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Abstract

Robust Thrust Vector Control for Precision Rocket-Landing

The objective of this thesis is to systematically develop the underlying theory behind and

implementation of an integrated framework for analytical multibody dynamics modeling and

closed-loop simulations with novel control strategies for the powered-descent and precision

landing of rocket-powered space vehicles.

The thesis is organized as follows1: Chapter 1 provides an introduction to the rocket-

landing problem and the motivation for developing new methods and algorithms to enable

future planetary landing missions. Chapter 2 describes the implementation of a globally-

optimal minimum-propellant powered-descent guidance (PDG) algorithm using lossless con-

vexification and convex optimization. Chapter 3 explains the analytical formulation of the

nonlinear equations of motion for a variable-mass multibody rocket system using the ex-

tended Kane’s equations, and shows results from an open-loop simulation run with the

optimal control commands obtained from guidance. Chapter 4 describes feedback control in

detail, including a novel method for the design of internally stabilizing multivariable robust

feedback controllers using Youla parameterization, along with its application to the underac-

tuated lunar landing problem with feedback control only. Chapter 5 provides an algorithm

for the design of internally stabilizing robust LPV controllers via Youla parameterization and

applies it to the underactuated lunar landing scenario in a combined feedforward-feedback

control architecture with propellant-optimal guidance, control allocation, and various ac-

tuator considerations. Chapter 6 concludes the thesis with key observations regarding the

work done, the results obtained, the specific contributions, and potential directions for future

research.

1Parts of this thesis were also presented in 34.
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Chapter 1

Introduction

With humans missions to the Moon and Mars on the horizon, the successful Mars land-

ing missions in the recent past (Açıkmeşe et al., 2014; Chen et al., 2016; Nelessen et al.,

2019; Prakash et al., 2008; San Martin, 2017; San Martin et al., 2013; Steltzner et al., 2006),

and the almost routine landings of suborbital- and orbital-class reusable rocket boosters

and prototypes in the last few years (Blackmore, 2016), there has been a renewed inter-

est in planetary rocket-powered landing technologies, especially in the domain of guidance,

navigation, and control (GNC). The recent announcements of the Human Landing System

(HLS) and Commercial Lunar Payload Services (CLPS) contracts through NASA’s Artemis

lunar exploration program (Chavers et al., 2019, 2020; Smith et al., 2020), especially, have

rekindled the spirit of lunar landing from the Apollo era—this comes nearly 50 years after

humans last set foot on the Moon, only this time, with a stronger focus on enhanced safety,

reliability, and precision, and plans for sustained operations on the lunar surface (Petersen

et al., 2020). The onboard computing power that we have at our disposal today allows for

the implementation of advanced guidance algorithms using real-time convex optimization

(Açıkmeşe et al., 2013), for instance, and navigation methods such as map-relative localiza-

tion (Johnson et al., 2016), that are also efficient, reliable, and repeatable. Such technologies

have the potential to enable the exploration of previously inaccessible science-rich regions

on celestial bodies, and also make human landing missions much safer.

One of the most critical aspects of a planetary landing mission is the powered-descent

phase, which terminates with a soft touchdown on the surface. The Apollo lunar landing

missions employed polynomial guidance for powered-descent and manual control for terminal-
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descent (Klumpp, 1974). Although all the attempted landings were successful, the descent

trajectories were not propellant-optimal, and the dimensions of the landing dispersion ellipses

were in the order of kilometers (Quaide and Oberbeck, 1969). Recent advances in technology

have made way for a more robust, autonomous approach to precision planetary landing. One

such technology is terrain relative navigation (TRN), which has been extensively researched

and was successfully performed during the landing of Perseverance (Mars 2020) on the sur-

face of Mars in February 2021 (Johnson et al., 2017). Precision landing reduces the size of

the landing uncertainty ellipse considerably, bringing it down to a precision of meters, and is

key to broadening the scope of planetary landing missions. It enables scientific exploration

missions that require precise selection of landing sites (Blackmore, 2016). This could poten-

tially involve a target landing zone in a region of interest that has an extremely small margin

for error in terms of touchdown safety.

Recent breakthroughs in the formulation of real-time interior point method algorithms

have led to the invention of powered-descent guidance (PDG) algorithms that are compu-

tationally efficient, making them desirable for real-time implementation (Dueri et al., 2017;

Scharf et al., 2017). These algorithms rely on simplified dynamical models, however, and

implementing them in an open-loop in a real scenario could lead to large trajectory tracking

errors due to inaccuracies in the model and nonlinearities in the actual system that are not

accounted for. Hence, it becomes necessary to adopt a feedback control design strategy that

ensures that the closed-loop system is insensitive to these nonlinearities, while also being ro-

bust to system parameter uncertainties and external disturbances. Propellant-optimal guid-

ance and TRN-augmented inertial navigation in conjunction with robust trajectory tracking

control would enable a full-stack closed-loop guidance, navigation, and control design, as de-

picted in Figure 1.1, for autonomous precision landing for future human and robotic missions

to the Moon and beyond.

Blackmore (2016) presents some of the challenges of trying to precisely land a rocket—to

be able to efficiently solve what is arguably one of the most challenging engineering problems

today, in order to expand mission capabilities while ensuring reliability and safety, extensive

research on the subject is necessary. The objective of this thesis is to develop robust methods

and tools that could potentially aid in the efforts toward that goal.
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In this thesis, a multibody dynamics model of a variable-mass rocket system with a

gimbaled main engine is developed, a propellant-optimal powered-descent guidance algorithm

is implemented, and novel approaches to robust control design for multivariable and linear

parameter-varying (LPV) systems are presented, along with their application to gimbaled

thrust vector control (TVC) for the precision landing of rocket-powered space vehicles. The

gimbaled TVC landing problem is often informally referred to as the broomstick problem,

given that it is akin to trying to balance a broomstick with a finger. An underactuated

planar lunar landing scenario is adopted as a case-study throughout this thesis to aid in the

systematic development of the closed-loop simulation framework.

Guidance

Navigat ion

Control

- Current  Posit ion
- Current  At t itude

- Desired Posit ion
- Desired At t itude

- Change Posit ion
- Change At t itude

Plant
_

+

Error

Trajectory Opt imizat ion MIMO Control System 6-DoF Dynamics

Sensors +  Algorithms

Control Commands to Actuators

- Current  Posit ion
- Current  At t itude

+  Noise

Reference

Feedback

Target

Figure 1.1: A high-level guidance, navigation, and control block diagram
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Chapter 2

Guidance

2.1 Powered-Descent Guidance via Lossless Convexifi-

cation

The purpose of guidance is two-fold—to generate reference state trajectories for the

vehicle to follow, and to generate a series of feasible feedforward control commands to the

actuators of the vehicle that ensure that it accurately follows the desired state trajectories

without violating any of the imposed constraints. Guidance problems are typically posed as

optimization problems, especially for complex regimes such as powered-descent and landing.

The powered-descent guidance (PDG) problem can be posed as an optimization problem

subject to various constraints involving the dynamics of the landing spacecraft, thruster

limitations, and physical constraints to ensure safe landing, with the amount of propellant

consumed regarded as the ‘cost’ (Açıkmeşe and Ploen, 2007). Moreover, this constrained

optimization problem can be structured as one of convex optimization, and by obeying

a set of well-defined rules to ensure problem tractability, a globally optimal solution can

be guaranteed (Boyd and Vandenberghe, 2004), the corresponding algorithm itself being

amenable to real-time onboard implementation.

Optimization-based PDG is not only helpful in minimizing propellant consumption (which

is a very important metric in spaceflight) or optimizing any other chosen objective for that

matter, but also allows for making full use of the feasible flight envelope without the need

for being too conservative (it enables aggressive divert maneuvers, for example), all while

guaranteeing satisfaction of the imposed mission and physical constraints. Implementation

4



of such algorithms can considerably expand the scope of rocket landing missions, and to-

gether with advances in navigation methods such as terrain-relative navigation (TRN), can

enable precision landing on planetary bodies (with landing dispersion ellipses on the order

of meters), including the Earth. Such capabilities can also significantly improve the safety

of human landing missions.

Typically for planetary landing missions, after powered-descent has been initiated, the

thrusters are shut down only at touchdown. The entirety of the powered-descent phase

involves one continuous, throttled burn by the main engine—this strategy is adopted mainly

as a safety consideration, given that a liquid-propellant rocket engine might shut down if

throttled below a certain thrust limit and might not be able to reliably relight when required.

However, the lower-bound on thrust that results from such a constraint turns out to be

nonconvex. Additionally, requirements on its direction (thrust pointing) add nonconvex

constraints to the trajectory optimization problem as well, and problem reformulation is

required to make the problem tractable.

