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Abstract 

The actualization of affordances can often be accomplished in 
numerous, equifinal ways. For instance, an individual could 
discard an item in a rubbish bin by walking over and dropping 
it, or by throwing it from a distance. The aim of the current 
study was to investigate the behavioral dynamics associated 
with such metastability using a ball-to-bin transportation task. 
Using time-interval between sequential ball-presentation as a 
control parameter, participants transported balls from a 
pickup location to a drop-off bin 9m away. A high degree of 
variability in task-actualization was expected and found, and 
the Cusp Catatrophe model was used to understand how this 
behavioral variability emerged as a function of hard (time 
interval) and soft (e.g. motivation) task dynamic constraints. 
Simulations demonstrated that this two parameter state 
manifold could capture the wide range of participant 
behaviors, and explain how these behaviors naturally emerge 
in an under-constrained task context. 

Keywords: affordances; dynamic systems; cusp catastrophe; 
dynamic modeling; simulations; constraints; 

Introduction 

Reorganizing one’s activity in relation to changing task 

demands is a ubiquitous aspect of everyday life and is often 

required to ensure task success. In order to solve everyday 

perception-action tasks, human (and animal) behavior is 

functionally (re)organized in relation to the affordances that 

define a given task context. Here, the term affordance 

simply refers to the action possibilities that characterize a 

given agent-environment system (Gibson, 1979).  

Starting with Warren’s (1984) seminal work on the 

perception of climb-ability, affordance perception research 

has demonstrated that affordances are defined by 

dimensionless ratios (termed pi-numbers) that capture the 

intrinsic, or body-scaled “fit” between the relevant aspects 

of an environmental surface or object and an intentional 

agent’s perception-action capabilities (i.e. effectivities). For 

instance, a stair riser is perceived to afford (comfortable) 

climbing if the ratio of the perceivers leg-length with respect 

to the height of the riser is less than approximately π = .85.  

Similar body-scaled ratios are known to define a wide 

range of action possibilities, from the stand-ability and sit-

ability of surfaces (e.g., Fitzpatrick, Carello, Schmidt & 

Corey, 1994; Mark, 1987), to the pass-through-ability of 

apertures (Warren & Whang, 1987), and the reach-ability 

and grasp-ability of objects (e.g., Carello, Grosofsky, 

Reichel & Solomon, 1989; Cesari & Newell, 1999; 

Richardson, Marsh & Baron, 2007). In each case, this 

research has demonstrated how individuals correctly detect 

affordance boundaries (i.e., the boundary between when an 

action is or is not possible) by means of intrinsic body-

scaled information (e.g., eye-height information) and 

organize or reorganize their behavioral activity accordingly 

(Carello et al., 1989). For instance, individuals are able to 

correctly perceive when an object is reach-able or not by 

extending their arm when seated, or by bending their torso 

and extending their arm, or by standing up and walking over 

to the object and organize their behavior accordingly.  

It is important to appreciate, however, that in most task 

contexts the different ways in which an affordance can be 

actualized are not organizationally discrete, but overlap. For 

instance, an object that is reachable by extending the arm, is 

also often reachable by bending the torso and extending the 

arm. Similarly, an object that is graspable with one hand, is 

also likely graspable with two hands. Furthermore, a small, 

light ball could be gripped with the fingers or grasped with 

the whole hand, and then carried or thrown to its final 

destination. In this sense, afforded task goals often entail a 

nested structure of multiply realizable action possibilities. 
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In dynamical systems terms, a nested affordance structure 

corresponds to a multi-stable system, whereby two or more 

states or modes of behavioral order are simultaneously 

stable (and could be actualized). Regarding the perception 

and actualization of nested affordances, a sign of multi-

stability is hysteresis (Kelso, 1995; Turvey, 1990). This 

occurs when an individual transitions between two different 

behavioral modes or states at different body-scaled ratios 

depending on its history of previous performance. For 

example, an individual will typically transition from one-

hand to two-hand grasping at a larger arm-span/object-size 

ratio (i.e., π = .8) as object size is increased, compared to 

when transitioning from two-hand to one-hand grasping 

(i.e., π = .65) as object size is decreased (e.g., Frank, 

Richardson, Lopresti-Goodman & Turvey, 2009; van der 

Kamp, Savelsbergh & Davis, 1998). Although hysteresis 

has been observed in numerous affordance studies, other 

dynamic patterns of behavior have also been observed. For 

instance, in many task contexts individuals exhibit a fixed or 

critical point transition between different affordances or 

modes of affordance actualization. That is, individuals 

exhibit a nonlinear phase transition between different 

affordances or behavioral modes at the same body-scaled 

ratio irrespective of whether it is scaled up or down 

(Richardson et al., 2007; van der Kamp, et al., 1998). 

