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Abstract 
Research into human thermal perception indoors has focused on ‘neutrality’ under 

steady-state conditions. Recent interest in thermal alliesthesia has highlighted the 

hedonic dimension of our thermal world that has been largely overlooked by science. 

Here, we show the activity of sensory neurons can predict thermal pleasure under 

dynamic exposures. A numerical model of cutaneous thermoreceptors was applied to 

skin temperature measurements from 12 human subjects. A random forest model 

trained on simulated thermoreceptor impulses could classify pleasure responses (F1-

score of 67%) with low false positives/negatives (4%). Accuracy increased (83%) when 

excluding the few extreme (dis)pleasure responses. Validation on an independent 

dataset confirmed model reliability. This is the first empirical demonstration of the 

relationship between thermoreceptors and pleasure arising from thermal stimuli. 

Insights into the neurophysiology of thermal perception can enhance the experience of 

built environments through designs that promote sensory excitation instead of 

neutrality. 

Practical implications 
• Pleasure experienced during changes in temperature can be predicted using

machine learning and simulated activity of receptors in the skin
• This knowledge could inform a tool for architects on engineers to design

buildings and spaces that elicit thermal pleasure responses
• Represents a paradigm shift in understanding and modeling of human thermal

perception in dynamic environments

Indoor Air, May 2021 1 https://doi.org/10.1111/ina.12859 
https://escholarship.org/uc/item/1xd8n2t0



Graphical Abstract 

Indoor Air, May 2021 2 https://doi.org/10.1111/ina.12859 
https://escholarship.org/uc/item/1xd8n2t0



Introduction 

Attempts to understand thermal perception in dynamic environments (Arens et al., 

2006b; Chun, Kwok, & Tamura, 2004; Jones, 2002; Van Hoof, 2008; Zhang et al., 

2010a,b,c,) indicate that popular steady-state heat-balance models such as the predicted 

mean vote (Fanger, 1970) are inappropriate for predictions of sensation or comfort. 

Zhang et al. (2003, 2010b, 2010c) and de Dear (2011) proposed alliesthesia as a 

theoretical framework capable of describing perceptual processes in non-steady-state 

exposures. Based on the ground-breaking work by Cabanac (1971), alliesthesia 

describes the psychophysiological phenomenon of pleasure arising from stimuli that 

play a corrective role within a regulated system. In the context of thermal comfort, 

examples include suddenly elevated air movement for a warm occupant or providing 

radiant heating for a currently cool occupant. A more detailed description of alliesthesia 

in built environments can be found in Parkinson & de Dear (2015). Subsequent work 

(Parkinson et al., 2016) demonstrated that pleasure responses can occur within the 

thermoneutral zone and appear to be driven largely by changing skin temperatures. This 

was reinforced by latter works (Parkinson & de Dear, 2016b, 2017) showing that 

pleasure responses follow a particular psychophysiological pattern that included skin 

temperature change. This empirical evidence, along with suggestions by Cabanac 

(1971, 1979) and de Dear (2011), indicate that efforts to understand thermal alliesthesia 

should closely examine the role of cutaneous thermoreceptors in eliciting pleasure. 

Afferent neurons in the skin, commonly referred to as thermoreceptors, provide the 

functional system for the perception of temperature in humans (Dhaka, et al., 2006; 

Hensel, 1981; Spray, 1986). The somatosensory system relies on thermoreceptors to 

detect changes in ambient temperature over a wide range of conditions (Schepers & 

Ringkamp, 2010). Pioneering electrophysiological studies of various mammals (e.g. 

Dodt & Zotterman, 1952; Darian-Smith & Johnson, 1977; Konietzny & Hensel, 1977; 

Hensel & Kenshalo, 1969; Hensel, Andres, & During, 1974; Hensel & Zotterman, 

1951; Iggo 1969; Kenshalo et al., 1968; Zotterman, 1953) identified structurally and 

functionally distinct warm-sensitive and cold-sensitive neurons. The molecular basis of 

this temperature transduction remains largely unclear, but more recent investigations 

have uncovered subpopulations of temperature sensitive neurons that encode and 

transmit skin temperature over specific temperature ranges (Lumpkin & Caterina, 2007; 
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Patapoutian et al., 2003; Vriens et al., 2014) as shown in Figure 1. 

Figure 1. The static discharge rate of cold and warm thermoreceptors over a range of skin temperatures. 

Modified after Guyton & Hall (2002). 

A comprehensive review of cutaneous thermoreceptors by Hensel (1981) is a 

foundational contribution to our understanding of temperature perception. Much of the 

content has been reviewed in earlier papers on alliesthesia (see de Dear, 2011 and 

Parkinson & de Dear, 2015), but it is worth revisiting some relevant details: 

1) There is a difference in discharge frequency at static temperatures compared to the

heightened response during skin temperature change (Dodt & Zotterman, 1952; Iggo,

1969; Konietzny & Hensel, 1977; Spray, 1986). For example, Figure 2 shows the

discharges from a cold thermoreceptor dramatically increase following sudden cooling

of the skin, but gradually decrease and stabilize once the temperature is static. The

volley of thermoafferents generated during rapid temperature changes allows for better

discrimination of both magnitude and time course than slower drifts (Darian-Smith et

al., 1973; Darian-Smith & Johnson, 1977; Darian-Smith et al., 1979; Dykes, 1975).

