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M A J O R A R T I C L E

Changes in Bone Mineral Density After Initiation
of Antiretroviral Treatment With Tenofovir
Disoproxil Fumarate/Emtricitabine Plus
Atazanavir/Ritonavir, Darunavir/Ritonavir,
or Raltegravir

Todd T. Brown,1 Carlee Moser,2 Judith S. Currier,3 Heather J. Ribaudo,2 Jennifer Rothenberg,5 Theodoros Kelesidis,3

Otto Yang,3 Michael P. Dubé,4 Robert L. Murphy,6 James H. Stein,7 and Grace A. McComsey8

1Johns Hopkins University, Baltimore, Maryland; 2Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts;
3David Geffen School of Medicine, University of California–Los Angeles, and 4Keck School of Medicine, University of Southern California, Los Angeles,
California; 5Social and Scientific Systems, Washington D.C.; 6Feinberg School of Medicine, Northwestern University, Chicago, Illinois; 7University of
Wisconsin School of Medicine and Public Health, Madison; and 8Case Western Reserve University School of Medicine, Cleveland, Ohio

Background. Specific antiretroviral therapy (ART) medications and the severity of human immunodeficiency
virus (HIV) disease before treatment contribute to bone mineral density (BMD) loss after ART initiation.

Methods. We compared the percentage change in BMD over 96 weeks in 328 HIV-infected, treatment-naive
individuals randomized equally to tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) plus atazanavir/ritonavir
(ATV/r), darunavir/ritonavir (DRV/r), or raltegravir (RAL). We also determined whether baseline levels of inflam-
mation markers and immune activation were independently associated with BMD loss.

Results. At week 96, the mean percentage changes from baseline in spine and hip BMDs were similar in the
protease inhibitor (PI) arms (spine: −4.0% in the ATV/r group vs −3.6% in the DRV/r [P = .42]; hip: −3.9% in
the ATV/r group vs −3.4% in the DRV/r group [P = .36]) but were greater in the combined PI arms than in the
RAL arm (spine: −3.8% vs −1.8% [P < .001]; hip: −3.7% vs −2.4% [P = .005]). In multivariable analyses, higher base-
line concentrations of high-sensitivity C-reactive protein, interleukin 6, and soluble CD14were associated with greater
total hip BMD loss, whereas markers of CD4+ T-cell senescence and exhaustion (CD4+CD28−CD57+PD1+) and
CD4+ T-cell activation (CD4+CD38+HLA-DR+) were associated with lumbar spine BMD loss.

Conclusions. BMD losses 96 weeks after ART initiation were similar in magnitude among patients receiving PIs,
ATV/r, or DRV/r but lowest among those receiving RAL. Inflammation and immune activation/senescence before
ART initiation independently predicted subsequent BMD loss.

Keywords. bone mineral density; protease inhibitor; integrase inhibitor; human immunodeficiency virus;
inflammation.

Osteoporosis is common in human immunodeficiency
virus (HIV)–infected populations, and emerging evi-

dence suggests that fracture risk is higher in HIV-infected
persons, compared with age-matched, HIV-uninfected
controls [1, 2].The first 48 weeks after antiretroviral ther-
apy (ART) initiation has consistently been associated
with a bone mineral density (BMD) loss of approximate-
ly 2%–6%, which does not return to baseline during con-
tinued treatment [3–6]. The magnitude of this BMD loss
is dependent in part on the specific medications used.
Among the nucleoside/nucleotide analogues, tenofovir
disoproxil fumarate (TDF) has been consistently associ-
ated with an approximately 1%–2% greater loss in BMD
during the period shortly after ART initiation [3–5]. The
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independent BMD effects of the third drug are less certain. Pro-
tease inhibitors (PIs) have been implicated in BMD loss after
ART initiation, but most studies have examined PIs as a class
[6, 7], rather than as individual medications, or have examined
total body BMD [8, 9], rather than the more clinically relevant
hip or spine BMDs. To our knowledge, only 1 study has com-
pared the BMD effects of PIs to those of integrase inhibitors
after ART initiation, and it found that elvitegravir/cobicistat
was associated with slightly smaller decreases in BMD over 96
weeks, compared with atazanavir/ritonavir (ATV/r) [10].

