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Abstract

High-throughput biological data analysis commonly involves identifying features such
as genes, genomic regions, and proteins, whose values differ between two conditions,
from numerous features measured simultaneously. The most widely used criterion to
ensure the analysis reliability is the false discovery rate (FDR), which is primarily
controlled based on p-values. However, obtaining valid p-values relies on either
reasonable assumptions of data distribution or large numbers of replicates under both
conditions. Clipper is a general statistical framework for FDR control without relying on
p-values or specific data distributions. Clipper outperforms existing methods for a
broad range of applications in high-throughput data analysis.

Introduction
High-throughput technologies are widely used to measure system-wide biological fea-
tures, such as genes, genomic regions, and proteins (“high-throughput” means the
number of features is large, at least in thousands). The most common goal of analyzing
high-throughput data is to contrast two conditions so as to reliably screen “interest-
ing features,” where “interesting” means “enriched” or “differential.” “Enriched features”
are defined to have higher expected measurements (without measurement errors) under
the experimental (i.e., treatment) condition than the background (i.e., negative control)
condition. The detection of enriched features is called “enrichment analysis.” For exam-
ple, typical enrichment analyses include calling protein-binding sites in a genome from
chromatin immunoprecipitation sequencing (ChIP-seq) data [1, 2] and identifying pep-
tides frommass spectrometry (MS) data [3]. In contrast, “differential features” are defined
to have different expected measurements between two conditions, and their detection is
called “differential analysis.” For example, popular differential analyses include the iden-
tification of differentially expressed genes (DEGs) from genome-wide gene expression
data (e.g., microarray and RNA sequencing (RNA-seq) data [4–10]) and differentially
interacting chromatin regions (DIRs) from Hi-C data [11–13] (Fig. 1a). In most scientific
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research, the interesting features only constitute a small proportion of all features, and the
remaining majority is referred to as “uninteresting features.”
The identified features, also called the “discoveries” from enrichment or differential

analysis, are subject to further investigation and validation. Hence, to reduce experimen-
tal validation that is often laborious or expensive, researchers demand reliable discoveries
that contain few false discoveries. Accordingly, the false discovery rate (FDR) [14] has
been developed as a statistical criterion for ensuring discoveries’ reliability. Technically,
under the frequentist statistical paradigm, the FDR is defined as the expected proportion
of uninteresting features among the discoveries. In parallel, under the Bayesian statistical
paradigm, other criteria have been developed, including the Bayesian false discovery rate
[15], the local false discovery rate (local fdr) [16], and the local false sign rate [17]. Among
all these frequentist and Bayesian criteria, the FDR is the dominant criterion for setting
thresholds in biological data analysis [1, 10, 18–24] and is thus the focus of this paper.
FDR control refers to the goal of finding discoveries such that the FDR is under a

pre-specified threshold (e.g., 0.05). Existing computational methods for FDR control
primarily rely on p-values, one per feature. Among the p-value-based FDR control meth-
ods, the most classic and popular ones are the Benjamini-Hochberg (BH) procedure
[14] and the Storey’s q-value [25]; later development introduced methods that incor-
porate feature weights [26] and/or covariates—e.g., independent hypothesis weighting
(IHW) [27], adaptive p-value thresholding [28], and Boca and Leek’s FDR regression
[29]—to boost the detection power. All these methods set a p-value cutoff based on the
pre-specified FDR threshold. However, the calculation of p-values requires either dis-
tributional assumptions, which are often questionable, or large numbers of replicates,
which are often unachievable in biological studies (see the “Results” section). Due to the
difficulty of valid p-value calculation in high-throughput biological data analysis, bioinfor-
matics tools often output ill-posed p-values. This issue is evidenced by serious concerns
about the widespread miscalculation and misuse of p-values in the scientific community
[30]. As a result, bioinformatics tools using questionable p-values either cannot reliably
control the FDR to a target level [23] or lack power to make discoveries [31]; see the
“Results” section. Therefore, p-value-free control of FDR is desirable, as it would make
data analysis more transparent and thus improve the reproducibility of scientific research.
Although p-value-free FDR control has been implemented in the MACS2 method for

ChIP-seq peak calling [1] and the SAM method for microarray DEG identification [32],
these two methods are restricted to specific applications and lack a theoretical guaran-
tee for FDR control. (Although later works have studied some theoretical properties of
SAM, they are not about the exact control of the FDR [33, 34].) More recently, the Barber-
Candès (BC) procedure has been proposed to achieve theoretical FDR control without
using p-values [35], and it has been shown to perform comparably to the BH procedure
using well-calibrated p-values [36]. The BC procedure is advantageous because it does
not require well-calibrated p-values, so it holds tremendous potential in various high-
throughput data analyses where p-value calibration is challenging [37]. For example, a
recent paper has implemented a generalization of the BC procedure to control the FDR
in peptide identification fromMS data [38].
Inspired by the BC procedure, we propose a general statistical framework Clipper

to provide reliable FDR control for high-throughput biological data analysis, without
using p-values or relying on specific data distributions. Clipper is a robust and flexible
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Fig. 1 High-throughput omics data analyses and generic FDR control methods. (a) Illustration of four
common high-throughput omics data analyses: peak calling from ChIP-seq data, peptide identification from
MS data, DEG analysis from RNA-seq data, and DIR analysis from Hi-C data. In these four analyses, the
corresponding features are genomic regions (yellow intervals), peptide-spectrum matches (PSMs; a pair of a
mass spectrum and a peptide sequence), genes (columns in the heatmaps), and chromatin interacting
regions (entries in the heatmaps). (b) Illustration of Clipper and five generic FDR control methods: BH-pair
(and qvalue-pair), BH-pool (and qvalue-pool), and locfdr. The input data are d features withm and n repeated
measurements under the experimental and background conditions, respectively. Clipper computes a
contrast score for each feature based on the feature’sm and nmeasurements, decides a contrast-score
cutoff, and calls the features with contrast scores above the cutoff as discoveries. (This illustration is Clipper
for enrichment analysis withm = n.) BH-pair or qvalue-pair computes a p-value for each feature based on the
feature’sm and nmeasurements, sets a p-value cutoff, and calls the features with p-values below the cutoff
as discoveries. BH-pool or qvalue-pool constructs a null distribution from the d features’ average (across the n
replicates) measurements under the background condition, calculates a p-value for each feature based on
the null distribution and the feature’s average (across them replicates) measurements under the
experimental condition, sets a p-value cutoff, and calls the features with p-values below the cutoff as
discoveries. The locfdr method computes a summary statistic for each feature based on the feature’sm and n
measurements, estimates the empirical null distribution and the empirical distribution of the statistic across
features, computes a local fdr for each feature, sets a local fdr cutoff, and calls the features with local fdr
below the cutoff as discoveries
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framework that applies to both enrichment and differential analyses and that works for
high-throughput data with various characteristics, including data distributions, replicate
numbers (from one to multiple), and outlier existence.

Results
Clipper consists of twomain steps: construction and thresholding of contrast scores. First,
Clipper defines a contrast score for each feature, as a replacement of a p-value, to sum-
marize that feature’s measurements between two conditions and to describe the degree
of interestingness of that feature. Second, as its name suggests, Clipper establishes a cut-
off on features’ contrast scores and calls as discoveries the features whose contrast scores
exceed the cutoff (see the “Methods” section and Additional File 1: Section S2). Clipper is
a flexible framework that only requires a minimal input: all features’ measurements under
two conditions and a target FDR threshold (e.g., 5%) (Fig. 1b).
Clipper only relies on two fundamental statistical assumptions of biological data

analysis: (1) measurement errors (i.e., differences betweenmeasurements and their expec-
tations, with the expectations including both biological signals and batch effects) are
independent across all features and replicates and (2) every uninteresting feature hasmea-
surement errors identically distributed across all replicates under both conditions. These
two assumptions are used in almost all bioinformatics tools and are commonly referred
to as the “measurement model” in statistical genomics [39]. With these two assumptions,
Clipper has a theoretical guarantee for FDR control under both enrichment and differ-
ential analyses with any number of replicates (see the “Methods” section and Additional
File 1: Section S2).
To verify Clipper’s performance, we designed comprehensive simulation studies to

benchmark Clipper against existing generic FDR control methods (Additional File 1:
Section S1). We also benchmarked Clipper against bioinformatics tools in studies includ-
ing peak calling from ChIP-seq data, peptide identification frommass spectrometry data,
DEG identification from bulk and single-cell RNA-seq data, and DIR identification from
Hi-C data. Notably, our benchmarking results for peptide identification are based on our
in-house data, the first MS data standard with a realistic dynamic range.

