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GRADED TWISTED CALABI-YAU ALGEBRAS ARE

GENERALIZED ARTIN-SCHELTER REGULAR

MANUEL L. REYES AND DANIEL ROGALSKI

Abstract. This is a general study of twisted Calabi-Yau algebras that are
N-graded and locally finite-dimensional, with the following major results. We
prove that a locally finite graded algebra is twisted Calabi-Yau if and only if it
is separable modulo its graded radical and satisfies one of several suitable gen-
eralizations of the Artin-Schelter regularity property, adapted from the work
of Martinez-Villa as well as Minamoto and Mori. We characterize twisted
Calabi-Yau algebras of dimension 0 as separable k-algebras, and we similarly
characterize graded twisted Calabi-Yau algebras of dimension 1 as tensor alge-
bras of certain invertible bimodules over separable algebras. Finally, we prove
that a graded twisted Calabi-Yau algebra of dimension 2 is noetherian if and
only if it has finite GK dimension.
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1. Introduction

Throughout this paper we let k denote a field, on which we place no further
assumptions. By a graded ring we always mean an N-graded ring A =

⊕∞
n=0An. A

graded k-algebra A is locally finite if each An is a finite-dimensional k-vector space,
and it is connected if A0 = k.
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2 MANUEL L. REYES AND DANIEL ROGALSKI

A familiar theme in noncommutative algebraic geometry is to identify a class of
noncommutative algebras that are well-behaved for geometrically motivated rea-
sons. One of the most famous such classes is that of Artin-Schelter regular alge-
bras [2], which are connected graded algebras with suitably nice projective reso-
lutions of k = A/A≥1 as a left and right A-module. This class is known to in-
clude all connected graded Auslander-regular algebras [27], and thus includes many
quantum groups and related quantized algebras [9, I.15]. Another class of (not
necessarily graded) algebras that has rapidly come to the forefront of such study
is that of Calabi-Yau algebras [17], which have a suitably nice resolution of A by
projective bimodules. These include preprojective algebras [5, 17] and their higher
versions [22, 19, 1], as well as quivers with potentials arising from dimer models [8].

These two classes of algebras are unified by the class of twisted (or “skew”)
Calabi-Yau algebras; indeed, it was shown in [37, Lemma 1.2] that a connected
graded algebra A is twisted Calabi-Yau if and only if it is Artin-Schelter regu-
lar. However, many interesting examples of (graded) Calabi-Yau algebras are not
connected. In this paper we undertake a careful study of graded twisted Calabi-
Yau algebras that are not necessarily connected, with the goal of explaining their
relationship to a suitable generalization of Artin-Schelter regular algebras.

We now recall the definitions of these classes of algebras, beginning with Artin-
Schelter regular algebras. We emphasize that in contrast to various other authors,
we do not require regular algebras to have finite Gefland-Kirillov (GK)-dimension.

Definition 1.1. Let A be a connected graded algebra and let k = A/A≥1 be the
trivial module. Then A is Artin-Schelter (AS) regular of dimension d if it has
graded global dimension d and satisfies

ExtiA(k,A)
∼=

{
0, i 6= d

k, i = d
and ExtiAop(k,A) ∼=

{
0, i 6= d

k, i = d

in Mod-A and A-Mod, respectively.

Next we recall the definition of twisted Calabi-Yau algebras. In some sources, this
term refers to a twist by an automorphism as in condition (iii) below (for instance,
see [6]); we will consider the more general twist by an invertible bimodule defined,
for instance, in [43, Definition 3.7.9]. For a k-algebra A with opposite Aop, we write
Ae for its enveloping algebra A⊗kA

op. Then a k-central (A,A)-bimodule M is also
a left Ae-module or a right Ae-module, where (a⊗ bop) ·m = amb = m · (b⊗ aop).
In this way we can identify the category of (A,A)-bimodules with either Ae-Mod or
Mod-Ae. Given an automorphism µ : A→ A, we write 1Aµ for the (A,A)-bimodule
structure on A where b · a · c = baµ(c). Recall in addition that a left A-module M
is called perfect if it has a finite length projective resolution consisting of finitely
generated projective modules.

Definition 1.2. Let A be a k-algebra. We say that:

(i) A is homologically smooth over k (or a homologically smooth k-algebra)
if A has a resolution of finite length by finitely generated projective left
Ae-modules (that is, if A is perfect as a left Ae-module);
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(ii) A is twisted Calabi-Yau (of dimension d) if it is homologically smooth over k
and if there is an invertible k-central (A,A)-bimodule U such that

ExtiAe(A,Ae) ∼=

{
0, i 6= d

U, i = d

as (A,A)-bimodules, where each ExtiAe(A,Ae) is considered as a right Ae-
module via the right Ae-structure of Ae;

(iii) A has Nakayama automorphism µ if the isomorphism in (ii) holds with
U = 1Aµ.

The use of the term “dimension” is justified in Lemma 4.4 below, where it is
shown that the dimension d of a twisted Calabi-Yau algebra is equal to the projec-
tive dimension of A as a left Ae-module. We call the module U = ExtdAe(A,Ae)
the Nakayama bimodule for A. It is well-known that the Nakayama automorphism
of a twisted Calabi-Yau algebra, if it exists, is unique up to multiplication by an
inner automorphism of A. A Calabi-Yau algebra is a twisted Calabi-Yau algebra
as above for which the Nakayama bimodule is U ∼= A; equivalently, it is a twisted
Calabi-Yau algebra with an inner Nakayama automorphism.

The main motivation leading to the present paper is the problem of classifying
twisted Calabi-Yau algebras A of dimension d (for small values of d) that are graded
homomorphic images of a path algebra kQ of a quiver Q, so that they are not
necessarily connected. In our work with twisted Calabi-Yau algebras of dimension 2
and 3, in order to compute potential Hilbert series, it became useful to work with
projective resolutions of the left module S = A/J(A), rather than resolutions of
the bimodule A. In the case of connected graded algebras, the aforementioned
equivalence between the AS regular and twisted Calabi-Yau properties means that
in order to check the twisted Calabi-Yau property, it is sufficient to compute a
particular left module resolution. Thus for non-connected algebras of the form
A = kQ/I, we were led to wonder whether the twisted Calabi-Yau property might
similarly be equivalent to a suitable generalization of the AS regular property,
defined in terms of projective resolutions of S as a left or right A-module. Our
main theorem, which we present as Theorem 5.15 below, will give a precise result
along these lines.

Another goal of this paper is to give full details of the proofs of some basic
properties of homologically smooth algebras and twisted Calabi-Yau algebras, in
particular the stability of these properties under common constructions, especially
in the graded case. Some of these results may be folklore, but it seems useful
to have them written down in one place. We begin in Section 2 with a review
of preliminary results on locally finite graded algebras and their modules, includ-
ing information about minimal projective resolutions, idempotent decompositions,
and some isomorphisms in their derived categories of modules. Then in Sections 3
and 4 we study homological smoothness and the twisted Calabi-Yau property, re-
spectively. In both cases, we show that these properties are stable under finite
direct sum of algebras, tensor product of algebras, base field extension, and Morita
equivalence. We also review several of the different “Serre duality” formulas that
hold for modules over twisted Calabi-Yau algebras.

In case A is graded with dimk A0 < ∞, we let J(A) be its graded Jacobson
radical; then A≥1 ⊆ J(A) and S = A/J(A) = A0/J(A0) is a finite-dimensional
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semisimple algebra. In our study of homological smoothness in Section 3, we ob-
tain the following novel characterization of homological smoothness for graded k-
algebras. Recall that a k-algebra B is separable (over k) if B ⊗k K is semisimple
for all field extensions k ⊆ K.

Theorem 1.3. (Theorem 3.10) Let A be graded with dimk A0 <∞ as above. Then
the following are equivalent:

(1) A is homologically smooth over k;
(2) S is separable as a k-algebra and perfect as a left (or equivalently, right)

A-module.

The proof that homological smoothness implies separability of S is due to Jeremy
Rickard, and we thank him for allowing us to include it here.

An important precedent for the study of generalized AS regular properties for
locally finite graded algebras that are not necessarily connected was set in the work
of Martinez-Villa and Solberg in [30, 31] and of Minamoto and Mori in [33]; we
recall these definitions in Section 5. Another possibility we would like to highlight
is the following definition, which is formally similar to the original definition of
AS regular algebras and tends to be one of the easier ones to work with technically.

Definition 1.4. Let A be a locally finite graded k-algebra, with S = A/J(A). We
say that A is generalized AS regular of dimension d if A has graded global dimension
d and there is a k-central invertible (S, S)-bimodule V such that

ExtiA(S,A)
∼=

{
0, i 6= d

V, i = d

as (S, S)-bimodules.

In Section 5, we show that this definition, the definition of Martinez-Villa and
Solberg, and a slightly modified version of the definition of Minamoto and Mori,
all give equivalent notions. Indeed, in Theorem 5.2 we show that these and even
several additional slight variations are equivalent. For example, it is equivalent to
require the isomorphism in Definition 1.4 to hold as right S-modules only.

Consequently we arrive at the main theorem of the paper, which shows that the
twisted Calabi-Yau condition is related to generalized AS regularity in a precise
way (and often they are equivalent). Our hope is that this result will allow for an
interplay between results in noncommutative Calabi-Yau geometry and the theory
of AS regular algebras for algebras that are not necessarily connected.

Theorem 1.5. (Theorem 5.15) Let A be a locally finite graded algebra, and denote
S = A0/J(A0). Then the following are equivalent:

(a) A is twisted Calabi-Yau of dimension d;
(b) A is generalized AS regular of dimension d, and S is a separable k-algebra;
(c) For every field extension K of k, the K-algebra A ⊗ K is generalized AS

regular of dimension d.

In particular, the result above shows that if one is working over a perfect base field
k (for example, an algebraically closed field or a field of characteristic 0) then the
twisted Calabi-Yau and generalized AS regular conditions are equivalent for locally
finite graded algebras. This also recovers the equivalence [37, Lemma 1.2] of the
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two properties in the case where A is connected graded, because if A is connected
then S ∼= k is separable over k.

The following diagram illustrates the relationships between several of the prop-
erties studied in this paper for locally finite graded k-algebras A with S = A/J(A).
The implications all follow from the theorems above, with the exception of the far
right arrow which follows from the proof of Theorem 5.2.

twisted CY
generalized AS regular

and S separable
generalized
AS regular

homologically
smooth

AS perfect
and S separable AS perfect

In the final section of the paper, Section 6, we apply our earlier results to obtain
information about twisted Calabi-Yau algebras of dimension at most two. In di-
mension zero, we have a simple characterization of (not necessarily graded) twisted
Calabi-Yau algebras as follows.

Theorem 1.6. (Theorem 4.19) For an algebra A, the following are equivalent:

(a) A is twisted Calabi-Yau of dimension 0;
(b) A is twisted Calabi-Yau and a finite-dimensional algebra;
(c) A is Calabi-Yau of dimension 0;
(d) A is a separable k-algebra.

In dimension one, we are able to characterize graded twisted Calabi-Yau algebras
as certain tensor algebras and to prove that they are noetherian.

Theorem 1.7. (Theorem 6.11, Corollary 6.4) Let A be a locally finite graded al-
gebra, and suppose that the algebra S = A0/J(A0) is separable. Then the following
are equivalent:

(a) A is twisted Calabi-Yau of dimension 1;
(b) There is an invertible, nonnegatively graded, finite-dimensional k-central

(S, S)-bimodule V such that TS(V ) ∼= A.

Furthermore, every algebra A satisfying the conditions above is noetherian.

In future work, we hope to present a fuller picture of the structure of locally finite
graded twisted Calabi-Yau algebras of dimension 2. Here we will focus solely on the
question of when such algebras have the noetherian property. In noncommutative
algebraic geometry, it is generally expected that noncommutative graded algebras
of a geometric nature will exhibit the best ring-theoretic properties when they have
finite GK-dimension. In keeping with this theme, we prove the following.

Theorem 1.8. (Theorem 6.6) Let A be a locally finite graded twisted Calabi-Yau
algebra of dimension 2. Then A is noetherian if and only if A has finite GK-
dimension.

We wish to emphasize that the proofs of the results above stating that an algebra
is noetherian are all of a “structural” nature, and do not rely upon a classification
of such algebras to determine that they are noetherian.

We note that while we have restricted our present study to graded algebras, it
seems likely that a number of results and techniques employed here should gen-
eralize to the setting of semilocal twisted Calabi-Yau algebras A that are “locally
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finite” in the sense that, for the Jacobson radical J , the k-algebras A/Jn are finite-
dimensional for all n ≥ 0.

The companion paper [40] focuses on the GK-dimension of locally finite graded
twisted Calabi-Yau algebras. It includes fundamental results about the matrix
Hilbert series of such algebras, the basic structure of the generators and relations
for those of dimension 2 and 3, and techniques for distinguishing which of these
algebras have finite GK-dimension. We note that the proof of Theorem 1.8 depends
on a technical result from [40].

Several routine proofs in this paper are sketched or omitted. Readers who wish
to see full proofs may consult an earlier draft of this paper at arXiv:1807.10249v1.

Acknowledgements. We would like to thank James Zhang for helpful conver-
sations and Stephan Weispfenning for helpful comments about earlier drafts of this
paper. We are particularly grateful to Jeremy Rickard for allowing us to use his
ideas in the proof of Theorem 1.3. Finally, we thank the referees for their careful
reading of this paper, providing a number of suggestions that have improved the
readability of this paper as well as interesting suggestions for future problems.

2. Preliminaries on graded algebras and their modules

This section collects a number of preparatory results for our treatment of graded
twisted Calabi-Yau algebras with the goal of improving readability of proofs in
later sections. Readers who feel so inclined are encouraged to browse through the
next few paragraphs on notations and conventions and then proceed directly to
Section 3, referring back to these preparatory results only as needed.

In some parts we collect known results, and in such cases we point to proofs
in the literature. In others, we provide generalizations of common arguments for
connected graded algebras to locally finite algebras. While these generalizations
are relatively routine, they involve some subtleties that are easily overlooked if one
is accustomed to working only with connected graded algebras. We also require
extensions of certain facts about modules to objects in the derived category. In
such cases where proofs are not available in the literature, we include some of the
shorter proofs but omit longer or more tedious ones.

We begin by discussing some conventions on rings, modules, and complexes.
All rings, homomorphisms, and modules are assumed to be unital. For a ring A,
we write A-Mod for its category of left modules and Mod-A for its category of
right A-modules. Letting Aop denote the opposite ring of A, we have Mod-A =
Aop-Mod. We use the notation HomA(−,−) for Hom-sets of left A-modules, and
HomAop(−,−) for right modules. This will occasionally clarify any (bi)module
structures induced on Hom groups in which one or both arguments are (A,A)-
bimodules. (Recall that if AMB and ANC are bimodules for rings B and C, then
HomA(MB, NC) carries an induced structure of a (B,C)-bimodule, which is most
easily seen if one allows this Hom group to act on the right, opposite from the
scalars. Similarly, if BPA and CQA are bimodules, then HomAop(BP,CQ) is a
(C,B)-bimodule.) If A and B are k-algebras, then all (A,B)-bimodules M consid-
ered below are assumed to be k-central (that is to say, the satisfy λm = mλ for
every module element m ∈M and scalar λ ∈ k) unless explicitly stated otherwise.

It will be useful to us to phrase the proofs of some of our main results in terms
of derived categories, so we recall the relevant notation. Our convention is that all

https://arxiv.org/abs/1807.10249
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complexes will be cohomological complexes, as is standard when working with the
derived category. Let A be a k-algebra. To indicate a complex of A-modules

· · · → P i−1 → P i → P i+1 → . . .

we will use the notation P • or the shorter form P . As a consequence of this
cohomological notation, for modules MA, LA, and AN , we have ExtiA(M,L) =

Hi(RHomA(M,L)) and TorAi (M,N) = H−i(M ⊗L
A N). For an abelian category C,

we write D(C), D+(C), D−(C), and Db(C) to respectively denote the derived cat-
egories of complexes, bounded below complexes, bounded above complexes, and
bounded complexes. We also write D(A) = D(A-Mod) and D(Aop) = D(Mod-A),
and similarly for the other derived categories. For references on derived cate-
gories and the use of RHom functors, we refer readers to [49, Chapter 10] and [45,
Tag 0A5W]. Given two complexes P • and Q•, we will regularly write P • ∼= Q•

to denote an isomorphism in the derived category D(A), which is to say a quasi-
isomorphism; we trust that this will not cause undue confusion, as we rarely care
if two complexes are isomorphic in the (homotopy) category of complexes K(A).

Given a ring R, we say that a complex of left R-modules is perfect if it is quasi-
isomorphic to a bounded complex of finitely generated projective left R-modules [45,
Tag 0656]. A left R-module M is called perfect if it is perfect when considered as
a complex with a single term in degree zero; this is equivalent to the existence of a
projective resolution of finite length

(2.1) 0 → P−n → · · · → P−1 → P 0 →M → 0

where all P i are finitely generated.

2.1. Graded algebras, modules, and resolutions. We now turn to conventions
and basic results on graded algebras, modules, and resolutions. Unless explicitly
indicated otherwise, by a graded ring (or algebra) we mean an N-graded ring (or al-
gebra). Suppose that A =

⊕∞
n=0An is a graded algebra. We write Gr-A for the cat-

egory of graded right A-modules, with morphisms the degree-preserving homomor-
phisms, which we refer to as graded homomorphisms. Similarly, we write A-Gr for
the category of graded left A-modules. Given a graded moduleM and n ∈ Z,M(n)
will indicate the same module M with the grading shifted so thatM(n)m =Mm+n

for all m. Given graded left A-modules M and N , let Homi
A(M,N) denote the

vector space of left A-module homomorphisms φ : M → N that are homogeneous
of degree i (that is, φ(Mn) ⊆ Nn+i). Continue to write HomA(M,N) for the usual
Hom in the category A-Mod. Then we have the graded Hom-groups

HomA(M,N) =

∞⊕

i=−∞

Homi
A(M,N) ⊆ HomA(M,N).

It is well-known that if M and N are graded left A-modules with M finitely gen-
erated, then in fact HomA(M,N) = HomA(M,N); see [35, Corollary 2.4.4], for
instance. We will extend this result to the derived category in Lemma 2.4 below.
We say thatM is graded perfect if there is a graded projective resolution as in (2.1)
with all P i finitely generated. We denote the right derived functors of the graded
Hom functor by ExtiA = RiHomA, and similarly we denote the total derived functor
by RHomA.

Given graded modulesMA and AN over the graded algebra A, we recall from [34,
p. 12] that the graded tensor product M ⊗

A
N is the graded k-vector space that has
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the same underlying vector space as the usual tensor product M ⊗A N , with the
grading induced by declaring each pure tensor of the formm⊗n, wherem and n are
homogeneous, to be itself homogeneous of degree deg(m⊗ n) = deg(m) + deg(n).

For a graded ring A, we let J(A) denote its graded Jacobson radical, the intersec-
tion of its maximal homogeneous left (equivalently, right) ideals. If I is a maximal
homogeneous left ideal, then 1 6∈ I; since 1 ∈ A0, we also have 1 6∈ I0 + A≥1 =
I +A≥1. By maximality, A≥1 ⊆ I. It follows that

J(A) = J(A0)⊕A≥1,

where A0 is considered as a graded ring concentrated in degree zero, so that J(A0) is
the usual Jacobson radical (see also [34, Corollary II.6.5]). Thus we have A/J(A) ∼=
A0/J(A0) as rings. Note that if A0 is semisimple, then J(A) = A≥1 and A/J(A) ∼=
A0. We always write S for the semisimple algebra A/J(A).