2) Cold receptors are located at shallower depths in the skin (0.1-0.2mm) compared to

warm receptors (0.5mm) (Hensel, 1981), although Ivanov et al. (1982) reported finding

subcutaneous cold receptors at depths of 2.0-2.5mm from the surface.

3) Thermoreceptors are ubiquitous in mammalian cutaneous tissue – of the estimated

one million sensory neurons comprising the somatosensory system, 280,000 are

thought to be responsible for temperature transduction (Breipohl, 1986). However, they

are unevenly distributed across body sites, and cold receptor density is greater than that

of warm receptors (Hensel, 1981, Strughold 1931, Rein 1925). Investigations of local

sensation responses have associated receptor densities as the neurophysiological basis

of weighting coefficients for predicting the contribution of skin temperature to
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sudomotor actions and perceptual responses (Cotter & Taylor, 2005; Crawshaw et al., 

1975; Nadel et al., 1973; Zhang et al., 2010a,b,c, Filingeri 2016). 

4) The shallower depth, higher density of receptors, and larger dynamic response lead

to increased activity of cold receptors (Darian-Smith & Johnson, 1977; Dodt &

Zotterman, 1952) during rapid temperature decreases (up to 30 times greater) compared

to warm receptors during rapid temperature increases (up to 5 times greater) (Hensel,

1974).

Figure 2. The dynamic and static response profile of a cold thermoreceptor recorded in a human subject 

during sudden cooling. Modified after Campero et al. (2001). 

Some studies investigated body-region sensitivity to peripheral thermal stimuli by 

applying a small thermode to various body parts (Stevens 1979, Stevens and Choo 

1998, Stevens et al. 1974). Luo et al. (2020) used this method to obtain warm and cool 

sensitivity maps for the entire body. Aside from those local thermal sensitivity analyses, 

researchers also investigated the effect of warming or cooling one body segment to the 

whole-body thermal sensation. Nakamura et al. (2008) asked subjects to evaluate both 

thermal sensation and thermal comfort whilst selectively forcing local skin 

temperatures of four body sites. Although the face generally exhibited the largest 

change in local thermal sensation during local cooling or warming, thermal comfort can 

differ in its response pattern with respect to magnitude and direction. These results align 

with the findings of similar investigations of local thermal comfort (e.g. Arens, Zhang, 

& Huizenga, 2006; Zhang et al., 2010a,b,c), and led the authors to conclude that 

thermoreceptor density alone cannot explain observed regional sensitivity. Other 

efforts to understand the neuronal pathways responsible for thermosensation have 

suggested that higher-order processing by the central nervous system largely influences 

perceptual processes (Darian-Smith & Johnson, 1977; Dykes, 1975; Gybels et al., 1979; 

Johnson et al., 1979; Nakamura & Morrison, 2008; Patapoutian et al., 2003; Schepers 
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& Ringkamp, 2010). As the neural pathways for temperature perception are unclear, 

efforts by thermal comfort researchers to investigate the neurophysiological basis 

should focus attention towards using simplified models of known functional aspects of 

thermoreceptors. 

There are two distinct dimensions of stimulus perception – the objective evaluation 

(magnitude and intensity), and the affective evaluation (quality or valence). Existing 

work has explored the psychophysical connection between the objective dimension of 

environmental stimuli (thermal sensation) and the somatosensory system 

(thermoreceptor activity) by simulating thermoreceptor discharge frequencies in 

nonsteady-state exposures. The first, by de Dear et al. (1993), involved transitioning 

human subjects through temperature step-changes (both up- and down-steps) of 

differing magnitudes while recording immediate impressions of thermal sensation. 

Thermoreceptor impulses were simulated using the numerical model developed by 

Ring & de Dear (1991) based on first principles of heat transfer through human skin. 

The resulting Dynamic Thermal Stimulus (DTS) model of receptor activity showed a 

clear relationship with the observed change in sensation votes immediately following 

temperature step-changes. More recently, Kingma et al. (2012) used observed skin and 

core temperatures from human subjects exposed to ramping ambient conditions as input 

variables to their mathematical model of thermoreceptor discharge rates based on the 

coefficients in Mekjavic & Morrison (1985). The simulated outputs from the 

thermosensation model performed well, with an average root mean square error of only 

0.38 in the prediction of dynamic thermal sensation votes. 

In addition to investigations of thermal sensation and neurophysiology, significant 

attention has been given to exploring how thermoafferent pathways could potentially 

contribute towards the control of body temperature (Boulant, 2006; Ivanov et al., 1986; 

Hammel, 1983; Jessen, 1985; Kingma et al., 2014; Mekjavic & Morrison, 1985; 

Nakamura & Morrison, 2008). All this research interest in the neurophysiological 

mechanisms of thermosensation highlights the potential of this exciting field of 

knowledge to contribute towards our understanding of thermal comfort and perception 

in dynamic environments. Yet our review of extant literature found no published work 

attempting to connect functional aspects of neurophysiology to the affective dimension 

of thermal perception. Despite phenomenological differences between thermal 
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sensation and thermal pleasure, the sensory inputs that form these experiences originate 

from cutaneous thermoreceptors. 

To examine the relationship between sensory neurons and thermal pleasure, we used a 

numerical model to simulate thermoreceptor activity in dynamic environments. 

Simulations were based on human skin temperatures measured during climate chamber 

experiments. A random forest model trained on the thermoreceptor activity was 

developed to predict thermal pleasure experienced during temperature changes. We 

validated the model using an independent dataset of psychophysiological 

measurements. 

