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ABSTRACT OF THE DISSERTATION 

 

Every Number In Its Place:  

The Spatial Foundations Of Calculation And Conceptualization 

 

by 

 

Tyler John Simons Marghetis 

Doctor of Philosophy in Cognitive Science 

University of California, San Diego, 2015 

 

Professor Rafael Núñez, Chair 

 

Mathematics involves thinking and communicating about the absent and abstract. 

Our primate brains and bodies, by contrast, evolved for the mundane exigencies of the 

concrete here-and-now. How, then, do we make sense of notions that lie beyond the reach 

of action and perception? Recent proposals suggest that mathematical cognition recycles 

neural systems specialized for processing space and action, assembled and coordinated by 
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cultural practices. Every Number in its Place explores this spatialization of arithmetic, the 

coupling of number and space in calculation, conceptualization, communication, and culture. 

Inspired by 17th century debates about the reality of imaginary numbers, the five 

experiments of Chapter 2 demonstrate a novel phenomenon: a sagittal number-line. Thinking 

about negative and positive integers induces spatial dispositions to move backward and 

forward, respectively. I argue that these dispositions constitute, in part, our mathematical 

habitus, dispositions to act and think that reflect and reproduce our conceptual systems.  

Chapter 3 describes the recruitment of space not just for isolated numbers but for 

calculation. During mental arithmetic, participants’ hand movements revealed systematic 

spatial biases, as if calculation involves shifts in spatial attention along a mental number-line. 

This occurred even when the calculation was exact and symbolic, rather than approximate, 

lending support to proposals that arithmetic co-opts parietal circuits for spatial attention. 

Mathematics requires not only rote calculation with numbers, but meaningful and 

reflexive reasoning about numbers. Combining observation and experiment, Chapter 4 

analyses spontaneous gestures produced during mathematical reasoning to argue that we 

conceptualize arithmetic, in part, using a system of complementary spatial metaphors.  

Chapter 5 investigates the contribution of the communicative body to perpetuating 

and propagating this spatial understanding. A series of lab- and internet-based experiments 

demonstrate that co-speech gesture shapes and spreads the mental number-line, a process I 

call “gestural contagion.” Together, Chapters 3 and 4 foreground the body as a nexus for the 

cultural reproduction of mathematics, both disciplined by and disciplining abstract thought. 

In sum, this essay is a case study of the production and reproduction of a conceptual 

system, of the relation between agency and structure, and of the origins of abstraction. 



1 

Chapter 1 

Introduction  

 

“[Space] provides a location for all things that come into being. […] [E]verything that exists must of 

necessity be somewhere, in some place and occupying some space, and that that which doesn’t exist 

somewhere, whether on earth or in heaven, doesn’t exist at all.” – Plato, Timaeus. 

 

1.1. “The Body of the Condemned”1 

On a Thursday afternoon in October 2010, a college student stands before a half-

dozen of his peers, agonizing, condemned to generate a proof or fail before their watchful 

eyes. They had assembled weekly throughout the academic quarter to learn how to really do 

mathematics. These were no remedial students. A self-selected group of high-achievers, they 

were training for the William Lowell Putnam Competition, an annual mathematics 

competition for the best college students across North American. The competition consists 

of a dozen problems. The maximum score is one hundred twenty. The median score? Zero, 

often. But today there is to be success. The student at the blackboard defends a critical step 

in his argument by coordinating speech, sketches, equations, and body movements (Figure 

1.1). He finishes, pauses. The professor nods. And thus the proof is accepted as valid within 

this community of practice.  

This brief segment of situated activity illustrates a central feature of mathematical 

practice, and cultural practices more generally: the coordination of sundry resources—

                                                

1 Cf. Foucault (1995, ch. 1).  
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resources that span brain, body, and sociotechnical world—brought together into a more-or-

less stable assemblage. Let us zoom in on one particular facet: the student’s recruitment of 

space to reason and communicate about abstract mathematical entities.  

As he works to prove the assigned theorem2, the student spatializes numbers in three 

observable ways: by creating blackboard inscriptions; by speaking about the relations 

between numbers; and by gesturing. We shall refer to these as “sites” of spatialization. Over 

the course of his argument, these sites come in and out of coordination, sometimes coupled, 

sometimes independent, both entwined and autonomous.  

First: the inscription. In an effort to decide how two inequalities might relate to each 

other, he decides to “graph them because I want to see what I’m doing” (25:07).3 He 

sketches a standard Cartesian coordinate system (visible in the first panel of Figure 1.1). This 

coordinate system is the material manifestation of a stable graphical norm in which numbers 

are spatialized along two axes: positive numbers located to the right and top, negative 

numbers to the left and bottom. Within this coordinate system, he draws two curves to 

represent the possible values for “delta” and “epsilon,” variables in his proof. This transient, 

chalky artifact spatializes numbers by associating them with specific locations according to 

stringent graphical norms. As a result, relative magnitude is legible as relative location.  

Once created, his diagram becomes a target for speech and gesture, two more sites 

of spatialization. With his right hand, he traces the graph of possible values of delta, moving 

his hand from bottom-left to top-right (Figure 1.1, b). He then steps back to trace a similar 

                                                

2 Theorem: Let xi, i = 1, 2, …, n, be real numbers which add up to 0 and whose sum of squares is 1. What is the maximum 

value of x1x2 + x2x3 + ... + xnx1? I leave the solution to the reader. 

3 Numbers in (parentheses) indicate the start time of the utterance.  
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arc through the air, now decoupled from the blackboard and produced on a larger scale 

(Figure 1.1, c). With his left hand, finally, he traces a trajectory that mirrors the shape of the 

“epsilon” graph, though at a distance from the graph itself (Figure 1.1, d). His blackboard-

coupled gesture laminates the static inscriptions with a dynamic trajectory, while his 

decoupled gestures spatialize numbers in a vertical plane within his gesture space.  

Simultaneously, he describes the variables or their graphs as if they exhibited 

movement: 

(1) Deltas will go like this. Epsilons will go like this. And then they’ll re-cross 

somewhere up here. (26:04) 

The underlined words assign motion to numbers that are, technically, motionless—a 

linguistic phenomenon known as abstract or fictive motion (Langacker, 1987; Talmy, 2000; 

Matlock, 2010). His gestures, meanwhile, enact an oriented trajectory, traced through the air, 

and thus animate the graphs themselves when his gestures are coupled to the blackboard, 

and the numerical deltas and epsilons when his gestures are decoupled. Both gesture and 

speech prompt his interlocutors to construe the numbers and graphs as dynamic entities, 

imposing a fictive motion on static mathematical entities (Núñez, 2006; Marghetis & Núñez, 

2013, Núñez & Marghetis, in press). 

Slightly later, he describes both a number from the theorem and the slope of the 

graphed function with language typically reserved for physical size: 

(2) And we said ai is bigger, so the slope of the deltas is bigger. (26:35) 

Neither ai  nor the slope of the function are the kinds of things that can be literally “bigger” 

than anything. Perhaps they are numerically greater, an abstract relation. But by using “bigger” 

to describe the numerical relations, he associates abstract numerical magnitude with concrete 
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spatial volume. Soon after, he describes the point of equality between delta and epsilon as 

occurring “up here,” when of course numbers do not literally inhabit particular locations.  

By the end of this brief scene, larger numbers are higher and rightward on the 

blackboard, upward and rightward within gesture space, and bigger in speech, while both his 

inscriptions and the numbers themselves are moving and crossing. And yet the deltas, as 

numbers, are not going anywhere; they are a static set of possible numerical values, not 

dynamically moving entities. His graphs are static buildups of chalk; they sit, inert, on the 

surface of the blackboard. Numbers are not literally higher, lower, bigger, or smaller. But 

through the temporally and semiotically coordinated use of speech, gesture, and inscription, 

he evoked numbers that have size and location, sets and inscriptions that have dynamic 

trajectories through space.   

The student, therefore, spatializes number simultaneously in a variety of 

interconnected sites—speech, gesture, blackboard—that build on and constrain each other. 

Speech and gesture add motion to the static spatialization of the graph. The graph initially 

constrains the trajectory of his initial gesture, which is “environmentally-coupled” to the 

blackboard (Goodwin, 2007). And when he describes the point of equality between delta and 

epsilon as occurring “up here,” his speech is constrained by the spatialization of gesture and 

inscription. His mathematical success depends in part on his ability to deploy these varied 

semiotic resources in concert, using space to explore and express numerical relations.  
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Figure 1.1. The situated activity of mathematics requires coordinating diverse resources, 
many of which spatialize number and arithmetic. The student first anchors his gesture to a 
graph of numerical relations (b), and then enacts the numerical relations on a larger scale, 
decoupled from the blackboard (c-d). In speech, / indicates a pause and * a self-interruption. 
Speech accompanying a gesture is enclosed in [square brackets], with the gesture stroke in 
bold and any holds underlined.  

S1 (25:51 - 26:07):

(1) If the slope of the deltas is greater than the slope 
of the / epsilons [at this point,]

(2) then / there will be / [some / ] 

(3) [/ *Deltas will go like this.

(4) [Epsilons will go like this. And then they’ll re- / ]

(5) [cross somewhere up here. / ]

a

b

c

d
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1.2. An ecosystem of arithmetic 

“The dimension of time has been shattered; we cannot love or think except in 

fragments….” –Italo Calvino, “If on a Winter’s Night a Traveler” 

 

Throughout our mathematical lives, both expert and everyday, numbers and 

arithmetic are systematically and reliably coupled to aspects of space—that is, they are 

spatialized. An artifact, behavior, or process spatializes number whenever, implicitly or explicitly, 

it systematically associates some property of number—typically magnitude or order—with a 

property of space—typically extent or location. A number-line drawn on paper, for instance, 

spatializes number by associating numbers with locations, numerical order with spatial order, 

and numerical magnitude with the distance from the origin.  

Spatialization recurs throughout the blackboard scene described above, and it is 

ubiquitous across diverse sites of signification. Numbers are spatialized in speech, where the 

language of space is systematically deployed to describe numerical relations (§1.1.1). They are 

also spatialized in artifacts and practices, where cultural norms regulate the use of space to 

represent number (§1.1.2). They are spatialized in spontaneous, communicative movements 

of the body, which recruit space in reliable ways (§1.1.3). And they are spatialized in the 

brain, where the processing of number and arithmetic is closely related to the processing of 

space, a link that manifests itself as spatial biases in rapid numerical behavior (§1.1.4).  

As we shall see, the limits of this spatialization are yet to be fully understood—

whether exact, symbolic calculation or advanced concepts like negative integers are 

spatialized in individual minds and brains (but see Chapters 2 and 3). Nor do we understand 

how various sites of spatialization come in and out of coupling with each other, and how this 
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entwining of autonomous sites contributes to the reproduction of mathematics as a body of 

knowledge as well as an activity (but see Chapters 4 and 5). But there is now an extensive 

literature on the spatialization of number. In what follows, I briefly survey the evidence of 

spatialization in a variety of autonomous but interrelated sites: speech, things, practices, 

bodies, and brains. I argue that these diverse sites of spatialization are largely autonomous, 

relying on distinct mechanisms and operating on different timescales. But I also argue that 

they are so inextricably entwined as to constitute a stable assemblage within the cognitive 

ecosystem of arithmetic, a set of mutually constraining and sustaining cognitive resources 

that span brain, body, and sociotechnical world (cf., Hutchins, 2010). 

1.2.1. First site of spatialization: Speech 

English, like many languages, exhibits a systematic polysemy in which talk of 

numbers exploits a broad range of spatial language. This linguistic spatialization includes 

language typically used to express (i) locations in spatial frames of reference, (ii) topological 

relations like containment, and (iii) motion through space (cf., Levinson, 2003). Compare 

these pairs, in which the same linguistic constructions describe both space and number:4 

 

(3) (a) Mount Everest is higher than Mount Logan. [spatial frame of reference] 

(b) Two is higher than one. [numerical frame of reference] 

(4) (a) The coffee is in the cup. [spatial containment] 

(b) Five is in the interval between one and ten. [numerical containment] 

(5) (a) The car is on the road from Tijuana to San Diego. [spatial contact] 

                                                

4 Throughout this section, underlining is used to highlight numerical uses of spatial language.  
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(b) The function is defined on the interval from one to ten. [numerical contact] 

(6) (a) The bike route from Los Angeles to Santa Barbara goes past countless 

world-class beaches before reaching Santa Barbara. [fictive spatial motion] 

(b) Counting from zero to one hundred goes past the first thirteen triangular 

numbers before reaching one hundred. [abstract or fictive numerical motion] 

 

In (3b), for example, a construction that typically expresses a spatial relation is used to situate 

the magnitude of one number relative to the magnitude of another. The constructions in 

(4b) and (5b) typically express spatial containment and contact but here are used for 

numerical relations. And in (6b), a numerical process is construed as involving motion, so 

that numbers can be passed and reached as if they are landmarks along a trajectory (Langacker, 

1987; Talmy, 2000; Matlock, 2010). Number talk, therefore, makes systematic use of a broad 

range of spatial language.  

What kinds of spatial constructions are re-used, in particular, for numerical 

magnitude? The numerical senses of “bigger” and “smaller” associate numerical magnitude 

with spatial extent (area or volume), and this seems to be a reliable and productive 

association, across a wide variety of contexts: 

 

(7) Charity “organizations now address a huge number of social and economic 

issues […].” (Huffington Post, “An Inaugural Shift,” January 24, 2013) 

(8) “There are 10^11 stars in the galaxy. That used to be a huge number. But it's 

only a hundred billion. It's less than the national deficit! We used to call them 
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astronomical numbers. Now we should call them economical 

numbers.” (Richard P. Feynman) 

 

In addition to spatial extent, English also associates numbers with spatial locations, such that 

numerical comparison can involve “higher,” “lower,” “highest,” and “lowest” numbers. And 

various dynamic expressions describe numerical change in terms of spatial displacement, a 

form of fictive or abstract motion (Langacker, 1987; Talmy, 2000; Matlock, 2010). We can 

count up or down, depending on the direction of counting:  

 

(9) Three is higher than two.  