Increased pretreatment HIV disease severity, defined on the
basis of a lower baseline CD4+ T-cell count, is also associated
with greater loss of BMD after ART initiation [9], and higher
levels of the soluble tumor necrosis factor α (TNF-α) receptor
1 at baseline have been associated greater increases in the bone
turnover markers c-telopeptide and osteocalcin, suggesting that
increased inflammation at baseline may contribute to ART-
associated bone loss [11]. Proinflammatory cytokines such as in-
terleukin 6 (IL-6) and TNF-α are potent stimulators of osteoclast
activity [12, 13], and in the general postmenopausal population,
serum concentrations of IL-6 are major predictors of bone loss
[14, 15]. The source of these cytokines may be activated or senes-
cent T cells, which can be identified with cellular markers [16–18].

Activation of monocytes among HIV-infected persons has
also been proposed as a major contributor to the pathogenesis
of non-AIDS comorbidities [19, 20]. However, there are limited
data investigating the relationship between monocyte activation
and osteoporosis in HIV-infected persons [21], and the rela-
tionship between monocyte activation before ART initiation
and BMD loss after ART initiation has not been reported.

Activated T cells and monocytes may influence bone resorp-
tion through alterations in the osteoprotegerin/receptor activa-
tor of nuclear factor-κ B ligand (RANKL) system [22], although
activated T cells can also induce osteoclastic activity through
osteoprotegerin/RANKL-independent pathways [23]. Osteo-
protegerin and RANKL are osteoblast/osteocyte-secreted fac-
tors that have a major role in the coupling of bone formation
and resorption, but they are also secreted by activated immune
cells [12, 24, 25]. While these proteins act locally in the bone
microenvironment, their circulating concentrations have been
associated with osteoporosis in the general population [25].
We have found that higher osteoprotegerin concentrations had
a protective effect on BMD in ART-naive HIV-infected persons
[26], but whether these pre-ART levels of osteoprotegerin and
RANKL influence bone loss after ART initiation is not clear.

The main objective of the current study was to determine
whether BMD changes over 96 weeks after ART initiation differ
in HIV-infected persons starting ATV/r, darunavir/ritonavir
(DRV/r), or raltegravir (RAL) when combined with TDF/
FTC.We also investigated whether BMD changes after ART ini-
tiation are related to baseline HIV-related variables and biomar-
kers related to inflammation, immune activation/senescence,

monocyte activation, and bone regulation (osteoprotegerin/
RANKL).

METHODS

A5260s was a substudy of AIDS Clinical Trials Group (ACTG)
A5257, in which HIV-infected, ART-naive persons at least
18 years of age with an HIV type 1 (HIV) RNA load of
≥1000 copies/mL were randomized in an open-labeled fashion
to receive TDF/FTC (300 mg/200 mg daily) plus either ATV/r
(300 mg/100 mg daily), DRV/r (800 mg/100 mg daily), or RAL
(400 mg twice daily). The primary end point of A5260s was
subclinical cardiovascular disease (CVD). Therefore, subjects
with known CVD or diabetes mellitus, uncontrolled thyroid
disease, or use of lipid-lowering medications were excluded
from participating. Randomization in A5257 was stratified by
HIV RNA level, A5260s participation, and 10-year risk of
myocardial infarction or death due to CVD. The preliminary
CVD-associated results of A5260s have been reported elsewhere
[27]. A secondary objective of A5260s was to compare changes in
lumbar spine and total hip BMDs in the 3 treatment arms over 96
weeks. The parent study and substudy (clinical registration
NCT00811954 and NCT00851799) were approved by the institu-
tional review boards of all participating institutions, and all sub-
jects provided written informed consent.

