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Abstract 
Although using diagrams is generally considered one of the 
most effective strategies for solving math word problems, 
research and educational practice reports indicate that 
students lack spontaneity in their use of diagrams.  In an 
attempt to address this problem, the present study investigated 
the hypothesis that creating situations whereby students have 
to teach other students how to solve math word problems with 
the use of diagrams would promote those students’ 
subsequent spontaneous use of diagrams. Experimental 
classes were conducted with 57 8th-grade students for five 
days. Participants in the experimental condition were all given 
opportunities to explain to other students in their group their 
way of solving the math word problems given. In contrast, in 
the control condition, only some of the students were given 
opportunities to make presentations in front of the class about 
their way of solving the problems. In both conditions, the 
teacher encouraged diagram use during the instructions 
provided. The main finding was that, in the post-instruction 
assessment, those in the experimental condition evidenced 
greater spontaneous use of diagrams in attempting to solve the 
math word problems given. This finding suggests that, as a 
consequence of the peer teaching experience – which 
provided opportunities for the use of diagrams as 
communication tools – participants internalized diagrams as 
tools for problem solving. The protocol of peer interaction 
was also analyzed to better understand the mechanisms 
involved in this effect. 

Keywords: Diagram Use, Math Word Problem Solving, Peer 
Instruction 

Introduction 
Diagrams are generally considered as one of the most 
effective tools in problem solving. For example, Larkin and 
Simon (1987) showed that diagrammatic representations are 
superior to sentential representations because they help 
reduce mental computational loads associated with 
searching and processing. Other studies have also 
empirically demonstrated that diagrams effectively promote 
the performance of many types of tasks (e.g., Ainsworth & 
Th Loizou, 2003; Cheng, 2002; Koedinger & Terao, 2002; 
Larkin & Simon, 1987; Mayer, 2003; Polya, 1945; 
Schoenfeld, 1985; Stern, Aprea, & Ebner, 2003). 
     As a sub-category of diagrams, those that are self-
constructed are especially effective. Although some studies 
have suggested that self-constructed diagrams do not always 
promote success in problem solving (e.g., Van Essen & 
Hamaker, 1990), the findings of recent studies mostly 
indicate that self-constructed diagrams provide powerful 

reasoning strategies when some prerequisite conditions are 
met (e.g., Stern, et al., 2003; see also the review by Cox, 
1999).  
     It appears, however, that school students do not 
appreciate the efficiency that diagram use brings to problem 
solving as much as teachers and researcher do. A number of 
problems about students’ use of diagrams have been 
reported, which include lack of spontaneity in their use (e.g., 
Ichikawa, 1993, 2000; Uesaka, Manalo, & Ichikawa, in 
press), inappropriate construction (e.g., Cox, 1996; Uesaka 
& Manalo, 2006), and failure to draw correct inferences 
even when appropriate diagrams have been used (e.g., Cox, 
1996). 
     These problems concerning students’ use of diagrams 
have not been sufficiently examined in previous studies. The 
present study focused on the lack of spontaneity with which 
students use diagrams in math word problem solving: a 
teaching method for promoting spontaneity was developed 
and evaluated. 