(10) My child can count up past one hundred; my parrot can count down from 

thirty to one. 

(11) Even though the number [of jobs] is below the peak of 62,500 a decade ago, 

the industry has been rebounding from the deep recession of the past decade. 

(The Columbus Dispatch, “Columbus proves itself a powerful draw for 

financial companies,” April 10, 2013)  

 

Linguistic spatialization is often constrained by content, even when dealing with 

abstract referents that lack literal spatial dimensions: 

 

(12) She made a big [?high] financial investment, of record size [*height].  

(13) He has a higher [*bigger] score on the exam than me, but not the highest 

[*biggest] score in the class. 
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(14) The temperature kept going up [*getting bigger] until it reached a record high 

[?size]. 

 

We can quantify these distributional differences using the English corpus of Google N-

grams, built from approximately 1,160,000 scanned books dating from 1600 to 2008 (Michel 

et al, 2011). Zooming in on the most recent decade covered by the corpus (1998-2008), we 

see that numbers are equally likely to be described in terms of height (“higher” or “lower”) 

or volume (“bigger” or “smaller”) (t10 = -1.8,  p = .09). This was not true, however, across all 

quantitative domains (Figure 1.2). While an “investment” was twice as often described in 

volumetric rather than height-based terms (t10 = -8.1,  p << .001), a score was forty-four 

times more often described in terms of height (t10 = 19.8,  p << .001). The recruitment of 

size- or height-based language for number is constrained by the numbers’ referents. 

Contemporary English, therefore, uses two systems of spatial constructions to 

describe numerical magnitude: a volumetric system and a vertical location-based system (cf., 

Lakoff & Núñez, 2000). Moreover, this spatialization of numerical magnitude occurs within 

a much broader system of polysemy, involving language typically reserved for spatial frames 

of reference, topological relations, and motion. Notably, in (3) through (14), a non-spatial 

substitute would be impossible or highly marked.5 In English, spatialization is nearly 

unavoidable when talking about numbers.  

                                                

5 Even the less obviously spatial great (e.g. “Five is greater than four.”) is derived from the Old English grēat, meaning big. 
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Figure 1.2. Relative frequency (vertical axis) of height- and size-based constructions over 
the last decade (horizontal axis). A number was equally likely to receive height- (i.e., higher, 
lower) or size-based (i.e., bigger, smaller) descriptions. But relative use of size- and height-
based descriptions differed by quantitative domain. While “score” descriptions were almost 
entirely height-based, “investment” descriptions were most often size-based. Shaded regions 
indicate 95% confidence intervals.  
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1.2.2. Second site of spatialization: Artifacts and practices 

Numerical magnitude is spatialized by a variety of cultural artifacts that embody 

stable graphical norms. Like in language, spatialization in artifacts often involves associating 

numerical magnitude with either spatial extent or location. The former is much more 

ancient. Ancient Babylonian diagrams associated numbers with spatial length and area 

(Høyrup, 2002; Robson, 2008); and coins, today and historically, have used smaller surface 

area for “smaller” denominations. Artifacts that map numbers to locations, by contrast, are a 

more recent arrival, entirely absent from the work of Descartes and unknown until the late 

17th century (Núñez, 2010). Today such artifacts are ubiquitous. Elevator panels and 

calculators place linguistically “lower” and “higher” numbers in appropriately lower and 

higher locations6. The prototypical cultural artifact is probably the linear number-line, or its 

two-dimensional extension to the Cartesian plane, in which numbers are mapped to precise 

locations along the horizontal and the vertical axes.  

Numbers are also mapped to locations by embodied practices for counting or 

calculating. Finger- and body-count routines associate numbers with locations relative to the 

body (Bender and Beller, 2012; Saxe, 2012; Wassmann & Dasen, 1994), while practices of 

reading and writing can associate numbers with the axis and direction of written language—

left to right for European languages, right to left for Arabic, top right to bottom left for 

Mandarin Chinese in Taiwan. Cultural artifacts and practices, therefore, embody a set of 

cultural norms that systematically and reliably spatialize number.  

                                                

6 But note that this spatialization is inverted in most television remote controllers and telephone keypads, which arrange 

numerals from top-left to bottom-right, perhaps because these numerals have an arbitrary relation to their referent. Channel 

4 is not numerically greater than Channel 3; phone numbers are not ordered by magnitude. 
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1.2.3. Third site of spatialization: Gesture 

“What thrills and fascinates me about your body, then, is not any particular somatic 

feature in itself but the meaning that one or more of those features conveys to me.” Halperin 

(2005:54) 

When reasoning and communicating, we spontaneously move our bodies, especially 

our hands, in ways that are temporally and semantically coupled to speech and thought—

that is, we gesture (Kendon, 2004; McNeil, 1992). Gesture is a powerful medium for 

spatializing the abstract (Cienki & Müller, 2008). The temporal gestures of native English 

speakers, for instance, associate past, future, present, and temporal sequences with locations 

along the sagittal (back-to-front) and transversal (left-to-right) axes. When talking about the 

future, native speakers of English will point forward or rightward; when talking about the 

past, backward or leftward (Cooperrider & Núñez, 2009; Casasanto & Jasmin, 2012).  

A similar process of spatialization occurs for numbers. This often occurs when 

interacting with structure in the cultural world, such as graphs or other artifacts. Recall the 

first gesture in Figure 1.1, in which the student produced a gesture that traced the graph on 

the blackboard. In producing this environmentally-coupled gesture (Goodwin, 2007), the 

speaker literally embodies the spatialization encoded in the material structure, enacting 

overtly an otherwise implicit graphical norm. Other times, speakers will produce emblematic 

gestures to complement the spatialization in speech, accompanying the phrase “tiny 

number” with a “tiny” gesture, index finger and thumb pressed together (Winter, Perlman, & 

Winter, 2013). Gesture thus reproduces the spatialization found in artifacts and language.  

But the gestural spatialization of number is far richer and more systematic, often 

occurring autonomously from other sites of spatialization (Núñez, 2006; Marghetis & 
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Núñez, 2013). When reasoning about numbers, for instance, speakers gesture spontaneously 

in ways that associate numbers with volumes or, alternatively, with locations along an 

imagined path. They can then build on this gestural spatialization to express more complex 

numerical relations and arithmetic operations. We return to these metaphorical gestures in 

Chapter 3, where we analyze them in detail and investigate the mechanisms responsible for 

their production.  

1.2.4. Fourth site of spatialization: Brains and rapid behavior 

In the 19th century, Galton (1880) described patients with number-space synesthesia, 

a syndrome in which numbers are systematically and reliably associated with locations in 

space to form ornate “number-forms.” This mental and neural link between number and 

space is not restricted to exceptional individuals. During rapid judgments (e.g., deciding if 5 

is odd), numerical magnitude interacts with both spatial extent and location, suggesting a 

cognitive and neural link between the two domains (Hubbard et al, 2005; Núñez & 

Marghetis, in press; Winter, Marghetis, and Matlock, 2015).  

During rapid categorization of numbers (e.g. comparing magnitude or making 

odd/even judgments), behavioral responses often exhibit interactions between numerical 

magnitude and task-irrelevant spatial extent. Responses to numerals, for instance, are faster if 

their font sizes are congruent with their numerical magnitude (e.g. a small “2” and a larger 

“9”) (Henik and Tzelgov, 1982; Pinel et al., 2004). This association is not limited two-

dimensional area but appears also with one-dimensional length. When adults and children 

determine the midpoint of a line segment flanked by task-irrelevant dot arrays or numbers, 

judgments are biased toward the larger number or the dot array with the greater numerosity, 

as if the greater numerical quantity gave the impression of increased length on that side (de 
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Hevia and Spelke, 2008, 2009; Fischer, 2001). The association between spatial extent and 

numerical magnitude appears strikingly early in development—as early as a few hours of 

birth (de Hevia et al, 2014). 

Numbers are also associated with egocentric locations. In the SNARC (Spatial-

Numerical Association of Response Codes) effect, literate Western adults are faster to 

respond to lesser numbers in left space, but faster for greater numbers in right space 

(Dehaene et al, 1993). Similar effects have been found when feet are used in place of hands 

(Müller & Schwartz, 2007), and task-irrelevant numerals induce spatial biases in subsequent 

saccades (Fischer et al, 2003), ruling out the possibility that the SNARC effect is due merely 

to associations between numbers and specific effectors (e.g. between smaller numbers and 

the left hand). Numerical magnitude thus shapes subsequent spatial action, but spatial 

location and movement can also influence subsequent numerical decisions. During random 

number generation, higher numbers are more likely to be generated after upward 

movements or saccades, while lower numbers are more likely after downward movements or 

saccades (Hartmann, Grabherr, and Last, 2011; Loetscher et al, 2008). These associations 

between number and location, however, are highly variable across cultures and contexts, 

reversing in cultures that read from right-to-left (Shaki, Fischer, & Petrusic, 2009) and even 

changing rapidly as a result of number-space correlations in the local context (e.g., Fischer, 

Mills, and Shaki, 2010). 

Similar spatial dispositions have been documented for numbers other than the 

simple counting numbers, though these results have been equivocal. Negative numbers, for 

instance, are sometimes associated with lateral locations as if located to the left of zero along 

an extended number-line, and other times processed just like their positive counterparts (i.e., 
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their absolute value, |-3| = 3; Fischer, 2003; Ganor-Stern & Tzelgov, 2008; Ganor-Stern et 

al, 2010). And some authors have suggested that combinatorial operations like addition and 

subtraction may involve spatial processing (e.g., Hubbard et al, 2005; McCrink, Dehaene, 

and Dehaene-Lambertz, 2007), but this has not been tested directly (until recently; see 

Chapter 3). We return to these issues—the spatialization of advanced number concepts and 

of combinatorial operations—in the next two chapters.  

These spatial dispositions during rapid numerical judgments are thought to reflect 

the recycling of, or close coupling with, neural systems specialized for processing space and 

action. Approximate numerical magnitude is processed within the intraparietal sulcus (IPS), 

in regions that overlap with or are adjacent to regions known to be responsible for 

controlling spatial attention and manual reaching (Hubbard et al, 2005). The neural 

representation of numerical magnitude, additionally, may tap into a domain-general 

representation of magnitude in posterior parietal cortex (Walsh, 2003; Winter, Marghetis, 

and Matlock, 2015). And mental arithmetic activates regions in the posterior superior parietal 

lobule that are responsible for orienting spatial attention—suggesting that these regions may 

be coopted to play a functional role in numerical calculation (Knops et al, 2009). Numbers, 

therefore, induce reliable spatial dispositions in behavior in virtue of the predictive 

computations of brain areas specialized for processing space and attention—and thus may 

acquire spatial content in much the same way as perceptual experience (Grush, 2007). The 

spatialization of numbers in rapid behavior, therefore, is the embodied manifestation of 

spatialization in the brain—that is the recycling of (or coupling with) neural systems 

specialized for processing spatial location and spatial extent.  
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1.3. Reproducing an assemblage of spatialization 

Numbers are thus spatialized in diverse sites of conceptual activity: in speech, in 

cultural artifacts and practices, in spontaneous gesture, and in brain and rapid behavior. 

These sites associate numerical magnitude with spatial extent and with location, often 

preserving numerical properties such as order and the standard Euclidean metric (i.e., the 

“distance” between numbers n and m is m – n). The diversity of these sites of spatialization 

presents a mystery. Across speech, artifacts, practices, gesture, and thought, number and 

arithmetic are spatialized in similar ways, despite major differences between the media of 

spatialization: sound waves structured by language; objects and activities governed by 

cultural norms; hands guided by brain and world; and thought implemented by specialized 

neural circuitry. Why, then, are these spatializations so well aligned? How can we explain this 

unity within diversity?  

This is a difficult question, a poorly studied one, and we can only give it passing 

attention here. But for now, two things: First, note that these sites of spatialization are 

largely autonomous, governed by their own laws, changing over different timescales, produced 

and reproduced by different mechanisms. The upshot of this is that the entire system must 

be studied ecologically, rather than treating “culture” or gestures as [only] the outward 

manifestations of skull-internal brain processing. But these sites of spatialization are also 

entwined, with bidirectional causal relations between sites, constraining and shaping each 

other on a variety of timescales. Many of these causal relations have yet to be studied 

empirically; Chapters 4 and 5 are steps in that direction. We address each of these points, 

briefly, below. 
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1.3.1. Autonomy of spatialization 

The surface similarity between sites of spatialization—such as the reliable 

recruitment of extent and location—makes it easy to talk of the spatial representation of 

number. Indeed, a number of authors have suggested a common and privileged origin of all 

spatialization, typically situated within the brain. Conceptual Metaphor Theory, for instance, 

argues that various spatial regularities—in speech, behavior, and “culture”—are all 

manifestations of implicit “conceptual metaphors” in which the source domain of space is 

mapped to the target domain of number (Lakoff and Johnson, 1980; Lakoff, 2010). These 

cross-domain mappings are proposed to inhere in the brains of individuals (Lakoff, 2012), 

with diverse spatializations of number mere “surface manifestations” of neural mappings.  

A similarly brain-centric account has been defended by a number of cognitive 

neuroscientists, who have argued that diverse spatializations have their origin in the 

“inherent spatial attributes” of number as processed in the brain (e.g., Treccani & Umilta, 

2011). This spatial representation of number in the brain has been invoked to explain 

spatializations ranging from simple numerical reasoning to the existence of geometrical 

diagrams in ancient Babylonia (Izard et al, 2008). Some have gone even further, explaining 

cross-cultural regularities by arguing that the neural spatialization of number is innate 

(Dehaene et al, 2008; de Hevia et al, 2014; i.a.).  