At baseline, information regarding demographic characteris-
tics, health-related behaviors, medical conditions, and pre-
scribed medications was obtained. BMD was assessed by
dual-energy x-ray absorptiometry (DXA) of the lumbar spine
(L1–L4) and total hip, using Hologic or Lunar scanners. Sites
were instructed to use the same scanner and the same hip
(left) at both study time points on the same subject. Total
BMD was also assessed using whole-body DXA. All scans
were read centrally by readers blinded to treatment assignment
and clinical characteristics, using a standardized protocol at the
Body Composition Analysis Center, Tufts University (Boston,
Massachusetts). z scores were calculated from the site-specific
BMD measurements, using normative data matched for age,
sex, and race and, given the young age of the population, were
used to summarize the baseline BMD data in accordance with
National Osteoporosis Foundation guidelines [28].

Laboratory Assessment
Fasting blood samples (duration of fast, ≥8 hours) were obtained
by phlebotomists and sent to core laboratories for analysis. Levels
of soluble biomarkers were measured in plasma specimens stored
at −70°C at the University of Vermont Laboratory for Clinical
Biochemistry Research laboratory (Burlington). Levels of high-
sensitivity C-reactive protein (hsCRP) were measured by
nephelometry (interassay coefficient of variation [CV] range
2.96%–6.24%), and levels of soluble interleukin 2 receptor
(IL-2R; (interassay CV range, 4.14%–9.51%), soluble CD14
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(sCD14; interassay CV range, 11.24%–14.07%), soluble CD163
(sCD163; interassay CV range, 7.52%–8.72%), IL-6 (interassay
CV range, 6.59%–12.48%), osteoprotegerin (interassay CV range,
8.74%–14.68%), and RANKL (interassay CV range, 10.05%–

12.45%) were measured by enzyme-linked immunosorbent assay.
Immunophenotyping was performed using multicolor flow

cytometry on cryopreserved peripheral blood mononuclear
cells collected according to a standard ACTG protocol. The
fluorochrome-conjugated antibodies used were anti-CD3 PE-
Cy7 (clone SK7), anti-CD4 V450 (clone RPA-T4), anti-CD8
APC (clone RPA-T8), anti-CD8 APC-Cy7 (clone SK1), anti-
CD28 PE-Cy 5 (clone CD28.2), anti-CD57 PE (clone NK-1),
anti-CD279 (PD-1) APC (clone MIH4), anti-HLA-DR FITC
(clone L243), anti-CD38 PE (clone HB7), anti-CD14 APC
(clone M5E2), and anti-CD16 PE-Cy7 (clone 3G8; all from
BD Biosciences). Data were analyzed in FlowJo software, ver-
sion 9.3.3 (Treestar, Ashland, Oregon). The following monocyte
phenotypes were characterized and expressed as percentages:
proinflammatory phenotype (CD14+/CD16+) and nonclassical
phenotype (patrolling monocytes; CD14dim/CD16+) [29].CD4+

and CD8+ T cells with activated (HLA-DR+CD38+), senescent
(CD28−CD57+), or senescent and exhausted (CD28−CD57+

PD1+) phenotypes were assessed [30].

Statistical Analysis
The primary objective of this analysis was to determine whether
the changes in lumbar spine or total hip BMD in the first 96
weeks after ART initiation differed between the randomized
treatment arms. As a post hoc analysis, the 96-week percentage
change in total BMD was also included as an outcome measure.
Within-treatment-group changes in BMD were assessed with
Wilcoxon signed rank tests. Per the study design, between-
treatment-group comparisons used multivariable linear regres-
sion models with reverse Helmert contrasts, as follows. First, the
ATV/r arm was compared to the DRV/r arm. If the difference
was not statistically significant, the pooled PI/r arm was com-
pared to the RAL arm. If the difference between the ATV/r
and DRV/r arms was statistically significant, all pairwise com-
parisons between the treatment groups were performed. To ac-
count for multiple comparisons, all treatment comparisons
were assessed with a type I error rate of 2.5%. All other statistical
inferences were assessed with a 5% type I error rate. Analyses
were adjusted for stratification factors (Framingham risk score
and baseline HIV RNA level). Secondary during-treatment anal-
yses that included only subjects who received their randomized
treatment continuously for at least 96 weeks were also performed.
Since the intention-to-treat (ITT) and during-treatment results
were similar, only the ITT analyses are presented.

