Fig. 2.3b. These results
demonstrate the great predictive power of the GW method, as well as the reliability of our
full-spinor implementation of the GW method. We also present the GW bandstructure in
the SR case in Fig. 2.4, where the indirect quasiparticle band gap is calculated to be 1.18
eV.

We further calculate the absorption spectrum of bulk Si in the FR case as shown in Fig.
2.5, considering transitions from the top six valence bands to the bottom eight conduction
bands on a 20 × 20 × 20 k-grid. Note that the number of bands double in the FR case
compared with that in the SR or NR case. The calculated imaginary part of the GW -BSE
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Figure 2.3: (a) DFT-PBE (red solid) and GW (blue dashed) bandstructures of bulk Si
using the fully relativistic (FR) pseudopotential. The GW calculation is performed at the
G0W0 level with the generalized plasmon-pole model. Spin-orbit coupling is included in both
calculations within the full-spinor formalism. (b) The same bandstructures in (a) around Γ.

(with electron-hole interaction) dielectric function, ε2 ≡ Im εαα(ω), ∀α = x, y, z, greatly
improves agreement with the experimental data [10] compared with the GW -RPA (without
electron-hole interaction) result, consistent with previous works using scalar wavefunctions
[108]. Note that due to the cubic symmetry of bulk Si, we have εxx = εyy = εzz. We also
compare the GW -BSE ε2 in FR and SR cases, as shown in Fig. 2.5b. These two curves
overlap with each other because the SOC effect is very weak in Si (also evident in Fig. 2.2a),
which proves the validity of our full-spinor GW -BSE method.
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Figure 2.4: (a) DFT-PBE (red solid) and GW (blue dashed) bandstructures of bulk Si using
the scalar-relativistic (SR) pseudopotential. The GW calculation is performed at the G0W0
level with the generalized plasmon-pole model. (b) The same bandstructures in (a) around
Γ.
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Figure 2.5: (a) Comparison of experimental (solid dots) and theoretical absorption spectra
of bulk Si using the fully relativistic (FR) pseudopotential and full-spinor formalism. The
imaginary part of dielectric function ε2 at the GW -BSE level (blue solid) is calculated with
the electron-hole interaction, while ε2 at the GW -RPA level (blue dashed) is calculated
without the electron-hole interaction. The experimental data is extracted from Ref. [10]. (b)
Comparison of GW -BSE ε2 between the full-spinor formalism using the FR pseudopotential
(blue solid) and the scalar formalism using the scalar-relativistic (SR) pseudopotential (red
dashed). A constant 80 meV Gaussian broadening is used.
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Chapter 3

First-principles modeling of
magneto-optics

3.1 Magneto-optics
In magneto-optics, a linearly polarized light propagating through a medium is modified

by the presence of a magnetic field, where the left and right circularly polarized components
propagate at different speeds (with different dielectric functions). This is because the time-
reversal symmetry is broken by the magnetic field, and therefore left and right circularly
polarized lights are no longer equivalent to each other. There are several important magneto-
optical (MO) effects, such as the Faraday effect (FE) [114], the magneto-optical Kerr effect
(MOKE) [115, 116], and the Voigt effect [117], etc. In the FE, the polarization change of the
transmitted light is measured, while in the MOKE, the polarization change of the reflected
light is measured.

The polarization of a linearly polarized light reflected from a magnetic material will be
modified in two ways: 1) the polarization plane of the reflected light is rotated by a so-called
Kerr angle θK; 2) the reflected light becomes elliptically polarized, characterized by the Kerr
ellipticity χK. There are three different MOKE setups [118] depending on the propagation
direction of the light and the direction of magnetization: the polar MOKE (P-MOKE), the
longitudinal MOKE and the transversal MOKE, as shown in Fig. 3.1. Similar quantities
and setups can be defined for the FE.

There have been a wide range of applications of MO effects, such as MO recording [119],
the examination of surface magnetism [120, 121], visualization of magnetic domains and
domain walls [122, 123], etc. Moreover, the recent discovery of magnetism in atomically thin
layers of van der Waals crystals has created great opportunities for exploring light-matter
interactions and MO phenomena in the 2D limit. Recent measurements using MOKE have
led to the discovery of 2D magnets and demonstrated their rich magnetic behaviors [72, 73].

MO effects stem from the coupling between photons and the orbital motion of spin-
polarized electrons, which is further interacting with the spin degree of freedom via the SOC
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Figure 3.1: Schematic of MOKE setups: (a) the polar MOKE (P-MOKE), (b) the longitudi-
nal MOKE (L-MOKE), and (c) the transversal MOKE (T-MOKE). Propagation directions
of the incident and reflected lights are denoted by arrows. In the P-MOKE, the magnetiza-
tion (M) is perpendicular to the reflection surface and parallel to the incidence plane. In
the L-MOKE, M is parallel to both the reflection surface and the incidence plane. In the
T-MOKE, M is parallel to the reflection surface and perpendicular to the incidence plane.

effect. Both the spin splitting and SOC are required to achieve non-zero MO effects, as
discussed by Argyres using the perturbation theory [124]. According to Ref. [124], MO
signals are to the lowest order linear in the SOC strength. There have been many early
numerical works – either model calculations [125] or first-principles calculations [126, 127,
128, 129] – investigating the dependence of MO signals on the spin splitting and SOC. It has
been shown that MOKE signals are vanishing if SOC is not included in the calculation, and
a linear dependence on the SOC strength has also been confirmed numerically [126, 128].
The dependence on the spin splitting through the magnetic exchange interaction is more
complicated, beyond a simple linear relation. But there are no MO signals when the spin
splitting is absent [118]. There have been a surge of first-principles studies on MO effects
and related anomalous Hall conductivity in recent decades [130, 131, 132, 133, 134, 135], due
to the popularization of first-principles modeling programs and ever-increasing computation
power. However, these works are all based on the RPA dielectric function, where the critical
electron-hole interaction has been missing. The essence of theoretical modeling of MO effects
lies in accurately accounting for both the diagonal and off-diagonal elements of the frequency-
dependent transverse dielectric function tensor, which are readily available from our GW and
GW -BSE calculations.
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3.2 Normal modes of light in materials
In the P-MOKE configuration with at least C3 rotational symmetry along the spin po-

larization direction (z-axis), the frequency-dependent relative dielectric function tensor as a
function of the magnetic field takes the following form,

ε(ω,B) =

 εxx(ω,B) εxy(ω,B) 0
−εxy(ω,B) εxx(ω,B) 0

0 0 εzz(ω,B),

 , (3.1)

which is proven in Sec. G. The Fresnel equation for the normal modes is given by,(
n21− ε− n : n

)
·E = 0, (3.2)

where n is the complex refractive index, n = ck
ω
, with the wave vector k of light. After

setting the normal incidence condition (k ‖ êz) and solving the Fresnel equation with the
dielectric function tensor in Eq. (3.2), we get the normal modes as σ+ and σ− circularly
polarized plane waves, with distinct refractive indices,

(n±(ω, êz))2 = εxx(ω,Bêz)± iεxy(ω,Bêz), (3.3)

where +(−) in n± denotes the circularly polarized light with the complex electric field
amplitude along the direction of the spherical basis:

ê± = ∓√
2

(êx ± iêy). (3.4)

Here êα, α = x, y, z denotes unit vectors along each direction. The distinction of refractive
index between σ+ and σ− circularly polarized lights leads to the phenomena called magnetic
circular dichroism (MCD), where the absorption of σ+ and σ− lights are different in a sample
under a magnetic field or with intrinsic magnetization.

There are other symmetries of the dielectric function tensor regarding the direction of
magnetization and the off-diagonal elements. According to the Onsager reciprocal relations
[136], we have,

εαβ(ω,B) = εβα(ω,−B), ∀α, β = x, y, z. (3.5)

3.3 Kerr signals and Faraday signals
We consider a polar setup as shown in Fig. 3.2a. Suppose the incident light is linearly

polarized along the x-axis. Its electric field can be described by the following expression,

E i = Ẽ i
0e
i(−kz+ωt),

Ẽ i
0 = Ẽ i

0xêx = Ẽ i
0+ê+ + Ẽ i

0−ê−,
(3.6)
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where Ẽ i
0 is the complex amplitude of the electric field at t = 0 and z = 0. According to Eq.

(3.6), Ẽ i
0+ = −Ẽ i

0− = −Ẽ i
0x/
√

2. The electric field of the reflected light is given by,

Er = Ẽr
0e
i(+kz−ωt),

Ẽr
0 = Ẽr

0xêx + Ẽr
0yêy = Ẽr

0+ê+ + Ẽr
0−ê−.

(3.7)

Similarly, the electric field of the transmitted light is given by,

Et = Ẽt
0e
i(−kz+ωt),

Ẽt
0 = Ẽt

0xêx + Ẽt
0yêy = Ẽt

0+ê+ + Ẽt
0−ê−.

(3.8)

Figure 3.2: (a) Configuration of the polar MO effects. The incident light is linearly polarized
along the x-axis. Red arrows pointing along the +z direction denote the magnetization (M ).
(b) The polarization plane of the reflected light. The polarization ellipse is oriented at a Kerr
angle θK with respect to the x-axis. The Kerr ellipticity is defined through the ellipticity
angle χK. (c) The polarization plane of the transmitted light. The polarization ellipse is
oriented at a Faraday angle θF with respect to the x-axis. The ellipticity is defined through
the Faraday ellipticity angle χF.

Suppose the upper space in Fig. 3.2a has a refractive index n±1 for the σ± polarized
light. The material also has a refractive index n±2 for the σ± polarized light. The complex
reflectivity r̃± at normal incidence is given by [137],

r̃± ≡
Ẽr

0±

Ẽ i
0±

= n±1 − n±2
n±1 + n±2

, (3.9)

while the complex transmissivity t̃± at normal incidence is given by,

t̃± ≡
Ẽt

0±

Ẽ i
0±

= 2n±1
n±1 + n±2

. (3.10)
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According to the definition of r̃±, we can rewrite Eq. (3.7) as,

Ẽr
0 = 1

2 êxẼ
i
0x(r̃+ + r̃−) + 1

2 êyẼ
i
0x(ir̃+ − ir̃−), (3.11)

which means,
Ẽr

0x

Ẽr
0y

= 1 + r̃−/r̃+

i(1− r̃−/r̃+) . (3.12)

Equation (3.12) defines an ellipse oriented away from the x-axis as shown in Fig. 3.2b. The
Kerr angle θK and Kerr ellipticity χK can then be calculated as [138],

tan 2θK =
2Er

0xE
r
0y cos δ

(Er
0x)2 − (Er

0y)2 , −π2 < θK ≤
π

2 , (3.13)

and
sin 2χK =

2Er
0xE

r
0y sin δ

(Er
0x)2 + (Er

0y)2 , −π4 < χK ≤
π

4 , (3.14)

where δ = angle(Ẽr
0y/Ẽ

r
0x), Er

0x = |Ẽr
0x|, Er

0y = |Ẽr
0y|, and angle(Z) is a function that returns

the phase angle of a complex number Z. A sign convention enters the expression of Kerr
angle θK: θK is chosen to be positive if the rotation vector of the polarization plane is parallel
to the magnetization vector. The Faraday angle θF and Faraday ellipticity χF are defined in
a similar way for the transmitted light, as shown in Fig. 3.2c.

If the setup contains multiple interfaces, we can use the transfer matrix method to cal-
culate r̃± and t̃± systematically [137, 139].

3.4 Dielectric function of 2D materials
As an extensive physical quantity, the dielectric function is ill-defined for 2D materials.

Conventionally, we rescale the relative dielectric function which is calculated with a supercell
approach by the thickness d of the 2D material (e.g., d = cbulk/3 = 6.6 Å for a monolayer
CrI3 based on the bulk structure [140]),

εxx(ω) = 1 + l

d
(ε̃xx(ω)− 1), (3.15)

and
εxy(ω) = l

d
ε̃xy(ω), (3.16)

where ε̃xx and ε̃xy are calculated frequency-dependent relative dielectric functions. The
supercell has thickness l along the out-of-plane (z) direction.

Despite the ambiguity in defining ε for 2D materials, measurable quantities related to ε
are independent of the rescaling procedure. For example, the absorbance and transimittance
of light through a sheet of 2D material are governed by the quantity A0 = ωdε2/c as shown
in Sec. H. A0 is obviously invariant when we change the parameter d in Eq. (3.15).
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Chapter 4

swapGW

4.1 Self-consistency in the GW method
As discussed in Sec. 1.2 and Sec. 1.3, the Hedin’s equations in the GW approxima-

tion should in principle be solved self-consistently, because all the physical quantities – G,
W , Σ, and χ? – are interrelated to each other. However, such a truly self-consistent GW
(scGW ) calculation is very challenging in practice. In fact, the first scGW calculations of
homogeneous electron gas reported less satisfactory agreement with experiments in terms
of the quasiparticle bandwidth and satellite structures compared with one-shot calculations
[141] because of the neglect of vertex corrections. In general, scGW calculations conserve
the particle number and improve the ground-state total energy, but worsen the quasiparticle
bandstructure [142, 143]. In addition to the strenuous fully self-consistent GW method,
there exist different types of partially self-consistent GW methods [144], as discussed in the
following with a focus on applications to solids.

We first discuss the starting-point dependence of a G0W0 calculation, where often the
Kohn-Sham eigenvalues and eigenstates are used as inputs to construct the Green’s function
G and the screened Coulomb interaction W in the spirit of “best G, best W”. With the
development of different exchange-correlation functionals and hybrid schemes incorporating
the exact exchange, it has been recognized that G0W0 calculations can exhibit a starting-
point dependence for some materials [145, 146, 147, 148]. The reason is that the strength
of dielectric screening in G0W0 calculations is inversely proportional to the band gap of the
starting-point DFT or other mean-field results. Using the exact exchange in DFT calcula-
tions tends to overestimate the band gap and therefore underestimate the dielectric screening.
Besides, spurious interactions between localized d orbitals and delocalized s and p orbitals
will also cause issues of starting-point dependence, as evident in ZnO and other transition
metal compounds [149, 150]. Despite less theoretical justification, the G0W0 method still
enjoys a lot of popularity due to its feasible computational cost and good agreement with
experiments.