Enhanced contrast or negative hysteresis has also been 

observed and is defined by individuals transitioning 

between different behavioral modes in a prospective or 

anticipatory manner (Richardson et al., 2007; Lopresti-

Goodman et al. 2013). While these transitions show distinct 

changes in the actualization of an affordance over time, they 

are still stable solutions in terms of the task goal, or 

metastable. For example, in order to successfully grasp 

planks as plank size is increased, a transition (that varies 

inter-individually) between one-handed and two-handed 

grasping is necessary to maintain the task goal. Of course, 

fixed state behavior has also been observed, whereby an 

individual will enact the same affordance even if other 

behavioral modes are more effective or stable. For example, 

in an object grasping task a pair of individuals may choose 

to pick up objects together, even when it is more efficient 

and stable to pick up smaller objects separately (Richardson 

et al., 2007). 

Of particular relevance here, is that the varied manner in 

which individuals are known to actualize a given affordance 

or transition between different affordances implies that 

affordance actualization is not determined by body-scaled 

ratios alone, but rather is determined by a more complex set 

of behavioral and contextual constraints. For example, the 

amount of time an individual has to perform a given task, an 

individual’s motivation, and an individual’s perceived 

ability for achieving task success are known to play a 

determining role in how a particular affordance is actualized 

(e.g., Lopresti-Goodman, Richardson, Marsh, Carello, & 

Baron, 2007; Wilson, Weightman, Bingham, & Zhu, 2016).  

In an attempt to better understand how differing task 

constraints influence affordance actualization, Fajen (2007) 

has proposed a distinction between hard versus soft 

constraints.  Briefly stated, hard constraints are constraints 

that define a clear line between task success and failure. For 

example, when driving there is a minimum distance in 

which a driver would need to start braking in order to avoid 

colliding into a car stopped in front of them. The boundary 

between stopping and colliding thus corresponds to a hard 

task constraint, and if crossed will result in rather dramatic 

and potentially deadly task failure. However, even in this 

situation, successfully stopping could entail breaking close 

to this hard constraint or well before it. Of course, what 

determines which successful type of breaking behavior a 

driver chooses to actualize will depend on many different 

factors, such as the time of day, mood, or the degree to 

which a given driver prefers a large or small margin of 

safety. It is these kinds of latter constraints that correspond 

to soft constraints (Fajen, 2007; also see Harrison, Turvey & 

Frank, 2016). 

Current study 

The aim of the current study was to examine and model 

the effects of hard and soft constraints on affordance 

actualization, for a ball-to-bin transportation task. Of 

particular interest was the role that temporal constraints play 

on shaping the behavioral dynamics of an under- or softly-

constrained affordance actualization task. To achieve this, 

individuals were instructed to transport balls from a starting 

location to a target bin located 9 meters away. The interval 

between sequentially presented balls was manipulated by 

increasing or decreasing number of seconds between 2 and 

14 (or vice versa) in 1 second steps every fourth ball. 

Importantly, individuals could complete the ball-to-bin 

transportation task in any way they wished; by 

walking/running and dropping the balls into the target bin or 

by throwing the balls into the bin from whatever distance 

they liked. Of interest was the distance that individuals 

chose to move prior to releasing the ball and the degree to 

which time-interval, as a control parameter, operated as a 

constraint on the observed behavioral dynamics. 

Given the under-constrained nature of the task and the 

fact that it was impossible for individuals to achieve 

complete task success, the expectation was to observe a 

variety of behavioral dynamics. More specifically, using 

distance moved prior to attempting to throw the ball into the 

bin as the dependent variable, the expectation was that 

participants would exhibit one of four general classes of 

behavior as time-interval was increased or decreased across 

a continuous sequence of 52 balls: (I) fixed large distance 

moved (essentially always walking or running nearly the 

complete distance to the target bin);  (II) fixed small 

distance moved (essentially always throwing from the ball 

pickup location); (II) gradual transition from large to small 

distance moved (or vice versa); and (IV) a non-linear 

transition between large and small distance moved. 