To evaluate whether baseline levels of soluble and cellular
biomarkers were associated with the 96-week change in BMD,
separate multiple linear regression models were used for each
biomarker. Soluble biomarkers were log10 transformed prior

to analysis. To standardize presentation, estimates of soluble bio-
marker levels are given per 0.3 log10 unit difference (equivalent to
BMD effect per doubling of the biomarker level), and estimates
of the effect of baseline cellular biomarker levels are presented as
the change in BMD over 96 weeks for a 1% change in the bio-
marker, unless otherwise noted. All models were adjusted for
age, race/ethnicity, sex, baseline body mass index (BMI), baseline
CD4+ T-cell count, and baseline HIV RNA. All statistical analy-
ses were performed with SAS (version 9.2, Cary, North Carolina).

RESULTS

Baseline Characteristics and Subject Disposition
A total of 334 subjects were enrolled from 26 US ACTG sites be-
tween June 2009 and April 2011. Of these subjects, 3 were sub-
sequently found not to have met eligibility criteria (1 was not
ART naive, 1 had virus with exclusionary nucleoside reverse tran-
scriptase inhibitor [NRTI] mutations, and 1 was receiving a sta-
tin) and 3 discontinued the substudy follow-up within 1 day of
enrollment, leaving 328 in the study analysis population (Table 1).
The median BMD z score was −0.4 (interquartile range [IQR],
−1.2 to 0.4) at the lumbar spine and −0.1 (IQR, −0.6 to 0.6) at
the total hip. The percentage of subjects with low BMD (defined
as a z score of −2.0 or less) was 9% at the lumbar spine and 1% at
the total hip. At baseline, 21% reported receiving concomitant
medications that affect bone, including androgens (n = 4), anti-
convulsants (n = 1), proton-pump inhibitors (n = 22), corticoste-
roids (n = 8), estrogens (n = 5), tricyclic antidepressants (n = 3),
and selective serotonin-reuptake inhibitors (n = 25). None of
the subjects had a history of osteoporosis treatment. Concentra-
tions of the biomarkers at baseline are presented in Table 1.

Over the 96-week follow-up period, 25 (8%) prematurely dis-
continued the substudy, and 2 died. Of the 301 who completed
96 weeks of study follow-up, 289 (96%) had 96-week DXA data
at least 1 site, and 280 (93%) were receiving their randomized
ART regimen at 96 weeks (Figure 1).

Changes in Bone Mineral Density Over 96 Weeks
Lumbar Spine
Lumbar spine BMD decreased significantly in each of the 3
treatment arms (all P < .001). The median percentage changes
in lumbar spine BMD were as follows: ATV/r, −4.0% (IQR,
−6.5 to −0.3); DRV/r, −3.1% (IQR, −5.2 to −0.8); and RAL,
−1.6% (IQR, −3.6 to 0.9). The PI arms showed similar mean
lumbar spine percentage BMD changes (−4.0% for ATV/r vs
−3.6% for DRV/r; P = .42), but the pooled PI arms showed
greater mean BMD loss than the RAL arm (−3.8% vs −1.8%;
P < .001; Supplementary Figures 1A and 1B).

Total Hip
Total hip BMD decreased significantly in each of the 3 treat-
ment arms (all P < .001). The median percentage changes in
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total hip BMD were as follows: ATV/r, −3.7% (IQR, −5.7 to
−1.4); DRV/r, −3.3% (IQR, −5.2 to −0.9); and RAL, −2.2%
(IQR, −4.5 to 0.4). Similar to the findings at the lumbar
spine, no difference in the mean percentage BMD change at
the hip from baseline to week 96 was apparent between the PI
arms (−3.9% for ATV/r vs −3.4% for DRV/r; P = .36; Supple-
mentary Figure 2A); the mean percentage BMD lost in the com-
bined PI arms was greater than that in the RAL arm (−3.7% vs
−2.4%; P = .005; Supplementary Figure 2B).