These approaches argue that diverse spatial phenomena—from linguistic polysemy 

to visual artifacts—are surface manifestations of a common spatialization in the brain. 

Lacking, however, has been explicit discussion of the precise mechanisms that would allow 

neural associations to shape, in one fell swoop, cultural practices, graphical norms, 

conventionalized metaphorical language, spontaneous gesture, and all the rest.  
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The sites of spatialization reviewed above are, in fact, governed by their own laws, 

change over different timescales, and are produced and reproduced by different mechanisms. 

In a word, they’re autonomous. For instance, while there are similarities in the ways that 

language and rapid behavior associate numbers with spatial extent and location, the 

behavioral association between numbers and horizontal locations is entirely absent from 

speech. Greater numbers may be rightward during rapid categorization (e.g., Dehaene et al., 

1993), but in language they’re resolutely “larger” or “higher,” never “rightward.” And while 

gesture and artifacts often assign numbers to horizontal locations, co-produced language is 

limited to vertical locations (cf., Figure 1.1).  

Even when different sites of spatialization have the possibility of alignment—they 

both associate numbers with length, for instance—they may not be aligned in practice. 

Recall that the student described numbers as “bigger” but used gesture to place them in 

locations along vertical and horizontal axis (Figure 1.1). The speaker could have gestured as if 

numbers had spatial extent, perhaps using a two-handed collecting gesture. But he didn’t. 

Similarly, in using a finger-count routine, I might describe myself as “counting up” a pile of 

objects, even though standard North American count-routines spatialize numbers in 

horizontal or finger-based coordinates, not vertical. 

Finally, various forms of spatialization differ in stability and in the timescale over 

which they emerge. Low-level behavioral associations between number and extent have been 

observed in human neonates just a few hours after birth (de Hevia et al, 2014), and may thus 

be innate and highly stable. Behavioral associations between number and location, by contrast, 

are highly flexible and sensitive to context and culture (Fischer, Mills, & Shaki, 2010; Núñez, 

2011; Shaki, Fischer, and Petrusic, 2009; i.a.). Gestural spatialization is similarly flexible, 
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sometimes expressing multiple, complementary construals during a single gesture unit, as we 

shall see in Chapter 4. The graphical norms that govern spatialization in artifacts, meanwhile, 

are stabilized within a culture by their material instantiations; classroom number-lines and 

elevator panels place numbers in canonical locations that are subject to strict conventions. 

And while speech is flexible and sensitive to context, the set of possible linguistic resources 

available to speech—words, constructions, etc.—is very stable and changes slowly over 

years, generations, or centuries. In English, for example, the numerical sense of “higher” is 

nearly one thousand years ago. The Oxford English Dictionary cites a non-spatial use of 

“higher” in an Old English homily dated to before 1225, in which a greater reward was 

described as a heahere mede, a “higher reward” (Higher, 2015). Sites of spatialization, 

therefore, operate on entirely different timescales: the numerical senses of “higher” and 

“lower” are stable across centuries; material artifacts preserve graphical norms for 

generations; individual spatial dispositions can shift within minutes.  

Language, cultural artifacts, gesture, and behavior thus differ in the spatializations 

they make available, the spatializations they actualize at any particular time, and the stability of 

spatialization. This is because each site relies on distinct mechanisms. Spatialization in 

language is the product of various forces that drive semantic change (e.g., Traugott & 

Dasher, 2001). Once spatializing constructions emerge in a language, individuals within the 

linguistic community acquire them over the course of development—not because each 

individual is inventing them anew on the basis of their own individual conceptual metaphors, 

but because they are part of the lexicon. Material artifacts, meanwhile, are the products of 

conventionalized manufacturing processes. Gestures reflect a combination of cultural norms 

(Kita, 2009), imagistic processing in the brain (McNeill, 1992; Hostetter & Alibali, 2008), co-
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produced speech (Kita and Özyürek, 2003), and the surrounding environment (Goodwin, 

2007). And behavioral spatializations are the product of spatializations in the brain, 

themselves the confluence of innate constraints and cultural experience (e.g., Hubbard et al, 

2005; de Hevia et al, 2014). The upshot of these distinct mechanisms is that each site is 

relatively autonomous. 

And yet different sites of spatialization do exhibit commonalities, a fact that requires 

explanation. How, then, to account for the undeniable coordination between the various 

sites of spatialization that co-exist within the cognitive ecosystem of arithmetic?  

1.3.2. Entwined spatialization 

If sites of spatialization are so autonomous, how then can we account for the 

coordinated spatialization of number across the cognitive ecosystem of arithmetic? This is a 

specific instance of an old puzzle. Leibniz (1696), for instance, imagines two clocks that 

exhibit impressive synchronization. “"Imagine two clocks or watches in perfect agreement as 

to the time. This may occur in one of three ways. The first consists in mutual influence; the 

second is to appoint a skillful workman to correct them and synchronize them at all times; 

the third is to construct these clocks with such art and precision that one can be assured of 

their subsequent agreement” (p. 548; quoted in Bourdieu, 1977, p. 80). Leibniz’s second 

solution is the one adopted by Conceptual Metaphor Theory and by cognitive 

neuroscientists who invoke a mechanism in the brain that is responsible for coordinating all 

instances of spatialization (even Babylonian diagrams!). His third solution is the one adopted 

by those who think that the spatialization of number is innate; no matter our experience, we 

are finely attuned from birth to the kinship of number and space.  
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But Leibniz’s first solution suggests an account of our spatializing assemblages that 

decenters the individual and looks instead to mutual causality to explain the production and 

reproduction of coordination (see also Hutchins, 1995, 2010b; Latour, 2007). It is exactly 

this kind of causal entwining that maintains alignment and complementarity within the 

distributed assemblages that accomplish arithmetic. We saw some of this in the scene that 

began this chapter. The student’s speech, gesture, and inscriptions were sometimes 

autonomous but often interacting. Any assemblage of spatializations is going to be dense 

with causal interrelations. Activating putative source domains can prime the production of 

related metaphorical language (Sato, Schafer, and Bergen, 2015); we suspect that a similar 

link exists between internal spatial processing and the production of spatial language for 

number. Inscriptions can constrain environmentally-coupled gestures—recall the scene in 

Figure 1.1—while spatializations that begin in gesture are sometimes materialized as 

inscriptions. Representational gestures reflect imagistic or spatial processing within the 

gesturer’s brain (McNeill, 1992; Kita & Özyürek; Hostetter & Alibali, 2008; Marghetis & 

Bergen, 2014), and metaphorical gestures have been proposed to reflect the internal 

simulation of the source domain—a proposal that we test in Chapter 4. Conversely, gestures 

are known to have a causal impact on the internal mental processing of both the gesturer 

and any interlocutors, and in Chapter 5 we test whether this applies also to gesturers that 

systematically spatialized number and arithmetic. Within a situated assemblage of 

spatializations, diverse sites are brought into relations of alignment and complementarity 

through bidirectional, circular causal influences.  

The moral of Leibniz’s story is that coordination across space and time does not 

require a centralized locus of control. What makes these various phenomena hang together 
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so nicely, therefore, is not a single, shared mechanism—an innate overlap between number 

and space (Walsh, 2003), or a neutrally-instantiated cross-domain mapping (Lakoff, 2012). 

Individual brains cannot be solely and uniquely responsible for shaping gesture, 

systematizing polysemy, maintaining graphical norms, and motivating rapid behavioral 

interactions between space and number. Instead, the unity of our cognitive ecosystems is a 

conspiracy (cf., Elman, 1999)—a conspiracy without plan or purpose—an emergent 

outcome of interdependent mechanisms in brain, body, and sociotechnical world. On this 

account, our explanatory target expands to include an entire assemblage of interacting and 

mutually constraining phenomena: gesture, polysemy, behavior, artifacts, practices. Our task, 

then, is to identify the mechanisms at work in each site of spatialization and the causal links 

between them. 

1.4. Outline of the dissertation 

 “Of course, in one sense, mathematics is a branch of knowledge, but still it is also an 

activity.” –Wittgenstein (1953/2009, p. 227) 

As both a branch of knowledge and an activity, mathematics is done not by brains 

inside individual skulls but by dynamic, distributed assemblages that are constantly produced 

and reproduced within larger cognitive ecosystems. The studies reported in this dissertation 

are a contribution to the study of the assemblage that accomplishes arithmetic, and in 

particular its spatialization of number and arithmetic. They address a series of puzzles: Is 

spatialization limited to the simplest of numerical activities? Does it extend beyond isolated 

numbers to combinatorial operations with numbers? How is arithmetic spatialized during 

reflexive, precise reasoning? How does spatialization in gesture relate to spatialization within 
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the skull? And how does the spatialization of number perpetuate and propagate within 

communities, aligned between individuals and stabilized over time within an individual?  

We respond to these puzzles over four substantive chapters. The first two investigate 

the spatialization of numerical concepts and capacities that are more complex than simply 

comparing whole numbers. Chapter 2 investigates the spatialization of an advanced 

numerical concept: the positive and negative integers. As we shall see, over five experiments, 

numerical magnitude is systematically associated with the sagittal axis, back-to-front. In 

Chapter 3, we demonstrate the spatialization not only of individual numbers but of 

arithmetic operations during exact, symbolic calculation. During mental arithmetic, 

calculation itself—addition or subtraction—induces subtle but reliable spatial biases. 

Calculating the solution to, e.g., 4 + 3 biases accompanying movements rightward, while 

calculating 6 – 2 biases motion leftward. Both chapters contribute to evidence that numerical 

reckoning—comparing and calculating—recycles neural systems that are specialized for 

processing action and space.  

The next two chapters look at how schematized spatial relations are deployed during 

arithmetic reasoning, and explore how these are propagated and perpetuated within a 

community. Mathematics requires not only rote calculation with numbers, but meaningful 

and reflexive reasoning about numbers. Combining observation and experiment, Chapter 4 

analyses spontaneous gestures produced during mathematical reasoning to argue that we 

conceptualize arithmetic, in part, using spatial metaphors. We document two systems of 

spatialization in gesture, and then investigate the proximal mechanisms that drive the 

production of these metaphorical gestures. Chapter 5 investigates the contribution of the 

communicative body to perpetuating and propagating this spatial understanding. A series of 
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lab- and internet-based experiments demonstrate that co-speech gesture shapes and spreads 

the mental number-line, a process we dub “gestural contagion.” Together, Chapters 4 and 5 

foreground the body as a nexus for the cultural reproduction of mathematics, both disciplined 

by and disciplining abstract thought. 

The focus throughout is on number and arithmetic. But my hope is that the studies 

assembled in this dissertation illustrate a more general phenomenon: the regimentation of 

abstract thought. I suspect the mechanisms that regiment mathematical thinking—including 

spatialization in speech, gesture, and thought—might account for the regimentation of belief 

more generally, whether religious, social, political, or scientific (cf., Bourdieu, 1977; Foucault, 

1977; Marx, 1867/1976; Wittgenstein, 1953/2009). And even if readers think this 

dissertation does no such thing, at least by the end they’ll know a tiny bit more about 

numerical cognition. 
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Chapter 2 

Pierced by the number-line: Integers induce embodied dispositions to 

move forward and backward  

 

ABSTRACT 

How does the human mind grasp entirely abstract concepts, such as time or number? 

One general strategy for dealing with abstraction is to ground our understanding in more 

concrete domains such as space and action. The positive whole numbers, for instance, are 

conceptualized as vertical and horizontal number-lines. What of more sophisticated 

concepts, such as negative integers? We investigated the possibility that negative and positive 

integers are associated with the back-to-front sagittal axis in the human mind. In four 

experiments, participants categorized numbers and responded by stepping forward and 

backward. We demonstrate a novel effect: a sagittal number-line, in which negative and positive 

integers induce spatial dispositions to move backward and forward, respectively (Exp. 1-4). 

These spatial dispositions appear to require the juxtaposition of both negative and positive 

integers (Exp. 1-3), reflect a systematic relation between the integers and space rather than a 

general categorical strategy (Exp. 3), and occur automatically (Exp. 4). These systematic 

spatial dispositions may constitute our mathematical habitus, habits of action and thought 

that reveal and enact our conceptual systems. 
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2.1. Introduction 

While we share a limited numerical toolbox with other animals, formal education 

equips us with a suite of mathematical concepts and abilities that go far beyond this 

cognitive inheritance. Prominent among these are complex, abstract number concepts: 

negative, rational, irrational, imaginary. These concepts—shaped and elaborated by an 

ecosystem of axioms, notations, applications, and historical demands—outstrip the 

representations available to non-human animals, (Carey, 2009; Lakoff & Núñez, 2000; 

Núñez & Marghetis, forthcoming).  

Despite their precision and abstractness—or perhaps because of these qualities—our 

number concepts are interwoven with more concrete practices, habits, and concepts 

(Barsalou, 1999; Kitcher, 1984; Lakoff & Núñez, 2000). This is exemplified by the link, 

within the human mind, between representations of number and those of space (for reviews, 

see Hubbard et al, 2005; Winter, Marghetis & Matlock, 2015). In particular, processing 

numbers induces a variety of systematic dispositions to act and think spatially. A now-classic 

finding is the “SNARC” effect: Literate Western adults are faster to respond to smaller 

numbers on the left, and faster to respond to larger numbers on the right, as if they 

represent the positive whole numbers along a left-to-right mental number-line (Dehaene et 

al, 1993). Negative integers, too, induce horizontal spatial dispositions, although these seem 

more fragile; task-demands influence whether negative numbers are located to the “left” of 

zero, in virtue of their relative magnitude, or mixed in with positive integers on the basis of 

their absolute value (e.g. Fischer, 2003; Ganor-Stern & Tzelgov, 2008; Ganor-Stern et al, 

2010). In addition to the horizontal number-line, there are spatial-numerical associations 

along the vertical axis (Schwartz & Keuss, 2004; Hartmann, Grabherr, & Mass, 2012; 



32 

 

Holmes and Lourenco, 2012; Loetscher et al, 2010). There are even spatial dispositions 

associated with more complex tasks, including symbolic calculation (Knops et al, 2009; 

Marghetis et al, 2014) and algebraic manipulation (Goldstone, Landy, & Son, 2010). This 

system of spatial dispositions suggests that abstract mathematical concepts may build, in 

part, on evolutionarily older neural resources specialized for perception, action, and space 

(Barsalou, 1999; Dehaene & Cohen, 2007; Hubbard et al, 2005; Lakoff & Núñez, 2000). 