Clipper has verified FDR control and power advantage in simulation

Simulation is essential because we can generate numerous datasets from the same
distribution with known truths to calculate the FDR, which is not observable from real
data. Our simulation covers both enrichment and differential analyses. In enrichment
analysis, we consider four “experimental designs”: 1vs1 design (one replicate per con-
dition), 2vs1 design (two and one replicates under the experimental and background
conditions, respectively), 3vs3 design (three replicates per condition), and 10vs10 design
(ten replicates per condition). In differential analysis, since Clipper requires that at least
one condition has two replicates, we only consider the 2vs1 and 3vs3 designs. For each
analysis and design, we simulated data from three “distributional families”—Gaussian,
Poisson, and negative binomial—for individual features under two “background sce-
narios” (i.e., scenarios of the background condition): homogeneous and heterogeneous.
Under the homogeneous scenario, all features’ measurements follow the same distri-
bution under the background condition; otherwise, we are under the heterogeneous
scenario, which is ubiquitous in applications, e.g., identifying DEGs from RNA-seq data
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and calling protein-binding sites from ChIP-seq data. By simulation setting, we refer
to a combination of an experimental design, a distributional family, and a background
scenario. The details of simulation settings are described in Additional File 1: Section S4.
For both enrichment and differential analyses and each simulation setting, we com-

pared Clipper against generic FDR control methods, including p-value-based methods
and local-fdr-based methods. The p-value-based methods include BH-pair, BH-pool,
qvalue-pair, and qvalue-pool, where “BH” and “qvalue” stand for p-value thresholding
procedures, and “pair” and “pool” represent the paired and pooled p-value calculation
approaches, respectively. The local-fdr-based methods include locfdr-emp and locfdr-
swap, where “emp” and “swap” represent the empirical null and swapping null local-fdr
calculation approaches, respectively. See the “ Methods” section for details.
The comparison results are shown in Fig. 2 and Additional File 1: Figures S1–S14. A

good FDR control method should have its actual FDR no larger than the target FDR
threshold and achieve high power. The results show that Clipper controls the FDR and
is overall more powerful than the other methods, excluding those that fail to control the
FDR, under all settings. Clipper is also shown to be more robust to the number of features
and the existence of outliers than the other methods. In detail, in both enrichment analy-
ses (1vs1, 2vs1, 3vs3, and 10vs10 designs) and differential analyses (2vs1 and 3vs3 designs),
Clipper consistently controls the FDR, and it is more powerful than the generic methods
inmost cases under the realistic, heterogeneous background, where features do not follow
the same distribution under the background condition. Under the idealistic, homoge-
neous background, Clipper is still powerful and only second to BH-pool and qvalue-pool,
which, however, cannot control the FDR under the heterogeneous background.
Here we summarize the performance of the generic FDR control methods. First, the

two p-value-based methods using the pooled approach—BH-pool and qvalue-pool—are
the most powerful under the idealistic, homogeneous background, which is their inherent
assumption; however, they cannot control the FDR under the heterogeneous background
(Fig. 2b). Besides, they cannot control the FDR when the number of features is small
(Fig. 2a and Additional File 1: Figure S1). These results show that the validity of BH-pool
and qvalue-pool requires a large number of features and the homogeneous background
assumption, two requirements that rarely both hold in biological applications.
Second, the four p-value-based methods using the paired approach with misspecified

models or misformulated tests (BH-pair-mis, qvalue-pair-mis, BH-pair-2as1, and qvalue-
pair-2as1; see the “Methods” section) fail to control the FDR by a large margin in most
cases, and rarely when they control the FDR, they lack power (Fig. 2c, d and Additional
File 1: Figures S1–S8). These results confirm that BH-pair and qvalue-pair rely on the
correct model specification to control the FDR; however, the correct model specification
is hardly achievable with no more than three replicates per condition.
Third, even when models are correctly specified (an idealistic scenario), the p-value-

based methods that use the paired approach—BH-pair-correct and qvalue-pair-correct
(see the “Methods” section)—fail to control the FDR in the existence of outliers (Fig. 2e
and Additional File 1: Figures S3 and S7) or for the negative binomial distribution with
unknown dispersion (Fig. 2f and Additional File 1: Figure S9). It is worth noting that even
when they control the FDR, they are less powerful than Clipper in most cases except for
the 3vs3 differential analysis with the Poisson distribution (Fig. 2d and Additional File 1:
Figures S4 and S8).
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Fig. 2 Comparison of Clipper with generic FDR control methods in terms of their FDR control and power in
six example simulation studies. a 1vs1 enrichment analysis with 1000 features generated from the Gaussian
distribution with a homogeneous background. b 1vs1 enrichment analysis with 10,000 features generated
from the Gaussian distribution with a heterogeneous background. c 2vs1 enrichment analysis with 10,000
features generated from the Poisson distribution with a heterogeneous background. d 3vs3 enrichment
analysis with 10,000 features generated from the Gaussian distribution without outliers and with a
heterogeneous background. e 3vs3 enrichment analysis with 10,000 features generated from the Gaussian
distribution with outliers and with a heterogeneous background. f 3vs3 differential analysis with 10,000
features generated from the negative binomial distribution with a heterogeneous background. At target FDR
thresholds q ∈ {1%, 2%, · · · , 10%}, each method’s actual FDRs and power are approximated by the averages
of false discovery proportions (see Additional File 1: Eq. (S14)) and power evaluated on 200 simulated
datasets. In each panel, the top row shows each method’s actual FDRs at target FDR thresholds: whenever
the actual FDR is larger than the target FDR (the solid line is higher than the dashed line), FDR control is failed;
the bottom row shows each method’s actual FDRs and power at the target FDR threshold q = 5%: whenever
the actual FDR is greater than q (on the right of the vertical dashed line), FDR control is failed. Under the FDR
control, the larger the power, the better. Note that BH-pair-correct is not included in a–c because it is
impossible to correctly specify the model with only one replicate per condition; locfdr-swap is not included
in a and b because it is inapplicable to the 1vs1 design
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Fourth, the two local-fdr-based methods—locfdr-emp and locfdr-swap—achieve the
FDR control for all designs and analyses; however, they are less powerful than Clipper in
most cases (Additional File 1: Figures. S1–S4).
Fifth, when the numbers of replicates are large (10vs10 design), non-parametric tests

become applicable. We compared Clipper with three BH-pair methods that use different
statistical tests: BH-pair-Wilcoxon (the non-parametric Wilcoxon rank-sum test), BH-
pair-permutation (the non-parametric permutation test), and BH-pair-parametric (the
parametric test based on the correct model specification, equivalent to BH-pair-correct).
Although all the three methods control the FDR, they are less powerful than Clipper
(Additional File 1: Figure S10).
Moreover, the above five phenomena are consistently observed across the three dis-

tributions (Gaussian, Poission, and negative binomial) that we have examined, further
confirming the robustness of Clipper.
In addition, for the 3vs3 enrichment analysis, we also varied the proportion of interest-

ing features as 10%, 20%, and 40%. The comparison results in Additional File 1: Figure S3
(columns 1 and 3 for 10%) and Additional File 1: Figure S11 (for 20% and 40%) show that
the performance of Clipper is robust to the proportion of interesting features.
The above results are all based on simulations with independent features. To exam-

ine the robustness of Clipper, we introduced feature correlations to our simulated data,
on which we compared Clipper with the other generic FDR control methods. The
comparison results in Additional File 1: Figure S12 show that even when the feature inde-
pendence assumption is violated, Clipper still demonstrates strong performance in both
FDR control and power.

Clipper has broad applications in omics data analyses

We then demonstrate the use of Clipper in four omics data applications: peak call-
ing from ChIP-seq data, peptide identification from MS data, DEG identification from
bulk or single-cell RNA-seq data, and DIR identification from Hi-C data. The first
two applications are enrichment analyses, and the last two are differential analyses.
In each application, we compared Clipper with mainstream bioinformatics methods to
demonstrate Clipper’s superiority in FDR control and detection power.