Methods 

Physiological and psychometric data from an earlier human-subject chamber 

experiment on thermal alliesthesia (Parkinson et al., 2016) was used to train the 

machine learning predictive model. Thirteen volunteers (six women, seven men) 

participated in the study; key anthropometric data is reported in the original paper. Our 

focus for this study was on warm exposures (warm displeasure with a cool corrective 

change). We used data from a subsequent experiment to test the predictive skill of the 

model on an independent dataset with different environmental conditions and subjects. 

Thermoreceptor Model 

The model of heat diffusion in cutaneous tissue introduced by Ring & de Dear (1991) 

and refined again by de Dear et al. (1993) and Ring et al. (1993) was used to simulate 

thermoreceptor activity. This numerical model presents human skin as a slab consisting 

of 36 layers with one-dimensional heat transfer (see figure 3). Each layer is considered 

with its own thermal properties (capacity, conductivity); further details are given in 

Ring & de Dear (1991). The boundary layers in direct contact with the skin slab are 

defined as the subcutaneous tissue (layer 0) and the skin surface (layer 36). 

Thermoreceptors are ‘implanted’ into the layers relative to their approximate depth in 

the skin; a cold receptor sits two layers below the skin surface in layer 34, and the warm 

receptor in layer 32. Both the dynamic and static thermoreceptor discharge rates are 

calculated based on empirically derived thermal sensitivity coefficients from Hensel 

(1981). 
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Figure 3. Graphical representation of the thermoreceptor model modified after de Dear et al. (1993). 

Heat flows through each of the skin layers. The location of the cold and warm receptors in the skin slab 

are shown in layer 34 and 32 respectively. Formulae give the coefficients for the static and dynamic 

receptor responses. 

Changes to the way the thermoreceptor model defines the boundary layer conditions 

were made during the rewrite of the model from Fortran to C++ to adapt it to the current 

investigation. Rather than assuming a constant temperature for layer 0, the ability to 

read-in values for each time step was added to allow for a closer temperature 

approximation of the subcutaneous layer. This is particularly relevant when calculating 

heat transfer through the skin of distal sites in which the subcutaneous tissue has been 

cooled by heat losses through arterial and skin blood flows. Similarly, the option to 

read-in observed skin temperature for layer 36 was included, eliminating the need to 

consider clothing layers and the microclimatic boundary in the heat transfer 

calculations. Using observed skin temperature directly is advantageous as it implicitly 

considers convective, conductive, radiative and evaporative heat loss. Furthermore, this 

process should be straightforward to implement in detailed thermophysiological models 

with some modification. 
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Dataset for Model Development 

The laboratory experiments in Parkinson et al. (2016) included sequenced 

environmental temperature step-changes and ramps designed to elicit particular 

alliesthesia responses. A fan was placed behind the 12 subjects (wearing light clothing 

ensembles of 0.31 clo) to provide elevated air movement (0.5m/s) during ramping 

temperatures in the warm exposure (from minute 10, t10). Ten subjects chose to initiate 

the fan. Data from two temperature down-steps - one more mild (t40) and the other 

following exercising in a warm room (t125) - were used to train the model for stronger 

(dis)pleasure responses. 

Skin temperature from 12 sites across the body (Hardy & duBois, 1938) were the 

physiological inputs to the thermoreceptor model. An additional skin temperature 

measurement on the back of the neck was included as an unclothed site being directly 

forced by the targeted air movement. Linear interpolation of skin temperature records 

increased the temporal resolution from 0.2 Hz to 1 Hz to limit the square wave response 

of the model caused by changes in temperature over each time step. For the purposes 

of this analysis, the temperature of the subcutaneous layer was fixed at 36°C for 

proximal body segments (forehead, shoulder blade, lower back, chest, abdomen, upper 

arm, thigh) and 35°C for distal sites (forearm, hand, calf, foot) as a rudimentary 

consideration of the insulative effect of muscle and fat tissue, and additional heat loss 

from skin blood flow and counter-current heat exchange. 

Thermoreceptor impulses at each local body site were simulated at 20Hz to get both 

the steady-state and dynamic responses of cold and warm receptors. Simulated receptor 

activity was summed to get the cumulative impulse count over one-minute periods to 

match the frequency of thermal pleasures responses. When combining receptor activity 

across body sites (e.g. calculating total impulse rates across all sites) we used an 

unweighted average of the summed impulses based on three considerations: (a) the 

nonlinear response of thermoreceptors would lead to significant errors if a single mean 

(whole-body) skin temperature was used as input for the simulation of thermoreceptor 

activity (Kingma et al., 2012) (b) there is currently no 12-point perceptual weighting 

scheme for local body sites, and (c) that sensitivity alone does not explain regional 

contributions to overall thermal perception (Nakamura et al., 2008). All receptor 

impulse counts were scaled and centered per-subject. This resulted in 52 input 

Indoor Air, May 2021 9 https://doi.org/10.1111/ina.12859 
https://escholarship.org/uc/item/1xd8n2t0



parameters to train the alliesthesia model – four simulated thermoreceptor impulse rates 

for 13 body sites – for model development. 

