
UC Irvine
ICS Technical Reports

Title
Automatic data/program partitioning using the single assignment principle

Permalink
https://escholarship.org/uc/item/1xg6h283

Authors
Bic, Lubomir
Nagel, Mark D.
Roy, John M.A.

Publication Date
1989
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xg6h283
https://escholarship.org
http://www.cdlib.org/


7i

M
tj

t, X>

Automatic Data/Program Partitioning Using the

Single Assignment Principle^

LubomirBi<^

ZTX Notice; This Material
may be protected

January 1989 by Copyright Law
(Title 17 U.S.C.)

Technical Report #89-08

Abstract

Loosely-coupled MIMD architectures do not suffer from memory contention; hence large

numbers of processors may be utilized. The main problem, however, is how to partition

data and programs in order to exploit the available parallelism. In this paper we show

that effrcient schemes for automatic data^rogram partitioning and synchronization may be

employed if single assignment is used. Using simulations of program loops common to

scientific computations (the Liveimore Loops), we demonstrate that only a small fraction

of data accesses are remote and thus the degradation in network performance due to multi

processing is minimal.

Keywords: array, cache, multiprocessor, distributed, single assignment

Department of Information and Computer Science

University of California at Irvine

Irvine, California 92717

This work was supportedby the NSF Grant CCR-8709817. Copyright© 1989.





Automatic Data/Program Partitioning Using the

Single Assignment Principle

1. Introduction

In scientific computations, most potential parallelism may be found in highly structured

data such as vectors and arrays. Current parallel architectures designed to exploit this

parallelism include pipelined processors (with vectorizing compiler support), SIMD array

processors, and MIMD architectures with either tightly or loosely-coupled processing

elements. Pipelined parallel processors form a specialized class of architectures that are

capable of achieving large speedups on structured numerical computations containing large

amounts of vectorizable code. However, as is noted in [R&F87], the maximum speedup is

limited and depends greatly on the proportion of vectorizable code present SIMD

multiprocessor architectures also are capable of extracting large amounts of parallelism

from vector problems, and the amount of parallelism generally increases with increasing

numbers of processors; however, the problem domain of most SIMD architectures is

limited (i.e., SIMD is not suited to general computing).

In this paper we consider loosely-coupled MIMD architectures. Because MIMD

architectures do not suffer from memory contention, they have the greatest potential for

large-scale parallelism. The main problems with loosely-coupled MIMD include: (1) the

need to find a good partitioning of the programs/data, (2) the need to introduce

synchronization primitives to avoid race conditions, and (3) the need to introduce

communication primitives for exchanging data among processors.

In this paper we show that a single assignment policy can produce a large degree of

parallelismwhilekeeping the amountof communication overhead low. In particular, for

programs that follow the single assignment policy, we show the following:

• A simple automatic scheme for partitioningof data and programs can be employed.

• Synchronization can be fully automatic usinga memory tagging mechanism



• Communication overhead for remote data accesses can be greatly reduced by using

data caches. Furthermore, due to the single assignment policy, cache coherence problems

are eliminated

The paper is organized as foUows. In Section 2 we discuss the benefits of single

assignment with respect to automated data/program partitioning. Section 3 shows how

synchronization may be simplified by using the single assignment principle. Next, in

Section 4, we present a simple scheme for data/program partitioning and discuss how

caching reduces communication overhead. In Section 5, we discuss some of the

disadvantages of single assignment programming and some approaches for overcoming

these problems. In Sections 6 and 7, we discuss our simulation and the resulting access

distribution classes. Finally, in Sections 8 and 9, we end with some conclusions and a

discussion of our future research.

2. Single Assignment and Data/Program Partitioning

Partitioning a program over multiple processing elements involves both data and

program partitioning. The programmer can do this partitioning (e.g., fork/join and '

cobegin/coend). This requires experienced parallel programmers and too much debugging

time to be generally applicable. It is also possible for the compiler to detect parallelism and

partition the program accordingly—most currently known methods are NP-complete,

although some progress has been made in this area ([PEI86] and [PGW87]). The main

problem with all these approaches is that data (variables) may be read and writtenfrom

many parts of the program (i.e., by different instructions). It is difficult to decide where to

place a variable with respect to the possible instructions thataccess thatvariable.