Peak calling from ChIP-seq data (enrichment analysis I)

ChIP-seq is a genome-wide experimental assay for measuring binding intensities of a
DNA-associated protein [40], often a transcription factor that activates or represses gene
expression [41, 42]. ChIP-seq data are crucial for studying gene expression regulation, and
an indispensable analysis is to identify genomic regions with enriched sequence reads in
ChIP-seq data. These regions are likely bound by the target protein and thus of biologi-
cal interest. The identification of these regions is termed “peak calling” in ChIP-seq data
analysis.
As the identified peaks are subject to experimental validation that is often expensive

[43], it is essential to control the FDR of peak identification to reduce unnecessary costs.
The twomost highly-cited peak-calling methods areMACS2 [1] and HOMER [2], both of
which claim to control the FDR for their identified peaks. Specifically, both MACS2 and
HOMER assume that the read counts for each putative peak (with one count per sam-
ple/replicate) follow the Poisson distribution, and they use modified paired approaches
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to assign each putative peak a p-value and a corresponding Storey’s q-value. Then given a
target FDR threshold 0 < q < 1, they call the putative peaks with q-values ≤ q as identi-
fied peaks. Despite being popular, MACS2 and HOMER have not been verified for their
FDR control, to our knowledge.
To verify the FDR control of MACS2 and HOMER (Additional File 1: Section S5.1), we

used ENCODE ChIP-seq data of cell line GM12878 [44] and ChiPulate [45], a ChIP-seq
data simulator, to generate semi-synthetic data with spiked-in peaks (Additional File 1:
Section S6.1). We examined the actual FDR and power of MACS2 and HOMER in a range
of target FDR thresholds: q = 1%, 2%, . . . , 10%. Figure 3a shows thatMACS2 andHOMER
cannot control the FDR as standalone peak-calling methods. However, with Clipper as
an add-on (Additional File 1: Section S7.1), both MACS2 and HOMER can guarantee the
FDR control. This result demonstrates the flexibility and usability of Clipper for reducing
false discoveries in peak calling analysis.
Technically, the failed FDR control by MACS2 and HOMER is attributable to the likely

model misspecification and test misformulation in their use of the paired approach. Both

Fig. 3 Comparison of Clipper and popular bioinformatics methods in terms of FDR control and power. a
peaking calling analysis on semi-synthetic ChIP-seq data. b Peptide identification on real proteomics data. c
DEG analysis on semi-synthetic 10x Genomics scRNA-seq data. d DIR analysis on semi-synthetic Hi-C data. In
all four panels, the target FDR threshold q ranges from 1 to 10%. In the “Actual FDR vs. Target FDR” plot of
each panel, points above the dashed diagonal line indicate failed FDR control; when this happens, the power
of the corresponding methods is not shown, including MASC2 and HOMER in a, edgeR in c, and
multiHICcompare and FIND in d. In all four applications, Clipper controls the FDR while maintaining high
power, demonstrating Clipper’s broad applicability in high-throughput data analyses
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MACS2 and HOMER assume the Poisson distribution for read counts in a putative peak;
however, it has been widely acknowledged that read counts are over-dispersed and thus
better modeled by the negative binomial distribution [46]. Besides, MACS2 uses one-
sample tests to compute p-values when two-sample tests should be performed. As a result,
the p-values of MACS2 and HOMER are questionable, so using their p-values for FDR
control has no guaranteed success. (Note that MACS2 does not use p-values to control
the FDR but instead swaps experimental and background samples to calculate the empir-
ical FDR; yet, we emphasize that controlling the empirical FDR does not guarantee the
FDR control.) As a remedy, Clipper strengthens both methods to control the FDR while
maintaining high power.
As a side note, it is known that uninteresting regions tend to have larger read counts in

the control sample than in the experimental (ChIP) sample; however, this phenomenon
does not violate Clipper’s theoretical assumption for FDR control (Additional File 1:
Section S7.1).

Peptide identification fromMS data (enrichment analysis II)

The state-of-the-art proteomics studies use MS experiments and database search algo-
rithms to identify and quantify proteins in biological samples. In a typical proteomics
experiment, a protein mixture sample is first digested into peptides and then measured
by tandem MS technology as mass spectra, which encode peptide sequence information.
“Peptide identification” is the process that decodes mass spectra and converts mass spec-
tra into peptide sequences in a protein sequence database via search algorithms. The
search process matches each mass spectrum to peptide sequences in the database and
outputs the best match, called a “peptide-spectrum match” (PSM). The identified PSMs
are used to infer and quantify proteins in a high-throughput manner.
False PSMs could occur when mass spectra are matched to wrong peptide sequences

due to issues such as low-quality spectra, data-processing errors, and incomplete protein
databases, causing problems in the downstream protein identification and quantification
[47]. Therefore, a common goal of database search algorithms is to simultaneously con-
trol the FDR andmaximize the number of identified PSMs, so as to maximize the number
of proteins identified in a proteomics study [3, 48, 49]. A widely used FDR control strat-
egy is the target-decoy search, where mass spectra of interest are matched to peptide
sequences in both the original (target) database and a decoy database that contains arti-
ficial false protein sequences. The resulting PSMs are called the target PSMs and decoy
PSMs, respectively. The decoy PSMs, i.e., matched mass spectrum and decoy peptide
pairs, are known to be false and thus used by database search algorithms to control the
FDR. Mainstream database search algorithms output a q-value for each target or decoy
PSM. Discoveries are the target PSMs whose q-values are no greater than the target FDR
threshold q.
We generated the first comprehensive benchmark dataset from an archaea species

Pyrococcus furiosus, and we used it to examine the FDR control and power of a popu-
lar database search algorithm SEQUEST [3] (Additional File 1: Section S5.2). Using this
benchmark dataset (Additional File 1: Section S6.2), we demonstrate that, as an add-on,
Clipper improves the power of SEQUEST. Specifically, Clipper treats mass spectra as
features. For each mass spectrum, Clipper considers the experimental (or background)
measurement as the − log10-transformed SEQUEST q-value of the target (or decoy) PSM
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that includes the mass spectrum. Then Clipper decides which mass spectra and their cor-
responding target PSMs are discoveries (Additional File 1: Section S7.2). Based on the
benchmark dataset, we examined the empirical FDR, i.e., the FDP calculated based on the
true positives and negatives, and the power of SEQUEST with or without Clipper as an
add-on, for a range of target FDR thresholds: q = 1%, 2%, . . . , 10%. Figure 3b shows that
although SEQUEST and SEQUEST+Clipper both control the FDR, SEQUEST+Clipper
consistently improves the power, thus enhancing the peptide identification efficiency of
proteomics experiments.
While preparing this manuscript, we found a recent work [38] that used a similar idea

to identify PSMs without using p-values. Clipper differs from this work in two aspects: (1)
Clipper is directly applicable as an add-on to any existing database search algorithms that
output q-values and (2) Clipper is not restricted to the peptide identification application.

DEG identification from bulk RNA-seq data (differential analysis I)

RNA-seq data measure genome-wide gene expression levels in biological samples. An
important use of RNA-seq data is the DEG analysis, which aims to discover genes whose
expression levels change between two conditions. The FDR is a widely used criterion in
DEG analysis [4–9].
We compared Clipper with two popular DEG identification methods: edgeR [4] and

DESeq2 [5] (Additional File 1: Section S5.3). Specifically, when we implemented Clipper,
we first performed the trimmed mean of M values (TMM) normalization [50] to correct
for batch effects; then, we treated genes as features and their normalized expression levels
as measurements under two conditions (Additional File 1: Section S7.3). We also imple-
mented two versions of DESeq2 and edgeR: with or without IHW, a popular procedure
for boosting the power of p-value-based FDR control methods by incorporating feature
covariates [27]. In our implementation of the two versions of DESeq2 and edgeR, we used
their standard pipelines, including normalization, model fitting, and gene filtering (edgeR
only). To verify the FDR control, we generated four realistic semi-synthetic datasets from
two real RNA-seq datasets—one from classical and non-classical human monocytes [51]
and the other from yeasts with or without snf2 knockout [52]—using simulation strategies
1 and 2 (Additional File 1: Section S6.3).
In detail, in simulation strategy 1, we used bulk RNA-seq samples from two conditions

to compute a fold change for every gene between the two conditions; then, we defined
true DEGs as the genes whose fold changes exceeded a threshold; next, we randomly drew
three RNA-seq samples and treated them as replicates from each condition (m = n = 3
as in the “ Methods” section); using those subsampled replicates of two conditions, we
preserved the true DEGs’ read counts and permuted the read counts of the true non-
DEGs, i.e., the genes other than true DEGs, between conditions. In summary, simulation
strategy 1 guarantees that the measurements of true non-DEGs are i.i.d., an assumption
that Clipper relies on for theoretical FDR control.
In simulation strategy 2, which we borrowed from a benchmark study [53], we first ran-