It was also expected that the variation in the behavioral 

dynamics observed could be modeled using a two 

parameter, bifurcation or catastrophe model (namely, the 
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cusp catastrophe), in which the first parameter was 

represented by time interval and the second represented the 

collective approximation of the unknown soft constraints 

that influenced a given individual’s behavioral dynamics. 

Before explicating this modeling endeavor however, the 

method and data analysis employed for the experimental 

study is detailed. 

Method 

Participants 

Sixty-nine undergraduates from the University of Cincinnati 

participated in the experiment for partial course credit. 

Materials 

At the starting area, seven-inch plastic playpen balls were 

put through an angled PVC pipe (marked ‘4’ in Figure 1) 

that protruded into the pick-up area located on a wooden 

table (marked ‘3’, dimensions: 40cm wide, and 26.5cm 

deep). The mouth of the PVC pipe extended back through 

an opaque curtain (marked ‘2’) and a large wooden bin 

(marked ‘1’, dimensions: 110cm wide, 55cm deep, and 

120cm high) was positioned at nine meters from the back 

edge of the ball pickup area. A computer program was used 

to visually signal an experimenter (‘E’) positioned behind 

the pickup location curtain (2) when to release the balls (one 

by one). A video-camera was used to record participants’ 

(‘P’) movements and actions throughout the experiment. 

 
Figure 1: General experimental setup. 

Task and Procedure 

Participants were told that the task involved transporting 

plastic playpen balls from a pickup area to a wooden bin 

located on the other side of the laboratory room. They were 

instructed they could only use one ball at a time and that the 

task was to get the balls into the bin, while at the same time 

not letting multiple balls stack up at the pickup location. 

They were told that the time between ball presentations 

would change from fast to slow or slow to fast (depending 

on sequence condition). They were also told that if they 

drop a ball accidentally then it could be picked up, however, 

if there was an attempt to get the ball into the bin but they 

missed, then they should ignore it and move on to the next 

one. Finally, they were instructed to solve the task in any 

way they liked as long as they followed the rules. (There 

were no consequences if rules were broken, and no 

incentive was given for performance). 

Participants completed two trial series, with each series 

including the sequential presentation of fifty-two balls. 

Thirty-five participants started their first series at an 

increasing rate: beginning with a 14 second interval of ball 

presentation, this interval was decreased by 1 second after 

four balls down to 2 seconds (i.e., four balls were presented 

sequentially at each time interval). A small break was 

provided and then the second series began with the control 

parameter scaled in the reverse direction (i.e., from 2 to 14 

seconds). The other thirty-four participants completed these 

same two trial sequences in the reverse order (i.e., 2 to 14 

second sequence, followed by the 14 to 2 second sequence).  

Data Analysis and Behavioral Classification 

The distance that participants moved prior to releasing 

(throwing or dropping) the ball was determined from the 

video recordings, along with task success (i.e., whether 

participants successfully got the ball into the bin or not). 

Although not reported here, the number of balls left within 

the pickup area at the time that the participant was 

attempting to get their current ball in was also recorded.   

The movement distances were analyzed using Matlab 

2016a (MathWorks, MA), with the behavior exhibited by 

participants in each temporal series (i.e., 2 to 14 second and 

14 to 2 second series) graphically classified into one of four 

different types of dynamics (see below for more details). 

Prior to classification, the movement distances were 

averaged over each change in time interval, i.e. the average 

distance moved prior to releasing the ball was calculated 

over the four balls that had a fourteen second interval, then 

the average distance moved prior to releasing the ball was 

calculated over the four balls within thirteen second 

intervals, etc. This resulted in thirteen averaged movement 

distances for each 52-ball sequence. From these behavioral 

time-series, two descriptive statistics, namely mean distance 

moved (Dm) and largest change in distance moved across a 

change in time interval (ΔD; i.e. the maximum of the 

differentiated 13-point behavioral time-series) were used to 

classify each behavioral time series as follows: 

 

• Stable (fixed) small distance (stDsmall) moved, whereby 

participants essentially always throw the ball from the 

pickup location or near the pickup location. More 

specifically, Dm < 4.8 meters and ΔD < 1.58 meters. 

• Stable (fixed) large distance (stDlarge) moved, whereby 

participants essentially always moved across nearly the 

complete distance to the target bin prior to releasing the 

ball. More specifically, Dm > 4.8 meters and ΔD < 1.58 

meters. 