Total Body
The pattern of BMD changes in the total body BMD differed
from the site-specific findings. While total body BMD decreased

significantly in all 3 arms (P < .001), BMD loss was greater with
ATV/r than DRV/r (−2.9% vs −1.6%; P = .001) and greater with
ATV/r than RAL (−2.9% vs −1.7%; P = .004). No difference be-
tween the RAL and DRV/r arms was apparent (P = .72).

Effect of Baseline CD4+ T-Cell Count and HIV RNA Load
After adjustment for age, sex, race/ethnicity, baseline HIV RNA
load, and BMI, no associations were detected between lower
baseline CD4+ T-cell count and bone loss at the lumbar spine
or total hip. In contrast, higher baseline HIV RNA load was as-
sociated with bone loss at both sites after multivariable adjust-
ment (spine, −1.53% [95% confidence interval {CI}, −2.28% to
−.77%] for each log10 copies/mL increase [P < .001]; total hip,

Table 1. Subject Characteristics at Baseline

Characteristic ATV/r (n = 109) RAL (n = 106) DRV/r (n = 113)

Age, y 37 (31–45) 36 (27–44) 35 (27–46)

Sex
Male 91 89 89

Female 9 11 11

Race/ethnicity
White 49 41 42

Black 31 32 33

Hispanic 18 19 22
Other 2 8 3

Weight, kg 80 (69–88) 77 (66–89) 77 (67–83)

BMIa 26 (23–29) 24 (22–28) 24 (22–27)
Concomitant medications affecting boneb 22 22 20

Current smoker 40 37 36

CD4+ T-cell count, cells/mm³ 350 (211–461) 343 (207–461) 355 (207–461)
HIV RNA load, log10 copies/mL 4.62 (4.05–5.10) 4.52 (4.13–5.08) 4.52 (3.95–4.95)

hsCRP level, mg/L 1.45 (0.71–3.16) 1.35 (0.69–2.8) 1.17 (0.66–2.95)

IL-6 level, pg/mL 1.82 (1.20–2.69) 1.55 (1.07–3.02) 1.78 (1.20–2.75)
sIL-2R level, pg/mL 1862 (1479–2291) 1820 (1202–2344) 1660 (1202–2239)

sCD14 level, ng/mL 1778 (1413–2138) 1698 (1445–1950) 1660 (1445–2042)

sCD163 level, ng/mL 1148 (813–1585) 1230 (832–1585) 1023 (741–1548)
Osteoprotegerin level, pmol/L 3.89 (3.16–4.90) 3.98 (3.31–4.68) 4.47 (3.63–5.25)

RANKL level, pg/mL 35.5 (16.9–58.9) 26.9 (11.2–53.7) 24.5 (11.2–49.0)

Immunophenotype n = 101 n = 95 n = 101
CD28−CD57+, % of CD4+ T cells 4.8 (2.2–9.9) 5.2 (2.0–11.3) 5.3 (2.6–9.3)

CD28−CD57+PD1+, % of CD4+ T cells 0.03 (0.01–0.07) 0.03 (0.01–0.07) 0.03 (0.01–0.06)

CD28−CD57+, % of CD8+ T cells 23.0 (16.9–30.5) 25.9 (18.6–30.9) 22.9 (18.4–30.5)
CD28−CD57+PD1+, % of CD8+ T cells 0.07 (0.05–0.12) 0.08 (0.05–0.16) 0.09 (0.04–0.14)

CD38+HLA-DR+, % of CD4+ T cells 19.0 (11.9–30.3) 19.4 (12.0–32.2) 17.4 (10.3–26.3)

CD38+HLA-DR+, % of CD8+ T cells 41.7 (34.8–55.2) 44.7 (37.0–53.7) 42.5 (33.2–53.2)
CD14+CD16+, % of monocytes 9.2 (5.8–15.1) 7.8 (5.3–13.0) 7.9 (5.7–12.1)

CD14lowCD16high, % of monocytes 58.1 (47.3–69.4) 62.5 (49.0–72.9) 63.1 (53.6–72.2)

Data are median values (interquartile ranges) or percentage of patients.