1.1 Students’ Lack of Spontaneity in Diagram Use 
Research reports relating to educational practices suggest 
that students’ failure to spontaneously use diagrams occur 
despite plenty of exposure to appropriate use of diagrams. 
Ichikawa (1993), for example, reported in a tutoring case 
study an 8th-grade girl who did not spontaneously use 
diagrams in a test situation and failed to solve the problem 
given – despite previously being taught how to solve similar 
problems with the use of diagrams. Ichikawa (2000) 
described the extent to which this problem is found among 
students. Dufour-Janiver, Bednarz, & Belanger (1987) also 
noted the lack of spontaneity in diagram use among students 
and observed that this problem occurs even though math 
teachers use a lot of diagrams in class. Uesaka, Manalo, & 
Ichikawa’s (in press) empirical study confirmed this 
tendency particularly among Japanese students. 
     If students do not (or cannot) use diagrams in situations 
where they would be deemed appropriate, they (the 
students) would clearly be disadvantaged. Although in some 
educational contexts suitable diagrams are provided or 
suggested, in the majority of cases – including ‘real world’ 
situations – students are required to construct and use 
diagrams by themselves according to necessity. In light of 
the previously identified problems, it would seem that 
interventions additional to traditional classroom instructions 
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are necessary to effectively promote student use of diagrams 
in problem solving. 
     However, most of the research studies that have been 
done about diagrams have focused on their effects and 
functions (e.g., Ainsworth & Th Loizou, 2003; Cheng, 2002, 
2004; Koedinger & Terao, 2002; Larkin & Simon, 1987; 
Mayer, 2003) and few have empirically examined possible 
teaching methods that would promote spontaneity of their 
use when problem solving. Uesaka (2003) is one exception 
in that her report proposed an actual teaching method for 
enhancing spontaneous use of diagrams. She found evidence 
that diagram use can be promoted via a combination of two 
interventions – verbal encouragement from the teacher (to 
enhance students’ perceptions about the efficiency that 
diagram use brings), and training in drawing (to improve 
their diagram construction skills). 
     Although Uesaka (2003) succeeded in identifying 
instructional components that promote the spontaneous use 
of diagrams, the method she proposed requires a fair amount 
of environmental control that is difficult to achieve outside 
of experimental situations. Thus a necessary next step is to 
develop a teaching method that can more naturally be 
employed in real classroom teaching situations. This 
constituted the main aim of the present study. 

1.2 Diagrams as Communication Tools 
Diagrams are effective tools not only for problem solving 
but also for communication (e.g., Lyon, 1995; Tversky, 
Lozano,  Heiser, Lee, & Daniel, 2005; see also review by 
Sacchett, 2002). For example, Lyon (1995) reported that 
diagrams facilitated communication with adults who, 
because of aphasia, found communication through verbal 
means difficult. Moreover, as pointed out by Dufour-Janiver 
et al. (1978), math teachers use a lot of diagrams for 
explaining how to solve problems in class, and this practice 
contributes to the promotion of students’ understanding of 
the processes involved. Diagrams thus work equally well as 
tools of explanation as they do as tools for problem solving. 
     Although previous studies have examined these two 
aspects of diagram use separately, data gathered by Uesaka 
et al. (in press) suggest the possibility that viewing diagrams 
as tools of communication promotes spontaneous use of 
diagrams when problem solving. Uesaka et al. found greater 
use of diagrams among students in New Zealand compared 
to Japan, and this difference appeared related to differences 
in the students’ experiences about the use of diagrams as 
communication tools. They pointed out that the New 
Zealand school curriculum included the objective of 
providing “opportunities for students to develop the ability 
to think abstractly and to use symbols, notation, and graphs 
and diagrams to represent and communicate mathematical 
relationships, concepts, and generalizations” (New Zealand 
Ministry of Education, 1992, p. 10). Such an objective is 
absent from the Japanese school curriculum which focuses 
primarily on the math content that students should acquire. 
     If the learning environment is such that students have to 
use visual representations such as diagrams when providing 

explanations (even in cases, for example, where they can 
solve the problems given without the use of diagrams), other 
benefits associated with the use of diagrams are likely to 
follow. Firstly, as Ainsworth and Th Loizou (2003) pointed 
out, explaining with the use of diagrams improves 
understanding of the nature of the problem. It contributes to 
enhancing students’ appreciation of the efficacy that 
diagram use brings. Secondly, more experiences of 
constructing diagrams from the math word problems given 
would be provided and, as a result, diagram drawing skills 
would be promoted. There is clear congruence therefore 
between Uesaka’s (2003) finding that improving 
perceptions and skills associated with diagram use promotes 
actual diagram use, and the notion that if diagrams are seen 
and employed as communication tools their use would 
likewise increase. 
     A similar line of argument exists in the area of reading 
strategy research: this suggests that using strategies during 
collaborative learning situations promotes the spontaneous 
use of those strategies when students subsequently work on 
their own. For example, Palincsar and Brown’s (1984) study 
on reciprocal teaching showed increases in students’ 
spontaneous use of reading strategies when their teacher 
encouraged them to use those same strategies when listening 
and attempting to understand explanations provided by other 
students. 