Convexification of these constraints and reformulation of the original problem have been

proven to generate globally optimal solutions, given that feasible solutions exist. Convexifica-

tion refers to the introduction of a slack variable to lift the nonconvex lower thrust bound and

the nonconvex thrust pointing angle constraint into convex sets of feasible controls—more

specifically, convex cones. Since a global optimum for the relaxed problem also guaran-

tees a global optimum for the original problem—based on mathematical proofs involving

Hamiltonian analysis, transversality conditions, and Pontryagin’s maximum principle—this

mathematical result is widely referred to as lossless convexification (Carson et al., 2011).

Post lossless convexification, the cost-function (propellant consumption) can be reformu-

lated as the logarithm of the touchdown lander mass, with the optimization problem being

maximization of the reformulated cost-function subject to the imposed constraints (Açıkmeşe

and Blackmore, 2011).

The algorithm employed here follows the basis of the real-time implementable G-FOLD

algorithm developed at JPL (Açıkmeşe et al., 2012). The problem formulation involves a

piecewise-linear characterization of the control inputs (resulting in piecewise-cubic transla-

tion trajectories) and simplified and discretized equations of motion. It adopts a point-mass
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formulation, thus decoupling translation and attitude in guidance (the actual translational

and attitude dynamics of the lander, however, are coupled and highly nonlinear—such model-

ing inaccuracies along with system parameter uncertainties, potential external disturbances,

and sensor noise, necessitate feedback control on the actual vehicle). The relaxed convex

minimum-propellant powered-descent guidance (PDG) problem, after a change of variables

and discretization, is structured as a finite-dimensional convex optimization problem—in

particular, a second-order cone program (SOCP) (Açıkmeşe et al., 2008). This formulation

of the problem, the objective being maximization of the (logarithm of the) lander mass

at touchdown, has been proven to produce globally optimal solutions when feasible solu-

tions exist. The interested reader is referred to (Açıkmeşe et al., 2013) for a more complete

description of the problem.
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The Convex Propellant-Optimal PDG Problem

(Açıkmeşe, Scharf, Blackmore, and Wolf, 2008; Açıkmeşe, Casoliva, Carson, and

Blackmore, 2012; Açıkmeşe, Carson, and Blackmore, 2013; Bhasin, 2016; Kos, Polsgrove,

Sostaric, Braden, Sullivan, and Le, 2010; Malyuta, Reynolds, Szmuk, Lew, Bonalli, Pavone,

and Açıkmeşe, 2021; Pinson and Lu, 2018)

min
u0,..,uN ,σ0,..,σN

−zN

subject to
for k=0,..,N

rk+1 = rk + ∆t
2

(vk + vk+1)− ∆t2

12
(uk+1 − uk)

vk+1 = vk + ∆t
2

(uk + uk+1) + g∆t

zk+1 = zk − α∆t
2

(σk + σk+1)

Dynamics

‖uk‖ ≤ σk } Relaxation

z0,k = ln (mwet − αρ2k∆t)

µ1,k = ρ1e
−z0,k µ2,k = ρ2e

−z0,k

µ1,k

[
1−

(
zk − z0,k

)
+

(zk−z0,k)
2

2

]
≤ σk

≤ µ2,k

[
1−

(
zk − z0,k

)]
z0,k ≤ zk ≤ ln (mwet − αρ1k∆t)


Thrust and Mass Bounds

z0 = lnmwet zN ≥ lnmdry N∆t = tf

r0 = r0 rN = rf

v0 = v0 vNx = vfx

Boundary Conditions

rkx ≥ tan(θGS)
∥∥rky,z∥∥ } Glide-Slope

ukx ≥ cos(θP )σk uNy,z = 0 } Thrust Pointing

vky,z = 0 for k = (N − i), ..., N ; i ≥ 1

∆t

vkx = vtd for k = (N − i), ..., (N − 1

∆t
)

Terminal-Descent
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r Position

rx, ry, rz Altitude, crossrange, and downrange, respectively

v Velocity

vx, vy, vz Rate-of-descent, lateral velocity, and longitudinal velocity, respectively

mwet Wet mass of the lander

mdry Dry mass of the lander

z lnm; m→ instantaneous lander mass

g Gravitational acceleration

u Tc/m; Tc → commanded thrust vector

σ Γ/m; Γ→ slack variable | ‖Tc‖ ≤ Γ

N Number of temporal nodes

∆t Temporal resolution

tf Time-of-flight

α Thrust-specific fuel consumption (TSFC)

ρ1, ρ2 Lower and upper bounds on thrust, respectively

θGS Minimum glide-slope angle from the ground plane

θP Maximum thrust pointing angle from the vertical

i∆t Duration of vertical-only terminal-descent

vtd Constant rate-of-descent during vertical-only terminal-descent

8



In addition, the thrust pointing rate constraint can be approximately imposed by Equa-

tion 2.1 (Açıkmeşe and Ploen, 2005).∥∥∥Q 1
2Uk

∥∥∥ ≤ λmin(P
1
2 )√

2
[σ(k∆t) + σ([k − 1]∆t)] (2.1)

where,

Uk =

 u(k∆t)

u([k − 1]∆t)

 , Q =

 I −1
2
I

−1
2
I I

 , P =

 1 −Ω
2

−Ω
2

1

 ,

I ∈ R3×3 is the identity matrix, and Ω = cos(ω∆t), ω being the maximum allowed angular rate.

Figure 2.1: The guidance block (see Figure 5.4)

9



2.2 Trajectory Generation

An x - z planar lunar landing scenario is considered for the purposes of simulation and

demonstration of the control design methodology adopted. The chosen parameter values

and nominal boundary conditions for propellant-optimal guidance trajectory generation are

listed in Table 2.1.

r0 [−500.0, 0.0, 400.0] m Initial position

v0 [40.0, 0.0, −13.0] m/s Initial velocity

rf [0.0, 0.0, 0.0] m Target landing position

vf [0.0, 0.0, 0.0] m/s Touchdown velocity

Tmax 83000 N Full-thrust magnitude

ρ1 30% Tmax Lower thrust bound (minimum throttle)

ρ2 80% Tmax Upper thrust bound (maximum throttle)

g −1.625 m/s2 Lunar gravitational acceleration

mwet 25000 kg Wet-mass of the lander (at r0)

mdry 10000 kg Dry-mass of the lander

α 0.00022655325 s/m Thrust-specific fuel consumption (TSFC)

Table 2.1: Guidance parameter values and boundary conditions

The main engine is allowed to throttle between 30% and 80% the full-thrust magnitude.

The upper throttle limit is set to allow for a thrust margin between the braking-burn set

throttle and the maximum engine thrust (Kos et al., 2010).

A linear search is used to determine the minimum feasible time-of-flight (62 seconds).

Brent’s algorithm (Brent, 2013) and the golden search technique (Bertsekas, 1997) are used

to compute the propellant-optimal (global minimum) time-of-flight value (63.18 seconds),

given that the minimum of propellant consumption is a unimodal function of the time-of-

flight (Açıkmeşe et al., 2008). The trajectory is subject to a minimum glide-slope angle of

4 degrees from the ground plane—the glide-slope constraint ensures that the lander is at a

safe distance from the surface at all points in the landing trajectory. It also enforces surface

impact avoidance and does not allow the generation of a trajectory that involves subsurface
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flight (Carson et al., 2011).

The trajectory is also subject to a maximum thrust pointing angle of 50 degrees from

the vertical—the thrust pointing constraint becomes especially useful when there are strict

requirements on the orientation of onboard sensors for terrain relative navigation (Açıkmeşe

et al., 2013). The thrust pointing rate constraint is approximately imposed (Equation 2.1)

with a maximum allowed angular rate of 5 degrees/second. The maximum thrust pointing

rate recorded in the simulation run was 3.86 degrees/second (it was observed, however, that

for some more aggressive trajectories, the thrust pointing rate constraint was violated at the

initiation of vertical-only terminal-descent).

Vertical-only terminal-descent constraints are imposed for the final 30 seconds of landing

with a constant rate-of-descent of −1 m/s until the final temporal node. In a real landing

scenario, these constraints would help mitigate undesirable fuel-slosh effects and tip-over on

touchdown due to lateral motion (Kos et al., 2010). The projected amount of propellant

consumed is 727.3 kg. The MOSEK [51] solver was used in tandem with CVXPY (Diamond

and Boyd, 2016), a Python-embedded modeling language for convex optimization problems.

The resulting mass-depletion rate (proportional to the magnitude of thrust: ṁ = −α ‖Tc‖)
and thrust pointing angle (main engine gimbal pitch) profiles are considered to be the open-

loop control inputs for the planar lunar landing simulation with multivariable feedback con-

trol.