Abbreviations: ATV/r, atazanavir/ritonavir; DRV/r, darunavir/ritonavir; HIV, human immunodeficiency virus; hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin
6; RAL, raltegravir; RANKL, receptor activator of nuclear factor-κ B ligand; sCD14, soluble CD14; sCD163, soluble CD163; sIL-2R, soluble interleukin 2 receptor.
a Body mass index (BMI) is calculated as the weight in kilograms divided by the height in meters squared.
b Includes androgen, anticonvulsants, proton-pump inhibitors, corticosteroids, estrogens, and selective serotonin-reuptake inhibitors.

1244 • JID 2015:212 (15 October) • Brown et al

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv194/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv194/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv194/-/DC1


−0.82% [95% CI, −1.51% to −.14%] for each log10 copies/mL
increase [P = .02]).

Effect of Soluble Markers
Among the soluble markers (Table 2), higher hsCRP, IL-6, and
sCD14 concentrations at baseline were associated with greater
bone loss at the total hip at 96 weeks, after adjustment for
age, sex, race, and baseline BMI, CD4+ T-cell count, and HIV
RNA level. Higher sIL-2R concentrations showed a similar, al-
beit nonsignificant trend (P = .07). None of these markers were
associated with bone loss at the lumbar spine. Associations of
baseline sCD163, osteoprotegerin, or RANKL levels with bone

loss at either the lumbar spine or the total hip were not detected
(data not shown).

Effects of Cellular Markers
Among the cellular markers, a marker of CD4+ T-cell senes-
cence and exhaustion (CD4+CD28−CD57+PD1+) and CD4+

T-cell activation (CD4+CD38+HLA-DR+) were associated
with 96-week bone loss at the lumbar spine but not at the
total hip in multivariable models (Table 2). Associations of cel-
lular markers of T-cell senescence or activation on CD8+ T cells
with bone loss at either site were not apparent. Similarly, asso-
ciations between more-general populations of senescent T cells

Figure 1. Subject disposition. Abbreviations: ART, antiretroviral therapy; BMD, bone mineral density; ITT, intention to treat; NRTI, nucleoside reverse
transcriptase inhibitor; r, ritonavir.
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(CD4+CD28−CD57+ or CD4+CD28−CD57+) and bone loss at
either site were also not observed. Associations of monocyte
subpopulations (percentage of CD14+CD16+ monocytes,
percentage of CD14lowCD16high monocytes) with bone loss at
either the lumbar spine or the total hip or were also not detected
(data not shown).

DISCUSSION

In this ART-naive, HIV-infected cohort initiating ART with
TDF/FTC, we found that 96-week BMD losses at the lumbar
spine and total hip were not different in the ATV/r and DRV/
r arms. However, at these sites, BMD losses were less pro-
nounced with RAL, compared with the PIs, suggesting that
RAL may have a more neutral effect than PIs on bone. We
also found that baseline markers of inflammation (hsCRP and
IL-6 levels), monocyte activation (sCD14 level), and cellular
markers of CD4+ T-cell immune activation (CD38+HLA-DR+)
and senescence and exhaustion (CD28−CD57+PD1+) were asso-
ciated with increased BMD loss, independent of baseline CD4+

T-cell count and HIV RNA level. Taken together, these findings
indicate that the specific ART medications used and the degrees
of baseline inflammation and immune activation are important
determinants of bone loss after ART initiation.