To go beyond G0W0, we need to incorporate some self-consistent schemes in the Hedin’s
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equations. The easiest first step is the eigenvalue self-consistent GW method (evGW ), where
the real part of the quasiparticle energies obtained from a G0W0 calculation are reinserted
to the expression of G and/or W . Iteration of the GW calculation is then performed until
the input energies are equal to the output ones [9]. The evGW calculations where W is
self-consistently updated tend to overestimate the band gap in semiconductors and insu-
lators, because the RPA dielectric screening used in the expression of χ? and W will be
underestimated with quasiparticle energies. This underestimation should be compensated
by the missing vertex corrections. In practice, updating G alone (evGW0) is preferred over
updating W and G together (evGW ) [151, 152].

In evGW calculations, the Kohn-Sham eigenstates are still used throughout the calcula-
tion, which still keeps some level of dependence on the starting point. The quasiparticle self-
consistent GW method (QSGW ) goes one step further and updates the wavefunctions using
a static Hermitian mean-field potential derived from the self-energy operator [153, 154, 155].
This method cannot capture the satellites in the spectral function and therefore it is still
in the quasiparticle approximation, hence the name. Lastly, a fully self-consistent GW ap-
proach based on the solution of the Dyson’s equation with a plane wave basis set has been
applied to conventional semiconductors [156], which is in principle independent of the start-
ing point. Both latter two fully scGW methods significantly overestimate the band gap due
to the underestimation of the dielectric function.

The above-mentioned self-consistent GW schemes are all within the GW approximation,
i.e., no vertex corrections. The error canceling between the vertex corrections and the self-
consistency has long been believed to be responsible for the great success of the G0W0
method [63, 157, 156]. It is therefore our motivation in this chapter to incorporate the
vertex corrections in a self-consistent GW calculation, such that the removal of starting-
point dependence and the good agreement of quasiparticle bandstructure with experiments
can be achieved at the same time.

4.2 Vertex corrections from first principles
There have been several different strategies in the literature to add vertex corrections

from first principles. The earliest approaches use the LDA exchange-correlation functional
in place of the nonlocal mass operator to evaluate an analytical two-point approximate
vertex function [9, 158], which can be easily incorporated into the expression of W in the
so-called GWΓ approximation. Development of time-dependent density-functional theory
(TDDFT) leads to an upgraded version of the two-point approximate vertex using a TDDFT
exchange-correlation kernel [63, 159, 160, 161, 162, 163], while some approximations (e.g.,
static screening, long-range interaction in the TDDFT kernel, etc.) are still needed. This
two-point vertex approach yields also too large a band gap for ionic insulators [164].

The irreducible vertex function Γ? appears explicitly in two different places inside the
Hedin’s equations, namely, the irreducible polarizability (Eq. (1.42)) and the mass operator
(Eq. (1.44)). Full self-consistency involving Γ? in all the quantities is very challenging and
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expensive, and therefore updating Γ? in part of the quantities seems to be the prudent way
to make practical progress.

Note that Γ? itself also satisfies a BSE-like equation given in Eq. (1.41). It is therefore
tempting to relate the vertex function with a two-particle correlation function. To this end,
we first recall Eq. (1.42) here,

χ?(12) = −i~
∫

d(34)G(13)G(41)Γ?(342), (4.1)

where the irreducible vertex function beyond the zeroth order introduces the electron-hole
interaction. On the other hand, the irreducible polarizability χ? is related to the irreducible
two-particle correlation function L? with the definition,

L?(1234) ≡ δG(12)
δVtot(43) . (4.2)

χ? and L? are directly related via the following expression,

χ?(12) = −i~L?(11+22+). (4.3)

L? also satisfies a BSE,

L?(1234) = L0(1234) +
∫

d(5678)L0(1265)δM(56)
δG(87) L

?(8734). (4.4)

Note that in Eq. (4.4) there is no exchange kernel. Given the success of the GW -BSE
method in calculating optical properties [34], it is intuitive to extend the usage of BSE to
L? and to introduce vertex corrections in the calculation of χ? and W .

4.3 swapGW
In this section, we introduce the vertex corrections in a novel approach we named

the swapGW method, which stands for self-consistent with appropriate polarizability GW .
Within the swapGW method, we add vertex corrections to χ? and W via the solution of
BSE for L?, while the conventional GW form of the mass operator M is kept the same
(Eq. (1.47)). That is, we emphasize the importance of vertex corrections in improving the
dielectric screening, and keep the GW level of complexity through the self-consistent loop of
the Hedin’s equations. This method has been implemented within the BerkeleyGW package
[108].

Under similar approximations used in Sec. 1.5 and Sec. 2.4, L? can be calculated in
analogy to Eq. (2.11),

L?−1(ω) = L−1
0 (ω)− ΞW . (4.5)

And χ? is assembled with Eq. (4.3). Just like L̃, we can choose a center-of-mass momentum
Q to label the eigenvalues and eigenstates of L? [86]. It is important to point out that we
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cannot only focus on the Q→ 0 limit in this case, because the integral equations of W and
M need all the spatial fluctuations in χ? as well as in ε−1. Diagrammatically, the irreducible
polarizability calculated by the swapGW method contains infinite number of W ladders, as
shown in Fig. 4.1.

Figure 4.1: Feynman-diagrammatic representation of the expansion of the irreducible polar-
izability χ? in terms of the single-particle Green’s function G (arrowed lines) and screened
Coulomb interaction W (wavy lines). χ? is proportional to the irreducible two-particle cor-
relation function L?. All the quantities are time-ordered.

In practice, we start from a conventional full-frequency G0W0 calculation (the zeroth
iteration) with DFT results as a starting point. Using the quasiparticle energies and dielectric
function from the G0W0 calculation, we solve the BSE for L? at all the Q vectors and then
construct the vertex-corrected irreducible polarizability χ?G1G2(Q;ω) as follows,

χ?G1G2(Q;ω) = 1
NkΩ

∑
S

〈0|e−i(Q+G1)·r1|SQ〉〈SQ|ei(Q+G2)·r2|0〉

×
[

1
~ω − ΩSQ + iη

− 1
~ω + ΩSQ − iη

]
, η → 0+,

(4.6)

where the matrix elements are evaluated as,

〈0|e−i(Q+G1)·r1|SQ〉 =
∑
cvk

ASQcvk〈v(k −Q)|e−i(Q+G1)·r1|ck〉. (4.7)

The time-ordered dielectric function εG1G2(Q;ω) is calculated using Eq. (1.28). Next, W
and M in the GW approximation are calculated as in a conventional GW calculation. And
then we enter the next iteration and calculate a new set of quasiparticle energies. The BSE
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kernel (i.e., the direct kernel ΞW ) is constructed based on the quasiparticle energies from
the current iteration and the dielectric function from the last iteration. This loop goes on
until the quasiparticle energies converge within a given threshold. For now, wavefunctions
are not updated throughout the iterations. The self-consistent loop of the swapGW method
is summarized in Fig. 4.2.

Figure 4.2: Self-consistent loop of the swapGW method. Important physical quantities in the
loop include the single-particle Green’s function G, the irreducible two-particle correlation
function L?, the dielectric function ε, the screened Coulomb interaction W , and the self-
energy Σ. G is solved with the Dyson’s equation. L? is solved with the Bethe-Salpeter
equation with the direct kernel ΞW . ε is constructed from the irreducible polarizability χ?,
which is readily available from L?. W is straightforwardly calculated by screening the bare
Coulomb interaction v with ε−1. The electron self-energy Σ includes the Hartree term and
the GW term, and it is fed to the Dyson’s equation of G to restart the loop. The solution
of L? is crucial for adding the vertex corrections.

A large number of empty states are needed in GW calculations, which means the size of
the BSE matrix will be very large. To circumvent this computational bottleneck, we treat
low-energy transitions and high-energy transitions differently in realistic swapGW calcula-
tions. To be specific, low-energy transitions are treated at the BSE level and fall completely
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within the loop shown in Fig. 4.2. High-energy transitions, on the other hand, are treated at
the RPA level and then added to the χ? from the low-energy transitions to form a complete
χ?. For those high-energy bands not used in the BSE calculation, we deduce their quasi-
particle energies through a scissors-shift approach with parameters derived from low-energy
bands [108].

4.4 Benchmark
We benchmark our theory and implementation of the swapGW method using bulk Si.

Since the SOC is rather weak in Si according to Sec. 2.6 and the computational cost of
swapGW is already very high, we choose to use the SR pseudopotential and scalar GW and
GW -BSE formalisms in this study. GW self-energies are solved on an 8× 8× 8 k-grid using
a contour deformation technique [11]. The energy cutoff used for the dielectric function is
10 Ry. For GW calculations, a total of 200 bands are considered in the summation, among
which the lower 80 bands (4 valence bands and 76 conduction bands) are included in the BSE
calculation. In this way, the transition from the 4 valence bands to the lower 76 conduction
bands are treated at the BSE level while the transition from the valence bands to the higher
120 conduction bands are treated at the RPA level.

The procedure to determine the scissor-shift parameters is shown in Fig. 4.3 for the
zeroth iteration (at the full-frequency G0W0 level). We fit a linear relation between the
quasiparticle energy correction EQP−EKS of conduction states and the corresponding mean-
field Kohn-Sham energy EKS using the following expression,

EQP − EKS = ∆E + C(EKS − EKS
CBM), (4.8)

where CBM stands for conduction band minimum. Because all the valence bands are used in
the BSE calculation, we only need to deduce the quasiparticle energy of higher conduction
bands with the scissors-shift approach.

Comparison of the swapGW bandstructure in the zeroth (iter. 0), first (iter. 1) and fifth
(iter. 5) iteration is shown in Fig. 4.4. We notice that the overall shape of bandstructure
is well kept in our swapGW calculations, with a slight narrowing of the valence bandwidth.
The detailed convergence behavior of relevant physical quantities (indirect band gap, direct
band gap at the Γ point, valence bandwidth, and the head element of the static dielectric
function 1/ε−1

00 (q → 0;ω = 0)) are listed in Table 4.1. In particular, the calculated indirect
band gap converges within 1 meV after 3 iterations, and 1/ε−1

00 (q → 0;ω = 0) converges
within 0.01 also after 3 iterations. It is obvious that the swapGW method manages to
avoid the overestimation of the band gap as well as to avoid severe underestimation of the
dielectric screening during the self-consistent iterations in conventional scGW calculations
[156]. On the other hand, the small difference (∼ 60 meV) in the value of indirect band
gap between G0W0 and the converged swapGW results indicates that the G0W0 method
really benefits from the error canceling between the vertex corrections and self-consistency
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Figure 4.3: (a) DFT-PBE (red solid) and GW (blue dashed) bandstructures of bulk Si
using the scalar-relativistic pseudopotential. The GW calculation is performed at the full-
frequencyG0W0 level with a contour deformation method [11]. (b)GW self-energy correction
EQP − EKS versus the Kohn-Sham energy EKS for conduction states of bulk Si, with the
data input from (a). The red dashed line is a linear fit to the data with an expression of
EQP − EKS = ∆E + C(EKS − EKS

CBM). The fitting parameters are: ∆E = −0.944 eV and
C = 0.047 eV.

using quasiparticle energies. Moreover, we note that the RPA dielectric function using Kohn-
Sham eigenvalues and eigenstates at the DFT-PBE level is already good enough for a G0W0
calculation, which means any further modification of the mean-field calculation with hybrid
functionals or exact-exchange will likely worsen the G0W0 results.

The results above serve to benchmark our implementation of the swapGW method within
the BerkeleyGW package [108]. This method will be applied to a variety of bulk and low-
dimensional materials in the future. We believe that it can further improve the predictive
power of the first-principles GW and GW -BSE methods.
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Figure 4.4: swapGW bandstructures of bulk Si in the zeroth (iter. 0, red solid), first (iter.
1, blue dashed) and fifth (iter. 5, yellow dash-dotted) iteration. The zeroth iteration corre-
sponds to a full-frequency G0W0 calculation. The valence bandwidth in the fifth iteration is
converged within 1 meV.

Ind. Eg (eV) Eg @ Γ (eV) Val. bandwidth (eV) 1
ε−1

00 (q→0;ω=0)
DFT-PBE 0.554 2.561 11.947 N/A
Iter. 0 1.166 3.221 11.564 13.338
Iter. 1 1.215 3.251 11.332 13.241
Iter. 2 1.224 3.258 11.307 13.038
Iter. 3 1.225 3.259 11.304 13.026
Iter. 4 1.226 3.259 11.305 13.021
Iter. 5 1.226 3.260 11.305 13.020

Table 4.1: Convergence of the indirect band gap (ind. Eg), direct band gap at the Γ point
(Eg @ Γ), valence bandwidth (val. bandwidth), and 1/ε−1

00 (q → 0;ω = 0) in the swapGW
calculations of bulk Si with respect to the number of iterations. The same quantities at
the DFT-PBE level are given in the second row. The zeroth iteration (iter. 0) denotes the
full-frequency G0W0 results while iter. 1 through 5 denote swapGW results in each iteration.
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Chapter 5

Unifying optical selection rules for
excitons in two dimensions: Band
topology and winding numbers

The concept of topology and relevant topological effects have revolutionized many areas
of modern physics, deepening our understanding of a wide range of phenomena covering
topological phase transitions [165], topological defects [166], quantum transport [167], and
the emergence of symmetry protected topological phases [96, 99, 168, 169, 170], etc. In
this chapter, I present a theoretical work in which we show that topology in the electronic
structure can dramatically reshape the photophysics of 2D semiconductors [1]. For sys-
tems in which states near the band extrema are of multicomponent character, the spinors
describing these components (pseudospins) can develop nonzero winding numbers near the
extremal k-point. The oscillator strength and intrinsic polarization of an excitonic optical
transition in these systems are therefore dictated by the optical matrix element winding
number, a unique and heretofore unrecognized topological characteristic. We demonstrate
these findings in gapped graphene systems, where the pseudospin textures are character-
ized by nontrivial optical matrix element winding numbers associated with the valley index
and circular polarization. This winding-number physics leads to exotic exciton series and
new optical selection rules, with each valley hosting multiple bright excitons coupled to the
light of different circular polarization. Our work shows that the optical selection rule in two
dimensions must incorporate the topological effects in the electronic structure.