Furthermore, synchronization primitives must be inserted to prevent race conditions, and

communication primitives mustbe insertedto allowsharing of data across PEs. These

increase the chances for program errors.



Most of these problems can be drastically simplified if single assignment principles are

used. These principles require that no variable ever be assigned more than once throughout

its scope. When extended to arrays, the definition is less clear. Some have defined single

assignment on arrays as the requirement that the array be treated as a single object and thus

can be assigned to only once [DEN75]. This is acceptable in languages that have a

complete set of array operations, yet forming such a complete set can be very difficult. A

better definition of single assignment for arrays is that each element of an array may be

assigned only once. This allows a great deal more flexibility in the use of arrays, and this

relaxation of single assignment rules does not cause any problems given proper hardware

support.

With single assignment, only one instruction will ever write to a variable; it is the

producer of the data. We can use this fact by requiring that each variable be mapped onto

the same PE as its producer (i.e., the instruction that writes it). In other words, we do not

partition programs explicitly, only data. The corresponding instructions can be mapped

implicitly.

This is particularly attractive with arrays, which are typically accessed via loops. Each

array is subdivided into segments and these are distributed across the PEs. The loop body

accessing each cell is the same for each PE, and hence a copy is distributed to each PE.

Each PE uses this copy to produce its array subrange. More precisely, the partitioning of a

loop takes place as follows:

• Data partitioning is accomplished by segmenting each array into pages of some fixed

(perhaps parameterized) size. A pagep is allocated to the local memoryof PE P ifp

= P mod N, where N is the total number of available PEs.

• Control partitioning will be done by assigning to eachPE the responsibility for

updating the elements in all thearray pages it contains in its local memory.



As a simple example of this partitioning method, suppose we have a multiprocessor

with four PEs and a page size of 32 elements. Given three arrays A, B, and C, (each of

size 100) PE 0, PE 1, and PE 2 will each contain a single page of each array. PE 3 will

contain a partial page (4 elements) of each array. For the following simple loop:

DO 10 i = 1,100
10 A(i) = B(lOl-i) + C(i)

all four processors begin executing simultaneously—PE 0 fills A(1..32), PE 1 fiUs

A(33..64), PE 2 fills A(65..96), and PE 3 fills A(97..100). Note that for most of the loop,

eachprocessor mustaccess elements of arrayB that lie on a different processor than the

executingprocessor. A methodfor eliminating nearlyall of thiscommunication overhead

will be presented in Section 4.

Thus, data and program partitioning are achieved using simple rules which take

advantageof single assignment. These rules are sufficientfor most common forms of

loops (see Section 6).

3. Synchronization Through Single Assignment Programming

Single assignmentprinciples allow the implementationof a simple automatic

synchronization mechaitism. Each memory cell has two states—^undefined or defined. If a

cell is undefined, it may also have a queue of read requests associated with it. Hardware

enforces the write-before-read requirement. Some examples of architectures that have this

type of write-once/read-many memory access mechanism include HEP [S&F83] [SMI81]

and I-structure memory in dataflow [ANP87] [A&C86].

Prior to execution,an array is either undefinedor filled with initialization data (if

specified in theprogram). EachPEmaywrite only intoundefined array cells andonly into

those mapped to thatPE (i.e., eachPE is the producer of only thearray subranges mapped

to it). This is achieved by screening the array indices so thattherighthand side of the

assignment is evaluated only for a given PE's subranges. Whether only the correct indices

are generated, or if they aU are generated and then screened is animplementation detail.



The point is not to performthe calculations in a PE not responsible for writingthe

associated element.

Race conditions are avoided by this single assignment policy. There will never be a

race condition for writes to memory cell, since only one PE may write to any particular cell

and writing more than once results in a runtime error.

Thus the single assignment rule automatically enforces synchronization in a distributed

manner, no exphcit synchronization mechanisms are necessary—a major issue in other

programming paradigms.

4. Inter-processor Communication

We have seen that single assignment yields simple partitioning and synchronization

schemes. Remote read accesses, however, are not eliminated, since any instruction may

read any data item. If data is mapped onto the reading PE, the access is local, otherwise it

is remote; the PE must request the value from the responsible PE by sending a message.

