
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
HIDRA: Hiding mobility, multiplexing, and multi-homing from internet applications

Permalink
https://escholarship.org/uc/item/1xf9q540

Authors
Garcia-Luna-Aceves, J.J.
Sevilla, Spencer

Publication Date
2014-05-02
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xf9q540
https://escholarship.org
http://www.cdlib.org/


HIDRA: Hiding Mobility, Multiplexing, and
Multi-Homing from Internet Applications

Spencer Sevilla∗, J.J. Garcia-Luna-Aceves†∗

{spencer, jj}@soe.ucsc.edu
∗University of California, Santa Cruz, CA 95064

†PARC, Palo Alto, CA 94304

Abstract—Today’s socket API requires an application to bind a
socket to a transport-layer identifier (e.g., TCP80) and network-
layer identifier (e.g., an IP address). These early bindings create
significant bottlenecks, reliability issues, and force applications
to manage complex lower-layer issues. Many approaches have
been proposed to address these problems; however, all of them
introduce additional identifiers, modify applications, or require
additional protocols in the protocol stack. We introduce HIDRA
(Hidden Identifiers for Demultiplexing and Resolution Architec-
ture), an approach based on hidden identifiers used internally at
end systems and intermediate systems. HIDRA enables sockets to
evolve with the Internet by hiding all mobility, multihoming, and
multiplexing issues from applications; does not induce significant
overhead in the protocol stack; preserves backwards compatibility
with today’s Internet and applications; and does not require or
preclude any additional identifiers or protocols to be used in the
protocol stack.

I. INTRODUCTION

Before any application can send or receive messages in
today’s Internet, it must obtain two identifiers: the destination
IP address, which is typically retrieved by resolving a hostname
through the DNS, and a tuple consisting of the transport
protocol and port, which is typically known a-priori. After
binding a socket to these two identifiers, the application may
use it to send and receive messages. All other network concerns,
such as the interface chosen, or the route between the two
hosts, are selected, established and maintained in the system
and masked from the application.

The use of identifiers that are open (i.e., shared among
hosts or routers acting as end points or relays of end-to-end
transactions or connections), and the early-binding of a socket
to such open identifiers, dates back more than 30 years to
the inception of the Internet [1]. However, as the Internet has
become ubiquitous and wireless networks and devices have
proliferated, new application requirements make the traditional
approach to binding untenable. Specifically, supporting multi-
homing and mobility of processes, seamlessly multiplexing
among multiple network interfaces at each host, and using
diverse protocols in wired or wireless networks cannot be
accomplished today.

By the very definition of binding, an open identifier specified
by the application running in a host cannot subsequently be

This work was sponsored in part by the Baskin Chair of Computer Engi-
neering at UC Santa Cruz

changed by the network. Thus, requiring the application to
denote a resource by means of a network-layer open identifier
that is also used by other hosts and routers fundamentally
inhibits network-layer mobility and multihoming, and implicitly
binds the socket to the network-layer protocol specified (e.g.,
IPv4). Moreover, it also forces applications to be rewritten to
support any new network-layer protocol.

The same arguments apply to the use of transport-layer
open identifiers, and to the interface between the transport
and network layers. Even ignoring issues pertaining to middle
boxes, requiring applications to be rewritten to support a new
transport-layer protocol is an insurmountable hurdle for the
adoption of a new protocol, especially when the deployment
of that protocol is not synchronized or coordinated among
hosts. Furthermore, the congestion-control algorithm in TCP
can adapt to a change in routes or interfaces, yet it cannot
accommodate IP address changes, because TCP identifies con-
nections using four open identifiers stated as the tuple {saddr,
sport, daddr, dport}.

What is remarkable about the above set of problems is that
they do not arise from any intrinsic limitation of the socket
API or the protocol stack! There is no fundamental reason
why a network application should be rewritten to accommodate
a new network-layer protocol, or why TCP cannot migrate
across IP addresses: these limitations are simply consequences
of the design decision to always use open identifiers to denote
resources at hosts and intermediate systems. Surprisingly, all
prior proposals addressing the naming and addressing problems
with today’s Internet, which are summarized in Section II, rely
on open identifiers as an integral part of the new naming and
addressing schemes.

