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Lionel Roques, Mickaël D. Chekroun, Michel Cristofol, Samuel Soubeyrand,

Michael Ghil

To cite this version:

Lionel Roques, Mickaël D. Chekroun, Michel Cristofol, Samuel Soubeyrand, Michael Ghil.
Parameter estimation for energy balance models with memory. Proceedings of the Royal Society
of London. Series A, Mathematical and physical sciences, Royal Society, The, 2014, .

HAL Id: hal-01264057

https://hal.archives-ouvertes.fr/hal-01264057

Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Parameter estimation for energy balance

models with memory
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3 Université Aix-Marseille, LATP, F-13397 Marseille, France
4 Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and
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We study parameter estimation for one-dimensional energy balance models with mem-
ory (EBMMs) given localized and noisy temperature measurements. Our results apply
to a wide range of nonlinear, parabolic partial differential equations (PDEs) with inte-
gral memory terms. First, we show that a space-dependent parameter can be determined
uniquely everywhere in the PDE’s domain of definition D, using only temperature infor-
mation in a small subdomain E ⊂ D. This result is valid only when the data correspond
to exact measurements of the temperature.

We propose a method for estimating a model parameter of the EBMM using more real-
istic, error-contaminated temperature data derived, for example, from ice cores or marine-
sediment cores. Our approach is based on a so-called mechanistic-statistical model, which
combines a deterministic EBMM with a statistical model of the observation process. Es-
timating a parameter in this setting is especially challenging because the observation
process induces a strong loss of information. Aside from the noise contained in past tem-
perature measurements, an additional error is induced by the age-dating method, whose
accuracy tends to decrease with a sample’s remoteness in time. Using a Bayesian ap-
proach, we show that obtaining an accurate parameter estimate is still possible in certain
cases.

Keywords: age dating; Bayesian inference; energy balance model; inverse

problem; mechanistic-statistical model; memory effects

1. Introduction

Energy balance models (EBMs) are among the simplest climate models. They were in-
troduced almost simultaneously by Budyko [1] and Sellers [2]. Because of their simplicity,
these models are easy to understand and facilitate both analytical and numerical studies
of climate sensitivity. A key feature of these models is that they eliminate the climate’s
dependence on the wind field and thus have only one dependent variable: the Earth’s
near-surface air temperature T .

In the most elementary, zero-dimensional (0-D) EBMs, the temperature T is globally
averaged and thus depends on time alone, and not on any space variables. In this simplifi-
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2 L. Roques et al.

cation, the Earth’s global temperature still depends on such parameters as the planetary
albedo, i.e. the globally averaged reflectivity of the land and sea surface. Mathematically,
the temperature T satisfies an ordinary differential equation (ODE) with dT/dt deter-
mined by the balance between the incoming shortwave (solar) radiation and the outgoing
longwave (terrestrial) radiation emitted in response to the former. EBMs thus model ra-
diative equilibrium [3]; the word “equilibrium” here does not refer to the thermodynamic
concept thereof, only to one or more steady-state solutions of the EBM.

In this paper, we deal with EBMs that incorporate an explicit spatial dependence of T
on a meridional variable x. It is natural to consider reaction-diffusion equations that take
into account pole-to-equator temperature gradients, while respecting overall radiative
balance. In the one-dimensional (1-D) models we consider here, the temperature T is
assumed to depend on space only through a latitudinal variable x ∈ (0, 1) that may
either be sine(latitude) [4, 5] or a scaled latitude [6].

For such 1-D models of the Sellers type, Ghil [6] has shown, using numerical con-
tinuation methods, that the model had multiple steady states lying along an S-shaped
bifurcation curve with respect to a normalized parameter measuring solar radiation. These
numerical results were rigorously justified and generalized to the case of two-dimensional
(2-D) EBMs — with possibly discontinuous nonlinearities — on compact Riemannian
manifolds without boundary; see [7] and references therein, as well as [8, 9] for other
results on 2-D EBMs.

Thus, the extension of the ODE picture to the partial differential equation (PDE)
setting supported the idea of a “deterministic skeleton” — namely the S-shaped bifurca-
tion diagram — underlying the cold and warm phases of the glaciation cycles observed in
isotopic and microfaunal proxy records of Quaternary climate [3]. When combined with
the concept of stochastic resonance [10], the coexistence of multiple equilibria helped pro-
vide one of several qualitative explanations of these cycles; see [11] for a mathematical
treatment in the framework of stochastic differential equations.

The behavior of EBMs depends, therefore, on the precise form of the ODE or PDE
model’s right-hand side (rhs) and on the values of their coefficients and parameters.
The EBMs we treat are semi-linear, i.e., the nonlinearities only involve the temperature
itself, and not its derivatives. In this setting, we refer to a parameter as a constant that
intervenes in an ODE’s or PDE’s rhs, and to a coefficient as a function of space in the rhs.
Furthermore, with suitable tuning of their parameters, EBMs that resolve the Earth’s
land-sea geography and are forced by the seasonal insolation cycle have been shown to
mimic, to a certain extent, the observed zonal temperatures for the observed present
climate [12]. Once EBMs are fitted to the observations [2, 6] or to the simulated climate
of general circulation models (GCMs) [12], they can be used to estimate the temporal
response patterns to various forcing scenarios; such a methodology is of particular interest
in the detection and attribution of climate change [13].

Unfortunately, in practice, the model coefficients and parameters cannot be measured
directly, because they generally result from the intertwined effects of several physical
processes that are not adequately resolved by an EBM, and substantial uncertainty still
prevails in estimating these parameters when fitting EBMs to either observational or
simulation data [13]. The investigation of robust and efficient methods of parameter esti-
mation for EBMs is, therefore, of considerable practical interest. Still, reaction-diffusion
EBMs — in the absence of forcing or delays — are too simplistic with respect to the
natural variability of climate [3, 14, 15]. For instance, such EBMs do not support the
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Energy balance models with memory (EBMMs) 3

spatio-temporal chaos characteristics of climate dynamics; see [3, 14, 16] and references
therein.

Bhattacharya et al. [17] proposed an interesting generalization of reaction-diffusion
EBMs. In this generalization, they introduced a delay mechanism in order to take into
account the long response times of the ice sheets to temperature changes. In particular,
they assumed that the albedo function depends not only on the present temperature
but also on past temperatures through a memory function that modifies the shortwave
radiation terms. The delay effects, combined with the model’s nonlinearity, induce chaotic
behavior with low-frequency variability [18]: the S-shaped bifurcation diagram of steady
states — obtained in the “no-memory” case — is preserved, although the stability of the
individual branches may be modified; see [19] for a rigorous treatment.

More general EBMs with memory (EBMMs) were subsequently considered in the
literature. In these EBMMs, several physical mechanisms active in the model, and not
just the albedo, are typically assumed to depend on a weighted linear combination of

past temperatures, given by H(t, x, T ) :=
∫ 0

−τ
β(s, x)T (t + s, x) ds, for all t > 0, and

x ∈ (0, 1), where β(s, x) is the memory kernel; see §2 below for further details and [20]
or Diaz et al. [21] in this volume for a recent survey.