Figure 4. Timeseries data from Parkinson et al. (2016) for room air temperature (top; first) mean skin 

temperature (second), cumulative receptor impulses per minute for all body sites (third), and thermal 

pleasure votes (fourth; bottom). Pleasure votes were cast every minute on a 7-point Likert scale, ranging 

from +3 (very pleasant) to 0 (indifferent) to -3 (very unpleasant). Data from individual subjects (faint) 

and the group (solid) are shown. Red lines show the total cumulative warm receptor impulses and the 

blue lines show the cold receptors. Slight changes in skin temperature before transitions are due to 

changes in posture and movements when preparing to enter and exit the test chamber. 

Timeseries data in Figure 4 show skin temperature responding to changes in ambient 

temperature, and these changes are mirrored in the associated thermoreceptor response. 

The dynamic response to sudden temperature changes is evident in the cold receptor 

activity at t40 and t125 following the temperature down-steps. Mean thermal pleasure 

also reflects thermoreceptor impulses, with increasing displeasure as warm receptor 
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impulses increase and pleasure occurring during spikes of cold receptor activity 

following temperature step-changes.  

Dataset for Model Validation 

We used an independent dataset from different subjects (n = 22) and distinct protocol 

of dynamic exposures to validate the alliesthesia model. This independent dataset is 

from a laboratory study investigating thermal pleasure responses to elevated air speeds 

(both cooled and ambient temperature) targeting the face and back of the neck in a 

warm environment (26°C) after exercises; see supplementary material for a data 

summary. Skin temperature was measured on the forehead, cheek, front of the neck, 

back of the neck, and the hand using thermocouples. We used the same method of 

simulating and processing thermoreceptor impulse rates to build the validation dataset 

as was used for the model development dataset. 

Machine Learning Alliesthesia Model 

There were a total of 1260 records of simulated thermoreceptor impulses and associated 

thermal pleasure votes. We tested several different model development techniques, 

ranging from simple linear regression through to supervised machine learning including 

support vector machine and gradient boosting algorithms. We decided to use the 

‘RandomForest’ implementation of the random forest classifier (Liaw & Wiener, 2002) 

to explore different models, and a random forest regression model for final testing and 

validation. The random forest algorithm was chosen for performance and the 

availability of methods to develop interpretable machine learning models for explaining 

black box systems. We tested different hyperparameters to decide to limit models to 

100 trees to balance accuracy and model complexity. Data was partitioned into training 

(80%) and testing (20%) datasets, and 10-fold 3-repeat cross validation was used to 

ensure robust and reliable results.  

Data Analysis Software 

We used R (version 3.5.0) and RStudio IDE (version 1.2.5033) for all analyses, along 

with the following packages: tidyverse (Wickham et al., 2019), caret (Kuhn, 2020, 

version 6.0-86), yardstick (Kuhn & Vaughan, version 0.0.6), ggpubr (Kassambara, 

2020, version 0.2.5), pdp (Greenwell, 2017), and ggridges (Wilke, 2020, version 0.5.2). 
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Results 
Simulated thermoreceptor impulses 

A summary of thermal pleasures votes and simulated thermoreceptor impulses is shown 

in Figure 5. The model development dataset had more negative than positive pleasure 

votes, with the majority of responses ranging between slightly unpleasant (-1) and 

slightly pleasant (+1). The distribution of thermoreceptor impulses shows the 

predominant activity is the static response from the warm receptors. There was more 

warm receptor activity when subjects were experiencing displeasure and more cold 

receptor activity when experiencing pleasure. This is expected given the exposures 

were designed to create warm displeasure followed by a pleasant, cool corrective 

change.  

Figure 5. Summary data for thermal pleasure votes (left) and receptor impulses (right) for the model 

development dataset. Pleasure votes are separated by valence (red is negative; green is positive). The 

distribution of receptor impulses is shown by type (warm/cold; dynamic/static) and separated based on 

the valence of the contemporaneous pleasure response. The white line indicates the median. 

We used k-means clustering to group thermal pleasure votes to test for differences in 

the responses between the 12 subjects. Figure 6 shows two distinct trends in thermal 

pleasure votes. Age, gender, and BMI were considered as the basis of cluster 

membership, but the most important factor was subjects’ response to a general thermal 

preference question (“do you prefer warmer or cooler temperatures on average”). The 

‘Cool Preference Cluster’ was comprised of 4 subjects and the ‘Warm Preference 

Cluster’ had 6 subjects. Two subjects who responded with ‘neither’ were in the warm 
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preference cluster based on the k-means analysis. Clustered subjects with a cool 

preference had a lower mean pleasure vote when in the warmer rooms than the warm 

preference subjects but responded positively to the cold step-changes (t40 and t125) 

and maintained pleasure throughout the cold room exposure (t125 – t160).  

Figure 6. Timeseries of thermal pleasure votes separated by cluster membership. The cluster in the top 

panel are subjects with a preference for cooler temperatures and the bottom a preference for warmer 

temperatures. 

A psychological parameter (general thermal preference) seemed to delineate cluster 

membership, and we wanted to explore physiological differences between these groups. 