However, the applicability to natural settings of the two 
instructional components that Uesaka (2003) identified has 
not previously been examined; nor has the notion that 
“using diagrams as communication tools leads to greater 
appreciation of their benefits and thus increases in their 
actual use” been properly investigated. The present study 
therefore sought answers to the questions arising from these 
through the use of experimental classes in which the “jigsaw 
method” for learning (Aronson, 1978) was employed and all 
students had to provide explanations to other students with 
the use of diagrams. The main hypothesis of the present 
study was that students who receive opportunities to explain 
the use of diagrams to their peers would evidence increases 
in their own spontaneous use of diagrams when solving 
math word problems. 

Method 

2.1 Participants 
Fifty-seven 8th-grade students (female = 25, male = 32), 
who were recruited from public junior high schools in two 
wards of Tokyo and a junior high school affiliated with the 
University of Tokyo, participated voluntarily in this study. 
     Participants were assigned to one of the two conditions 
(experimental and control) by using a randomized block 
design, in which they were grouped according to their 
achievements at school. Information about the participants’ 
achievements was collected from parents through the use of 
a questionnaire that was mailed out to them. 
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2.2 Materials 
Math Word Problems Used in Instruction Sessions. The 
study was carried out over the course of six days, three of 
which – Days 2 to 4 – were devoted to instruction. In each 
of the instruction days, two math word problems, with 
similar story contexts and requiring similar types of 
diagrams for their correct solution, were used. ‘Arrangement 
problems’, for which constructing both a table and drawings 
to represent the situations described in the problems was 
deemed helpful, were used on Day 2. ‘Mobile phone 
problems’, for which the construction of graphs was deemed 
effective towards arriving at their correct solutions, were 
used on Day 3. ‘Area problems’, for which the use of tables 
was effective, were used on Day 4. As illustrative examples, 
the two problems that constituted the ‘mobile phone 
problems’ are shown in Appendix 1. Examples of diagrams 
constructed by participants are shown in Fig. 1. 
 

  

 
 (A)  Arrangement Problem       (B) Mobile Phone Problem 
  
Fig. 1. Typical Diagrams Participants Produced during the 
Instruction Sessions. (A) is for one of the arrangement 
problems, and (B) for one of the mobile phone problems. 
 
Math Word Problem Solving Assessment. A math word 
problem solving assessment was administered at the end of 
the experiment to examine the quantity and quality of the 
diagrams spontaneously produced by the participants. In this 
assessment, four more math word problems were used. 
These problems were comparatively more difficult than the 
ones used during the instruction sessions, and their level of 
difficulty was intended to convey to the students the need to 
use visual representations (e.g., diagrams) when attempting 
to solve them. Solving two of the problems (‘tile problem’ 
and ‘pentagon problem’) would have been facilitated by the 
use of tables, and the other two problems (‘water problem’ 
and ‘travel problem’) would have been facilitated by the use 
of graphs. Examples of the problems used are shown in 
Appendix 2. The participants were given a total of 45 
minutes to work on the problems.  Four university 
colleagues, including a qualified math teacher, 
independently considered the most effective kinds of 
diagrams to use in attempting to solve these problems, and 
all concurred on the kinds of diagrams noted above.  
Basic Skills Assessment. The basic skills assessment was 
administered on the first day of the study to check the 
equivalence of the participants in the experimental and 
control conditions as far as their skills in constructing tables 
and graphs were concerned. The assessment consisted of 
two questions which required the participants to construct a 

table and then a graph according to information provided in 
the form of sentences. Two versions of booklet were made, 
each version being given to half of the participants in each 
condition. The participants were allowed 5 minutes to work 
on each of the two questions in the booklet. 

2.3 Procedure  
Data collection and instruction sessions were conducted 
over 6 days at the University of Tokyo. Pre-instruction 
assessment was carried out on the first day, and post-
instruction assessment on the final two days. As noted 
earlier, the instruction sessions were provided on the second 
to fourth days. These instruction sessions lasted 
approximately 50 minutes each day, and participants 
assigned to the same condition took the classes together.  