domly selected at most 30% genes as true DEGs; next, we randomly drew six RNA-seq
samples from one condition (classical human monocytes and yeasts without knockout)
and split the samples into two “synthetic conditions,” each with three replicates (m = n =
3 as in the “Methods” section); then for each true DEG, we multiplied its read counts
under one of the two synthetic conditions (randomly and independently picked for each
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gene) by a randomly generated fold change (see Additional File 1: Section S6.3); finally, for
the true non-DEGs, we preserved their read counts in the six samples. In summary, simu-
lation strategy 2 preserves batch effects, if existent in real data, for the true non-DEGs (the
majority of genes). As a result, the semi-synthetic data generated under strategy 2 may
violate the Clipper assumption for theoretical FDR control and thus can help evaluate the
robustness of Clipper on real data.
The four semi-synthetic datasets have ground truths (true DEGs and non-DEGs)

to evaluate each DEG identification method’s FDR and power for a range of target
FDR thresholds: q = 1%, 2%, . . . , 10%. Our results in Fig. 4a and Additional File 1:
Figures S15a–S17a show that Clipper consistently controls the FDR and achieves high
power on all four semi-synthetic datasets. In contrast, DESeq2 and edgeR cannot con-
sistently control the FDR except for the yeast semi-synthetic dataset generated under
simulation strategy 2. Given the fact that DESeq2 and edgeR do not consistently perform
well on the three other semi-synthetic datasets, we hypothesize that their parametric dis-
tributional assumptions, if violated on real data, hinder valid FDR control (see our other
study [54]), in line with ourmotivation for developing Clipper. By examining whether true
non-DEGs’ p-values calculated by DESeq2 or edgeR follow the theoretical Uniform[ 0, 1]
distribution, we find that the answer is no for many non-DEGs, as indicated by the small
p-values (one per non-DEG) of uniformity tests (Additional File 1: Figure S18); this issue
is more serious for DESeq2, consistent with the worse FDR control of DESeq2 (Fig. 4a
and Additional File 1: Figures S15a–S17a). Furthermore, we observe that adding IHW to
edgeR and DESeq2 has negligible effects on the four semi-synthetic datasets.
To further explain why DESeq2 fails to control the FDR, we examined the p-value

distributions of 16 non-DEGs that were most frequently identified (from the 100 semi-
synthetic datasets generated from the human monocyte dataset using simulation strategy
1) by DESeq2 at the target FDR threshold q = 0.05. Our results in Additional File 1:
Figure S19 show that the 16 non-DEGs’ p-values are non-uniformly distributed with
a mode close to 0. Such unusual enrichment of overly small p-values makes these
non-DEGs mistakenly called as discoveries by DESeq2.
In addition, we compared the DEG ranking by Clipper, edgeR, and DESeq2 in two ways.

First, for true DEGs, we compared their ranking by each method with their true rank-
ing based on true expression fold changes (from large to small, as in semi-synthetic data
generation in Additional File 1: Section S6.3). Specifically, we ranked true DEGs using
Clipper’s contrast scores (from large to small), edgeR’s p-values (from small to large),
or DESeq2’s p-values (from small to large). Our results in Fig. 4b and Additional File 1:
Figures S15b–S17b show that Clipper’s contrast scores exhibit the most consistent rank-
ing with the ranking based on true fold changes. Second, to compare the power of Clipper,
edgeR, and DESeq2 based on their DEG rankings instead of nominal p-values, we calcu-
lated their power under the actual FDRs, which only depend on gene rankings (for the
definition of actual FDR, see Additional File 1: Section S6.3). Figure 4a and Additional
File 1: Figures S15a–S17a show that, when Clipper, edgeR, and DESeq2 have the same
actual FDR, Clipper consistently outperforms edgeR and DESeq2 in terms of power, i.e.,
Clipper has the largest number of true DEGs in its top ranked genes.
We also compared the reproducibility of Clipper, edgeR, and DESeq2 in the presence

of sampling randomness. Specifically, we used two semi-synthetic datasets (generated
independently from the same procedure in Additional File 1: Section S6.3) as technical
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Fig. 4 Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG
analysis on semi-synthetic bulk RNA-seq data (generated from human monocyte real data using simulation
strategy 2 in Additional File 1: Section S6.3). a FDR control, power given the same target FDR, and power
given the same actual FDR. b Ranking consistency of the true DEGs among the top 100 DEGs identified by
each method. The consistency is defined between the genes’ ranking based on edgeR/DESeq2’s p-values or
Clipper’s contrast scores and their ranking based on true expression fold changes. c Reproducibility between
two semi-synthetic datasets as technical replicates. Three reproducibility criteria are used: the IDR, the Pearson
correlation, and the Spearman correlation. Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s
contrast scores on the two semi-synthetic datasets. Among the three methods, only Clipper controls the FDR,
and Clipper achieves the highest power, the best gene ranking consistency, and the best reproducibility

replicates and computed Clipper’s contrast scores, edgeR’s p-values, and DESeq’s p-values
on each dataset. For each method, we evaluated its reproducibility between the two semi-
synthetic datasets by computing three criteria—the irreproducibility discovery rate (IDR)
[55], the Pearson correlation, and the Spearman correlation—using its contrast scores or
− log10-transformed p-values. Figure 4c and Additional File 1: Figures S15c–S17c show
that Clipper’s contrast scores have higher reproducibility by all three criteria compared to
edgeR’s and DESeq2’s p-values.
Finally, we compared Clipper with DESeq2 and edgeR on the real RNA-seq data of clas-

sical and non-classical human monocytes [51]. In this dataset, gene expression changes
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are expected to be associated with the immune response process. We input three classical
and three non-classical samples into Clipper, DESeq2, and edgeR for DEG identification.
Figure 5a shows that edgeR identifies the fewest DEGs, while DESeq2 identifies the most
DEGs, followed by Clipper. Notably, most DEGs identified by DESeq2 are not identified
by Clipper or edgeR. To investigate whether DESeq2 makes too many false discoveries
and whether Clipper finds biologically meaningful DEGs missed by DESeq2 or edgeR,
we performed functional analysis on the set of DEGs identified by each method. We first
performed the gene ontology (GO) analysis on the three sets of identified DEGs using
the R package clusterProfiler [56]. Figure 5b (“Total”) shows that more GO terms
are enriched (with enrichment q-values ≤ 0.01) in the DEGs identified by Clipper than
in the DEGs identified by DESeq2 or edgeR. For the GO terms enriched in all three
sets of identified DEGs, Fig. 5c shows that they are all related to the immune response
and thus biologically meaningful. Notably, these biologically meaningful GO terms have
more significant enrichment in Clipper’s identified DEGs than in edgeR and DESeq2’s
identified DEGs. We further performed GO analysis on the DEGs uniquely identified
by one method in pairwise comparisons of Clipper vs. DESeq2 and Clipper vs. edgeR.
Figure 5b and Additional File 1: Figure S20 show that multiple immune-related GO terms
are enriched in Clipper-specific DEGs, while no GO terms are enriched in edgeR-specific
or DESeq2-specific DEGs. In addition, we examined the DEGs that were identified by
Clipper only but missed by both edgeR and DESeq2. Figure 5d and Additional File 2 show
that these genes include multiple key immune-related genes, including CD36, DUSP2,
and TNFAIP3. We further performed pathway analysis on these genes and the DEGs
that were identified by DEseq2 only but missed by both edgeR and Clipper, using the R
package limma [10]. Additional File 1: Figure S21a shows that the DEGs that were only
identified by Clipper have significant enrichment for immune-related pathways including
phagosome, a key function of monocytes and macrophages. On the contrary, Additional
File 1: Figure S21b shows that fewer immune-related pathways are enriched in DEGs that
were only identified by DESeq2. Altogether, these results confirm the capacity of Clipper
in real-data DEG analysis, and they are consistent with our simulation results that edgeR
lacks power, while DESeq2 fails to control the FDR.