To our knowledge, this is the first study to directly compare
the effect of 2 PIs on BMD. Our finding of no difference in the
96-week loss in BMD between the PI arms suggests that the

bone effects of these 2 PIs are equivalent. Early studies have
shown that certain PIs induce osteoclastogenesis in in vitro
models [31], but the specific mechanisms of new PIs, such as
atazanavir and darunavir, have not been determined. Since all
study subjects in the 2 PI arms also received TDF and ritonavir
coadministration increases tenofovir concentrations by approx-
imately 30% [32], it is possible that some of the PI effect ob-
served in our study was related to an enhanced TDF effect on
bone, rather than a specific PI effect. In contrast to this possi-
bility, data from ACTG A5224s showed a similar PI effect
(ATV/r) with either TDF/FTC or abacavir/lamivudine [4].
While the effects of ATV/r and DRV/r were similar at the clin-
ically relevant lumbar spine and total hip, we did observe that
persons randomized to ATV/r had greater total body bone loss,
compared with those receiving DRV/r. The reasons and clinical
significance for these latter findings are unclear. It is unlikely
that the findings were due to differential dropout in the ATV/r
arm, since the ITT and during-treatment analyses showed sim-
ilar results. It is possible that these PIs have differential effects
depending on the type of bone studied. The total body is about
80% cortical bone and 20% trabecular bone, whereas the spine
is 20% cortical bone and 80% trabecular bone and the total hip
is about 50% cortical bone and 50% trabecular bone [33]. It is
possible that DRV/r has less of an effect on cortical bone, com-
pared with ATV/r. However, we could not resolve these differ-
ences since DXA, unlike quantitative CT, cannot distinguish
between trabecular and cortical bone.

Table 2. Associations Between Baseline Levels of Soluble and Cellular Markers and Bone Loss at 96 Weeks

Marker

Spine BMD Hip BMD

Estimate (95% CI) P Value Estimate (95% CI) P Value

hsCRPa −0.02 (−.31 to .27) .88 −0.45 (−.70 to −.20) <.001
IL-6a −0.16 (−.65 to .33) .53 −0.67 (−1.11 to −.24) .002

sIL-2Ra −0.05 (−.86 to .75) .89 −0.66 (−1.38 to .07) .07

sCD14a −0.57 (−2.18 to 1.04) .49 −1.67 (−3.10 to −.24) .02
sCD163a 0.18 (−.54 to .90) .62 −0.04 (−.69 to .60) .90

Osteoprotegerina −0.03 (−1.01 to .96) .96 −0.25 (−1.14 to .63) .57

RANKLa 0.15 (−.12 to .41) .28 0.20 (−.03 to .44) .09
CD4+CD28−CD57+b −0.02 (−.32 to .28) .91 0.09 (−.18 to .36) .51

CD4+CD28−CD57+PD1+a −4.94 (−8.65 to −1.23) .009 −1.86 (−5.18 to 1.46) .27

CD8+CD28−CD57+b 0.05 (−.19 to .29) .68 0.06 (−.15 to .27) .58
CD8+CD28−CD57+PD1+a 0.04 (−4.17 to 4.24) .99 0.34 (−3.39 to 4.07) .86

CD4+CD38+HLA-DR+b −0.26 (−.45 to −.06) .01 0.02 (−.16 to .20) .81

CD8+CD38+HLA-DR+b −0.01 (−.20 to .18) .92 0.00 (−.17 to .18) .98

All models are adjusted for age, sex, race, body mass index, baseline CD4+ T-cell count, and human immunodeficiency virus type 1 RNA load.

Abbreviations: BMD, bone mineral density; CI, confidence interval; hs-CRP, high-sensitivity C-reactive protein; IL-6, interleukin 6; RANKL, receptor activator of
nuclear factor-κ B ligand; sCD14, soluble CD14; sCD163, soluble CD163; sIL-2R, soluble interleukin 2 receptor.
a Estimates represent the percentage change per doubling of the soluble biomarker level.
b Estimates represent the percentage change per 5% change in the cellular marker level.
c Estimates represent the percentage change per 1% change in the cellular marker level.
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In our study, those randomized to the integrase inhibitor,
RAL, had significantly less bone loss at the lumbar spine and
total hip, compared with those randomized to PIs. These data
support the growing evidence that integrase inhibitors have
minimal effect on bone after ART initiation [34] and comple-
ment findings from the SPIRAL study, which showed an
increase in total BMD in participants who switched from a
PI to RAL [35]. These findings suggest that, compared with
PIs, RAL may be a better option for either initial or continued
ART for persons at high risk of fragility fracture. There are fewer
BMD data with other integrase inhibitors, but recent ART ini-
tiation trials with elvitegravir [10] or dolutegravir [36] also sug-
gest a more neutral effect on bone metabolism, similar to RAL.
Clearly, more studies with these agents are warranted.