We say that a graded k-algebra A =
⊕∞

n=0An is locally finite (elsewhere called
finitely graded) if each An is finite-dimensional as a k-vector space. While this
will eventually be our case of interest, we are able to develop many of our results
assuming only that A0 is finite-dimensional. If A is a graded algebra with A0

finite-dimensional, then every left A0-module has a projective cover [25, Proposi-
tion 24.12]. From this it follows that every graded left A-moduleM that is bounded
below (i.e.,Mn = 0 for n≪ 0) has a graded projective cover f : P →M , in the sense
that P is graded projective, f is a graded surjective morphism, and ker(f) ⊆ J(A)P
(see also [33, p. 4064]). We define a minimal graded projective resolution of a graded
left A-module to be a graded projective resolution P • → M such that each map
dn : Pn → Pn−1 in the complex, as well as the augmentation map ǫ : P 0 →M , is a
projective cover of its image. This is equivalent to the conditions ker(dn) ⊆ J(A)Pn

for all n ≥ 1 together with ker(ǫ) ⊆ J(A)P 0. Alternatively, this can be expressed
as the conditions that im(dn) ⊆ J(A)Pn−1 for all n ≥ 1.

Continuing to assume that dimk A0 < ∞, then as in [33, Lemma 2.6], every
graded projective left A-module P that is bounded below is of the form P ∼= A⊗A0Q
for some graded projective left bounded left A0-module Q. Furthermore, as every
projective left module over the finite-dimensional algebra A0 is a direct sum of
indecomposable projective modules, each isomorphic to A0e where e is a primitive
idempotent [36, 6.3], we have in fact P ∼=

⊕
Aei(li) for some primitive idempotents

ei ∈ A0 and integers li.
We say that a graded module M is graded-indecomposable if one cannot write

M = M1 ⊕ M2 for nonzero graded submodules Mi. Note that if e ∈ A0 is a
primitive idempotent, then Ae is a graded-indecomposable projective. Thus every
bounded below graded projective left A-module is (uniquely) a direct sum of graded-
indecomposable projectives. It follows as in [33, Section 2] that any graded A-
module that is bounded below has a minimal graded projective resolution whose
terms are bounded below. One may check using the graded Nakayama lemma
below that such a minimal resolution is unique up to (a generally non-unique)
isomorphism, as expected.

The following graded version of Nakayama’s lemma is well-known. A proof of (1)
can be found in [33, Lemma 2.1], and the derivation of (2) from (1) is standard.

Lemma 2.2. Let A be a graded k-algebra whose degree zero part A0 has finite k-
dimension, and let M be a bounded-below graded left A-module. Let I ⊆ A be a
graded ideal contained in J(A).



GRADED TWISTED CY ALGEBRAS ARE GENERALIZED AS REGULAR 9

(1) If M = IM , then M = 0.
(2) Any lift of a generating set of M/IM is a generating set of M .

The following generalizes a well-known characterization of finitely generated al-
gebras from the case where A is connected (i.e., A0 = k).

Lemma 2.3. Let A be a graded algebra with A0 finite-dimensional, and set S =
A/J(A). Then the following are equivalent:

(a) A is finitely generated as a k-algebra;
(b) S is finitely presented as a left (equivalently, right) A-module;
(c) dimk J(A)/J(A)

2 <∞.

In particular, if S is perfect as a left or right A-module, then A is a finitely generated
algebra. In case the above conditions hold, A is locally finite.

Proof. For a proof in the case where A is connected, see [41, Lemma 2.1.3]. Because
of the subtleties involved in extending to the case of a general graded algebra, we
sketch a proof below.

Set J = J(A). The equivalence of (b) and (c) follows by considering the left
(respectively, right) module presentation 0 → J → A → S → 0 and applying
Schanuel’s Lemma along with Lemma 2.2(2) to see that S is finitely presented if
and only if J/J2 is a finitely generated module over A/J = S. Since S is finite-
dimensional, this occurs if and only if dimk J/J

2 <∞.
To see that (c) =⇒ (a), it suffices to fix finite-dimensional subspaces X ⊆ A

and V ⊆ J such that A = X + J and J = V + J2, and to verify that A =
X + V + V 2 + V 3 + · · · so that A is finite generated. One may also show that for
each graded component Am, there exists r ≫ 0 such that Am ⊆ X + V + · · ·+ V r,
proving that A is locally finite.

To verify that (a) =⇒ (c), begin with a finite-dimensional graded subspace W
of A that generates A as a k-algebra. We may assume without loss of generality
that W is an (A0, A0)-bimodule. Then writing W = A0 + V for some (A0)

e-
submodule V ⊆ A≥1 and verifying that A = A0 + V + J2, one concludes that
dimk(J/J

2) <∞. �

As mentioned earlier, if A is a graded ring and M and N are graded left A-
modules withM finitely generated, then HomA(M,N) = HomA(M,N). We require
the following derived version of this fact.

Lemma 2.4. Let A be a graded ring and let M ∈ A-Gr.

(1) M is perfect if and only if M is graded perfect.
(2) If Q ∈ D−(A-Gr) is a complex of finitely generated graded projectives, and

N ∈ D(A-Gr), then the natural map RHomA(Q,N) → RHomA(Q,N) is a
quasi-isomorphism. In particular, if M,N ∈ A-Gr with M perfect, then the
natural inclusions ExtiA(M,N) ⊆ ExtiA(M,N) are equalities, for all i ≥ 0.

Proof. (1) If M is graded perfect, then it is clearly perfect. Conversely, assume
that M has a projective resolution of finite type, say

0 → P−n → · · · → P−2 d−2

−→ P−1 d−1

−→ P 0 →M → 0,

so that M is quasi-isomorphic to the perfect complex P •. Then one may construct
a graded resolution Q• ofM consisting of finitely generated graded projective mod-
ules. BecauseM is finitely generated, it has a finite set of homogeneous generators,
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and thus there is a finitely generated graded projective module Q0 with a graded
surjection Q0

։ M . The rest of the graded resolution can now be constructed by
an inductive argument, with the assistance of the generalized Schanuel’s lemma [24,
Corollary 5.5].

(2) Since Q is a bounded above complex of graded projectives, RHomA(Q,N) =
HomA(Q,N) and RHomA(Q,N) = HomA(Q,N). Since each Qi is finitely gener-
ated, the inclusion HomA(Q

i, N j) → HomA(Q
i, N j) is an equality for each i, j; it

follows that the natural inclusion of complexes HomA(Q,N) → HomA(Q,N) is an
equality as required.

In particular, if M is a perfect module, it is quasi-isomorphic to a bounded
complex Q of finitely generated graded projectives and we have RHomA(M,N) =
HomA(Q,N) and RHomA(M,N) = HomA(Q,N); thus the second statement arises
from the first by taking cohomology. �

Remark 2.5. We will often invoke the derived Hom construction in the form
RHomA(M,N) where M and N are complexes of graded modules and M is per-
fect. Thanks to Lemma 2.4 and the above remarks about graded tensor products,
the graded and ungraded Hom and tensor functors, as well as their correspond-
ing derived functors, are equal in almost all cases where we are concerned. Thus
unless otherwise noted, we will use the notation of the usual ungraded functors
(such as Hom, Ext, − ⊗R −, Tor, etc.) with the understanding that these objects
carry a canonical grading when the arguments are graded. We trust that this slight
abuse of notation will not cause confusion, and it carries the added benefit that
some proofs can be written for ungraded and graded twisted Calabi-Yau algebras
simultaneously; we will carefully indicate when this is not the case.

The following generalizes a well-known argument from the setting of connected
graded algebras to detect finiteness in the minimal projective resolution of a graded
module.

Lemma 2.6. Let A be a graded k-algebra whose degree zero part A0 has finite k-
dimension, and set S = A/J(A). Let M be a bounded-below graded left A-module
with minimal graded projective resolution P • → M → 0. Then for every integer
i ≥ 0 we have isomorphisms of right S-modules

HomS(Tor
A
i (S,M), S) ∼= ExtiA(M,S),

and the following are equivalent:

(a) P−i is finitely generated (respectively, zero);

(b) the left S-module TorAi (S,M) has finite k-dimension (respectively, is zero);

(c) The right S-module ExtiA(M,S) has finite k-dimension (respectively, is
zero).

Proof. For notational convenience, we set j = −i throughout this proof. Minimality
of P • implies that the boundary operators of the tensored complex S⊗A P

• are all
zero. Setting J = J(A), the homology modules of this complex are equal to

TorA−j(S,M) = A/J ⊗A P
j ∼= P j/JP j.

Because M is bounded below, the same is true of each term P j . Similarly, because
P • is minimal, the boundary operators of HomA(P

•, S) are all zero. Combining
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this observation with tensor-Hom adjointness yields

Ext−j
A (M,S) ∼= HomA(P

j , S) ∼= HomA(P
j ,HomS(S, S))

∼= HomS(S ⊗A P
j, S) ∼= HomS(P

j/JP j, S).

A direct comparison of these expressions gives HomS(Tori(S,M), S) ∼= ExtiA(M,S).
By Lemma 2.2(2), any generating set for P j/JP j lifts to a generating set for P j.

Note that the action of A on P j/JP j factors through the finite-dimensional algebra
S = A/J . Thus P j is finitely generated (respectively, zero) if and only if P j/JP j ∼=
TorA−j(S,M) is finite-dimensional (respectively, zero), establishing (a) ⇐⇒ (b).
Because the left and right S-dual functors HomS(−, S) and HomSop(−, S) restrict
to inverse equivalences between finite-dimensional graded left and right S-modules,
we obtain (b) ⇐⇒ (c). �

2.2. Idempotents and decomposition. The next few results concern idempo-
tents and their associated decompositions. Recall that a ring is indecomposable if it
is not isomorphic to a direct product of two nonzero rings, or equivalently, if it has
no nontrivial central idempotents. Similarly, we say that a graded ring is graded-
indecomposable if it is not isomorphic to a direct product of two graded rings; this
is equivalent to the property that A has no nontrivial homogeneous central idem-
potents. It is useful to know that in the case of interest to us we do not need to
distinguish between these.

Lemma 2.7. Let A be a graded ring. Then A is indecomposable if and only if it
is graded-indecomposable.

Proof. Let e = e0+e1+ · · ·+en be a idempotent, where ei ∈ Ai, and note that e0 is
a homogeneous idempotent. Suppose that e 6= 0, 1 is nontrivial; we will prove that
e0 is nontrivial. First suppose that e0 = 0. Fix d > 0 minimal such that ed 6= 0.
Then 0 6= ed = (e2)d = 0, a contradiction. Now suppose that e0 = 1. As e 6= 1,
let d > 0 be the minimal positive index such that ed 6= 0. Then ed = (e2)d = 2ed,
yielding the contradiction ed = 0. Thus e0 is a homogeneous nontrivial idempotent.
It is also easy to see that if e is central, then so is e0. Thus if A has a nontrivial
central idempotent, then it has a nontrivial homogeneous central idempotent. The
converse is trivially true. �

We will need the following easy lemma on the interaction between idempotents
and RHom, similar to [25, Proposition 21.6]. Note that for an idempotent e in a
ring R and a complex P ∈ D(R), we write eP for the complex eR ⊗L

R P , which
may be obtained by multiplying all terms in the complex by e on the left. Right
multiplication of a complex in D(Rop) by an idempotent e ∈ R is defined similarly.

Lemma 2.8. Let R, S, and T be rings. Let P be a bounded above complex of
(R,S)-bimodules and Q a complex of (R, T )-bimodules.

(1) For any idempotents e ∈ S, f ∈ T we have

RHomR(Pe,Qf) = eRHomR(P,Q)f

as complexes of (eSe, fT f)-bimodules.
(2) If z ∈ Z(R) is a central idempotent, then

zRHomR(P,Q) = RHomR(P,Q)z = RHomR(zP,Q) = RHomR(P, zQ)

= RHomR(zP, zQ) = RHomzR(zP, zQ).
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as complexes of (S, T )-bimodules.

Further, if R,S, T are graded rings, P,Q are complexes of graded bimodules, and
e, f, z are homogeneous idempotents, the same results hold with RHom replaced with
RHom, as equalities of complexes of graded bimodules.

Proof. (1) We prove the ungraded case; the proof in the graded case is similar. For
any (R,S)-bimodule M and (R, T )-bimodule N , the proof that HomR(Me,Nf) =
eHomR(M,N)f as (eSe, fT f)-bimodules is routine. Then for any complexes P,Q
as in the statement one immediately obtains HomR(Pe,Qf) = eHomR(P,Q)f
from the definition of the total Hom complex. Considering P as a complex of
R⊗Sop-modules, it may be replaced by a quasi-isomorphic bounded above complex
of projective R ⊗ Sop-modules, which are also projective as left R-modules. The
modules in Pe are then also projective on the left, so we get

RHomR(Pe,Qf) = HomR(Pe,Qf) = eHomR(P,Q)f = eRHomR(P,Q)f

as required.
(2) Note that P is a complex of (R,S ⊗ Z(R))-bimodules and Q a complex of

(R, T ⊗ Z(R))-bimodules. Since Pz = zP and Qz = zQ, most of the equalities
follow immediately from part (1) and the others are similarly easy. �

Lemma 2.9. If A =
⊕n

i=1A(i) is a direct sum of algebras, then the following hold
in D(Mod-Ae):

(1) RHomAe(A(i), A
e) ∼= RHomAe

(i)
(A(i), A

e
(i));

(2) RHomAe(A,Ae) ∼=
⊕n

i=1 RHomAe

(i)
(A(i), A

e
(i)).

Further, if A =
⊕n

i=1A(i) is a direct sum of graded algebras, then the corresponding
quasi-isomorphisms above hold replacing RHom with RHom.

Proof. Let zi ∈
⊕n

j=1 A(j) denote the element whose ith entry is the identity of A(i)

and whose other entries are zero, so that 1 =
∑
zi is a sum of orthogonal central

idempotents.
For (1), consider the central idempotent z = zi ⊗ zopi ∈ Ae. Note that as a left

Ae-module we have A(i) = zA(i), and also that zAe ∼= Ae
(i) as algebras and as left

Ae-modules. Then using Lemma 2.8 we have that

RHomAe(A(i), A
e) = RHomAe(zA(i), A

e)

∼= RHomzAe(zA(i), zA
e)

∼= RHomAe

(i)
(A(i), A

e
(i)).

Since Ae is a (Ae, Ae)-bimodule, the isomorphisms above hold as complexes of right
Ae-modules.

We deduce (2) as follows, where (1) is invoked in the final isomorphism:

RHomAe(A,Ae) = RHomAe

(⊕
A(i), A

e
)

∼=
⊕

RHomAe(A(i), A
e) ∼=

⊕
RHomAe

(i)
(A(i), A

e
(i)).

In case the Ai are graded algebras, analogous proofs to those above, using the
RHom version of Lemma 2.8, yield the corresponding graded isomorphisms. �
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2.3. Invertible bimodules. Next we turn our attention to invertible bimodules
over algebras and graded algebras. Note that a k-central invertible (A,A)-bimodule
U induces a k-linear Morita equivalence U⊗A− : A-Mod → A-Mod. For this reason,
a number of standard results from Morita theory (such as those in [24, §18], for
instance) apply to invertible bimodules, if we impose the extra condition that the
equivalences of categories are k-linear.

Suppose that A is a graded algebra. We say that a graded (A,A)-bimodule
U is graded-invertible if there exists a graded bimodule V such that there are
isomorphisms U ⊗

A
V ∼= A ∼= V ⊗

A
U as graded bimodules. It is useful to note

that a graded bimodule that is invertible in the ungraded sense is actually graded-
invertible, as follows.

Lemma 2.10. Let A be a graded k-algebra, and suppose that U is an Ae-module
that is both graded and invertible. Then U is graded-invertible.

Proof. Because the bimodule U induces a Morita self-equivalence of A, it is finitely
generated projective (and a generator) on each side. In particular, the natural map
HomA(U,A) → HomA(U,A) is an isomorphism, and similarly for HomAop(U,A).

Now invertibility of U implies that the natural evaluation map

HomAop(U,A)⊗A U → A.

is an isomorphism of (A,A)-bimodules. But this map preserves grading, so we in
fact have a graded isomorphism

HomAop(U,A)⊗A
U

∼
−→ A.

Allowing homomorphisms of left modules to act from the right (opposite of the
scalars), the evaluation map U ⊗

A
HomA(U,A) → A is also a graded isomorphism

by symmetry. From this it is straightforward to deduce that U is graded-invertible
with inverse bimodule HomAop(U,A) ∼= HomA(U,A). �

We will make use of the following manner in which a graded-invertible bimodule
interacts well with the graded Jacobson radical and semisimple quotient of a locally
finite graded algebra.

Lemma 2.11. Let A be a graded algebra such that A0 is finite-dimensional. Denote
J = J(A) and S = A/J . If U is a graded-invertible (A,A)-bimodule, then the
following hold:

(1) S ⊗A U ∼= U ⊗A S as (A,A)-bimodules, and UJ = JU .
(2) The bimodule S ⊗A U ∼= U ⊗A S, considered as a graded (S, S)-bimodule is

graded-invertible.

Proof. (1) Note that −⊗
A
U induces an autoequivalence of the category Gr-A,

with quasi-inverse given by −⊗
A
U−1. Because SA is a semisimple graded right A-

module, the same is true of S⊗AU . Thus (S⊗AU)J = 0. Because S⊗AU ∼= U/JU ,
this means that (U/JU)J = 0 and thus UJ ⊆ JU . By a symmetric argument, we
have JU ⊆ UJ , giving UJ = JU . This implies that

S ⊗A U ∼= U/JU = U/UJ ∼= U ⊗A S.

(2) Because V = S ⊗A U ∼= U ⊗A S satisfies JV = V J = 0, we may consider it
as an (S, S)-bimodule. It is easy to deduce from (1) that U−1⊗A S ∼= S⊗A U

−1 as
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well, so that this bimodule can also be considered as an (S, S)-bimodule. We claim
that V ′ = S ⊗A U

−1 is a graded inverse to V . Indeed,

V ⊗S V
′ ∼= (U ⊗A S)⊗S (S ⊗A U

−1)

∼= U ⊗A S ⊗A U
−1

∼= S ⊗A U ⊗A U
−1

∼= S,

and similarly one may compute V ′ ⊗S V ∼= S. Thus V is graded-invertible as an
(S, S)-bimodule. �

Given a graded automorphism σ of A and an integer l ∈ Z, it is clear that the

twisted bimodule 1Aσ(l) is graded-invertible, with inverse 1Aσ−1

(−l) ∼= σA1(−l).
Suppose that A is connected graded. In this case all graded projective modules
are free, so if U is a graded invertible bimodule, U is free and clearly of rank 1 on
both sides; it follows that U is of the form 1Aσ(l) [33, Lemma 2.9]. However, for
not necessarily connected graded algebras, an invertible bimodule need not have
this form. See Example 7.1 below for one simple example. We defer more detailed
results about the structure of graded invertible bimodules over graded algebras to
the companion paper [40], since such information is not needed for our results in
this paper.

2.4. Manipulating objects in the derived category. The final results of this
section concern manipulation of objects in derived categories of modules. Part (2)
of the next lemma is a slightly more general version of the lemma observed, for
instance, in [51, Lemma 2.2].

Lemma 2.12. Fix (graded) algebras A and B. Suppose that L is a perfect complex
of (graded) left A-modules, and that M is a complex of (graded) left A ⊗ Bop-
modules.

(1) There is a natural isomorphism in the derived category of (graded) right
B-modules

RHomA(L,A)⊗
L
A M

∼= RHomA(L,M).

(2) If N is bounded above complex of left B⊗Cop-modules for a (graded) algebra
C, then there is an isomorphism in the derived category of (graded) right
C-modules

RHomA(L,M)⊗L
B N ∼= RHomA(L,M ⊗L

B N).

Proof. Part (1) is proved, for instance, in [45, Tag 07VI], and the same proof carries
over to the graded case. Then (2) follows directly from (1) because

RHomA(L,M)⊗L
B N ∼= RHomA(L,A)⊗

L
A M ⊗L

B N ∼= RHomA(L,M ⊗L
B N). �

It is well-known that one can use Hochschild cohomology groups of certain bi-
modules to recover the “one-sided” Tor and Ext groups over A, for KA, AM , and

AN as follows (see [11, Corollary IX.4.4]):

TorAn (K,N) ∼= HHn(A,N ⊗K) = TorA
e

n (A,N ⊗K),

ExtnA(M,N) ∼= HHn(A,Homk(M,N)) = ExtnAe(A,Homk(M,N)).

We require the following version of these identities, stated in the derived context.
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Lemma 2.13. Let A,B,C be (graded) algebras. Let P be a bounded above complex
of (graded) left Ae-modules, K be a complex of (graded) B ⊗ Aop-modules, N a
complex of (graded) left A⊗ Cop-modules, and M a complex of (graded) A⊗ Bop-
modules.