Remote reads are synchronized just like local reads—^ifthe data item is not available, the

request is queued, and if the data item is available, the page containing that item is sent

back. During this remote read the requesting PE can perform other useful work. The

requesting PE may resume filling its subrange when the page arrives. This is where the

benefits of array caching come in, and array caching is greatly simplified because of the

single assignment principle.

Since the central idea in single assignment programming is to permit only one write to

any element, by requiring single assignment we can guarantee that a page fetched from a

remote PE and cached locally will not need any further updates during the lifetime of the

array, ignoringfor now the possibilityof partially filled pages. Given this, each PE may

safelycache a remotelyfetchedpage in a local data cache,preventing future accesses of the

sameremote page. The cacheused will be of fixed sizeand thus must use somesortof

page replacement strategy. For our simulation, we chose a least-recently-usedpage



replacement strategy. This choice leads to some interesting results discussed in a later

section.

Without single assignment, partitioning data amongPEs is possible, but it would

require excessivecommunication overhead to allow any instmction to write to any location

of an array. In addition, caching would be nearly useless as each write performed would

require the updateof all remotecachescontaining the modifiedpage. The machinecould

broadcast or multicast these updates to avoid the inefficiencies of individual messages, but

the broadcasts would still strain the network facilities. Not only that, but without single

assignment thecaches would be inconsistent for theduration of thepagemodification

broadcast (cache coherency problem). If no cache approach is taken, no page modification

broadcasts will be necessary, and there will be no inconsistency problems. But, the use of

caching leads to considerable decreases in total remote accesses performedas is shownlater

in our simulation results.

We consider a set of loops (extracted from the Livermore Loops benchmark program)

with data access pattems that are typically found in scientific programs. Using these we

show that a simple data partitioningapproach works well even with many PEs.

The main questions we are interested in answering are:

Given a simple static data partitioning scheme,

• how important is each program's access pattern?

• what is the overall percentage of remote accesses?

• how much can this be reduced by adding a data cache?

• how well balanced are the remote accesses?

5. Problems with Single Assignment

From the above discussion we see that enforcing single assignment policy can offer

several advantages forMIMD architectures. Experience with single assignment languages

has shown, however, that it is difficultto implement programs under such a restriction.



Much of this attitude arises from the ingrained nature of the von Neumann model. The

requirement of single assignment is not as restrictive as it might appear—from a

programming standpoint, there are several alternatives, including:

• Use a single assignment language. Here the rule is enforced automatically through the

language semantics. In some cases, adherence can be determined completely at compile

time (e.g., functional languages [ACK82]).

• Use a conventional language. In this case, the burden is placed on the programmer to

ensure that the rule is not violated. In most cases, the same programming techniques

and algorithms can be used, but arrays cannot be reused—once written, they cannot be

changed. A way to relax the single assignment policy in a controlled manner so that

memory costs do not become too high is presented below. Conventional compilers can

be modified to perform data path analysis to help programmers adhere to single

assignment rules.

• Use an automatic conversion tool. For many conventional loops, this conversion will

be straight-forward and can be done by a translator program. These translators will

tend to increase the amount of memory used for array storage, especially in those

programs that reuse arrays many times in the same loop.

In statically allocated systems, the resulting inefficiency with memory usage can be

solved by providing a special array re-initialization construct. Each PE's re-initialization

must synchronize in some way with the re-initializationrequests of all other PEs. We have

formulated a method for performing this synchronization that is based on the concept of a

hostprocessor. In this method, each array in a computation has a specific PE assigned to it

as an administrative center called the host processor. The host processor serves as a

gathering point forre-initialization messages. In order toevenly divide this work among all

PEs, the compiler ensures that the hostprocessors areevenly distributed among the arrays.

For the re-initialization of somearrayA,each PE sends a re-initialization message toA's

host processor. These messages are collected until the last PEhas requested



re-initialization. Once this happens, the host processor for A broadcasts a message to the

other PEs informing them that A can now be reused. Thus, the host processor acts as a

synchronization point for A so that no PE uses attempts to write to an out-of-date version

of A. This prevents the creation of too many copies of an array in tight loops at the

expense of an artificial synchronization point. Deallocation of arrays must be based on the

same kind of host processor synchronization. (A more complete discussion of this

mechanism is beyond the scope of this paper.)