We argue that the current protocol stack is sufficient to handle
mobility, multiplexing and multi-homing issues, and that the
solution to existing naming and addressing problems in the
Internet lies in the interaction between the application, trans-
port, and network layers within an end system or intermediate
system. Section III elaborates on the differences between open
identifiers that are assigned uniquely to resources and shared
among end systems and intermediate systems, and hidden
identifiers that are known only within a given end system or
intermediate system and mapped to open identifiers as needed.

Section IV introduces HIDRA (Hidden Identifiers for De-
multiplexing and Resolution Architecture), which is the first



2

solution that takes advantage of hidden identifiers used in
hosts. HIDRA uses two protocol-agnostic hidden identifiers: the
Transport Identifier (TID) and the Host Identifier (HID). When
an application calls a name-resolution or service-discovery
function, it receives a {TID, HID} tuple in lieu of the traditional
sockaddr structure. The application then uses this tuple with
the socket API to send and receive messages. In turn, the
operating system demultiplexes the hidden values in the {TID,
HID} tuple to process the message. This provides layers of
indirection that enable applications to seamlessly migrate across
network addresses and entire network protocols.

Section V shows how HIDRA can be integrated with other
approaches to provide an effective solution to several existing
Internet problems with naming and addressing. Section VI
discusses the advantages of HIDRA using an example imple-
mentation as a Linux kernel module. The results of experiments
based on this prototype show that HIDRA supports mobility
and multihoming without requiring major changes to existing
applications or introducing any significant overhead in the
protocol stack.

II. RELATED WORK

Work on the binding of names, addresses, and routes to one
another goes back several decades, and due to space limitations
we mention only a small fraction of that work. Watson [2]
provides an excellent summary of early work on the subject.
Shoch [3] provided one of the best characterization of these
concepts: “the name of a resource indicates what we seek,
an address indicates where it is, and a route tells how to get
there.” These primitives were also discussed by Saltzer [4],
who pointed out that an address is really just a name of a
lower-level entity, and the binding process connects a name
to a particular address. Interestingly, this characterization of
bindings among names, addresses and routes does not advocate
how they should be carried out, and assumes that the same
identifiers are used by both the end systems and the relays of
end-to-end communication.

Many proposals [5], [6], [7], [8], [9], [10] advocate the
introduction of new layers of open identifiers into the stack
as a way of eliminating some of the naming and addressing
problems in the current Internet architecture. [6] proposes that
applications use a service identifier (SID) provided by the
end-user, transport protocols use an endpoint identifier (EID),
and network addresses remain unchanged. A similar proposal,
Serval [10], identifies the same problems and proposes the
introduction of a Service Access Layer (SAL) between the
network and transport layers. The SAL redoes the socket API
to bind directly to service identifiers (SID) instead of the
traditional tuple based on an IP address and a port number.

[9], [11] argue for a network API based on hostnames,
as opposed to network addresses, and several object-oriented
languages (including Java, Objective-C, and C#) already pro-
vide such an API call. These implementations ease software
development, but do not keep state or interact with the operating
system itself, thus they are unable to support features such as
in-flight handoffs or address multihoming.

Several approaches [7], [12], [13], [14] keep network-layer
mobility within the network layer by providing “shims” that
map one network identifier (typically presented to higher lay-
ers) to another used for actual network routing. Unfortunately,
all of these proposals fragment the address space, and many
introduce triangle-routing.

Raiciu et al [15] provide a multi-path TCP design that
focuses on creating a feasible deployment by addressing
such issues as backwards-compatibility and middle-box traver-
sal. Their design centers around applications communicating
through a “meta-socket,” which in turn opens several simulta-
neous TCP sessions and stripes outgoing data across concurrent
connections.