5.1 Introduction
Owing to the similarity between the electron-hole binding in a semiconductor and the

electron-proton binding in a hydrogen atom, the hydrogenic model and their variants (for
example, including electron-hole-separation-dependent screening effects) are usually adopted
in describing excitons in various dimensions, when the electron-hole correlation length of the
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exciton of interest is large compared to the unit cell size [8, 171]. Within this picture,
the envelope functions of the excitonic states are hydrogen-like wavefunctions with even
or odd parity and are characterized by a series of quantum numbers. In linear optical
spectroscopy, an exciton may be created or annihilated by absorbing or emitting a photon,
respectively. Such coupling is allowed if the full many-body excitonic states have different
parity from the ground state (these states are called optically active or bright excitons). For
conventional semiconductors in which the electron (hole) states in the conduction (valence)
band extreme forming the exciton are of single orbital character, this parity law together
with the hydrogenic picture leads to the well-known optical selection rules [172], which says:
in dipole-allowed materials (e.g., GaAs, monolayer transition metal dichalcogenides, etc.
[8, 87, 173, 174]), s-like excitons are optically active, whereas p-like excitons are optically
inactive; in dipole-forbidden materials (e.g., Cu2O [175]), the optically active excitons are
p-like states, while s-like states are optically inactive.

However, for many reduced-dimensional systems of current interest, the states near the
band extrema are of multiple orbital and spin components, and the bands can have nontrivial
topological characteristics. Such nontrivial topological bands may be characterized by the
behavior of the amplitudes of the components that compose a band state, viewed as a multi-
component spinor (the pseudospin) in k-space. The pseudospins of the electron and hole
states can develop a complex texture with respect to the crystal momentum k around the
band extrema [169, 168, 176, 177, 178, 179]. The pseudospin texture (viewed as a spinor
field of k) could in principle affect the energy levels, optical selection rules, and many other
properties of the excitons. Recent studies have shown that Berry curvature flux leads to
a fine energy-level splitting of the otherwise doubly degenerate hydrogenic 2p excitons in
monolayer transition metal dichalcogenides [180, 181]. Yet, it remains unexplored whether
central properties such as the optical selection rules are altered in materials with topological
band characteristics.

5.2 Results

5.2.1 Winding numbers and optical selection rules in two
dimensions

The eigenstate of an exciton S is a coherent superposition of free electron-hole pairs at
different k-points, |S〉 = ΣcvkA

S
cvk|cv,k〉. The oscillator strength that relates to the intensity

for optical transition to exciton S is given by,

ISe = 2|ΣcvkA
S
cvkê · 〈ck|p̂|vk〉|2

ΩS

, (5.1)

where ê is the photon polarization unit vector, and 〈ck|p̂|vk〉 is the interband optical matrix
element. In the following, we assume a two-band model, and use ASk instead of AScvk. Al-
though the exciton energies and oscillator strengths are physical observables and thus gauge
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invariant, the individual components in Eq. (5.1) (the exciton envelope functions in k-space
and the interband optical matrix elements) may separately look different depending on a
chosen gauge. This ambiguity arises because |cv,k〉 could have an arbitrary phase, which
would be canceled out by the complex conjugate of the same phase in Ak. This gauge ar-
bitrariness can be eliminated by requiring Ak of the lowest-energy s-like excitonic state to
resemble that of a conventional hydrogen-like s orbital. Under this well-defined and intrinsi-
cally smooth gauge, we find that an analysis of Eq. (5.1) illuminates clearly the physical role
of the exciton envelope function and of the topological characteristics of the interband optical
matrix elements in optical transitions. In dipole-allowed conventional semiconductors, the
interband optical matrix elements are nearly a constant around the extremal k-point [8, 172].
Therefore, only s-like excitons have nonzero oscillator strength, as its envelope function in
k-space is isotropic in phase (i.e., no phase winding around the extremal k-point).

Having topologically nontrivial bands in two dimensions with associated pseudospin tex-
ture of nonzero winding numbers will lead to both magnitude and phase modulations of the
interband optical matrix elements with k-points, represented by a 2D vector field with a
certain winding pattern. To illustrate this effect, we decompose the interband optical matrix
element 〈ck|p̂|vk〉 into pk+ = ê+ · 〈ck|p̂|vk〉 and pk− = ê− · 〈ck|p̂|vk〉, which correspond
to coupling to σ− and σ+ circularly polarized photon modes, respectively. For topologically
nontrivial bands, as illustrated below, pk+ and pk− are typically nonzero (except possibly
at the extremal k-point), and can be viewed as two vector fields that may differ in their
winding patterns. (Note: The interband optical matrix elements pk± are complex numbers
determined only by the band states and are independent of the specific excitonic states.)

We shall show that the transition strength (brightness) and the specific light polarization
needed for an excitonic optical transition are dictated by the phase winding of the exciton
envelope function and that of the interband optical matrix elements. For an excitonic state
of which the k-space envelope function ASk is a highly localized function around an extremal
k-point (Wannier excitons), ASk and pk± in the relevant small part of the Brillouin zone are
dominated by a cylindrical angular phase dependence of ∼ eimθk and eil±θk , respectively (θk
is defined as the angle k made with respect to the kx axis) [8, 172]. Here, and in subsequent
discussion, we shall define k as the wave vector measured from the extremal k-point. Thus,
m is the cylindrical angular quantum number of the exciton envelope function and l± are
the winding numbers of pk±. From Eq. (5.1), the oscillator strength for an optical transition
to an excitonic state S by σ± photon (coupling to pk∓) is,

ISσ± = 2|Σkf(|k|)ei(m+l∓)θk |2

ΩS

, (5.2)

where f(|k|)is the radial part in the summation. ISσ± is thus nonzero only when m = −l∓.
This set of selection rules is distinctly different from that in conventional semiconductors.

For a system with discrete n-fold rotational symmetry, the general selection rule is,

m = −l∓(modn). (5.3)
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A generalization to systems with discrete rotational symmetries is given in the supplemental
material of Ref. [1]. As a result, excitons with different angular quantum numbers (i.e.,
different m) would couple differently to pk+ and pk−, causing multiple bright excitons each
accessible by σ− and σ+ photons. We note that Eq. (5.3) thus incorporates and generalizes
the conventional selection rules for Wannier excitons to all 2D semiconductors with a single
critical point (or no critical point) where excitonic optical transitions happen.

5.2.2 Applications: Gapped graphene systems
An ideal set of materials to illustrate the predicted novel excitonic physics is the gapped

graphene systems, in which a band gap and a layer-number-dependent pseudospin texture
emerge from an induced broken inversion symmetry that may be tuned. We consider three
(already experimentally achieved) systems based on 1-3 layers of graphene [182, 183, 184,
185]. For monolayer graphene, inversion symmetry is broken by placing the graphene layer
on top of a monolayer of hexagonal boron nitride [1]. For bilayer (in a Bernal stacking order)
and trilayer graphene (in a rhombohedral stacking order), inversion symmetry is broken by
applying an external electric field along the out-of-plane direction. In our first-principles
GW -BSE calculations presented below, the applied electric field was set to 0.13 V/Å, an
experimentally feasible value [184]. Modifying the applied electric field strength, which
determines the size of the induced band gap, does not change the physics discussed here.

For the gapped graphene systems studied, DFT calculations are performed within LDA
using the Quantum ESPRESSO package [13, 107] to determine their ground-state properties.
First-principles GW and GW -BSE methods are employed to calculate the quasiparticle
bandstructure and excitonic states, respectively, using the BerkeleyGW package [108]. In the
GW and GW -BSE calculations, the dielectric matrix for the screened Coulomb interaction is
constructed with a slab truncation scheme and with an energy cutoff of 8 Ry. Close scrutiny
is needed for the k-point sampling in the excited-state calculations. For calculations of
the quasiparticle bandstructure, a 150 × 150 k-grid in the Brillouin zone is necessary to
converge the band gap within 3 meV. For the calculation of excitons, a patched sampling
scheme is used to solve the BSE for the excitonic states in the individual K and K ′ valleys.
The sampling density is equivalent to a uniform 450 × 450 k-grid in the Brillouin zone. For
monolayer graphene, a 450 × 450 k-grid is interpolated into a 1500 × 1500 k-grid to converge
the exciton energy levels to within 2 meV.

The gapped graphene systems of 1, 2, and 3 atomic layers studied have GW quasiparticle
band gaps of 130, 159, and 185 meV, as evident in Fig. 5.1, respectively. These values
are much larger than their corresponding Kohn-Sham band gaps of 62, 90, and 118 meV,
respectively, owing to the self-energy effects. For biased bilayer and trilayer graphene, the
top valence and bottom conduction bands at the K and K ′ valleys develop a Mexican-hat-
like shape. The pseudospin texture of the states in bilayer graphene is schematically shown
in Fig. 5.1d, where the amplitude of the carbon π orbitals develops a phase winding around
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Figure 5.1: Calculated bandstructure and pseudospin (orbital components) winding of
gapped graphene systems. Bottom conduction band and top valence band of (a) mono-
layer graphene with broken A and B sublattice symmetry, (b) biased Bernal-stacked bilayer
graphene, and (c) biased rhombohedral-stacked trilayer graphene. Red solid lines and black
dashed lines are GW and DFT-LDA bands, respectively. The K point is set at k = 0.
Positive and negative k values denote the K − Γ and K −M direction, respectively. (d)
Orbital pseudospin winding in biased bilayer graphene. Inset: Structure of biased bilayer
graphene. The carbon atoms forming bonds with a neighboring layer are colored black.
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Figure 5.2: K-valley interband optical transition matrix elements and 1s exciton envelope
function in k-space. The K point is placed at the origin. Optical interband transition
matrix element and its winding number for light of (a) σ− circular polarization pk+ and
(b) σ+ circular polarization pk− in monolayer graphene with inequivalent sublattices. The
direction and length of an arrow denote, respectively, the phase and the magnitude of the
corresponding matrix element. (d) pk+ and (e) pk− in biased bilayer graphene. (g) pk+ and
(h) pk− in biased trilayer graphene. (c, f, i) 1s exciton envelope function in k-space in gapped
monolayer graphene, biased bilayer graphene, and biased trilayer graphene, respectively. The
envelope functions show in color scale the magnitude of the free electron-hole pair excitation
at each k, normalized to its largest value in each plot.
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the band extreme [186].
The very different pseudospin texture of the bands in the three gapped graphene systems

gives a strong layer-number- and valley-index-dependent interband optical matrix element
winding pattern for each. We show in Fig. 5.2 the winding pattern of pk+ and pk− in the
K valley, defined using the gauge procedure as described above. The complex quantity pk+
or pk− (given by a magnitude and a phase φk) are represented by an arrow with its length
proportional to the magnitude and its orientation pointing along the direction with angle φk
to the x-axis. In monolayer graphene with inequivalent A and B sublattices (Figs. 5.2a, b),
pk+ is nearly constant in magnitude and phase (arrows with constant length and orientation)
and has a winding number l+ = 0 for any contours enclosing K, whereas pk− is much smaller
in magnitude and its phase (the orientation of the arrows) winds counterclockwise around the
K point twice after completing any counterclockwise contour enclosingK (winding number of
l− = 2). This analysis, making use of the selection rules deduced above, predicts an optically
active s exciton series, as well as a weakly active d exciton series (m = −2 in the K valley).
In biased bilayer graphene, the pseudospin texture in Fig. 5.1d leads to a winding number
of l− = −1 for the interband optical matrix element pk−, as shown in Fig. 5.2e. Compared
with pk−, pk+ is much smaller in magnitude, as evident in Fig. 5.2d, but remains constant
in both magnitude and phase around the K point (winding number l+ = 0). We, therefore,
predict that (i) unlike the case of gapped monolayer graphene, the p exciton series (m = 1
in the K valley) are now optically very active, (ii) the s exciton series are still somewhat
optically active, but has a much smaller oscillator strength than the p exciton series, and
(iii) importantly, the photoexcitation of the s excitons and p excitons at a given valley (K or
K ′) requires opposite circular polarization in biased bilayer graphene. The interband optical
matrix elements in biased trilayer graphene have even more features, shown in Figs. 5.2g,
h, leading to a winding number of l+ = −1 and l− = −2 for pk+ and pk−, respectively,
at the K valley. The 1s exciton envelope functions of the three gapped graphene systems
studied are shown in Figs. 5.2c, f, and i, respectively. Our new selection-rule predictions
based on topological effects are completely borne out by our explicit GW -BSE calculations
of the optical absorption spectra.