In summary, EBMMs are still simple climate models but with richer dynamics than
the one exhibited by classical EBMs, while preserving several key features and advantages
of the latter. EBMMs may thus play an interesting role in the detection and attribution
problem, for instance, when fitted to modern instrumental observations and to the simu-
lation results of IPCC-class GCMs, or in the modeling of climates of the past when fitted
to proxy records from the geological era of interest. It follows that the successful applica-
tion of EBMMs to these two problem areas depends on a proper analysis and solution of
the associated inverse problem. Such an analysis appears to be missing in the literature
and we propose to solve at least some EBMM-related inverse problems of interest in the
present article.

Recall that the inverse approach consists of determining unknown coefficients by using
measurements of the temperature field T (t, x). If T (t, x) is known at all times t ≥ 0 and at
all points x ∈ (0, 1), it is plausible that all model coefficients can be determined, subject
to reasonable mathematical assumptions about the PDE and its solutions. However,
climate data are generally local and noisy, that is, T (t, x) can only be measured at some
points or in some (often small) subregions of the domain (0, 1), and the measurements
are subject to error. In this paper, we study whether spatially variable coefficients of
EBMM models can be either uniquely determined in the whole space domain (0, 1), by
using only exact but local information about the temperature field, or be estimated with
sufficient accuracy by using local and noisy measurements of the temperature.

The paper is organized as follows. In §2, we summarize the equations that govern
EBMs, from the basic ODE model to general EBMMs. In §3, we obtain a uniqueness
result for space-dependent coefficients of general 1-D EBMMs. These coefficients may
be related to the albedo function in the solar-radiation term or the “greyness” function
in the terrestrial-radiation term. Our result shows that a space-dependent coefficient
can be determined uniquely in theory on the whole domain D = (0, 1) by using local
information about the temperature T that is available only on a small subdomain E of
(0, 1) and during a short time period.

In §4, we propose a method for estimating space-dependent coefficients of EBMMs,
based upon realistic data. The type of data we are interested in includes ice cores, con-
tinental loess or pollen records or deep-sea sediments [3, 14]. In the present, theoretical
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4 L. Roques et al.

setting, these all correspond to noisy measurements of past temperature at some localized
geographical sites. Our approach is based on a mechanistic-statistical model [22, 23, 24],
which combines a deterministic EBMM with a statistical model for the observation pro-
cess. Estimating the EBMM’s parameters is especially challenging because the observa-
tion process induces a strong loss of information: In addition to the noise in the past
temperature measurements, an error is induced by the age-dating method, the accuracy
of which tends to decrease as samples are extracted from earlier epochs in the record
[25, 26]. Still, using a Bayesian approach, we show that obtaining an accurate estimate
of the parameters is still possible in certain cases. The paper concludes with a discussion
section, and several appendices provide technical details.

2. Energy balance models (EBMs)

Classical EBMs

One of the simplest 0-D EBMs,

c
dT (t)

dt
= µQ[1− a(T (t))]− g(T (t)), (2.1)

has been analyzed in [3, 27]. Here, c is a global thermal inertia coefficient and Q is the
“solar constant,” i.e. the mean insolation per unit area at the top of the atmosphere,
and µQ corresponds to present-day radiation conditions for µ = 1. Other values of the
parameter µ thus correspond to changes in these conditions and lead to changes in the
number and stability of the model’s equilibria [28, 29].

The functions a(T (t)) and g(T (t)) in the incoming and outgoing radiation terms of
Eq. (2.1), respectively, correspond to the albedo function and to the greyness function;
the latter models the difference between black-body radiation σT 4 — with σ the Stefan-
Boltzmann constant — and the actually observed terrestrial one. In practice, it is hard
to formulate realistic functions a and g. In particular, the albedo function may depend
on the vegetation cover of the Earth’s land surface, on the presence of clouds [17], and
on the wave distribution on the ocean surface [30].

Several functional forms of a and g are available in the literature. In Sellers-type
models [2], the albedo is a piecewise-linear ramp function of the form:







a(T ) = a0 for T ≤ T1,

a(T ) = a0 + (a1 − a0) (T − T1)/(T2 − T1) for T ∈ (T1, T2),

a(T ) = a1 for T ≥ T2,

(2.2)

where a0 > a1 > 0 and T1 < T2 are all constants. Other albedo functions have been
proposed for the study of more local problems, in restricted temperature ranges; for
instance, Fraedrich [28] proposed linear or quadratic functions of the form:

a(T ) = a1 − a2 T or a(T ) = b1 − b2 T 2,

where a1, a2, b1, b2 > 0.
The function g is positive and can take several forms as well [1, 2, 6, 17, 30]. To be

consistent with an Earth assumed to be in radiative equilibrium, any choice of a and g
has to allow for one or more steady-state solutions of Eq. (2.1) [3].
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Energy balance models with memory (EBMMs) 5

The 1-D reaction-diffusion model presented in [6, 30] has the form:

c(x)
∂T

∂t
=

∂

∂x

(

k(x)
∂T

∂x

)

+ µQ(x)[1− a(x, T )]− g(x, T ),

for t > 0 and x ∈ (0, 1). On the rhs of this PDE one distinguishes, in all generality,
between the diffusion term that contains the two spatial derivatives, and the reaction
terms that contain no derivatives; the latter express here the balance between incoming
and outgoing radiation.

The space variable x corresponds to the scaled latitude x = 2φ/π, where φ is the
latitude; the model is symmetric about the Equator and so x = 0 and x = 1 correspond
to the equator and to the North Pole, respectively. The function k stands for a space-
dependent diffusion coefficient and c(x) > 0 is the zonally averaged heat capacity of
the Earth; in practice, this “thermal inertia” is mostly due to the oceans. In this 1-D
model, all of the coefficients can depend on the space variable x. The function Q(x) now
corresponds to the meridional distribution of incident solar radiation averaged over a
calendar year [6, 17, 30].

EBMs with memory terms (EBMMs)

In models with memory terms, the temperature values at a given time t depend not
only on the temperatures at time t but also on a weighted linear combination of past
temperatures T (t − s) over some range of s > 0. To be more precise, one considers a
history function H(t, x, T ) given by

H(t, x, T ) =

∫ 0

−τ

β(s, x)T (t+ s, x) ds, for all t > 0 and x ∈ (0, 1), (2.3)

over a past interval of length τ > 0, with a memory kernel β(s, x) that belongs to the
functional space L1([−τ, 0];C([0, 1])) and verifies:

{

∫ 0

−τ
β(s, ·) ds ≡ 1,

β(s, ·) ≥ 0 for all s ∈ [−τ, 0].
(2.4)

At this level of generality, 1-D EBMMs can be described by the equation:

c(x,H(t, x, T ))
∂T

∂t
=

∂

∂x

(

k(x)
∂T

∂x

)

+ f(t, x, T,H(t, x, T )), (2.5)

for t > 0 and x ∈ (0, 1).