6. Description of the Simulation

In order to study the effect of using a single assignment MIMD machine with a per-PE

arraycache, we implementeda simulation to measurethe distribution of local, cached,and

remote reads for an abstract multiprocessor architecture. The parameters that we varied

were:

• number of processors

• page size (in units of atomic data elements)

Since the main goal of the simulation was to show that an array cache would decrease

the percentageof remote accesses required, we chose a small fixedcache size (256

elements). Since the number of cache pages is dependent on the page size, the number of

cache pages varied as well, but was not a simulation variable. Even a cache size this small

proved sufficient to reduce the remote access percentage in many cases.

7. Simulation Results

Using the Livermore Loops, we mapped arrays onto a set of PE using the partitioning

scheme described above with multidimensional arrays mapped to a linear address space

through row-major ordering. Accesses to array elements were categorized as follows: write

(always local), local read, cachedread,remote read. The totals of eachaccess typewere

accumulated for the execution of each program. For each loop, the percentage of all reads

which were remote (% of ReadRemote) indicates howwellour approach handles the loop



access pattern. Another important measure of performance is the distribution of work

among the processors. The following sections present the results of the simulation.

7.1. Remote Access Overhead

By examining graphs produced by the simulation data, we were able to classify the

various loops based on their access patterns. The four classes we observed are described

below.

7.1.1. Class 1: Matched Distribution

The first class we observed consisted of those access pattems that have all array indices

equal to one another throughout the execution of the loop, i.e. there is no skewing of array

accesses. A typical loopfragment from a member of thisclass, 1-DParticle in a Cell, is:

DO 1 k = l,n
1 RX(k) = XX(k) - IR(k)

Note how the same array index is used for all array accesses in the calculation. Access

pattems that fall into this class will always achieve a 0% remote access ratio. Caching has

no effect on the access ratio since each PE can write to its segments by reading segments of

the other arrays locally.

7.1.2. Class 2: Skewed Distribution

The second class we observed, skewed distribution (SD), displays a sequential access

pattemsin matched distribution, but the indices usedin each arrayareoffsetfromone

another by a constant. As the index steps through the arrays, remote accesses willneed to

be performed for the elements lyingpastpageboundaries. Since a pageboundary implies a

remote access (exceptfor the singlePE case), the loops in this class performremote

accesses.

We found that loops in this class occur often in the Livermore Loops. Forexample,

Hvdro Fragment. Tri-Diagonal Elimination. Equation of State Fragment. Explicit



Hydrodynamics Fragment. First Sum, and First Differenrial were all in this class. The

inner loop fragment from Hydro Fragment is:

DO 1 k = l,n
1 X(k) = ,Q + Y(k) * (R*ZX(k+10) + T*ZX(k+ll))

SD accesspatterns tend to achieye a yery low (< 10%) remote access ratio (see Figure

1). This is because the access patterndisplays a large amountof localityof reference—the

number of remote accesses is usually small as the skew is generally a few elements. When

the skew is large, the remote access percentage increases, but caching eliminates the cost of

a largerskew. Theeffectof caching in thiscasedepends on the value of the skew

constant. For a skew of one, the cache has no effect, for a skew of two, the cache saves

one remote access, and so on. For larger page sizes, the cache helps proportionally to the

page size. Ofcourse, if the page size is toolarge, the work will notspread over a sufficient

number of PEs.

20.00% • •

15.00% • •

10.00% • •

5.00% • •

0.00% •

Hydro Fragment

T r

4 8 16

Number of PEs

Cache, ps 32

No Cache, ps 32

Cache, ps 64

No Cache, ps 64

RGURE 1. SKEWED ACCESS PATTERN (SKEW OF 11). CACHING IS
IMPORTANT IN THIS COMMON CLASS.

10



7.1.3. Class 3: Cyclic Distribution

This third class, cyclic distribution (CD), occurs when a fixed set of pages is accessed

in a cyclic order. The Incomplete Choleskv-Coniugate Gradient is an excellent example of

this. The bulk of the loop is:

II = n

IPNTP = 0

22 IPNT = IPNTP
• IPNTP = IPNTP +11

II = II/2
i = IPNTP

DO 2 k = IPNT+2, IPNTP, 2
i = i + 1

2 X(i) = X(k) - V(k)*X(k-l) - V(k+l)*X(k+l)
IF (II.GT.l) GOTO 22

Note that this is single assignment; the characteristics of this loop restrict the value of i

such that i>k+l. The access distribution is cyclic because the write index (/) is changing

twice as slowly as the read index (k). This allows caching to become nearly perfect as the

number of PEs increase. At 32 PEs with cache size of 64, each PE is responsible for the

writing of only one page. Once a remote read is done, the remote page remains cached.