It is apparent from the summary above that all the proposals
addressing the name-address binding limitations of the Internet
assume that applications and protocols must bind themselves
to open identifiers (e.g., IP addresses or SIDs) that are known
outside the end systems or intermediate systems in which the
applications and protocols run. Furthermore, assuming the use
of open identifiers at hosts and routers, it has been pointed out
[6] that the only way to break the early binding between two
layers is to introduce an additional layer of identifiers between
them. However, this approach still locks the applications, and
the socket API or newly proposed network APIs, to particular
formats for the open identifiers and the communication proto-
cols using them. This is a big problem for the Internet evolution:
just as the designers of the original Internet architecture could
not predict today’s problems associated with early bindings of
names to addresses, it is not possible to predict what problems
may result from the use of new open identifiers that must be
unambiguous on a network-wide basis. Additionally, requiring
applications to use new open identifiers in the API forces
application developers to modify applications as the Internet
evolves.

III. OPEN AND HIDDEN IDENTIFIERS

Open identifiers are necessary for information dissemination
to and from end systems (hosts) or intermediate systems
(routers, switches, and middle boxes). Destinations must be
denoted unambiguously among all the entities involved in any
end-to-end information exchange, so that relays can forward
the information to their intended destinations. For example, two
hosts on the same private network cannot share the IP address
192.168.100.1 or local DNS name name_1.local.

While open identifiers are usually thought of as having global
meaning, this need not be the case. Multiple types of open
identifiers may be needed in the network, because globally
unique identifiers may not make sense in certain networks (e.g.,
Plutarch [16]) and may be considered detrimental in others. For
example, a network of things inside a house might prefer to
use only local addressing for security, and resource-constrained
sensor networks may not be able to afford the overhead of a
universal identifying protocol - even the IPv4 header today is
considered overly bloated for sensors.

As we pointed out in Section II, starting with the original
proposal by Cerf and Kahn [1], all Internet architectures use



3

Fig. 1: HIDRA stack at end nodes

Fig. 2: Name resolution and HID generation

open identifiers exclusively. At first glance, this appears to be
a trivial choice, given that they are required to disseminate
information across end systems and intermediate systems.

However, the above choice overlooks the fact that the internal
management of resources at an end system or intermediate
system can be decoupled from the way in which multiple
systems collaborate to share information. More importantly,
requiring the use of open identifiers for internal purposes at end
systems effectively ties applications and higher-level protocols
to the specific protocols and identifiers used for information
exchange, which significantly inhibits the deployment of any
new networking approach based on different types of open
identifiers.

The alternative to using open identifiers all the time is to
allow applications to use hidden identifiers to denote resources
and destinations within the systems in which they run. Be-
cause open identifiers are needed for communication between
systems, the stack of a system in which hidden identifiers are
used must translate between them.

Mapping open addresses and ports known within a network
to open addresses and ports known outside the network is done
today with network address translation (NAT) boxes. However,
hidden identifiers have not been used in any previous Internet
architecture within a system. Fortunately, hidden identifiers
are not new to computing system design. Specifically, file
descriptors were originally designed as a part of UNIX to
provide a standard interface for applications that did not depend
on either the physical location of the file or the underlying
addressing scheme. Before the introduction of file descriptors,
applications had to be written for specific hardware profiles,
and this provided a significant roadblock to innovation, given
that minor changes in the hardware broke all the applications.
This problem is analogous to the state of network programming
today, where changes in network addresses disrupt connectivity
and changes in network protocols require applications to be
rewritten.

Today, file descriptors allow applications to remain ignorant
of lower-level concerns, and this has enabled tremendous inno-
vation in both filesystem and hardware design. Similarly, the

use of hidden identifiers in the network stack can provide an
architectural solution to the naming and addressing problems in
today’s Internet by allowing different components of the stack
to evolve and change independently of each other. In contrast,
an API based on open identifiers is not nearly as modular:
by design, an application using a open identifier must specify
both the identifier and its format. This implicitly binds the
application to whatever values were supplied, and ensures that
the application must deal with any change in either value, such
as switching addresses or protocols.

IV. HIDRA

HIDRA is based on two main principles. The first is that
systems should be allowed to denote Internet resources inter-
nally using hidden identifiers. This decouples the applications
running in such systems from the network and transport layers,
including the open identifiers needed to disseminate informa-
tion. The second is that systems should provide the mapping
from hidden to open identifiers in a way that preserves the
existing functionality of the network and transport layers.