This PDG problem is solved to obtain reference state trajectories for the multivariable

feedback control simulation described in Section 4.2. The optimal control inputs are not

used in this closed-loop simulation, however. The optimal thrust profile demonstrates high-

frequency chatter during the vertical-only terminal-descent phase, due to the trapezoidal-

rule-based discretization scheme adopted for the dynamics. The frequency of this chatter is

observed to increase with an increase in the number of temporal nodes. The phenomenon of

chatter has been observed in the literature with the imposition of similar constraints (Liu,

2013; Liu and Lu, 2013; Liu et al., 2016; Szmuk et al., 2017). Although the guidance solutions

obtained are feasible, the chatter is undesirable, especially when including the optimal thrust

commands as feedforward control inputs in the simulation framework.
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Figure 2.2: The reference powered-descent trajectory along with the optimal thrust profile
generated using the guidance algorithm

In order to combat this behavior, the discretization scheme presented in (Açıkmeşe et al.,

2013) is adopted. A continuous state-space realization of the dynamics is considered, with

the position, velocity, and total mass regarded as the states. The system is discretized via the

zero-order hold (ZOH) method with the sampling interval set to the temporal resolution of

the numerical optimization problem (1 second). The optimization variables are appropriately

scaled via affine transformations in order to obtain accurate results, and the cost-function

is reformulated in terms of the acceleration magnitude (Açıkmeşe and Ploen, 2007; Malyuta

et al., 2021). The (approximate) thrust pointing rate constraint is not imposed, in order to

ensure that the solution is globally optimal. The resulting optimal control (thrust) solution

is devoid of chatter. Figure 2.3 illustrates the lossless nature of convexification of the thrust

lower-bound and pointing constraints via relaxation of the acceleration norm (the relaxed

constraint holds with equality at optimality: ‖u‖= σ).

The chosen parameter values and nominal boundary conditions for propellant-optimal

guidance trajectory generation for this case are listed in Table 2.2. The maximum glide-

slope angle, the maximum thrust pointing angle, and the terminal-descent parameters are

left unchanged from the previous case. The propellant-optimal time-of-flight (t∗f = 79.0005
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seconds)1 is directly found using Brent’s algorithm. The projected amount of propellant

consumed is 855.59 kg. The ECOS [25] solver was used along with CVXPY for this case.

r0 [−1000.0, 0.0, 900.0] m Initial position

v0 [45.25, 0.0, −10.0] m/s Initial velocity

rf [0.0, 0.0, 0.0] m Target landing position

vf [0.0, 0.0, 0.0] m/s Touchdown velocity

Tmax 83000 N Full-thrust magnitude

ρ1 30% Tmax Lower thrust bound (minimum throttle)

ρ2 80% Tmax Upper thrust bound (maximum throttle)

g −1.625 m/s2 Lunar gravitational acceleration

mwet 25000 kg Wet-mass of the lander (at r0)

mdry 10000 kg Dry-mass of the lander

α 0.00022655325 s/m Thrust-specific fuel consumption (TSFC)

Table 2.2: Guidance parameter values and boundary conditions (ZOH discretization case)
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Figure 2.3: Illustration of the relaxed acceleration lower-bound holding with equality

1Since the temporal resolution for numerical optimization is chosen to be 1 second, however, the practical

time-of-flight (in the closed-loop simulation described in Chapter 5) is set to tf =
⌈
t∗f

⌉
= 80 seconds.
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Chapter 3

Dynamics

3.1 Extended Kane’s Equations for Variable-Mass Sys-

tems

The modeling of dynamical systems has been studied extensively in the literature. Clas-

sical methods such as the Newton-Euler method, Lagrangian formulations, and Hamiltonian

mechanics are popular, but can be cumbersome and computationally intensive for analytical

multibody dynamics modeling. More recent methods such as the spatial operator algebra

(SOA) (Jain, 2010; Rodriguez et al., 1991) and Kane’s method (Kane and Levinson, 1985;

Kane et al., 1983), are highly systematic approaches that become especially desirable in

the modeling of complex systems. Here, a multibody dynamics modeling framework using

Kane’s method and the extended Kane’s equations for variable-mass systems (Ge and Cheng,

1982) is presented.1

The lunar lander is modeled as a holonomic system. The body of the lander is considered

to be a rigid cube with length l and uniform mass M , as shown in Figure 3.1. The main

engine is located at point P , at which the generated thrust is applied. The inertial effects of

the main engine on the overall lander dynamics are assumed to be negligible. The onboard

propellant is assumed to be a particle with variable-mass, m, located midway between the

body mass-center and P .

N is the Moon-fixed inertial reference frame, L is the reference frame attached to the

1Implementations of Kane’s method for a holonomic system and the extended Kane’s equations for a

nonholonomic variable-mass system can be found in [35] and [36], respectively.
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body of the lander, and E is the reference frame attached to the gimbaled main engine.

Considering 6 generalized coordinates {dx, dy, dz, q1, q2, q3}, where {dx, dy, dz} represent

the position of the mass-center of the lander with respect to a fixed point, O, in N , and

{q1, q2, q3} represent the Euler rotation angles of L relative to N , their time-derivatives as

the generalized speeds {ḋx : vx, ḋy : vy, ḋz : vz, q̇1 : v1, q̇2 : v2, q̇3 : v3}, and the propellant

mass, m, the modeled system has 13 states. The lander is modeled as an underactuated

system, with 6 degrees of freedom and 3 control inputs—the mass-depletion rate, ṁ, and the

two main engine gimbal angles, e1 and e2. The thrust vector always acts along êx, and has a

magnitude −Cṁ, where C, the exit-velocity of the ejected propellant, is a positive constant.

Figure 3.1: The modeled multibody lunar landing system with the generalized coordinates
and the reference frames

The principal moments of inertia of the system can be parameterized by the mass terms

to get the following closed-form equations: Ixx = 1
6
Ml2; Iyy = Izz = 1

6
Ml2 + m( l

4
)2 → note

that Iyy and Izz vary with propellant mass, m.

The extended Kane’s equations for holonomic variable-mass systems (Ge and Cheng,

1982) take the form:

Fr + F ∗r + F ∗∗r = 0 (r = 1, ..., 6) (3.1)
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where Fr (r = 1, ..., 6), the generalized active forces, account for the resultant of all body

and contact forces and torques, F ∗r (r = 1, ..., 6), the generalized inertia forces, account for

the inertia forces and torques, and F ∗∗r (r = 1, ..., 6), the generalized thrusts (Banerjee, 2000;

Ge and Cheng, 1982), account for the forces due to the time-derivative of mass.

The generalized forces acting at the mass-center of the rigid body L, and point P , from

where the propellant (variable-mass particle) is being expelled, are defined as follows in the

inertial reference frame, N :

Fr , (V L
r ·RL) + (V P

r ·RP ) (r = 1, ..., 6)

F ∗r , (V L
r ·R∗L + ωLr · T ∗L) + (V P

r ·R∗P ) (r = 1, ..., 6)

F ∗∗r , V P
r · Cṁ (r = 1, ..., 6)

(3.2)

where V L
r (r = 1, ..., 6) are the holonomic partial velocities of the mass-center of rigid body L,

V P
r (r = 1, ..., 6) are the holonomic partial velocities of the point P , ṁ is the time-derivative

of m, and C is the exit-velocity of the variable-mass particle from P .

Here, the resultant of all contact and body forces acting on L (at the mass-center), RL,

the resultant of all contact and body forces acting at P , RP , the inertia force acting on L

(at the mass-center), R∗L, the inertia force acting at P , R∗P , and the inertia torque acting on

L, T ∗L, are given by:

RL = −Mg n̂x

RP = −mg n̂x
R∗L = −MaL

R∗P = −maP

T ∗L = −(αL · IL + ωL × IL · ωL)

(3.3)

where, g is the lunar gravitational acceleration, aL is the acceleration of the mass-center

of L, aP is the acceleration of point P , ωL is the angular velocity of L, αL is the angular

acceleration of L, and IL is the central inertia dyadic of L, all defined in the inertial reference

frame, N .

The resulting equations of motion (3.1) can be expressed in the implicit form with the

kinematics and dynamics combined (Meurer et al., 2017):

Mẋ = F (3.4)
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where M is the mass matrix of the combined equations, F is the corresponding forcing

vector, and ẋ is the derivative of the state vector that includes 13 states: the generalized

coordinates, {dx, dy, dz, q1, q2, q3}, the generalized speeds, {vx, vy, vz, v1, v2, v3}, and the

propellant mass, {m}. This system of equations can be linearized about a chosen operating

point using Jacobian linearization to obtain an explicit first-order state-space representation

of the system (Hampton et al., 2001), as shown in Equation 3.5, which will serve as the plant

model for MIMO control system design.

δẋ = Aδx + Bδu (3.5)

where A13×13 is the state matrix, B13×3 is the input matrix, and δu is the differential input

(control) vector, where u includes the inputs, {ṁ, e1, e2}. As linearization is performed

about a chosen operating point, the resulting linear state equations are described in terms

of differential changes of x, δx, about that operating point.