Given the human mind’s promiscuous spatialization of number, we are surprised 

that so little is known about spatial-numerical dispositions along an especially prominent 

axis: the sagittal axis, running through the body, back to front. The sagittal axis is associated 

with another abstract domain: Time (see Núñez & Cooperrider, 2013, for a review). In 

English, talking about time often involves language typically reserved for the sagittal spatial 

axis. We look forward to the future, think back to the past. Co-speech gestures reproduce this 

linguistic pattern (Casasanto & Jasmin, 2012), and temporal reasoning induces dispositions 

to move forward or backward (e.g., Miles, Nind, & Macrae, 2010). Language, gesture, and 

thought all enact a sagittal timeline.  

What about number? In contemporary English, decreasing or increasing counting is 

most often described spatially as counting down or up, but also, though less frequently, as 

counting backward or forward. Historically, when mathematicians first grappled with the novel 

and perplexing concept of a negative integer, some invoked explicitly an analogy between 

integer arithmetic and forward and backward motion (Wallis, 1685: 265; see discussion in 

Fauconnier & Turner, 1998, Núñez, 2011). One might expect, therefore, that the sagittal axis 

would supply a natural model for representing the positive and negative integers, perhaps 
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with the greater, positive integers associated with the space in front, and the lesser, negative 

integers associated with the space behind.  

And yet there is little evidence that the contemporary adult mind ever represents 

number along the sagittal axis, as a back-to-front sagittal number line (SNL). Some suggestive 

evidence of an SNL comes from research on the so-called “vertical” SNARC, which often 

uses responses in near and far locations in front of the body rather than genuinely vertical 

low and high locations (e.g. Ito & Hatta, 2004; Gevers et al., 2006; Müller & Schwarz, 2007; 

Shaki & Fischer, 2012). The results of these “vertical” SNARC studies, therefore, might 

more accurately support an association with near-to-far radial space, since responses to 

smaller numbers are faster in near space, and responses to bigger numbers, in far space 

(Shaki & Fischer, 2012). This radial SNARC, however, has always been tested with both 

response buttons located in front of the body, thus confounding location along the sagittal axis 

through the body with distance from the body. Larger numbers may just prime responses that are 

farther away, regardless of axis.  

A few studies have tried, explicitly, to find evidence of an unambiguously sagittal 

representation of number, with little success. In Hartmann et al (2012), Swiss participants 

generated significantly higher random numbers (1-30) while experiencing upward (vs. 

downward) or rightward (vs. leftward) motion; by contrast, there was no difference between 

forward and backward motion. Seno et al (2011), by contrast, reported that Japanese and 

Chinese participants generated significantly higher numbers while experiencing a visual 

illusion of backward movement, compared to an illusion of forward motion—a reversal of 

the way numbers are described in English, where counting backward involves smaller 
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numbers, not larger. These results suggest that a sagittal representation of the positive whole 

numbers, if it exists, may be fragile or task-dependent.  

Upon reflection, however, the sagittal axis is an unlikely model of the positive 

numbers: the body divides space categorically; positive numbers have no natural point at 

which they are divided, since they start at zero and continue indefinitely. The integers, on the 

other hand, share many structural properties with the sagittal axis: positive and negative are 

separated by zero; front and back, by one’s body. Unlike the positive numbers, negative 

integers do not induce reliable spatial dispositions along the horizontal axis (e.g., Fischer, 

2003; Ganor-Stern & Tzelgov, 2008; Ganor-Stern et al, 2010), suggesting that we use other 

resources to ground our understanding of negative numbers. Might we use the sagittal axis 

to conceptualize the positive and negative integers?  

2.1.1. Current Study 

Four experiments attempted to identify and characterize a back-to-front sagittal 

number-line for the integers. In each experiment, participants judged the magnitude (Exp. 1-

3) or parity (Exp. 4) of visually-presented numbers and responded by stepping forward or 

backward in space, thus moving along the sagittal axis. The critical question was whether 

participants would spontaneously associate numbers with movement along this sagittal axis, 

as we would expect if participants were deploying an implicit SNL.  

We foresaw a number of possible outcomes. First, there could be no systematic 

association between numbers and sagittal space; the spatialization of number might be 

exhausted by known horizontal, vertical, and radial dispositions. Second, the positive whole 

numbers and integers alike might prime forward and backward motion, perhaps due to so-

called Polarity Correspondence. Since numbers and the sagittal axis are both dimensions 
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with a clear orientation—a marked and an unmarked “pole”—processing both dimensions 

might be facilitated when their “polarity” is aligned (Proctor & Cho, 2006). Third, we might 

replicate the apparently “reversed” SNL reported by Seno et al (2011) for Chinese and 

Japanese adults. Finally, if there is a selective association between integers and sagittal space, 

rather than domain-general polarity correspondence, then we may find evidence of selective, 

systematic spatial dispositions: forward for positive numbers, backward for negative 

numbers, with zero mapped to the body. 

In what follows, we begin by asking whether number processing induces dispositions 

to move forward or backward along the sagittal axis (i.e. a SNL), for either positive whole 

numbers or the positive and negative integers (Exp. 1a, 1b, 3). We then ask whether sagittal 

dispositions arise when processing negative integers alone, in isolation from the rest of the 

integers (Exp. 2). Finally, we investigate whether the SNL is automatic, emerging when the 

task does not require explicit processing of numerical magnitude (Exp. 4). We end by 

discussing the SNL in the context of other spatial dispositions, speculating on its origins, and 

exploring its relation to mathematical practice more generally. 

2.2. Experiment 1a 

2.2.1. Participants 

Undergraduate students from UC San Diego (n = 32, Mage = 21, 22 women) 

participated in exchange for partial course credit. All procedures were approved by the ethics 

review board of UC San Diego. Sample size was determined in advance on the basis of 
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previous experiments that used whole-body movements to study spatial-numerical biases 

(e.g. n = 24 and 36 in Hartmann et al, 2012).1 

 

 

Figure 2.1. Procedure for Experiments 1-4. Participants made judgments on the basis of 
visually-presented numerals and responded by stepping forward toward yellow or backward 
toward red targets on the floor. Trials began with the pound sign (first panel). Reaction time 
was measured from stimulus onset (second panel) to foot-pedal release (third panel). 
Participants responded by moving forward or backward (fourth panel). 

2.2.2. Design 

In a fully within-subjects design, participants judged the relative magnitude of 

visually-presented single-digit numbers and responded by stepping forward or backward 

onto colored targets on the floor (Fig. 2.1, left panel). Targets were approximately two feet 

in front of (yellow) or behind (red) a central foot-pedal and were described to participants by 

their color, not location.  

Participants completed relative magnitude judgments for two kinds of number: 

positive whole numbers (Positive Only) and positive and negative integers (Integer). In the 

                                                
1 In what follows, “we report how we determined all sample sizes, all data exclusions, all 

manipulations, and all measures” (Simmons et al, 2012). 
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Integer condition, participants judged whether positive and negative integers from -9 to 9 (not 

including 0) were greater or less than 0. In the Positive Only condition, they judged whether 

whole numbers from 1 to 9 (not including 5) were greater or less than 5. The Positive Only 

condition was thus modeled after the classic SNARC paradigm (Dehaene et al, 1993), but 

with sagittal movements in place of lateralized buttons.  

Participants completed two blocks for each number type. In one block, participants 

moved forward for greater numbers (i.e. greater than 0 or 5), and backward for lesser numbers; 

response assignment reversed in the other block; block order was assigned randomly. 

Number Type (Positive Only vs. Integer), response direction (forward vs. backward), and 

numerical magnitude (greater vs. less than the target) were fully crossed within-subjects. 

Number Type order (e.g. Integer first, Positive Only second) was counterbalanced between-

subjects. 

Trials began with an image of a shoe in the center of a computer monitor, located 

approximately four feet ahead of the participant, which prompted participants to depress 

and hold down a foot-pedal with their right foot. Once the foot-pedal was depressed, the 

pound sign (“#”) appeared for 500ms, followed by a single-digit numeral. The numeral 

disappeared when participants lifted their foot to begin their response, or after 5000ms. 

Reaction time was measured, via the foot-pedal, from stimulus onset to the release of the 

foot pedal (Fig. 2.1). Participants were instructed to begin moving only after they had made 

their decision; trials were discarded in which participants changed direction after initiating 

their response. Response direction was recorded online by an experimenter in the room. 

Blocks began with 8 practice trials. In the Positive Only condition, each of the 8 possible 

numbers (1 to 9, excluding 5) were presented 10 times per block, in random order, for a total 
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of 160 experimental trials over two blocks. In the Integer condition, each of the 18 possible 

numbers (-9 to 9, excluding 0) were presented 5 times per block, in random order, for a total 

of 180 experimental trials over two blocks. Participants were allowed to rest between 

number conditions. The entire experiment took approximately 30 minutes. 

2.2.3. Results and Discussion 

Four participants did not complete both tasks and were replaced before analysis. 

Overall accuracy was quite high (M = .97). Before analyzing response times, incorrect trials 

were removed, followed by trials with reaction times that were slower than three standard 

deviations above each participant’s mean response time in each condition (<1% of trials). In 

addition, one participant was removed due to exceptionally low accuracy, answering only 

73% of the trials correctly (accuracy > .92 for all other participants). Individual accuracy was 

not significantly correlated with reaction times, ruling out a speed-accuracy trade-off, t29 = 

1.9, p > .05.  

To analyze reaction times, we conducted a 2x2x2x2 mixed-design ANOVA, with 

Magnitude (greater vs. less than), Direction (forward vs. backward), and Number Type (Integer vs. 

Positive Only) as within-subjects factors, and Order (Integer-first vs. Only-Positive-first) as a 

between-subjects factor. Participants were faster overall in the Integer than the Positive Only 

conditions (Minteger = 441ms vs. Monly-positive= 466ms), F(1,29) = 4.2, p < .05, ηp
2 = .13, perhaps 

because, in the Integer condition, the presence or absence of a minus sign made it easy to 

determine a number’s magnitude relative to zero. Participants were also faster to respond to 

smaller than to larger numbers (M< = 448ms vs. M> = 458ms), F(1,29) = 12.0, p = .002, ηp
2 = 

.29. And there was a marginally significant effect of direction, with faster responses 

backward (Mbackward = 448ms vs. Mforward = 458ms), F(1,29) = 4.1, p = .053, ηp
2 = .12. 
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Figure 2.2. In Experiment 1, the relation between numerical magnitude and response 
direction differed by number condition (rows) and order (columns). When participants 
completed the Integer condition first (top left), there was a highly significant interaction 
between number and direction (p < .01). In no other case did response direction interact 
with numerical magnitude (ps > .3).  

 

Only two other effects approached significance. There was a two-way interaction 

between Magnitude and Direction, F(1,29) = 4.4, p = .046, ηp
2 = .13. Backward responses were 

faster for smaller than for larger numbers (M = 433ms vs. 462ms), while forward responses 

were faster for larger than for smaller numbers (M = 453ms vs. 463ms). This interaction, 
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however, was complicated by an interaction between all four factors F(1,29) = 4.7, p = .039, ηp
2 

= .14. It was easy to see why: the two-way interaction between Magnitude and Direction was 

driven entirely by the Integer condition, and only when the Integer condition was completed 

first (Fig. 2.2). This was confirmed by four follow-up 2 (Magnitude) x 2 (Direction) 

ANOVAs, performed for each Number Type and Order. When the Integer condition was 

completed first, the two-way interaction between Magnitude and Direction was highly 

significant (F(1,15) = 9.9, p < 0.007, ηp
2 = .40), with responses to negative numbers an average 

of 49ms faster when moving backward than forward (t(15) = -3.0, p = 0.01) but responses to 

positive numbers an average of 44ms faster when moving forward (t(15) = -2.5, p = 0.02; see 

Fig. 2.1a). By contrast, the interaction did not approach significance when the Integer 

condition was completed second, or for the Positive Only condition ever (all Fs < 1.1, ps > 

.3).  

To further characterize this selective association between Magnitude and Direction, 

we performed a regression analysis of reaction times (Fig. 2.3), adapting an approach 

developed for the classic horizontal SNARC (Fias et al, 1996). Focusing on reaction times in 

the Integer condition, when it was performed first, we calculated, for each subject and 

number, the difference between backward and forward median response times (dRT). If 

dRT is positive, then backward responses were faster than forward responses for that 

number and subject; if dRT is negative, forward responses were faster. Then, for each 

subject, we regressed dRT onto numerical magnitude. The slopes of these linear regression 

lines index the orientation and intensity of the association: negative slopes indicate that 

smaller numbers are associated with the back, larger numbers with the front. As predicted, 

regression slopes were significantly less than zero (Mβ = -7.7, t(15) = -3.4, p = .002, one-
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tailed), and most participants had a negative slope (13/16, p = 0.02, binomial test). 