Without a cache, CD displays poor performance, since the accesses jump from page to

page and most are remote. However,with a cache the percentage of remote accesses

decreases as the cache size increases and as the number of PEs increases. The explanation

for this is that as the computation gets spread over more and more PEs, the total size of the

cache increases. Thus, as the number of PEs increases and each PE is responsible for

writinga smallerportion of the array, the cycle length tends to decreasefor each PE.

Given this, each PE is more likely to contain all of an access cycle in its cache (see Figure

2).

11.



100.00% -•

0 90.00% -•

f
80.00% -•

R 70.00% ••

e
60.00%

a

d 50.00%

s
40.00%

R 30.00%

e 20.00%
m

0 10.00%

t 0.00% d
e

1

IncompleteCholesky- ConjugateGradient

4 8 16

Number of PEs

Cache, ps 32

•®- No Cache, ps 32

Cache, ps 64

No Cache, ps 64

RGURE 2: CYCLIC ACCESS PATTERN. CACHING AND PAGE SIZE CAN
REDUCE THE PERCENTAGE OF REMOTE READS SIGNIFICANTLY.

The 2-D Explicit Hydrodynamics Fragment is an example of CD in which the cycling

arises from the multidimensionality of the arrays. In one dimension, skewed distribution

occurs, but in the other dimension, the pages are accessed in a cycle, so we observe a

decrease in the percentage of remote accesses as the number of PEs increases. This

behavior can be seen in Figure 3. An inner loop fragment from the 2-D Explicit

Hvdrodvnamics Fragment is:

DO 70 k = 2,6
DO 70 j = 2,n
ZA(j,k) = (ZP(j-l,k+l) + ZQ(j-l,k) - ZP(j-l,k) - ZQ(j-l,k))

* (ZR(j,k) + ZR(j-l,k)) / (ZM(j-l,k) + ZLi (j-l,k+l) )
ZB(j,k) = (ZP(j-l,k) + ZQ(j-l,k) - ZP(j,k) - ZQ(j,k))

* (ZR(j,k) + ZR(j,k-l)) / (ZM(j,k) + ZM(j-l,k))
70 CONTINUE

Notice how both indices are skewed such that a cycle occurs in the access pattern.

12



% S.00%

0 1.00%

f

6.00%

R

e 5.00%

a

d 4.00%

s

3.00%

R

e 2.00%

m

0 1.00%

t

e 0.00%

2-D Explicit Hydrcxiynamics Fragment

4 8 16

Number of PEs

Cache, ps 32

No Cache, ps 32

Cache, ps 64

No Cache, ps 64

RGURE 3: Cyclic and Skewed access pattern Combination.

EXfflBITS EXCELLENT RESULTS AIDED FURTHER BY CACHING.

The examplesabove are rather counter-intuitive, yet very importantresults. Currently

we are conduction further research to determine under what configuration or parameters a

given programwould approach0% remote accessratio.

7.1.4. Class 4: Random Distribution

The final class is the random distribution (RD). RD covers loops that access various

parts of the linearaddress spacein a seemingly randomfashion. This behavior can occur

when multi-dimensional arrays are combinedwith skewedaccesses. The GeneralLinear

Recurrence Equations and A.D.T. Integration are both in thisclass. Innerloop statements

from the A.D.I. Integration are:

DO 8

Ul(kx,ky,2) = Ul(kx,ky,l) + All*DUl(ky) +A12*DU2(ky) + A13*DU3(ky)
+ SIG* (U1 (kx+l,ky,l) - 2. *U1 (kx, ky, 1) + Ul (Icx-l, ky, 1))

U2(kx,ky,2) = U2(kx,ky,l) + A21*DU1(ky) +A22*DU2(ky) + A23*DU3(ky)
+ SIG*(U2(kx+l,ky,l) - 2.*U2(kx,ky,1) + U2(kx-1,ky,1))

13



U3(kx,ky,2) = U3(kx,ky,l) + A31*DU1(ky) +A32*DU2(ky) + A33*DU3(ky)
+ SIG*(U3(kx+1,ky,1) - 2.*U3(kx,ky,1) + U3(kx-1,ky,1))

8 CONTINUE

RD exhibits large remote access ratios regardless of the presence or absence of caching

(see Figure 4). This invariance can be due either to a cycle in the access pattem that is too

large to fit in the cache, or to effectively random page accesses (e.g., permutation lookups).