(1) If K and N are bounded above, then

K ⊗L
A P ⊗L

A N
∼= P ⊗L

Ae (N ⊗K) ∼= (K ⊗N)⊗L
Ae P

in the derived category of (graded) B ⊗ Cop-modules.
(2) If M is bounded above and N is bounded below, then

RHomA(P ⊗L
A M,N) ∼= RHomAe(P,Homk(M,N))

in the derived category of (graded) B ⊗ Cop-modules.

As usual, when A,B,C are graded algebras, and P,K,N,M are graded modules,
the same results hold as isomorphisms of graded modules, with ⊗ replaced by ⊗ and
RHom by RHom.

The notation in part (1) needs a bit of explanation. Note that if AN and KA

are modules, then N ⊗ K is naturally a left Ae-module via the “outer” action
(a⊗bop) ·(n⊗k) = an⊗kb. Any left Ae-module is naturally also a right Ae-module
via the anti-automorphism Ae → Ae given by a⊗ bop 7→ b⊗ aop. When we think of
N ⊗K as a right Ae-module in this way, we may also write it as K ⊗N where the
right action is the “inner” one given by (k ⊗ n) · (b ⊗ aop) = kb ⊗ an, so that the
left B ⊗ Cop-action is an outer action. In case N and K are complexes, we simply
extend the “inner” and “outer” actions above to each term in the tensor product
of complexes.

We omit the proof for the sake of brevity. The argument is a straightforward
computation in the derived category, carried out after replacing P by a quasi-
isomorhpic bounded above complex of projective Ae-modules.

3. Homologically smooth algebras and global dimension

Recall from Definition 1.2(i) that a k-algebra A is homologically smooth over k
if A is perfect as a left Ae-module. This section is devoted to fundamental results
on locally finite graded homologically smooth k-algebras.

3.1. A characterization of homological smoothness. Our first goal will be
to find an alternative characterization of homological smoothness for locally finite
graded algebras.

Remark 3.1. We note (as in [29, Remark 3.2]) that the “swap” algebra isomor-
phism Ae = A ⊗ Aop → Aop ⊗ A ∼= (Aop)e induces an equivalence between left
Ae-modules and left (Aop)e-modules that interchanges A and Aop and preserves
perfect modules. This makes it easy to see that A is homologically smooth if and
only if Aop is. Thus the homologically smooth property is “left-right symmetric.”

A projective Ae-module resolution of A can be used to obtain projective resolu-
tions of every left A-module as follows.

Lemma 3.2. Let A be a (graded) algebra.
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(1) Let P • → A → 0 be a (graded) Ae-projective resolution. For any bounded
above complex N• of (graded) left A-modules, P ⊗L

A N ∼= N as complexes
of (graded) left A-modules. In particular, for any (graded) left A-module
M , the complex P • ⊗A M is a (graded) projective resolution of M .

(2) If A is homologically smooth and N is a bounded complex of (graded) finite-
dimensional left A-modules, then N is perfect.

(3) If A is graded and homologically smooth with A0 finite-dimensional, then
A is a finitely generated (hence locally finite) algebra.

Proof. (1) This is well known. For a proof in the case where N consists of a single
nonzero module, see [17, p. 68].

(2) Since A is homologically smooth, we may fix a perfect Ae-projective resolution
P • of A. By part (1), P ⊗A N is quasi-isomorphic to N . Because each N j is
finite-dimensional and each P i is a finitely generated projective Ae-module, P i is
a summand of some (Ae)n, and then P i ⊗A N j is a summand of (Ae)n ⊗A N

j ∼=
A ⊗k N

j , which is finitely generated free on the left. So P i ⊗A N j is finitely
generated projective. Thus P ⊗A N is a complex of finitely generated projective
left A-modules and so N is perfect.

(3) Let J = J(A). In this case, S = A/J is perfect as a left A-module by
part (2), so that A is finitely generated as an algebra and locally finite according
to Lemma 2.3. �

When manipulating k-central bimodules over locally finite algebras that are not
necessarily connected, it will become crucial to assume that A is separable modulo
its graded Jacobson radical. Recall that a k-algebra S is said to be separable (over
k) if S ⊗K is semisimple for every field extension K of k. As is well-known, there
are many equivalent formulations of this property, as follows.

Lemma 3.3. The following conditions are all equivalent for a k-algebra S:

(1) S⊗K is semisimple for every field extension K of k, that is, S is separable;
(2) S ⊗ T is semisimple for every semisimple k-algebra T ;
(3) S is projective as a left Se-module;
(4) Se is semisimple;
(5) S ∼=

⊕n
i=1 Mri(Di) for finite-dimensional division k-algebras Di whose cen-

ters Z(Di) are separable field extensions of k.

Proof. See [7, §13], [12, Section 71], [13, Chapter II], or [49, Section 9.2.1]. �

From the characterization of separability in part (5) above, we see that a separable
algebra is necessarily finite-dimensional over k; also, if k is a perfect field (such as
a field of characteristic 0, an algebraically closed field, or a finite field), then every
finite-dimensional semisimple k-algebra is separable.

For finite-dimensional algebras, the property of being homologically smooth can
be seen as a higher-dimensional generalization of separability.

Lemma 3.4. For a finite-dimensional k-algebra A, the following are equivalent:

(a) A is homologically smooth;
(b) pdim(AeA) <∞;
(c) Ae has finite global dimension;
(d) A⊗K has finite global dimension for every field extension K of k.
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Proof. Clearly (a) =⇒ (b); to prove the converse, assume pdim(AeA) = d < ∞.
Since Ae is finite-dimensional and consequently noetherian, all terms in the minimal
projective resolution of A in Ae-Mod are finitely generated. Thus (b) =⇒ (a). The
equivalence of (b)–(d) is demonstrated in [10, p. 807]. �

In fact, it is known that conditions (b) and (c) above are equivalent for every
k-algebra A; see [23, Corollary 2.5].

The question of whether a locally finite graded algebra is separable modulo
its graded radical immediately reduces to the corresponding problem for finite-
dimensional algebras, by restricting to the degree 0 part of the algebra. The proofs
of Theorem 3.6 and its supporting Lemma 3.5 were communicated to us by Jeremy
Rickard. We thank him for his permission to include them here; we also thank
MathOverflow1 for providing a forum to pose the question. The following is likely
a folk result, but we could not locate a suitable reference.

Lemma 3.5. If S is a finite-dimensional semisimple k-algebra and K = k is an
algebraic closure, then S⊗K is a finite direct sum of matrix rings over commutative
local K-algebras.

Proof. Let ks ⊆ K denote the separable closure of k. By [7, Section 12.7, Corol-
laire 1 to Proposition 12.8], the extension Ss = S ⊗ ks is semisimple. Thus
Ss ∼=

⊕n
i=1 Mri(Di) for some finite-dimensional division ks-algebras Di. The

centers Li = Z(Di) form intermediary fields ks ⊆ Li ⊆ K. Since K/ks is
purely inseparable, the same is true for each K/Li. Thus each Li is separa-
bly closed and consequently has trivial Brauer group [16, Corollary 4.6]. It fol-
lows that in fact Ss ∼=

⊕
Mri(Li) is a sum of matrix algebras over fields. Now

SK = Ss ⊗ks K ∼=
⊕

Mri(Li ⊗ks K). Each ring Ri = Li ⊗ks K is a finite-
dimensional commutative K-algebra and hence is Artinian. Then Ri is a direct
sum of finitely many commutative local K-algebras, say Ri =

⊕ni

j=1 Rij . Thus

SK =
⊕

i

⊕ni

j=1 Mri(Rij) is a finite direct sum of matrix rings over commutative
local K-algebras. �

Theorem 3.6 (Rickard). Let A be a finite-dimensional k-algebra. If A is homo-
logically smooth, then S = A/J(A) is separable over k.

Proof. Set K = k. It suffices to show that SK = S⊗K is semisimple; see [12, Theo-
rem 71.2] or [13, Proposition II.1.8]. Thanks to Lemma 3.5 we have Ext1SK (U, V ) =
0 for any non-isomorphic simple left SK-modules U and V . Note that AK has finite
global dimension by Lemma 3.4. If there were a non-split extension of a simple left
SK-module U by itself, then we would have Ext1AK (U,U) 6= 0, contradicting the
no-loops conjecture [20]. So all extensions of simple left SK-modules split, making
SK semisimple. �

Lemma 3.7. Let A and B be graded algebras such that A0 and B0 are finite-
dimensional, and denote S = A/J(A) = A0/J(A0) and T = B/J(B) = B0/J(B0).
Suppose that the semisimple k-algebra S is separable. Then J(A⊗B) = A⊗J(B)+
J(A)⊗B, and the natural map (A⊗B)/J(A⊗B) ։ S ⊗k T is an isomorphism.

Proof. Because J(A ⊗ B) ⊇ (A ⊗ B)≥1 = A ⊗ B≥1 + A≥1 ⊗ B, we have (A ⊗
B)/J(A⊗B) ∼= (A ⊗B)0/J((A⊗B)0) = (A0 ⊗ B0)/J(A0 ⊗ B0). So without loss

1http://mathoverflow.net/q/245764/778

http://mathoverflow.net/q/245764/778
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of generality, we may replace A and B by their degree-zero parts to assume that
A = A0 and B = B0 are finite-dimensional algebras.

Let J ′ = A⊗ J(B) + J(A) ⊗ B. Because A and B are finite-dimensional, their
respective Jacobson radicals J(A) and J(B) are nilpotent ideals. It follows that J ′

is a nilpotent ideal of A⊗B, so that J ′ ⊆ J(A⊗B).
On the other hand, if V and W are finite dimensional vector spaces with sub-

spaces V ′ and W ′ respectively, then it is a standard fact that V ′ ⊗W + V ⊗W ′

is the kernel of the natural map V ⊗W → V/V ′ ⊗W/W ′. Thus the kernel of the
natural map A⊗B ։ S⊗T , given by the tensor product of the natural surjections
A ։ A/J(A) and B ։ B/J(B), is equal to J ′. Because S is separable and T is
semisimple, the algebra S ⊗ T ∼= (A ⊗ B)/J ′ is also semisimple by Lemma 3.3(2).
We deduce (as in [25, Exercise 4.11]) that J(A⊗B) ⊆ J ′. So in fact J ′ = J(A⊗B),
and the isomorphism S ⊗ T ∼= (A⊗B)/J ′ = (A⊗B)/J(A⊗B) follows. �

The next lemma facilitates the passage from modules over a graded algebra A
to modules over its degree zero part.

Lemma 3.8. Let A be a graded algebra with A0 finite-dimensional, and let M be a
nonnegatively graded left A-module. If M is perfect (resp., has pdim(M) ≤ d) over
A, then M0 is perfect (resp., has pdim(M0) ≤ d) as an A0-module.

Proof. Let P • → M → 0 be a minimal projective left A-module resolution of
M . Recall that every left bounded graded left projective A-module is of the form
A ⊗A0 Q for some graded left projective A0-module Q. Writing P i = A ⊗A0 Q

i

for some graded projective A0-modules Qi, becauseM is nonnegatively graded and
the resolution P • is minimal, it easily follows that each Qi is nonnegatively graded.
Take the degree-zero part of the resolution of M to obtain P •

0 → M0 → 0, which
is an exact sequence of A0-modules. Then P i

0 = Qi
0, which is projective over A0

for each i as it is a summand of Qi. So we have a projective resolution P •
0 of M

over A0. If P • is perfect or has length at most d, then the same is true of the
A0-resolution P

•
0 . �

Lemma 3.9. Let A be a graded algebra with S = A/J(A).

(1) TorAi (S, S)
∼= TorA

e

i (Se, A) as graded left Se-modules.
(2) If A is homologically smooth, then so is A0.

Proof. (1) We adapt the method of proof from the case of a connected algebra
given in [51, Lemma 4.3(a)]. Using Lemma 2.13(1) in the second quasi-isomorphism
below, we have

S ⊗L
A S

∼= S ⊗L
A (A⊗L

A S)
∼= Se ⊗L

Ae A,

as complexes of left Se-modules. Taking cohomology of the above yields an isomor-
phism TorAi (S, S)

∼= TorA
e

i (Se, A) as desired.
(2) Because A is perfect as a left Ae-module, it follows from Lemma 3.8 that A0

is perfect as a module over (Ae)0 = (A0)
e. Thus A0 is homologically smooth. �

We arrive at the following alternative characterization of homological smoothness
for locally finite graded algebras.

Theorem 3.10. Let A be a graded k-algebra with A0 finite-dimensional, and set
S = A/J(A) = A0/J(A0). Then the following conditions are equivalent:

(a) A is (graded) homologically smooth over k;
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(b) S is separable over k and S is perfect as a left (respectively, right) A-module.

If the conditions hold, then A is a finitely generated (hence locally finite) algebra,
and the canonical surjection A։ S is split by an algebra homomorphism S →֒ A.

Proof. Assume (a) holds. Then S is perfect as both a left and a right A-module by
Lemma 3.2(2). Next, A0 is homologically smooth by Lemma 3.9(2). Now Rickard’s
Theorem 3.6 implies that S = A0/J(A0) is separable over k. Thus (a) =⇒ (b).

Next, assume that (b) holds; we will deduce (a). Because S is separable we have
Ae/J(Ae) ∼= Se by Lemma 3.7. Then Lemma 3.9 (1) yields

TorAi (A/J(A), A/J(A))
∼= TorA

e

i (Ae/J(Ae), A).

Applying Lemma 2.6 (and its right sided variant) for both A and Ae, we have that
S is perfect as a left (respectively, right) A-module if and only if the Tor vector
spaces above are all finite-dimensional and eventually zero for i≫ 0, if and only if
A is perfect as a left Ae-module. Thus (b) =⇒ (a).

If condition (b) (or equivalently condition (a)) holds, then Lemma 2.3 implies
that A is a finitely generated and locally finite algebra. To establish the final
claim about the splitting of A։ S, simply note that this factors through the split
surjection A։ A0 via the surjection A0 ։ S, and that the latter is split when S is
separable by a classical result of Wedderburn and Malcev [12, Theorem 72.19]. �

3.2. Basic operations preserving homological smoothness. We next turn
our attention to operations that preserve the property of homological smoothness.
We begin with direct sums.

Proposition 3.11. For k-algebras A and B, denote R = A ⊕ B. Then R is
homologically smooth over k if and only if both A and B are homologically smooth
over k.

Proof. First suppose that A and B are homologically smooth. For covenience,
denote A(1) = A and A(2) = B. Then Re = (A(1) ⊕ A(2)) ⊗ (A(1) ⊕ A(2))

op =⊕
i,j∈{1,2} A(i) ⊗ Aop

(j) as k-algebras. Let P(i) denote a perfect left Ae
(i)-resolution

of each A(i); then it is also a perfect left Re-resolution via the projection Re
։

A(i)⊗A
op
(i) = Ae

(i). Thus P(1)⊕P(2) is a perfect left Ae-resolution of A = A(1)⊕A(2),

and so A is homologically smooth as desired.
Conversely, suppose that R is homologically smooth. Consider the central idem-

potent z = (1, 0) ∈ A ⊕ B = R. If P • is a finite resolution of R by finitely
generated Re-projectives, then (z ⊗ z)P • is an Ae-projective resolution of A with
the same properties. Thus A is homologically smooth, and the same is true of B
by symmetry. �

Next we consider extension of scalars. Given a k-vector space V and a field
extension K of k, we denote the scalar extension of V to a K-vector space by
V K = V ⊗K. In case V is a k-algebra, V K becomes a K-algebra; if V is a module
over a k-algebra A, then V K becomes a module over AK in the natural way. The
following basic results give the interaction between base field extension and Hom
and tensor as well as their derived analogues.

Lemma 3.12. Let A be a k-algebra.
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(1) Let P •, Q• be complexes of left A-modules, with P bounded above. There is
a natural map

Ψ : RHomA(P,Q)K → RHomAK (PK , QK),

respecting any module structure obtained if P or Q is a complex of bimod-
ules. The map Ψ is an isomorphism if P is perfect.

(2) Let P • be a bounded above complex of right A-modules, and Q• a complex
of left A-modules. There is a natural isomorphism

Φ : (P ⊗L
A Q)K → PK ⊗L

AK QK

which respects any module structure obtained if P or Q is a complex of
bimodules.

When A is graded, the same results hold for graded modules and complexes, with
RHom replaced by RHom and ⊗L replaced by ⊗L.

Proof. (1) For any M,N ∈ A-Mod there is a natural map ψ : HomA(M,N)K →
HomAK (MK , NK) which respects any bimodule structures involved. The map ψ is
clearly an isomorphism when M = A, and one can readily deduce that the same is
true when M is finitely generated projective.

Since P is bounded above, we can replace it with a quasi-isomorphic bounded
above complex of projective modules. Then PK is a bounded above complex of pro-
jectiveAK-modules, so RHomA(P,Q)K = HomA(P,Q)K and RHomAK (PK , QK) =
HomAK (PK , QK). Thus one defines Ψ to be the map on complexes whose nth com-
ponent is the natural map

Ψn : [
∏

i

HomA(P
i, Qi+n)]⊗K →

∏

i

HomAK (P i ⊗K,Qi+n ⊗K)

induced by ψ. When P is perfect, we can assume that P is a bounded complex of
finitely generated projectives. In this case in Ψn above the product

∏
i is actually

finite and each P i is finitely generated. Since tensor products commute with finite
products (that is, direct sums), we see that Ψn is an isomorphism from the first
paragraph.

(2) This is a similar argument as part (1), but no additional hypotheses are
needed since tensor products commute with arbitrary direct sums. We leave the
details to the reader.

The proofs in the graded case are the same. �

We now study the behavior of homological smoothness under base field extension.
In fact we have the following more general result about how perfect modules behave
under extension of the base field. We do not know if part (2) of the following result
also holds without the graded hypothesis.

Proposition 3.13. Let A be a k-algebra, and let K be a field extension of k.

(1) If M is a perfect left A-module, then MK is a perfect AK -module.
(2) Suppose that A is graded with dimk A0 < ∞, and let M ∈ A-Gr be left

bounded. Then MK is a perfect left AK -module if and only if M is perfect
over A. In this case, the length of the minimal graded projective resolutions
of M over A and MK over AK are the same.

Proof. (1) Let P • → M be a projective resolution of M as a left A-module. If
M is perfect, then we can take P i to be finitely generated for all i and zero for
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i ≪ 0. The functor − ⊗k K is exact, and is easily seen to preserve the properties
of being projective and being finitely generated as a module. Then (P •)K is an
AK-projective resolution of AK , for which (P i)K is finitely generated for all i and
0 for i≪ 0. Thus MK is perfect.

(2) By part (1), it suffices to assume that MK is perfect and prove that M is.
The conditions on A and M ensure that we can take a minimal graded projective
resolution P • → M of M as a left A-module. Similarly as above, (P •)K is a
graded AK-projective resolution of MK . We claim that this is also a minimal
projective resolution. Suppose that N,P ∈ A-Gr are left bounded graded projective
modules. Let f : N → P be a graded A-module homomorphism with ker f ∈
J(A)N . Then f ⊗ 1 : NK → PK is a graded (AK)-module homomorphism and
clearly ker(f ⊗ 1) = (ker f) ⊗ K since − ⊗k K is exact. Recall that J(A) =
A≥1 ⊕ J(A0). Clearly AK

≥1 = (AK)≥1 ⊆ J(AK). Since J(A0) is nilpotent, so is

J(A0)
K and hence J(A0)

K ⊆ J(AK) as well. Thus J(A)K ⊆ J(AK). This easily
extends to projective modules to prove that for any left bounded graded projective
A-module Q, (J(A)Q)K ⊆ J(AK)(QK). Thus

ker(f ⊗ 1) = (ker f)⊗K ⊆ (J(A)N)K ⊆ J(AK)NK .