• Gradual change (phase transition) in distance (ptDgradual) 

moved, whereby participants gradually increased or 

decreased the distance as time interval decreased or 

increased, respectively (i.e., an inverse relationship 

between distance moved and time interval). More 

specifically, 1.58 < ΔD < 3.8 meters. 

•  Nonlinear change (phase transition) in distance 

(ptDnonlinear) moved whereby participants exhibited a large 
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or nonlinear change in distance moved across a small 

change in interval. More specifically, ΔD > 3.8 meters. 

 

Example time-series of each behavioral type are provided in 

Figure 2 for both increasing and decreasing interval 

sequences. 

 

Figure 2: Two examples each of participant (full line, square 

markers) and simulated (dotted line, triangle markers) 

trajectories: stDsmall trajectories (top), stDlarge (second), 

ptDgradual (third) and ptDnonlinear (bottom). 

Modeling and Simulation 

The possible emergence of the above four types of 

behavioral dynamics was modeled using a two-parameter 

task manifold defined by the Cusp Catastrophe (Thom, 

1975) equation 

ẋ = a + bx - x3 (1) 

 

where x represented that state or dependent variable, i.e., the 

distance (rescaled) moved prior to releasing or throwing the 

ball, the parameter a represented (normalized) time interval 

from (-2.5 = 2 seconds to +2.5 = 14 seconds), and the 

parameter b represented the collective state of (unknown) 

soft constraints that might be influencing a participant’s 

behavior at any point during the task (i.e., motivation, 

intention, perceived ability, learned helplessness, etc.). The 

manifold in Figure 3 represents the fixed points of x, for 

different parameter settings of a and b. That is, each point 

on the manifold can be understood as representing the 

distance moved prior to releasing the ball for each (a,b) 

setting, where x is rescaled (normalized) as a function of b 

(e.g., from -2 = 0 meters moved to +2 = 9 meters walked 

when b = 2.8 and from -1 = 0 meters moved to +1 = 9 

meters walked when b = -1.8). 

As can be seen in Figure 3, this manifold includes both 

mono-stable and bi-stable (multi-stable) regions and 

predicts the same four patterns of behavioral dynamics 

defined above depending on the values of a and b. More 

specifically, as a is scaled up or down, larger values of b can 

result in behavioral trajectories qualitatively consistent with 

stDlarge and stDsmall, depending on the initial condition of x. 

For -.5 < b < 3, however, the manifold predicts varying 

degrees of ptDnonlinear type behavior as a (time interval) is 

scaled up or down. Finally, when b < -.5 the manifold 

predicts ptDgradual as a (time interval) is scaled up or down.  

It is worth noting at this point that Eq. (1) or the Cusp 

Catastrophe model has been employed to abstractly capture 

a wide range of natural bifurcation phenomena, including 

human anxiety and performance, organizational order, 

decision-making and dating behavior (e.g., Guastello, 1995; 

Hardy, 1996; Hardy & Fazey, 1987; Richardson, Dale & 

Marsh, 2014; Tesser, 1980). Typically, the b parameter is 

fixed and the different behaviors that Eq. (1) can produce 

are explored by scaling a. In fact, this is how the exemplar 

trajectories plotted on the manifold in Figure 3 were 

generated (i.e., by fixing the value of b and then scaling a 

for a given initial condition x0).  In the current task context, 

this would be equivalent to assuming that although the soft 

constraints that influence a participant’s behavior might 

change across trial sequences, they remain fixed over a ball 

sequence. However, there is no reason to assume that this is 

the case for the current task, rather it seems more likely that 

the various soft constraints that influence participant 

behavior change both during and across sequences. For 

instance, an individual’s motivation or goal intention may 

have been continuously modulated during the task. Thus, at 

each interval change (or individual ball), the resulting 

distance moved may reflect a continuous (or discrete) 

change in both a and b. 

With the latter point in mind, a range of behavioral 

trajectories were simulated along the cusp catastrophe 

manifold by scaling a in interval steps consistent with the 

time interval steps employed in the experimental study (i.e., 

from 2.5 to -2.5 in 13 steps), as well as scaling b recursively 

by adding a number from a unimodal random distribution, 

with a mean of -.6 (when increasing interval, +.6 when 

decreasing) and a standard deviation of 1.65. The mean of 

±.6 was employed as the experimental data revealed that 

participants had a preference for higher movement (see 

results section for details). Two sets of 70 trajectories were 

simulated, with the initial condition x0 set at +2 for 

simulation set one and a normal distribution with 50% 

chance of being above 0 for simulation set two (again 

inspired by participant behavior). The simulated data that 

resulted was rescaled to the distances of the real (human) 

experimental data (~.75 meters to ~8.75 meters). 
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Figure 3: Cusp Catastrophe Model manifold. Blue points 

represent an exemplar ptDgradual behavioral trajectory. Red 

points represent two exemplar ptDnonlinear behavioral 

trajectories. The black and green points represent exemplar 

stDlarge and stDsmall behavioral trajectories, respectively. 