Initial and boundary conditions

Because of the definition of H, the initial condition in such models has to be of the
form:

T (s, x) = T0(s, x), for s ∈ [−τ, 0] and x ∈ [0, 1], (2.6)

for some Lipschtiz-continous function T0 defined on [−τ, 0]× [0, 1].
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6 L. Roques et al.

Following Bhattacharya et al. [17], the boundary conditions are of Neumann’s type:

∂T

∂x
(t, 0) =

∂T

∂x
(t, 1) = 0 for t ≥ 0. (2.7)

Note that the assumption (2.7) also applies at t = 0. This compatibility condition is
required to obtain the time continuity of the solution T of (2.5) up to t = 0.

When c does not depend on H , the use of the theory of semigroups typically allows a
recasting of Eq. (2.5), together with the initial and boundary conditions (2.6) and (2.7),
as an abstract semilinear functional evolution equation [31]. The solutions of such an
equation are typically understood, in a weak or strong sense, within some appropriate
Banach space whose properties depend on the assumptions that hold for f, c and k. These
assumptions are discussed in Appendix A.

For instance, when k ≡ 1, the problem (2.5)—(2.7) can be described by

dT

dt
= AT + F (T, Tt), t ≥ 0;

the operator A is the realization on a Banach space X of the Neumann-Laplacian [32],
F is an X-valued (usually) nonlinear mapping defined on X × C([−τ, 0];X) and Tt ∈
C([−τ, 0];X) is defined by Tt(s) = T (t+ s) for s ∈ [−τ, 0], as in [31].

When c is a genuine function of H , the problem (2.5)—(2.7) becomes a quasilinear
evolution equation with memory, and questions of existence, uniqueness, and continuous
dependence typically require greater care; see [8, 20] for EBMMs on the Euclidean unit
sphere in R

3, and [33] for other quasilinear parabolic functional evolution equations. In
Appendix B, we prove — using appropriately chosen comparison principles [34] — that
the local existence and uniqueness of classical solutions in time holds for the problem
(2.5)–(2.7), under fairly general conditions on the functions f , k, and c.

3. Unique coefficient determination for exact data

For reaction-diffusion equations without a memory term, uniqueness results in inverse
problems are generally obtained using the method of Carleman estimates [35]. This
method requires, among other measurements, knowledge of the solution T (t′, x) of the
equation at some time t′ > 0 and for all x in the domain (0, 1) [37, 38, 39]; see figure 1
(a). For polynomial reaction terms, more recent approaches [40, 41] lead to uniqueness
results for one or several coefficients, under the assumption that T and its first spatial
derivative are known at a single point x0 in (0, 1), for all t in a small interval (0, θ), and
that the initial data T (0, x) is known over the entire interval (0, 1). Thus, one of the main
differences between these two approaches is that, in the method presented in [40, 41], the
measurement of the solution at time t′ is replaced by the knowledge of the initial condi-
tion; compare the green and red regions in figure 1 (a). Contrarily to the measurement
at time t′, the initial condition does not contain any information on the coefficient to be
determined. Thus, this approach shows that coefficients of reaction-diffusion equations
without a memory term can be uniquely determined using only local information about
the solution T. In this study, we will show that comparable results can be obtained for
EBMMs with memory terms and nonlinear reaction terms; see figure 1 (b).

We assume here that the function f in Eq. (2.5) has the form:

f = fα(t, x, T,H(t, x, T )) = f1(t, x, T,H(t, x, T )) + α(x) f2(t, T,H(t, x, T )), (3.1)

Article submitted to Royal Society
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x

t

0

0 1

θ

t'

x
0

(a)

x

t

0
-τ
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θ

x
0

(b)

Figure 1. Space-time measurement regions which can lead to unique coefficient determination. (a) For

reaction-diffusion equations without a memory term: In green, the region that is required when the

method of Carleman estimates is used. In red, the region used in the method developed in [40, 41]. (b)

For EBMMs: the region that is used in this study.

and that the function x 7→ α(x) is not known. We refer to Appendix A for the ex-
act assumptions on f1 and f2 used throughout this article. Our goal is to study which
conditions allow one to determine the function α.

More precisely, consider a solution T̃ of Eq. (2.5), where f = f1 + αf2 ≡ f [α] is
replaced by f [α̃] = f1 + α̃ f2. Assume that T̃ satisfies the same initial and boundary
conditions — i.e., (2.6) and (2.7), respectively — as T. Our goal is to prove that for any
subset of positive measure E ⊂ (0, 1), and any θ > 0,

{T̃ (t, x) = T (t, x) in (0, θ)× E} ⇒ {α̃(x) ≡ α(x) over [0, 1]}. (3.2)

In other words, the space-dependent coefficient α(x) is uniquely determined on [0, 1] by
any measurement of T on a set (0, θ)× E .

The results of the present section are obtained under an additional assumption on the
kernel β of the history function H in Eqs. (2.3) and (2.4), namely that

∃ δ > 0 s.t. β(s, ·) ≡ 0 for all s ∈ [−δ, 0]. (3.3)

Thus, very recent past temperatures are not taken into account in H(t, x, T ). This as-
sumption is not very restrictive since, for small enough δ, the continuity of t 7→ T (t, x)
implies that these temperatures are very close to T (t, x), which is already taken into
account as a variable of the reaction function f in (2.5).

Under assumption (3.3) and the regularity assumptions of Appendix A, we prove
in Appendix B that the problem (2.5) with initial condition (2.6) and boundary condition
(2.7) admits a unique classical solution, at least for small times t < t∗, and t∗ does not
depend on α. Global existence in time of solutions to Eqs. (2.5)–(2.7) clearly depends on
the precise form of f ; see [8] for global existence results in the case of EBMMs on the
Euclidean unit sphere in R

3. For the statement of the main result of this section and the
numerical results of § 4, we only need the solution T to be defined for small times. Further
existence results for parabolic equations with delay terms are given in refs. [31, 34].
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8 L. Roques et al.

Uniqueness result

We assume that the unknown coefficient α(x) of (3.1) lies in the function space:

M := {ψ is Lipschitz-continuous and piecewise analytic on [0, 1]}. (3.4)

Remarks

• A continuous function ψ is called piecewise analytic if there exist n ≥ 1 and an
increasing sequence (κj)1≤j≤n such that κ1 = 0, κn = 1, and

ψ(x) =
n−1
∑

j=1

χ[κj ,κj+1)(x)ϕj(x), for all x ∈ (0, 1);

here ϕj are some analytic functions defined on the intervals [κj , κj+1], and χ[κj ,κj+1)

are the characteristic functions of the intervals [κj , κj+1) for j = 1, . . . , n− 1.

• The assumption α ∈ M is not very restrictive. For instance, the set of piecewise
linear functions on [0, 1] is a subset ofM.