DEG identification from single-cell RNA-seq data (differential analysis II)

Single-cell RNA sequencing (scRNA-seq) technologies have revolutionized biomedical
sciences by enabling genome-wide profiling of gene expression levels at an unprecedented
single-cell resolution. DEG analysis is widely applied to scRNA-seq data for discovering
genes whose expression levels change between two conditions or between two cell types.
Compared with bulk RNA-seq data, scRNA-seq data have many more “replicates” (i.e.,
cells, whose number is often in hundreds) under each condition or within each cell type.
We compared Clipper (Additional File 1: Section S7.4) with edgeR [4], MAST [57],

Monocle3 [58], the two-sample t test, and the Wilcoxon rank-sum test (Additional File 1:
Section S5.4), five methods that are either popular or reported to have comparatively
top performance from a previous benchmark study [59]. To verify the FDR control, we
used scDesign2, a flexible probabilistic simulator, to generate scRNA-seq count data with
known true DEGs [60]. scDesign2 offers three key advantages that enable the genera-
tion of realistic semi-synthetic scRNA-seq count data: (1) it captures distinct marginal
distributions of different genes, (2) it preserves gene-gene correlations, and (3) it adapts to
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Fig. 5 Application of Clipper, DESeq2, and edgeR to identifying DEGs from the classical and non-classical
human monocyte dataset. a A Venn diagram showing the overlaps of the identified DEGs (at the FDR
threshold q = 5%) by the three DE methods. b Numbers of GO terms enriched (with enrichment q-values
< 0.01) in the DEGs found by Clipper, DESeq2, and edgeR (column 3), or in the DEGs specifically identified by
Clipper or DESeq2/edgeR in the pairwise comparison between Clipper and DESeq2 (column 1) or between
Clipper and edgeR (column 2). More GO terms are enriched in the DEGs identified by Clipper than in those
identified by edgeR or DESeq2. c Enrichment q-values of four GO terms that are found enriched (with
enrichment q-values < 0.01) in all three sets of identified DEGs, one set per method. All the four terms are
most enriched in the DEGs identified by Clipper. d A scatterplot of the claimed FDR of Clipper against that of
edgeR for all the DEGs identified by Clipper, edgeR or DESeq2. The 46 DEGs identified by Clipper only at 5%
FDR are highlighted in red

various scRNA-seq protocols. Using scDesign2, we generated two semi-synthetic scRNA-
seq datasets from two real scRNA-seq datasets of peripheral blood mononuclear cells
(PBMCs) [61]: one using 10x Genomics [62] and the other using Drop-seq [63]. Each
semi-synthetic dataset contains two cell types, CD4+ T cells and cytotoxic T cells, which
we treated as two conditions (Additional File 1: Section S6.4). Having true DEGs known,
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the semi-synthetic datasets allow us to evaluate the FDRs and power of Clipper and the
other five methods for a range of target FDR thresholds: q = 1%, 2%, . . . , 10%. Figure 3c
and Additional File 1: Figure S22 show that on both 10x Genomics and Drop-seq semi-
synthetic datasets, Clipper consistently controls the FDR and remains the most powerful
(except for q = 1% and 2%) among all themethods that achieve FDR control. These results
demonstrate Clipper’s robust performance in scRNA-seq DEG analysis.

DIR analysis of Hi-C data (differential analysis III)

Hi-C experiments are widely used to investigate spatial organizations of chromosomes
and to map chromatin interactions across the genome. A Hi-C dataset is often processed
and summarized into an interaction matrix, whose rows and columns represent manually
binned chromosomal regions and whose (i, j)-th entry represents the measured contact
intensity between the i-th and j-th binned regions. The DIR analysis aims to identify pairs
of genomic regions whose contact intensities differ between conditions. Same as DEG
analysis, DIR analysis also uses the FDR as a decision criterion [11–13].
We compared Clipper with three popular DIR identification methods: diffHic [13],

FIND [12], and multiHiCcompare [11] (Additional File 1: Section S5.5). Specifically, we
applied Clipper to DIR identification by treating pairs of genomic regions as features and
their contact intensities as measurements. To verify the FDR control of Clipper (Addi-
tional File 1: Section S7.5), diffHic, FIND, and multiHiCcompare, we generated realistic
semi-synthetic data from real interaction matrices of ENCODE cell line GM12878 [44]
with true spiked-in DIRs to evaluate the FDR and power (Additional File 1: Section S6.5).
We examined the actual FDR and power in a range of target FDR thresholds: q =
1%, 2%, . . . , 10%. Figure 3d shows that Clipper and diffHic are the only two methods that
consistently control the FDR, while multiHiCcompare and FIND fail by a large margin.
In terms of power, Clipper outperforms diffHic except for q = 1% and 2%, even though
Clipper has not been optimized for Hi-C data analysis. This result demonstrates Clipper’s
general applicability and strong potential for DIR analysis.

Discussion

In this paper, we proposed a new statistical framework, Clipper, for identifying interesting
features with FDR control from high-throughput data. Clipper avoids the use of p-values
and makes FDR control more reliable and flexible. We used comprehensive simulation
studies to verify the FDR control by Clipper under various settings. We demonstrate that
Clipper outperforms existing generic FDR control methods by having higher power and
greater robustness to model misspecification. We further applied Clipper to four popu-
lar bioinformatics analyses: peak calling from ChIP-seq data, peptide identification from
MS data, DEG identification from RNA-seq data, and DIR identification from Hi-C data.
Our results indicate that Clipper provides a powerful add-on to existing bioinformatics
tools to improve the reliability of FDR control and thus the reproducibility of scientific
discoveries.
Clipper’s FDR control procedures (BC and GZ procedures in the “Methods” section)

are motivated by the Barber-Candès (BC)’s knockoff paper [35] and the Gimenez-Zou
(GZ)’s multiple knockoff paper [64], but we do not need to construct knockoffs in
enrichment analysis when two conditions have the same number of replicates; the rea-
son is that the replicates under the background condition serve as natural negative
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controls. For differential analysis and enrichment analysis with unequal numbers of repli-
cates, in order to guarantee the theoretical assumptions for FDR control, Clipper uses
permutations instead of the complicated knockoff construction because Clipper only
examines features marginally and does not concern about features’ joint distribution.
We validated the FDR control by Clipper using extensive and concrete simulations,

including both model-based and real-data-based data generation with ground truths,
which are widely used to validate newly developed computational frameworks [65]. In
contrast, in most bioinformatics method papers, the FDR control was merely mentioned
but rarely validated. Many of them assumed that using the BH procedure on p-values
would lead to valid FDR control; however, the reality is often otherwise because p-values
would be invalid when model assumptions were violated or the p-value calculation was
problematic. Here we voice the importance of validating FDR control in bioinformatics
method development, and we use this work as a demonstration. We believe that Clipper
provides a powerful booster to this movement. As a p-value-free alternative to the clas-
sic p-value-based BH procedure, Clipper relies less on model assumptions and is thus
more robust to model misspecifications, making it an appealing choice for FDR control
in diverse high-throughput biomedical data analyses.
Clipper is a flexible framework that is easily generalizable to identify a variety of inter-

esting features. The core component of Clipper summarizes each feature’s measurements
under each condition into an informative statistic (e.g., the sample mean); then Clipper
combines each feature’s informative statistics under two conditions into a contrast score
to enable FDR control. The current implementation of Clipper only uses the sample mean
as the informative statistic to identify the interesting features that have distinct expected
values under two conditions. However, bymodifying the informative statistic, we can gen-
eralize Clipper to identify the features that are interesting in other aspects, e.g., having
different variances between two conditions. Regarding the contrast score, Clipper cur-
rently makes careful choices between two contrast scores, minus and maximum, based
on the number of replicates and the analysis task (enrichment or differential).
Notably, Clipper achieves FDR control and high power using those two simple contrast

scores, which are calculated for individual features without borrowing information from
other features. However, Clipper does leverage the power of multiple testing by setting a
contrast score threshold based on all features’ contrast scores. This is a likely reason why
Clipper achieves good power even with simple contrast scores. An advantage of Clipper
is that it allows other definitions of contrast scores, such as the two-sample t statistic that
considers within-condition variances. Empirical evidence (Additional File 1: Figures S13
and S14) shows that the Clipper variant using the two-sample t statistic is underpowered
by the default Clipper, which uses the minus summary statistic (difference of two condi-
tions’ samplemeans) as the contrast score in the 3vs3 enrichment analysis or as the degree
of interestingness in the 3vs3 differential analysis (see the “Methods” section). Here is our
current interpretation of this seemingly counter-intuitive result.

• First, both the minus statistic and the t statistic satisfy Clipper’s theoretical
conditions (Lemmas 1 and 3 in Additional File 1: Section S2), which guarantee the
FDR control by the BC and GZ procedures; this is confirmed in Additional File 1:
Figures S13 and S14. Hence, from the FDR control perspective, Clipper does not
require the adjustment for within-condition variances by using a t statistic.