Results 

As can be seen from an inspection of Figures 2 and 4, and 

Table 1, participants produced all four of the behavioral 

dynamics expected. The variability within and across 

participants and ball sequences is most easily discerned 

from an inspection of Figure 4, in which the behavioral 

dynamics classification is plotted as a function of mean 

distance moved (Dm) and maximum change in distance 

moved across a change in time-interval (ΔD). 

 

Table 1: Distribution of trajectories per type of data. 

 

Trajectory Simulated Actual 

stDsmall   8.57%   9.42% 

stDlarge 33.57% 35.51% 

ptDgradual 22.14% 23.91% 

ptDnonlinear 35.71% 31.16% 

 

The simulated trajectories also produced a comparable set of 

behavioral trajectories and classifications. Again, this can be 

seen from an inspection of Figures 2 and 4 and Table 1. The 

classification system was verified using a K-means Nearest 

Neighbor (KNN) classifier (in Matlab, with ten number of 

neighbors, Euclidian distance and squared inverse distance 

weights) finding 99.28% correspondence between initial 

classification and KNN classification of real data. 

 A curve estimation analysis was conducted on the total 

frequencies of each distance across all data-points, revealing 

a linear increase in frequency as distance increased (β = .85, 

t(34) = 9.43, p < .01, where x = distance moved). A two-

tailed, bivariate correlation analysis was run to investigate 

the relationship between distance moved and success (hit) 

versus failure (miss), revealing a positive association (r = 

.64, p < .01) in that, as distance moved increased so did the 

probability of success. 

 

 
 

Figure 4: Participant (top) and simulated data (bottom) 

behavioral classification as a function of mean distance 

moved (Dm) and maximum change in distance (ΔD). 

Discussion 

The current study was designed to explore the effects of 

hard and soft constraints on the manner in which a task goal 

was actualized. As expected, a variable range of behavioral 

dynamics was observed, reflecting the under-constrained 

nature of the task goal. Furthermore, simulations using a 

two-parameter Cusp Catastrophe manifold illustrated how 

the wide range of participant behaviors observed naturally 

emerged due to an under- or softly-constrained task context. 

That is, by the continuous modulation of soft constraints 

during ongoing task performance. 

The significance of the current findings with regard to 

understanding human, affordance-based behavior is twofold. 

First, the current results highlight how both steady state 

linear and nonlinear behavioral patterns, as well as 

metastable and transient behavioral patterns, can all result 

from the same task dynamic, further emphasizing how 

complex and context sensitive determinism underlies the 

emergent (re)organization of ongoing human behavior. 

Second, the current results illustrate the need for 

appropriately identifying what and how soft constraints 

modulate the actualization of nested affordances or multi-

stable behavioral modes. While there was no attempt to 

specifically identify what soft constraints guided task 

performance in the current study, the experimental and 

modeling methodology developed here could be employed 
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to identify these constraints in future research. Different 

hard constraints could be imposed or manipulated, or the 

saliency of soft constraints within the task context could be 

explicitly defined. For example, one could introduce the 

hard (goal) constraint that a participant would fail 

completely (and need to redo the task) if there is ever more 

than one ball in the pickup area. This would likely see the 

elimination of stDlarge behavior. Furthermore, if the salience 

of a soft constraint were also increased, say by adding 

motivation in terms of a points or monetary reward system 

that empathized getting balls in the bin, then one would also 

predict the (near) elimination of stDsmall, with participants 

predominately producing ptDgradual or ptDnonlinear behavior. 

It is also possible that task success or failure on each ball 

throw could have modulated the collective motivational 

state of participants. The general relationship between 

longer distance and higher success rate speaks to this point, 

although it does not apply as motivation to all participants 

equally. (If this were applicable on an individual basis, there 

would likely be no stDsmall trajectories.) However, a 

confounding variable here is the general preference across 

the entire dataset for longer distances. The interaction of this 

preference with the individually different effect of time-

interval on distance moved, needs to be examined further in 

future research. 
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