In addition to the specific effects of ART, baseline levels of
inflammation and immune activation were independently asso-
ciated with bone loss after ART initiation. To our knowledge,
our study is the first to demonstrate that well-known markers
of inflammation, such as hsCRP and IL-6 levels, were associated
with increased bone loss after ART initiation. Interestingly,
these markers were associated with bone loss at the total hip
but not the lumbar spine. Since we only measured BMD at 96
weeks and BMD tends to change more rapidly at the spine with
a metabolic perturbation, it is possible that we may have missed
a significant effect occurring earlier.

We also examined the effects of pretreatment concentrations of
soluble and cellular markers of T-cell activation and monocyte/
macrophage activation. We found that CD4+CD38+HLA-DR+, a
cellular marker of CD4+ T-cell activation, and CD4+CD28−

CD57+PD1+, a marker of T-cell senescence and exhaustion,
were associated with bone loss at 96 weeks at the lumbar spine.
Interestingly, in contrast to the findings with CD4+ T-cell subsets,
we failed to detect associations between markers of CD8+ T-cell
activation and senescence/exhaustion and bone loss. It is possible
that activated CD4+ T cells are the main T cells that produce
RANKL [37] and may be more-important mediators of bone
loss [38]. In addition, senescent and exhausted CD4+ T cells
may have impaired immune responses, and this may lead to re-
duced production of osteoprotegerin, which may protect against
bone loss [39]. Our results regarding markers of monocyte acti-
vation and proinflammatory monocytes were mixed. Whereas
higher levels of sCD14, a soluble marker of monocyte activation,
were associated with bone loss at 96 weeks, levels of sCD163 or
the proportion of proinflammatory monocyte subpopulations
were not. Taken together, these findings further support the hy-
pothesis that a pretreatment inflammatory set point determines
the occurrence and severity of non-AIDS complications, includ-
ing bone loss, independently of CD4+ T-cell count andHIV RNA
load [40]. Our results support the hypothesis that earlier ART
initiation or the initiation of targeted therapies aimed to reduce
immune activation prior to ART initiation may be useful to
mitigate the negative effects on BMD after ART initiation.

Our study had several limitations. Our study comprised mostly
men and excluded populations with certain comorbid conditions
associated with systemic inflammation (eg, diabetes mellitus and
CVD), which may limit the generalizability of our findings. Sec-
ond, all study participants received TDF/FTC, which has known
negative effects on bone. Whether the PI or RAL effects would be
different in the setting of a different NRTI backbone or combined
with medication in a different ART class is unclear. Next, we only
measured levels of selected markers of inflammation and bone
metabolism. Further studies should also measure levels of other
cytokines that have been implicated in inflammation-related
bone loss, such as tumor necrosis factor α and its receptors. Fi-
nally, our findings regarding baseline biomarkers and bone loss
should be considered hypothesis generating and need to be con-
firmed, given that the number of statistical tests performed in-
creased the possibility of type 1 error.

In conclusion, we found that the PIs ATV/r and DRV/r led to a
similar degree of bone loss over 96 weeks in persons initiating
ART with TDF/FTC, which was significantly greater than the
bone loss observed with RAL.We also found that higher pretreat-
ment levels of selected inflammation and immune activation
markers were associated with a greater degree of bone loss.
These observations may have important implications for clinical
care, suggesting that avoidance of PIs in favor of RAL may be a
good strategy to minimize bone loss in ART-naive patients who
have a high baseline risk of fracture. These findings also provide
rationale to examine the effects of integrase inhibitor substitution
on bone in HIV-infected persons who are receiving PI-contain-
ing ART and have a high fracture risk and to examine strategies to
reduce pretreatment inflammation/immune activation, including
earlier ART initiation, to preserve skeletal health.
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