By injecting this additional indirection between the network,
transport, and application layers, we leave the core TCP/IP
stack and intermediate systems unmodified while still achieving
strong support for mobility and multihoming. Equally impor-
tant, HIDRA provides support for incremental evolution and
deployment of new networking technologies in layers that were
previously considered to be converged-upon and unmodifiable.
Figure 1 illustrates the HIDRA network stack at an end system,
which uses two tables to manage two separate hidden identi-
fiers. Applications communicate with a socket using a {TID,
HID} tuple. The TID table bridges communication between
the socket and transport layer, such that the socket uses a TID
and the transport layer uses its open identifier. In turn, the HID
table bridges communication between the transport and network
layers the same way.

A. Populating The TID and HID Tables

Today, applications typically use the DNS to resolve a
domain name to a set of IP addresses. HIDRA follows this
exact same model, except that it extends the functionality of the
name resolver, as illustrated in Figure 2. When getaddrinfo
resolves a hostname (Steps 1-2), instead of returning the set
of IP addresses directly to the application, it stores the set
of IP addresses as an entry in the HID table and generates
a corresponding HID (Step 3). Lastly, the function returns this
HID to the application (Step 4).

Populating the TID table is slightly more challenging, be-
cause no such helper methods exist for transport protocols.
Thus, the current state-of-the-art can be considered a “magic
numbers” approach in that it simply relies on well-known ports
corresponding to certain services, such as TCP80 or UDP53.
Indeed, this approach has created a new set of problems, such
as NAT hole-punching and middlebox traversal.

The most immediate solution for TID table-population is
to create a TID that corresponds directly to a transport pro-
tocol and identifier, using a simple helper method such as



4

Fig. 3: Sending and receiving messages

Fig. 4: Registration and binding a socket

generate_tid(TCP80). However, other discovery proto-
cols, such as the mDNS-SD service registry, have been designed
to enable applications to reference a service provided on a
host by using a string name, such as _http or _printer.
For these protocols, the TID table provides a natural point to
aggregate and manage these identifiers.

B. Sending Messages

Once an application acquires a TID and HID, it can then
use them to send messages through the standard socket API
as shown in Steps 1-5 of Figure 3. When an application sends
messages by calling sendmsg, the application passes the TID
and HID (1) instead of the traditional {IP, port} tuple. The
system translates the TID (2), then passes the message to the
appropriate transport protocol. The transport protocol processes
the message and creates a datagram (3) addressed to the HID.
When the transport protocol is finished, the HID is translated
to a open network address (4), and the network layer processes
the packet normally (5).

C. Binding a Socket

For a server application to receive messages, it must bind
a socket to a local IP address, transport protocol, and port.
To support the common case where the application wishes to
bind across all local IP addresses, the socket API provides the
INADDR_ANY macro for IPv4, and INADDR6_ANY for IPv6.

In addition to binding the socket, an application must some-
how publish the identifiers that it has registered before it can
receive messages from a foreign host. This step is crucial,
because every outgoing connection must already know its
destination. However, despite its importance, this step is often
overlooked or executed in an ad-hoc manner, such as manually
configuring a DNS server or relying on the same a-priori
understanding of well-known ports that was first referenced in
Section IV-A.

As in Section IV-A, HIDRA provides a solution that abstracts
addresses and ports away from the application while simul-
taneously incorporating this publication process. Any service-
discovery protocol must provide a complementary mechanism
for service registration, and this function can populate the TID
table and generate a TID through either static or dynamic

means. In the interim, until such new solutions evolve, an
immediate solution exists through creating a simple helper
function, such as register_local_tid(TCP80).

In contrast to today’s Internet model, binding in HIDRA
does not require a local network address. Because one of
the goals of HIDRA is to mask network-layer concerns from
the application, the default binding behavior assumes that the
application intends to bind the socket across all local addresses
of all network protocols simultaneously. Section IV-F describes
how HIDRA handles the case where this behavior is unwanted.