During the instruction sessions, the teacher presented two 
math word problems each day and employed a consistent 
teaching procedure for each group. Firstly, the teacher 
encouraged the students to carefully read and think about 
the problems given so that they would understand the nature 
of these problems. During this time, the teacher asked the 
students in the small group (of usually 4) to split into two 
smaller groups and assigned one of the two problems to 
each. Secondly, the teacher asked the students to solve the 
problem they had been assigned by themselves. However, 
prior to letting the students attempt solving the problem, the 
teacher explicitly encouraged them to use diagrams – 
pointing out their usefulness for solving problems. 
Participants in the experimental condition were also told 
that they would be asked to explain to another student later 
and were encouraged to use diagrams when explaining. 
During this period, the teacher also provided as much help 
as the students needed. For example, the teacher encouraged 
students who wanted to receive hints to gather in front of 
the board where the teacher then provided hints, as well as 
demonstrated steps leading to the correct solution of the 
problem and the use of appropriate diagrams. 

Thirdly, in the control condition, some of the participants 
were asked to present their ideas about how to solve the 
problem they were assigned in front of the class. This kind 
of presentation of one’s ideas about how a problem might be 
solved is quite common in typical Japanese classrooms. The 
teacher contributed as necessary to each presentation to 
ensure that it led to an appropriate approach to solving the 
problem. In contrast, in the experimental condition, the 
students were asked to explain to another student in the 
group how to solve the problem they had been assigned. 
After this, the teacher asked a student from the class to 
present his or her idea for solving the problem to the class. 
Like in the control condition, the teacher contributed to the 
presentation as was necessary in each case. 

On the final two days, the students’ spontaneous use of 
diagrams in problem solving was evaluated by asking them 
to individually solve some math word problems. All 
representations, except words and equations, generated by 
the participants were judged as ‘spontaneous diagram use’. 
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Results 
Only participants who attended all sessions were included in 
the analyses. The final number of participants included in 
the analyses was 42 (for the experimental condition, n =21; 
for the control condition, n =21). 

3.1 Math Word Problem Solving Assessment 
Findings 
The students’ spontaneous use of diagrams in the math word 
problem solving assessment was analyzed. Before 
conducting the analyses, the participants’ responses to the 
problems were scored. A diagram was defined as any 
representation of the problem other than words (on their 
own), sentences, or numerical formulas. Tables were also 
counted as diagrams for the purposes of this study and 
defined as a depiction of at least a pair of values arrayed to 
represent two related variables. If a participant constructed 
at least one diagram when solving a problem, the 
participant’s response to that problem was coded as “used 
diagrams (1)”. Otherwise, the response was coded as “no 
diagram (0)”. 
     A t-test was used to compare the average numbers of 
problems in which participants “used diagrams” in the two 
conditions. As depicted in Fig. 2, the result indicates 
significantly more spontaneous use of diagrams in the 
experimental condition compared to the control condition 
(t(40) = 2.86, p < .01). This finding supports the main 
hypothesis of this study. 
     An analysis was also undertaken to compare the quality 
of diagrams produced by participants in the two conditions. 
A diagram was categorized as “appropriate” if it matched 
the type of diagram (i.e., table, or graph) the four colleagues 
(noted earlier) considered most appropriate for the problem 
given. Otherwise the response was categorized as being 
“inappropriate”.  
     Again a t-test was used to compare the average number 
of problems in which the participants constructed 
“appropriate diagrams” in the two conditions. The result, 
also depicted in Fig. 2, indicates that the participants in the 
experimental condition produced significantly more 
appropriate diagrams compared to those in the control 
condition (t(40) = 4.36, p < .01). Together, these findings 
suggest that explaining how to solve math word problems to 
other students (with the use of diagrams), promotes not only 
the spontaneous use of diagrams in subsequent attempts at 
solving problems, but also the construction of better – more 
appropriate kinds of – diagrams. 