Figure 7 shows statistically significant differences in thermoreceptor response between 

the two clusters for some of the room exposures in the experimental sequence. Warm 

receptor impulses were significantly higher for the cool preference cluster in the second 

(warm room with fan) and third (neutral) exposures in the sequence, and significantly 

lower in the final cool room exposure. Given the thermoreceptor model’s reliance on 

skin temperature input, this result suggests potential neurophysiological differences 

between subjects that shape their thermal perception.  
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Figure 7. Box plot of warm thermoreceptor and cold thermoreceptor impulses for the different room 

exposures. Subjects were grouped by cool (blue) and warm (red) preference as determined by k-means 

clustering. T-test significance is shown inset where differences were found (** <= 0.01, *** <= 0.001, 

**** <= 0.0001). 

Model Development 

We tested and compared the performance of four random forest classification models 

in predicting alliesthesia. All models used simulated thermoreceptor impulses to 

perform multi-class classification into the 7-point thermal pleasure scale. We simplified 

the features (inputs) across the four models while attempting to balance overall 

accuracy. A summary of model performance is shown in Figure 8. 

The ‘Full Model’ was the most complex, using all 52 features (the dynamic/static 

response of warm/cold receptors for 13 body sites) to predict thermal pleasure. It had 

the highest accuracy and was able to correctly classify 87% of mid-range pleasure 

responses. In almost all cases the predicted pleasure was ±1 vote from the observed, 

and only ~4% of responses were false negatives/positives. However, the feature 

importance of the model did not provide much logical inference for understanding 

alliesthesia. While the F1 score was acceptably high (72%), there was significant 

multicollinearity between the thermoreceptor response type (static/dynamic) and body 

sites (see Figure s2). Principal component analysis (PCA) found that eight components 

could explain 74% of the variance in the 52 features. 
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Figure 8. Performance of different random forest models in predicting thermal pleasure. Confusion 

matrices (left side) show the classification of predicted (x-axis) and observed pleasure (y-axis). Cell 

percentages represent the share of the total sample. Red squares are used to mark areas of false negatives 

and false positives. F1 Score shows the overall model performance, and we dropped the 4% of very 
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(un)pleasant responses to recalculate the ‘Mid-range Accuracy’ for responses ranging from unpleasant 

(-2) through to pleasant (+2). Feature importance (right side) ranks input parameters based on their 

overall contribution to model predictions. Importance is split according to the contribution to pleasure 

(green) and displeasure (red) responses. Coding is used to distinguish warm (w) and cold (c) receptors 

and their static (s) and dynamic (d) responses. 

The PCA coordinates of the eight components have limited practical use but did 

demonstrate the need for dimension reduction. We focused on the theoretical 

framework of alliesthesia that posits pleasure as driven by the whole-body (load error) 

and local (corrective change) states. Correlation analysis (see Figure s2 for full 

correlation matrix) found that receptor activity at the chest was highly correlated with 

total warm impulses (dynamic = 0.70, static = 0.88) and the shoulder with total cold 

impulses (dynamic = 0.91, static = 0.94). The importance of cold thermoreceptors at 

the shoulder is explained by the positioning of the fan behind subjects. Using the 

simulated thermoreceptor activity from these two sites, a parsimonious ‘Rational 

Model’ was set up and was able to achieve accuracy of 67% from only eight features. 

Despite the reduced accuracy, the confusion matrix in Figure 8 shows a mid-range 

accuracy (83%) comparable to the ‘Full Model’ and a negligible increase in false 

positives/negatives. The static response of the warm receptors was the most important 

feature for classifications of both displeasure and pleasure. The experiment protocol 

offers insight into these results; this will be discussed in a later section. 

We tested two other models based on the summed receptor impulses for all body sites 

(‘Total Model’) and selecting the site with the maximum impulses from the warm and 

cold receptors (‘Max Model’). There was a drop in the F1 score and mid-range accuracy 

compared to the ‘Full Model’ and ‘Rational Model’, but both were able to reasonably 

predict thermal pleasure responses. Despite fewer correct classification of pleasure 

votes, the valence and general magnitude of the predicted pleasure votes was 

acceptable. The feature importance of the ‘Total Model’ showed that the static 

responses of receptors contributed most to both displeasure and pleasure.  

Model Validation 

With the exception of the ‘Rational Model’, these approaches have the practical 

limitation of depending on an increasing number of measurements of skin temperatures 
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across the body to achieve acceptable performance. This constraint, along with the 

accuracy and feature selection of the tested models, led us to focus on the rational 

approach based on receptor impulses from the shoulder (local) and chest (whole-body). 

The ‘Rational Cluster Model’ uses the receptor activity from the shoulder and chest as 

inputs to a random forest regression. It also considers the cluster membership based on 

a two-class thermal preference (cooler, warmer). 

The dataset from Parkinson et al. (2016) was partitioned so that 80% was used for 

training the model and 20% for testing. Figure 9 shows the predicted thermal pleasure 

votes for the testing dataset using the ‘Rational Cluster Model’. There is good 

agreement between the model predictions and the observed thermal pleasure votes, with 

a mean absolute error (MAE) of 0.35 for the cool preference group and 0.51 for the 

warm preference group. Despite the volatility of individual votes, the model is able to 

predict the general trend in mean thermal pleasure as well as the differences between 

subject clusters. It also captures the immediate pleasure responses following the 

temperature step-changes at t40 and t125. The residuals show no clear systematic bias 

in the predictions, with errors likely reflecting inter-individual differences in pleasure. 

This is also evident in that the thermal preference cluster membership ranks fifth in 

feature importance. 

Figure 9. Predicted thermal pleasure of the ‘Rational Cluster Model’ based on chest and shoulder 
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thermoreceptor activity and thermal preference clusters. The top panel shows the predicted (purple) and 

observed (grey) thermal pleasure for the cool (top) and warm (bottom) preference clusters. Bar charts 

below the panels show the residuals. The side panel shows the ranked feature importance of the final 

model.  