D. Receiving Messages

Once an application binds a socket, it receives messages
through the inverse of the process described in Section IV-B,
illustrated in Steps 6-10 of Figure 3. After the network layer is
done processing the packet (6), the source network address is
multiplexed to a HID (7). If no entry exists in the HID table, as
can be the case for a server accepting incoming connections, a
new HID is generated. The transport layer then processes the
packet (8), multiplexes the port to a TID (9), and finally queues
the message for delivery to the appropriate socket (10).

E. Changes To Transport Protocols

For HIDRA to operate, existing transport protocols must be
adapted to use HIDs as opposed to open network addresses.
This is a simple shift for UDP, given that it maintains no state
or connection information. However, this requires important
changes to TCP, because HIDRA implicitly changes the {saddr,
sport, daddr, dport} tuple used by TCP to identify and lookup
connections.

When an application sends data using TCP, the socket is
already bound to a connection, and thus all that remains is to
multiplex the destination HID to an open network identifier,
which is a trivial operation. However, receiving data requires
additional work, since TCP must lookup the corresponding
connection to process the packet.

HIDRA changes the TCP tuple for incoming lookups in
two key ways: first, the foreign address (saddr for incoming
packets) is replaced by a HID by the time TCP receives the
packet. Second, the local address is completely removed from
the lookup, because HIDRA seeks to mask this concern from
the transport layer. Thus, the lookup for established connections
consists of a {hid, sport, dport} tuple, and the lookup for
listening connections is simply based on the destination port.

This shift is remarkable because it enables address multi-
homing and mobility by masking the network address from the
transport layer, thus keeping TCP unaware of network-layer
changes. Yet, HIDRA is the first approach to accomplish this
without introducing any new protocols or layers in the stack.

F. Supporting an Open-Identifier Stack

By design, HIDRA masks the transport and network layer
identifiers from the application. Though an application typically
has no need to inspect these identifiers, sometimes it is nec-
essary. A tool designed to test the connectivity of a particular



5

network protocol, for example, will not work successfully if
HIDRA masks and changes these identifiers.

HIDRA supports such a requirement in two ways: First, it
supports manually creating and editing TID and HID entries
through an exposed API. Second, HIDRA sockets are simply
created through a new socket family, AF_HIDRA, and thus can
easily coexist with traditional sockets based on open identifiers.

V. HIDRA AND OTHER NEW MECHANISMS

Remarkably, there already exist many approaches that have
been designed to address some of the problems we listed
in Section I. Though well-designed, a large number of these
approaches cannot be implemented simply because they have
no place in the current network stack. These approaches illus-
trate and prove the strength of HIDRA, because the TID and
HID tables provide a natural location to implement and deploy
several of them.

There are several proposals [17], [18], [19] to support
mobility through in-flight address handovers. These solutions
are different architecturally, each has different advantages and
disadvantages, and arguably more work will be forthcoming
on transport-layer approaches aimed at handling mobility. How-
ever, with HIDRA, any of these approaches can be implemented
as a method that updates a particular HID as mobility occurs,
and this seamlessly integrates mobility support into all higher
layers of the stack.

The most prevalent example of a system mapping a host
identifier to multiple network addresses is the DNS. By inte-
grating name-resolution into the HID table directly, HIDRA
provides integrated support for hostname multihoming, while
simultaneously moving this logic out of the network application
itself, where it typically resides. Other works [7], [15], [11]
support multihoming through in-flight methods where hosts
exchange additional addresses with each other during or af-
ter connection establishment. HIDRA easily integrates such
methods into the stack, whereas none of these proposals fully
address deployment issues relating to the use of an open
network identifier by the application.

There has been very little work on mobility across transport
layer protocols and identifiers. It has been assumed that an
application wishing to change one of these values would simply
create a new socket. Despite the lack of prior work, we believe
that dynamically assigning and changing ports can assist with
NAT traversal, and even enable process mobility across hosts.
Moreover, dynamically switching transport protocols gives rise
to an entire new set of benefits: for example, a TCP session
between two hosts could be seamlessly switched to a multicast
transport protocol to accommodate another client requesting the
same data. This is a new research area enabled by HIDRA.