3.2 Basic Skills Assessment Findings 
To check the equivalence of the experimental and control 
conditions at the beginning of the experiment, participants’ 
responses to the basic skills assessment that was 
administered on the first day (prior to any instructions being 
provided) were analyzed and compared. For each question, 
a perfectly correct answer was given full credit (2 points), 
an answer which was mostly correct but contained a small 
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Fig 2. The Mean Number of Problems in which Diagrams 
Were Spontaneously Used (left), and in which Appropriate 
Diagrams Were Constructed (right) in the Math Word 
Problem Solving Assessment.  
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Fig 3. Examples of Diagrams Produced During the Post-
Instruction Sessions.  
 
mistake was given partial credit (1 point), and the rest were 
given no credit (0 point). The participants’ total scores for 
the two questions were compared using a t-test. No 
significant differences were found between the two 
conditions (t(40) = .62, n.s). This finding suggests that 
participants in the two conditions were equivalent in their 
diagram construction skills at the beginning of the study. 

3.3 Example of Protocol During Classes 
The findings of this study suggest that using diagrams as 
tools for explanation subsequently promoted the 
spontaneous use of diagrams as tools for problem solving. 
However, the kind of mechanism involved in this process 
was not clear. Therefore, the present study also analyzed the 
typical protocol of the experimental condition and 
considered the instructional features that the participants in 
these groups received via the manipulations made. 
     An example of protocols during the explanation time in 
the instruction sessions provided is shown in Fig. 4. In this 
protocol, S1 and S3 tried to explain how to solve “mobile 
phone problem 2” with diagrams to S2 who was earlier 
assigned to do the other problem (“mobile phone problem 
1”; see the Appendix 1). Firstly, S1 explained her idea about 
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how to solve the problem using diagrams she sketched, and 
S2 questioned her. S3 afterwards participated in this 
communications in order to add information to address the 
question that S2 asked. They communicated with each other 
with the use of diagrams. Actually S3 originally did not use 
diagrams for solving the problem (when he was working on 
his own), but he constructed diagrams to explain how to 
solve the problem to S2.  
     This case – and many others like it observed during the 
study – suggests the possibility that encouraging students to 
explain how to solve math word problems to other students 
promotes the likelihood that participants would actually 
construct diagrams. It is unlikely that, in the example 
protocol described, S3 would have constructed diagrams if 
they had not been asked to explain to another student how to 
solve the problem (which he could solve correctly without 
the use of diagrams). He constructed the diagram because he 
experienced difficulty in explaining to S2 how to solve the 
problem with the use of only words. The experimental 
manipulation used here of asking students to explain to 
other students increases the likelihood of students ‘needing’ 
to use diagrams – and therefore promotes diagram 
construction and the enhancement of skills associated with it 
(e.g., drawing, thinking, communicating). 

     It is also possible that the opportunities to explain to 
others helped the participants to understand and appreciate 
better the efficiencies that diagram use brings. Responses 
written on the review sheets (which, among other things, 
asked participants what they learnt in the classes they 
attended) suggest this. S2, for example, noted that “when a 
graph is drawn, the problem becomes dramatically easier”. 
S1 also commented that “graphs and tables are convenient 
tools for solving problems”. 

 
S1: Up to the 100th minute, it takes 1500 yen. After that, 

the cost would gradually increase as shown in this 
diagram (she pointed to a diagram she had drawn). 

S2: I know we can explain only with diagrams. 
S1: Yes.  
S1: Until this point, plan B is cheaper. But after this point, 

the cost gradually increases and plan C becomes a little 
bit cheaper after this crossing point … Moreover, after 
this next crossing point, plan B becomes cheaper 
again. 

S2: It looks like plan C is cheaper only for such a short 
period …? 

S1: Yes, only this period. 
S2:Very short … 
S1: Don’t worry about that. 
S3: Well, actually, this diagram shows this period is very 

short, but actually the period is much longer (he 
pointed to his diagram which was more accurately 
drawn compared to S1’s, on a sheet of grid paper. His 
graph was shown as an example in Fig. 1). 

 
Fig 4. Example of Protocols During the Instruction Session 
in the Experimental Condition. 