3.2 Nonlinear Lander Model

The parameter values for the modeled lunar landing system, as shown in Table 3.1, are

chosen to closely approximate the Altair lunar lander (Brown and Connolly, 2012).

l 9.35 m Length of the lander (cube)

M = mdry 10000 kg Mass of the lander body

m = mwet −mdry 15000 kg Initial propellant mass

C = 1
α

4413.973165 m/s Exit-velocity of the propellant

Table 3.1: Parameter values of the nonlinear lander model

The first-order ordinary differential equations (ODEs) obtained from Equation 3.1 are

integrated to obtain the evolution of the states. For the planar landing scenario, the control

inputs from guidance are applied to the nonlinear model in an open-loop, and the mass-center

of the lander body is tracked. The initial conditions of the lander are set to the values listed

in Table 2.1. The resulting landing translation trajectory traced by the nonlinear model

is shown in Figure 3.2, and the corresponding pitch trajectory is shown in Figure 3.3. As

expected, the pitch of the lander body is unstable, due to the fact that no explicit attitude

control torque commands are given to the lander.
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Figure 3.2: Translation trajectory traced by the body mass-center of the nonlinear lander
model with open-loop control
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Figure 3.3: Pitch (unstable) trajectory followed by the body of the nonlinear lander model
with open-loop control

Considering the 3-DoF (downrange, altitude, and pitch) planar landing scenario, a reduced-

order model is obtained to include 7 states: {vx, vz, v2, dx, dz, q2,m}, 2 control inputs: {ṁ, e1},
and 3 measured outputs: {dx, dz, q2}. The resulting combined mass-matrix, state-derivative

vector, and forcing vector (see Equation 3.4) are shown in Equations 3.6, 3.7, and 3.8, re-

spectively.
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M =



−M −m 0 − lm sin(q2)
2

0 0 0 −C cos (e1)

0 −M −m − lm cos(q2)
2

0 0 0 C sin (e1)

− lm sin(q2)
2

− lm cos(q2)
2

− l2(8M+3m)
48

− l2m
4

0 0 0 Cl sin(e1−q2)
2

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(3.6)

ẋ =



v̇x

v̇z

v̇2

ḋx

ḋz

q̇2

ṁ


(3.7)

F =



g (M +m) +
lmv22 cos(q2)

2

− lmv22 sin(q2)

2

glm sin(q2)
2

vx

vz

v2

ṁ


(3.8)

SymPy (Meurer et al., 2017), an open-source Python library for symbolic computation,

was used to model the multibody dynamics of the lunar lander.

The nonlinear equations of motion are linearized about the ideal touchdown state (the

final guidance state) to get a state-space realization of the system. The resulting transfer

function matrix, Gp, of the linearized MIMO plant model is shown in Equation 3.9, where s
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is the complex variable. The linear plant is a 3× 2 transfer function matrix, with 2 inputs,

{ṁ, e1}, and 3 outputs, {dx, dz, q2}. The outputs and their derivatives are controllable.

Gp =


−0.18185

s2
0

0 −1.4667 (s−1.082) (s+1.082)
s2 (s−0.8626) (s+0.8626)

0 − 0.30654
(s−0.8626) (s+0.8626)

 (3.9)

Figure 3.4: The nonlinear lander model block (see Figure 5.4)
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Chapter 4

Control

Various methods for control design have been investigated and analyzed in the literature.

Implementation of PID control has been successfully demonstrated in conjunction with the

G-FOLD algorithm in real-time on the Masten Xombie lander testbed (Açıkmeşe et al.,

2012). Recently, model predictive control (MPC) has gained popularity, given its seamless

applicability with existing guidance algorithms (Lee and Mesbahi, 2017; Pascucci et al.,

2015). Methods such as nonlinear model predictive control (NMPC) are capable of handling

complex nonlinear system dynamics, but they come at the cost of being computational

intensive. This is certainly true for online implementations, given that the algorithms require

a solution to an optimization problem at every sampling instant to obtain the necessary

control commands (Liu et al., 2012). Given the lack of robustness guarantees in methods

such as PID control design, and the computational intensity of MPC, it becomes desirable

to develop simple, real-time deployable, robust control systems that can handle complex

nonlinear MIMO systems with coupled dynamics.

Many optimal control techniques such as the linear quadratic regulator (LQR) and linear

quadratic Gaussian (LQG) control have also been widely investigated in the literature for

both single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems.

Although these techniques can be used for the control of multivariable processes, methods

such as LQG have been proven to lack robustness to system parameter uncertainties (Doyle,

1978). This fact was exemplified by the failures of LQG controller implementations on

two separate occasions in 1975: the LQG controller on a Trident submarine caused it to

unexpectedly surface in a rough sea simulation, and the LQG control system on the F-8C
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crusader aircraft led to unsatisfactory results. Although heuristic methods such as loop

transfer recovery (LTR) can increase the robustness of LQG controllers, they come at the

price of severely degrading the original LQG cost-function, and thus lead to non-optimal

solutions (Noll).

Robust control becomes essential especially when human landing missions are considered

(Orr and Shtessel, 2009). H∞-optimization-based robust control has been successfully de-

ployed on the Ariane 5 Evolution launch vehicle for the atmospheric flight phase, replacing

the previously used LQG controller. In telecommunication satellites, H∞-optimization-based

robust control has been shown to reduce the propellant mass consumption by 10% during

station-keeping maneuvers (Philippe et al.). Linear, constant- and varying-gain, multivari-

able feedback controllers can be designed offline and deployed for real-time control of systems,

with high efficiency and low computational intensity, while also guaranteeing robustness

to nonlinearities, system parameter uncertainties, external disturbances, and sensor noise.

These designs can be extended to adapt to changing system parameters, thus making them

adaptive and robust in nature (Lavretsky and Wise, 2013). The merit in adopting the Youla

parameterization approach to robust control design has been been successfully demonstrated

for automotive applications, especially for robust observer and estimation design (Assadian

et al., 2018; Liu et al., 2019).

4.1 Youla Parameterization

Youla parameterization derives its name from the Youla parameter, Y (s), which is defined

as:

Y (s) ,
û

r̂
=

Gc

1 + L(s)
(4.1)

where Gc(s) is the controller transfer function and L(s) is the return ratio of the closed-loop

shown in Figure 4.1. û is the controller output and r̂ is the reference signal.

Additional transfer functions that are important in the Youla parameterization frame-

work are the sensitivity transfer function, S(s), and the complementary-sensitivity transfer

function, T (s), which are defined as follows:
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r̂ Σ Gc(s) Σ Gp(s) Σ ŷ

Σ n̂

d̂yd̂u

+ ê û + +

+

+

−

++

Figure 4.1: SISO unity-feedback loop with external disturbances and sensor noise (Assadian
and Mallon, 2021)

S(s) ,
ê

r̂
=

1

1 + L(s)
(4.2)

where ê is the error signal, and

T (s) ,
ŷ

r̂
=

L(s)

1 + L(s)
(4.3)

where ŷ is the output signal.

The three transfer functions allow for direct shaping of closed-loop responses to all the

inputs shown in Figure 4.1. The relationships are as follows:


ê

ŷ

û

 =


S(s) −S(s) −S(s) −GpS(s)

T (s) −T (s) S(s) GpS(s)

Y (s) −Y (s) −Y (s) −T (s)




r̂

n̂

d̂y

d̂u


(4.4)

where d̂y is the output disturbance and d̂u is the controller output disturbance.

From these relationships, important points with respect to the physical aspect of systems

can be noted about the three transfer functions—S(s), T (s), and Y (s). S(s) represents how

sensitive the output of the feedback system is to output disturbances. T (s) is the closed-

loop transfer function and represents the behavior of the system to reference signals. Y (s)

represents the actuator output based on the reference signals.

These three transfer functions also provide information about internal stability. A system

is internally stable if the following three conditions are met:
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1. The Youla parameter, Y (s), is BIBO stable.