Participants in the Integer condition, therefore, associated negative numbers with the space 

behind them, positive numbers with the space ahead. By comparison, in the Positive Only 

condition, when it was completed first, regression slopes were not significantly less than zero 

(Mβ = -4.7, t(14) = -0.8, p = .22, one-tailed). See Figure 2.3.  

Experiment 1a thus demonstrated a novel effect, a sagittal number line (SNL), in which 

negative numbers are associated with the space behind the body and positive numbers with 

the space in front. This effect, moreover, was restricted to the Integer condition; there was 

no evidence of systematic spatial dispositions during the Positive Only condition, which did 

not involve negative numbers. Note, in fact, that the stimuli in the Positive Only condition 

(1 to 9) were identical to the greater half of the stimuli in the Integer condition (i.e. integers 

greater than 0). The exact same numbers, therefore, were strongly associated with front 

space when they were processed in the context of negative numbers (Integer condition; Fig. 

2.2, top-left) but had no associations—perhaps even a slight association with the rear—when 

processed on their own during the Positive Only condition (Fig. 2.2, bottom). The SNL, 

therefore, may be limited to contexts that juxtapose positive and negative integers.  

The SNL in Experiment 1a was restricted to those participants who completed the 

Integer condition first. We suspect this was due to the length of the task. It took up to 45 

minutes to complete all four blocks of trials, perhaps resulting in automatized and routine 

responses by the end of the experimental session. Our undergraduate student participants, it 

seems, no longer exhibit number-space associations after 45 minutes of this aerobic exercise, 

repeatedly stepping forwards and backwards. In all subsequent experiments, therefore, we 
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manipulated the number condition between subjects, allowing us to limit time-on-task to less 

than half-an-hour.  

It is possible, however, that this novel SNL effect may have been driven by demand 

characteristics. Given the spatial nature of the full-body response, participants may have 

inferred that the experiment was investigating associations between number and space, 

guessed the predicted direction of the association (i.e. negative-back, positive-front), and 

behaved accordingly. To rule out this deflationary account, Experiment 1b replicated directly 

the critical finding of Experiment 1a—an SNL for the positive and negative integers—but 

only in participants who were unaware of the experiment’s purpose.  

2.3. Experiment 1b 

2.3.1. Participants 

Undergraduate students from UC San Diego (n = 37, Mage = 21, 28 women), who did 

not participate in any of the other experiments, participated in exchange for partial course 

credit. Sample size was determined based on our expectation, from informal debriefing, that 

approximately half of participants would guess the experiment’s purpose; we aimed for at 

least as many naive participants as there were participants who completed the Integer 

condition first in Exp. 1a (n = 16). 

2.3.2. Design and Procedure 

The design and procedure was identical to Experiment 1a, except participants 

completed only the Integer condition, followed by a funnel debrief questionnaire. 

Participants responded to the following questions, ordered by specificity: 

1. “What do you think was the purpose of this experiment?” 
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2. “This experiment was about the mental representation of integers. What aspect of 

the mental representation of integers do you think we were investigating?” 

3. “This experiment is investigating the existence of a "mental number line" for positive 

and negative integers. During the experiment, did you guess that this was the 

purpose of the experiment?” 

We only included those participants who did not guess the experiment’s purpose and 

made absolutely no mention of space or a number-line. (See Appendix A for the full 

questionnaire.) This stringent exclusion criteria left a subsample of 18 naive participants.  

2.3.3. Results and Discussion 

Overall, the results confirmed the findings of Experiment 1a. Accuracy was high (M 

= .96) and no participants were removed for low accuracy (all > .90). Before analyzing 

response times, incorrect trials were removed, followed by trials with reaction times that 

were slower than three standard deviations above each participant’s mean response time in 

each condition (< 1% of trials). Individual accuracy was not significantly correlated with 

reaction times, ruling out a speed-accuracy trade-off, t35 = 1.9, p > .05.  

We analyzed reaction times with a 2x2x2 mixed-design ANOVA, with Magnitude 

(greater vs. less than 0) and Direction (forward vs. backward) as within-subjects factors, and 

Debrief (guessed or did not guess the experiment’s purpose) as a between-subjects factor. There 

was a main effect of Magnitude, F(1,35) = 12.7, p = .001, ηp
2 = .27, with faster responses for 

numbers less than zero (M<0 = 460ms vs. M<0 = 470ms). The only other effect that 

approached significance was the predicted two-way interaction between Magnitude and 

Direction, F(1,35) = 4.2, p < .05, ηp
2 = .11. Critically, this was unaffected by whether 

participants had inferred the experiment’s purpose, F(1,35) = 0.45, p > .50. To further 
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characterize the SNL among naive participants, we conducted the same regression analysis 

from Experiment 1a (Fig. 2.3). Overall, slopes were significantly less than zero (Mβ = -3.35, 

t36 = -1.8, p = .039, one-tailed), indicating a back-to-front SNL. Critically, this was true even 

among the subsample of participants who were naive to the experiment’s purpose (Mβ = -

4.9, t36 = -1.8, p = .049, one-tailed).  

In summary, participants associated positive and negative integers with the space in 

front and behind the body, respectively, even when they were naive to the experiment’s 

purpose, thus ruling out an impact of demand characteristics. Experiment 1, therefore, 

suggests that participants represent the integers, positive and negative, along a sagittal 

number-line (SNL); there were no systematic spatial dispositions for positive numbers alone 

(Exp. 1a). The SNL, therefore, appears to reflect implicit and selective associations between 

sagittal space and the integers. 
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Figure 2.3. The sagittal number-line (SNL) when processing positive integers alone, 
negative integers alone, or both together (“Integer” condition). In the first session of 
Experiment 1a (top-left), there was a back-to-front SNL (i.e. negative regression slope) for 
Integers (red circles) but for positive numbers alone (blue squares). Experiment 1b (top-
right) replicated this SNL among naïve participants (top-right). Experiment 2 (bottom-left) 
again found a back-to-front SNL for Integers (red circles) but not negative numbers alone 
(green diamonds). Experiment 3 compared the integers to ranged-matched positive 
numbers, and again found a back-to-front SNL in the Integer condition alone. Error lines 
and shaded regions indicate bootstrapped 95% confidence intervals. 

 

2.4. Experiment 2 

Experiments 2 and 3 were designed to rule out deflationary accounts of the back-to-

front SNL. First, Experiment 2 addressed the possibility that the interaction between 

number and space in the Integer condition may have been due to the mere presence of 
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negative integers rather than to a systematic association between integers and sagittal space 

(i.e. negative numbers with the space behind, positive numbers with the space in front). 

Perhaps the sagittal axis is deployed as a representational tool whenever negative numbers are 

involved, even when encountered on their own, isolated from the positive integers or zero. 

After all, the negative integers are less familiar than the positive integers, encountered later in 

school and less often in daily life, and might thus demand an increased reliance on more 

analog, spatial resources. Comparing -1 to -5, for instance, might be such an unfamiliar or 

difficult task that participants grasp at whatever representational resources are available 

within the experimental context—including sagittal movement. On this account, any task 

that involves negative numbers should induce sagittal dispositions; for instance, if negative 

integers were compared to -5, then perhaps numbers less than -5 would be associated with 

the back, and those greater than -5 with the front. Alternatively, if the SNL reflects the 

structural alignment of the integers—both positive and negative—and the sagittal axis, then 

there should be a stable association of negative numbers with rear space, positive numbers 

with front space, and zero with the body.  

2.4.1. Participants 

Undergraduate students from UC San Diego (n = 32, Mage = 21, 28 women), who did 

not participate in any of the other experiments, participated in exchange for partial course 

credit. Sample size was determined in advance, following Exp. 1a (n = 32). 

2.4.2. Design and Procedure 

Design and procedure were identical to Experiment 1a, except the Positive Only 

condition was replaced with an Negative Only condition, in which the stimuli ranged from -9 
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to -1 (instead of 1 to 9) and numbers were compared to -5 (instead of 5). The Negative Only 

condition, therefore, was matched to the Positive Only condition of Experiment 1a, except the 

task was performed with negative instead of positive numbers. Number Type (Integer vs. 

Negative Only) was counterbalanced between-subjects. 

2.4.3. Results and Discussion 

Overall accuracy was quite high (M = .96). Before analyzing response times, 

incorrect trials were removed, followed by trials with reaction times that were slower than 

three standard deviations above each participant’s mean response time in each condition 

(<1% of trials). In addition, one participant was removed due to exceptionally low accuracy, 

answering only 65% of the trials correctly (accuracy ≥ .89 for all other participants). 

Individual accuracy was negatively correlated with reaction time, t29 = 2.6, p = .014, with 

reaction times faster on correct trials, ruling out a speed-accuracy trade-off. 

Reaction times were analyzed with a 2 (Magnitude) x 2 (Direction) x 2 (Number 

Type) mixed-design ANOVA. Responses were faster once again for lesser compared to 

greater numbers, F(1,29) = 12.9, p = 0.001, ηp
2 = .31. The only other significant effect was an 

interaction between Magnitude and Number Type, F(1,29) = 13.7, p = 0.001, ηp
2 = .32, 

presumably driven by the different numerical stimuli in the Positive Only and Integer 

conditions. Against our predictions, the two-way interaction between Magnitude and 

Direction was not significant, F(1,29) = 1.6, p = 0.22, nor was the three-way interaction with 

Number Type, F(1,29) = 1.6, p = 0.21.  

By contrast, the regression analysis of responses in both Number Type conditions did 

reveal spontaneous associations between integers and sagittal space in the Integer condition. 

For the Integer condition, as predicted, slopes were significantly less than zero (β = -4.6, t16 = 



48 

 

-2.25, p = .019, one-tailed), while slopes in the Negative Only condition were not significantly 

less than zero (β = 0.9, t(15) = 0.16, p = .56, one-tailed). Prompted by this regression analysis, 

we performed separate follow-up ANOVAs of both Number Type conditions. This 

confirmed the results of the regression analysis: Participants in the Integer condition did, 

indeed, associate numerical magnitude with response direction, as revealed by a significant 

interaction between Magnitude and Direction, F(1,15) = 4.9, p = 0.49, ηp
2 = .23, while those in 

the Negative Only condition did not, F(1,14) = 0.002, p > 0.9, ηp
2 < .001. 

In summary, the mere presence of negative integers was insufficient to induce an 

association between numerical magnitude and sagittal space. Only when the task involved 

both positive and negative integers did participants associate numbers with the back-to-front 

sagittal axis, faster to respond backwards for negative than for positive integers (M = 448ms 

vs. 488ms), but faster to respond forwards for positive than for negative integers (M = 

472ms vs. 488ms). The SNL, therefore, seems to require the juxtaposition of both negative 

and positive integers, so that participants can map the structure of the sagittal axis (origin at 

the body, space behind the body, and space in front of the body) to the structure of the 

integers (origin at zero, numbers less than zero, and numbers greater than zero). 

2.5. Experiment 3 

Experiment 3 addressed two remaining concerns with the results of Experiments 1 

and 2. First, the numerical ranges of the Positive Only (Exp. 1) and Negative Only (Exp. 2) 

stimuli were less than the range of the Integer stimuli (from ±1 to ±9, range = 8 vs. -9 to +9, 

range = 18). Perhaps this increased range, and not the involvement of negative numbers, was 

responsible for the difference between the Integer and Positive Only conditions. Second, 

participants could succeed in the Integer condition simply by checking for the presence of a 
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minus sign (e.g. -4 vs. 4), while both the Positive Only and Negative Only conditions required 

access to the magnitude represented by the numeral. This categorical strategy in the Integer 

condition may have induced associations between space and magnitude based solely on the 

dimensions’ “polarity” (cf. Proctor & Cho, 2006). 

To address these concerns, Experiment 3 modified the Positive Only condition so 

that the stimuli ranged from 11 to 29, judged relative to 20. These numbers have the same 

range as those in the Integer condition (i.e. 18), and their relative magnitude can be 

determined from the first digit alone (e.g. 11 vs. 21). If the interaction in Experiments 1 and 

2 was an artifact of a categorical strategy or the larger numerical range, then we should find 

an interaction between magnitude and response direction in this modified Positive Only 

condition. If, on the other hand, the interaction reflected selective spatial dispositions for 

positive and negative integers—an SNL—then we should find the effect only when the task 

involves negative integers. 

2.5.1. Participants 

Undergraduate students from UC San Diego (n = 32, Mage = 21, 22 women), who did 

not participate in any of the other experiments, participated in exchange for partial course 

credit. Sample size was determined in advance, following Exp. 1a (n = 32). 

2.5.2. Design and Procedure 

In a between-subjects design, participants made magnitude judgments of either 

positive and negative integers (-9 to 9, Integer) or positive whole numbers (11 to 29, Positive 

Only). The procedure in the Integer condition was identical to Experiment 1. The Positive 

Only condition was modified in two ways: stimuli ranged from 11 to 29 (instead of 1 to 9) 
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and numbers were compared to 20 (instead of 5). The tasks were therefore matched in two 

ways. First, participants could complete either task by attending only to the most leftward 

symbol (“1” or “2”; presence or absence of a negative sign), thus matching the tasks on the 

availability of a categorical strategy. Second, the stimuli had an identical range.  

2.5.3. Results and Discussion 

Overall accuracy was quite high (M = .96), and no participants were removed for 

poor accuracy. Before analyzing reaction times, incorrect trials were removed, followed by 

trials with reaction times that were slower than three standard deviations above each 

participant’s mean response time in each condition (5% of trials).  Individual accuracy was 

not significantly correlated with reaction times, , t30 = 0.1, p > .9, ruling out a speed-accuracy 

trade-off.  