Theorem 3.1. Let α and α̃ satisfy assumption (3.4). Let T and T̃ be the solutions of
Eqs. (2.5)–(2.7) on [0, t∗)× [0, 1], with f = f [α] and f = f [α̃], respectively, cf. Eq. (3.1).
Assume that there exist x0 ∈ [0, 1] and θ ∈ (0, t∗) such that







T (t, x0) = T̃ (t, x0),

∂T

∂x
(t, x0) =

∂T̃

∂x
(t, x0),

for all t ∈ (0, θ). (3.5)

Then α ≡ α̃ on [0, 1] and consequently T ≡ T̃ on [0, t∗)× [0, 1].

The proof of Theorem 3.1 is given in Appendix C. This result means that the space-
dependent coefficient α(x) is uniquely determined on [0, 1] by any measurement of T and
∂T/∂x at a single point x0 during the time period (0, θ). In particular, the assertion (3.2)
is a consequence of this result.

4. Parameter estimation for noisy measurement histories

In the previous section, we showed that space-dependent coefficients of general EBMMs
can be uniquely determined by local measurements of the temperature T. In this section,
we show that it is possible to estimate such coefficients based upon realistic data, which
are typically noisy and incomplete, in both space and time.

The available data, derived for instance from ice cores, continental records or deep-sea
sediments, generally correspond to noisy measurements of the past temperature at some
localized geographical positions. Such data contain two sources of uncertainty: (i) in the
value of the measured temperature; and (ii) in the accuracy of the dating, which tends
to decrease as samples are derived from earlier time points [25]. We propose a method
for parameter estimation using such noisy measurements.

Our approach uses a mechanistic-statistical model. The idea is to build a model that
links a mechanistic vision of the studied phenomenon — in our case through the EBMM
— with data collected from the observation of this phenomenon [22, 23, 24]. Estimating
the parameters of the mechanistic part of the model is challenging when the observation
process induces a strong loss of information, because of severely subsampled observations
and substantial noise, as is the case here.
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Energy balance models with memory (EBMMs) 9

An EBMM with unknown coefficient

We assume that the temperatures are given by an EBMM corresponding to a partic-
ular case of Eq. (2.5), with:

∂T

∂t
=
∂2T

∂x2
+ α(x) (1 − a(T ))− q0 − q1 T −

(

1

τ

∫ 0

−τ

T (t+ s) ds

)3

, (4.1)

for t > 0 and x ∈ (0, 1). The function a is a ramp function as in (2.2) and α(x) is the
coefficient to be estimated. We carried out our computations for two values of the delay
parameter, τ = 0.2 ky and τ = 0.7 ky, during the time interval 0 ≤ t ≤ 5 ky, where 1 ky
= 1000 years. We refer to the subsection titled “Numerical results” below for the precise
numerical setting of Eq. (4.1).

A statistical model of the observation process

We assume that data are available at several locations Sk, k = 1, 2, 3. At each location
k, we denote by t1, . . . , tI , where I = 50 in our simulations, the sequence of decreasing
epochs θ = 5 ≥ t1 > . . . > tI ≥ −τ , at which the temperature T (ti, Sk) is measured,
based on laboratory sampling of a given ice core, say, extracted at location Sk. The times
ti do depend, in general, on the location Sk, but the label k has been dropped for the
sake of concision and clarity. Let Yk(ti) denote the measure of the temperature T (ti, Sk).

The uncertainty due to the age dating approximation implies that Yk(ti) is actually
a measure of the temperature T (s(ti), Sk), where s(t) is a function deforming the time
scale that can vary with k. This function is the result of errors in the chronostratigraphy,
i. e. in the age-depth plot, of a given core [36]. Furthermore, the uncertainty in measuring
the temperature value implies that T (s(ti), Sk) contains noise as well.

Our model for the observation process has to take into account these two sources of
uncertainty. First, given s(ti), i = 1, . . . , I, the observed variables Yk(ti) are assumed to
be conditionally drawn from independent Gaussian distributions N :

Yk(ti) | s(ti) ∼ indep. N
{

T (s(ti), Sk), σ2
}

, (4.2)

where σ2 is the variance of the noise in the temperature measurements.
Second, we construct a model for s(ti) :

s(ti) = θ −
i

∑

j=1

ηj with ηj ∼ indep. Γ

(

tj−1 − tj
κ2

, κ2

)

, (4.3)

where Γ denotes the gamma distribution, κ2 is a positive parameter that controls the
shape of the distribution and t0 = θ. The expectation of s(t) in Eq. (4.3) is t, and its
variance increases as t moves further into the past. Another important feature of the
model (4.3) is that it is order-preserving: if ti > tj , then s(ti) > s(tj). It is indeed
reasonable to assume that there is no uncertainty on the order of the estimated times
t1, . . . , tI .

Our model for the observation process is the combination of Eqs. (4.2) and (4.3).
Using this model, we are able to compute the joint distribution of the observations
Y := {Yk(ti), i = 1, . . . , I, k = 1, 2, 3} , conditioned on the “real” temperatures T :=
{T (s(ti), Sk), i = 1, . . . , I, k = 1, 2, 3}. This joint distribution, denoted by F (Y), is com-
puted explicitly in Appendix D. If the temperatures T = {T (s(ti), Sk)} are governed by
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Figure 2. The solution T (t, x) of the EBMM model (4.1).

the EBMM (4.1), then they depend deterministically on the unknown coefficient α and
the unknown initial data T0 of Eq. (2.6). Thus, the conditional distribution F (Y) of the
observation process is equal to the likelihood LY(α, T0) of the model parameterized by α
and T0.

Bayesian inference

Let T0 correspond to the temperatures during the time window [−τ, 0] with prior
distribution π1. Let α denote the coefficient vector of our model with prior distribu-
tion π2; we assume that the other coefficients and parameters are known. The posterior
distribution p(T0, α | Y) of T0 and α is proportional to:

p(T0, α | Y) ∝ LY(α, T0)π1(T0)π2(α). (4.4)

In the absence of further information, we assumed independent uniform prior distributions
in a sufficiently large interval for the value of the parameter α(x) at each latitude x :

π2(α(x)) ∼ U(0, 1000).

For the sake of simplicity, we assumed that the prior distribution of T0 was a Dirac delta
function:

π(T0) ∼ δK , (4.5)

where K is a constant obtained by averaging the observations Yk(ti) over all negative
times ti < 0 and k = 1, 2, 3. This means that T0 is constant in space and time and takes
the value K. We draw a sample from the posterior distribution by a Markov chain Monte
Carlo (MCMC) algorithm [42, 43]; see Appendix E for details.

Numerical results

For a given coefficient α(x), we computed the solution T (t, x) of the EBMM (4.1) for
τ = 0.2 ky and τ = 0.7 ky, emanating from the same constant initial history T0 = 10◦C
given for [−τ, 0] and x ∈ [0, 1]. The parameter values used in these computations for
solving Eq. (4.1) are: q0 = 204 and q1 = 1.73 in the longwave-radiation function, and
a0 = 0.62, a1 = 0.25, T1 = −10, and T2 = 0 in the albedo function defined by Eq. (2.2).
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Figure 3. Time series of the global average temperature. The case τ = 0.7 ky exhibits a transient with

large variations that suggest the presence of nonnormal modes [47]; see Supplementary Information in

[48] for a similar signature of such modes in a simpler model.