Since the condition that P • be minimal is that for each di : P i → P i−1 we have
kerdi ⊆ J(A)P i, we see that (PK)• is also minimal, as claimed. Now suppose
that MK is perfect. Then since MK has a finite (AK)-resolution by finitely gen-
erated projectives, the minimal graded projective resolution of MK must have this
property. So each (P i)K is a finitely generated AK-module, with (P i)K = 0 for
i ≪ 0. It follows that P i = 0 for i ≪ 0. It is also easy to see that (P i)K finitely
generated implies that P i is a finitely generated A-module, as follows. Let Q = P i

and suppose that Q =
⋃
Qj is a directed union of submodules. Then QK =

⋃
QK

j

is a directed union of the extended submodules. By finite generation of QK , we
have some QK

j = QK . Thus the quotient module QK/QK
j

∼= (Q/Qj)
K is zero. As

K is faithfully flat over k we have Q/Qj = 0, whence Q = Qj . Thus Q = P i is
finitely generated.

We see now thatM is perfect. The final statement on the lengths of the minimal
projective resolutions is also clear from the proof above. �

Corollary 3.14. Let A be a k-algebra, and let K be a field extension of k. If A
is a homologically smooth k-algebra, then AK is a homologically smooth K-algebra.
The converse holds if A is graded with dimk A0 <∞.

Proof. Note that (A⊗K)e ∼= Ae⊗K as (graded)K-algebras. Thus the result follows
immediately from Proposition 3.13, applied to the algebraAe and the moduleA. �

Next we wish to show that homological smoothness is preserved under tensor
products of algebras. For this we require the following observation.

Remark 3.15. Let R and S be k-algebras. For M ∈ R-Mod and N ∈ S-Mod,
suppose that P • is a projective R-module resolution ofM and Q• is a projective S-
module resolution ofN . As we are tensoring over a field k, the Künneth formula [49,
Theorem 3.6.3] yieldsHi(X⊗Y ) ∼=

⊕
p+q=iH

p(X)⊗Hq(Y ) for any bounded above
complexes X and Y . In particular, the tensor complex P ⊗ Q forms a projective
resolution of M ⊗N as a left R⊗ S-module.
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Proposition 3.16. If A and B are (graded) homologically smooth k-algebras, then
so is A⊗B.

Proof. Denote R = A ⊗ B, so that Re = Ae ⊗ Be. If A and B are homologically
smooth, we may fix finite length resolutions P • → A→ 0 and Q• → B → 0, whose
terms are finitely generated projective left modules over Ae and Be, respectively.
By Remark 3.15, the complex P ⊗ Q forms a projective Re-resolution of R, from
which we deduce that R is homologically smooth. �

The final operation preserving homological smoothness that we will investigate
is k-linear Morita equivalence. We say that two k-algebras are k-linearly Morita
equivalent if their left module categories are equivalent via a k-linear equivalence of
categories; thanks to standard Morita theory, this is clearly induced by a k-central
invertible bimodule.

Proposition 3.17. If A and B are k-linearly Morita equivalent k-algebras, then
A is a homologically smooth k-algebra if and only if B is.

Proof. Fix a k-central invertible (A,B)-bimodule U , so that U ⊗B − : B-Mod →
A-Mod and −⊗AU : Mod-A→ Mod-B are k-linear equivalences. Then the functor
U ⊗B − ⊗B U−1 gives a k-linear equivalence of categories from k-central (B,B)-
bimodules to k-central (A,A)-bimodules; that is, we have a linear equivalence from
Be-Mod to Ae-Mod. This is readily verified to preserve the tensor product of bi-
modules up to natural isomorphism, yielding a monoidal equivalence. In particular,
the tensor units B and A correspond under the equivalence.

It follows that A has a perfect resolution in Ae-Mod if and only if B has a perfect
resolution in Be-Mod, establishing the claim. �

3.3. Global dimension of homologically smooth algebras. We now turn our
attention to the global dimension of locally finite graded algebras. Recall that the
graded projective dimension of a left module M over a graded ring R, denoted
gr. pdim(M), is the minimal (possibly infinite) length of all graded projective reso-
lutions ofM , and that the graded left global dimension of R, denoted gr. gldiml(M),
is the supremum of gr. pdim(M) with M ranging over all graded left R-modules.

The next result shows that for the graded algebras which we consider in this
paper, one need not distinguish between left and right graded global dimensions,
nor between graded and ungraded global dimensions.

Proposition 3.18. Let A be a graded algebra with A0 finite-dimensional, and set
S = A/J(A).

(1) For any graded left A-module M that is bounded below, one has

pdim(M) = gr. pdim(M) = sup{n ∈ N | TorAn (S,M) 6= 0}.

Thus gr. gldiml(A) ≤ gldiml(A).
(2) The left and right graded global dimensions of A are equal; in fact,

gr. gldiml(A) = pdim(AS) = pdim(SA) = gr. gldimr(A).

(3) If S is a separable k-algebra, then

gldiml(A) = gr. gldiml(A) = pdim(AS) = pdim(AeA)

= gldimr(A) = gr. gldimr(A) = pdim(SA).
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Proof. For (1), note that sup{n | TorAn (S,M) 6= 0} ≤ pdim(M) ≤ gr. pdim(M).
Now let P • → M → 0 be a minimal graded projective resolution of M . Then
by Lemma 2.6, we see that TorAn (S,M) = 0 if and only if the term P−n in the

complex is zero, giving sup{n | TorAn (S,M) 6= 0} = gr. pdim(M). The inequality
gr. gldiml(A) ≤ gldiml(A) readily follows.

Part (2) follows from the results of [14, §5–6]. Note that similar results appear
in [28] and [33, Proposition 2.7].

To prove (3), we adapt the argument from the connected graded case given in [4].
Note that

pdim(AS) = gr. gldiml(A) ≤ gldiml(A) ≤ pdim(AeA),

where the first equality follows from part (2), the middle inequality from part (1),
and the final inequality from Lemma 3.2. Applying (1) to the left Ae-module A,
along with Lemmas 3.7 and 3.9(1), we see that

pdim(AeA) = sup{n | TorA
e

n (Ae/J(Ae), A) 6= 0} = sup{n | TorAn (S, S) 6= 0}.

As we saw in the proof of part (2), the quantity on the right-hand-side above is
pdim(AS) = pdim(SA). Thus we obtain

pdim(AS) = gr. gldiml(A) = gldiml(A) = pdim(AeA) = pdim(SA),

and the rest of the equalities follow by symmetry. �

It is well-known that any finite-dimensional algebra A with S = A/J(A) has
gldiml(A) = pdim(AS) = pdim(SA) = gldimr(A); for instance, see [24, Corol-
lary 5.60, Theorem 5.72]. If S is separable, then we can deduce directly from the
previous proposition that this global dimension is further equal to pdim(AeA).

Corollary 3.19. If A is a finite-dimensional k-algebra such that S = A/J(A) is
separable, then gldim(A) = pdim(AeA).

Proof. Considering A as a graded algebra concentrated in degree zero, this follows
immediately from Proposition 3.18(3). �

The following example shows that the hypothesis that S = A/J(A) is separable
cannot simply be omitted in some of our previous results. It makes use of the
fact that a module M over a Frobenius algebra A must have pdim(M) ∈ {0,∞}.
Indeed, because projective and injective A-modules coincide, any finite projective
resolution ofM of length greater than zero must split at the end, and therefore can
be replaced with a projective resolution of shorter length.

Example 3.20. Let S be a finite-dimensional, semisimple k-algebra that is not
separable. (For instance, S could be a non-separable field extension of a non-perfect
field k.) Then Se = S ⊗ Sop is a tensor product of Frobenius algebras and thus
is Frobenius [26, Exercise 3.12]. Because S is not separable, it is not projective
as a left Se-module. Because Se is Frobenius, it follows from the remark above
that pdim(SeS) = ∞. So S is not perfect as a left Se-module. On the other hand,
gldim(S) = 0 and S is perfect as a left S-module. Taking A = S we see that both
the implication (b) =⇒ (a) in Theorem 3.10 as well as part (3) of Proposition 3.18
can fail if we omit the assumption that S is separable.

Example 3.21. For Z-graded rings, not the N-graded rings we are restricting
to in this paper, it is easy to find examples whose graded global dimension and
ungraded global dimension are different. For example, a graded division ring such
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as the Laurent polynomial ring k[t, t−1] has graded global dimension 0, but global
dimension 1. We are unaware of an N-graded, locally finite algebra A whose global
dimension and graded global dimension are different.

The next result provides one further characterization of finite-dimensional ho-
mologically smooth algebras, in addition to those already given in Theorem 3.10.

Corollary 3.22. Let A be a locally finite graded algebra that is left noetherian; this
holds, in particular, if A is a finite-dimensional algebra with trivial grading. Then
A is homologically smooth if and only if S = A/J(A) is separable and A has finite
global dimension.

Proof. By Theorem 3.10 we know that A is homologically smooth if and only if S
is a separable algebra and S is perfect as a left A-module. Thus it is enough to
show, under the assumption that S is separable, that A has finite global dimension
if and only if S is perfect. Because A is left noetherian, the finite-dimensional
module AS is perfect if and only if it has finite projective dimension. The latter
holds (since S is separable) if and only if gldim(A) = gr. gldim(A) is finite, thanks
to Proposition 3.18, establishing the claim. �

It is also useful to note that the global dimension of a graded algebra bounds
the global dimension of its degree 0 part.

Lemma 3.23. Let A be a graded algebra with A0 finite-dimensional. If A has finite
graded global dimension d, then the global dimension of A0 is at most d.

Proof. As in Proposition 3.18(2), the left and right graded global dimensions of A
coincide, and similarly for A0. Thus it suffices to prove that gldiml(A0) ≤ d. Given
a left A0-module M , consider it as a graded left A-module concentrated in degree
zero. Because the projective dimension of M as a left A-module is at most d, it
follows from Lemma 3.8 that it also has projective dimension at most d as a left
A0-module, establishing gldiml(A0) ≤ d. �

Homologically smooth graded algebras need not have good ring-theoretic prop-
erties. Over a perfect field, we have seen that a locally finite graded algebra is
homologically smooth if and only if AS is a perfect module, and there are many
examples of finite global dimension algebras with finite GK-dimension but bad prop-
erties. One simple such example is A = k〈x, y〉/(yx). This is a connected graded
algebra of GK-dimension 2 over which AS = A/J(A) = k is perfect; however, it
is neither left nor right noetherian, nor is it semiprime. See [41, Example 2.1.7,
Exercise 2.4.3] for details. On the other hand, twisted Calabi-Yau algebras typi-
cally have good ring-theoretic properties when they also have finite GK-dimension.
The reasons for this are not yet well-understood in general, but we address the
noetherian property in particular for algebras of dimension d ≤ 2 in subsequent
sections of this paper.

4. Twisted Calabi-Yau algebras

In this section we provide some basic tools for the study of twisted Calabi-Yau
algebras, as we defined in Definition 1.2.
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4.1. Graded twisted Calabi-Yau algebras. Our main interest is in graded twisted
Calabi-Yau algebras. The following is the natural graded analogue of the twisted
Calabi-Yau condition.

Definition 4.1. Let A be an N-graded k-algebra. We say that:

(i) A is graded homologically smooth if it is graded perfect as a left Ae-module;
(ii) A is graded twisted Calabi-Yau (of dimension d) if it is graded homologically

smooth and

ExtiAe(A,Ae) ∼=

{
0, i 6= d

U, i = d

as graded right Ae-modules, for some graded-invertible bimodule U .

Similarly as in Remark 3.1, since there is an anti-isomorphism of Ae it is easy
to see that A is twisted Calabi-Yau of dimension d if and only if Aop is.

As is turns out, the graded and ungraded versions of the twisted Calabi-Yau
property are equivalent.

Theorem 4.2. Let A be a graded algebra. Then A is twisted Calabi-Yau of dimen-
sion d if and only if A is graded twisted Calabi-Yau of dimension d.

Proof. First note that by Lemma 2.4, A is homologically smooth if and only if it
is graded homologically smooth, and in case either condition is satisfied the inclu-
sions ExtiAe(A,Ae) ⊆ ExtiAe(A,Ae) of right Ae-modules are equalities for all i by

Lemma 2.4. For homologically smooth A, the graded bimodule U = ExtdAe(A,Ae)
is invertible if and only if it is graded-invertible, by Lemma 2.10. It follows imme-
diately that A is graded twisted Calabi-Yau algebra of dimension d if and only if it
is (ungraded) twisted Calabi-Yau of dimension d. �

The following general lemma will be useful in translating from conditions involv-
ing Ext to conditions in the derived category.

Lemma 4.3. Let A be a k-algebra.

(1) Let 0 6= M ∈ A-Mod be perfect. Then pdim(M) = max{i|ExtiA(M,A) 6=
0}.

(2) If M ∈ A-Mod is perfect and ExtiA(M,A) = 0 for i 6= d, then setting

N = ExtdA(M,A) we have RHomA(M,A) ∼= N [−d] in Db(Mod-A).
(3) Suppose that A is graded with dimk A0 < ∞. If M ∈ A-Gr is a bounded

below module with pdim(M) ≤ d, ExtiA(M,A) = 0 for i 6= d, and such that

N = ExtdA(M,A) satisfies dimkN < ∞, then M is perfect and part (2)
applies to show RHomA(M,A) = RHomA(M,A) ∼= N [−d] in Db(Gr-A).

Proof. (1) This is a standard result. Assume that M 6= 0. By definition we have
a finite projective resolution P • → M , with all P i finitely generated. Let c =
pdimA(M). We have

c = max{i|ExtiA(M,L) 6= 0 for some A-module L}.

If F is a free A-module surjecting onto L, from the long exact sequence we obtain
ExtcA(M,F ) 6= 0. Since the terms P i in the resolution ofM are finitely generated, it
follows from computing Ext with the resolution P of M that ExtcA commutes with

direct sums in the second coordinate, so that ExtcA(M,A) 6= 0. Since ExtiA(M,A) =
0 for i ≥ pdimA(M), the result follows.
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(2) The result is trivial if M = 0, so assume that M 6= 0. By part (1), we
have pdim(M) = d. Thus we can choose a projective resolution of M of the form
P • →M , where

P • = P−d → · · · → P 0.

Then RHomA(M,A) = HomA(P,A) is a complex which lives in complex degrees
0 to d. By assumption, RHomA(M,A) has cohomology only in degree d, where
the cohomology is N . It is now easy to see that there is a quasi-isomorphism
RHomA(M,A) ∼= N [−d].

(3) We may again assume that M 6= 0. Then pdim(M) = d, and it follows
from [33, Proposition 3.4] that M is (graded) perfect. Now RHomA(M,A) =
RHomA(M,A) by Lemma 2.4 so that the quasi-isomorphism in part (2) automati-
cally preserves the grading. �

Using the preceding lemma, it is convenient to reformulate the second condition
in the definition of (graded) twisted Calabi-Yau in terms of the derived category.

Lemma 4.4. A (graded) k-algebra A is twisted Calabi-Yau if and only if A is
homologically smooth and RHomAe(A,Ae) ∼= U [−d] in Db(Ae-Mod) (respectively,
in Db(Ae-Gr)) for some (graded) invertible bimodule U . Moreover, in this case
d = pdimAe(A).

Proof. We prove the ungraded version; the proof in the graded case is the same.
It is enough to assume that A is homologically smooth and prove that under this
assumption, for an invertible bimodule U , the following conditions are equivalent:

(ii) ExtiAe(A,Ae) ∼=

{
0, i 6= d

U, i = d

(ii′) RHomAe(A,Ae) ∼= U [−d] in Db(Ae-Mod).

If (ii′) holds, then by taking cohomology we obtain (ii). If (ii) holds, then since A
is a perfect Ae-module we obtain (ii′) from Lemma 4.3(2).

The last statement follows from Lemma 4.3(1). �

From now on we will use the derived category formulation of the definition of twisted
Calabi-Yau without further comment.

4.2. Basic operations preserving the twisted Calabi-Yau property. Next
we show that the twisted Calabi-Yau property is stable under several basic opera-
tions.

Let Z(A) denote the center of an algebra A. An (A,A)-bimodule U is said to
be Z(A)-central if, for all z ∈ Z(A) and all u ∈ U , we have zu = uz.

Lemma 4.5. Let A be a twisted Calabi-Yau algebra with Nakayama bimodule U .
Then U is a Z(A)-central (A,A)-bimodule. In particular, if A has a Nakayama
automorphism µ, then the restriction of µ to the center Z(A) is the identity.

Proof. Fix z ∈ Z(A) and denote r = z⊗1−1⊗zop ∈ Z(Ae). Let ρr : A→ A denote
the Ae-module homomorphism given by (left) multiplication by r. Because A is a
central (A,A)-bimodule, we have ρr = 0. It follows from [42, Proposition 6.18] that
the Z(Ae)-module endomorphism of ExtiAe(A,Ae) given by multiplication by r is
equal to

ExtiAe(ρr, A
e) : ExtiAe(A,Ae) → ExtiAe(A,Ae).
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Because ρr = 0, this is the zero morphism. Therefore U = ExtdAe(A,Ae) is a central
(A,A)-bimodule. �

We will discuss a number of operations that preserve the twisted Calabi-Yau
property. The first such operation is the direct sum.

Proposition 4.6. For algebras A and B, denote R = A ⊕ B. Then R is twisted
Calabi-Yau of dimension d if and only if both A and B are twisted Calabi-Yau of
dimension d, in which case the Nakayama bimodule of R is the direct sum of the
Nakayama bimodules of A and B (and if A and B have Nakayama automorphisms
µA and µB, then R has Nakayama automorphism µR = µA ⊕ µB).

Proof. First, suppose that both A and B are twisted Calabi-Yau of dimension d
with respective Nakayama bimodules U1 and U2. Then R is homologically smooth
by Proposition 3.11. Note that U1⊕U2 is an invertible (R,R)-bimodule with inverse
U−1
1 ⊕ U−1

2 . Applying Lemma 2.9 we have

RHomR(R,R
e) ∼= RHomAe(A,Ae)⊕ RHomBe(B,Be)

∼= U1[−d]⊕ U2[−d]

∼= (U1 ⊕ U2)[−d],

so that R is twisted Calabi-Yau of dimension d with Nakayama bimodule U1 ⊕U2.
In case U1 = 1AµA and U2 = 1BµB for Nakayama automorphisms µA and µB , then
we obtain U1 ⊕ U2 = 1RµR for µR = µA ⊕ µB.

Conversely, suppose that R is twisted Calabi-Yau of dimension d with U =
ExtdRe(R,Re); it follows from Proposition 3.11 that both A and B are homologically
smooth. Lemma 4.5 implies that the central idempotent z1 = (1, 0) ∈ A ⊕ B = R
centralizes U , so that also U ∼= U1 ⊕ U2 for U1 = z1U and U2 = (1 − z1)U , which
are respectively invertible bimodules over A and B. Now, using Lemma 2.8, we
have for the central idempotent z = z1 ⊗ zop1 ∈ Re that

RHomAe(A,Ae) ∼= RHomRe(zR,Re) ∼= zRHomRe(R,Re) = zU [−d] = U1[−d].

Thus A is twisted Calabi-Yau of dimension d, and the same is true of B by sym-
metry. �

We next show that the twisted Calabi-Yau property is a “geometric” property,
being preserved under extension of scalars. (This terminology is as in [18, Exer-
cise II.3.15], for instance.) Recall the notation MK = M ⊗ K for an A-module
M .

Proposition 4.7. Let A be a k-algebra and K/k a field extension.

(1) If A is twisted Calabi-Yau of dimension d, then so is AK .
(2) Suppose that A is graded with dimk A0 <∞. Then AK is (graded) twisted

Calabi-Yau of dimension d if and only if A is.

Proof. (1) Suppose that A is twisted Calabi-Yau of dimension d. From Corol-

lary 3.14 we see that AK is homologically smooth. Set U = ExtdAe(A,Ae). Then
using Lemma 3.12(2), since A is perfect as an Ae module we have

RHom(AK)e(A
K , (AK)e) ∼= RHom(Ae)⊗K(A⊗K, (Ae)⊗K)

∼= RHomAe(A,Ae)⊗K

∼= U ⊗K[−d].
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It follows from taking 0th cohomology in Lemma 3.12(2) that (M ⊗A N)K ∼=
MK ⊗AK NK for any modules M ∈ Mod-A and N ∈ A-Mod. In particular,
UK is an invertible AK -bimodule (with inverse (U−1)K), so that AK is twisted
Calabi-Yau of dimension d.