Reaction times were analyzed with a 2 (Magnitude) x 2 (Direction) x 2 (Number 

Type) mixed-design ANOVA. Once again, there was a main effect of Direction: backward 

responses (M = 441ms) were faster than forward responses (M = 458ms), F(1,30) = 21.3, p < 

.001, ηp
2
 = .42. The only other significant effect was a three-way interaction between 

Number Type, Magnitude, and Direction, F(1,30) = 9.72, p = 0.004, ηp
2 = .24. Follow-up 

analyses of each Number Type, using 2 (Magnitude) x 2 (Direction) repeated-measures 

ANOVAs, revealed that this was driven by a significant two-way interaction in the Integer 

condition, F(1,15) = 5.82, p = .029, ηp
2 = .28, which approached but did not reach significance 

in the Positive Only condition, F(1,15) = 4.45, p = .052. When moving backwards in the Integer 

condition, participants were significantly faster to respond to negative than to positive 

integers (M = 442ms vs. 404ms), t(15) = -2.357 p = 0.02; by contrast, when moving forwards 
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they were faster to respond to positive than to negative integers (M = 422ms vs. 458ms), t(15) 

= 2.19, p = .04.  

As in Experiment 1, we performed a regression analysis to further characterize the 

association between numerical magnitude and sagittal space (Fig. 2.3). For the Integer 

condition, as predicted, slopes were significantly less than zero (β = -5.4, t(15) = -2.26, p = 

.019, one-tailed), indicating a back-to-front SNL. In the Positive Only condition, by contrast, 

slopes were not significantly less than zero (β = 2.9, t(15) = 2.1, p = .97, one-tailed). 

Experiment 3 thus replicated the main finding of Experiment 1—a back-to-front 

SNL—and ruled out a number of deflationary accounts of the difference between the 

Positive Only and Integer conditions. Since stimuli in both Number Type conditions had an 

identical range (-9 to 9 and 11 to 29), it is unlikely that the difference between the tasks was 

drive, for instance, by the Distance Effect. And since participants could complete both 

conditions by attending only to the leading symbol, it is unlikely that the effect in the Integer 

condition was due solely to a categorical strategy or Polarity Correspondence (Proctor & 

Cho, 2006).  

In fact, the mean regression slope in the Positive Only condition, while not 

significantly different from zero (t(15) = 2.1, p > .05), was unexpectedly positive rather than 

negative. Polarity Correspondence (Proctor & Cho, 2006) actually predicts the opposite 

effect (i.e. negative slopes), since frontward responses and larger numbers are both 

unmarked. Larger numbers should therefore facilitate forward responses; we found the 

opposite effect (see Fig. 2.3). The positive slope in the Positive Only condition, on the other 

hand, is consistent with the results of Seno and colleagues (2011), who found, among 

Japanese and Chinese participants, an association between forward motion and smaller 
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whole numbers, and backwards motion and larger whole numbers. Future research will need 

to determine whether there is a small but real association between smaller positive numbers 

and forwards motion.  

In summary, Experiment 3 again replicated the finding that the integers are 

associated with the back-to-front sagittal axis—the SNL. When participants responded to 

matched positive numbers, by contrast, there was no evidence of a back-to-front SNL—if 

anything, there was a suggestion of front-to-back spatial dispositions. The back-to-front 

SNL for the integers, therefore, is not an artifact of a categorical strategy or of a larger 

numerical range.  

2.6. Experiment 4 

The classic SNARC effect is thought to reflect automatic activation of spatial 

information during number processing. Associations between number and horizontal space 

appear even if the task does not require participants to process numerical magnitude—for 

instance, deciding if numbers are even or odd (Dehaene et al, 1993). Is the SNL similarly 

automatic, or does it require explicit attention to magnitude? 

To answer this question, Experiment 4 compared magnitude judgments, which 

require attention to numerical magnitude, with parity judgments (even vs. odd), which do not. 

If the SNL is automatic—activated implicitly whenever processing integers—then numerical 

magnitude should interact with spatial location during both Magnitude (greater vs. less than 0) 

and Parity (even vs. odd) tasks.  
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2.6.1. Participants 

Undergraduate students from UC San Diego (n = 32, Mage = 20, 26 women), who did 

not participate in any of the other experiments, participated in exchange for partial course 

credit. Sample size was determined in advance, following Exp. 1a (n = 32). 

2.6.2. Design and Procedure 

Participants completed one of two tasks, with task assignment counterbalanced 

between-subjects. The Magnitude task was identical to the Integer condition in Experiments 1a, 

1b, 2, and 3, and involved judging the magnitude of integers from -9 to 9, relative to 0. In 

the Parity task, participants determined the parity (even vs. odd) of integers from -9 to 9, not 

including zero. All other details of the design (number of trials, timing, etc.) were identical to 

the Magnitude task.  

2.6.3. Results and Discussion 

Accuracy was high and did not differ between tasks (both M = .96, t(15) = 0.07, p = 

.9). Once again, incorrect trials were removed, followed by trials with reaction times more 

than three standard deviations from the participant’s mean response time in each condition 

(< 1% of trials). Individual accuracy was negatively correlated with reaction time, t29 = 2.3, p 

= .03, with reaction times faster on correct trials, ruling out a speed-accuracy trade-off. 

To analyze reaction times, we conducted a 2x2x2 mixed-design ANOVA, with 

Magnitude and Direction as within-subjects factors and Task (Magnitude vs. Parity) as a 

between-subjects factor. There was again a significant main effect of Direction, F(1,30) = 10.2, 

p = .003, ηp
2
 = .25, with backward responses 13.9ms faster than forward responses. The only 

other significant effect was the predicted two-way interaction between Magnitude and 
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Direction, F(1,30) = 4.66, p = .039, ηp
2
 = .13. Backward responses were faster for negative 

integers (M<0 = 475ms vs. M>0 = 489ms), while forward responses were faster for positive 

integers (M>0 = 504ms vs. M<0 = 489ms). Crucially, there was no three-way interaction with 

Task, F(1,30) = 1.76, p = .20. Indeed, separate regression analyses for each task found that the 

mean slope was less than zero in both tasks (Magnitude: β = -3.5; Parity: β = -1.0), these 

slopes did not differ from each other (t30 = -1.2, p = .25), and the number of participants 

with negative slopes did not differ between tasks (12/16 vs. 11/16,  p > .9, Fisher’s Exact). 

Separate analyses of the slopes for each Task, however, revealed that they were only 

significantly less than zero for the Magnitude task (Magnitude: t15 = -1.8, p = .04; Parity: t15 = 

-1.0, p = .17; one-tailed). Processing negative and positive integers, therefore, prompts spatial 

dispositions along the sagittal axis, although explicit magnitude processing may amplify these 

dispositions.  

2.7. General Discussion 

Are we pierced by a number-line that runs through our bodies, back-to-front? Four 

experiments suggest that the answer is yes. We established—and then replicated four times—

a novel effect: Negative numbers are associated with the space behind the body and positive 

numbers with the space in front—a back-to-front sagittal number-line (SNL). This reliable 

disposition suggests a systematic link between the integers and space, with the integers 

mapped, back-to-front, with the sagittal axis, divided by the body at zero. These sagittal 

spatial dispositions, moreover, were specific to the integers as a whole. We failed to find 

evidence of a back-to-front SNL for positive (Exp. 1a, 3) or negative (Exp. 2) numbers in 

isolation, ruling out the possibility that the experimental setup was sufficient to prompt an 

association between stimuli and sagittal locations. The SNL appeared even when the task did 
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not require explicit processing of numerical magnitude, although the effect was largest when 

the task required explicit processing (Exp. 4). These results suggest that the SNL is 

systematic, specific, and automatic.  

There was also a recurring main effect of stepping direction, with consistently faster 

responses backward. This was likely due to the experimental set-up (e.g. the angle of the foot-

pedal), though we cannot exclude the possibility that American undergraduate students have 

an innate or acquired aversion to numbers, prompting them to recoil backwards in terror. 

We turn now to a number of outstanding issues. First, how might these spatial 

dispositions relate to other spatial-numerical associations? Second, where might such 

dispositions come from, and what impact might they have? Third, how might the SNL relate 

to mathematical activity more generally, with its motley practices, striking precision, singular 

abstraction?  

2.7.1. Relating the SNL to other spatial dispositions 

A few studies have investigated previously whether negative integers induce spatial 

dispositions, but only along the horizontal axis. The results have been mixed, with negative 

integers sometimes associated with locations to the left of zero along an extended left-to-

right mental number-line (Fischer, 2003), other times associated with space on the basis of 

their absolute rather than relative value (e.g. 9 and -9 both associated with the right, since |-

9| = 9; Ganor-Stern & Tzelgov, 2008). These horizontal dispositions appear to depend on 

the experimental task (Ganor-Stern et al, 2010). As far as we know, nobody has investigated 

whether negative integers, like their positive counterparts (e.g. Schwartz & Keuss, 2004), 

induce vertical dispositions. However, a variety of cultural artifacts map the positive and 

negative integers to a vertical axis; Cartesian graphs and cold-climate thermometers are the 
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most obvious examples. We suspect these conventions are enough to induce, in the human 

mind, implicit associations between the negative integers and lower space.  

These multiple spatial dispositions for number—horizontal, vertical, and now 

sagittal—evoke the multiple spatial construals that have been documented for the domain of 

Time (e.g. Núñez & Cooperrider, 2013). In “external” spatial representations of time, the 

spatial axis does not include the body—such as when temporal sequences are conceptualized 

as a left-to-right path in front of the speaker. All previously documented mental number 

lines are of this type; they involve paths outside the body, whether left-to-right, right-to-left, 

or bottom-to-top. In “internal” spatial representations, by contrast, the body is part of the 

representation. Time, for instance, can be conceptualized as running from back to front, 

with “now” co-located with the body. Unlike previous number-lines, the SNL appears to be 

of this type, with the body mapped to zero and thus dividing positive from negative. Núñez 

and Cooperrider (2103) suggest that, for time, external representations may require extensive 

cultural scaffolding, while internal representations may appear more spontaneously. On this 

point, number likely differs from time. Even an internal representation like the SNL is likely 

to require extensive cultural support, at least for the initial acquisition of the integer concept.  

Moreover, the three domains of space, time, and number are tightly intertwined in 

both world and mind (Winter, Marghetis, & Matlock, 2015). The SNL may further entangle 

number and time, perhaps linking past to negative, future to positive. Indeed, abstract 

concepts in general often induce systematic dispositions to act and think spatially (e.g. 

valence, Casasanto, 2009). This web of spatial dispositions may bind concepts across diverse 

domains, establishing relations among relations. 
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However, given the critical role of inscription within mathematical practice, a sagittal 

representation of number comes with challenges. The 17th century mathematician Wallis 

(1685), for instance, was the first to explicitly state an analogy between the integers and the 

sagittal axis (Fauconnier & Turner, 1998; Núñez, 2011). But when it came time to represent 

this analogy on paper, as a diagram, he was forced to follow the constraints of writing and 

reading practices and thus transpose back-to-front sagittal motion to the left-to-right 

horizontal axis, so that locations “ahead” were drawn to the right on the page, and those 

“behind” were drawn to the left. In so doing, Wallis took an internal, immersive 

spatialization of number and transformed it into an external representation, with the reader 

situated outside the axis of motion. This illustrates one of the limitations of the sagittal axis: 

As a result of the front-back asymmetry of our reach and perception, the sagittal axis resists 

being used for writing. This may explain, in part, the absence of material artifacts that 

embody the SNL—unlike horizontal number-lines, which are commonplace.  

2.7.2. Origins of the SNL 

What is the origin of the SNL? The SNL could derive from conventional expressions 

that use the language of sagittal space to describe numerical relations (e.g. “count backward 

or forward”); a similar process may account for some aspects of the spatial representation of 

time (Boroditsky, 2001). We think this is unlikely, however, given the rarity of such 

expressions, and the fact that the SNL appears only when processing both negative and 

positive integers. 

Another possibility is that the SNL is the behavioral manifestation of an implicit 

conceptual metaphor. “Conceptual metaphors” are sets of mappings between conceptual 

domains (e.g. Space, Time, Arithmetic) in which the inferential structure of a (typically more 
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concrete) source domain is used to structure a (typically more abstract) target domain 

(Lakoff & Johnson, 1980). In their account of the metaphorical nature of mathematical 

thought, Lakoff and Núñez (2000) suggest that we conceptualize arithmetic using our 

embodied experience of motion along a path: numbers are locations along the path; addition is 

movement away from an origin; zero is the origin; larger numbers are farther from the 

origin. Wallis’s (1685) analogy between arithmetic and sagittal motion, discussed above, may 

have been an explicit statement of this implicit conceptual metaphor—and may even have 

marked its historical origin (Núñez, 2011; cf. Fauconnier & Turner, 1998). Might this 

metaphor be responsible for the SNL? This is unlikely, for two reasons. First, on Lakoff and 

Núñez’s proposal, this metaphor is used first to conceptualize the positive whole numbers 

(2000, p. 72), and then used to motivate the extension of the number domain to include 

negatives (p. 73). Therefore, if the conceptual metaphor were to manifest itself behaviorally 

(e.g. as spatial dispositions), then this should happen, first and foremost, for the positive 

whole numbers. And yet we found no evidence of an SNL for isolated positive integers. 

Second, one of the core insights of conceptual metaphor theory is that inference and reasoning 

are structured by metaphor (Lakoff & Johnson, 1980). In fact, it is this focus on inference 

and reasoning that distinguishes conceptual metaphor theory from competing  accounts of 

cross-domain interactions (Winter, Marghetis, & Matlock, 2015). The SNL, by contrast, 

involves low-level, unconscious, implicit spatial dispositions. While we suspect these simple 

dispositions may play a critical role in helping us make sense of negative integers and may 

even play a functional role in simple tasks like magnitude comparison, they are nevertheless 

far from the realm of inference and reasoning. While Lakoff and Núñez’s proposed path-

based metaphor may relate to the SNL in other ways—for instance, both the metaphor and 
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the SNL may spring from a common origin—we doubt the SNL is simply a behavioral 

manifestation of the underlying metaphor. 