Ge et al. Genome Biology          (2021) 22:288 Page 17 of 29

• Second, Clipper is different from the two-sample t test or the regression-based t test,
where the t statistic was purposely derived as a pivotal statistic so that its null
distribution (the t distribution) does not depend on unknown parameters. Since
Clipper does not require a null distribution for each feature, the advantage of the t
statistic being pivotal no longer matters.

• Third, the minus statistic only requires estimates of two conditions’ mean
parameters, while the t statistic additionally requires estimates of the two conditions’
variances. Hence, when the sample sizes (i.e., the numbers of replicates) are small, the
two more parameters that need estimation in the t statistic might contribute to the
observed power loss of the Clipper t statistic variant. Indeed, the power difference
between the two statistics diminishes as the sample sizes increase from 3vs3 in
Additional File 1: Figures S13–S14 to 10vs10 in Additional File 1: Figure S10 (where
we compared the default Clipper with BH-pair-parametric, which is based on the
two-sample t test and is highly similar to the Clipper t statistic variant).

• Fourth, we observe empirically that a contrast score would have better power if its
distribution (based on its values of all features) has a larger range and a heavier right
tail (in the positive domain). Compared to the minus statistic, the t statistic has a
smaller range and a lighter right tail due to its adjustment for features’
within-condition variances (Additional File 1: Figure S23). This observation is
consistent with the power difference of the two statistics.

Beyond our current interpretation, however, we admit that future studies are needed to
explore alternative contrast scores and their power with respect to data characteristics
and analysis tasks. Furthermore, we may generalize Clipper to be robust against sample
batch effects by constructing the contrast score as a regression-based test statistic that
has batch effects removed.
Our current version of Clipper allows the identification of interesting features between

two conditions. However, there is a growing need to generalize our framework to identify
features across more than two conditions. For example, temporal analysis of scRNA-seq
data aims to identify genes whose expression levels change along cell pseudotime [31].
To tailor Clipper for such analysis, we could define a new contrast score that differen-
tiates the genes with stationary expression (uninteresting features) from the other genes
with varying expression (interesting features). Further studies are needed to explore the
possibility of extending Clipper to the regression framework so that Clipper can accom-
modate data of multiple conditions or even continuous conditions, as well as adjusting for
confounding covariates.
We have demonstrated the broad application potential of Clipper in various bioin-

formatics data analyses. Specifically, when used as an add-on to established, popular
bioinformatics methods such as MACS2 for peak calling and SEQUEST for peptide iden-
tification, Clipper guaranteed the desired FDR control and in some cases boosted the
power. However, many more careful thoughts are needed to escalate Clipper into stan-
dalone bioinformatics methods for specific data analyses, for which data processing and
characteristics (e.g., peak lengths, GC contents, proportions of zeros, and batch effects)
must be appropriately accounted for before Clipper is used for the FDR control [59, 66].
We expect that the Clipper framework will propel future development of bioinformatics
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methods by providing a flexible p-value-free approach to control the FDR, thus improving
the reliability of scientific discoveries.
After finishing this manuscript, we were informed of the work by He et al. [67], which is

highly similar to the part of Clipper for differential analysis, as both work use permutation
for generating negative controls and the GZ procedure for thresholding (test statistics in
He et al. and contrast scores in Clipper). However, the test statistics used in He et al.
are the two-sample t statistic and the two-sample Wilcoxon statistic, both of which are
different from the minus and maximum contrast scores used in Clipper. While we leave
the optimization of contrast scores to future work, we observed that the minus contrast
score outpowers the two-sample t statistic in our analysis (Additional File 1: Figures S13
and S14), and we hypothesize that the two-sample Wilcoxon statistic, though being a
valid contrast score for differential analysis, requires a large sample size to achieve good
power. For this reason, we did not consider it as a contrast score in the current Clipper
implementation, whose focus is on small-sample-size high-throughout biological data.

Conclusion
In high-throughput biological data analysis, which aims to identify interesting features
by comparing two conditions, existing bioinformatics tools control the FDR based on p-
values. However, obtaining valid p-values relies on either reasonable assumptions of data
distribution or large numbers of replicates under both conditions—two requirements
that are often unmet in biological studies. To address this issue, we propose Clipper,
a general statistical framework for FDR control without relying on p-values or specific
data distributions. Clipper is applicable to identifying both enriched and differential fea-
tures from high-throughput biological data of diverse types. In comprehensive simulation
and real-data benchmarking, Clipper outperforms existing generic FDR control meth-
ods and specific bioinformatics tools designed for various tasks, including peak calling
from ChIP-seq data, differentially expressed gene identification from bulk or single-
cell RNA-seq data, differentially interacting chromatin region identification from Hi-C
data, and peptide identification from mass spectrometry data. Our results demonstrate
Clipper’s flexibility and reliability for FDR control, as well as its broad applications in
high-throughput data analysis.

Methods
Clipper: notations and assumptions

We first introduce notations and assumptions used in Clipper.While the differential anal-
ysis treats the two conditions symmetric, the enrichment analysis requires one condition
to be the experimental condition (i.e., the condition of interest) and the other condi-
tion to be the background condition (i.e., the negative control). For simplicity, we use the
same set of notations for both analyses. For two random vectors X = (X1, . . . ,Xm)� and
Y = (Y1, . . . ,Yn)�, we write X ⊥ Y if Xi is independent of Yj for all i = 1, . . . ,m and
j = 1, . . . , n. To avoid confusion, we use card(A) to denote the cardinality of a set A and
|c| to denote the absolute value of a scalar c. We define a ∨ b := max(a, b).
Clipper only requires two inputs: the target FDR threshold q ∈ (0, 1) and the input data.

Regarding the input data, we use d to denote the number of features with measurements
under two conditions, and we usem and n to denote the numbers of replicates under the
two conditions. For each feature j = 1, . . . , d, we use X j = (

Xj1, . . . ,Xjm
)� ∈ R

m
≥0 and
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Y j = (
Yj1, . . . ,Yjn

)� ∈ R
n
≥0 to denote its measurements under the two conditions, where

R≥0 denotes the set of non-negative real numbers. We assume that all measurements are
non-negative, as is the case with most high-throughput experiments. (If this assumption
does not hold, transformations can be applied to make data satisfy this assumption.)
Clipper has the following assumptions on the joint distribution of

X1, . . . ,Xd,Y 1, . . . ,Y d. For j = 1, . . . , d, Clipper assumes that Xj1, . . . ,Xjm are identically
distributed, so are Yj1, . . . ,Yjn. Let μXj = E

[
Xj1

]
and μYj = E

[
Yj1

]
denote the expected

measurement of feature j under the two conditions, respectively. Then conditioning on
{
μXj

}d
j=1 and

{
μYj

}d
j=1,

Xj1, · · · ,Xjm,Yj1, · · · ,Yjn are mutually independent ; (1)

X j ⊥ Xk ,Y j ⊥ Y k and X j ⊥ Y k , ∀j, k = 1, . . . , d.

An enrichment analysis aims to identify interesting features with μXj > μYj (with X j
and Y j defined as the measurements under the experimental and background conditions,
respectively), while a differential analysis aims to call interesting features with μXj 	= μYj.
We define N := {j : μXj = μYj} as the set of uninteresting features and denote N :=
card(N ). In both analyses, Clipper further assumes that an uninteresting feature j satisfies

Xj1, · · · ,Xjm,Yj1, · · · ,Yjn are identically distributed , ∀j ∈ N . (2)

Clipper consists of two main steps: construction and thresholding of contrast scores.
First, Clipper computes contrast scores, one per feature, as summary statistics that reflect
the extent to which features are interesting. Second, Clipper establishes a contrast-score
cutoff and calls as discoveries the features whose contrast scores exceed the cutoff.
To construct contrast scores, Clipper uses two summary statistics t(·, ·) : Rm

≥0×R
n
≥0 → R

to extract data information regarding whether a feature is interesting or not:

tminus(x, y) := x̄ − ȳ ; (3)

tmax(x, y) := max (x̄, ȳ) · sign (x̄ − ȳ) , (4)

where x = (x1, . . . , xm)� ∈ R
m
≥0, y = (y1, . . . , yn)� ∈ R

n
≥0, x̄ = ∑m

i=1 xi/m, ȳ = ∑n
i=1 yi/n,

and sign(·) : R → {−1, 0, 1} with sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and
sign(x) = 0 otherwise.
Notably, other summary statistics can also be used to construct contrast scores. For

example, an alternative summary statistic is the t statistic from the two-sample t test:

tt(x, y) := x̄ − ȳ
√∑m

i=1(xi−x̄)2+∑n
i=1(yi−ȳ)2

m+n−2

. (5)

Then we introduce how Clipper works in three analysis tasks: the enrichment analysis
with equal numbers of replicates under two conditions (m = n), the enrichment analysis
with different numbers of replicates under two conditions (m 	= n), and the differential
analysis (whenm + n > 2).