(2) One direction is a special case of part (1). To prove the converse, suppose
that AK is twisted Calabi-Yau of dimension d. Again, Proposition 3.13 tells us that
A is homologically smooth. Now the argument above shows that

RHom(AK)e(A
K , (AK)e) ∼= RHomAe(A,Ae)⊗K,

which by assumption is isomorphic to V [−d] for a graded invertible AK-bimodule V .
In particular, taking cohomology we see that RHomAe(A,Ae)⊗K has cohomology
only in degree d, so the same is true of RHomAe(A,Ae) since the functor − ⊗ K

is exact. Thus we have ExtiAe(A,Ae) = 0 for i 6= d and since A is perfect as an
Ae-module, Lemma 4.3(2) implies that RHomAe(A,Ae) ∼= U [−d] for some (A,A)-
bimodule U . Clearly U ⊗K ∼= V .

Now there are natural evaluation maps of bimodules φl : U⊗AHomA(U,A) → A
and φr : HomAop(U,A) ⊗A U → A, and U is an invertible bimodule if and only
if both φl and φr are bijections. Since UK = V is an invertible AK-module, it
is finitely generated and projective on both sides, and so is certainly perfect as
a left and right AK -module. Then U is perfect as a left and right A-module, by
Proposition 3.13(2). By taking 0th cohomology in Lemma 3.12(1), we get that the
natural map (HomA(U,A))

K → HomAK (UK , AK) is an isomorphism, and similarly
on the right. Using Lemma 3.12(1)(2) again, extending the base field in φl and φr
now yields the morphisms of (AK , AK)-bimodules UK⊗AKHomAK (UK , AK) → AK

and Hom(Aop)K (UK , AK) ⊗AK UK → AK , which are bijections since UK = V is
invertible. By the exactness of base field extension, φl and φr are also bijections,
so that U is invertible as required. Thus A is also (graded) twisted Calabi-Yau. �

Note in the proof above that if A has (graded) Nakayama automorphism µ, then
A⊗K has Nakayama automorphism µ⊗ idK .

Another operation that preserves the twisted Calabi-Yau property is the tensor
product of algebras. Before proving this we need the following technical lemma.

Lemma 4.8. Let R and S be k-algebras. For complexes P ∈ D−(R-Mod), N ∈
D(R-Mod), Q ∈ D−(S-Mod), J ∈ D(S-Mod), there is a natural map of complexes
of abelian groups

Φ : RHomR(P,N) ⊗ RHomS(Q, J) → RHomR⊗S(P ⊗Q,N ⊗ J),

respecting any extra module structure obtained if M,N,H, or J is a complex of
bimodules. The map Φ is an isomorphism if P and Q are perfect.

Proof. For left R-modules M and N and S-modules H and J , it is easy to see that
there is a natural map

φ : HomR(M,N)⊗HomS(H, J) → HomR⊗S(M ⊗H,N ⊗ J),

respecting any bimodule structures that arise. A similar argument as in the first
paragraph of the proof of Lemma 3.12 shows that φ is an isomorphism in case M
and H are finitely generated projective modules.

One may now replace P and Q by bounded above complexes of projectives
and proceed in the same spirit as the proof Lemma 3.12, obtaining the desired
isomorphism if P and Q are perfect. We omit the details. �
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Proposition 4.9. If A and B are (graded) twisted Calabi-Yau algebras of respec-
tive dimensions d1 and d2, then A⊗B is a (graded) twisted Calabi-Yau algebra of
dimension d1+d2 whose Nakayama bimodule is the tensor product of the Nakayama
bimodules of A and B. If A and B have Nakayama automorphisms µ1, µ2, respec-
tively, then A⊗B has Nakayama automorphism µ1 ⊗ µ2.

Proof. Proposition 3.16 implies that R = A ⊗ B is homologically smooth. Let U1

and U2 respectively denote the Nakayama bimodules of A and B, which are invert-
ible bimodules and therefore projective on each side. Now applying Lemma 4.8 in
the second isomorphism below, which gives an isomorphism since A is perfect over
Ae and B is perfect over Be, we obtain

RHomRe(R,Re) ∼= RHomAe⊗Be(A⊗B,Ae ⊗ Be)

∼= RHomAe(A,Ae)⊗ RHomBe(B,Be)

∼= U1[−d1]⊗ U2[−d2] = (U1 ⊗ U2)[−(d1 + d2)],

where these isomorphisms hold as complexes of right Ae-modules. Thus we see
that A is twisted Calabi-Yau of the desired dimension, and it is easy to verify the
behavior of Nakayama automorphisms from the above. �

A fundamental tool for the study of twisted Calabi-Yau algebras, and a key
motivation behind their definition, is Van den Bergh duality [47, 48]. Readers may
find an excellent survey of this topic in [23]. We record the derived version of this
duality below.

Lemma 4.10. Suppose A is (graded) twisted Calabi-Yau of dimension d, with

U = ExtdAe(A,Ae). Then for any complex of (graded) left (Ae, C)-bimodules M ,
one has a (graded) isomorphism

RHomAe(A,M) ∼= (U ⊗L
Ae M)[−d].

as complexes of right C-modules.

Proof. This is the same as in [47, Theorem 1], but without passing to cohomology.
Beginning with Lemma 2.12, we have:

RHomAe(A,M) ∼= RHomAe(A,Ae)⊗L
Ae M

∼= U [−d]⊗L
Ae M

∼= (U ⊗L
Ae M)[−d]. �

Adapting Ginzburg’s observation in [17, Remark 3.4.2], we may apply Van den
Bergh duality to show that the property of being twisted Calabi-Yau of dimension d
is Morita invariant, by providing an alternate characterization of such algebras.

Proposition 4.11. Let A be an algebra and U an invertible (A,A)-bimodule. Then
A is twisted Calabi-Yau of dimension d with Nakayama bimodule U if and only if
A is homologically smooth and, for every algebra C and for 0 ≤ i ≤ d, one has
natural isomorphisms of functors

TorA
e

i (U,−) ∼= Extd−i
Ae (A,−) : (Ae ⊗ Cop)-Mod → Mod-C.

Consequently, the property of being twisted Calabi-Yau of dimension d is preserved
under k-linear Morita equivalence.
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Proof. If A is twisted Calabi-Yau of dimension d, then A is homologically smooth
by definition, and satisfies the above isomorphisms by passing to cohomology in
Lemma 4.10. Conversely, suppose that A is perfect as an Ae-module and satisfies
the isomorphisms above. Evaluating these functors at the (Ae, Ae)-bimodule Ae

yields isomorphisms ExtiAe(A,Ae) ∼= TorA
e

d−i(U,A
e) as right Ae-modules for 0 ≤ i ≤

d. For i < d one has

ExtiAe(A,Ae) ∼= TorA
e

d−i(U,A
e) = 0

by flatness of Ae. For i = d we have

ExtdAe(A,Ae) ∼= TorA
e

0 (U,Ae) = U ⊗Ae Ae ∼= U,

as right Ae-modules. Thus A is twisted Calabi-Yau of dimension d with Nakayama
bimodule U .

Now suppose that A is twisted Calabi-Yau of dimension d with Nakayama bi-
module U , and suppose that an algebra B is k-linearly Morita equivalent to A.
Then B is homologically smooth by Proposition 3.17. As discussed in the proof
of that proposition, a k-linear equivalence of categories A-Mod → B-Mod in-
duces a monoidal k-linear equivalence F : Ae-Mod → Be-Mod. Because A and
B are the respective tensor units, we have F (A) ∼= B; also, V = F (U) must be
a k-central invertible (B,B)-bimodule. Given an algebra C, F also induces an
equivalence of categories (Ae ⊗ Cop)-Mod → (Be ⊗ Cop)-Mod by simply trans-
porting the right C-action on a left Ae-module X via F as an algebra morphism
Cop → EndAe(X) → EndBe(F (X)); with a slight abuse of notation we use F to
denote this equivalence as well. Now the isomorphism in the statement induces a
natural isomorphism

TorA
e

i (U, F−1(−)) ∼= Extd−i
Ae (A,F−1(−)) : (Be ⊗ Cop)-Mod → Mod-C.

Because F is an equivalence, it also preserves the construction of Ext and Tor spaces,
so that applying F to the previous isomorphism yields a natural isomorphism of
functors

TorB
e

i (V,−) ∼= Extd−i
Be (B,−) : (Be ⊗ Cop)-Mod → Mod-C.

Thus B is twisted Calabi-Yau of dimension d, as desired. �

4.3. Homological tools for finite-dimensional modules. This final subsec-
tion records some results that are of use for handling finite-dimensional modules
over (graded) twisted Calabi-Yau algebras. It concludes with a characterization of
twisted Calabi-Yau algebras of dimension 0.

The following result is a type of Serre duality formula. The idea of the next
result and its corollary were extracted from the proof of [21, Lemma 4.1]. We will
use the notation X∗ = RHomk(X, k) = Homk(X, k) below to denote the extension
of the k-dual to the derived category of k-vector spaces.

Proposition 4.12. Let A be a (graded) twisted Calabi-Yau algebra of dimen-

sion d, and set U = ExtdAe(A,Ae). Let M be a (graded) (A,B)-bimodule and
N a (graded) (A,C)-bimodule, with M finite-dimensional. Then there are (graded)
quasi-isomorphisms

RHomA(M,N) ∼=M∗ ⊗L
A (U ⊗A N)[−d] ∼= (M∗ ⊗A U)⊗L

A N [−d],
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and, for each integer i, we have

ExtiA(M,N) ∼= TorAd−i(M
∗, U ⊗A N) ∼= TorAd−i(M

∗ ⊗A U,N)

as (graded) (B,C)-bimodules.

Proof. Because M is finite-dimensional over k, there is a natural isomorphism of
(Ae, Bop ⊗ C)-bimodules Homk(M,N) ∼= N ⊗ M∗. Combining this observation
with Lemma 2.13 and Lemma 4.10 yields

RHomA(M,N) ∼= RHomAe(A,Homk(M,N)) (by Lemma 2.13(2))

∼= RHomAe(A,N ⊗M∗)

∼= U ⊗L
Ae (N ⊗M∗)[−d] (by Lemma 4.10)

∼=M∗ ⊗L
A (U ⊗L

A N)[−d] (by Lemma 2.13(1)),

and these are quasi-isomorphisms of complexes of right Bop ⊗ C-modules. By the
definition of twisted Calabi-Yau, U is invertible and hence projective as both a left
and a right A-module, so we obtain

M∗ ⊗L
A (U ⊗A N) ∼=M∗ ⊗L

A U ⊗L
A N

∼= (M∗ ⊗A U)⊗L
A N.

The isomorphisms between Ext and Tor are obtained by taking cohomology.
The proof in the graded case is exactly the same. Note that because M is finite-

dimensional and A is homologically smooth, M is perfect by Lemma 3.2. Thus in
the graded case there is no difference betweeen RHomA(M,N) and RHomA(M,N),
justifying the uniform statement of the result. �

In case both M and N above are finite-dimensional, we obtain the following,
more conventional Serre duality result.

Corollary 4.13. Keeping the hypotheses of Proposition 4.12, assume additionally
that N is finite-dimensional. Then we have (graded) quasi-isomorphisms

RHomA(M,N)∗ ∼= RHomA(U ⊗A N,M)[d]

and, for each integer i,

ExtiA(M,N)∗ ∼= Extd−i
A (U ⊗A N,M)

as (graded) (C,B)-bimodules.

Proof. Invoking Proposition 4.12, we compute as follows:

RHomA(M,N)∗ ∼= RHomk(RHomA(M,N), k)

∼= RHomk(M
∗ ⊗L

A (U ⊗A N), k)[d]

∼= RHomA(U ⊗A N,RHomk(M
∗, k))[d]

∼= RHomA(U ⊗A N,M)[d].

As before, the isomorphism relating the Ext groups is obtained by passing to co-
homology.

Again, the same proof applies in the graded case. �

We may apply the above to compute the global dimension of a twisted Calabi-
Yau algebra that has a nontrivial finite-dimensional representation, including locally
finite graded algebras.
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Corollary 4.14. Let A be a twisted Calabi-Yau algebra of dimension d. If A has a
nonzero finite-dimensional module, then gldiml(A) = gldimr(A) = d. In particular,
this holds if A is graded with dimk A0 <∞.

Proof. Recall from Lemma 4.4 that pdim(AeA) = d, so that the left and right
global dimensions of A are both at most d by Lemma 3.2(1). If A has a finite-
dimensional left module M 6= 0, then it also has a finite-dimensional right module
M∗ 6= 0. So by symmetry, it suffices to show that a finite-dimensional left A-module
M 6= 0 has projective dimension d. But this follows from Proposition 4.12, since
U = ExtdAe(A,Ae) is invertible and

ExtdA(M,A) ∼= TorA0 (M
∗, U) =M∗ ⊗A U 6= 0.

If A is graded with dimk A0 <∞, then A0 = A/A≥1 is a nonzero finite-dimensional
module and the argument above applies. Alternatively, one may conclude that d =
pdim(AeA) = gldiml(A) = gldimr(A) from Proposition 3.18(3), since S = A/J(A)
must be separable by Theorem 3.6. �

The conclusion of the corollary above may fail if A has no finite-dimensional
representations.

Example 4.15. For an integer n ≥ 1, let An denote the nth Weyl algebra over a
field k of characteristic zero. Then An is a Calabi-Yau algebra of dimension d = 2n
as explained in [43, Exercise 3.7.11], while the left and right global dimensions of
An are n [32, Theorem 5.8]. Furthermore, let Dn denote the division algebra of
quotients of An. Then Dn is a Calabi-Yau algebra of dimension d = 2n as discussed
in [51, Example 1.9(e) and p. 115], while gldim(Dn) = 0.

The following standard result will be useful in the applications of the duality
results above.

Lemma 4.16. Let S be a finite-dimensional semisimple k-algebra. Then S is a
symmetric Frobenius algebra; that is, S∗ = Homk(S, k) ∼= S as (S, S)-bimodules.

Proof. See [24, §16F]. �

We may use the duality results above to obtain information about the socle
of a graded module. For a graded left A-module M we let soc(M) denote the
graded socle of M , the largest graded semisimple submodule of M . Note that
soc(M) = {m ∈ M | J(A)m = 0} is the annihilator in M of the graded Jacobson
radical J(A).

Proposition 4.17. Let A be a graded algebra with dimk A0 <∞, which is a twisted
Calabi-Yau k-algebra of dimension d with Nakayama bimodule U . Set S = A/J(A),
and let AM be a graded left A-module. Then there is an isomorphism of graded left
S-modules (hence of left A-modules)

TorAd (S,M) ∼= U−1 ⊗A soc(M).

Proof. The finite-dimensional semisimple algebra S satisfies S∗ ∼= S as an (S, S)-
bimodule by Lemma 4.16, hence also as a graded left A-module. Because AS is
annihilated by J(A), any graded module homomorphism S → M has image anni-
hilated by J(A), and therefore has image in soc(M). Thus we have HomA(S,M) =
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HomS(S, soc(M)) = soc(M). Now applying Proposition 4.12, we have

TorAd (SA,AM) ∼= Ext0A(S
∗, U−1 ⊗A M)

∼= Ext0A(S,U
−1 ⊗A M)

= soc(U−1 ⊗A M)

= U−1 ⊗A soc(M)

as left S-modules, where we use in the last step that the graded autoequivalence
U−1 ⊗A − must preserve the graded socle of a module. �

In particular, it is rare for a twisted Calabi-Yau algebra to have a socle.

Corollary 4.18. Let A be a twisted Calabi-Yau algebra of dimension d.

(1) Suppose that A is graded with dimk A0 <∞. If d > 0, then soc(A) = 0.
(2) If A is a finite-dimensional algebra, then d = 0.

Proof. (1) Invoking Proposition 4.17 in the case where d > 0 yields U−1⊗Asoc(A) ∼=
TorAd (S,A) = 0. Because U is invertible, we obtain soc(A) = 0.

(2) If A is finite-dimensional, then we may consider A as a graded algebra with
A = A0. Because A is artinian, its (graded) socle is nonzero. It follows from
part (1) above that d = 0. �

We conclude this section by characterizing twisted Calabi-Yau algebras of di-
mension 0.

Theorem 4.19. For a k-algebra A, the following are equivalent:

(a) A is twisted Calabi-Yau of dimension 0;
(b) A is twisted Calabi-Yau and has finite k-dimension;
(c) A is Calabi-Yau of dimension 0;
(d) A is a separable k-algebra.

Proof. Clearly (c) =⇒ (a). For (a) =⇒ (d), note that if A is twisted Calabi-
Yau of dimension 0, then pdim(AeA) = 0 by Lemma 4.4, making A separable by
Lemma 3.3(3).

To see that (d) =⇒ (c), suppose that A is separable. Then AeA is projective,
and so A is certainly homologically smooth. As noted earlier, Lemma 3.3(5) shows
that a separable algebra must be finite-dimensional. Then we also know that Ae

is a finite-dimensional semisimple k-algebra, by Lemma 3.3(4). Since a separable
algebra must be semisimple by definition, we have A∗ ∼= A as (A,A)-bimodules in
Lemma 4.16. We now calculate that

HomAe(A,Ae) ∼= HomAe(A,Homk(A
e, k))

∼= Homk(A
e ⊗Ae A, k)

∼= Homk(A, k) ∼= A

as right Ae-modules. Furthermore, ExtiAe(A,Ae) = 0 for i > 0 as AeA is projective.
Thus A is Calabi-Yau of dimension 0, as desired. Since we already recalled that
a separable algebra is finite-dimensional, (d) =⇒ (b) as well. Finally, (b) =⇒ (a)
follows from Corollary 4.18(2). �

Graded twisted Calabi-Yau algebras of dimension 0 are essentially the same as
(ungraded) Calabi-Yau algebras of dimension 0, since the former must be trivially
graded.
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Corollary 4.20. A graded algebra A is (twisted) Calabi-Yau of dimension 0 if and
only if A = A0 and A is separable.

Proof. IfA = A0 is separable, then it is Calabi-Yau of dimension 0 by Theorem 4.19;
because the grading of A is trivial, it is clear that A is graded twisted Calabi-Yau
of dimension 0.

Conversely, suppose that A is graded twisted Calabi-Yau of dimension 0. Theo-
rem 4.2(1) shows that A is twisted Calabi-Yau of dimension 0. It follows from Theo-
rem 4.19 that A is separable, hence a finite-dimensional semisimple k-algebra. Thus
J(A) = 0; because A≥1 ⊆ J(A) for an N-graded algebra, we obtain A = A0. �

5. Artin-Schelter regularity for locally finite algebras

In this section, we study the relationship between the twisted Calabi-Yau prop-
erty and certain generalizations of the Artin-Schelter regular property for locally
finite graded algebras. It was shown in [37, Lemma 1.2] that a connected graded
algebra A is graded twisted Calabi-Yau if and only if it is Artin-Schelter regular
(not necessarily of finite GK dimension). Several possible generalizations of Artin-
Schelter regularity to the context of locally finite algebras have been proposed in
the literature. In this section we recall some of these and show that several of the
most natural generalizations are in fact equivalent. We then show that for any
locally finite graded k-algebra A, under a mild technical condition (that A is sep-
arable modulo its graded Jacobson radical), these notions of regularity are further
equivalent to the twisted Calabi-Yau condition.

5.1. Defining generalized Artin-Schelter regular algebras. For a graded al-
gebra B, we write B-gr for the category of finitely generated graded left B-modules;
similarly, gr-B is the corresponding category of finitely generated graded right B-
modules.

We begin with a technical lemma that will help us to relate the different notions
of regularity.

Lemma 5.1. Let A be a locally finite graded k-algebra with gr. gldim(A) = d. Let X

be the full subcategory of A0-gr consisting of modules M such that ExtiA(M,A) = 0

for i 6= d and ExtdA(M,A) ∼= N for some N ∈ gr-A0. Similarly, let Y be the full
subcategory of gr-A0 consisting of modules N such that ExtiAop(N,A) = 0 for i 6= d

and ExtdAop(N,A) =M for some M ∈ A0-gr.