When τ = 0.2 ky, the solution of (4.1) exhibits small temporal variations that are
quickly damped and a stable steady state is quickly reached (figure 2 (a)). For τ = 0.7, a
stable periodic orbit Tp(t, x) = Tp(t+p, x) of period p ≃ 1.33 ky is reached asymptotically,
but the transient is considerably longer and larger amplitudes persist for quite a while
(figures 2 (b) and 3). Such large-amplitude variations that precede the setting in of
the periodic solution Tp point to the presence of nonnormal modes associated with the
linearization of Eq. (4.1) about the stable periodic solution Tp. Such nonnormal modes
are associated with polynomial rather than exponential behavior in time and they are
responsible for large transient energy growth in the linearized problem. This growth
can be further amplified by nonlinear effects or by noise; see [44, 45, 46, 47] for many
manifestations of such modes and the Supporting Information of [48] for an analogous
situation in a simpler model.

At each one of the locations S1 = 0.5, S2 = 0.7 and S3 = 0.9, we randomly drew 50
epochs ti in the interval (−τ, 5) and recorded the temperatures T (ti, Sk) at these epochs
and locations. Using our observation model (4.2, 4.3), we constructed noisy observations
Yk(ti) of these temperatures. The exact temperatures at the exact times are presented
together with the measured values in figure 4. Observed temperatures Yk(ti) for nega-
tive times were used to determine the prior distribution of T0, cf. Eq. (4.5). Observed
temperatures Yk(ti) for positive times were used to make the posterior inferences.

Figure 5 shows the marginal posterior quantiles of α(x), when τ = 0.2 ky and τ =
0.7 ky. In both panels, the median of the posterior distribution is quite close to the true
values of the coefficient α(x). Moreover, the true values do lie between the first and last
deciles of the distribution, for all values of x. Remember that observations were only
made at three sites Sk, and that all three sites lie in the right half of the model domain,
Sk ∈ [0.5, 1]. This restriction only seems to affect somewhat the estimation error of α(x)
in the left half of the model domain, x ∈ [0, 0.5], for τ = 0.2 ky.

Overall, the main difference between figures 5(a) and (b) is that the marginal dis-
tribution is more variable in the case τ = 0.2 ky, for all x, meaning that the insolation
coefficient α(x) is harder to estimate in this case. Such a result is somewhat surprising
because the larger and faster variations in the case τ = 0.7 lead to larger measurement
errors; this can be easily seen in figure 4. A possible explanation for this result is that the
solution of (4.1) is much more sensitive to variations in the parameters when τ = 0.7.
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Figure 4. Actual temperatures versus measured temperatures. At each site Sk, k = 1, 2, 3, the upper

row corresponds to the actual temperatures at the actual times, while the lower row corresponds to the

measured temperatures at estimated times.
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Figure 5. Marginal posterior quantiles of the parameter α(x). The red curve is the posterior median of

α(x), the magenta curves the first and last deciles of its distribution, and the blue curves the first and

last percentiles. The true values of α(x) are given by the symbol +.

In order to measure the sensitivity to parameter variations, we computed the average
L2-response Rε of the model (4.1), over the time window 0 < t < 5, to an additive
perturbation z of the parameter α. The perturbation z is drawn from a Gaussian random
field with standard deviation ε; see Appendix F for the precise definition of Rε.

The results are presented in figure 6 for τ = 0.2 ky (blue curve) and for τ = 0.7 ky
(red curve). In both cases, the L2-response increases linearly with ε, but the slope is
more than twice as large in the latter case. As noticed above, the nonnormal modes are
responsible for the large fluctuations observed over the window 0 < t < 5, cf. figure 3. It is
known that, in general, these modes are most sensitive to perturbations of the linearized
problem; see [45, 47]. The simple L2-response analysis we performed here confirms that
in the presence of such modes, larger changes occur (on average) in the solutions of the
nonlinear problem (4.1), when perturbing the coefficients of this EBMM.

5. Discussion

We have investigated the extent to which the coefficients of energy balance models with
memory (EBMMs) can be determined or estimated based on localized measurements of
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Figure 6. Average L2-response Rε of the model (4.1), over the time interval t ∈ (0, 5), to random

perturbations z sampled from a Gaussian random field Z with standard deviation ε. The blue curve

corresponds to the case τ = 0.2 ky and the red curve to τ = 0.7 ky.

past temperatures. In the purely deterministic case of exact measurements, we obtained
rigorous theoretical results on the determination of a coefficient in the EBMM’s reaction
term, while in the more realistic case of stochastically perturbed measurements, we ob-
tained numerical results for the estimation of this coefficient. Both types of results can
be extended to a general class of nonlinear parabolic PDEs with integral memory terms.

In particular, we showed in §3 that a space-dependent coefficient α(x) of a general
EBMM can be uniquely determined using only local information about the temperature
over an arbitrarily small subset E in space and during a short time window 0 < t < θ;
see figure 1 (b). More precisely, given measurements of the temperature and of its first
spatial derivative at a single site x0 and for t ∈ (0, θ), and provided that the initial data
— i.e., the temperature T0(t, x) for −τ ≤ t ≤ 0 — be known, there is a unique coefficient
α(x) of the model’s reaction term that can lead to such measurements.

Note that, for this result to be true, the initial temperatures T0(t, x) need not be gen-
erated using the parameter α(x) and, therefore, do not contain any information on α(x).
Thus, surprisingly, α is uniquely determined everywhere in the domain by information
contained in purely local measurements. This type of uniqueness result was available for
classical reaction-diffusion equations without memory terms, but is new, to the best of
our knowledge, for parabolic equations with memory terms. Related results for hyperbolic
equations with memory terms appear in [49].

In practice, temperature measurements are strongly contaminated by noise, as well
as being heavily under-sampled in time and space. This situation prevails in particular
when studying temperatures that precede modern-era, instrumental measurements, and
one needs to use inverse methods for deducing them from proxy records preserved in ice
cores, deep-sea sediments or continental records [3, 14, 50].

In §4, we treated the more realistic and difficult problem of estimating the un-
known space-dependent coefficient of an EBMM in the presence of incomplete and error-
contaminated measurements. Model solutions for the correct coefficient were shown in
figures 2 and 3. The loss of information in the sampling and measurement process was
modeled statistically by taking into account the two main problems that arise in the
interpretation of such past-temperature data: (1) age-dating errors [25, 36]; and (2) con-
verting the isotopic, microfaunal, dendrochronological or other measurements into past
temperature changes [25, 50]. The two kinds of errors were visualized in figure 4. We ob-
tained a mechanistic-statistical model for coefficient-inference by coupling this statistical
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model with an EBMM, and subsequently showed how to estimate the EBMM’s unknown
coefficient by a Bayesian approach.