The physics of interband optical matrix element winding numbers thus leads to novel
exciton series in the gapped graphene systems, with each valley hosting multiple optically
active excitons whose creation requires different circular polarization. We show in Fig. 5.3
the first-principles GW -BSE calculated energy levels, required circular polarization, and
oscillator strength of the first six lowest-energy excitons in the K and K ′ valley of each
system. The calculated binding energies of the lowest-energy exciton state of the 1-, 2-, and
3-layer systems are 34, 52, and 45 meV, respectively. In gapped monolayer graphene with
inequivalent sublattices (Fig. 5.3a), as expected, the s-like excitons are optically bright. The
1s exciton in the K and K ′ valleys can be selectively excited by σ− and σ+ light, respectively,
similar to monolayer transition metal dichalcogenides [94, 95, 187, 188]. In biased bilayer
graphene (Fig. 5.3b), however, the optically most active exciton becomes a 2p state that is
located at 13 meV above the lowest-energy 1s state, with an oscillator strength ∼ 20 times
larger than that of the 1s exciton. Moreover, the circular polarization needed for excitation
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of the 2p state is opposite to that of the 1s state, a feature that is directly predicted from
the interband optical matrix element winding patterns depicted in Figs. 5.2d, e. In the
biased trilayer graphene (Fig. 5.3c), the lowest-energy 1s exciton is optically inactive from
the matrix element winding patterns in Figs. 5.2g, h. Because of a significant deviation of
the band dispersion from a parabola, we are no longer able to associate the higher-energy
excitonic states with a clear principal quantum number. However, a pair of nearly degenerate
excitons with p-like and d-like orbital characters could still be identified, located at ∼ 9 meV
above the 1s state. They are excitable in the K valley with σ+ polarized light, and couple
strongly (optically bright) to the ground state via pk− in Fig. 5.2h, either directly or through
a trigonal warping effect. There is also a weakly active p-like exciton at ∼ 4 meV above the
1s state. In all three cases, the circular polarization for excitation of every bright exciton in
the K ′ valley is opposite to that of a degenerate-in-energy counterpart in the K valley due
to time-reversal symmetry.

Figure 5.3: K-valley and K ′-valley exciton energy levels and valley-exciton selective circular
dichroism in (a) monolayer graphene with inequivalent A and B sublattices, (b) biased bilayer
graphene, and (c) biased trilayer graphene. Left (right) part of each panel depicts the K-
valley (K ′-valley) exciton energy levels. The first six lowest-energy excitons are shown in
each plot. Black lines indicate dark states (with maximum oscillator strength < 1% of the
brightest exciton in each plot). The oscillator strength (I) of each bright state is expressed
in terms of that of the brightest state, for unpolarized light. Blue and red lines (or circles)
indicate bright states that are excitable from the ground state with σ− and σ+ circularly
polarized light, respectively.
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5.3 Conclusion
In sum, we have presented the discovery of a set of new unifying optical selection rules, as

well as results of novel bright exciton series, arising from band topological effects in 2D semi-
conductors. This valley-exciton selective circular dichroism can be unambiguously detected
using optical spectroscopy. All 2D systems, with or without nontrivial band topology, have
optical selection rules given by Eq. (5.3) replacing the conventional ones for Wannier exci-
tons. Owing to the Poincaré-Hopf theorem, which in the present context states that the sum
of the winding numbers from all band extrema in the 2D Brillouin zone should equal to zero
(the Euler characteristics of a 2D torus), one should look for the predicted nonconventional
selection rules in the excitonic spectra of multivalley 2D materials. Our work reveals yet
another important manifestation of band topology in the physical properties of materials;
it also opens opportunities for use of these effects in gapped graphene systems for potential
valleytronic applications.
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Chapter 6

Ultrasensitive tunability of the direct
band gap of 2D InSe flakes via strain
engineering

One unique advantage of 2D materials is their ultrahigh flexibility [189]. It has been
shown that a single-layer graphene can sustain as much as ∼ 10% strain without mechanic
failure [190], and similar findings have also been reported in other 2D semiconductors such as
MoS2 [190, 191, 192, 193, 194, 195]. Meanwhile, strain can effectively and reversibly change
the bandstructure of 2D materials to achieve a tunable spectral response in optoelectronic
devices [192, 193, 194, 196, 197, 198]. InSe, a member of the layered materials family, is
a superior electronic and optical material which retains a direct band gap feature from the
bulk to atomically thin few-layers and high electronic mobility down to the single-layer limit
[69]. In this way, 2D InSe flakes provide an ideal platform to realize such functionality in
the infrared regime.

In this chapter, I present a collaborative work with experimental groups on the discovery
of ultrasensitive tunability of the electronic structure in few-layer InSe via strain engineering
[2]. The experimental study was mainly performed by research groups led by Prof. Su-Fei
Shi (Rensselaer Polytechnic Institute) and Prof. Cheng-Yan Xu (Harbin Institute of Tech-
nology). In this work, we exploit the strain engineering to drastically modify the band gap
of 2D InSe nanoflakes. It is demonstrated that the band gap of a few-layer InSe flake can be
decreased by 160 meV with an in-plane uniaxial tensile strain of 1.06%, and increased by 79
meV with an in-plane uniaxial compressive strain of 0.62%, as evidenced by photolumines-
cence (PL) spectroscopy. The large reversible band gap change of few-layer InSe in response
to strain represents the most pronounced uniaxial strain-induced band gap strain coefficient
experimentally reported in 2D materials. We also develop a theoretical understanding of the
strain-induced band gap change through first-principles DFT and GW calculations.
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6.1 Introduction
The success of graphene research has inspired tremendous interest in 2D materials beyond

graphene, particularly 2D semiconductors with finite-size band gap and high carrier mobility
[66, 68, 69, 199]. One particularly significant effort is on the transition metal dichalcogenides
(TMDCs), which exhibit a transition from an indirect band gap to a direct-gap semiconduc-
tor when the TMDC flake is thinned down to the single-layer limit [66, 67, 199]. Single-layer
TMDCs possess a unique valley-spin degree of freedom [67, 94] and strong light-matter inter-
action [85], which can be exploited for novel quantum optoelectronic applications. However,
having the direct band gap in a limited visible spectrum range and limited carrier mobility
compromise the prospect of utilizing TMDCs for light-emitting devices, solar energy har-
vesting or quantum electronic device applications [199, 200, 201]. In parallel, thin black
phosphorous (BP) flake has been discovered as a new 2D material with carrier mobility as
high as 6000 cm2 V−1 s−1, which enabled the observation of quantum interference effect and
quantum Hall effect (QHE) [68]. Optically, BP remains a direct band gap material with
an optical band gap sensitively dependent on layer numbers, approaching the bulk value
of ∼ 0.3 eV from the single-layer value of ∼ 1.5 eV quickly as the layer number increases
[202, 203, 204]. However, BP is extremely unstable under ambient conditions. The chal-
lenge of device stability has to be solved before it can be implemented for optoelectronics
applications [205].

As a prototypical layered material in the III-VI family, InSe is a stable nonlinear optical
crystal and exhibits superior electrical and optical properties [69, 206, 207, 208, 209]. Re-
cently, the QHE has been demonstrated in a thin flake (6 layers) with mobility exceeding
10000 cm2 V−1 s−1 [69]. Moreover, in contrast to the TMDCs, InSe is a direct band gap
material from the bulk to a few layers (>5 layers), which renders it a promising candidate
for efficient optoelectronic devices possessing large absorbance [207, 208, 209]. In addition,
the band gap of multilayer InSe is located in the infrared regime and bridges the spectrum
gap between the TMDCs and BP [207]. Considering the relatively small exciton binding
energy in a few-layer InSe flake [210], we expect that the optical band gap obtained from
the PL spectroscopy would correspond closely to the direct band gap at the Γ point for a
few-layer (>5) system in the bulk hexagonal Brillouin zone, which is folded from the Z point
in the Brillouin zone of the rhombohedral primitive cell. Therefore, PL spectroscopy can be
employed to investigate the strain-induced band gap modulation of few-layer InSe flakes.

6.2 Results
The atomic structure of rhombohedral γ-InSe is given in Figs. 6.1a, b, consisting of

In-Se-Se-In atomic layers stacked vertically with the van der Waals interaction. Each layer
is of a hexagonal structure with D3h symmetry. The layer-dependent band gap of InSe has
been investigated both theoretically and experimentally [207, 210]. Bulk InSe is a direct-gap
semiconductor with both the conduction band minimum (CBM) and valence band maximum
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(VBM) located at the Z point. InSe flakes retain the direct-gap feature until they are less
than five layers thick [207, 210]. Experimentally, we exfoliated InSe flakes from the γ-InSe
single crystal onto the flexible poly(ethylene terephthalate) (PET) substrate with a thickness
of 120 µm. The strain was applied using a home-built instrument in which the PET film was
clamped at both ends. By pushing the PET film from one clamped end through a micrometer
manipulator, we can precisely control the lateral movement and determine either uniaxial
tensile or compressive strain, as schematically shown in Figs. 6.1c, d. The quantitative
strain value can be determined by a two-point bending method: the bent PET is assumed
as a circular arc for the strain calculation with the equation: strain = τ/R , where 2τ and R
are the thickness of PET substrate and the radius of curvature of the bent PET, respectively
(Fig. 6.1d) [191].

Figure 6.1: (a) A side view of the atomic structure of the InSe crystal structure. In atom:
purple. Se atom: green. (b) A top view of the InSe crystal structure showing a hexagonal
structure with D3h symmetry. (c) A schematic of the two-point bending apparatus used for
applying uniaxial tensile and compressive strain. (d) A schematic for the calculation of the
strain in an InSe flake.

We investigate the evolution of the InSe bandstructure with strain using PL spectroscopy
and first-principles DFT and GW calculations. Drastically different from semiconducting
TMDCs, we show that the unstrained InSe with thickness more than ∼ 4 nm (about five
layers with a single-layer thickness of 0.82 nm) can be approximately treated as a direct-gap
semiconductor, with

∣∣∣EΓ
g − E ind

g

∣∣∣ < 30 meV based on our DFT calculations, where EΓ
g is the

direct band gap at the Γ point, and E ind
g the indirect band gap. Consequently, with the

neglect of possible excitonic effects, the PL spectroscopy directly reads out the optical band
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gap of InSe through the PL peak position. Considering the significant dielectric screening
when the layer number exceeds five (exciton binding energy will be small) [203], the optical
band gap of InSe is approximately the same as the quasiparticle band gap. Figure 6.2a shows
the PL spectra of multilayer InSe of thickness ∼ 12 nm over a range of 0 – 1.06% tensile
strain. The main PL peak in the unstrained InSe is located at 1.34 eV. With increasing
strain, the PL spectra of InSe are significantly changed: the peak exhibits a redshift of
about 118 meV with a tensile strain of ∼ 1.06%. We plot the PL peaks as a function of
strain value for this sample in Fig. 6.2b (blue diamonds) with a linear fitting. The slope,
demonstrating the sensitivity of the optical band gap to strain, is ∼ 101 meV/% strain for
this sample. We also explored the effect of strain on the band gap of InSe flakes of different
thicknesses. For all the flakes with thickness ranging from 4 nm to more than 30 nm, the
PL peak exhibits a consistent redshift with increasing tensile strain, as shown in Fig. 6.2b,
and the peak shift rate is determined to be 154 ± 8 meV/% for a thin flake (4 and 6 nm)
and 81± 4 meV/% strain for a thick flake (>30 nm).

We also investigate the effect of the compressive strain on the band gap by applying a
relatively small strain (from 0 to 0.62%), with the purpose of avoiding complication due to
potential buckling or other mechanical deformation of the flakes. As shown in Fig. 6.2c, the
PL peak of InSe of thickness ∼ 14 nm has a blueshift of about 56 meV when the compressive
strain approaches 0.59%, corresponding to a shift rate of ∼ 100 meV/% strain. These results
show that the band gap of InSe can be increased through a compressive strain and decreased
through a tensile strain. We also measured the compressive-strain-dependent PL of samples
with different thicknesses, and the PL peak position as a function of strain is shown in Fig.
6.2d. The band gap of InSe flakes obtained from the PL spectra increases with strain, and
the band gap shift rate for a few-layer InSe flake (∼ 5 nm) is determined to be ∼ 140 meV/%
strain. The combination of tensile strain and compressive strain greatly enhances the band
gap tunability of an InSe flake.

We compare our results with previously reported values in other 1D and 2D materials,
summarized in Table 6.1. It is evident that the band gap strain coefficient with a uniax-
ial tensile strain in few-layer InSe is the most pronounced among what have been reported
experimentally in 2D materials so far, several times larger than those of TMDCs and compa-
rable to that of BP [192, 193, 194, 196, 211, 212, 213, 214]. This excellent tunability may find
its applications in the future development of flexible electronic, optoelectronic and photonic
devices with near-infrared spectral responses.