(1) X can also be described as the full subcategory of A0-gr consisting of modules
M such that RHomA(M,A)[d] ∼= N for some N ∈ gr-A0. Similarly, Y can
be described as the full subcategory of gr-A0 consisting of modules N such
that RHomAop(N,A)[d] ∼= M for some M ∈ A0-gr. The objects in X and
Y are perfect.

(2) X and Y are closed under extensions and direct summands.
(3) The functors

RHomA(−, A)[d] : X
op → Y and

RHomAop(−, A)[d] : Yop → X

are mutually inverse, yielding a contravariant equivalence of categories be-
tween X and Y.
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(4) If M ∈ X is an (A0, C)-bimodule for some k-algebra C, then we have
RHomAop(RHomA(M,A), A) ∼=M as (A0, C)-bimodules.

Proof. (1) Since M is bounded below, we have pdim(M) = gr. pdim(M) ≤ d by
Proposition 3.18. This now follows directly from Lemma 4.3(3) and its right-sided
analog.

(2) This is an easy consequence of the definitions of X and Y and the long exact
sequence in Ext.

(3) Let M ∈ X . Since M is perfect of projective dimension at most d by part
(1), M is quasi-isomorphic to a complex of graded A-modules P • of the form
0 → P−d → · · · → P−1 → P 0 → 0, where each P i is a finitely generated graded pro-
jective A-module. Then N = RHomA(M,A)[d] is identified with a complex Q• of
the form 0 → Q0 → Q1 → · · · → Qd → 0, where Qi = HomA(P

i, A). Since the P i

are finitely generated, it readily follows that RHomAop(RHomA(P
•, A), A)) ∼= P •,

which means that RHomAop(N [−d], A) ∼=M , or equivalently RHomAop(N,A)[d] ∼=
M . Thus we have N ∈ Y.

The whole argument can be repeated starting with N ∈ Y and Q• to get that
M = RHomAop(N,A)[d] is in X , with RHomA(M,A)[d] ∼= N . It is now easy to
see that the functors RHomA(−, A)[d] and RHomAop(−, A)[d] yield a contravariant
equivalence between X and Y as claimed.

(4) Given c ∈ C, one way to calculate the left action of c on ExtdA(M,A) is
as follows. Right multiplication by c on M gives a morphism rc : M → M in
A-Gr. Let P • be the graded perfect complex quasi-isomorphic to M as in part (3).
Then rc lifts to a morphism of complexes r̂c : P • → P •. Applying HomA(−, A)
to the morphism of complexes, we get a morphism of complexes r̂c

∗ : Q• → Q•

where Q• = HomA(P
•, A); then taking cohomology induces a morphism of right A-

modules which is lc : N → N , the left action of c on the Ext groupN = ExtdA(M,A).
Of course, the analogous process on the other side shows how to calculate the
right action of c on ExtdAop(N,A). Since applying HomAop(HomA(−, A), A) to the
morphism of complexes r̂c : P

• → P • gives the same morphism of complexes back,
we see that the right action of c on RHomAop(RHomA(M,A), A) is the same as the
original right action on M , as required. �

We now show that a number of conditions that are natural possible general-
izations of the AS regular condition to the non-connected graded case are in fact
equivalent.

Theorem 5.2. Let A be a locally finite graded k-algebra with gr. gldimA = d and let
S = A/J where J = J(A) is the graded Jacobson radical. The following conditions
on A are equivalent:

(a) RHomA(−, A)[d] gives a bijection from the set of graded simple left A-
modules up to isomorphism to the set of graded simple right A-modules
up to isomorphism;

(b) RHomA(−, A)[d] gives a contravariant equivalence from A0-gr to gr-A0;
(c) RHomA(−, A)[d] gives a contravariant equivalence from S-gr to gr-S;
(d) RHomA(S,A)[d] ∼= V as right S-modules, for some invertible graded (S, S)-

bimodule V ;
(d′) RHomA(S,A)[d] ∼= V as (S, S)-bimodules, for some invertible graded (S, S)-

bimodule V ;
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(e) RHomA(A0, A)[d] ∼= (A∗
0 ⊗A0 W ) as right A0-modules, for some invertible

graded (A0, A0)-bimodule W ;
(e′) RHomA(A0, A)[d] ∼= (A∗

0⊗A0W ) as (A0, A0)-bimodules, for some invertible
graded (A0, A0)-bimodule W .

Proof. (a) =⇒ (b): This follows from Lemma 5.1(3) if we can show that in the
notation of that lemma, X = A0-gr and Y = gr-A0. Condition (a) gives that
M ∈ X for each graded simple left moduleM . Now X is closed under extensions as
noted in Lemma 5.1(2). Since A0 is artinian, the objects in A0-gr have finite length,
so it follows that X = A0-gr. By hypothesis every graded simple right module N
is of the form RHomA(M,A)[d] for some simple graded left module M , and as saw
in the proof of Lemma 5.1, this implies that RHomAop(N,A) ∼= M and so N ∈ Y.
Since Y is also closed under extensions, similarly we get Y = gr-A0 as required.

(b) =⇒ (a): this is obvious since a contravariant equivalence of Abelian cate-
gories preserves simple modules.

(b) =⇒ (c): This is immediate since S-gr is the full subcategory of semisimple
objects of A0-gr, gr-S is the full subcategory of semisimple objects of gr-A0, and a
contravariant equivalence preserves semisimple objects.

(b) =⇒ (e): As is well known, since A0 is a finite-dimensional k-algebra, the
functor G = Homk(−, k) = (−)∗ gives a contravariant equivalence from A0-gr to
gr-A0, with inverse G−1 = Homk(−, k) : gr-A0 → A0-gr. By (b), the functor
F = RHomA(−, A)[d] also gives such a contravariant equivalence. Thus F ◦G−1 :
gr-A0 → gr-A0 is a (covariant) equivalence of categories. As such, it must be of the
form −⊗A0 W for some graded invertible (A0, A0)-bimodule W , by Morita theory.
Applying this to the object A∗

0, (e) follows.
(c) =⇒ (d): This is virtually the same as the proof of (b) =⇒ (e), working

over the ring S instead. In this case we obtain RHomA(S,A)[d] ∼= S∗⊗S V for some
invertible (S, S)-bimodule V . However, since S is semisimple, we have S∗ ∼= S by
Lemma 4.16, and so S∗ ⊗S V ∼= V in gr-S.

(d) =⇒ (b): Suppose that RHomA(S,A)[d] ∼= V as right S-modules, where V is
an invertible graded (S, S)-bimodule. Let 1 = e1+ · · ·+ en be a decomposition of 1
as a sum of primitive orthogonal idempotents ei ∈ A0. Then S =

⊕n
i=1 Sei decom-

poses S as a direct sum of simple graded left modules. Consider the subcategories
X ⊆ A0-gr and Y ⊆ gr-A0 of Lemma 5.1. By hypothesis, S ∈ X . Since X is closed
under direct summands by Lemma 5.1(2), we get that all simple left A0-modules
are in X . As in the proof of Lemma 5.1, we also get V ∈ Y. Since V is invertible,
it must be a right generator over S, which forces it to include each indecomposable
projective right S-module as a summand. This is equivalent to saying that it must
contain every simple right A0-module as a direct summand. Since Y is also closed
under summands, every simple right A0-module is in Y. Now as in the argument
for (a) =⇒ (b), since X and Y are closed under extensions we get X = A0-gr and
Y = gr-A0 and (b) follows.

(e) =⇒ (b): In this case we have RHomA(A0, A)[d] ∼= A∗
0 ⊗A0 W , as right A0-

modules, for some invertible graded (A0, A0)-bimodule W . Again we consider the
subcategories X ⊆ A0-gr and Y ⊆ gr-A0 of Lemma 5.1. In this case the hypothesis
implies that A0 ∈ X . Since gr. gldimA = d, we have gldimA0 ≤ d by Lemma 3.23.
We claim now that every M ∈ A0-gr is in X . We prove the claim by induction on
projective dimension over A0. Since every finitely generated graded projective is a
direct summand of a finite rank graded free module, and X is closed under graded
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shifts, direct sums and direct summands, from A0 ∈ X we get P ∈ X for each
graded projective P ∈ A0-gr. If all M ∈ A0-gr of projective dimension ≤ e are in
X , with e < gldimA0, suppose thatM

′ ∈ A0-gr has pdimM ′ = e+1. Consider the
short exact sequence of graded modules 0 → K → P →M ′ → 0, where P →M ′ is
a projective cover of M ′ in A0-gr. Then pdimK ≤ e and so K ∈ X ; since P ∈ X
also, now the long exact sequence in Ext easily implies that M ′ ∈ X , completing
the induction step. Thus X = A0-gr as claimed.

Now Lemma 5.1 gives an equivalence of categories F : A0-gr → Y, where F =
RHomA(−, A)[d]. In particular, Y must be an Abelian category. For any object
N ∈ Y, since it has finite length as an A0-module, it must have finite length in
the category Y, and clearly lengthY(N) ≤ lengthAop

0
(N). Now note that setting

N = F (A0) = A∗
0 ⊗A0 W , we have

lengthA0
(A0) = lengthAop

0
(A∗

0) = lengthAop
0
(N) ≥ lengthY(N),

using that taking duals preserves length, as does the autoequivalence − ⊗A0 W .
On the other hand, since F is a contravariant equivalence, it also preserves length
and so lengthA0

(A0) = lengthY(N). Thus all terms in the displayed equation are
equal, and in particular lengthAop

0
(N) = lengthY(N). This means that N has the

same composition series over Aop
0 as it does in Y, so all of the simple Y-objects

occurring as composition factors of N are also simple over Aop
0 . Finally, since each

of the n simple A0-modules up to isomorphism is a composition factor of A0, each
of the n simple Y-objects is a composition factor of F (A0) = N . Thus every simple
Y-object is also simple over Aop

0 . Since Aop
0 also has n simple objects, we conclude

that Y = gr-A0, and (b) follows.
(e′) =⇒ (e) and (d′) =⇒ (d) are obvious.
(e) =⇒ (e′): We have RHomA(A0, A) ∼= A∗

0 ⊗A0 W [−d] as right modules, for

some invertible (A0, A0)-bimodule W . Let U = ExtdA(A0, A), which is an (A,A)-
bimodule isomorphic on the right to A∗

0 ⊗A0 W . We know that (b) holds since
(e) =⇒ (b). By the proof of Lemma 5.1, the inverse of the contravariant equiv-
alence RHomA(−, A)[d] : A0-gr → gr-A0 is RHomAop(−, A)[d] : gr-A0 → A0-gr.

Moreover, taking C = A0 in Lemma 5.1(4), we obtain ExtdAop(U,A) ∼= A0 as
(A0, A0)-bimodules. Suppose that x ∈ A0 satisfies xU = 0. Inspecting the manner

in which the induced right action of x on ExtdAop(U,A) is obtained in the proof of

Lemma 5.1(4), we find that right multiplication by x on ExtdAop(U,A) ∼= A0 is also
0. It follows that x = 1x = 0. So U is a torsionfree left A0-module.

Thus U is an (A0, A0)-bimodule that is isomorphic as a right A0-module to
A∗

0 ⊗A0 W , and which is torsionfree on the left. We may view the left A0-module
structure on U as being given by an algebra homomorphism

A0 → EndAop(UA) ∼= EndAop(A∗
0 ⊗A0 W ).

Since W is invertible, clearly EndAop(A∗
0 ⊗A0 W ) ∼= EndAop(A∗

0). Since (−)∗ is a
contravariant equivalence A0-gr → gr-A0, we have EndAop(A∗

0)
∼= (EndA0(A0))

op ∼=
((A0)

op)op ∼= A0. Thus the left structure of U is given by an algebra homomorphism
σ : A0 → A0, and the fact that U is torsionfree on the left implies that kerσ = 0.
Since A0 is a finite-dimensional algebra, σ is an isomorphism. We conclude from this
that U ∼= σ(A∗

0 ⊗A0 W ) as (A0, A0)-bimodules. This is the same as σ(A∗
0)

1 ⊗A0 W .

Now it is easy to check that σ(A∗
0)

1 ∼= 1(A∗
0)

σ−1

, so our bimodule is isomorphic
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to A∗
0 ⊗A0

σ−1

(W )1. Letting W ′ = σ−1

(W )1, we have that U ∼= A∗
0 ⊗A0 W

′ as
(A0, A0)-bimodules, where W ′ is graded invertible. Thus (e′) holds.

(d) =⇒ (d′): This is analogous to the proof of (e) =⇒ (e′), but a bit easier
since S∗ ∼= S; we leave it to the reader. �

Definition 5.3. Let A be a locally finite graded k-algebra. If A satisfies the
equivalent conditions in Theorem 5.2, we say that A is a generalized AS regular
algebra of dimension d, or sometimes just AS regular. If A ⊗K is a (generalized)
AS regular K-algebra of dimension d for all field extensions K of k, we call A
geometrically AS regular of dimension d.

Corollary 5.4. Let A be a locally finite graded k-algebra. Then A is (geometrically)
AS regular if and only if Aop is (geometrically) AS regular. In particular, all of the
opposite-sided versions of the properties (a)–(e′) in Theorem 5.2 are also equivalent
characterizations of AS regularity.

Proof. Assume that condition (b) of Theorem 5.2 holds, so F = RHomA(−, A)[d]
gives a contravariant equivalence from A0-gr to gr-A0. Thus in Lemma 5.1, we
must have X = A0-gr and Y = gr-A0. From the proof of the lemma, it is clear
that the quasi-inverse of F is given by G = RHomAop(−, A)[d], so that G gives
a contravariant equivalence from gr-A0 → A0-gr; that is, condition (2) also holds
for Aop. This shows that if A is generalized AS regular, then so is Aop, and the
converse is immediate. Then for every field extension k ⊆ K, A⊗kK is generalized
AS regular if and only if (A ⊗k K)op ∼= Aop ⊗k K is. Thus A is geometrically
AS regular if and only if Aop is geometrically AS regular. �

Remark 5.5. If a locally finite graded algebra A is generalized AS regular, then it
is finitely generated as a k-algebra. Indeed, as discussed in the proof of Theorem 5.2,
the semisimple left A-module S = A/J(A) is perfect. It follows from Lemma 2.3
that A is a finitely generated algebra.

There are a few other existing generalized notions of AS regular algebras in the
literature, which we now compare to Definition 5.3.

Remark 5.6. A notion of “generalized AS regular algebra” is given by Minamoto
and Mori in [33, Definition 3.15] as follows: a locally finite graded algebra A is
generalized AS regular of dimension d if gldimA = d, for any simple graded left
A-module M we have ExtiA(M,A) = 0 for i 6= d, and the functors ExtdA(−, A)

and ExtdAop(−, A) give inverse bijections between the set of simple graded left A-
modules and simple graded right A-modules. This property originated in work of
Martinez-Villa for graded quotient algebras of path algebras in [30] (see also his
work with Solberg [31]). Using Lemma 5.1(1), it is easy to see that this definition
is equivalent to condition (a) of Theorem 5.2, except that we assume the potentially
weaker condition gr. gldimA = d rather than gldimA = d. There may in fact be no
examples where these numbers are different, and as we saw in Proposition 3.18(3),
they are the same if S = A/J is separable. We prefer to assume the weaker
condition. Morally, this shows that our definition of generalized AS regular and the
one in [33, Definition 3.15] are essentially the same.

Remark 5.7. In [33], Minamoto and Mori also define a locally finite graded al-
gebra A to be “AS regular over A0” if gldimA = d, gldimA0 < ∞, and one has
RHomA0(A0, A)[d] ∼=

µ(A∗
0)(ℓ) as complexes of (A,A)-bimodules, for some ℓ ∈ Z
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and automorphism µ of A. See [33, Definition 3.1] and the comments following the
definition. Note that Lemma 3.23 shows that the hypothesis gldimA0 <∞ is a con-
sequence of gr. gldimA < ∞. Thus for A to be AS regular over A0 of dimension d
in the sense of Minamoto and Mori is equivalent to A being generalized AS regular
in our sense, together with the potentially stronger condition gldimA = d (rather
than our assumption gr. gldimA = d) and the condition that the invertible bimod-
ule in Theorem 5.2(e′) is of the particular formW = µA0(ℓ). As we discussed in the
previous remark, the difference between assuming gldimA = d or gr. gldimA = d is
minor and in most cases of interest irrelevant. However, it is a further restriction to
assume that W has the particular form µA0(ℓ). In Example 7.2 below, we provide
an instance where the bimodule W that actually occurs for an algebra satisfying
Theorem 5.2(e′) is not of this form. Thus our notion of generalized AS regular is
less restrictive than AS regularity over A0.

Condition (b) of Theorem 5.2 was also shown by Minamoto-Mori to be a con-
sequence of their definition of AS regularity over A0 in [33, Proposition 3.5]; our
theorem gives another proof of this. We also note that there is a notion of ASF-
regular algebra in [33], defined in terms of graded local cohomology, which Ueyama
recently showed [46, Corollary 2.11] to be equivalent for noetherian algebras A to
the condition of being AS regular over A0. It seems possible that a suitable “in-
vertible bimodule twist” of this property could be equivalent to the generalized
AS regular property, at least for noetherian algebras, but we do not pursue that
possibility here.

We have introduced conditions (c), (d), and (d′) of Theorem 5.2 because we
have found that certain formalisms are easier to handle over the semisimple algebra
S = A/J rather than over A0 as in (b), (e), (e′). Thus it is useful to know that
the analogous conditions defined relative to S still produce equivalent notions. For
this reason we also took condition (d′) as the “official” definition of generalized
AS regular in the introduction.

Remark 5.8. The generalized AS regular property is preserved by k-linear graded
Morita equivalence [44, Section 1]. The proof of this fact is similar to that of
Proposition 4.11; for instance, one can show that either condition (b) or (c) from
Theorem 5.2 is preserved under a graded k-linear equivalence between graded mod-
ule categories. However, we do not include the proof here. On the other hand,
Example 7.2 below illustrates that the property of AS regularity over A0 is not
preserved under such an equivalence.

5.2. Characterizing twisted Calabi-Yau algebras. The major goal of this sec-
tion is to relate the generalized AS regular property to the twisted Calabi-Yau
property for locally finite graded algebras. This will be achieved in Theorem 5.15
below, where we show that the twisted Calabi-Yau property is equivalent to the
geometrically AS regular property.

We require several technical lemmas in preparation for that theorem.

Lemma 5.9. Let A be a homologically smooth (graded) algebra, and let X be a
finite-dimensional (A,A)-bimodule.

(1) RHomAe(A,Ae)⊗L
AX

∼= RHomAop(X∗, A) as complexes of (graded) (A,A)-
bimodules.

(2) X ⊗L
A RHomAe(A,Ae) ∼= RHomA(X

∗, A) as complexes of (graded) (A,A)-
bimodules.
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Proof. We prove part (1), the proof of part (2) being symmetric. Consider the
bimodule A⊗A as a left Ae-module via the “outer” structure (c⊗ dop)(a1 ⊗ a2) =
ca1 ⊗ a2d and as a right Ae-module via the “inner” structure (a1 ⊗ a2)(c⊗ dop) =
a1c⊗ da2. In this way, we have an isomorphism A⊗A ∼= Ae of (Ae, Ae)-bimodules.
Restricting scalars along the natural homomorphism idA ⊗1: A → A ⊗ Aop = Ae,
this makes the right Ae-module A ⊗ A into a right A-module under the action
(a1 ⊗ a2) · c = a1c⊗ a2. Then we have the quasi-isomorphism

(5.10) Ae ⊗L
A X

∼= (A⊗A)⊗L
A X = (A⊗L

A X)⊗A ∼= X ⊗A

as complexes of (Ae, Ae)-bimodules.
Next, we consider the (Ae, Ae)-bimodule X∗ ⊗ A with similar “outer” left Ae-

action and “inner” right Ae-action. We have the following quasi-isomorphisms of
(Ae, Ae)-bimodules, where the first is an adjoint isomorphism:

RHomAop(X∗ ⊗A,A) ∼= RHomk(X
∗,RHomAop(A,A))

∼= RHomk(X
∗, A)(5.11)

∼= X∗∗ ⊗A ∼= X ⊗A.