Our numerical results for the coefficient estimation in figure 5 are promising and
we expect to apply them next to real observational data as well as to GCM model
simulations. The results might be valuable for the detection-and-attribution problem of
modern climate change, cf. [13, 51]. It is especially notable that our method still allows for
fairly accurate parameter estimation when the solution of the EBMM exhibits significant
spatial and temporal fluctuations, as noted during the transient regime for the case
τ = 0.7 of figure 3. Our numerical results even suggest that, although the age-dating
errors lead to measurement errors that are larger overall in the presence of such temporal
fluctuations, parameter estimation is more accurate in those cases in which the model
solution is more sensitive to variations in the parameters, cf. figure 6. This sensitivity to
parameter variations may be attributed to the presence of nonnormal modes [46, 47].

This empirical fact has been noted in other parameter estimation problems. Consid-
erable experience with sequential estimation has accumulated over the last three decades
in meteorology, oceanography and climate dynamics [52, 53, 54]. In this area of data
assimilation, for instance, it is known that a model’s strong dynamic variability may help
reduce errors during the estimation procedure, whereas in a regime that corresponds to
exponential convergence towards a steady state serious limitations in error reduction may
arise [55]. We have shown in this study that the model’s response to random parameter
variations, as illustrated in [48], may help quantify these heuristic considerations and
provide further insight into the estimation algorithm’s performance.

More work is needed, however, in order to clarify the extent to which spatial and
temporal fluctuations of the solution, along with the presence of nonnormal modes, might
lead to more accurate parameter estimation when the observational data are subject to
age-dating errors. One could thus test the mechanistic-statistical method developed here
on weakly mixing chaotic systems, which seem to exhibit a linear response with small
slope to parameter variations [48], and compare it with the results for strongly mixing
chaotic systems, such as the Lorenz [56] model.

Finally, the mechanistic-statistical approach developed in this paper could be adapted
to other types of observations, as well as to other types of PDE models, such as stochastic
PDEs of PDEs with memory terms associated with the diffusion operator; the latter arise
in viscoelastic models or in heat conduction in a material with memory [57]).

The authors are grateful to D. Kondrashov for helpful discussions. This study was supported by the U.S.

National Science Foundation grant DMS-1049253 and the French “Agence Nationale de la Recherche”

within the projects PREFERED and URTICLIM.

Appendix A. Assumptions on c, k, f and α

The heat capacity c and the diffusion coefficient k satisfy:

(x, u) 7→ c(x, u) ∈ C1([0, 1]× R) and c > 0 on [0, 1], (A 1)

and
x 7→ k(x) ∈ C2([0, 1]) and k > 0 on [0, 1]. (A 2)

The functions f1 and f2 in (3.1) verify:

f1(t, x, u, v) ∈ C1(R+ × [0, 1]× R× R) (A 3)
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and
f2(t, u, v) ∈ C1(R+ × R× R). (A 4)

Furthermore, we assume that

f2(0, T0(0, x), H(0, x, T0(0, x))) 6= 0 for all x ∈ [0, 1]. (A 5)

The parameter α is assumed to be Lipschitz-continuous on [0, 1] and verifies

|α(x)| < M, ∀x ∈ [0, 1],

for some positive constant M.

Appendix B. Existence and uniqueness of the solution of the
general EBMM (2.5) for small times

The assumptions of Appendix A on c, f1, f2, α imply that we can define two Lipschitz-
continuous functions f− and f+, which are independent of the (unknown) function α
and such that,

f−(T ) ≤ min
x∈[0,1],t∈[0,δ]

f1(t, x, T,H(t, x, T0))−M |f2(t, T,H(t, x, T0))|
c(x,H(t, x, T0))

, (B 1)

and

f+(T ) ≥ max
x∈[0,1],t∈[0,δ]

f1(t, x, T,H(t, x, T0)) +M |f2(t, T,H(t, x, T0))|
c(x,H(t, x, T0))

, (B 2)

for all T ∈ R (δ is defined by eq. (3.3)). From the Cauchy-Lipschitz theorem, there exists
t∗ ∈ (0, δ) (which does not depend on α) and two functions T− and T+ in C1[0, t∗] which
satisfy:







(T−)′ = f−(T−) for t ∈ (0, t∗) and T−(0) = min
x∈[0,1]

T0(0, x),

(T+)′ = f+(T+) for t ∈ (0, t∗) and T+(0) = max
x∈[0,1]

T0(0, x).
(B 3)

We have the following Lemma:

Lemma 5.1. The problem (2.5)-(2.7) with f defined by (3.1) admits a unique classical
solution T ∈ C2

1 ([0, t∗)× [0, 1]) (i.e. the derivatives up to order two in x and order one
in t are continuous) such that T−(t) ≤ T (t, x) ≤ T+(t) for all (t, x) ∈ [0, t∗)× [0, 1].

Proof of Lemma 5.1: Let us set T −(t, x) = T−(t) and T +(t, x) = T+(t) for all
(t, x) ∈ [0, t∗)× [0, 1]. Since t∗ < δ, the term H(t, x, T ) in (2.5) is equal to H(t, x, T0) for
all (t, x) ∈ [0, t∗)× [0, 1]. Moreover, T − verifies, for all (t, x) ∈ [0, t∗)× [0, 1] :

c(x,H(t, x, T0))
∂T −

∂t
− ∂

∂x

(

k(x)
∂T −

∂x

)

− fα(t, x, T −, H(t, x, T0)) ≤ 0, (B 4)

together with the boundary conditions ∂T −

∂x
(t, 0) = ∂T −

∂x
(t, 1) = 0 for t ∈ [0, t∗) and

the initial condition T −(0, x) = T−(0) ≤ T0(0, x) for all x ∈ [0, 1]. Thus, T − is a
subsolution of the problem (2.5)-(2.7). Similarly, T + is a supersolution of (2.5)-(2.7) and
T − ≤ T + for all (t, x) ∈ [0, t∗) × [0, 1]. This implies (see e.g. [34]) that the problem
(2.5)-(2.7) admits a unique classical solution T ∈ C2

1 ([0, t∗(T0, f1, f2,M))× [0, 1]) such
that T −(t) ≤ T (t, x) ≤ T +(t) for all (t, x) ∈ [0, t∗)× [0, 1]. �
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Appendix C. Proof of Theorem 3.1

Let us set V = T − T̃ . Then the function V verifies:

c(x,H(t, x, T )) ∂T
∂t
− c(x,H(t, x, T̃ )) ∂T̃

∂t
=

∂
∂x

(

k(x) ∂V
∂x

)

+ fα(t, x, T,H(t, x, T ))− fα̃(t, x, T̃ ,H(t, x, T̃ )),

for all t ∈ (0, t∗) and x ∈ (0, 1). Note that V (0, x) = 0 for all x ∈ [0, 1].
Since t∗ < δ, we observe that for all x ∈ [0, 1] and all t ∈ (0, t∗)

H(t, x, T ) = H(t, x, T̃ ) = H(t, x, T0).