To understand the microscopic mechanism of the strain-induced band gap change, we
performed first-principles DFT (implemented in the Quantum ESPRESSO package [106, 107])
and GW calculations (implemented in the BerkeleyGW package [108]) of InSe at the single-
layer (Fig. 6.3a) and the bulk limit (Fig. 6.3b). We did not include the SOC effect in the
shown calculations because it has a minimum effect on the band gap studied here, considering
the CBM is mainly composed of In s orbitals and the VBM is mainly composed of Se pz
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Figure 6.2: Strain-induced band gap change revealed by PL spectroscopy. (a) PL spectra of
a multilayer InSe of thickness ∼ 12 nm. The applied uniaxial tensile strain ranges from 0
to 1.06%. Inset: the optical image of the flake on PET. The laser excitation spot is at the
center of the pink flake. (b) PL peak positions versus tensile strain in InSe flakes of different
thicknesses. (c) PL spectra of a multilayer InSe flake of thickness ∼ 14 nm under different
uniaxial compressive strains. (d) PL peak position versus compressive strain in InSe flakes
of different thicknesses.

orbitals [209, 210].
Unstrained single-layer InSe is found to be an indirect-gap semiconductor, with a “Mexi-

can hat” feature near the Γ point. As shown in Fig. 6.3a, the direct band gap at Γ is ∼ 1.7 eV
from DFT calculations, while GW calculations show a band gap of ∼ 3.1 eV. This drastic dif-
ference in the band gap between the two calculations originates from strong electron-electron
interaction and weak dielectric screening in 2D materials. As the layer number increases to
more than five layers, DFT calculations show that InSe quickly becomes a direct-gap semi-
conductor, with the band gap located at the Γ point [2]. The bandstructure of unstrained
bulk InSe is shown in Fig. 6.3b. Bulk InSe is found to be a direct-gap semiconductor with
the band gap located at the Z point in the Brillouin zone of the rhombohedral primitive cell.
The band gap is 0.35 eV from DFT calculations and 1.25 eV from GW calculations. The
GW band gap value shows an excellent agreement with the experimentally measured band
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Figure 6.3: Calculation of the strain-induced band gap change in InSe. (a) DFT-PBEsol
(blue dashed) and GW (red solid) bandstructures of single-layer InSe. (b) DFT-PBEsol (blue
dashed) and GW (red solid) bandstructures of bulk InSe. (c) Experimentally measured band
gap strain coefficients for uniaxial tensile strain (black dots) and compressive strain (red dots)
as a function of the InSe flake thickness. The blue and green dashed lines label the calculated
quasiparticle band gap strain coefficient of single-layer and bulk InSe, respectively.
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Materials Thickness (nm) Strain (%) Strain coefficient (meV/%)
InSe 4 1.06 153

6 1.06 154
9 1.06 132
12 1.06 101
20 0.88 88
35 0.79 81
5 −0.62 140
7 −0.62 123
10 −0.62 133
14 −0.59 100

MoS2 [192, 193] Single-layer 2.2 45
Single-layer 0.52 70

WSe2 [194, 215] Single-layer 1.04 60–70
Single-layer 1.4 54

MoSe2 [211] Single-layer 1.1 27
WS2 [212] Single-layer 2.5 20–30
ReSe2 [216] Single-layer 1.64 36
BP [213, 214] 10 5 100–140

4 0.92 117–124
MoS2 biaxial strain [217] Single-layer >2 99
GaAs nanowire [218] 40 3.5 84

Table 6.1: Comparison of band gap tunability between InSe and other 1D or 2D semicon-
ductors under uniaxial tensile, compressive and biaxial strain.

gap which is at ∼ 1.27 eV for a few-layer InSe that is 30 nm thick.
Since we access the direct band gap experimentally through PL spectroscopy, in our

calculations, we focus on the strain effect on the corresponding direct band gap for the
single-layer and bulk InSe. We first investigate the strain effect on the single-layer InSe, and
our DFT calculations show that the band gap strain coefficient is 91 meV/% for an in-plane
uniaxial tensile strain [2]. Our GW calculation shows a coefficient of 97 meV/% (Fig. 6.3c),
only 7% larger than that from the DFT calculation. We also calculated the band gap strain
coefficient for bulk InSe, and the DFT calculation shows a value of 95 meV/% and the GW
calculation results in an increased value of 114 meV/% (Fig. 6.3c).

We plot the experimental band gap strain coefficients for InSe of different thicknesses
in Fig. 6.3c and compare them with the GW results. Since PL peaks can be determined
accurately in experiments, the uncertainty in measurement is mainly from the strain cal-
culation. Fig. 6.3c shows that for InSe flake of thickness ∼ 4 nm (5 layers) and ∼ 6 nm
(8 layers), the band gap strain coefficient due to uniaxial tensile strain is almost the same,
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within the experimental uncertainty considered. The band gap strain coefficient due to uni-
axial compressive strain, which is slightly smaller, is also about the same for the InSe flake of
thickness from ∼ 5 nm to ∼ 10 nm. The value of the nearly constant band gap strain coeffi-
cient is in better agreement with the GW calculation for bulk InSe (114 meV/%), and larger
than what is predicted for the single-layer InSe (97 meV/%). In addition, we attribute the
remaining discrepancy between experimental and calculated band gap strain coefficients to
unintended out-of-plane strain in the experiment, which is confirmed by the strain-induced
shift of Raman A1 and A1(LO) modes [2]. Calculations with additional out-of-plane tensile
(compressive) strain for bulk InSe structures with fixed in-plane compressive (tensile) strain
will increase the calculated band gap strain coefficient. It is interesting to note that the
strain-induced effect on the band gap in few-layer InSe is closer to that of bulk InSe rather
than a single-layer InSe. This can be intuitively understood by the fact that the electronic
bandstructure of few-layer InSe is closer to that of the bulk InSe (direct band gap at the Γ
point: ∼ 1.3 eV) shown in Fig. 6.3b, much smaller than that of the single-layer InSe at the
Γ point (3.14 eV) shown in Fig. 6.3a.

We also note that InSe flakes thicker than 10 nm show significantly decreased band gap
strain coefficient as the thickness of the flake increases. This trend is likely due to an effective
strain decay in the thick flakes. The nominal strain is calculated based on the geometry of
the flexible PET film, which should be the same as that in the thin InSe flake since it exactly
follows the change of the substrate [191, 192]. For thick samples, we expect inefficient strain
transfer between different layers, which will result in a strain gradient in the flake. This
strain gradient is confirmed by the extra broadening observed in PL width of strained thick
InSe flakes [2], and it will reduce the effective strain applied to the flake and lead to reduced
strain coefficient observed.

6.3 Conclusion
In summary, we have investigated the effect of uniaxial tensile and compressive strain

on the electronic structure of InSe with different thicknesses. The strain-induced band gap
modulation has been experimentally demonstrated, suggesting that strain engineering is an
effective tool to explore the novel physics of III-VI layered compounds. Applying a relatively
small strain, we have demonstrated a reversible optical band gap tunability of ∼ 239 meV in
the infrared regime. Such tunability originates from a sensitive response of InSe electronic
structure to the external strain, which manifests itself as a substantial band gap strain
coefficient as large as ∼ 154 meV/% under a uniaxial tensile strain. The observed band
gap strain coefficients are confirmed by our first-principles DFT and GW calculations. This
sensitive response to strain holds great potential for a wide range of applications based
on atomically thin InSe flakes, including electromechanical, piezoelectric and optoelectronic
devices.
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Chapter 7

Exchange-driven intravalley mixing of
excitons in monolayer transition
metal dichalcogenides

Monolayer transition metal dichalcogenides (TMDCs) are promising 2D semiconductors
with a lot of potential applications in optoelectronics. Their optical properties are dominated
by two series of photo-excited exciton states – A (XA) and B (XB) [67, 219] – that are
derived from direct interband transitions near the band extrema. These exciton states have
large binding energies and strong optical absorption [85, 87, 174, 220], and form an ideal
system to investigate many-body effects in low dimensions. Because the SOC effect causes
a large splitting between bands of opposite spins, XA and XB are usually treated as spin-
polarized Ising excitons, each arising from interactions within a specific set of states induced
by interband transitions between pairs of either spin-up or spin-down bands (TA or TB).
Among the various types of many-body effect, the electron-hole exchange interaction is
known to be an important mechanism for defining exciton landscape [221, 222] and for
exciton spin relaxation in quantum wells based on III-V semiconductors [223, 224, 225].
This effect also contributes to valley depolarization [226], valley decoherence [227, 228],
valley-orbit coupling for excitons [229] and the shaping of the exciton dispersion relation
[86, 230] in monolayer TMDCs. Despite the extensive studies of many-body effects among
excitons in monolayer TMDCs [231, 232, 233], understanding of the excitonic exchange
interaction within the same valley is incomplete due to the insufficiency of existing first-
principles methods, and the restricted resolution of the coupling between photo-excited states
with traditional linear optical spectroscopy.

In this chapter, I present a work in collaboration with an experimental group led by
Prof. Graham R. Fleming [3]. In this work, by using the full-spinor GW and GW -BSE
methods and state-of-the-art 2D electronic spectroscopy, we numerically demonstrate and
experimentally verify the role of the strong intravalley exchange interaction in forming XA
and XB in a prototypical TMDC, monolayer MoS2. This exchange interaction is significant
because of the reduced dielectric screening and enhanced wavefunction overlap between the
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electrons and the holes in a monoatomic layer and is manifested in the transient optical
response.

7.1 Introduction
An exciton is an electron-hole pair, bound by Coulomb interactions. The interaction

between the electron and the hole contains two terms, a direct screened Coulomb interaction
and an exchange bare Coulomb interaction. The attractive direct interaction corresponds to
a classical picture of Coulomb attraction between the two oppositely charged quasiparticles,
producing a series of hydrogenic-like electron-hole states, of which the envelope wavefunctions
have specific nodal structure and angular momentum quantum numbers (1s, 2s, 2p and so
on). The diagrams labeled TA and TB in Fig. 7.1a schematically show such electron-hole
states in the K valley of monolayer TMDCs, which are bound by the direct interaction only.
The states TA and TB are derived from interband transitions occurring between the spin-up
and the spin-down band-pairs, respectively, and are therefore referred to as Ising excitons.
The repulsive exchange interaction involving the bare Coulomb interaction, on the other
hand, arises from the exchange symmetry of the many-fermion wavefunctions, and leads
to exciton eigenstates consisting of electron-hole states with mixed spins, as illustrated in
diagrams labeled XA and XB in Fig. 7.1a.

7.2 Results

7.2.1 Exchange-driven mixing of exciton states
We employ the full-spinor GW and GW -BSE methods implemented in the BerkeleyGW

package [108] to fully incorporate the exchange interaction, particularly the intravalley ex-
change interaction between TA and TB. It is demonstrated that the true exciton eigenstates,
XA and XB, are mixed states of TA and TB. Figs. 7.1d–i shows the k-space wavefunction
amplitudes of the bright exciton eigenstates XA-1s, XB-1s, and XA-2s projected onto TA
(Figs. 7.1d, f, h) and TB subspaces (Figs. 7.1e, g, i). TA and TB are illustrated in Figs. 7.1b
and 7.1c, respectively. We label the principal quantum number of an exciton eigenstate by
the nodal structure of its envelope wavefunction in its major subspace where the amplitude is
the largest. The 1s state of XA (XB) primarily includes TA (TB), but also mixes in 3.6% of
TB (5.3% of TA) by the intravalley exchange interaction. Moreover, the mixing also occurs
between states with different principal quantum numbers. For example, the k-space wave-
function amplitude of XA-2s has components with one node in the TA subspace, but shows
components without node (a 1s-like character) in the TB subspace. The mixing of TA and
TB produces an important change in the ratio of the optical oscillator strengths of XA and
XB in the calculations. This large asymmetry in the oscillator strengths has been observed
in experiments but has not been well explained [234]. The calculated oscillator strengths of
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Figure 7.1: Exciton state mixing from the intravalley exchange interaction. (a) Schematic
of exchange-driven mixing of the two Ising excitons, TA and TB, which produce the exciton
eigenstates, XA and XB. The orange solid arrows denote the transition between spin-up
states (in the TA subspace) while the blue dashed arrows denote the transition between
spin-down states (in the TB subspace). The thicker arrow in the plot of XA or XB indicates
the major subspace. Dashed ovals denote the exciton states composed of the corresponding
interband transitions. Kex represents the exchange interaction kernel. (b, c) Illustration
of TA and TB subspaces, respectively. (d–i) Log-scale wavefunction amplitudes in k-space
(normalized to unity at the highest amplitude for each state) for exciton eigenstates (d, e)
XA-1s, (f, g) XB-1s, and (h, i) XA-2s with the exchange interaction included. The upper
(d, f, h) and lower (e, g, i) panels show the projected amplitudes of the wavefunction onto
the TA and TB subspace, respectively.
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XA-1s XB-1s XA-2s
Without TA-TB exchange interaction 1.01× 10−5 1.07× 10−5 0.34× 10−5

With full exchange interaction 0.67× 10−5 1.27× 10−5 0.41× 10−5

Table 7.1: Calculated oscillator strengths (in atomic units) of the first three bright exciton
states in monolayer MoS2.

optical transitions (in atomic units) to the different exciton states are presented in Table 7.1.
If the exchange interaction between TA and TB is excluded in the calculations, the two Ising
exciton 1s states have nearly equal oscillator strengths, consistent with previous theoretical
works on monolayer TMDCs, which have all ignored this interaction. With inclusion of the
intravalley exchange interaction, the oscillator strength of XA-1s decreases whereas that of
XB-1s increases, leading to a factor of two change in their ratio. This asymmetric change
in the oscillator strengths originates from the destructive and the constructive interference
between TA and TB due to the intravalley spin-resolved exchange interaction according to
our first-principles GW -BSE calculations.

7.2.2 2D electronic spectroscopy
An important role of the exchange interaction in exciton spin dynamics was demon-

strated both theoretically and experimentally in III-V quantum wells, where the exchange
interaction leads to simultaneous spin flip of the electron and the hole after an ultrafast
resonant excitation of excitons [223, 224, 225]. Therefore, in monolayer MoS2, when the
excitation pulse duration is short enough, we expect an evolution from the transient Ising
exciton states (which are directly launched by the pulse) towards the eigenstates XA and XB
with mixed spin polarization. The evolution dynamics are mainly driven by the intravalley
exchange interaction. Based on these considerations, 2D electronic spectroscopy (an ultra-
fast four-wave mixing spectroscopy technique) is employed to demonstrate the intravalley
exchange interaction unambiguously in both time and frequency domains. This method has
been utilized to map excitonic coupling and energy transport in various systems including
photosynthetic complexes [235, 236] and semiconductors [228, 232, 233, 237, 238, 239, 240],
with high resolution in both the time and frequency domains.