Perhaps the SNL is the product of analogical structure-mapping (Gentner, 1983). 

The sagittal axis and the integers share considerable structure: a single dimension; a 

privileged reference point; transitive relations between elements. Indeed, Clark (1973) 

presaged the current results when he observed, in his seminal discussion of the semantics of 

space and time, that “since everything in front of the vertical plane is easily perceptible and 

everything behind it is not, the forward direction can be considered the positive perceptual 

direction, and backward the negative one, where positive its taken in its natural sense to mean 

the presence of something, and negative, the absence” (emphasis in the original). Clark’s 

insight is that structural similarity between sagittal space and other domains may facilitate 

analogical mappings between the sagittal axis and those other domains.  

Indeed, the sagittal axis is striking in its asymmetry, and spatial dispositions typically 

reflect asymmetries in our bodies and experience. The vertical axis is oriented in virtue of 

physiological and gravitational asymmetries, and this oriented axis may become associated 

with numerical magnitude by experiential correlations between more and up (Lakoff & Núñez, 

2000). And while our bodies are bilaterally symmetric, a lifetime of enculturation into spatial 

practices shapes horizontal dispositions; hypothesized influences on the orientation of the 

horizontal mental number-line, for instance, include writing direction (Shaki, Fischer, & 

Petrusic, 2009), body-counts (Fischer, 2008, Beller & Bender, 2012), and gesture (Marghetis, 

Eberle, and Bergen, submitted). The human mind, therefore, appears sensitive to spatial 

asymmetries, capitalizing on them to build up a system of spatial dispositions. Unlike the 

horizontal axis, which depends on cultural experience for its orientation, the orientation of 
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the sagittal axis may flow more directly from our species-typical physiology and its 

accompanying perceptual experiences. It may be this physiological asymmetry that makes the 

axis salient as a representational tool more generally—but only for domains, like time and 

the integers, that share its divided structure (Clark, 1973). 

This is not to suggest that we should expect the SNL to be universal, found in the 

same form in every culture. For starters, quite obviously, negative numbers are far from 

universal. The concept is a recent and highly technical development, responding to 

specialized constraints and demands within mathematical practice (cf. Núñez, 2011). Second, 

the intuition that numbers can be mapped to spatial locations (rather than to spatial lengths) is 

highly variable across cultures—and may not even exist in some (Núñez, Cooperrider, and 

Wassmann, 2012). Perhaps most critically, even when individuals within a culture possess 

both the concept of a negative number and the intuition that numbers can be mapped to 

spatial locations—necessary prerequisites for the SNL—there may be variability in the 

SNL’s orientation. Our species-typical physiology, with its sagittal asymmetries, might seem 

sufficient to induce “natural” ways of mapping sagittal space to other domains (Clark, 1973). 

But within the constraints of our shared embodiment, cultural variability can nevertheless 

flourish. While Western cultures typically associate the future with the space in front of the 

body and the past with the space behind—what might seem a “natural” mapping—the 

Aymara of the Andes reverse this sagittal time-line (i.e. past-front, future-back; cf. Núñez 

and Cooperrider, 2013). Sagittal number-lines, when they exist within a culture, may exhibit 

similar variability. This may explain why Seno and colleagues (2011) report that, for Chinese 

and Japanese adults, forward motion was associated with smaller numbers and backward 

motion with larger numbers.  
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2.7.3. Implications for embodied cognition and mathematical competence 

The SNL has theoretical implications both for grounded or embodied cognition and 

for our understanding of mathematical competence. Theories of grounded or embodied 

cognition argue that higher cognition co-opts neural subsystems specialized for interaction 

with the world—that is, for space, action, and perception (e.g., Barsalou, 1999). Mental 

arithmetic, for instance, may recycle parietal brain circuits adapted for the control of spatial 

attention (Knops et al, 2009), even when the calculation requires exact, symbolic quantities 

(Marghetis et al, 2014). A recurring worry about grounded approaches, however, is whether 

sensorimotor systems contribute to the conceptual representation of entirely abstract 

concepts—concepts that lack concrete, real-world instantiations. The current results affirm 

that even the most abstract, technical concepts—such as the negative integers—may rely on 

subsystems specialized for space and action. On the other hand, theories of embodiment 

often tell a developmental story in which abstract concepts are built up progressively from 

more concrete experiences and concepts (Lakoff & Johnson, 1980; Lakoff & Núñez, 2000). 

Evidence of spatial dispositions along the horizontal axis for arithmetic, for instance, may 

reflect concrete experiences with cultural artifacts that map numbers to a physical left-to-

right line (e.g. physical number-lines in school). Our finding of an SNL for the integers, but 

not the positive whole numbers, illustrates that the grounding of an abstract concept (e.g. the 

integers) may be independent from the grounding of its conceptual antecedents (e.g. the 

positive whole numbers). Moreover, the lack of an obvious experiential origin for the 

association between the integers and the sagittal axis highlights non-experiential origins of 

sensorimotor grounding, including analogical reasoning.  
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How might the SNL impact mathematical competence? In general, spatial 

dispositions may scaffold the acquisition of number concepts, supporting children’s early 

sense-making (Núñez & Marghetis, forthcoming) or may supply a subjective, gut-feeling 

“quality of quantity” that complements more exact calculations (Marghetis et al, 2014). The 

SNL might therefore be a productive target for educational intervention, similar to 

successful interventions that have targeted the association between whole numbers and 

horizontal space (Siegler & Ramani, 2009). There is evidence, however, that external spatial 

representations of number (e.g. the horizontal mental number-line) play a negligible role 

during adult numerical cognition (e.g. Cipora & Nuerk, 2013), perhaps because they are 

displaced by horizontal dispositions associated with more complex mathematical skills (e.g. 

exact symbolic arithmetic, Knops et al, 2009, Marghetis et al, 2014; algebraic manipulation, 

Goldstone et al, 2010). Conversely, if complex arithmetic and algebraic skills are not 

associated with the sagittal axis, then the acquisition and mastery of these skills may not 

interfere with sagittal spatial construals like the SNL. Unlike other spatial-numerical 

associations, the SNL might thus continue to contribute to support advanced mathematical 

competence. 

Indeed, mathematical practice involves more than thinking about isolated numbers. 

For starters, numbers are manipulated by calculation and symbolic manipulation, which 

themselves induce spatial dispositions (e.g., Knops et al, 2009; Marghetis et al, 2014; 

Goldstone et al, 2010). And while most research in numerical cognition has focused on small 

positive numbers, advanced mathematics goes beyond simple whole numbers (Núñez & 

Marghetis, 2014). Massively large numbers, complex numbers, discontinuous functions—

these are central to science, technology, engineering, and mathematics. Even when working 
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with these rarified, abstract concepts, however, mathematical experts deploy dynamic, spatial 

intuitions to supplement their technical reasoning (Marghetis & Núñez, 2013). It remains to 

be seen how the SNL interacts with these varied aspects of mathematical activity.  

In conclusion, we investigated whether the integer concept, while shaped 

considerably by enculturation into complex socio-technical practices, nevertheless builds on 

more concrete, embodied intuitions. In particular, we pursued the possibility that the sagittal 

asymmetry of the human body, and resulting asymmetries in experience along the sagittal 

axis, may be mapped, in the human mind, to the asymmetry between negative and positive 

integers. Four experiments established that processing negative integers induces spontaneous 

spatial dispositions to move backward, and positive numbers, to move forward—a sagittal 

number line (SNL). The cognitive processing of abstract integers, therefore, appears to be 

grounded in action, prompting systematic dispositions to act. We may even be tempted to 

say about the integers what Bourdieu said about honor: that they are "nothing other than the 

cultivated disposition, inscribed in the body schema and the schemes of thought," which he 

calls the habitus (Bourdieu, 1977:15). Of course, this goes too far. Our understanding of the 

integers outstrips the embodied dispositions we have internalized from a lifetime of 

experience; our understanding depends on and is partially constituted by notational systems, 

axioms, diagrammatic practices, an entire sociotechnical ecosystem. But these spatial 

dispositions—part of our mathematical habitus—may nevertheless play a central role in 

enacting our mathematical conceptual systems.  
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Appendix: Debrief from Experiment 1b 

We include, below, the full list of questions that were asked in Experiment 1b’s debrief. 

Possible responses to multiple-choice questions are in parentheses. Questions were 

presented on a computer, in the following order, one question at a time. No other questions 

were asked (cf. Simmons et al, 2012). Questions 1, 2, and 7 were designed specifically to 

detect whether participants had surmised the experiment’s purpose; for the purposes of 

Experiment 1b, participants were “naive”�if they did not mention space in their responses to 

questions 1 and 2 and responded negatively to question 7.  

 

1. What do you think was the purpose of this experiment? (free response) 

2. This experiment was about the mental representation of integers. What aspect of 

the mental representation of integers do you think we were investigating? (free 

response) 

3. Overall, do you think you were significantly faster to move forward, move 

backward, or about the same speed in either direction? (faster when moving 

forward; faster when moving backward; no difference) 

4. Overall, do you think you were significantly faster to respond to positive 

integers, negative integers, or about the same speed for both? (faster for positive 

integers; faster for negative integers; no difference) 

5. When you were responding to positive integers, do you think you were 

significantly faster to move forward, move backward, or about the same speed in 

either direction? (faster when moving forward; faster when moving backward; no 

difference) 
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6. When you were responding to negative integers, do you think you were 

significantly faster to move forward, move backward, or about the same speed in 

either direction? (faster when moving forward; faster when moving backward; no 

difference) 

7. This experiment is investigating the existence of a "mental number line" for 

positive and negative integers. During the experiment, did you guess that this was 

the purpose of the experiment? (yes; no) 

8. Given that the purpose of the experiment was to investigate the existence of a 

mental number line, what kind of number-line do you predict that we will find? 

(back-to-front: negative numbers behind and positive numbers in front; front-to-

back: negative numbers in front and positive numbers behind; no number-line: 

negative and positive numbers are both abstract concepts so they should not 

have a spatial representation in the mind; I don’t know) 
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Chapter 3 

Doing arithmetic by hand: Hand movements during exact arithmetic 

reveal systematic, dynamic spatial processing 

 

ABSTRACT 

Mathematics requires precise inferences about abstract objects inaccessible to 

perception. How is this possible? One proposal is that mathematical reasoning, while 

concerned with entirely abstract objects, nevertheless relies on neural resources specialized 

for interacting with the world—in other words, mathematics may be grounded in spatial or 

sensorimotor systems. Mental arithmetic, for instance, could involve shifts in spatial 

attention along a mental “number-line,” the product of cultural artifacts and practices that 

systematically spatialize number and arithmetic. Here, we investigate this hypothesized 

spatial processing during exact, symbolic arithmetic (e.g. 4 + 3 = 7). Participants added and 

subtracted single-digit numbers and selected the exact solution from responses in the top 

corners of a computer monitor. While they made their selections using a computer mouse, 

we recorded the movement of their hand as indexed by the streaming x, y coordinates of the 

computer mouse cursor. As predicted, hand movements during addition and subtraction 

were systematically deflected toward the right and the left, respectively, as if calculation 

involved simultaneously simulating motion along a left-to-right mental number-line. This 

spatial-arithmetical bias, moreover, was distinct from—but correlated with—individuals’ 

spatial-numerical biases (i.e. SNARC effect). These results are the first evidence that exact, 

symbolic arithmetic prompts systematic spatial processing associated with mental calculation. 
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We discuss the possibility that mathematical calculation relies, in part, on an integrated 

system of spatial processes. 

3.1 Introduction 

Mathematics exemplifies some of the most remarkable properties of human 

cognition: exact yet abstract, mediated by notations and diagrams, and accompanied by a 

compelling sense of certainty. And yet mathematics itself is such a recent cultural innovation 

that the neural resources responsible for mathematical thought could not have evolved 

specifically for that purpose. This article explores the possibility that mathematical thought, 

and arithmetic calculation in particular, relies on neural resources that are specialized for 

processing space (e.g. Dehaene and Cohen, 2007; Anderson, 2010). On this account, 

mathematical cognition involves mapping mathematical entities to space, a space which then 

affords reasoning and reflection (Lakoff and Núñez, 2000; Núñez and Marghetis, in press). 

We may recycle the brain’s spatial prowess to navigate the abstract mathematical world. 

The last two decades have generated an abundance of evidence that human 

numerical cognition does, indeed, interact with spatial processing. During a variety of simple 

tasks, numerical magnitude has been found to be associated with spatial length (de Hevia 

and Spelke, 2009), area (Tzelgov, Meyer, and Henik, 1992), and locations along horizontal 

(Dehaene et al, 1993) and vertical (Schwarz and Keus, 2004; Ito and Hatta, 2004) axes. These 

effects exist across response modalities: Thinking about numbers induces spatial biases in 

subsequent manual responses (Dehaene et al, 1993), covert attention (Fischer et al, 2003), 

eye movements (Fischer et al, 2004; Schwarz & Keus, 2004), and grip aperture (Lindemann 

et al, 2007). Spatial attention, conversely, systematically influences random number 

generation (e.g. Loetscher et al, 2008, 2010). And linguistically, talk about numbers is loaded 
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with spatial language: we count up to arrive at bigger or higher numbers, but count down to 

smaller or lower numbers (Lakoff and Núñez, 2000). There is evidence, therefore, of 

bidirectional interactions between numerical cognition and spatial processing.  

In particular, systematic associations between numerical magnitude and spatial 

location—along vertical or horizontal axes—are often referred to as a “mental number-line.” 