While the ‘Rational Cluster Model’ performance on the training dataset is encouraging, 

it is important to test on an independent dataset to determine whether the modelling 

technique is generalizable. We used data from a completely independent human-subject 

laboratory test (see Figure s1 for data summary) and extracted the necessary features 

(inputs) for the ‘Rational Cluster Model’. Skin temperatures at the shoulder and chest 

were not monitored, so we used correlation analysis to determine that the hand was 

most similar to the total warm static response (r = 0.78) and the forehead most similar 

to the total cold dynamic response (r = 0.73) (see Figure s5 for full correlation matrix). 

These two sites were used as inputs in place of the chest and shoulder, respectively. 

Finally, k-means clustering found two distinct groups in the independent dataset based 

on thermal pleasure votes. The same labels from the model training exercise were used 

to assign cool (n = 13) and warm (n = 9) preference clusters.  

Figure 10. Predicted thermal pleasure for the independent dataset using the final alliesthesia model. The 
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top panel shows the timeseries of predicted (purple) and observed (grey) thermal pleasure for the cool 

(top) and warm (bottom) preference clusters. Points show individual votes and solid lines are group 

means. The bottom panel shows the simulated warm thermoreceptor activity of the hand (red) and cold 

thermoreceptor activity of the forehead (blue) during the exposure. Light lines show individual data and 

heavy lines are group means  

The results of the ‘Rational Cluster Model’ validation on the independent dataset are 

shown in Figure 10. Despite using different body sites, the model was able to capture 

the different pleasure responses between groups. There is reasonable agreement 

between the observed and predicted mean thermal pleasure for the front facing fan 

exposures, with a MAE of 0.55 for the cool preference group and 0.33 for the warm 

preference group. However, the model fails to capture the pleasure response during the 

back-facing fan exposures. The mean absolute error for the cool preference group is 

much higher for the back-facing fan cases (1.47). Such a large error is expected because 

the model used simulated receptor activity on the forehead to predict pleasure 

responses, a site which would did not experience cooling from the fan placed behind 

the subject. The error is lower in the warm preference group because the pleasure 

response was more muted. Despite this, the results indicate that a modelling approach 

based on neurophysiology can predict thermal pleasure in dynamic conditions. 

Discussion 

Previous work on alliesthesia (Mower 1976; Parkinson et al., 2016) have indicated that 

pleasure responses appear to be cutaneous in origin, where changes in skin temperature 

with a restorative or corrective effect on body temperature are pleasant. While most 

attempts at modelling thermal perception have traditionally used skin temperature (e.g. 

Zhang et al., 2010a,b,c; Fiala et al., 2001), this study used the simulated activity of 

cutaneous thermoreceptors (Ring and de Dear, 1991).  The advantage of using the 

activity of sensory neurons responsible for temperature transduction is that this is the 

basis of human thermal perception. The model worked well in estimating 

thermoafferent traffic of subjects exposed to dynamic thermal environments, with both 

cold- and warm-receptor responses following logical patterns. The response of 

receptors to sudden temperature changes better represented the rapid perceptual 

processes that were muted in skin temperature trends. 
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The model training dataset had more displeasure responses and greater warm receptor 

activity due to the experimental design. The sequence of exposures in Parkinson et al. 

(2016) were designed to induce warm displeasure followed by a cool corrective change 

either through a temperature step-change or elevated air movement. The distribution of 

receptor activity in Figure 5 shows that displeasure was generally associated with 

higher warm receptor activity, while the cold receptor activity is heightened during 

thermal pleasure. This demonstrates the usefulness of the thermoreceptor model in 

summarizing the thermal experience of subjects. Previous attempts have shown a 

relationship between receptor activity and thermal sensation (de Dear et al., 1993; 

Kingma et al., 2012), and our findings support the validity of the approach for 

predicting pleasure responses in dynamic environments. 

It is beyond the expertise of the thermal comfort research community to validate 

thermoreceptor models, but we believe the absolute measurement of receptor impulses 

is not required to successfully model thermal perception using neurophysiology. 

Indeed, we scaled simulated receptor activity for each subject before training the 

models. Correctly estimating the coefficients in the receptor model is unlikely to yield 

significant improvements in the accuracy of predictions of thermal pleasure given the 

abstraction of our approach e.g. free-floating skin model, simplification of cutaneous 

layers across all body sites, totaling receptor impulses per minute. However, it may be 

useful to apply sensitivity weightings to simulated receptor impulses at different body 

sites to reflect the downstream integration and processing of thermoafferents by the 

central nervous system. Investigations of regional thermosensitivity by Zhang et al. 

(2010b), Cotter and Taylor (2005), Filingeri et al. (2017), and Luo et al. (2020) all offer 

weighting coefficients that could be adopted in future modelling efforts. 

Model feature selection 

A principal aim of this paper is to use machine learning techniques to understand the 

relationship between neurophysiology and thermal pleasure. Comparing different 

modelling approaches and the subsequent feature selections allowed us to shed light on 

the operating mechanics of thermal alliesthesia. It is unsurprising that the most accurate 

model reported in Figure 8 (‘Full Model’) was based on 52 inputs of thermoreceptor 

activity. However, ranked feature importance for that model appeared to be a statistical 

artefact rather than useful inference. We also tested other features (e.g. lagged thermal 
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pleasure vote) that improved model accuracy but were inconsistent with the alliesthesial 

framework. Understanding how these models operate highlights a challenge of using 

machine learning – interpretability. Simpler techniques like linear and logistic 

regression are popular in part because insights are easily extracted from statistical 

outputs. Black-box machine learning methods are powerful predictive tools but often 

lack clear insights.  