Monolayer MoS2 with continuous size (∼ 10 mm2, polycrystalline) grown on a sapphire
substrate by chemical vapour deposition is used for our experiments. The broadband laser
in our experiments, covering the resonance energies of both XA-1s and XB-1s in monolayer
MoS2 as shown in Fig. 7.2a, is generated from an optical parametric amplifier driven by
a Ti:sapphire femtosecond laser amplifier (Astrella, Coherent). In the experiments, the
sample was cooled to 40 K by liquid helium. In this work, 2D electronic spectroscopy was
performed using the boxcar geometry in the rephasing scheme with co-circularly polarized
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Figure 7.2: (a) Laser spectrum (left, blue, normalized) and absorption spectrum (right, red)
of monolayer MoS2 at 40 K. (b) 2D electronic spectroscopy in the boxcar geometry. Four
beams, denoted 1, 2, 3 and 4, are focused into the sample. The fields with wave vectors
k1, k2 and k3 interact with the sample and generate a photon echo signal with wave vector
ks = −k1 +k2 +k3. The signal collinear with beam 4 is measured by heterodyning detection.
The delay τ between pulses 1 and 2 and the delay T between the second striking pulse (pulse
2 for rephasing) and pulse 3 are adjusted. The delay time t between pulse 3 and the signal
is implicit since the signal is detected in the frequency domain by a spectrometer. (c–h)
Rephasing amplitude 2D spectra (normalized) at labeled waiting times. The four peaks are
denoted by αβ (α, β = A, B), which indicates excitation resonant with transition α and
emission resonant with transition β. Peak regions are marked by colored squares. The color
scale in the simulated 2D spectra denotes values between 0 and 1 due to normalization.
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light, as shown in Fig. 7.2b. Three input laser fields interact with the sample and induce a
third-order polarization, which emits a photon echo signal in the phase-matching direction.
The signal is acquired as a function of the coherence time τ and the waiting time T . The
signal field Es(Eexcitation, T , Eemission), as a 2D function of the excitation energy Eexcitation and
the emission energy Eemission at a specific T , is extracted by a Fourier transform with respect
to τ . Presenting Es in 2D diagrams reveals the correlation between the excitation and the
emission energies with T as the delay between the excitation and the emission events, thus
tracking the energy transport landscape.

The rephasing amplitude 2D spectra (Figs. 7.2c–h) feature two diagonal peaks (AA
and BB) and two cross peaks (AB and BA). The diagonal peaks indicate ground-state
bleaching and stimulated emission due to excitation of each individual transient state TA
or TB. The cross peaks correspond to excitation resonant with TA (TB) and photon echo
emission resonant with TB (TA). In previous works on semiconductors [232, 233, 237], the
presence of cross peaks in 2D spectra was explained by an excitation-induced shift of the
resonance energy and excitation-induced dephasing of the electronic polarization caused by
many-body effects, which offset the contributions from ground-state bleaching and excited-
state absorption. In this scenario, the amount of peak shift and broadening is proportional to
the excited exciton population. Therefore, the cross-peak amplitude should be maximized
at small T , when the exciton population is maximal, and then decay together with the
diagonal peak amplitude, which is proportional to the population of the corresponding state.
However, our data deviate from the prediction of the excitation-induced shift/dephasing
model. As shown in Figs. 7.2c–h, the cross peak AB is dark at T = 61 fs and becomes
brighter relative to the diagonal peak AA as T increases. This indicates a conversion from
the excited lower-energy state TA to the higher-energy state TB, which is qualitatively
consistent with our theoretical analysis considering the intravalley exchange interaction.
The system, which is initialized into the transient state TA by resonant excitation, evolves
towards the eigenstate XA, which mixes TA and TB and therefore populates TB. Phonon-
assisted population upconversion [233, 241], which was previously observed between the
trion and the exciton in monolayer MoSe2 and WSe2, is excluded here since it can hardly
surmount the energy gap of 150 meV between XA-1s and XB-1s. The small contribution
of the Auger effect (by which two XA-1s interact and induce one XB-1s) to the cross peak
AB is confirmed by the nearly constant ratio of the peak amplitude AB/AA versus fluence.
Spin flipping of the electron component of TA by carriers and phonons could also bleach
the TB transition. However, it has been shown by time-resolved Kerr rotation that the spin
lifetime of electrons in TA is as long as 200 ps at 40 K [242], whereas the growth of the peak
ratio AB/AA occurs within 1 ps. Spin flipping of the hole component of TA takes longer
than this timeframe due to the much larger energy splitting in the valence band. Therefore,
we attribute the emergence of the TB feature after the excitation of TA to the excitonic
exchange interactions.

Considering the intravalley exchange interaction as the mechanism for the population
transfer, we computed the 2D spectra. We model the coupling between TA and TB using a
four-level diamond system constructed from a Hilbert space transformation of two indepen-
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dent two-level systems. The rephasing amplitude 2D spectra are calculated by perturbatively
solving the optical Bloch equations to the third order, which dictates the dynamics of the
density matrix. The photon echo signal can be divided into contributions from 14 Liouville
pathways, each represented by a double-sided Feynman diagram [3]. Two Feynman diagrams
shown in Fig. 7.3a are employed to incorporate the intravalley exchange interaction between
TA and TB. The initial condition for AB (BA) peak dynamics is set to be the pure population
of the Ising excitons with the amplitude proportional to the initial AA (BB) peak intensity
from experiments. The simulated rephasing amplitude 2D spectra are shown in Figs. 7.3c–h
at different waiting times, and reproduce the experimental results (Figs. 7.2c–h) reasonably
well. The ratios of the cross-peak amplitudes to the corresponding diagonal-peak ampli-
tudes from the simulations are plotted in Fig. 7.3b together with the experimental data.
The slight overestimation of the ratio AB/AA at T > 500 fs in the simulations is probably
due to the neglect of phonon-assisted population down-conversion from TB to TA. For the
same reason, the simulations show a slow rise in BA/BB whereas the experiment captured
a fast rise within 200 fs.

7.3 Conclusion
In summary, the theoretically and experimentally unraveled intravalley exchange inter-

action reforms the exciton landscape in monolayer TMDCs. We reveal, for the first time in
2D materials, the role of the intravalley excitonic exchange interaction in mixing the excited
transient states with opposite spin polarization. This interaction serves as an important
channel for exciton spin relaxation, especially in the ultrafast time domain and therefore
should be taken into account for the design of TMDC-based spintronics and valleytronics
and in the exploration of novel 2D materials with valley-spin coupling.



CHAPTER 7. EXCHANGE-DRIVEN INTRAVALLEY MIXING OF EXCITONS IN
MONOLAYER TRANSITION METAL DICHALCOGENIDES 69

ba

0
0.2

0.4
0.6

0.8
1.0

c T=61 fs

f T=202 fs

d T=81 fs

g T=495 fs

e T=128 fs

h T=1.029 ps

IA›‹AI

IB›‹BI

Ig›‹gI

IB›‹gI

IB›‹BI

Ig›‹gI

Ig›‹AI

IA›‹AI

IA›‹gI

Ig›‹gI

-k1

+k2

+k3

Ig›‹gI

Ig›‹BI

-k1

+k2

+k3

TA to TB

t

T

!

TB to TA

1.9 1.95 2.0 2.05 2.1 2.15 2.2
Eexcitation (eV)

1.9 1.95 2.0 2.05 2.1 2.15 2.2
Eexcitation (eV)

1.9 1.95 2.0 2.05 2.1 2.15 2.2
Eexcitation (eV)

E e
m

is
si

on
 (e

V)

1.9

1.95

2.0

2.05

2.1

2.15

2.2

E e
m

is
si

on
 (e

V)

1.9

1.95

2.0

2.05

2.1

2.15

2.2

1

0.8

0.6

0.4

0.2

0

Pe
ak

 R
at

io

Waiting Time T (ps)
0.2 0.4 0.6 0.80 1 1.2 1.4 1.6

AB/AA by simulation
BA/BB by simulation

Measured BA/BB
Measured AB/AA

Figure 7.3: (a) Feynman diagrams with population transfer between TA and TB due to the
intravalley exchange interaction. The left-hand diagram contributes to the cross peak AB
whereas the right-hand one contributes to the cross peak BA. In the diagrams, g denotes the
ground state before excitation. (b) Calculated peak ratios versus waiting time T compared
with experimental results. (c–h) Simulated rephasing amplitude 2D spectra (normalized) at
labeled waiting times, including the intravalley exchange interaction. The color scale in the
simulated 2D spectra denotes values between 0 and 1 due to normalization.
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Chapter 8

Physical origin of giant excitonic and
magneto-optical responses in 2D
ferromagnetic insulators

The magneto-optical (MO) effects, such as the magneto-optical Kerr effect (MOKE) and
the Faraday effect (FE), have been intensively investigated experimentally in a variety of
magnetic materials, serving as a highly sensitive probe for electronic and magnetic properties.
Recent MOKE experiments have led to the discovery of 2D magnets, and demonstrated their
rich magnetic behaviors [72, 73]. In particular, a giant Kerr response has been measured
in ferromagnetic mono- and few-layer CrI3 [73]. Magnetic circular dichroism (MCD) in
photoabsorption has also been measured in ferromagnetic monolayer CrI3 [12]. However, the
exact microscopic origin of such large MO signals and MCD responses in 2D materials is
still unclear, because treating accurately sizable SOC and excitonic effects that are essential
for such an understanding in these systems has been very challenging for existing theoretical
methods.

In this chapter, by performing first-principles full-spinor GW and GW -BSE calculations,
we show that excitonic effects dominate the optical and MO responses in the prototypical
2D ferromagnetic insulator, CrI3 [4]. We simulate the Kerr and Faraday effects in realistic
experimental setups and based on which we predict the sensitive frequency- and substrate-
dependence of MO responses. These findings provide a physical understanding of the phe-
nomena as well as potential design principles for engineering MO and optoelectronic devices
using 2D magnets.

8.1 Introduction
CrI3, in its monolayer and few-layer form, is a prototypical 2D ferromagnetic insulator

with an Ising-like magnetic behavior and a Curie temperature of about 45 K, exhibiting
tremendous out-of-plane magnetic anisotropy [73]. Within one layer, the chromium atoms
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form a honeycomb structure, with each chromium atom surrounded by six iodine atoms
arranged in an octahedron (Figs. 8.1a, b), and the point group of the structure is S6. The
crystal field therefore splits the Cr 3d and I 5p ligand states into t2g and eg manifolds; the spin
degeneracy of which are further lifted by the magnetic exchange interaction. Although the
major-spin eg states are delocalized due to strong p-d hybridization, the magnetic moment
is approximately 3µB at each Cr site, in accordance with an atomic picture from the first
Hund’s rule [243].

With the full-spinor GW and GW -BSE methods, we show from first principles that
the exceedingly large optical and MO responses in ferromagnetic monolayer CrI3 arise per
se from strongly bound exciton states consisting of spin-polarized electron-hole pairs that
extend over several atoms. These exciton states are shown to have distinct characteristics
compared with either the Frenkel excitons in ionic crystals and polymers, or Wannier excitons
in other 2D semiconductors. By simulating realistic experimental setups, we further find
that the substrate configuration and photon frequency strongly shape the MO signals. Our
results provide the conceptual mechanism for the giant optical and MO responses, explaining
quantitatively the recent experiments on CrI3 [12, 73]. In addition, comparison between bulk
and monolayer CrI3 reveals the pivotal role of quantum confinement in enhancing the MO
signals.

8.2 Results

8.2.1 Quasiparticle bandstructure
An accurate first-principles calculation of the electronic structure of CrI3 should account

for both the dielectric polarization from the ligand groups and the on-site Coulomb interac-
tions among the localized spin-polarized electrons. We adopt the first-principles GW method
at the G0W0 level implemented in the BerkeleyGW package [108] to describe the dielectric
screening and quasiparticle excitations [9]. Through the screened Coulomb interaction W ,
the nonlocal and dynamical screening effects as well as the self-energy effects beyond the
DFT Kohn-Sham orbital energies (within LSDA) are captured. Also, in previous studies,
the method of LSDA with an on-site Hubbard potential (LSDA+U) has served as a rea-
sonable mean-field starting point for G0W0 calculations in correlated systems to avoid the
spurious p-d hybridization [149, 244]. In this work, we adopt an on-site Hubbard potential
in the rotationally invariant formulation [245] with U = 1.5 eV and J = 0.5 eV, with fully
relativistic pseudopotentials and a plane wave basis set, as implemented in the Quantum
ESPRESSO package [106, 107]. The validity of this specific set of U and J has been care-
fully tested [4]. Throughout this work, the magnetization of ferromagnetic monolayer CrI3
is taken to be along the +z direction (Fig. 8.1b). As shown in Fig. 8.1c, our calcula-
tions reveal a strong self-energy correction to the quasiparticle band gap, due to the weak
dielectric screening in reduced dimensions and the localized nature of the d states. The
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Figure 8.1: Crystal structure and electronic structure of ferromagnetic monolayer CrI3. (a)
Crystal structure (top view) of monolayer CrI3. Chromium atoms are in gray while iodine
atoms in purple. (b) Crystal structure (side view) of ferromagnetic monolayer CrI3. Red
arrows denote the out-of-plane magnetization, which is pointing along the +z direction. (c)
G0W0 (red dots) and LSDA+U (blue lines) bandstructures of ferromagnetic monolayer CrI3.
A rotationally invariant Hubbard potential is employed with U = 1.5 eV and J = 0.5 eV
in the LSDA+U calculation, which is then used as the starting mean field for the G0W0
calculation. The G0W0 bandstructure is interpolated with spinor Wannier functions.
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direct band gap is 0.82 eV at the Γ point at the LSDA+U level, whereas the direct G0W0
quasiparticle band gap including the self-energy effect is 2.59 eV, as shown in Fig. 8.1c.
Throughout the calculations, we incorporate the SOC effect from the outset by employing
spinor wavefunctions.