From Lemma 2.13(1) we further obtain quasi-isomorphisms

(5.12) (X∗ ⊗A)⊗L
Ae A ∼= X∗ ⊗L

A A⊗L
A A

∼= X∗

as complexes of (A,A)-bimodules.
Finally, since A is homologically smooth, it is a perfect object in the derived

category of graded left Ae-modules. Thus using Lemma 2.12(2) along with the
preceding observations, we have isomorphisms of (A,A)-bimodules as follows:

RHomAe(A,Ae)⊗L
A X

∼= RHomAe(A,Ae ⊗L
A X) by Lemma 2.12(2)

∼= RHomAe(A,X ⊗A) by (5.10)

∼= RHomAe(A,RHomAop(X∗ ⊗A,A)) by (5.11)

∼= RHomAop((X∗ ⊗A)⊗L
Ae A,A) by adjointness

∼= RHomAop(X∗, A). by (5.12)

Note that in the first line, Lemma 2.12(2) as stated only gives an isomorphism of
right A-modules. The left A-module structure comes from the right Aop structure
of Ae, and it is easy to see that it is also preserved by the given isomorphism.

In the graded case, since A is perfect as an Ae-module andX∗ is perfect as a right
or left A-module by Lemma 3.2, there is no difference between RHom and RHom in
the statement, and it is routine to see that all of the canonical isomorphisms used
above preserve grading. �

Lemma 5.13. Let A be a graded algebra with A0 finite-dimensional, and denote
J = J(A) and S = A/J . Let U be a graded k-central (A,A)-bimodule such that
both AU and UA are projective. Suppose that (S ⊗A U)J = 0 and J(U ⊗A S) = 0.
If V = U ⊗A S is an invertible (S, S)-bimodule, then U is an invertible (A,A)-
bimodule.

Proof. As in the proof of Lemma 2.11(1), from the hypothesis that (S ⊗A U)J =
0 = J(U ⊗A S) we may deduce that UJ = JU and that S ⊗A U ∼= U ⊗A S = V
as (A,A)-bimodules. Since V is invertible, it is a finitely generated module over S;
thus U is a finitely generated A-module by Nakayama’s Lemma.
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Note that, as complexes of (A,A)-bimodules, we have

S ⊗L
A RHomAop(U,U) ∼= RHomAop(U, S ⊗L

A U)

∼= HomAop(U, S ⊗A U)

∼= HomAop(S ⊗A U, S ⊗A U),

where the first isomorphism follows from Lemma 2.12 (applied to the opposite
side) since UA is (finitely generated projective and hence) perfect, the second iso-
morphism follows from projectivity of UA, and the last isomorphism holds since
JU is in the kernel of any homomorphism U → S ⊗A U ∼= U/JU . Taking 0th
cohomology we obtain an isomorphism

S ⊗A HomAop(U,U) ∼= HomAop(S ⊗A U, S ⊗A U) = HomSop(V, V )

which is given by the natural map.
Now that we know S ⊗A EndAop(U) ∼= EndSop(V ) in the natural way, we obtain

a commutative diagram

A
φ

//

π

��

EndAop(U)

ρ

��

S
φ

// EndSop(V )

where φ(a) is left multiplication by a, the bottom row is formed from applying
S ⊗A − to the top row and using the isomorphism above, and the vertical arrows
are the natural quotient maps.

We claim that the projective right module UA is a generator, or equivalently, that
each indecomposable graded projective of A occurs as a summand of UA. Recall
that the indecomposable projective graded right A-modules are the modules eiA,
where 1 = e1 + · · · + en is a decomposition of 1 as a sum of primitive orthogonal
idempotents in A0. Each lies over a simple S-module eiS = eiA⊗AS, and eiA ∼= ejA
if and only if eiS ∼= ejS. Since U⊗AS = V is a generator over S, each of the distinct
simple right modules up to isomorphism occurs as a summand. Thus each of the
distinct indecomposable graded projective right A-modules occurs as a summand
of U . So U is a progenerator on the right. Since V = S⊗AU as well, by symmetry,
U must also be a progenerator on the left.

Now by standard Morita theory, to see that U is invertible it suffices to show that
the map φ in the diagram above is an isomorphism. Since U is a left progenerator,

AU is torsionfree and so the map φ is injective. The map φ is an isomorphism
since V is an invertible (S, S)-bimodule; in particular, φ is surjective. Then φ is
surjective by Nakayama’s Lemma. Hence φ is an isomorphism as required. �

We need the following fact concerning minimal complexes of projectives. Similar
results are well-known for complexes over certain kinds of rings but we are unaware
of a reference that works in the generality we need here. If P • is a complex of
graded projective left modules over a locally finite graded algebra A with graded
Jacobson radical J = J(A), we say P is minimal if im dn ⊆ JPn−1 for all n. This
is equivalent to the complex S⊗AP

• having all of its differentials equal to 0, where
S = A/J . Note that if P • → M is a graded projective resolution of the module
M , then it is a minimal graded projective resolution if and only if P • is a minimal
complex.
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Lemma 5.14. Let A be a locally finite graded algebra, with graded Jacobson radical
J = J(A). Let S = A/J and assume that S is separable. Let P • be a bounded
complex of graded projective left A-modules, where each P i is left bounded and
locally finite, but not necessarily finitely generated as an A-module. Then P • is
quasi-isomorphic to a bounded minimal complex of projectives Q•.

This result is well known in the connected graded case. We omit the proof,
but the reader is referred to [50, Proposition 13.2.6] for a proof of a dual version
regarding minimal injective complexes.

We are now ready to relate the twisted Calabi-Yau condition to the generalized
AS regular condition for locally finite graded algebras. Our arguments follow the
precedent set in [51] and [37, Lemma 1.2].

Theorem 5.15. Let A be a locally finite graded k-algebra and set S = A/J(A).
Then the following are equivalent:

(a) A is graded twisted Calabi-Yau of dimension d;
(b) A is generalized AS regular of dimension d and S is a separable k-algebra;
(c) A is geometrically AS regular of dimension d.

Such an algebra has left and right global and graded global dimensions equal to d,
and is a finitely generated k-algebra.

Proof. (a) =⇒ (c): If A is graded twisted Calabi-Yau of dimension d, then any
base field extension A⊗K is twisted Calabi-Yau over K by Proposition 4.7. Thus
to establish (c), it suffices to assume that A is a locally finite twisted Calabi-
Yau algebra A of dimension d and to show that A is generalized AS regular of
dimension d. Let U = ExtdAe(A,Ae), which is an invertible (A,A)-bimodule by
assumption. Recall from Lemma 4.16 that S ∼= S∗. Using Proposition 4.12, we
compute

ExtiA(S,A)
∼= TorAd−i(S

∗ ⊗A U,A) ∼= Tord−i(S ⊗A U,A).

This is equal to zero for i 6= d because A is flat, while for i = d we have the
isomorphism of graded (A,A)-bimodules

ExtdA(S,A)
∼= TorA0 (S ⊗A U,A) = S ⊗A U.

By Lemma 4.3, we obtain RHomA(S,A) ∼= S ⊗A U [−d] as complexes of graded
(A,A)-bimodules. By Lemma 2.11(2), W = S ⊗A U is a graded-invertible (S, S)-
bimodule. Thus A satisfies condition (d′) of Theorem 5.2, so A is generalized
AS regular of dimension d.

(c) =⇒ (b): If A is a geometrically AS regular k-algebra, then clearly it is
generalized AS regular. For any field extensionK/k, because the AS regular algebra
AK = A ⊗K has graded global dimension d, it follows from Lemma 3.23 that the
finite-dimensional K-algebra (AK)0 = (A0)

K has finite global dimension (at most
d). Lemma 3.4 implies that A0 is homologically smooth over k, so that Rickard’s
Theorem 3.6 implies that A0/J(A0) = A/J(A) = S is separable.

(b) =⇒ (a): Let A be generalized AS regular of dimension d, and assume that S
is separable over k. By condition (d′) of Theorem 5.2, there is an invertible (S, S)-
bimodule V such that RHomA(S,A) ∼= V [−d] as complexes of (S, S)-bimodules.
This implies that S is perfect as a left A-module by Lemma 4.3. Then by The-
orem 3.10, A is graded homologically smooth. Similarly, since we know that the
opposite-sided version of condition (d′) of Theorem 5.2 also holds by Corollary 5.4,



GRADED TWISTED CY ALGEBRAS ARE GENERALIZED AS REGULAR 43

we also have RHomAop(S,A) ∼= W [−d] as complexes of (S, S)-bimodules, for some
invertible (S, S)-bimodule W .

Now applying Lemma 5.9(1) with X = S, recalling that S ∼= S∗ by Lemma 4.16,
we obtain quasi-isomorphisms

RHomAe(A,Ae)⊗L
A S

∼= RHomAop(S∗, A) ∼= RHomAop(S,A) ∼=W [−d]

as complexes of graded (A,A)-bimodules. Similarly, applying Lemma 5.9(2) with
X = S yields S ⊗L

A RHomAe(A,Ae) ∼= V [−d] as complexes of graded (A,A)-
bimodules.

Now since A is homologically smooth, P • = RHomAe(A,Ae) is a bounded com-
plex, consisting of finitely generated graded projective right Ae-modules. In par-
ticular, each P d is left bounded and locally finite. Now by a right-sided version
of Lemma 5.14, as a complex of graded right A-modules P • is quasi-isomorphic
to a minimal complex of graded projective right A-modules Q•. In particular, the
complex Q• ⊗A S has zero differentials. Since this complex is quasi-isomorphic
to W [−d] as complexes of graded right A-modules, comparing cohomology gives
Qd ⊗A S ∼= W and Qi ⊗A S = 0 for i 6= d, so that Qi = 0 for i 6= d by
Nakayama’s Lemma. In particular, Q• and consequently RHomAe(A,Ae) have
cohomology only in degree d. By Lemma 4.3, RHomAe(A,Ae) ∼= U [−d] for the

(A,A)-bimodule U = Hd(P •) = ExtdAe(A,Ae). The quasi-isomorphisms above
show that U ⊗A S ∼=W as (A,A)-bimodules.

A symmetric argument shows that S ⊗A U ∼= V as (A,A)-bimodules; in partic-
ular, J(U ⊗A S) = 0 and (S ⊗A U)J = 0. We know that U is projective as a right
A-module, since U ∼= Qd as right modules, in the notation of the previous para-
graph; by symmetry, it is also projective as a left A-module. Thus the hypotheses
of Lemma 5.13 hold, and we conclude that U is an invertible (A,A)-bimodule (and,
of course, that V ∼=W ). This establishes (a).

Finally, when (a) holds, then since A is finitely generated as an algebra by
Lemma 3.2(3), its graded and ungraded global dimensions are equal by Proposi-
tion 3.18, and these dimensions are in fact equal to d by Corollary 4.14. �

Remark 5.16. If A is graded and locally finite, then the twisted Calabi-Yau prop-
erty is certainly stricter than the generalized AS regular property in general. For if
A = S is a finite-dimensional semisimple k-algebra that is not separable, considered
as a graded algebra concentrated in degree zero, then A is easily seen to be general-
ized AS regular; but Corollary 4.20 shows that A is not graded twisted Calabi-Yau
of dimension 0, for it fails to be homologically smooth over k, as shown in Exam-
ple 3.20. On the other hand, if the field k is perfect, then every finite-dimensional
semisimple k-algebra is separable, which makes the twisted Calabi-Yau and gener-
alized AS regular properties equivalent in Theorem 5.15.

In [5], Bocklandt takes the approach of defining Calabi-Yau algebras in terms
of derived categories of finite-dimensional modules being Calabi-Yau triangulated
categories [21]. One hopes that the statement of Theorem 5.15 could be extended to
include a further equivalent condition that the derived category of finite-dimensional
graded left A-modules forms a “twisted Calabi-Yau triangulated category.” An
attempt to define such categories was made in [38], but further work to develop the
theory of such categories must be done before such an equivalence can be carried
out. This is partly due to the fact that [38] worked only in the setting of twisted
Calabi-Yau algebras that possess a Nakayama automorphism. But there is still a
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more fundamental question of whether that definition could or should be modified
to ensure uniqueness of the Nakayama autoequivalence; see [38, Section 2.5].

5.3. Operations preserving generalized Artin-Schelter regularity. We showed
earlier that the tensor product of two twisted Calabi-Yau algebras is again twisted
Calabi-Yau in Proposition 4.9. The analogous statement for generalized AS regular
algebras is of course false; if E is a finite-dimensional non-separable extension of k,
then E is generalized AS regular of dimension 0, while E ⊗k E has infinite global
dimension and so certainly cannot be generalized AS regular. However, by analogy
with the fact that the tensor product of a separable algebra with a semisimple alge-
bra is semisimple, one might suspect that the tensor product a locally finite graded
twisted CY algebra with a generalized AS regular algebra is again generalized AS
regular. This is indeed the case, and can be established using a suitable adaptation
of the method of proof used in Proposition 4.9.

Proposition 5.17. Let A1 and A2 be graded algebras. If A1 is generalized AS reg-
ular of dimension d1 and A2 is twisted Calabi-Yau of dimension d2, then A1 ⊗A2

is generalized AS regular of dimension d1 + d2.

Proof. Denote Ji = J(Ai) and Si = Ai/Ji for i = 1, 2, as well as J = J(A1 ⊗ A2)
and S = (A1 ⊗ A2)/J . By Theorem 5.15, A2 is generalized AS regular and S2 is
separable. It follows from Lemma 3.7 that J = J1⊗A2+A1⊗J2 and S ∼= S1⊗S2.

From Theorem 5.2(d) we have invertible graded (Si, Si)-bimodules Vi such that
RHomAi

(Si, A)[di] ∼= Vi. Note that each Si is perfect as a right Ai-module by
Lemma 5.1(1). Thus we may apply Lemma 4.8 in the following sequence of quasi-
isomorphisms:

RHomA1⊗A2(S,A1 ⊗A2) ∼= RHomA1⊗A2(S1 ⊗ S2, A1 ⊗A2)

∼= RHomA1(S1, A1)⊗ RHomA2(S2, A2)

∼= V1[−d1]⊗ V2[−d2] = (V1 ⊗ V2)[−(d1 + d2)].

Since V1 ⊗V2 has inverse bimodule V −1
1 ⊗V −1

2 over A1 ⊗A2, we find that A1 ⊗A2

is generalized AS regular of dimension d1 + d2, as desired. �

This directly applies to show, as one might expect, that generalized AS regularity
is preserved when passing to polynomial rings.

Corollary 5.18. If a graded algebra A is generalized AS regular of dimension d,
then A[t] is generalized AS regular of dimension d+ 1.

Proof. As it is well-known that k[t] is Calabi-Yau of dimension 1 (see also Theo-
rem 6.11 with S = k and V = k(−1)), it follows from the previous proposition that
A[t] ∼= A⊗ k[t] is generalized AS regular of dimension d+ 1. �

As mentioned in Section 1 and as discussed in [33], regularity properties in the
context of non-connected locally finite graded algebras provide an avenue to connect
noncommutative algebraic geometry with the study of finite-dimensional algebras.
To encourage further investigation into this interesting connection, we pose the
following question that is of a fundamental nature, but which remains largely open.

Question 5.19. For which finite-dimensional algebras B is there a locally finite
generalized AS regular algebra A of dimension d such that B ∼= A0?
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While the answer for d = 0 is obviously the class of semisimple algebras B, we
do not even know the answer in case d = 1.

Note that the analogous question for twisted Calabi-Yau algebras of dimension d
would follow from an answer to the above by imposing the extra condition that
B/J(B) is separable, thanks to Theorem 5.15. In the twisted Calabi-Yau case, the
answer for d = 0 is given in Theorem 4.19 and for d = 1 is given in Theorem 6.11
below. See Example 7.3 below for a class of examples A which are Calabi-Yau of
dimension 2 and have a more interesting A0.

6. Applications to algebras of dimension at most 2

In this section, we will apply the tools developed in preceding sections to the the
study of twisted Calabi-Yau algebras of dimension 1 and 2. (Recall that the twisted
Calabi-Yau algebras of dimension 0 are fully characterized as separable algebras
by Theorem 4.19.) We will show that a locally finite graded twisted Calabi-Yau
algebraA of dimension d is noetherian in case either d = 1, or d = 2 and A has finite
GK dimension. By establishing this result before attempting any classification of
low-dimensional twisted Calabi-Yau algebras, we emphasize that this result is of
a structural nature, rather than by exhaustively listing all possible algebras. We
then conclude with a characterization of graded twisted Calabi-Yau algebras of
dimension 1 as certain tensor algebras.

6.1. The noetherian property in dimension d ≤ 2. Our approach to showing
that a graded algebra is noetherian is to show that every graded noetherian module
is finitely presented. This is inspired by Cohen-type arguments, using the key idea
from [39, Theorem 4.5].

Lemma 6.1. A graded k-algebra A is left noetherian if and only if every graded
noetherian left A-module is finitely presented.

Proof. Suppose that every graded noetherian left A-module is finitely presented,
and assume for contradiction that A is not left noetherian. Then there exists a
graded left ideal I ⊆ A that is not finitely generated; see [34, II.3] or [35, Theo-
rem 5.4.7]. Using Zorn’s Lemma, we may pass to a maximal such I. Then A/I
is a graded noetherian left A-module and thus is finitely presented. But then I
is finitely generated (by Schanuel’s Lemma, for instance), a contradiction. The
converse is clear. �

Now assume that A is a graded algebra of finite graded global dimension d with
dimk A0 <∞, and letM be a noetherian graded left module. Consider the minimal
graded projective resolution of M ,

(6.2) 0 → P−d → · · · → P−1 → P 0 →M.

If A is to be left noetherian, then one expects all of the P i to be finitely generated.
Thus a valid approach to proving that A is left noetherian would be to prove by
descending induction that the P i are finitely generated. The next result illustrates
how the twisted Calabi-Yau property takes care of the “base case” of this proposed
inductive argument.

Proposition 6.3. Let A be a locally finite graded twisted Calabi-Yau algebra of
dimension d, and let AM be a graded left A-module. If soc(M) is a finitely gener-
ated module (for example, if M is noetherian), then the term P−d in the minimal
projective resolution (6.2) of M is finitely generated.
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Proof. Set S = A/J(A) and let U be the Nakayama bimodule of A. From Propo-
sition 4.17 we have

TorAd (S,M) ∼= U−1 ⊗A soc(M).

Because U−1 is invertible, soc(M) is finitely generated as a module if and only if
U−1 ⊗A soc(M) is. Also, the semisimple left A-module U−1 ⊗A soc(M) is a direct
sum of simple modules over the finite-dimensional algebra A/J(A) = S, each of
which is finite-dimensional. Thus U−1 ⊗A soc(M) is finitely generated if and only
if it is finite-dimensional, so that the claim follows from Lemma 2.6. �

This allows us to show that graded twisted Calabi-Yau algebras of dimension 1
are noetherian.

Corollary 6.4. Let A be a locally finite graded twisted Calabi-Yau algebra of di-
mension 1. Then A is noetherian.

Proof. Let AM be a graded noetherian left module with minimal projective reso-
lution

0 → P−1 → P 0 →M.

Certainly P 0 is finitely generated because M is. Proposition 6.3 implies that P−1

is finitely generated. HenceM is finitely presented. It follows from Lemma 6.1 that
A is left noetherian. By symmetry, A is also right noetherian. �

The dimension 2 case requires us to know a bit more information about the
GK dimension of graded projective modules. In the companion paper [40], we
study in detail the basic properties of the Gelfand-Kirillov dimension of graded
twisted Calabi-Yau algebras. There we establish the following fact.

Lemma 6.5. (See [40, Proposition 7.4].) Let A be a graded, locally finite, twisted
Calabi-Yau k-algebra of dimension 2. Suppose that GKdim(A) <∞. Let

P1
d1−→ P2

d2−→ P3

be an exact sequence of projectives in Gr-A. If P1 and P3 are finitely generated,
then so is P2.

We now proceed to show that graded twisted Calabi-Yau algebras of global
dimension 2 with finite GK dimension are noetherian.

Theorem 6.6. Let A be a locally finite graded twisted Calabi-Yau algebra of di-
mension 2. Then A is noetherian if and only if it has finite GK dimension.