The multicollinearity of features reported by correlation and principal component 

analyses (see Figure s2) requires dimension reduction to improve model interpretability 

and avoid overfitting. Overlapping feature importance for warm and cold receptor 

activity in Figure 8 suggests it may be possible to further simplify models by using the 

activity of one receptor type (warm or cold) per body site. The increasing activity of 

one temperature-specialized receptor intrinsically results in decreased activity in the 

other type for the same body site. While the consequences of this relationship for 

numerical modelling appear logical, there is an important difference in pleasure 

response taking place during the rapid increase in one receptor’s activity and the 

simultaneous decrease in activity in the other. Parkinson & de Dear (2016) reported 

two distinct phases in pleasure response over time: marked change in thermal pleasure 

for the first few minutes of the change (onset), and a more gradual shift over time 

depending on the nature of the change and physiological state (tail). It was suggested 

that the rapid perceptual shift during the onset phase is indicative of the dynamic 

receptor response, while the gradual change during the tail period is characteristic of 

the steady-state response. We anticipated the dynamic response of receptors ranking 

highly in feature importance for pleasure predictions, but the static response made a 

greater contribution in all cases. The numerical relationship reflected in the 

simultaneous change in activity between warm and cold receptors may explain this 

result. It is also possible that if the target variable were the change in thermal pleasure 

vote at each time step, then the importance of dynamic responses of thermoreceptors to 

model predictions would rank higher. 

Model performance 

The ‘Rational Cluster Model’ provided an accurate solution to predicting thermal 

(dis)pleasure on a 7-point scale while supporting the general alliesthesia hypothesis. It 

is noteworthy that it reliably predicts trends in pleasure responses for subject pool 

Indoor Air, May 2021 21 https://doi.org/10.1111/ina.12859 
https://escholarship.org/uc/item/1xd8n2t0



exposed to a sequence of environments different from the model training dataset 

(Figure 10). Furthermore, there are no inputs about the exposure type, duration and 

sequence or subject anthropometrics. And simplifying the classification problem to 

three (positive, neutral, or negative pleasure) or even two (positive or negative pleasure) 

classes would likely improve all model performance metrics. 

Using correlation analysis to determine body sites that characterize whole-body state 

and local change (see Figure s2 and s5) was a reliable dimension reduction technique. 

The ‘Rational Cluster Model' was trained using receptor activity at the shoulder and 

chest but accurately predicted pleasure responses in the validation exercise using the 

impulses at the forehead and hand, respectively. While the hand and forehead have been 

identified as important body sites for thermosensitivity (Arens et al., 2006a,b), 

agnosticism to body site suggests that the principal requirement is capturing the 

physiological load-error along with the local corrective stimuli. Indeed, the model 

failed during back-cooling exposures because the stimuli were not reflected in the 

forehead receptor activity. It is likely that any practical implementation of the model 

needs to capture those two components of spatial alliesthesia as a minimum. These 

findings indicate that the pleasure from corrective thermal stimuli at a single body site 

largely shapes the whole-body experience. 

Performance metrics show that simulated receptor activity is a sufficient basis for a 

predictive model of thermal pleasure. Comparison of the trends in pleasure votes and 

receptor activity reveals a relationship between neurophysiology and affective 

responses. In Figure 10, the constant warm receptor activity maintained throughout the 

experiment represents the physiological load-error incurred from prolonged exposure 

to elevated air temperatures (~26°C). The model predicts thermal pleasure votes 

increased at the onset of cooling and are maintained as long as the cooling persists. The 

timing and magnitude of the positive pleasure appear commensurate with the cold 

receptor activity. We anticipate similar relationships between neurophysiology and 

pleasure when modelling analogous exposures of cold displeasure and warm corrective 

pleasure; future work will test the same modelling approach in different dynamic 

thermal environments. 

Model personalization 
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Earlier works on alliesthesia (Arens, Zhang & Huizenga, 2006b; Parkinson et al., 2016) 

have emphasized the importance of inter-individual difference in understanding 

thermal pleasure. This reflects a broader trend with the thermal comfort research 

community to perform analyses of individual comfort as well as group averages (e.g. 

Kim et al., 2018; Wang et al., 2018). This is particularly relevant for alliesthesia 

research because, unlike thermal sensation, thermal pleasure is nonmonotonic within a 

subject sample. The model we presented can accurately predict the mean thermal 

pleasure of the subject group but is less accurate when modelling individuals. The 

importance of thermal preference clusters in Figure 9 demonstrates the need to include 

inter-individual differences through variables we have yet to identify that capture and 

encode measures of personalization.  

The cluster membership determined by k-means cluster was assumed to relate to 

thermal preference. It is possible that other psychological or anthropometric parameters 

better explain the differences in thermal pleasure votes between the two clusters. 

However, in our results, including both gender and thermal preference did not improve 

model accuracy beyond that achieved using thermal preference alone. It is difficult to 

determine the precise reason for cluster membership, but our preliminary analysis in 

Figure 7 indicates there may be a neurophysiological basis for reported differences. 