8.2.2 Exciton-dominant optical responses
The strong SOC strength and the ligand states strongly hybridizing with Cr d orbitals

have decisive influences on the electronic structure and optical responses of ferromagnetic
monolayer CrI3. SOC significantly modifies the band gap and band dispersion near the va-
lence band maximum (VBM) [243]. Figure 8.2a shows the G0W0 bandstructure together with
each state’s degree of spin polarization (with an out-of-plane quantization axis), of which
the orbital and spin degeneracy are consistent with the above discussions. After solving the
first-principles BSE, which describes the electron-hole interaction [34], with spinor wavefunc-
tions, we find a series of strongly bound dark (optically inactive) and bright (optically active)
exciton states with excitation energies (ΩS) below the quasiparticle band gap, as shown in
the plot of the exciton energy levels (Fig. 8.2b). As seen in Fig. 8.2c, the calculated linearly
polarized absorption spectrum including the electron-hole interaction (i.e., with excitonic
effects, red solid curve labeled GW -BSE) features three peaks at around 1.50, 1.85, and 2.35
eV (below the quasiparticle gap of 2.59 eV), which are composed of several bright exciton
states in each peak and denoted as A, B, and C, respectively. This is in contrast to the cal-
culated step-function-like noninteracting absorption spectrum (i.e., without excitonic effects,
blue dashed curve labeled GW -RPA). The magnitude of the absorbance peak around 1.50
eV is deduced to be 0.7% from a previous differential reflectivity measurement (Fig. 8.2c,
inset) [12], while our calculated absorbance with a broadening factor of 80 meV is around
0.6% at 1.50 eV. From our calculation (Fig. 8.2b), there are also two dark states (excitons
D) with enormous binding energy of larger than 1.7 eV. The existence of two states of nearly
the same energy comes from the fact that there are two Cr atoms in a unit cell. We plot
the real-space exciton wavefunctions of these states, with the hole fixed on a Cr atom, in
Figs. 8.2d–k. Unlike monolayer TMDCs where the bound excitons are of Wannier type
with a diameter of several nanometers [85, 87], ferromagnetic monolayer CrI3 hosts dark
Frenkel-like excitons localized on a single Cr atom (Figs. 8.2d, e) and bright charge-transfer
or Wannier excitons with wavefunctions extending over one to several primitive cells (Figs.
8.2f–k). These plots are consistent with the intuition that a smaller exciton binding energy
is related to a larger exciton radius [87, 230]. Numerical calculations of the exciton radius
further corroborate this conclusion (see Table 8.1).

In addition, ferromagnetism and broken time-reversal symmetry (TRS) play vital roles in
determining the internal structure of the exciton states in ferromagnetic monolayer CrI3, in
contrast to the Frenkel/charge-transfer excitons determined solely by flat-band transitions
in boron nitride systems [246, 247], organic materials [248, 249], or alkali halides [34]. The
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Figure 8.2: (a) G0W0 bandstructure of monolayer CrI3 with colors denoting the magnitude
of spin polarization along the out-of-plane direction. The red (blue) color denotes the major-
spin (minor-spin) polarization. (b) Exciton energy levels of monolayer CrI3. Bright states
are in red while dark ones in blue. The bright states have at least two orders of magnitude
stronger oscillator strength compared with the dark ones. We label the bound exciton states
with D for the lowest-lying dark states and A–C for the higher-lying bright states. (c)
Absorption spectrum of linearly polarized light with electron-hole interaction (GW -BSE,
red solid line) and without electron-hole interaction (GW -RPA, blue dashed line). The inset
data are extracted from Ref. [12] showing the experimental differential reflectivity, and the
signals above 1.3 eV are shown in black for better comparison. (d–k) Exciton amplitudes in
real space with the hole fixed on a Cr atom. Shown are iso-value surfaces of the amplitude
square at 1% of the maximum value. Upper panel: side view. Lower panel: top view. (d, e)
Dark exciton D (ΩS = 0.89 eV); (f, g) bright exciton A (ΩS = 1.50 eV); (h, i) bright exciton
B (ΩS = 1.82 eV); (j, k) bright exciton C (ΩS = 2.31 eV). The dominant states (with the
largest oscillator strength among the nearby states in the same group) are plotted.
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A B+ B− C
ΩS (eV) 1.50 1.82 1.92 2.31
Eb (eV) 1.09 0.77 0.67 0.28
〈|r|〉 (Å) 2.33 3.55 5.36 6.99√
〈r2〉 (Å) 3.06 4.37 6.70 7.93

Table 8.1: The arithmetic mean radius 〈|r|〉 and root mean square radius
√
〈r2〉 of selected

bright exciton states. The excitation energy ΩS and binding energy Eb are also included for
reference.

eigenstate of an exciton is a coherent superposition of free electron-hole pairs at different
k-points, and can be written as |S〉 = ∑

cvkA
S
cvk|cv,k〉, where AScvk is the exciton envelope

function in k-space [34]. Here c denotes conduction (electron) states and v denotes valence
(hole) states. In Figs. 8.3a–d, we plot the module square of the exciton envelope function
in k-space. As expected of highly localized Frenkel excitons in real space, the lowest-lying
dark state D in Fig. 8.3a shows a uniform envelope function in k-space, whereas the bright
states A (ΩS = 1.50 eV) and B+ (ΩS = 1.82 eV) in Figs. 8.3b and 8.3c, respectively, have
an envelope function localized around the Γ point with s characters. From Fig. 8.3d, an
interesting hexagonal petal pattern with a node at the Γ point can be found for exciton B− (
ΩS = 1.92 eV). In Figs. 8.3e–h, we plot the distribution of the constituent free electron-hole
pairs specified by (Ev, Ec) for selected exciton states, weighted by the module squared exciton
envelope function for each specific interband transition. It is obvious that the electron-hole
composition of exciton D is distinct from those of the bright states (A and B).

Because of broken TRS and strong SOC effect, the electron (hole) states that compose
a given exciton in this system are from Bloch wavefunctions with spin polarization along
different directions, giving rise to rich excitonic spin configurations. In fact, the lowest-lying
bound exciton states are all formed by Kohn-Sham orbitals with particular spin polarization.
Our calculations verify that the dark excitons D are dominated by (>99.5%) transitions
between the major-spin valence bands and minor-spin conduction bands. The bright states
(forming peaks A, B and C) in Figs. 8.2f–k and Figs. 8.3b–d, f–h, however, are all dominated
by (>96%) transitions between the major-spin valence bands and major-spin conduction
bands [4]. Ligand field theory can provide a qualitative understanding of the lowest-lying
D and A exciton states of which the optical transitions mainly occur among the localized
Cr d orbitals [12, 250]. However, ligand field theory is insufficient to evaluate the oscillator
strength of the excitons quantitatively. In addition, the coexistence of Frenkel and Wannier
excitons in our system poses significant challenges to ligand field theory, while this excitonic
physics can be fully captured by the first-principles GW -BSE method.
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Figure 8.3: (a–d) Exciton envelope functions in k-space of excitons (a) D, (b) A, (c) B+, and
(d) B−. The white dotted-line hexagon denotes the first Brillouin zone. The amplitudes are
summed over band-pairs as given by Nk

∑
cv |AScvk|2. (e–h) The distribution of free electron-

hole pair with electron energy at Ec and hole energy at Ev for excitons (e) D, (f) A, (g)
B+, and (h) B−, weighted by module squared exciton envelope function for each interband
transition between states |vk〉 and |ck〉. All the band energies are measured with respect
to the VBM energy. An 80 meV Gaussian broadening is used. (i) Schematic of interband
transitions around the Γ point. Irreducible representations for states at Γ and the Fermi level
are labeled. Only the indicated σ+ transition is allowed. (j) Frequency-dependent circularly
polarized absorbance of monolayer CrI3 at normal incidence. The red solid (blue dashed)
curve corresponds to the σ+ (σ−) circularly polarized light. (k) MCD of absorbance (η) as a
function of the photon frequency. η is set to zero below 1.3 eV as shown by the dashed line.
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8.2.3 Magneto-optical effects from first principles
The above-mentioned internal structures of the exciton states are essential for a deeper

understanding of the MO responses. Note that all the irreducible representations of the dou-
ble group SD6 are one-dimensional, which facilitates our analysis of optical selection rules for
circularly polarized lights around the Γ point, as shown in Fig. 8.3i. For 1s-like bright states
A and B+ wherein the transition mainly happens between the topmost valence band and the
major-spin eg manifold near the Γ point, only one σ+ circularly polarized transition from
the first valence band and the third conduction band is allowed among all the transitions.
This conclusion is further confirmed by our first-principles circularly polarized absorption,
as shown in Fig. 8.3j. The 2s-like exciton B−, unlike A and B+, is dominated by σ− circu-
larly polarized transitions. We quantify the MCD of absorbance by calculating the contrast,
η = (Abs(σ+) − Abs(σ−))/(Abs(σ+) + Abs(σ−)), where Abs(σ±) denotes the absorbance of
σ+ and σ− circularly polarized lights, respectively. η is dominated by σ+ circularly polarized
light below 1.8 eV (Fig. 8.3k). If we flip the magnetization direction, η will also flip sign at
all frequencies, which agrees with the measured MCD of photoluminescence signals [12].

In the following, we investigate the MO Kerr and Faraday effects of ferromagnetic mono-
layer CrI3. Previous studies have shown that both SOC and the exchange splitting should be
present to ensure non-zero MO effects in ferromagnets [118, 124, 127, 125, 126], and recent
calculations within an independent-particle picture using DFT have been carried out for the
MO responses of monolayer CrI3 [251]. The essence of a theoretical modeling of the MO
effects lies in accurately accounting for the diagonal and off-diagonal frequency-dependent
macroscopic dielectric functions, which are readily available from our GW -BSE calculations
with electron-hole interaction included. We find that the above-discussed giant excitonic
effects in ferromagnetic monolayer CrI3 strongly modify its MO responses, leading to signif-
icantly different behaviors going beyond those from a treatment considering only transitions
between noninteracting Kohn-Sham orbitals [251]. Here we shall only consider the most
physically relevant experiments for 2D ferromagnets, namely, polar MOKE (P-MOKE) and
polar FE (P-FE), where both the sample magnetization and the wave vectors of light are
along the normal of the surface. In accordance to typical, realistic experimental setup, we
consider a device of ferromagnetic monolayer CrI3 on top of a SiO2/Si substrate (the thick-
ness of SiO2 layer is set to 285 nm, and Si is treated as semi-infinitely thick) [73], as shown
in Fig. 8.4a. For insulating SiO2 with a large band gap (8.9 eV), we use its dielectric con-
stant εSiO2 = 3.9 [252]. For silicon, we perform first-principles GW (at the G0W0 level) and
GW -BSE calculations, and incorporate the frequency-dependence of the complex dielectric
function [4]. Assuming a linearly polarized incident light, we calculate the Kerr (Faraday)
signals by analyzing the polarization plane of the reflected (transmitted) light, which is in
general elliptically polarized with a rotation angle θK (θF) and an ellipticity χK (χF), as
discussed in Sec. 3.3.

We find that the MO signals are very sensitive to the thickness of SiO2 and to the photon
frequency. As shown in Figs. 8.4c, d, the thickness of SiO2 layer will strongly affect the
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Figure 8.4: MO signals calculated from first-principles dielectric functions. (a) P-MOKE
setup consisting of layers of vacuum, ferromagnetic monolayer CrI3, SiO2 film, and semi-
infinitely thick Si. Red arrows denote the out-of-plane magnetization, which is pointing
along the +z direction. Blue arrows denote the propagation direction of light, and black
double-headed arrows give the corresponding linear polarization direction. Each orange
ellipse denotes a polarization plane of the electric field of light. (b) Calculated real part
(solid lines) and imaginary part (dashed lines) of both the diagonal εxx (red) and off-diagonal
εxy (blue) dielectric functions of ferromagnetic monolayer CrI3, using a monolayer thickness
d = 6.6 Å. (c) Kerr angle θK (left, blue solid) and Kerr ellipticity χK (right, red dashed)
for the P-MOKE setup with a 285 nm SiO2 layer. (d) Kerr angle θK (left, blue solid) and
Kerr ellipticity χK (right, red dashed) for the P-MOKE setup in (a) with semi-infinitely
thick SiO2 layer. (e) P-MOKE and P-FE setup of a suspended ferromagnetic bulk CrI3 layer
with the directions of light propagation and magnetization similar to (a). (f) Calculated real
part (solid lines) and imaginary part (dashed lines) of both the diagonal εxx (red) and off-
diagonal εxy (blue) dielectric functions of ferromagnetic bulk CrI3. (g) Kerr angle θK (left,
blue solid) and Kerr ellipticity χK (right, red dashed) for the setup in (e) with infinitely
thick ferromagnetic bulk CrI3. (h) Comparison between Faraday angle θF of a suspended
ferromagnetic monolayer CrI3 and extrapolated bulk value down to the monolayer thickness
(6.6 Å). An 80 meV energy broadening is applied.
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MO signals, due to the interference of reflected lights from multiple interfaces [73]. Such
interference has been accounted for with our three-interface setup in Fig. 8.4a. To analyze
the relation between MO signals and dielectric functions, we also consider a simpler two-
interface setup. For a two-interface setup with semi-infinitely thick SiO2 layer, the Kerr
angle θK (Fig. 8.4d, blue solid curve) is related to Im[εxy] (Fig. 8.4b, blue dashed curve) and
therefore resonant with the exciton excitation energies; the Kerr ellipticity χK (Fig. 8.4d, red
dashed curve), on the other hand, is proportional to Re[εxy] (Fig. 8.4b, blue solid curve). For
a two-interface model, θK is also found to be proportional to n0/(n2

2 − n2
0), where n0 (n2) is

the refractive index for the upper (lower) semi-infinitely thick medium. Moreover, θK and χK
are connected through an approximate Kramers-Krönig relation, as expected from previous
works [118, 253]. Because of this, close attention should be paid in interpreting MOKE
experiments on 2D ferromagnets, where the substrate configuration significantly changes the
behavior of the MOKE signals. The existing experimental data of θK, however, only have a
few excitation frequencies of photons available, e.g., 5 ± 2 mrad at 1.96 eV for HeNe laser
[73]. As shown in Fig. 8.4c, our simulations with a 285 nm SiO2 layer in the three-interface
setup achieve the same order of magnitude for θK around the MO resonance at ∼ 1.85
eV, in good agreement with experiment. Based on the simulations, we also predict a sign
change of θK around 1.5 eV. For photon energies higher than the quasiparticle band gap, the
plasmon resonance along with a vanishing εxx will nullify our assumption of continuous waves
[253, 254]. It is also possible to achieve an in-plane ferromagnetic structure with an external
magnetic field [255, 256]. However, due to the broken C3 symmetry therein, we expect
the system to have diminished values of MO signals (in the same polar configurations) but
to remain having excitons with large binding energies, as confirmed by our first-principles
calculations [4].