Last, it should be noted that the TID and the HID can be
changed simultaneously. This could enable mobility beyond
simply ports or addresses, but across entire network stacks: for
example, two nearby laptops communicating over WiFi could
switch to Bluetooth or NFC to preserve connectivity when an
access point fails.

Fig. 5: HIDRA chat application pseudocode

Fig. 6: Chat message-delivery comparison

VI. PROTOTYPE IMPLEMENTATION

We developed a prototype implementation of HIDRA as a
Linux 3.0.x kernel module. To generate TIDs and HIDs, we
wrote simple helper functions to interact with and populate the
TID and HID tables.

Our module defines a new socket family, AF_HIDRA, and
the {TID, HID} tuple as a subtype of the generic sockaddr
structure. Defining the tuple this way lets us leave the generic
socket API fully intact, while still affording us a large address
space (14 bytes) for the TID and HID. Our TID and HID table
implementations follow a simple policy for address-selection:
rank addresses in the same order they are entered into the
table. If an error such as EHOSTUNREACH is encountered, the
offending address is removed and the message is resent using
the next address, only returning an error to the application when
no more addresses exist. Notably, our module only requires
about 600 lines of original code, most of which is devoted to
managing the TID and HID tables.

A. Handling Mobility, Multihoming, and Disconnections

To test the functionality of our prototype, we wrote a very
simple datagram-oriented chat application, roughly outlined in
Figure 5, and deployed it across four computers running Linux
Mint 9. The computers are all equipped with WiFi cards and
ethernet ports, and the WiFi radios all within broadcast range of
each other. As a base-case, we configured the WiFi interfaces
into an ad-hoc network with manually-assigned private IP
addresses, and ensured that each node could send messages
to every other node. With this topology in place, we were able
to conduct a series of connectivity experiments highlighting
support for network multihoming, failures, and mobility.

In our first experiment, we tested multihoming as well as
Internet compatibility by connecting two of the computers to
the Internet via ethernet and manually adding their new network
addresses to each other’s HID table. By manually changing
the order of addresses, we were able to seamlessly enable
multihoming between these two network addresses, and do so



6

UDP sendmsg() UDP write() TCP write()
IPv4 Client HIDRA Client IPv4 Client HIDRA Client IPv4 Client HIDRA Client

IPv4 Server 112.9 MBps 106.4 MBps 135.7 MBps 117.5 MBps 181.7 MBps 145.8 MBps
HIDRA Server 108.6 MBps 104.8 MBps 134.6 MBps 113.8 MBps 175.3 MBps 143.2 MBps

TABLE I: Loopback Throughput

without either (1) changing anything in the application or (2)
even alerting the application to the fact that a change in network
addresses had occurred.

Building on this, Figure 6 shows the results of our second
experiment, in which one application sent messages to another
at a rate of one message per second, and at the five-second mark
the sender was disconnected from the 802.11 ad-hoc network.
Here, the IP-based sender immediately failed to deliver any
further messages, yet the HIDRA sender was able to switch
network addresses and continue delivery uninterrupted.

Though some network-layer problems can be mitigated by
introducing additional application-specific code, this presents
the application developer with an additional hurdle and a fun-
damental tradeoff of effort rendered unnecessary with HIDRA.
The pseudocode in Figure 5 shows all that is needed for the
HIDRA-based chat application: the code is remarkably simple,
and yet it can still support complex network cases that the
traditional IP stack cannot.

B. Performance Benchmarks
Any time a message is sent in HIDRA, the two hidden

values must be demultiplexed to open identifiers, and this incurs
some performance overhead. To measure this overhead in the
system, we developed an iperf-style application to measure
throughput over the loopback interface, effectively measuring
the performance and speed of the network stack itself. We
tested two different socket API calls: write() requires the
socket to have already been connected to a destination, whereas
sendmsg() requires an unconnected socket (thereby TCP does
not support it).