As a consequence, we get that the function V verifies:

c(x,H(t, x, T0))
∂V
∂t

= ∂
∂x

(

k(x) ∂V
∂x

)

+fα(t, x, T,H(t, x, T0))− fα̃(t, x, T̃ ,H(t, x, T0)),
(C 1)

for all t ∈ (0, t∗) and x ∈ (0, 1). Using (3.1), (C 1) leads to

c(x,H(t, x, T0))
∂V
∂t

= ∂
∂x

(

k(x) ∂V
∂x

)

+f1(t, x, T,H(t, x, T0))− f1(t, x, T̃ ,H(t, x, T0))

+α(x) f2(t, T,H(t, x, T0))− α̃(x) f2(t, T̃ ,H(t, x, T0)),

(C 2)

for all t ∈ (0, t∗) and x ∈ (0, 1).
Let us set

µ1(t, x) =

{

f1(t,x,T,H(t,x,T0))−f1(t,x,T̃ ,H(t,x,T0))

T−T̃
if T (t, x) 6= T̃ (t, x),

∂f1

∂T
(t, x, T,H(t, x, T0)) otherwise,

(C 3)

and

µ2(t, x) =

{

f2(t,T,H(t,x,T0))−f2(t,T̃ ,H(t,x,T0))

T−T̃
if T (t, x) 6= T̃ (t, x),

∂f2

∂T
(t, T,H(t, x, T0)) otherwise.

(C 4)

Since f1 and f2 are C1 with respect to T and continuous with respect to the other
variables, the functions µ1(t, x) and µ2(t, x) are continuous and bounded on [0, t∗)× [0, 1].
Using the definitions (C 3) and (C 4) together with the equation (C 2), we obtain:

c(x,H(t, x, T0))
∂V
∂t

=
∂

∂x

(

k(x)
∂V

∂x

)

+ µ1 V + α̃(x)µ2 V

+(α− α̃)(x) f2(t, T,H(t, x, T0)),
(C 5)

for all t ∈ (0, t∗) and x ∈ (0, 1).
Let x0 be defined as in the assumptions of Theorem 3.1, and let us set:

A+ =
{

x ≥ x0 s.t. (α− α̃)(y) ≡ 0 for all y ∈ [x0, x]
}

,

and

x1 :=

{

sup (A+) if A+ is not empty,

x0 if A+ is empty.
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Assumption: We assume that x1 < 1.

(i) We prove that there exist ρ ∈ (0, t∗) and x2 ∈ (x1, 1) such that:

(α− α̃)(x) f2(t, T,H(t, x, T0)) 6= 0 for all t ∈ [0, ρ] and x ∈ (x1, x2].

From assumption (3.4), the functions α and α̃ belong toM. Thus α− α̃ also belongs
toM. Therefore, there exists x′1 > x1 such that α− α̃ is analytic on [x1, x

′
1]. This implies

that either:

• (a) α− α̃ ≡ 0 on [x1, x
′
1];

or

• (b) there exists x2 ∈ (x1, x
′
1) such that (α− α̃)(x) 6= 0 for all x ∈ (x1, x2].

Case (a) is in contradiction with the definition of x1. Thus, α − α̃ 6= 0 in (x1, x2]. By
continuity, our assumption (A 5) on f2 implies that f2(t, T,H(t, x, T0)) 6= 0 for t > 0
small enough and for all x ∈ [0, 1]. Finally, there exists ρ ∈ (0, t∗) such that

(α− α̃)(x) f2(t, T,H(t, x, T0)) 6= 0 for all t ∈ [0, ρ] and x ∈ (x1, x2].

(ii) We show that the assumption x1 < 1 of step (i) leads to a contradiction.

From step (i), we know that the quantity (α−α̃)(x) f2(t, T,H(t, x, T0)) has a constant
strict sign in [0, ρ]× (x1, x2]. Assume that (α − α̃)(x) f2(t, T,H(t, x, T0)) > 0 in [0, ρ]×
(x1, x2]. Then, computing (C 5) at t = 0 and x = x2, we obtain

c(x2, H(0, x2, T0))
∂V

∂t
= (α− α̃)(x2) f2(0, T0(0, x2), H(0, x2, T0)) > 0.

Thus, from the assumption (A 1) on c, we have ∂V
∂t

(0, x2) > 0. This implies the existence
of some time ρ′ ∈ (0, ρ) such that

V (t, x2) > 0 for all t ∈ (0, ρ′). (C 6)

Moreover, the assumption (3.5) of Theorem 3.1 implies that V (t, x0) = 0 for all t ∈ (0, θ).
Setting

θ′ = min(ρ′, θ), K = max
t∈[0,θ′], x∈[x0,x2]

µ1 + α̃ µ2

c(x,H(t, x, T0))
, r(t, x) = µ1 + α̃ µ2 −K c ≤ 0,

and
W (t, x) = V (t, x) e−K t,

we observe that W verifies:

c(x,H(t, x, T0))
∂W

∂t
− ∂

∂x

(

k(x)
∂W

∂x

)

− r(t, x)W ≥ 0, (C 7)

for all t ∈ (0, θ′) and x ∈ (x0, x2) together with the initial and boundary conditions:

{

W (0, x) = 0, for all x ∈ [x0, x2],

W (t, x0) = 0 and W (t, x2) > 0, for all t ∈ (0, θ′).
(C 8)
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Finally, the function W satisfies all the assumptions of the strong maximum principle
(Theorems 5 and 7 in Chap. 3 of [58]), which implies that either W > 0 in (0, θ′)×(x0, x2)
or there exists some time t0 ∈ (0, θ′) such that W ≡ 0 in (0, t0) × (x0, x2). From the
boundary condition satisfied by W at x2, we necessarily have W > 0 in (0, θ′)× (x0, x2).

Since W > 0 in (0, θ′) × (x0, x2) and W (t, x0) = 0, the Hopf’s Lemma (Theorem 6
and 7 in Chap. 3 of [58]) implies that

∂W

∂x
(t, x0) > 0 for all t ∈ (0, θ′),

which contradicts the assumption (3.5) of Theorem 3.1.
The case (α− α̃)(x) f2(t, T,H(t, x, T0)) < 0 in [0, ρ]× (x1, x2] can be treated similarly

and also leads to a contradiction.
As a consequence, the assumption x1 < 1 is false, and therefore α ≡ α̃ on [x0, 1].

(iii) We prove that α ≡ α̃ on [0, x0].