Clipper: enrichment analysis with equal numbers of replicates (m = n)

Under the enrichment analysis, we assume that X j ∈ R
m
≥0 and Y j ∈ R

n
≥0 are the mea-

surements of feature j, j = 1, . . . , d, under the experimental and background conditions
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withm and n replicates, respectively. We start with the simple case whenm = n. Clipper
defines a contrast score Cj of feature j in one of two ways:

Cj := tminus(X j,Y j) minus contrast score , (6)

or

Cj := tmax(X j,Y j) maximum contrast score . (7)

Figure 6a shows a cartoon illustration of contrast scores whenm = n = 1. Accordingly, a
large positive value of Cj bears evidence that μXj > μYj. Motivated by [35], Clipper uses
the following procedure to control the FDR under the target level q ∈ (0, 1).

Fig. 6 Illustration of the construction of contrast scores. a 1vs1 enrichment analysis. b 2vs1 differential analysis
(left) or enrichment analysis (right). In each panel, an interesting feature (top) and an uninteresting feature
(bottom) are plotted for contrast; both features have measurements under the experimental and background
conditions. In a, each feature’s measurements are summarized into a maximum (max) contrast score or a
minus contrast score. In b, each feature’s measurements are permuted across the two conditions, resulting in
two sets of permuted measurements. Then for each feature, we calculate its degrees of interestingness—as
the difference that equals the average of experimental measurements minus the average of background
measurements (in enrichment analysis; right), or the absolute value of the difference (in differential analysis;
left)—from its original measurements and permuted measurements, respectively. Finally, we summarize
each feature’s degrees of interestingness into a maximum (max) contrast score or a minus contrast score
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Definition 1 (Barber-Candès (BC) procedure for thresholding contrast scores [35])
Given contrast scores

{
Cj

}d
j=1, C = {∣∣Cj

∣
∣ : Cj 	= 0 ; j = 1, . . . , d } is defined as the set of

non-zero absolute values of Cj’s. The BC procedure finds a contrast-score cutoff TBC based
on the target FDR threshold q ∈ (0, 1) as

TBC := min
{

t ∈ C :
card

({
j : Cj ≤ −t

}) + 1
card

({
j : Cj ≥ t

}) ∨ 1
≤ q

}

(8)

and outputs
{
j : Cj ≥ TBC}

as discoveries.

Clipper: enrichment analysis with any numbers of replicatesm and n

When m 	= n, Clipper constructs contrast scores via permutation of replicates across
conditions. The idea is that, after permutation, every feature becomes uninteresting and
can serve as its own negative control.

Definition 2 (Permutation) We define σ as permutation, i.e., a bijection from the set
{1, · · · ,m+n} onto itself, and we rewrite the data X1, . . . ,Xd,Y 1, . . . ,Y d into a matrixW:

W =

⎡

⎢
⎢
⎣

W11 · · · W1m W1(m+1) · · · W1(m+n)

...
...

Wd1 · · · Wdm Wd(m+1) · · · Wd(m+n)

⎤

⎥
⎥
⎦ :=

⎡

⎢
⎢
⎣

X11 · · · X1m Y11 · · · Y1n
...

...
Xd1 · · · Xdm Yd1 · · · Ydn

⎤

⎥
⎥
⎦ .

We then apply σ to permute the columns ofW and obtain

Wσ :=

⎡

⎢⎢
⎣

W1σ(1) · · · W1σ(m) W1σ(m+1) · · · W1σ(m+n)

...
...

Wdσ(1) · · · Wdσ(m) Wdσ(m+1) · · · Wdσ(m+n)

⎤

⎥⎥
⎦ ,

from which we obtain the permuted measurements
{(

Xσ
j ,Y σ

j

)}d

j=1
, where

Xσ
j := (

Wjσ(1), . . . ,Wjσ(m)

)� ,

Y σ
j := (

Wjσ(m+1), . . . ,Wjσ(m+n)

)� . (9)

In the enrichment analysis, if two permutations σ and σ ′ satisfy that

{σ(1), · · · , σ(m)} = {
σ ′(1), · · · , σ ′(m)

}
,

then we define σ and σ ′ to be in one equivalence class. That is, permutations in the
same equivalence class lead to the same division ofm+ n replicates (from the two condi-
tions) into two groups with sizesm and n. In total, there are

(m+n
m

)
equivalence classes of

permutations.
We define σ0 as the identity permutation such that σ0(i) = i for all i ∈ {1, · · · ,m + n}.

In addition, Clipper randomly samples h equivalence classes σ1, . . . , σh with equal proba-
bilities without replacement from the other hmax := (m+n

m
) − 1 equivalence classes (after

excluding the equivalence class containing σ0). Note that hmax is the maximum value h
can take.
Clipper then obtains

{(
Xσ0
j ,Y σ0

j

)
,
(
Xσ1
j ,Y σ1

j

)
, · · · ,

(
Xσh
j ,Y σh

j

)}d

j=1
, where

(
Xσ�

j ,Y σ�

j

)

are the permuted measurements based on σ�, � = 0, 1, . . . , h. Then Clipper com-
putes Tσ�

j := tminus
(
Xσ�

j ,Y σ�

j

)
to indicate the degree of “interestingness” of feature
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j reflected by
(
Xσ�

j ,Y σ�

j

)
. Note that Clipper chooses tminus instead of tmax because

empirical evidence shows that tminus leads to better power. Sorting
{
Tσ�

j

}h

�=0
gives

T (0)
j ≥ T (1)

j ≥ · · · ≥ T (h)
j .

Then Clipper defines the contrast score of feature j, j = 1, . . . , d, in one of two ways:

Cj :=
{
T (0)
j − T (1)

j ifT (0)
j = Tσ0

j
T (1)
j − T (0)

j otherwise
minus contrast score , (10)

or

Cj :=

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣∣T (0)

j

∣
∣∣ ifT (0)

j = Tσ0
j > T (1)

j

0 ifT (0)
j = T (1)

j

−
∣
∣
∣T (0)

j

∣
∣
∣ otherwise

maximum contrast score . (11)

The intuition behind the contrast scores is that, if Cj < 0, then T (0)
j 	= Tσ0

j , which
means that at least one of Tσ1

j , . . . ,Tσh
j (calculated after random permutation) is greater

than Tσ0
j calculated from the original data (identity permutation), suggesting that feature j

is likely an uninteresting feature in enrichment analysis. Figure 6b (right) shows a cartoon
illustration of contrast scores when m = 2 and n = 1. Motivated by [64], we propose the
following procedure for Clipper to control the FDR under the target level q ∈ (0, 1).

Definition 3 (Gimenez-Zou (GZ) procedure for thresholding contrast scores [64])
Given h ∈ {1, · · · , hmax} and contrast scores {Cj}dj=1, C = {|Cj| : Cj 	= 0 ; j = 1, . . . , d }
is defined as the set of non-zero absolute values of Cj’s. The GZ procedure finds a
contrast-score cutoff TGZ based on the target FDR threshold q ∈ (0, 1) as:

TGZ := min
{

t ∈ C :
1
h + 1

hcard
({
j : Cj ≤ −t

})

card
({
j : Cj ≥ t

}) ∨ 1
≤ q

}

(12)

and outputs
{
j : Cj ≥ TGZ}

as discoveries.

Clipper: differential analysis withm + n > 2

For differential analysis, Clipper also uses permutation to construct contrast scores.
When m 	= n, the equivalence classes of permutations are defined the same as for the
enrichment analysis with m 	= n. When m = n, there is a slight change in the definition
of equivalence classes of permutations: if σ and σ ′ satisfy that

{σ(1), · · · , σ(m)} = {σ ′(1), · · · , σ ′(m)} or {σ ′(m + 1), · · · , σ ′(2m)} ,
then we say that σ and σ ′ are in one equivalence class. In total, there are htotal :=

(m+n
m

)

(when m 	= n) or
(2m
m

)
/2 (when m = n) equivalence classes of permutations. Hence,

to have more than one equivalence class, we cannot perform differential analysis with
m = n = 1; in other words, the total number of replicatesm + nmust be at least 3.
Then Clipper randomly samples σ1, . . . , σh with equal probabilities without replace-

ment from the hmax := htotal − 1 equivalence classes that exclude the class containing σ0,
i.e., the identity permutation. Note that hmax is the maximum value h can take. Next, Clip-
per computes Tσ�

j :=
∣
∣
∣tminus(Xσ�

j ,Y σ�

j )

∣
∣
∣, whereXσ�

j and Y σ�

j are the permuted data defined
in (9), and it defines Cj as the contrast score of feature j, j = 1, . . . , d, in the same ways as
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in (10) or (11). Figure 6b (left) shows a cartoon illustration of contrast scores whenm = 2
and n = 1.
Same as in the enrichment analysis with m 	= n, Clipper also uses the GZ procedure

[64] to set a cutoff on contrast scores to control the FDR under the target level q ∈ (0, 1).