The effect of the cache is minimal, because no page is being kept until it is needed again.

This is similar in many ways to thrashing in virtual memory systems. It is possible that

increasing the numberof PEs will help only if the access pattems form a cycle that is too

large to fit in the cache. Increasing the cache size will help here by allowing a complete

cycle to residein the cacheor increasing the probability of a cachehit simply by having

more of the remote pages stored locally.

70.00%

0

f 60.00%

R 50.00%

e

a 40.00%

d

s 30.00%

R 20.00%

e

m 10.00%
0

t 0.00%
e

GeneralLinearRecurrence Equations

4 8 16

Number of PEs

Cache, ps 32

•O" No Cache, ps 32

Cache, ps 64

No Cache,ps 64

FIGURE 4. RANDOM ACCESS PATTERN. POOR PERFORMANCEOF RD
CAN BE OVERCOME BY LARGER CACHE SIZES.

7.2o Load Balancing

The previous section showed that automatic partitioning can result in very small ratios

of remote accesses when measuredover the entire processornetwork. Another important

14



aspect ofautomatic partitioning is load balancing (i.e., how evenly distributed are the

computations?).

To consider load balancing behavior we use the number of remote and local reads per

PE as a measure of how well the program is distributed. Figure 5 shows that each of the

sixty-four PEs performs a comparable number of remote reads and local reads, hence the

area-of-responsibility conceptbalances most loops well. In each loop, each PE performs

similar amounts of remote access because each PE was responsible for similar amounts of

the array. In cases where the amount of remote reads depends upon which element is being

written, the load balancecan be skewed. In thesecases the lightly loadedPE can continue

onwith the program or context switch to another program. Wefound thatnearly allof the

Livermore Loops exhibited a loaddistribution pattern like thatin Figure 5.

Load Balance Data of a Typical SD Loop
(2-DExplicitHydrodynamics Fragment, pagesize32)

QJ 400

200

100

T 6950

• 6900

-• 6850

6800 ^

•• 6750 I
-• 6700

-• 6650

66000 llllllllllllllllllllllllllllllllllllllllllllllllll

1 5 9 1317212529 33 37 414549 53 57 61

Processor Numbers (64processors)

Remote with Cache

•Q" Remote with No Cache

Local with No Cache

Local with Cache

FIGURES. TYPICAL REMOTE ACCESS LOADBALANCE. EVENLY
BALANCED LOADS RESULT FROMTHE AREA-OF-RESPONSIBILITY

Concept.

15



8. Conclusions

The combination of single assignment, areas-of-responsibility, and caching leads to

low communication overhead and well-balanced loads when applied to the majority of the

Livermore Loops. Single assignment permits the exploitation of large numbers of PEs

automatically. Synchronization problems are solved through the adoption of the single

assignment policy. By segmenting array writes using the area-of-responsibility concept, all

PEs^performroughly the same number of remote accesses. These two concepts allow

caching to be implemented without extensive communication, and caching is central to

reducing remote accesses in the most common classes.

To answer our primary questions:

• How important is each program's access distribution?

Four different access classes cover the range of scientific computing. The most

common class (SD) exhibits extremely low percentages of remote accesses (1% to 10%).

Other, poorer performing classes (also less common) can be aided by larger cache sizes.

• What is the overall percentage of remote accesses?

For most access distributions, the percentages of remote accesses are less than 10%

when using a cache of 256 elements (fairly small). For certain access distributions (RD)

the remote access percentage can be rather high. We are continuing research into how to

handle this special access distribution class.

• How much can the remote accesses be reduced by adding a data cache?

Depending upon the access distribution class, caching can have anywhere from a

minimal effect to an extremely large effect (e.g., for an SD loop with large skew, we

observed a reduction from 22% remote reads to 1% remote reads). Since SD is by far the

most common class, this reduction is significant in many areas of scientific parallel

computing.

• How well balanced are the remote accesses?