Discussion 
The main finding of the present study was that students in 
the experimental condition, who were given opportunities to 
teach their peers how to solve the math word problems they 
were assigned, evidenced greater spontaneous use of 
diagrams in subsequent assessment compared to those in the 
control condition. There were also higher proportions of the 
diagrams produced by those in the experimental condition 
that matched the kinds of diagrams deemed most 
appropriate for use with the problems given. These findings 
suggest that two functions of diagrams – as tools for 
problem solving and as tools for communication – which 
have been viewed separately in the past, may in fact be 
related. 
     The possibility of the differences found between the 
experimental and control groups coming from some other 
variable other than the instruction sessions provided is 
clearly minimal in light of the students’ performance on the 
basic skills assessment. This assessment, which was 
administered at pre-instruction, clearly showed that there 
were no significant differences between the experimental 
and control groups in their abilities to construct diagrams – 
more specifically, graphs and tables – at the beginning of 
the study, prior to any instructions being provided. 
     The examination of the protocols during the student-to-
student teaching/explanation sessions suggested that 
teaching other students provided more practice in 
constructing and using diagrams, as well as possibly more 
opportunities to consider and appreciate the efficiencies and 
other benefits that diagram use brings. As noted earlier, the 
value of practice and appreciation of the benefits of diagram 
use were similarly identified in Uesaka (2003). As the 
examination of the protocols involved in the peer 
explanation/teaching sessions undertaken in this study was 
only at an exploratory level, a more thorough and systematic 
investigation into these processes is needed in future studies. 
Such an investigation would need to address the actual 
nature of the relationship between using a tool like diagrams 
for communication purposes and incorporating the tool into 
one’s personal repertoire of problem solving skills. 
     One important contribution of the present study to math 
education is that it suggests what appears to be a viable and 
effective method for promoting students’ use of diagrams in 
math word problem solving – a method that can easily be 
adopted in natural, real-life classroom settings. The findings 
suggest that the commonly-used method (in some countries 
like Japan) of simply asking students to make short 
presentations about their ideas in front of the class is not as 
effective in promoting the desired behaviors – in this case 
using diagrams. However, giving students opportunities to 
explain to other students appears to promote the desired 
behavior. This finding is congruent with earlier findings 
about the benefits of peer tutoring and collaborative learning, 
and it highlights the various components of learning that are 
facilitated (e.g., reflection, comparison, insight, 
understanding, practice) when such procedures are used – 
not only for the tutee, but most importantly also for the tutor. 
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Appendix 1: Examples of Math Problems Used 
in the Instruction Sessions 

Mobile Phone Problem (1) 
You are a clerk in a mobile phone shop which sells two types of 
mobile phone plans. When a customer asks your advice, which 
plan would you recommend as being cheaper depending on calling 
time?  

Plan A: The basic fee is 4500 yen, and no extra cost is charged. 
Plan B: There is no basic fee, and no free calling time. The cost 

of calls is 30 yen per minute. 
Mobile Phone Problem (2) 

In another shops, two different types of mobile phone plans are 
sold. When a customer asks your advice, which plan would you 
recommend as being cheaper depending on calling time? 

Plan B: There is no basic fee, and no free calling time. The cost 
of calls is 30 yen per minute.  

Plan C: The basic fee is 1500 yen including 100 minutes of free 
calling time, with 80 yen per minute charged thereafter. 

Appendix 2: Examples of Math Problems 
Administered at Post-Instruction Assessment 

Water Problem  
The head of a company asked Taro to find out which of three 
countries – A, B, or C – would be best for establishing a factory 
which uses water. The different charging methods of each country 
are described below. Please imagine you are Taro, and come up 
with an explanation for the head of the company. 

Country A: 1000 yen is charged as a basic fee, but you can use 
water without additional charge up to 100 litres. After 
100 litres, 40 yen/litre is charged. 

Country B: There is no basic fee. Water cost is 20 yen/litre. 
Country C: In addition to 2400 yen as a basic fee, there is a 

charge of 4 yen/litre of water used. 
Pentagon Problem 

There are many sheets of paper in the shape of a regular pentagon, 
with each side being 1 cm. These sheets are arranged one by one 
with the rule that a new sheet shares only one side with already 
arranged sheets. Find the circumference when arranging 1, 5, 10 
and 20 sheets.  
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