Clipper: discussion on contrast scores

Granted, when we use permutations to construct contrast scores in the GZ procedure,
we can convert contrast scores into permutation-based p-values (see Additional File 1:
Section S1.1.2). However, when the numbers of replicates are small, the number of pos-
sible permutations is small, so permutation-based p-values would have a low resolution
(e.g., whenm = 2 and n = 1, the number of non-identity permutations is only 2). Hence,
applying the BH procedure to the permutation-based p-values would result in almost
no power. Although Yekutieli and Benjamini proposed another thresholding procedure
for permutation-based p-values [68], it still requires the number of permutations to be
large to obtain a reliable FDR control. Furthermore, if we apply the SeqStep+ procedure
by Barber and Candés [35] to permutation-based p-values, it would be equivalent to our
application of the GZ procedure to contrast scores (Additional File 1: Section S1.1.2).
For both differential and enrichment analyses, the two contrast scores (minus and max-

imum) can both control the FDR. Based on the power comparison results in Additional
File 1: Section S3 and Additional File 1: Figures S24–S28, Clipper has the following default
choice of contrast score: for the enrichment analysis with m = n, Clipper uses the BC
procedure with the minus contrast score; for the enrichment analysis with m 	= n or the
differential analysis, Clipper uses the GZ procedure with the maximum contrast score.

Generic FDR control methods

In our simulation analysis, we compared Clipper against generic FDR control methods
including p-value-based methods and local-fdr-based methods. Briefly, each p-value-
based method is a combination of a p-value calculation approach and a p-value thresh-
olding procedure. We use either the “paired” or “pooled” approach (see next paragraph)
to calculate p-values of features and then threshold the p-values using the BH procedure
(Additional File 1: Definition S1) or Storey’s qvalue procedure (Additional File 1: Defini-
tion S2) to make discoveries (Additional File 1: Section S1.1). As a result, we have four
p-value-based methods: BH-pair, BH-pool, qvalue-pair, and qvalue-pool (Fig. 1b).
Regarding the existing p-value calculation approaches in bioinformatics tools, we cate-

gorize them as “paired” or “pooled.” The paired approach has been widely used to detect
DEGs and protein-binding sites [1, 2, 4, 5]. It examines one feature at a time and compares
the feature’s measurements between two conditions using a statistical test. In contrast,
the pooled approach is popular in proteomics for identifying peptide sequences fromMS
data [69]. For every feature, it defines a test statistic and estimates a null distribution by
pooling all features’ observed test statistic values under the background condition. Finally,
it calculates a p-value for every feature based on the feature’s observed test statistic under
the experimental condition and the null distribution.
In parallel to p-value-based methods, local-fdr-based methods estimate local fdrs

of features and then threshold the local fdrs using the locfdr procedure (Additional
File 1: Definition S5) to make discoveries. The estimation of local fdrs takes one of two
approaches: (1) empirical null, which is estimated parametrically from the test statistic
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values that are likely drawn from the null distribution, and (2) swapping null, which is con-
structed by swapping measurements between experimental and background conditions.
The resulting two local-fdr-based-methods are referred to as locfdr-emp and locfdr-swap
(Figs. 1b and 2). Additional File 1: Section S1 provides a detailed explanation of these
generic methods and how we implemented them in this work.
Specific to the p-value-based methods, for the paired approach, besides the ideal

implementation that uses the correct model to calculate p-values (BH-pair-correct and
qvalue-pair-correct), we also consider common mis-implementations. The first mis-
implementations is misspecification of the distribution (BH-pair-mis and qvalue-pair-
mis). An example is the detection of protein-binding sites fromChIP-seq data. A common
assumption is that ChIP-seq read counts in a genomic region (i.e., a feature) follow the
Poisson distribution [1, 2], which implies that the counts have the variance equal to the
mean. However, if only two replicates are available, it is impossible to check whether
this Poisson distribution is reasonably specified. The second mis-implementation is the
misspecification of a two-sample test as a one-sample test (BH-pair-2as1 and qvalue-pair-
2as1), which ignores the sampling randomness of replicates under one condition. This
issue is implicit but widespread in bioinformatics methods [1, 70].
To summarize, we compared Clipper against the following implementations of generic

FDR control methods:

• BH-pool or qvalue-pool: p-values calculated by the pooled approach and
thresholded by the BH or qvalue procedure.

• BH-pair-correct or qvalue-pair-correct: p-values calculated by the paired
approach with the correct model specification and thresholded by the BH or qvalue
procedure.

• BH-pair-mis or qvalue-pair-mis: p-values calculated by the paired approach with a
misspecified model and thresholded by the BH or qvalue procedure.

• BH-pair-2as1 or qvalue-pair-2as1: p-values calculated by the paired approach that
misformulates a two-sample test as a one-sample test (2as1) and thresholded by the
BH or qvalue procedure.

• locfdr-emp: local fdrs calculated by the empirical null approach and thresholded by
the locfdr procedure.

• locfdr-swap: local fdrs calculated by the swapping approach and thresholded by the
locfdr procedure.

Software packages used in this study

• p.adjust R function (in R package stats v 4.0.2 with default arguments) [14]: used
for BH-pool, BH-pair-correct, BH-pair-mis, and BH-pair-2as1.

• qvalue R package (v 2.20.0 with default arguments) [71]: used for qvalue-pool,
qvalue-pair-correct, qvalue-pair-mis, and qvalue-pair-2as1.

• locfdr R package (v 1.1-8 with default arguments) [72]: used for locfdr-emp.
• MACS2 software package (v 2.2.6 with default settings) [1]: available at https://

github.com/macs3-project/MACS/releases/tag/v2.2.6.
• ChIPulate software package [45]: available at https://github.com/vishakad/chipulate.
• HOMER software package (findPeaks v 3.1.9.2 with default settings) [2]: available at

https://www.bcgsc.ca/platform/bioinfo/software/findpeaks/releases/3.1.9.2/
findpeaks3-1-9-2-tar.gz.

https://github.com/macs3-project/MACS/releases/tag/v2.2.6
https://github.com/macs3-project/MACS/releases/tag/v2.2.6
https://github.com/vishakad/chipulate
https://www.bcgsc.ca/platform/bioinfo/software/findpeaks/releases/3.1.9.2/findpeaks3-1-9-2-tar.gz
https://www.bcgsc.ca/platform/bioinfo/software/findpeaks/releases/3.1.9.2/findpeaks3-1-9-2-tar.gz
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• SEQUEST in Proteome Discoverer (v 2.3.0.523 with default settings) [3]:
commercial software by ThermoScientific.

• edgeR R package (v 3.30.0 with default arguments) [4]: available at https://www.
bioconductor.org/packages/release/bioc/html/edgeR.html.

• DESeq2 R package (v 1.28.1 with default arguments) [5]: available at https://
bioconductor.org/packages/release/bioc/html/DESeq2.html.

• limma R package (v 3.44.3 with default arguments) [10]: available at https://www.
bioconductor.org/packages/release/bioc/html/limma.html.

• MAST R package (v 1.14.0 with default arguments) [57]: available at https://www.
bioconductor.org/packages/release/bioc/html/MAST.html.

• monocle3 R package (v 0.2.3.0 with default arguments) [58]: available at https://
github.com/cole-trapnell-lab/monocle3.

• MultiHiCcompare R package (v 1.6.0 with default arguments) [11]: available at
https://bioconductor.org/packages/release/bioc/html/multiHiCcompare.html.

• diffHic R package (v 1.20.0 with default arguments) [13]: available at https://www.
bioconductor.org/packages/release/bioc/html/diffHic.html.

• FIND R package (v 0.99 with default arguments) [12]: available at https://bitbucket.
org/nadhir/find/src/master/.
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