8.2.4 Effects of quantum confinement
To further understand the effects of quantum confinement in 2D magnets, we compare

the MO properties of ferromagnetic bulk and monolayer CrI3. Interestingly, the calculated
optical properties of bulk CrI3 are also dominated by strongly bound excitons with optical
absorption edge starting from 1.5 eV (in good agreement with experiment [12]), while the
quasiparticle indirect band gap is 1.89 eV and the direct band gap at the Γ point is 2.13 eV [4].
Within a one-interface model of semi-infinitely thick bulk CrI3, θK reaches a magnitude of 60
mrad at the resonances at around 1.7 and 2.0 eV (Fig. 8.4g), proportional to Re[εxy] shown
in Fig. 8.4f. To study the quantum confinement effects, we employ the P-FE setup shown
in Fig. 8.4e, because P-FE in this setup is almost linear with respect to the ferromagnetic
sample thickness and free from the substrate effects. Our calculated magnitude of the specific
Faraday angle (|θF|) of bulk CrI3 is (1.3 ± 0.3) × 103 rad cm−1 at the excitation frequency
of 1.28 eV [4], in agreement with the experimental value of 1.9× 103 rad cm−1 at the same
excitation frequency [257]. By extrapolating the bulk θF to the monolayer thickness [140],
and comparing with that of suspended ferromagnetic monolayer CrI3 as shown in Fig. 8.4h,
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we find that quantum confinement significantly enhances the MO responses by a factor of
2.5 near 2.0 eV and introduces a redshift of 0.2 eV.

8.3 Conclusion
In summary, from our first-principles GW and GW -BSE calculations, we discover that

the optical and MO properties of ferromagnetic monolayer CrI3 are dominated by strongly
bound excitons of charge-transfer or Wannier characters. A systematic modeling framework
for P-MOKE and P-FE experiments is also developed, where we have shown that the MO sig-
nals exhibit a sensitive dependence on photon frequency and substrate configuration. These
findings of the exciton physics in 2D magnets should shed light on design principles for future
MO and optoelectronic devices, such as photo-spin-voltaic devices [258] and spin-injecting
electroluminescence [259, 260]. As a prototypical monolayer Ising magnetic insulator with
a band gap in an easily accessible optical range, ferromagnetic monolayer CrI3 is also ex-
pected to be useful in high-speed and high-density flexible MO drives using van der Waals
homostructures or heterostructures [255, 261].
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Appendix A

Fourier transforms

For functions with one argument like the vector potential A(r, t), the following conven-
tions of time and space Fourier transforms are adopted,

A(r, t) = 1
2π

∫ ∞
−∞

dω e−iωtA(r, ω), (A.1)

A(r, ω) =
∫ ∞
−∞

dt eiωtA(r, t), (A.2)

A(r, ω) = 1
NqΩ

∑
qG

ei(q+G)·rAG(q, ω), (A.3)

AG(q, ω) =
∫

dr e−i(q+G)·rA(r, ω). (A.4)

For two-argument functions like the screened Coulomb interaction W (r1, r2; t1 − t2), time
Fourier transforms are given by,

W (r1, r2; t1 − t2) = 1
2π

∫ ∞
−∞

dω e−iω(t1−t2)W (r1, r2;ω), (A.5)

W (r1, r2;ω) =
∫ ∞
−∞

d(t1 − t2) eiω(t1−t2)W (r1, r2; t1 − t2). (A.6)

And space Fourier transforms of W are given by,

W (r1, r2;ω) = 1
NqΩ

∑
qq′GG′

ei(q+G)·r1e−i(q
′+G′)·r2W (q +G, q′ +G′;ω), (A.7)

W (q +G, q′ +G′;ω) = 1
NqΩ

∫
dr1dr2 e

−i(q+G)·r1ei(q
′+G′)·r2W (r1, r2;ω). (A.8)

Based on the translational symmetry of crystals, we have a selection rule for W ,

W (q +G, q′ +G′;ω) = δqq′WGG′(q;ω). (A.9)
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Appendix B

Paramagnetic and diamagnetic
currents

The continuity equation for a system of interacting and identical electrons under the
influence of an external time-dependent electromagnetic field is given in the Heisenberg
picture,

d
dt n̂e(r, t) = −∂α

{∑
σ

[
−i~
2me

(
ψ̂†(∂αψ̂)− (∂αψ̂†)ψ̂

)
− qe
me

Aαψ̂
†ψ̂

]}
. (B.1)

Based on Eq. (B.1), we define the paramagnetic particle current density operator ĵp(r) in
the Schrödinger picture as,

ĵp(r) ≡
∑
σ

−i~
2me

[
ψ̂†(x)(∇ψ̂(x))− (∇ψ̂†(x))ψ̂(x)

]
. (B.2)

The diamagnetic particle current density operator ĵd(r, t) is defined as,

ĵd(r, t) ≡ − qe
me

A(r, t)n̂e(r). (B.3)
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Appendix C

Relation between time-ordered and
retarded correlation functions

For a general pair of Hermitian bosonic operators Â and B̂, the time-ordered and retarded
correlation functions are defined as,

CT
AB(12) ≡

(
− i
~

) 〈Ψ0|T [Â′(1)B̂′(2)]|Ψ0〉
〈Ψ0|Ψ0〉

, (C.1)

CR
AB(12) ≡

(
− i
~

)
Θ(t1 − t2)〈Ψ0|[Â′(1), B̂′(2)]|Ψ0〉

〈Ψ0|Ψ0〉
, (C.2)

where Â′ and B̂′ are the deviation operators of Â and B̂, respectively. The Lehmann repre-
sentations of correlation functions in Eqs. (C.1) and (C.2) are given by,

CT
AB(x1,x2;ω) =

∑
S

[
AS(x1)B∗S(x2)

~ω + E0 − Es + iη
− A∗S(x1)BS(x2)

~ω + Es − E0 − iη

]
, (C.3)

CR
AB(x1,x2;ω) =

∑
S

[
AS(x1)B∗S(x2)

~ω + E0 − Es + iη
− A∗S(x1)BS(x2)

~ω + Es − E0 + iη

]
, (C.4)

where η → 0+, S denotes an excited state, and AS(x) ≡ 〈Ψ0|Â′(x)|ΨS〉. For retarded
correlation functions, we have,

CR
AB(x1,x2;−ω) = (CR

AB(x1,x2;ω))∗, (C.5)
which implies that its real part is an even function and its imaginary part an odd function
of ω. For time-ordered correlation functions, we have,

CT
AB(x1,x2;−ω) = CT

BA(x2,x1;ω). (C.6)
The retarded and time-ordered correlation functions are related via the following relation,

CR
AB(x1,x2;ω) = CT

AB(x1,x2;ω), ω > 0. (C.7)
Therefore, one can calculate CT

AB(x1,x2;ω) and then obtain CR
AB(x1,x2;ω) through Eqs.

(C.5) and (C.7).
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Appendix D

Ward identities

The Ward identities are derived from the gauge invariance of the theory. They are exact
relations for any two-particle correlation function that satisfy the conserving approximation
[43, 45, 47]. Detailed derivation can be found in Ref. [45]. Here we only present simplified
Ward identities where the L’s have been converted to χ’s. Note that all the variables are in
the reciprocal space and frequency domain:

ωχG1G2 = −→χG1G2 · (q +G2) = (q +G1) · ←−χG1G2 , (D.1)
ω←−χG1G2 = ←→χ G1G2 · (q +G2), (D.2)
ω−→χG1G2 = (q +G1) · ←→χ G1G2 . (D.3)
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Appendix E

Bloch-wave representation

In practice, it is very helpful to use the Bloch-wave representation instead of the coordi-
nate representation for the single-particle Green’s function G and the two-particle correla-
tion function L. For Green’s function in the frequency domain, the transforms between the
Bloch-wave representation and the coordinate representation are given by,

G(x1,x1;ω) =
∑
λµ

φλ(x1)φ∗µ(x2)Gλµ(ω), (E.1)

and
Gλµ(ω) =

∫
dx1dx2 φ

∗
λ(x1)φµ(x2)G(x1,x2;ω). (E.2)

As for L(x1,x
′
1;x2,x

′
2;ω), we have,

L(x1,x
′
1;x2,x

′
2;ω) =

∑
λµ;αβ

φλ(x1)φ∗µ(x′1)φα(x2)φ∗β(x′2)Lλµ;αβ(ω), (E.3)

and

Lλµ;αβ(ω) =
∫

dx1dx′1dx2dx′2 φ∗λ(x1)φµ(x′1)φ∗α(x2)φβ(x′2)L(x1,x
′
1;x2,x

′
2;ω). (E.4)
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Appendix F

Kramers’ theorem

According to Kramers’ theorem [262], when the system has time-reversal symmetry (no
external magnetic fields and no intrinsic magnetization), the band energies at k and −k are
related by,

εnkσ = εn(−k)(−σ). (F.1)

Furthermore, if the crystal is centrosymmetric (i.e., with spatial inversion symmetry), we
have εnkσ = εn(−k)σ. Combined with the Kramers’ degeneracy in the case of time-reversal
symmetry, we get εnkσ = εnk(−σ), which means the spin degeneracy still holds when the
system has both spatial inversion symmetry and time-reversal symmetry [8].
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Appendix G

Dielectric function tensor with C3
symmetry

Here we derive the shape of the dielectric function tensor in a material with C3 symmetry
with the rotational axis along the z direction. Let’s focus on the xy-components of ε,

ε =
(
εxx εxy
εyx εyy

)
. (G.1)

The C3 symmetry is given by the SO(2) rotational matrix,

D(C3) =
(
−1

2 −
√

3
2√

3
2 −1

2

)
. (G.2)

If we rotate the crystal with C3, the dielectric tensor will transform as,

ε̃ = D(C3) · ε ·D−1(C3)

= 1
4

(
εxx +

√
3(εxy + εyx) + 3εyy −

√
3εxx + εxy − 3εyx +

√
3εyy

−
√

3εxx − 3εxy + εyx +
√

3εyy 3εxx −
√

3(εxy + εyx) + εyy

)
≡ ε.

(G.3)

Compare each entry of Eq. (G.1) and Eq. (G.3), and we will get the following relations,

εxx = εyy,

εyx = −εxy.
(G.4)
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Appendix H

Absorbance and transmittance of 2D
materials

In this section, we derive the expression of optical absorbance and transmittance through
an infinitely large 2D material with thickness d. Suppose a beam of monochromatic (with
frequency ω) plane-wave light is shined on the material as a normal mode and at normal
incidence, as shown in Fig. H.1. The corresponding frequency-dependent refractive index
n(ω) of the 2D material is related to the relative dielectric function ε(ω) for the normal mode
via n2(ω) = ε(ω). The magnetic permeability is assumed to be equal to that of the vacuum,
i.e., µ = µ0. Since d is very small, we assume that the charge current density J is uniform
within the 2D material on a macroscopic scale. Apply the Maxwell’s equations in this setup,
and we get the following boundary conditions for amplitudes of the incident, reflected, and
transmitted fields,

E i − Er − Et = 0, (H.1)
Bi +Br −Bt = µ0Jd. (H.2)

All the fields in Eqs. (H.1) and (H.2) refer to the macroscopic Fourier component at frequency
ω with G = 0 and q → 0. According to the Ohm’s law, we have

J = σEt, (H.3)

where the frequency-dependent conductivity σ(ω) is related to the imaginary part of the
relative dielectric function ε2(ω) through the following relation,

σ(ω) = ωε0ε2(ω). (H.4)

In addition, the electric fields and magnetic fields in a plane-wave solution of electromagnetic
waves in vacuum satisfy the following conditions,

Bi = E i/c, (H.5)
Br = Er/c, (H.6)
Bt = Et/c. (H.7)
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After combining Eqs. (H.1)–(H.7), we get the ratio between Et and E i as,

Et

E i = 1
1 + ε2ωd

2c
. (H.8)

where c is the speed of light and it satisfies, c2 = 1
ε0µ0

. The transmittance T can then be
calculated as,

T ≡
∣∣∣∣∣Et

E i

∣∣∣∣∣
2

= 1(
1 + ε2ωd

2c

)2 = 1
(1 + A0/2)2 , A0 = ε2ωd

c
. (H.9)

And the absorbance A is given by,

A ≡ 1− T = A0(1 + A0/4)
(1 + A0/2)2 . (H.10)

Usually A0 � 1 for 2D materials within the optical range of the electromagnetic spectrum,
and we can use the following approximate expressions of T and A,

T ≈ 1− A0, (H.11)
A ≈ A0. (H.12)
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Figure H.1: Absorbance and transmittance of a 2D material. The green rectangle denotes
the infinitely large 2D material with thickness d. The space above and below the 2D material
are vacuum. Propagation directions of incident, reflected, and transmitted lights are denoted
by the red arrows. Electric fields are denoted by the blue arrows, of which the direction is
the positive direction for each. The positive direction of all the magnetic fields points into
the page. The charge current density J is assumed to be uniform within the 2D material
and denoted by the yellow arrow.
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