The results of our tests are summarized in Table I. Across all
experiments we found a consistently small difference between
HIDRA and IPv4 in the performance of the receive-path. In the
sending path, we observed a growing performance discrepancy
between the two stacks as we move left-to-right through the
three test cases. This is because the three test-cases are ranked
left-to-right in order of the amount of state they maintain
for a socket, which also correlates to the amount of fast-
path optimization in the kernel. This optimization accounts for
the discrepancy, because our implementation is a very non-
optimized prototype. Though this discrepancy is substantial for
TCP, we believe the same fast-path optimizations for TCP can
be applied to HIDRA to reduce this difference: for example,
instead of demultiplexing the HID and TID for each individual
datagram, the chosen open identifiers could be stored for a
socket and simply updated when changed. Addressing such
optimizations is fruitful future research.

C. Backwards Compatibility
Because HIDRA works without changing the protocol stack

itself, it is fully compatible with existing protocols, including

non-HIDRA end hosts. In our tests, we found that HIDRA
clients could easily send messages to traditionally bound
servers, and HIDRA servers could receive messages from
traditionally bound clients. This is a crucial consideration for
deployment, because it means that applications and systems
can be migrated to HIDRA asynchronously, without fear of
breaking compatibility with other endpoints.

VII. CONCLUSION

We introduced HIDRA, the first proposal to introduce the
concept of hidden identifiers used internally by end systems and
intermediate systems to support mobility and multihoming, and
allow Internet applications and individual layers of the stack to
evolve independently of one other. We showed how HIDRA
supports multiple network addresses and protocols simultane-
ously, and that HIDRA provides significant improvements over
today’s Internet architecture by supporting multihoming and
mobility without sacrificing performance.

REFERENCES

[1] V. Cerf and R. Kahn. A Protocol for Packet Network Interconnection.
IEEE Trans. Commun., pages 637–648, 1974.

[2] R.W. Watson. Identifiers (Naming) in Distributed Systems. Distributed
Systems–Architecture and Implementation (LCN 105), Chapter 9:191–
210, 1981.

[3] J. Shoch. Inter-Network Naming, Addressing, and Routing. 17th IEEE
Computer Society Conference (COMPCON 78), 1978.

[4] J. Saltzer. On The Naming and Binding of Network Destinations. RFC
1498, August 1993.

[5] I. Stoica et al. Internet Indirection Infrastructure. ACM SIGCOMM, 2002.
[6] H. Balakrishnan et. al. A Layered Naming Architecture for The Internet.

ACM SIGCOMM, pages 343–352, 2004.
[7] R. Moskowitz et. al. Host identity protocol. RFC5201, April, 2008.
[8] B Ford. Breaking Up The Transport Logjam. ACM HotNets, 2008.
[9] A. Ghodsi et al. Intelligent Design Enables Architectural Evolution. ACM

HotNets, page 3, 2011.
[10] E. Nordstrom et al. Serval: An end-host stack for service-centric

networking. Proc. 9th USENIX NSDI, 2012.
[11] J. Ubillos et al. Name-based sockets architecture. IETF Draft: draft-

ubillos-name-based-sockets-03 (work in progress), 2010.
[12] Erik Nordmark and Marcelo Bagnulo. IETF RFC 5533: Shim6: Level 3

multihoming shim protocol for IPv6. 2009.
[13] Randall Atkinson, Saleem Bhatti, and Stephen Hailes. Ilnp: mobil-

ity, multi-homing, localised addressing and security through naming.
Telecommunication Systems, 42(3-4):273–291, 2009.

[14] Charles E Perkins. Mobile ip. Communications Magazine, IEEE,
35(5):84–99, 1997.

[15] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
hard can it be? designing and implementing a deployable multipath TCP.
12:29–29, 2012.

[16] J. Crowcroft et al. Plutarch: an argument for network pluralism. ACM
FDNA ’03, 2003.

[17] K. Brown and S. Singh. M-tcp: Tcp for mobile cellular networks. ACM
SIGCOMM Computer Communication Review, pages 19–43, 1997.

[18] D Funato, K Y., and H. Tokuda. TCP-R: TCP mobility support for
continuous operation. pages 229–236, 1997.

[19] A. Bakre and BR. Badrinath. I-TCP: Indirect TCP for mobile hosts.
ICDCS ’95, pages 136–143, 1995.