2. Gp(s) Y (s), or T (s), is BIBO stable.

3. Gp(s) (1−Gp(s)Y (s)), or Gp(s) S(s), is BIBO stable.

GpK yr
e u ū

n
y′

du dy
m× r r ×m

-

Figure 4.2: A MIMO feedback system [8]

The following transfer function matrix relationships can be derived for the MIMO system

with return ratios Ly = GpGc and Lu = GcGp depicted in Figure 4.2:

• Output Complementary-Sensitivity, Ty (from r to y)

y =
(
I +GpGc

)−1
GpGcr

= Tyr

where, Ty = (I + Ly)
−1Ly

• The Youla Parameter, Y (from r to ū)

ū =
(
I +GcGp

)−1
Gcr

= Y r

where, Y = (I + Lu)
−1Gc

• Output Sensitivity, Sy (from dy to y)

y = (I + Ly)
−1dy

=
(
I +GpGc

)−1
Gpdu

= SyGpdu

where, Sy = (I + Ly)
−1
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• Input Sensitivity, Su (from du to ū)

ū =
(
I +GcGp

)−1
du

= Sudu

where, Su = (I + Lu)
−1

For the closed-loop system to be internally stable, these 4 independent transfer function

matrices need to be bounded-input bounded-output (BIBO) stable. The transfer function

matrix relationships can be consolidated into one equation as follows: ū

y

 =

 Y Su

Ty SyGp


 r

du

 (4.5)

Expressing Equation 4.5 in terms of the Youla parameter, Y : ū

y

 =

 Y I − Y Gp

GpY Gp

(
I − Y Gp

)

 r

du

 (4.6)

The closed-loop transfer function matrix in Equation 4.6 is completely parameterized by Y

and Gp. Each entry of the matrix has to be BIBO stable in order to guarantee internal

stability of the closed-loop system. Further, if Gp is stable, then the closed-loop is internally

stable if and only if Y is stable. All internally stabilizing compensators can be parameterized

by Gp and Y as follows:

Gc = (I − Y Gp)
−1Y (4.7)

A novel, systematic approach to design internally stabilizing, robust multivariable feedback

controllers using Youla parameterization, developed by Dr. Francis F. Assadian at the

University of California, Davis, is described in the following algorithm.
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Algorithm 1 MIMO Robust Control Design via Youla Parameterization: The FFA Method

1: procedure MIMO(Gp) . Plant TFM

2: compute the SM-form of Gp(m×n)
, Mp(m×n)

. Smith-McMillan Form

3: find unimodular UL, UR |Mp = ULGpUR

4: choose MY to shape MT |MT = MpMY

5: check: Y = URMYUL → all entries of Y are proper TFs . Youla TFM

6: for k = 1 : min{m,n} |Mp(k, k) = Gk do

7: SISO(Gk) . Internal Stability

8: end for

9: compute Ty = U−1
L MpMYUL . Complementary-Sensitivity TFM

10: compute Sy = I − Ty = U−1
L (I −MpMY )UL . Sensitivity TFM

11: compute Gc = UR(I −MYMp)
−1MYUL . Controller TFM

12: check: SyGp = U−1
L (I −MpMY )MpU

−1
R → meets requirement . Loop-Shaping Check

13: return Gc

14: end procedure

15: function SISO(G) . SISO Interpolation Conditions

16: if G has a jω-axis or RHP pole p of multiplicity ap then . Unstable Poles

17: S(p) = 0;T (p) = 1

18: for j = 1 : ap − 1 do

19:
djS(p)
dsj

= 0; djT (p)
dsj

= 0

20: end for

21: end if

22: if G has an NMP zero z of multiplicity az then . Non-Minimum Phase Zeros

23: S(z) = 1;T (z) = 0

24: for j = 1 : az − 1 do

25:
djS(z)
dsj

= 0; djT (z)
dsj

= 0

26: end for

27: end if

28: end function
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4.2 Multivariable Feedback Control

Following the procedure described in the control design algorithm, we find the Smith-

McMillan form, Mp, of the linear plant, Gp, as shown in Equation 4.8. It is observed from

the Smith-McMillan form that the plant is highly unstable, with 5 BIBO unstable poles and

one stable pole. The corresponding left and right unimodular matrices, shown in Equations

4.9 and 4.10 respectively, are computed such that Mp = ULGpUR. It can be verified that the

determinants of the unimodular matrices are scalars.

Mp =


1

s2 (s−0.8626) (s+0.8626)
0

0 1
s2

0 0

 =


G1(s) 0

0 G2(s)

0 0

 (4.8)

UL =


0 0.5824 −2.7865

−5.499 0 0

0 0.8542 s2 −4.0869 (s− 1.082) (s+ 1.082)

 (4.9)

UR =

 0 1

1 0

 (4.10)

The entries of Mp (Equation 4.8) are treated as individual SISO (single-input single-

output) plants : G1(s) = Mp11 and G2(s) = Mp22, both of which are BIBO unstable. The

closed-loop (complementary-sensitivity) transfer functions, T1(s) and T2(s), of G1(s) and

G2(s) respectively, are defined as follows: T1(s) = Y1(s)G1(s) and T2(s) = Y2(s)G2(s), where

Y1(s) and Y2(s) are the Youla parameters that are to be designed so as to stabilize the entries

of Mp and ensure that T1(s) and T2(s) meet the interpolation conditions for internal stability.

The interpolation conditions are described as a function on line 15 in the algorithm.

The interpolation conditions for the unstable poles of G1 are:

T1(s)
∣∣∣
s=0.8626

= 1, T1(s)
∣∣∣
s=0

= 1,
dT1(s)

ds

∣∣∣
s=0

= 0 (4.11)
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The designed Youla parameter that satisfies these conditions (4.11) is shown in Equation

4.12.

Y1(s) =
K s2 (s− 0.8626) (s+ 0.8626) (τz1s+ 1) (τz2s+ 1)

(s2 + 2ζωns+ ω2
n)
(
τp1s+ 1

) (
τp2s+ 1

) (
τp3s+ 1

)4 (4.12)

The chosen parameter values for Y1(s) are listed in Table 4.1, where τz1 , τz2 , and τp1 are

the solution variables chosen to satisfy the system of equations given by the interpolation

conditions (4.11). The fourth-order pole with time-constant τp3 is included to ensure that

Y1(s) and T1(s) are proper transfer functions, and also to lower the magnitude of the actuator

effort (the frequency response of the Youla parameter) at high frequencies.

ωn 3.75 Natural frequency of the second-order pole [rad/s]

K 14.0625 Gain (ωn
2)

ζ 0.7071 Damping ratio (1÷
√

2)

τz1 2.1198 Time-constant of the first zero [s] (solved for)

τz2 1.8256 Time-constant of the second zero [s] (solved for)

τp1 3.1416 Time-constant of the first pole [s] (solved for)

τp2 0.0267 Time-constant of the second pole [s] (1÷ 10ωn)

τp3 0.1 Time-constant of the third pole (fourth-order) [s]

Table 4.1: Parameter values of the Youla transfer function, Y1(s)

The resulting stable closed-loop (complementary-sensitivity) transfer function, T1(s), is

shown in Equation 4.13.

T1(s) =
K (τz1s+ 1) (τz2s+ 1)

(s2 + 2ζωns+ ω2
n)
(
τp1s+ 1

) (
τp2s+ 1

) (
τp3s+ 1

)4 (4.13)

In order to ensure good reference tracking, it is desirable to make all the closed-loop

transfer functions associated with the entries of the Smith-McMillan form of the MIMO

plant equal (for a MIMO plant with a square transfer function matrix, this would result

in the decoupling of the MIMO closed-loop transfer function matrix). The chosen Youla
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parameter, Y2(s), that satisfies the interpolation conditions for T2(s) and ensures that T2(s)

is equal to T1(s) is shown in Equation 4.14.

Y2(s) =
K s2 (τz1s+ 1) (τz2s+ 1)

(s2 + 2ζωns+ ω2
n)
(
τp1s+ 1

) (
τp2s+ 1

) (
τp3s+ 1

)4 (4.14)

Using the Youla parameters defined in Equations 4.12 and 4.14, the transfer function

matrix, MY , is formulated, as shown in Equation 4.15.

MY =

 Y1(s) 0 0

0 Y2(s) 0

 (4.15)

The transfer function matrix with the individual closed-loop transfer functions, MT , is

shown in Equation 4.16, where T1(s) = T2(s).

MT = MpMY =


Y1(s)G1(s) 0 0

0 Y2(s)G2(s) 0

0 0 0

 =


T1(s) 0 0

0 T2(s) 0

0 0 0

 (4.16)

The singular values of MY , MT , and MS are shown in Figure 4.3, where MS = I−MT , I ∈
R3×3.

A summary of the closed-loop requirements for MY , MT , and MS is given in Table 4.2,

where σmax and σall indicate the maximum singular value and all singular values, respectively.

σall(MT ) = 1 at low frequencies Reference (r) tracking

σmax(MT )� 0 at high frequencies Sensor noise (n) rejection, robust stability

σmax(MS)� 0 at low frequencies Disturbance (du, dy) rejection

σmax(MY )� 0 at high frequencies Small control effort (u)

Table 4.2: Closed-loop requirements for MY , MT , and MS (see Figure 4.2)

The designed transfer function matrices, MY , MT , and MS, are pre- and post-multiplied

by the unimodular matrices, as described in the algorithm, to obtain the stable MIMO
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Figure 4.3: Singular values of MY , MT , and MS

Youla transfer function matrix, Y , the stable MIMO closed-loop (complementary-sensitivity)

transfer function, Ty, the stable MIMO sensitivity transfer function, Sy, and the internally

stabilizing robust MIMO controller, Gc. The singular values of Y , Ty, and Sy, are shown in

Figure 4.4. The closed-loop requirements listed in Table 4.2 hold for the coupled transfer

functions matrices as well.

Figure 4.4: Singular values of Y , Ty, and Sy

It is observed that not all the closed-loop requirements are satisfied by the closed-loop

system due to coupling (presence of non-diagonal terms in the transfer function matrices)

30



introduced by the unimodular matrices. For instance, the maximum singular value of Ty has

a magnitude of 13.8 dB at low frequencies, which is not ideal for reference tracking. Further,

robustness analysis is performed on the closed-loop system by introducing uncertainty in

the gains of the plant transfer function matrix, Gp. The singular values of Gp with 50%

uncertainty in its gains (Gp, uncertain) are shown in Figure 4.5, as an example.