This may be a promising avenue for research into the psychophysiological basis of 

thermal preference. 

Model applications 

This work was a fundamental investigation of thermal perception in dynamic 

environments. However, we see several real-world applications for the findings. They 

may provide a research framework to explore the cellular, neurological, psychological, 

and physiological mechanisms of alliesthesia. The determination of the fundamental 

underlying mechanism would allow it to be accurately measured or proxy effects to be 

identified that would enable more accurate and customizable models.  Our model 

predictions are based on skin temperature measurements from only two body sites. This 

is significantly fewer inputs than traditional heat balance models of comfort require, 

but acquiring the requisite physiological data presents unique challenges. In many cases 

it would be difficult to determine a priori the two body sites that reflect the local and 

whole-body experience. Some environments such as vehicular cabins make these 
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assumptions more valid because the position of the occupant relative to possible 

thermal stimuli can be reliably estimated. In such cases, contactless measurement of 

skin temperature by infrared cameras (Ghahramani et al., 2018) could generate the 

necessary data. For many indoor environments, skin temperatures could be estimated 

using multi-node thermophysiological models (e.g. Huizenga et al., 2001; Kobayashi 

& Tanabe, 2013). It is possible to directly integrate machine learning algorithms with 

these advanced comfort models for real-time predictions of occupant pleasure 

experienced under any architectural solution. Such a tool would mark a paradigm shift 

by empowering architects to purposefully design thermal textures within indoor 

environments, thereby deprioritizing the heavily conditioned spaces promoted by 

traditional heat-balance comfort models. 

Limitations 

Our aim was to encourage the uptake of the alliesthesia hypothesis by developing a 

‘proof-of-concept’ model to highlight a potential avenue for further research efforts. 

The lack of intensive and potentially invasive thermophysiological factors limit the 

application to relying on assumptions for subcutaneous temperature values and receptor 

coefficients. Although the feature importance and model performance metrics are 

useful, they are only applicable to these datasets. In addition, the sample size and the 

subject pool used for model training is small for machine learning applications and 

limits the generalizability. It is also unbalanced, with a majority of pleasure votes within 

the range between slightly unpleasant (-1) and slightly pleasant (+1) with few strong 

(dis)pleasure votes.  Future efforts will focus on using a more balanced, diverse and 

comprehensive set of psychophysiological data to train a robust model. 

Conclusions 

This is the first study to demonstrate the use of neurophysiological parameters to predict 

thermal pleasure. We used simulated thermoreceptor activity across several body sites 

to build a random forest model to predict thermal pleasure during temperature step-

changes, ramps, and asymmetrical exposures. Comparison of different approaches to 

feature selection and model development provided insight into the operating 

characteristics of alliesthesia. The first finding is that simulated thermoreceptor activity 

captures the fast response of the somatosensory system to changes in the thermal 

environment. This suggests that neurophysiological variables are more suitable than 
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skin temperature for modelling thermal pleasure in dynamic conditions. Second, 

decision trees (random forest) are a promising approach for the development of a 

predictive model of alliesthesia. Interpretation of such models is a key challenge, but 

our analysis suggests that estimates of pleasure votes are derived in a way consistent 

with alliesthesia theory. Third, our approach relied on only two body sites that reflected 

the whole-body state and the local corrective change. This further supports the spatial 

alliesthesia concept and simplifies the necessary inputs for predicting thermal pleasure. 

Lastly, parameters that capture inter-individual differences are necessary to improve 

the accuracy of estimates of thermal pleasure. Further work is needed to identify those 

personalization variables that actively shape individual thermal perception.  

The findings we presented here demonstrate that thermal pleasure can be modelled in 

a manner consistent with alliesthesia theory. This marks an exciting paradigm shift in 

understanding thermal perception in dynamic environments. It is hoped that this will 

serve as a useful reference for future efforts to explore and model alliesthesia in the 

built environment.  
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Supplementary Material 

Figure s1. The independent dataset of mean skin temperature (top), receptor impulses (middle), and 

thermal pleasure votes (bottom) used for model validation. Data from individual subjects (faint) and the 

group (heavy) are shown. Red lines show the total summed warm thermoreceptor impulses and the blue 

lines show the cold thermoreceptor across all body sites. 
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Figure s2. Correlation matrix showing the relationship between all 52 simulated thermoreceptor impulse 

rates that were used in the total alliesthesia model. Correlations are based on Pearson’s coefficient, with 

positive correlations in orange and negative correlations in blue. Items are arranged by the angular order 

of eigenvectors. 

Indoor Air, May 2021 33 https://doi.org/10.1111/ina.12859 
https://escholarship.org/uc/item/1xd8n2t0



Figure s3. A single classification tree extracted from the random forest model. This example is the 

shortest of the 100 trees generated by the random forest algorithm. Feature nodes are labelled along with 

the predicted pleasure class.  

Figure s4. Partial dependence plot for the final model showing the relationship between the static 

response of the warm thermoreceptor at the chest (left) and the dynamic response of the cold 

thermoreceptor at the shoulder (right) on the predicted thermal pleasure. 
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Figure s5. Correlation matrix showing the relationship between simulated thermoreceptor impulse rates 

for the independent dataset used for model validation. Correlations are based on Pearson’s coefficient, 

with positive correlations in blue and negative correlations in red. Coefficients are given for each 

combination of inputs arranged alphabetically. 
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