Setting:

A− =
{

x ≤ x0 s.t. (α− α̃)(y) ≡ 0 for all y ∈ [x, x0]
}

,

and

y1 :=

{

inf (A−) if A− is not empty,

x0 if A− is empty,

we can prove, by applying the same arguments as above, that y1 = 0 and consequently α ≡
α̃ on [0, 1]. The uniqueness result of Lemma 5.1 then implies that T ≡ T̃ on [0, t∗)× [0, 1].
This concludes the proof of Theorem 3.1. �

Appendix D. Computation of the distribution function for the
observations

From the assumptions of our statistical model (4.2)-(4.3), at each site k the joint distri-
bution Fk of Yk(t1), . . . , Yk(tI) is

Fk(y1, . . . , yi) =

∫

R
I
+

I
∏

i=1

φ{yi | s(ti)}h(s1, . . . , sI)ds1 . . . dsI , (D 1)

where φ(· | s(ti)) is the probability density function of the conditional Gaussian distri-
bution N

{

T (s(ti), Sk), σ2)
}

and h is the joint density function of s(t1), . . . , s(tI). Equa-
tion (D1) can also be written:

Fk(y1, . . . , yi) =

∫

R
I
+





I
∏

i=1

φ







yi | θ −
i

∑

j=1

ηj











[

I
∏

i=1

gi,k(ηi)

]

dη1 . . . dηI

=

∫

R
I
+

I
∏

i=1



φ







yi | θ −
i

∑

j=1

ηj







gi,k(ηi)



 dη1 . . . dηI ,

where gi,k is the probability density function of the gamma distribution Γ{(ti−1−ti)/κ2, κ2}.
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If we consider a finite set of locations Sk, k = 1, 2, 3, the joint distribution of
{Y (ti, Sk), k = 1, . . . , 3} is

F (Y) =

3
∏

k=1

∫

R
I
+

I
∏

i=1



φk







yi,k | θ −
i

∑

j=1

ηj







gi,k(ηi)



 dη1 . . . dηI , (D 2)

where Y = {yi,k, i = 1, . . . , I, k = 1, 2, 3}, φk(· | θ −∑i

j=1 ηj) is the probability density

function of the conditional Gaussian distribution N
{

T (θ −∑i

j=1 ηj , Sk), σ2
}

, and gi,k

is the probability density function of the gamma distribution Γ{(ti−1 − ti)/κ2, κ2}.

Appendix E. Metropolis-Hastings algorithm

For the implementation of the MCMC algorithm, the likelihood function of the model
LY(α, T0) is computed as follows: As mentioned above, given a value for the parameter
α and given the initial condition T0, the equation (4.1) admits a solution T , which is
defined for all t ∈ [−τ, θ] and all x ∈ [0, 1]. Thus, we are able to compute the integrals in
(D 2) and the likelihood LY(α, T0) follows.

For our computations, we discretized the space into 31 positions xj = j/30, for j =
0, . . . , 30 and we assumed that α(x) was constant equal to αj on each interval (xj , xj+1).
The Metropolis-Hastings algorithm is an iterative rejection-sampling algorithm with steps
that are detailed below:

Start at k = 0 : initialize α0 = {α0
0, . . . , α

0
30}.

while k ≤ N

• Draw an index j with a uniform law in {0, . . . , 30}.

• Draw α̂j from a proposal distribution Q(α̂j |αk
j ).

• Choose randomly with an uniform law ζ ∈ (0, 1).

• Compute δ =
LY(α̂j , T0)π1(T0)π2(α̂j)Q(αk

j |α̂j)

LY(αj , T0)π1(T0)π2(αj)Q(α̂j |αk
j )
.

• If ζ < δ, αk+1
j = α̂j else αk+1

j = αk
j .

• αk+1
i = αk

i , for i 6= j.

• k ← k + 1

endwhile

We used normal distributions for the proposals. Namely, at each step k, α̂j was drawn
from a normal distribution with mean αj and variance 20. For our computations, the
number of step was set to N = 2 · 105.
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Appendix F. Computation of Rε

We define the L2-response of the model (4.1) over the time interval [0, θ] to a perturbation
ξ ∈ C([0, 1]), by

Rα;α+ξ(θ) :=
1√
θ
‖Tα − Tα+ξ‖L2(0,θ), (F 1)

where Tα = Tα(t) corresponds to the spatially averaged solution of (4.1) and Tα+ξ =
Tα+ξ(t) is the spatially averaged solution of (4.1) where α has been replaced by α+ ξ.

In order to have a general character, the response of a system cannot rely on a
particular perturbation. In that respect it is natural to define an average response of the
system to an arbitrary perturbation. Let Z be a stationary Gaussian random field defined
over [0, 1] with mean 0 and autocovariance function C(x, x′) = exp(−100‖x − x′‖), for
all x, x′ in [0, 1], where ‖ · ‖ corresponds to the Euclidian distance.

We define the average L2-response of our model over [0, θ] to perturbations of mag-
nitude (standard deviation) ε as the mean value Rε of Rα;α+εZ(θ). The numerical com-
putation of Rε has been carried out using 104 realizations z of the random field Z.

Other characterizations of the changes in model output, due to variations in the
parameters, were considered in [59], where the authors investigated an inverse heat con-
duction problem. See also [60] for related questions.

References

[1] Budyko, M. I. 1969 The effect of solar radiation variations on the climate of the Earth. Tellus, 21,
611–619; doi:10.1111/j.2153-3490.1969.tb00466.x.

[2] Sellers, W. D. 1969 A global climatic model based on the energy balance of the Earth atmosphere
system. J. Appl. Meteorol., 21, 391–400.

[3] Ghil, M. & Childress, S. 1987 Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics,

Dynamo Theory, and Climate Dynamics. Springer, New York.

[4] Held, I. & Suarez, M. 1974 Simple albedo feedback models of the icecaps. Tellus, 36, 613–629;
doi:10.1111/j.2153-3490.1974.tb01641.x.

[5] North, G. R., Cahalan, R. F. & Coakley, J. A. 1981 Energy balance climate models. Rev. Geophys.

Space Phys., 19, 91–121; doi:10.1029/RG019i001p00091.

[6] Ghil, M. 1976 Climate stability for a Sellers-type model. J. Atmos. Sci., 33, 3–20.

[7] Arcoya, D., Diaz, J. I. & Tello, L. 1998 S-shaped bifurcation branch in a quasilinear multivalued
model arising in climatology. J. Diff. Equations, 150, 215–225; doi:10.1006/jdeq.1998.3502.

[8] Hetzer, G. 1996 Global existence, uniqueness, and continuous dependence for a reaction-diffusion
equation with memory. Electronic J. Diff. Equations, 5, 1–16.

[9] Diaz, J. I., Hetzer, G. & Tello, L. 2006 An energy balance climate model with hysteresis. Nonlinear

Analysis, 64, 2053–2074; doi:10.1016/j.na.2005.07.038.

[10] Benzi, R., Sutera, A., & Vulpiani, A. 1981 The mechanism of stochastic resonance. J. Phys. A, 14,
453–457; doi:10.1088/0305-4470/14/11/006.

[11] Imkeller, P. 2001 Energy balance models – viewed from stochastic dynamics in: Stochastic Climate

Models, P. Imkeller, J-S Von Storch (Eds.), Prog. Prob. 49, Birkhäuser, 213–240.
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