Figure 4.5: Singular values of Gp with 50% uncertainty in its gains

The resulting singular values of Y , Ty, and Sy, are shown in Figure 4.6. It is observed

that the closed-loop system is robust to even 50% uncertainty in the plant transfer function

matrix gains, especially at low frequencies.

MATLAB and Simulink were used for control design and robustness analysis.

The methodology adopted for control design enables complete stabilization of the closed-

loop system, while also ensuring robustness to system parameter uncertainties, as shown in

Figure 4.6. The linear model of the lander with the designed feedback controller tracks the

reference altitude and downrange trajectories, as shown in Figure 4.7 and Figure 4.8, respec-

tively. This closed-loop system, however, displays oscillatory behavior for pitch reference

tracking, as shown in Figure 4.9. One of the reasons for this is that all the available tuning

parameters are exhausted in meeting the interpolation conditions for internal stability of

the closed-loop system. The existence of tight margins for parameter variations in terms of

stability renders the tuning of the existing parameters challenging as well. Given the sta-

bility of the closed-loop system, however, the responses could be tuned by either outer-loop
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Figure 4.6: Singular values of Y , Ty, and Sy with 50% uncertainty in the gains of Gp

controllers or pre-filters (Alavi et al., 2005) or both. Another solution is to implement a

combined feedforward-feedback control architecture with dynamic control allocation to han-

dle underactuation, effectively decoupling the entire system and enabling robust trajectory

tracking, as is described in Section 5.1.
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Figure 4.7: Tracking of the reference altitude trajectory by the linear model with feedback
control
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Figure 4.8: Tracking of the reference downrange trajectory by the linear model with feedback
control
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Figure 4.9: Tracking of the reference thrust pointing angle trajectory (proxy for reference
pitch) by the linear model with feedback control
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Chapter 5

Simulation

5.1 Feedforward-Feedback Control Architecture

A combined feedforward-feedback architecture with control allocation is implemented in

order to address the shortcomings of the proposed multivariable control design described in

4.2. The feedforward signals are generated by the guidance algorithm adopted. Specifically,

they include the thrust magnitudes along the inertial vertical and horizontal axes (for the pla-

nar landing scenario). These feedforward commands enable accurate translation-trajectory

tracking, and tight adherence of the closed-loop trajectories to the constraints imposed in

the powered-descent guidance algorithm adopted (2.1).

The feedback controllers that control the translation of the lander (altitude and down-

range, for the planar landing scenario), are designed so as to null out the error between the

desired trajectories and the actual trajectories of the lander. For attitude control, however,

the adopted PDG algorithm does not generate any feedforward torque commands. Hence,

the entirety of attitude control is handled in feedback. The thrust pointing angle (the angle

of the feedforward thrust vector from the vertical) is used as a proxy for the reference attitude

(pitch, for the planar landing scenario) trajectory. A feedback controller is then designed

to generate torque commands to control the attitude of the lander. Thus, for the planar

landing scenario, there are finally three control commands that are generated (vertical and

horizontal thrust, and torque), but only two actuators (the mass-flow rate and the gimbal

pitch angle) to provide the required control authority. Control allocation is implemented

in order to perform this mapping of control commands in the inertial frame to actuator
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commands in the lander body frame.

Similar control strategies have been adopted in the context of powered-descent and land-

ing in the literature. The G-FOLD algorithm was successfully tested in real-time onboard

the Masten Xombie vehicle, with PID feedback controllers to close the loop (Açıkmeşe et al.,

2013). More recently, the EmboRockETH model rocket was successfully flight-tested with

MPC for position control, and PID controllers for attitude and attitude rate control (Span-

nagl et al., 2021). These formulations are tabulated in Table 5.1.

Here, the algorithm described in 2.1 is used to generate reference translation and at-

titude trajectories and feedforward control commands, and a control strategy using Youla

parameterization-based linear parameter-varying (LPV) robust feedback controllers is im-

plemented in simulation, along with the complete nonlinear model developed in Chapter 3.

The simulation results obtained demonstrate feasibility of the closed-loop trajectories with

respect to the imposed constraints, and potential for implementation in real-time, given the

simplicity of the resulting controller structure.

Vehicle/Model Guidance Formulation Control Design Method

Masten Xombie [3] Variable mass PID

EmboRockETH [66] Constant mass MPC, PID

This work Variable mass Youla parameterization

Table 5.1: Control architectures for powered-descent with convex optimization-based 3-DoF
guidance

5.1.1 Plant Model for Control Design

For the purpose of control design, a simpler model of the lander is considered (Equation

5.1). This model represents equations of motion that are completely decoupled in translation

and rotation—it can be considered to be one of a variable-mass rigid body system, with thrust

always passing through the CM (without gimbaling) and with independent attitude control.

Fx(t) = (m(um) +M) (ax(t) + g) (5.1a)
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Fz(t) = (m(um) +M) az(t) (5.1b)

τy(t) = Iyy(m) αy(t) (5.1c)

Here1,

Fx, Fz are the thrust components along the inertial x and z axes

τy is the torque about the inertial (and body) y axis

ax, az are the acceleration components along the inertial x and z axes

αy is the angular acceleration about the inertial (and body) y axis

The remaining terms in Equations 5.1 are described in Section 3.1. Equations 5.1 can be

reformulated in terms of the states {vx, vz, ωy, dx, dz, qy, m}, as shown in Equations

5.2. These state equations will consitute the decoupled parameter-varying model for further

developments2.

v̇x =
Fx

M +m
− g (5.2a)

v̇z =
Fz

M +m
(5.2b)

ω̇y =
τy
Iyy

(5.2c)

ḋx = vx (5.2d)

ḋz = vz (5.2e)

q̇y = ωy (5.2f)

ṁ = −‖Fxz‖
C

(5.2g)

1The arguments for time (t), control (um), and propellant mass (m) are dropped henceforth for notational

simplicity.
2For notational clarity, v2 and q2 (as described in Section 3.1) are replaced in this section by ωy and qy,

respectively.
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Additionally, the lever-arm (the distance between the main engine gimbal hinge point and

the vehicle mass-center), lCM , can be given by Equation 5.3.

lCM =
l(2M +m)

4(M +m)
(5.3)

The thrust component at the main engine gimbal hinge point, along the body z axis, is given

by Equation 5.4.

F b
z =

τy
lCM

(5.4)

Therefore, the gimbal angle3 in the body frame, eb, is given by Equation 5.5.

eb = − arcsin

(
F b
z

‖Fxz‖

)
, −1 ≤ F b

z

‖Fxz‖
≤ 1 (5.5)

5.1.2 Feedback Control Design

This section highlights the development of feedback controllers that enable accurate track-

ing of the altitude, downrange, and pitch trajectories generated by guidance. The outputs

considered are altitude, downrange, and pitch. The inputs are the thrust component along

the vertical axis, the thrust component along the longitudinal axis, and the torque about

the lateral axis, all in the inertial frame.

In order to reveal the direct relationship between the inputs and outputs considered,

Equations 5.2 can be rewritten in terms of the outputs only, as shown in Equations 5.6.

d̈x =
Fx

M +m
− g (5.6a)

d̈z =
Fz

M +m
(5.6b)

q̈y =
τy
Iyy

(5.6c)

3The gimbal angle, eb, is defined in the body frame and is different from e1 (described in Section 3.1),

which is defined in the inertial frame: eb = e1 − q2
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The gravity term in Equation 5.6a is considered to be an external disturbance, and is

ignored in the following feedback control development. This assumption is made in order to

obtain a linear representation of the system (Equation 5.6a is affine). It is to be noted that

this assumption is fairly innocuous, given that the feedforward commands from guidance,

which take gravity into account, possess most of the control authority with respect to altitude

(and downrange) control; the purpose of feedback control for altitude (and downrange)

trajectory-tracking is only for stabilization of the plant and the correction of errors that may

be introduced due to model-mismatch, external disturbances, and sensor noise.

Ignoring gravity, taking the Laplace transform of Equations 5.2, and setting the initial

conditions to zero, we get Equations 5.7.

s2Dx(s) =

(
1

M +m

)
Fx(s) (5.7a)

s2Dz(s) =

(
1

M +m

)
Fz(s) (5.7b)

s2Qy(s) =

(
1

Iyy

)
Ty(s) (5.7c)

Therefore, the transfer functions of the plant for the purpose of feedback control design are

given by Equations 5.8. These plant transfer functions are BIBO unstable, with repeated

(double) poles at the origin of the s plane.