Proof. Assume GKdim(A) <∞. LetM be a noetherian graded left A-module with
minimal projective resolution

0 → P−2 → P−1 → P 0 →M.

Because M is finitely generated, so is P 0. By Proposition 6.3, we see that P−2 is
also finitely generated. Now by Lemma 6.5, P−1 is finitely generated, so that M
is finitely presented. Thus A is left noetherian by Lemma 6.1; by symmetry, A is
also right noetherian.

Conversely, if A is noetherian, then GKdim(A) <∞ by [40, Proposition 4.4]. �



GRADED TWISTED CY ALGEBRAS ARE GENERALIZED AS REGULAR 47

Remark 6.7. A direct consequence of Theorem 6.6 and Proposition 4.7 is that
if A is a locally finite graded twisted Calabi-Yau k-algebra of dimension d ≤ 2
having finite GK dimension, then for every field extension K/k the algebra A⊗K
is noetherian. Following our earlier terminology, this property could be called
“geometrically noetherian”, but the term “stably noetherian” has also been used
in the literature [3]. This makes it tempting to posit that such algebras are in fact
strongly noetherian, that is, that A⊗R is noetherian for all commutative noetherian
k-algebras R. To this end, it would also be interesting to study graded twisted
Calabi-Yau R-algebras over a general commutative ring R, under the assumption
that A =

⊕∞
n=0An is graded with each An a finitely generated projective R-

module. It seems likely that a number of results proved in the preceding sections
could generalize (with suitable modification) to this general setting.

We also wonder whether the previous theorem can be extended to the ungraded
case.

Question 6.8. Let A be a (not necessarily graded) twisted Calabi-Yau algebra of
dimension d ≤ 2. If A has finite GK dimension, must A be noetherian?

6.2. Twisted CY-1 algebras are tensor algebras. Next, we give a structural
characterization of locally finite graded twisted Calabi-Yau algebras of dimension
d = 1 as certain tensor algebras. Given a semisimple algebra S and a finite-
dimensional (S, S)-bimodule V , the tensor algebra is TS(V ) =

⊕
n≥0 V

⊗n, where

V ⊗n = V ⊗S V ⊗S · · · ⊗S V is the n-fold tensor power over S with the usual
convention V ⊗0 = S, and the multiplication is induced by the tensor product over
S. Note that if V is positively graded, then A = TS(V ) is locally finite; conversely,
if A = TS(V ) is (N)-graded and locally finite, then V must at least be nonnegatively
graded. In fact, it is a straightforward exercise to see that TS(V ) is nonnegatively
graded if and only if V ⊗N is positively graded for some N ≥ 1. Any graded A-
module is also a graded S-module via the inclusion S = V ⊗0 ⊆ A. Furthermore,
we claim that

J(A) =
⊕

n≥1

V ⊗n = V ⊗S A = A⊗S V.

Indeed, because S is semisimple and A/(V ⊗SA) ∼= S, we must have J(A) ⊆ V ⊗SA.
On the other hand, from V ⊗N ⊆ A≥1 we have (V ⊗S A)

N = V ⊗N ⊗S A ⊆ A≥1 ⊆
J(A). As J(A) is semiprime, it follows that V ⊗S A ⊆ J(A), proving the desired
containment.

We have the following technical lemma concerning the structure of ExtiA(S,A)
for an algebra A = TS(V ).

Lemma 6.9. Let S be a finite-dimensional semisimple k-algebra, let V be a nonneg-
atively graded finite-dimensional (S, S)-bimodule, and denote A = TS(V ). Assume

that A is locally finite. Let V̂ = HomS(V, S) denote the S-dual of V as a left mod-
ule, and let the image of the natural right-multiplication map ρ : S → End(SV ) be
denoted by S′. Then we have the following isomorphisms of (S, S)-bimodules:

(1) Ext0A(S,A) = HomA(S,A) ∼= annr(J(A)).

(2) Ext1A(S,A)
∼= V̂ ⊕ ((EndS(V )/S′)⊗S A).

Proof. For (1), it is clear that HomA(S,A) = HomA(A/J(A), A) is naturally iden-
tified with the right annihilator of J(A) in A.
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We now establish (2). As a graded left A-module, we have J(A) ∼= A⊗SV , which
is projective because SV is projective. Thus AS has a graded projective resolution
given by

0 → J(A) → A→ S → 0.

In order to compute Ext1A(S,A), we apply the functor HomA(−, A) to the deleted
resolution, so that we must examine

HomA(A,A)
φ

−→ HomA(J(A), A) → 0,

where φ is given by restriction of the right-multiplication morphisms in A ∼=
HomA(A,A) to J(A). Then Ext1A(S,A) will be the cokernel of φ.

We now have

HomA(J(A), A) ∼= HomA(A⊗S V,A)

∼= HomS(V,HomA(A,A)) (by adjointness)

∼= HomS(V,A)

∼= HomS(V, S ⊕ (V ⊗S A)

∼= HomS(V, S)⊕HomS(V, V ⊗S A)

∼= HomS(V, S)⊕ (HomS(V, V )⊗S A) (by Lemma 2.12)

= V̂ ⊕ (EndS(V )⊗S A),

as (S, S)-bimodules.
One may verify that under this isomorphism, the morphism

φ : A = HomA(A,A) → HomA(J(A), A)

corresponds to the map A ∼= S⊗S A
ρ⊗1
→ EndS(V )⊗S A composed with the coordi-

nate inclusion into V̂ ⊕ (EndS(V )⊗SA). Taking the cokernel of this map yields the

desired (S, S)-bimodule isomorphism Ext1A(S,A)
∼= V̂ ⊕ (EndS(V )/S′)⊗S A. �

This allows us to characterize those tensor algebras TS(V ) as above that are
generalized AS regular.

Theorem 6.10. Let S be a finite-dimensional semisimple k-algebra, and let 0 6= V
be a nonnegatively graded finite-dimensional (S, S)-bimodule such that A = TS(V )
is locally finite. Then A is generalized AS regular of dimension d if and only if V
is an invertible bimodule, in which case d = 1.

Proof. Suppose that A is generalized AS regular of dimension d. Since V is nonzero,

we see that V̂ = HomS(V, S) 6= 0 and so Ext1A(S,A) 6= 0 by Lemma 6.9(2).
Using condition (d) of Theorem 5.2, we see that necessarily d = 1; in addition,
HomA(S,A) = 0 and Ext1A(S,A) is an invertible (S, S)-bimodule. By Corol-
lary 5.4, the right-sided versions of these conditions also hold. In particular,
HomAop(S,A) = 0 and so A has no right socle by Lemma 6.9(1). Then A has
no nonzero finite-dimensional right ideals. In particular, every indecomposable
graded projective left A module eiA satisfies dimk eiA = ∞, where 1 = e1+ · · ·+en
is a decomposition of 1 into primitive orthogonal idempotents ei ∈ S. Any nonzero
right S-module M is a direct sum of simple modules eiS, and eiS ⊗S A = eiA.
Thus dimkM ⊗S A = ∞ as well. On the other hand, W = Ext1A(S,A) is an
invertible (S, S)-bimodule and hence since dimk S < ∞, we have dimkW < ∞.
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Now Lemma 6.9(2) forces EndS(V )/S′ = 0, so that W = V̂ = HomS(V, S) is an
invertible (S, S)-bimodule. But then W−1 = HomS(W,S) ∼= V is also invertible.

Conversely, suppose that V is an invertible (S, S)-bimodule. Then the natural
right multiplication map ρ : S → EndS(V ) is an isomorphism. In particular, its
image S′ equals EndS(V ) and so EndS(V )/S′ = 0. By Lemma 6.9(2), we have

Ext1A(S,A)
∼= V̂ = HomS(V, S), which is an invertible (S, S)-bimodule isomorphic

to V −1.
Next, we have the short exact sequence

0 → J(A) → A→ S → 0,

which is a graded minimal projective resolution of S, since J(A) ∼= A ⊗S V is
projective as noted in the proof of Lemma 6.9. Then by Proposition 3.18, we have
gr. gldim(A) = pdim(AS) = 1. Applying HomA(−, A) to the short exact sequence
we obtain

0 → HomA(S,A) → HomA(A,A) → HomA(J(A), A) → · · ·

and we claim that the map A ∼= HomA(A,A) → HomA(J(A), A) is injective. In-
deed, if the restriction of a right multiplication map ρx : A → A to J(A) is zero,
then since J(A) = V ⊗SA we have V ⊗SAx = 0. Applying V −1⊗S− we get Ax = 0
and hence x = 0. This proves the claim, and thus HomA(S,A) = 0. Now since

gr. gldim(A) = 1, we also have ExtiA(S,A) = 0 if i > 1. Using Lemma 4.3(3), we
find that RHomA(S,A)[1] ∼= V −1 is an invertible bimodule. Thus by condition (d)
of Theorem 5.2, A is generalized AS regular of dimension 1. �

We can now characterize locally finite graded twisted Calabi-Yau algebras of
dimension 1.

Theorem 6.11. Let A be a graded k-algebra with S = A/J(A). Then the following
are equivalent:

(1) A is locally finite twisted Calabi-Yau of dimension 1.
(2) A ∼= TS(V ) for a separable k-algebra S and an invertible, nonnegatively

graded (S, S)-bimodule V such that V ⊗N is positively graded for some in-
teger N ≥ 1.

Proof. (1) =⇒ (2): Let J = J(A). Since A is twisted Calabi-Yau of dimension 1,
Theorem 5.15 implies that A is generalized AS regular of dimension 1 and that S is
separable. Then Se is also semisimple by Lemma 3.3(2). Thus there exists a graded
left Se-submodule V of J such that J = V

⊕
J2 as graded Se-modules, that is, as

graded (S, S)-bimodules. Similarly, there is a copy of S ⊆ A such that S ⊕ J ∼= A
as graded (S, S)-bimodules, and we use this to identify S with a graded subalgebra
of A. Note that V ∼= J/J2 and so dimk V < ∞ by Lemma 2.3 and Lemma 3.2(3).
Clearly V is nonnegatively graded.

By the universal property of the tensor algebra, there is a unique algebra homo-
morphism φ : TS(V ) → A that maps S isomorphically to the given fixed copy of S
in A and maps V isomorphically to the fixed complement of J2 in J . By the choice
of V and S as graded submodules, this is a graded algebra homomorphism. By the
proof of Lemma 2.3, we see that φ is surjective.

We claim that φ is an isomorphism. Indeed, denoting φn = φ|V ⊗n : V ⊗n → A,
because φ is a graded homomorphism it suffices to show by induction that each
φn is injective. This is easily verified for n ≤ 1 by the definition of φ. Now let
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n ≥ 2 and suppose that φn−1 is injective. As we saw in Theorem 6.10, the minimal
projective graded left resolution of S looks like

0 → A⊗S V
d1→ A→ S → 0,

where d1 is the natural multiplication map (after identifying V with a subset of A
as above). Now φn decomposes as the composite

V ⊗n = V ⊗(n−1) ⊗S V
φn−1⊗1
→ A⊗S V

d1→ A.

Now φn−1 is injective by the inductive hypothesis. Because V is a flat S-module
(as S is semisimple), it follows that φn−1 ⊗ 1 is injective. Thus φn is injective as
desired. So we find that φ is an isomorphism.

Thus TS(V ) ∼= A, so that that this tensor algebra is locally finite; as mentioned
above, this implies that V ⊗N is positively graded for some N ≥ 1. Now since A is
twisted Calabi-Yau of dimension 1, Theorem 5.15 implies that it is also generalized
AS regular of dimension 1 and that S is separable. Finally, V must be invertible
by Theorem 6.10.

(2) =⇒ (1): Because V ⊗N is positively graded, the algebraA ∼= TS(V ) is locally
finite. The hypothesis now implies that A is generalized AS regular of dimension 1,
by Theorem 6.10. Since we also assume that S is separable, A is twisted Calabi-Yau
of dimension 1 by Theorem 5.15. �

The proof of (1) =⇒ (2) above uses separability of S in an essential way. We
don’t know the answer to the following.

Question 6.12. If A is locally finite graded and generalized AS regular of dimen-
sion 1, must A be isomorphic to a tensor algebra TS(V ) for some graded finite-
dimensional (S, S)-bimodule V ?

7. Examples

As mentioned earlier, a graded invertible bimodule over a locally finite graded
algebra A need not have the form 1Aσ. Here is a simple example.

Example 7.1. Let k be a field and let A = k ⊕ M2(k), considered as a graded
algebra with A = A0. Decompose 1 = e1+ e2+ e3 as a sum of primitive orthogonal
idempotents, where e1 ∈ k and e2, e3 ∈ M2(k). Then Ae1 is a simple module of
k-dimension 1, and Ae2 ∼= Ae3 are simple modules of k-dimension 2.

Let U = Ae1 ⊕ Ae1 ⊕ Ae2. Then U is a projective left A-module which is
obviously also a generator, so that B = EndA(U) is Morita equivalent to A. Since
HomA(Ae1, Ae2) = 0 = HomA(Ae2, Ae1) we in fact have

B = EndA(U) ∼= EndA((Ae1)
⊕2)⊕ EndA(Ae2) ∼=M2(k)⊕ k ∼= A.

Thus U carries the structure of a graded invertible (A,A)-bimodule. On the other
hand, U and A are not isomorphic as left A-modules because they have different
composition factors (even different dimensions over k). Thus U cannot be of the
form 1Aσ for any automorphism σ.

We can use a similar idea as in the previous example to construct an example
of a twisted Calabi-Yau algebra A whose Nakayama bimodule U is not of the form
1Aσ for any automorphism σ of A.
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Example 7.2. Recall that if G is a finite group acting via automorphisms on an
algebra A, then we can construct the skew group algebra A⋊G: as a vector space
this is A ⊗ kG, but the multiplication is defined by (a ⊗ g)(b ⊗ h) = ag(b) ⊗ gh
for a, b ∈ A and g, h ∈ G. When A is locally finite graded and G acts by graded
automorphisms, then A⋊G is again locally finite graded, where the elements of G
have degree 0.

Assume that k has characteristic not equal to 2. Let A = k[x, y]⋊Z2, where the
non-identity element of Z2 acts via the automorphism α with α(x) = x, α(y) = −y.
The structure of A can be seen to be a quiver algebra modulo certain relations
using the McKay correspondence; we refer readers to [6, Corollary 4.1] for details.
It is known that A = kQ/I, where Q is the McKay quiver of the action; in this
case Q has two vertices, one loop xi at each vertex i, an arrow y1 from vertex 1 to
vertex 2, and an arrow y2 from vertex 2 to vertex 1. The ideal I is generated by
x1y1 − y2x1 and x2y2 − y1x2, where we compose arrows from left to right. We also
have A0 = ke1 + ke2 where e1 and e2 are the trivial paths. By [37, Theorem 4.1],
A is twisted Calabi-Yau of dimension 2 (the term skew Calabi-Yau is used there),
and its Nakayama bimodule is U = 1Aµ(2), where the Nakayama automorphism
µ is also calculated by that result. Explicitly, µ acts trivially on x and y, while
µ(g) = hdet(g)g for g ∈ Z2. Here, hdet(g) is simply the determinant of the action
of g on kx + ky. Thus if Z2 = {1, a} then µ(a) = −a. Since e1 = (1 + a)/2 and
e2 = (1− a)/2, we see that µ switches the two idempotents in A0.

Now let M2(A) be the 2 by 2 matrix ring over A. By Proposition 4.11 and its
proof, we have thatM2(A) is twisted Calabi-Yau with Nakayama bimoduleM2(U).
Write 1 = f1+f2+f3+f4 as a sum of primitive orthogonal idempotents in M2(A),
where

f1 =

(
e1 0
0 0

)
, f2 =

(
e2 0
0 0

)
, f3 =

(
0 0
0 e1

)
, f4 =

(
0 0
0 e2

)
.

Then f1M2(A) ∼= f3M2(A) and f2M2(A) ∼= f4M2(A) as right M2(A)-modules.
Thus the idempotent g = f1 + f2 + f3 is full, so that the algebra B = gM2(A)g
is Morita equivalent to A. By Proposition 4.11 and its proof, B is also twisted
Calabi-Yau of dimension 2 with Nakayama bimodule V = gM2(U)g.

Consider the right B-module structure of V . Note that the Morita equiva-
lence M 7→ Mg from graded right M2(A)-modules to graded right B-modules
sends gM2(U) to V . We have gM2(U) = f1M2(U) ⊕ f2M2(U) ⊕ f3M2(U), where
f1M2(U) ∼= (e1U, e1U) ∼= f3M2(U), and f2M2(U) ∼= (e2U, e2U), as modules given
by row vectors. Moreover, as (ungraded) right A-modules, we have e1U = (e1A)

µ;
since µ switches the idempotents it is easy to see that in fact e1U ∼= e2A as right
modules. Similarly, e2U ∼= e1A. Thus in fact the right M2(A)-module gM2(U)
is, up to isomorphism, a direct sum of 2 copies of (e2A, e2A) and one copy of
(e1A, e1A). On the other hand, gM2(A) is, up to isomorphism, a direct sum of 1
copy of (e2A, e2A) and 2 copies of (e1A, e1A). These same properties pass via the
Morita equivalence to the ring B; and so B has two indecomposable projective right
modules P and Q up to isomorphism, such that B ∼= P⊕2 ⊕Q and V ∼= P ⊕Q⊕2.
So V is not a free right B-module and hence it cannot be of the form 1Bσ for an
automorphism σ.

The previous example also shows that there really is a difference between the twisted
Calabi-Yau property for locally finite graded algebras A and Artin-Schelter regu-
larity over A0 as defined by Minamoto and Mori (see Remark 5.7). For if B is
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the algebra constructed in the example, then since B is twisted Calabi-Yau it is
also generalized AS regular. Considering condition (e′) in Theorem 5.2, we have
RHomB(B0, B)[2] ∼= (B∗

0 ⊗B0W ) as (B0, B0)-bimodules, for some invertible graded
(B0, B0)-bimodule W . By the proof of Theorem 5.15, if V is the Nakayama bi-
module of B then we have W = B/B≥1 ⊗ V . Since V is not a free B-module on
the right, it is easy to see that W is not a free B0-module on the right, and hence
W is not of the form 1Bσ

0 . As mentioned in Remark 5.8, this also shows that the
property of Artin-Schelter regularity over A0 is not preserved under Morita equiv-
alence, since B is Morita equivalent to the algebra A = k[x, y]⋊Z2 above and A is
AS regular over A0 with W = A/A≥1 ⊗A U ∼= 1Aµ

0 (2).
Throughout the paper we have allowed arbitrary locally finite graded algebras

A, without any assumption on the structure of A0. The most common examples
of (twisted) Calabi-Yau algebras occur as A = kQ/I for a finite quiver Q, where
the relations generating I come from taking derivatives of a superpotential; see,
for example, [6]. In these examples, A has a natural grading where the arrows
in Q have degree 1, and hence A0

∼= k⊕n is semisimple, where n is the number
of vertices in the quiver. In many cases, however, it is possible to grade Q in a
different manner so that the arrows have degrees possibly different from 1, in a way
that is compatible with the relations. Choosing some arrows to have degree 0, one
obtains examples with more interesting A0. The following is one special case.

Example 7.3. Let Q be a finite connected quiver. Let Q be the double of Q,
obtained by adding an arrow α∗ in the opposite direction for each arrow α in Q.
The corresponding preprojective algebra is A = kQ/(r), where r =

∑
α αα

∗ − α∗α,
the sum over all arrows α. As long as Q is not a Dynkin quiver, it is known that A
is Calabi-Yau of dimension 2. This follows because the matrix Hilbert series of A
is as expected [15, Theorem 3.4.1], [40, Lemma 7.6].

If one regrades A by choosing all non-starred arrows to have degree 0, then the
relation r is still homogeneous (now of degree 1), so A obtains a different grading
where A0

∼= kQ. In case Q has no oriented cycles, this regraded A is still locally
finite, and consequently it is still (graded) Calabi-Yau since this property does not
depend on the grading thanks to Theorem 4.2. Thus for connected Q which are
not Dynkin and have no oriented cycles, the preprojective algebra A regraded with
non-starred arrows having degree 0 gives a locally finite graded Calabi-Yau algebra
with A0 = kQ.
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