16



Because single assignment and equal partitioning force a nearly equal number of writes

on each processor, the number of remote reads are also fairly equal. Thus the remote

accesses are well balanced for the majority of cases. Our simulation results show this to be

true for almost all of the Livermore Loops. The exceptions are those computations that are

inherently difficult to parallelize under any paradigm and exhibit access patterns that

correspond in many ways to thrashing in virtual memory systems.

Process alignment, as currently being considered by some researchers, ([PGW87] and

[A&N87]) is no longer necessary. The analysis used in process alignment was used to

transform SD loops to decrease communication overhead. By caching the elements in

pages, the localityof reference in SD loops is exploited, and only one remoteread is

necessary for all elements in a page (in real systems, a single page might have to be fetched

more than once if that page is only partially filled at the time of the first request, but the

overall communication overhead will still be much smaller).

9. Future Research

This is the first step in the development of a new approach to distributing arrays. The

concepts presented here play a key role in the design of a parallel model of execution on

which we are currently working. To further understand the advantages and disadvantages

of this approach, we need to examine a variety of issues:

• How will vector to scalar operations be implemented? Current ideas include the

extension of the host processor mechaiusm to allow collection of subrange results.

• A more sophisticatedsimulationwill betterexplore the problems of execution time

and network contention.

• A betterapproach to RD access pattems is needed. Different partitioning schemes

needto beexplored as well as larger cache sizes. We will lookintohow the

techniques developed for handling thrashing in virtual memory systems apply to this

model.

17



• If it turns out that the different classes of access patterns form a nonintersecting set

with respect to performance under different partitioning methods, then we must

explore ways for providing different programmer- or compiler-selectable partitioning

schemes. These would allow the programmer or compiler to select the partitioning

method based on some analysis of the access behavior. For example, we have seen

that our simple modulo partitioning scheme performs worse for certain loops than a

division scheme. If no third scheme can be found that allows all types to perform

well, it may become necessary to allow the selection of one or the other scheme based

on the access distribution class.

• Other parameters might be programmer- or compiler-selectable. For example,

allowing the programmer or compiler to select the page size might prove useful for

reducing communication overhead in some classes of loops. We need to determine if

such variability can be provided efficiently.

We are currently extending our simulation so it provides more information, and we are

adding the mechanism described in this paper to a low level "emulation" of the execution

model we are developing. Based on these preliminary results, we believe that our approach

will eventually answer a difficult question in distributed processing: how can data be

efficiently distributed?

10. References

[A&C86] Arvind and D.E. Culler. Dataflow Architectiures, Annual Reviews in
Computer Science, Vol. 1 1986, pp. 225-253.

[A&N87] A. Aiken and A. Nicolau. Loop Quantization: an Analysis and
Algorithm, Technical Report 87-821, Dept. of Computer Science,
Cornell Univ., March 1987.

[ACK82] W.B. Ackerman. Data Flow Languages, Computer, Feb. 1982, pp.
15-24.

[ANP87] Arvind, R. Nikhil, and K. Pingali. I-structures: Data Structures for
Parallel Computing, Computation Structures Group Memo 269,
Laboratory for Computer Science, MIT, February 1987.

18



[DEN75] Dennis, J. B. First Version of a Dataflow Procedure Language.
MAC Technical Memo 61, MIT, Cambridge, Mass.

[PEI86] J.-K. Peri. Program Partitioning and Synchronization on
Multiprocessor Systems, Ph.D. Thesis, Univ. of Illinois at Urb.-
Champ., Rept. No. UIUCDCS-R-86-1259, Mar. 1986..

[PGW87] J. Peir, D. Gajski, and M. Wu. Programming Environments for
Multiprocessors, Supercomputing, North-Holland, 1987, pp. 73-93

[R&F87] D. A. Reed and R. M. Fujimoto. Multicomputer Networks: Message-
Based Parallel Processing, MIT Press, 1987.

[S&F83] Architecture and Applications of the HEP Multiprocessor Computer
System, Denelcor, Denver, Colorado, 1983.

[SMI81] B.J. Smith. Architecture and Applications of the HEP Multiprocessor
Computer System, SocietyofPhoto-Optical Instrumentation
Engineers, Vol. 298, Rei-time Signal Processing IV, Aug. 1981, pp.
241-248.

19