Dx(s)

Fx(s)
=

(
1

M +m

)
︸ ︷︷ ︸

translation gain: Kt(m)

1

s2
(5.8a)

Dz(s)

Fz(s)
=

︷ ︸︸ ︷(
1

M +m

)
1

s2
(5.8b)

Qy(s)

Ty(s)
=

(
1

Iyy

)
︸ ︷︷ ︸

attitude gain: Ka(m)

1

s2
(5.8c)
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Youla Parameterization-based Controller Design

As described in Subsection 4.2, Youla parameterization provides a systematic framework

for the design of internally stabilizing controllers using algebraic manipulation (Assadian

and Mallon, 2021; Blanchini et al., 2010; Kučera, 2011).

Feedback controllers are designed around the BIBO unstable plant transfer functions

in Equations 5.8. The internally stabilizing controllers thus designed are linear parameter-

varying (LPV)4 in nature, due to the varying gains that are functions of the propellant mass.

The design procedure has been described in the form of an algorithm (Algorithm 2), which

includes the steps for an offline control design procedure (and is described as such for the

sake of clarity)—the resulting controller structure and parameters other than the gain, 1
K(m)

,

do not need to be modified or updated during flight. The closed-loop transfer function, T (s),

is time-invariant by design. The estimated propellant mass from the control commands (see

lines 1 and 2 in Algorithm 3) are used to update the gain at each time-step.

The design parameters of the translation and attitude controllers for the lunar landing

scenario are shown in Tables 5.2 and 5.3, respectively. The controller parameters {ωb, ζ, τp}
(prior to being scaled by the gains) were chosen via closed-loop testing and manual tuning.

Given that the feedforward commands possess most of the translation control authority

and are responsible for trajectory-tracking, and that the feedback controllers are for error-

cleaning only, the translation controller responses are further scaled down to 10√
2
% their

original values (such that the total feedback control thrust magnitude is scaled down to 10%

the commanded feedback control thrust magnitude). In practice, the varying gain, K(m),

is set to unity during the design phase (Algorithm 2), and the control command is scaled in

real-time by the actual gain that is based on the mass estimate.

4Although the propellant mass varies with time, it is dependent on a control input (mass-flow rate), the

profile of which is not known a priori. Hence, the controllers are referred to as linear parameter-varying

(LPV) systems as opposed to linear time-varying (LTV) systems.
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Algorithm 2 LPV Control Design

Inputs: ωb, ζ, K(m), τp

1: TF(s) =
wn2 (tz s+ 1)

(s2 + 2ζ wn s+ wn2)(τps+ 1)

∣∣∣∣∣ TF(0) = 0 . desired T (s)
∣∣∣ Alg. 1, line 17

2: eqn_1←− dTF(s)

ds

∣∣∣∣∣
s=0

== 0 . Alg. 1, line 19

3: eqn_2←−
∣∣TF(jω)

∣∣
ω=ωb

==
1√
2

. closed-loop 3 dB bandwidth enforcement

4: wn, tz←− solve(eqn_1, eqn_2)

5: if phase margin ≥ 60◦ then . classical robustness

6: ωn, τz = wn, tz

7: else

8: choose different τp and repeat (from line 1)

9: end if

Gp(s,m) =
K(m)

s2
. LPV plant

10: Y (s,m) =
ω2
n s

2 (τzs+ 1)

K(m) (s2 + 2ζωns+ ω2
n)(τps+ 1)

. LPV Youla parameter

11: T (s) = Y (s,m) Gp(s,m) =
ω2
n (τzs+ 1)

(s2 + 2ζωns+ ω2
n)(τps+ 1)

. complementary-sensitivity

12: S(s) = 1− T (s) =
s2 (s τp + 2ζωnτp + 1)

(s2 + 2ζωns+ ω2
n)(τps+ 1)

. sensitivity

13: Gc(s,m) =
Y (s,m)

S(s)
=

ω2
n (τzs+ 1)

K(m) (s τp + 2ζωnτp + 1)
. LPV controller

Return: Gc(s,m)
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Chosen:

ωb 0.71 Closed-loop bandwidth [rad/s]

ζ 0.7071 Damping ratio (1÷
√

2)

K(m) Kt(m) (see Eq. 5.8) Varying gain

τp 0.05 Time-constant of the first-order pole [s]

Solved for:

ωn 0.3415 Natural frequency of the second-order pole [rad/s]

τz 4.1913 Time-constant of the first-order zero [s]

Table 5.2: Translation control design parameters

Chosen:

ωb 3.55 Closed-loop bandwidth [rad/s]

ζ 0.7071 Damping ratio (1÷
√

2)

K(m) Ka(m) (see Eq. 5.8) Varying gain

τp 0.01 Time-constant of the first-order pole [s]

Solved for:

ωn 1.7074 Natural frequency of the second-order pole [rad/s]

τz 0.8383 Time-constant of the first-order zero [s]

Table 5.3: Attitude control design parameters

Both the translation and attitude controllers result in a phase margin of 64.1 degrees.

The singular value (Bode magnitude) plots of the Youla parameter, Y (s), the closed-loop

transfer function, T (s), and the sensitivity transfer function, S(s), for the translation and

attitude controllers are shown in Figures 5.1 and 5.2 respectively. It can be observed that

the frequency responses satisfy the closed-loop requirements listed in Table 4.2. Further, the

maximum singular value of Y (s) at high frequencies can be brought down by introducing

additional poles in the transfer function as required. The resulting controllers are first-order

transfer functions.
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Figure 5.1: Translation loop (linear) frequency responses

Figure 5.2: Attitude loop (linear) frequency responses
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5.1.3 Control Allocation

Given that the actual system is underactuated, the three control commands {Fx, Fz, τy}
need to be mapped to two actuator inputs {ṁ, eb}, as shown in Figure 5.3 and described in

Algorithm 3.

Figure 5.3: The control allocator block (see Figure 5.4)

Algorithm 3 Control Allocation

Inputs: Fx, Fz, τy

1: Compute the mass-flow rate, ṁ, from the thrust commands . Equation 5.2g

2: Integrate the mass-flow rate to obtain the propellant mass, m

3: Compute the lever-arm (a function of the propellant mass) . Equation 5.3

4: Compute the horizontal thrust component in the body frame, F b
z . Equation 5.4

5: Compute the gimbal angle in the body frame, eb . Equation 5.5

Return: ṁ, eb
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5.2 Closed-Loop Simulation

5.2.1 Framework

Figure 5.4: Powered-descent guidance and control architecture

The closed-loop planar powered-descent guidance and control simulation is set up as

shown in Figure 5.4, along with the nonlinear model developed in Chapter 3.

The guidance block (Figure 2.1) is given the coordinates of the target landing site and

the initial conditions of the lander. The resulting convex optimization problem solved, along

with the imposed constraints and boundary conditions, is described in Section 2.2. The

guidance output is a one-shot solution (in this case, the optimization problem is solved once

at the beginning of the maneuver; in practice, however, if the need arises, the problem can

be re-solved as required to obtain new trajectories on the fly, given its amenability to real-

time implementation). The solution consists of two components: the reference translation

trajectories for the lander to track, {rx, rz}, and the feedforward thrust commands, {Fxff ,

Fzff}. In addition, the thrust pointing angle from guidance, θy, is used as a proxy for the

reference pitch trajectory.

The outputs considered are the altitude, dx, the downrange, dz, (translation) and the

pitch angle of the lander, qy (attitude). The errors between the outputs fed back and

the reference trajectories are then passed through the feedback controllers, which generate
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the necessary feedback control commands, {Fxfb , Fzfb , τy}. For translation, the corrective

feedback control commands, {Fxfb , Fzfb}, are then combined with the respective feedforward

thrust commands from guidance, {Fxff , Fzff}, to generate the closed-loop thrust commands,

{Fx, Fz}. Since no feedforward torque commands are generated by guidance, the entirety of

attitude control is handled by the attitude controller, which generates the necessary feedback

torque command, τy. Since the lander is underactuated, a control allocator (Figure 5.3) is

used to map the inertial control commands, {Fx, Fz, τy}, to the actuator inputs, {ṁ, eb},
as described in Algorithm 3. The commands thus computed are passed on to the nonlinear

lander model block (Figure 3.4). The closed-loop responses of the nonlinear lander model

are then fed back, and this entire process is repeated at each simulation time-step.

5.2.2 Actuator Considerations

Since the constraints imposed in guidance apply to the feedforward control commands

only, additional constraints need to be imposed in order to ensure that the closed-loop

signals do not exceed their physical bounds. Moreover, given that the lander is inherently

unstable, underactuated, and that it has only one throttlable gimbaled main engine for

both stabilization and trajectory-tracking, additional constraints are required on the control

commands to ensure satisfaction of the closed-loop requirements.

The guidance algorithm generates optimal solutions that constrain the thrust magnitude

to throttle between 30% and 80% of the full-thrust magnitude, Tmax. These throttle limits

are intentionally set to more conservative values than the actual physical throttle limits in

order to ensure that the feedback controllers are given enough control margin—the closed-

loop thrust magnitude is constrained to throttle between 20% and 90% Tmax (allowing for

a 10% thrust margin on either end for feedback control). In order to bound the closed-loop

thrust magnitude, each of the translation feedback control commands, Fxfb and Fzfb , are

restricted to ± 10√
2
% Tmax, such that ‖Fxzfb‖ ≤ 10% Tmax. It is assumed that the thrust

magnitude can throttle at a rate of 50% Tmax per second, and therefore, the slew rate of

the mass-flow rate actuator input ṁ is set to 50% Tmax

C
per second, where C is the propellant

exit-velocity.

Additionally, given the control allocation scheme adopted, there exist fundamental bounds

on what the magnitude of the torque command can be: from Equations 5.4 and 5.5, it follows
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that |τy| ≤ ‖Fxz‖ lCM , where the equality, |τy| = ‖Fxz‖ lCM , corresponds to a gimbal angle

of 90 degrees from the vertical axis in the body frame of the lander. However, the maximum

gimbal angle for a realistic lander vehicle is much smaller. The maximum gimbal angle is

set to 10 degrees from the vertical axis in the body frame, and in order to enforce that

constraint, the torque command is saturated as follows: |τy| ≤ ‖Fxz‖ lCM sin(10◦). Further,

a limit of 10 degrees/second is imposed on the gimbal rate.5

5.2.3 Results

The closed-loop simulation results demonstrate accurate reference trajectory-tracking

and a sub-meter touchdown accuracy. Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 show

the states of the nonlinear lander model during powered-descent. The vehicle touches down

(reaches zero altitude) with a downrange error of 0.26 meters, and a zero pitch error. The

vertical velocity, horizontal velocity, and body pitch rate at touchdown are -0.62 m/s, 0.11

m/s, and 0 degrees/s, respectively, which are well within the bounds for a nominal landing

scenario. The total propellant consumed is 861.81 kg, which is only 6.62 kg more than the

projected propellant consumption value from guidance. The lever-arm profile is shown in

Figure 5.12.

The feedforward and closed-loop thrust commands, and the total thrust magnitude, along

with the imposed bounds and the allowed control margins, are shown in Figures 5.14, 5.15,

and 5.13. The torque profile is shown in Figure 5.16. The actuator inputs—the mass-flow rate

and the gimbal angle, both of which demonstrate satisfaction of the imposed constraints—are

shown in Figures 5.17 and 5.18 respectively. The gimbal rate profile is shown in Figure 5.19.

Due to the control allocation scheme adopted, spikes are observed in the gimbal rate at the

instants when the throttle setting is changed.

5Recent prototype lander tests have demonstrated feasibility of the chosen gimbaling constraints [49].
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Figure 5.7: Pitch
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Figure 5.8: Rate-of-descent
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Figure 5.9: Longitudinal velocity
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Chapter 6

Conclusions

6.1 Summary

A framework for analytical multibody dynamics modeling and closed-loop guidance and

control simulations for autonomous precision rocket landing is introduced. Development

of such an integrated framework with high-fidelity nonlinear dynamical models of variable-

mass multibody space vehicles, state-of-the-art propellant-optimal guidance algorithms, and

robust feedback control systems, would pave the way for efficient and reliable software-in-

the-loop and hardware-in-the-loop powered-descent and precision landing simulations for

both human and robotic missions, thus making this line of research very beneficial for future

rocket-powered lander missions.

The extended Kane’s equations for variable-mass systems are used to analytically model

the nonlinear multibody dynamics of a planetary landing vehicle. Propellant-optimal guid-

ance state trajectories are generated by employing lossless convexification in a convex opti-

mization framework. The procedure to design internally stabilizing, multiple-input multiple-

output (MIMO) robust feedback control systems for underactuated plants is described. The

closed-loop system is shown to possess robustness to bounded uncertainties.

Further, a combined feedforward-feedback control architecture with control allocation

and computationally efficient LPV feedback controllers is presented and validated by means

of a closed-loop precision landing simulation of the nonlinear variable-mass multibody lander

model.
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6.2 Contributions

Guidance

– Inclusion of velocity-based vertical-only terminal-descent constraints to the lossless

convexification-based 3-DoF powered-descent guidance (PDG) problem, with the re-

laxed acceleration lower-bound holding with equality (proof of optimality for the prob-

lem with the new constraints is yet to be provided).

Dynamics

– Implementation of extended Kane’s equations—this method for analytically modeling

variable-mass multibody systems is sparse in the literature (and to our knowledge, this

work is the first instance of its application in the context of simulating rocket-powered

landing vehicles [34]).

Control

– A novel method for robust, internally stabilizing, multivariable feedback control design

(offline) for bounded-input bounded-output (BIBO) unstable, underactuated plants

with output-only feedback, via Youla parameterization (the FFA method [34]).

– A novel method for the offline design of simple, robust, internally stabilizing, linear

parameter-varying (LPV) controllers for BIBO unstable parameter-varying plants with

output-only feedback, via Youla parameterization.

– Implementation and validation (in simulation) of a combined feedforward-feedback con-

trol architecture for planar, underactuated, constrained, closed-loop precision landing,

that includes partial 2-DoF (x, z) guidance (translation-only) and complete 3-DoF con-

trol (altitude, downrange, and pitch) with only 2 actuator inputs (mass-flow rate and

1 gimbal angle)—which can be readily extended to 3-DoF (x, y, z) guidance with upto

5-DoF control (altitude, crossrange, downrange, pitch, and yaw) with only 3 actuator

inputs (mass-flow rate and 2 gimbal angles); roll control can be provided by means of

an additional actuator(s).
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6.3 Discussion

The PDG algorithm that has been adopted is the state-of-the-art for 3-DoF rocket-landing

in terms of computational performance guarantees and accessibility for future planetary

landing missions, such as the proposed Artemis lunar landing missions and the Mars Sample

Return mission.

The method used for variable-mass multibody dynamics modeling is highly systematic

and computationally efficient, and can be extended to include fuel-slosh effects and bending

modes for the development of high-fidelity computational multibody lander models.

The proposed novel method for LPV control design via Youla parameterization signifi-

cantly simplifies the control design and implementation process, since it eliminates the need

for the scheduling of gains via lookup tables, which is a common practice in PID controller

implementations for LPV plants. The controller order can be increased systematically in

order to meet any additional requirements without sacrificing internal stability and robust-

ness. The method does not require full-state feedback unlike strategies such as LQR control,

and has been shown to maintain robustness even with the inclusion of estimators/observers

in the loop [7].

If implemented, the control strategy (with gimbaled thrust vector control) would result

in fewer reaction control system (RCS) thruster firings and in turn, lower mass budgets [30]

and increased payload capacities—and also prove beneficial in the event of failure of RCS

thrusters (which are typically used on planetary landers for attitude control).

Once the controllers are appropriately tuned offline and deployed on the vehicle, they can

be “universal”, in that they can be used (without the need for re-tuning) for a wide range

of boundary conditions, given their robustness to system parameter uncertainties, model-

mismatch, external disturbances, and sensor noise (robustness to time-delays can be achieved

using this method as well), and thus have the potential to enable large divert maneuvers that

are commanded mid-flight for scenarios such as hazard avoidance, emergency safe-landings,

and ultra-precise landings in general.

54



6.4 Future Research

Future research directions could include proving optimality of the convex PDG problem

with terminal-descent constraints, solving the 6-DoF PDG problem with lossless convexi-

fication (and the resulting convergence guarantees), building upon the existing simulation

framework by modeling fuel-slosh effects and bending modes, developing a real-time frame-

work including manual guidance capabilities for human subject testing, further exploring

Youla parameterization for multivariable control and robust estimation design, and experi-

mentally validating the proposed methods using a physical testbed, to name a few.
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D. P. Scharf, B. Açıkmeşe, D. Dueri, J. Benito, and J. Casoliva. Implementation and ex-
perimental demonstration of onboard powered-descent guidance. Journal of Guidance,
Control, and Dynamics, 40(2):213–229, 2017.

M. Smith, D. Craig, N. Herrmann, E. Mahoney, J. Krezel, N. McIntyre, and K. Goodliff.
The Artemis program: An overview of NASA’s activities to return humans to the Moon.
In 2020 IEEE Aerospace Conference, pages 1–10. IEEE, 2020.

L. Spannagl, E. Hampp, A. Carron, J. Sieber, C. A. Pascucci, A. U. Zgraggen, A. Domahidi,
and M. N. Zeilinger. Design, optimal guidance and control of a low-cost re-usable electric
model rocket. arXiv preprint arXiv:2103.04709, 2021.

A. Steltzner, D. Kipp, A. Chen, D. Burkhart, C. Guernsey, G. Mendeck, R. Mitcheltree,
R. Powell, T. Rivellini, M. San Martin, et al. Mars science laboratory entry, descent, and
landing system. In 2006 IEEE Aerospace Conference, pages 15–pp. IEEE, 2006.
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