The specific direction of the horizontal mental number line (e.g. left-to-right) is thought to 

emerge from rich cognitive ecosystems of cultural practices and artifacts, including reading 

(Shaki, Fischer, and Petrusic, 2009), finger-counter (Fischer, 2008), and physical number-

lines (Núñez, 2011). 

But mature mathematical competence far outstrips basic numerical abilities like 

number comparison. A bedrock of mathematics is the ability to manipulate and combine 

numbers, performing calculations to produce exact solutions. Might exact, symbolic 

arithmetic also rely on basic spatial resources, further elaborating a foundation of spatial-

numerical associations?  

Recent research raises the tantalizing possibility that this may be the case. McCrink 

and colleagues (2007) reported that adults systematically over- and under-estimated the 

results of approximate addition and subtraction, respectively—the so-called “Operational 

Momentum” effect (hereafter OM). This effect has since been replicated (Pinhas and Fischer, 

2008; Knops et al, 2009a, 2009b; McCrink and Wynn, 2009). A leading explanation of OM 

ascribes the effect to concurrent spatial processing (McCrink et al, 2007). On this account, 

mental calculation involves associating numbers with locations along a mental number-line 

and then shifting spatial attention along that line—a form of simulated or abstract motion 

(cf. Langacker, 1987). The observed over- and under-estimation is due to the momentum of 
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this simulated motion, a momentum that propels the thinker past the correct response: 

toward greater numbers in the case of addition, and toward lesser numbers in the case of 

subtraction. We’ll refer to this as the Spatial Account of OM (McCrink et al, 2007; 

Hubbard et al, 2005).  

In support of the Spatial Account, Knops and colleagues (2009a) reported that a 

machine learning classifier that had been trained to distinguish right and left saccades on the 

basis of fMRI data from the posterior superior parietal lobule (PSPL) was able to generalize 

spontaneously to approximate arithmetic, successfully distinguishing addition from 

subtraction. This suggests that approximate arithmetic and spatial attention, at the very least, 

involve similar, overlapping neural activity in the PSPL.  

This Spatial Account is appealing on theoretical grounds. For starters, it explains 

over- and under-estimation during arithmetic (i.e. OM) by appealing to known interactions 

between numerical magnitude and space, thus implicating spatial-numerical interactions in 

arithmetical calculation. This raises the possibility that simple spatial processing might play a 

functional role during more complex mathematical capacities like symbolic calculation 

(Hubbard et al, 2005).  

In so doing, the Spatial Account offers an explanation of how a relatively recent 

cultural innovation like symbolic calculation could emerge, in part, from evolutionarily older 

cortical foundations (Dehaene and Cohen, 2007), shaped and assembled by cultural practices 

and artifacts like external number-lines (Núñez, 2011). By connecting arithmetic to spatial 

processing, the Spatial Account thus situates arithmetic within the broader frameworks of 

Grounded Cognition (Barsalou, 1999, 2008), Embodied Cognition (Lakoff and Núñez, 

2000), and various forms of Neural Reuse (Anderson, 2010; Gallese and Lakoff, 2005; 
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Hurley, 2008; Dehaene and Cohen, 2007). These frameworks argue that higher cognition, 

including capacities like mathematical reasoning or language comprehension, may rely on 

neural resources that evolved in response to entirely different evolutionary pressures—

namely, the constraints and demands of interacting with the external world via perception 

and action. This re-deployment of sensorimotor neural resources during higher cognition is 

sometimes referred to as simulation (Barsalou, 1999). To borrow an example from language 

comprehension: understanding language about motion, whether literal (“I gave him the 

butter.”) or figurative (“I gave him an idea.”), may rely on the same neural machinery that 

subserves the perception and execution of real-world motion (e.g. Glenberg and Kaschak, 

2002; Kaschak et al, 2005; Saygin et al, 2010; Matlock, 2004; Glenberg et al, 2008). Similar 

proposals for arithmetic date back at least to Hubbard and colleagues (2005), who noted that 

“the parietal mechanisms that are thought to support spatial transformations might also be 

ideally suited to supporting arithmetic transformations” (p. 445). By situating arithmetic 

within the frameworks of Grounded Cognition, Embodied Cognition, or Neural Re-use, the 

Spatial Account thus offers an explanation of how a historically recent, human-specific 

capacity like symbolic arithmetic might have emerged from neural resources in our evolved 

cognitive toolbox—as part of a larger cultural-cognitive ecosystem, of course. The Spatial 

Account, therefore, supplies a mechanistic proposal for how neural resources specialized for 

space might be responsible for parts of mathematical calculation. 

3.1.1 Non-spatial accounts of Operational Momentum 

However, there are compelling non-spatial alternative explanations of known 

Operational Momentum effects. One possibility is that over- and under-estimation during 

mental arithmetic is due to a logarithmically-compressed representation of numerical 
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magnitude. Children’s early representations of number seem to be compressed 

logarithmically, with smaller numbers allocated more representational resources than larger 

numbers (Siegler and Opfer, 2003). Human adults continue to exhibit a logarithmic 

representation of approximate, non-symbolic numerical magnitude under certain 

circumstances (e.g. when responding non-spatially, Núñez, Doan, and Nikoulina, 2011). And 

non-human primates represent non-symbolic numerosities using neural codes with 

logarithmically-compressed “receptive fields” for numerosity (Nieder and Miller, 2003; 

Dehaene, 2003). On this account, the systematic over- and under-estimation of addition and 

subtraction is due to small errors induced by these logarithmically-compressed approximate 

magnitudes. Adding 40 and 8, for instance, may involve transducing these exact numbers to 

logarithmically-compressed approximate magnitudes (e.g. log2(40) + log2(8) ≈ 8.32), and 

then trying to transduce this back to an approximate number (28.32 ≈ 69 > 48), a process 

which can overestimate the result of the addition. A corresponding bias emerges for 

subtraction (e.g. log2(40) - log2(8) ≈ 2.32, 22.32 ≈ 5.4 < 32). Following Knops et al (2013), we 

shall refer to this as the Compression Account of OM (Chen and Verguts, 2012). 

A second non-spatial explanation ascribes OM to a heuristic that, simply stated, 

assumes addition will always produce a larger number, and subtraction, a smaller number 

(McCrink and Wynn, 2009). This is a reasonable assumption under most circumstances; 

arithmetic involving negative numbers is a notable exception. Applying this heuristic, 

crucially, would make a reasoner more likely to accept larger solutions from a list of options 

when adding but more likely to accept smaller solutions when subtracting. This proposal is 

bolstered by the existence of OM in infants as young as nine months old (McCrink and 

Wynn, 2009; but see Knops et al, 2013), presumably too early for them to have acquired any 
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systematic associations between numbers and lateral locations. Following Knops et al (2013), 

we shall refer to this as the Heuristic Account of OM (McCrink and Wynn, 2009). 

These non-spatial alternatives can explain the systematic biases in arithmetic that are 

characteristic of OM without invoking spatial processing of any sort. Of course, these 

alternatives are not in opposition to each other, and it is entirely possible that each proposed 

mechanism makes its own contribution to observed over- and under-estimation during 

arithmetic (e.g. the computational model of OM in Chen and Verguts, 2012, involves both 

spatial and logarithmically-compressed representations of number). But an immediate 

consequence of these viable alternatives is that the mere existence of over- and under-

estimation is insufficient on its own to implicate space in mental arithmetic. Any putative 

evidence in favor of the Spatial Account will need to adjudicate between genuinely spatial 

accounts of OM and these non-spatial alternatives.  

3.1.2 Existing evidence for the Spatial Account 

Besides intuitive plausibility, then, what evidence do we currently have in favor of 

the Spatial Account? Very little, in fact. Previous studies of spatial biases during arithmetic 

have not distinguished between spatial-numerical and genuinely spatial-arithmetical biases, or 

they have only found spatial biases for non-symbolic or approximate calculation. Pinhas and 

Fischer (2008), for instance, had participants respond to single-digit symbolic arithmetic 

problems by pointing to locations along a number-line on a computer touchscreen. They 

found that the magnitude and location of participants’ responses were systematically biased 

by the arithmetic operation: rightward towards larger numbers for addition, and leftward 

towards smaller numbers for subtraction. This demonstrates that mental arithmetic can 

induce biases in the way we interact with external numerical artifacts (i.e. a number-line 
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displayed on a screen). However, since the experiment involved an explicit, built-in mapping 

between numerical magnitudes and response locations (e.g. larger numbers were more 

rightward along the visually-displayed number-line), rightward and leftward deflection was 

thus confounded with over- and under-estimation, respectively. In other words, the 

observed deflection may have been the spatial manifestation of numerical over- and under-

estimation during approximate calculation—perhaps due to logarithmic compression or a 

simple heuristic—rather than genuinely spatial biases.  

When spatial biases have been demonstrated unequivocally, they have only been 

reliable for approximate arithmetic using analog, non-symbolic number representations. 

Knops, Viarouge, and Dehaene (2009) had participants solve approximate arithmetic 

problems, involving the addition or subtraction of symbolic (Arabic numerals) or non-

symbolic (sets of dots) representations of numbers. Participants had to select the best 

response from options displayed in a circle on a computer monitor. As predicted, 

participants selectively over- and under-estimated the result of approximate addition and 

subtraction, respectively, replicating McCrink et al (2007). Crucially, they also found that 

participants were more likely to choose a response on the right of the screen after addition, 

and on the left after subtraction—an effect they dubbed the Spatial-Operation Association 

of Responses (SOAR). However, this SOAR effect was only reliable for non-symbolic sets 

of dots; across two experiments, the effect was non-significant for symbolic representations 

(Arabic numerals). We know of no evidence, therefore, that unequivocally demonstrates 

spatial biases during symbolic approximate arithmetic.  

As far as we know, moreover, there have been no studies of OM or spatial biases 

during exact calculation, in many respects a crucial test-case for embodied or grounded 
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accounts of mathematical thought. The precise, highly constrained reasoning required for 

exact calculation may be more amenable to “amodal” or symbolic approaches than to 

sensorimotor or grounded approaches, since spatial simulation seems to lack the necessary 

precision and abstraction (Mahon and Caramazza, 2008; Dove, 2009). The solution to 7+2 is 

exactly 9, after all, not approximately 9, and this remains true regardless of whether we are 

dealing with diamonds, dragons, or decimal numbers. For these reasons, evidence of spatial 

processing during exact calculation is necessary if the Spatial Account is going to scale up to 

advanced mathematics, beyond basic capacities for approximation. 

3.1.3 The current study 

At present, therefore, there is no unequivocal evidence of spatial biases during 

symbolic calculation; previous studies have either confounded spatial effects with other non-

spatial sources of over- and under-estimation or have only found reliable effects with analog, 

non-symbolic stimuli. Existing research, moreover, has been limited to approximate 

arithmetic, so there is currently no evidence of spatial biases during exact calculation. To 

address these limitations of previous work with respect to the current question, we tested the 

Spatial Account of OM during exact, symbolic arithmetic, using the dynamics of motor 

activity during mental calculation to look for systematic spatial perturbations associated with 

arithmetic operations. 

In particular, we turned to computer mouse-tracking, a methodology in which hand 

movements—as indexed by the streaming x, y coordinates of the computer mouse cursor—

are recorded during real-time reasoning and decision making (e.g. Spivey, Grosjean, and 

Knoblich, 2007). These continuous hand trajectories are ideally suited for investigating the 

temporal dynamics of cognition, and have been used to study the real-time processing of 
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language, categorization, and even race and gender (for a review, see Freeman et al, 2011), 

and continuous measures of hand movements have been used previously to study numerical 

cognition (Dotan and Dehaene, 2013; Song and Nakayama, 2008). More recently, computer 

mouse-tracking has been used to test grounded theories of abstract thought. Miles and 

colleagues (2010) recorded hand movements while participants decided whether generic 

events were in the past or the future. In line with previous research showing that literate 

Westerners represent time on a left-to-right mental time-line, they found that hand 

movements were deflected to the left when reasoning about past events, and to the right 

when reasoning about future events. This methodology is sensitive to subtle perturbations in 

the spatial and temporal dynamics of hand trajectories and can therefore reveal sensorimotor 

or spatial processing during higher cognition, unlike typical offline measures used in 

cognitive psychology that only capture the discrete outcomes of cognition (Spivey, 2007). 

As a direct test of spatial-arithmetical biases during exact, symbolic calculation, we 

had participants solve arithmetic problems while using a computer mouse to select their 

response. We reasoned as follows. If mental calculation involves dynamic shifts in attention 

along a spatial representation of number—the Spatial Account—then exact arithmetic 

should systematically influence the spatial trajectory of concurrent motor activity (Barsalou, 

2008). For our American participants, this implies that adding and subtracting should induce 

spatial deflections not only along a left-to-right conceptual number-line but also in ongoing 

interactions with the world. We thus hypothesized that, if the Spatial Account is correct, the 

trajectory of participants’ hands should be systematically deflected in the direction of 

simulated motion: to the right during addition and to the left during subtraction (the SOAR 

effect). By contrast, since response location was independent of solution magnitude, neither 
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the Compression nor the Heuristic Accounts predict any systematic influences of mental 

arithmetic on concurrent hand movements.  

3.2 Method 

3.2.1 Participants 

Undergraduate students (n = 44, 14 males, mean age 21.4) from the University of 

California, San Diego, completed the experiment in return for partial course credit. All 

experimental procedures were approved by the university’s Institutional Review Board. 

3.2.2 Materials 

On each trial, participants were presented with an arithmetic problem (e.g. 6 + 2) 

and had to select the correct solution from two options (e.g. 8 or 9), one of which was 

always correct (see Procedure below). Arithmetic problems were generated according to the 

following criteria. All problems involved the addition or subtraction of single-digit numbers 

and had a single-digit result. Paired addition and subtraction problems were created with the 

same first and second terms (e.g. 3+1=4 and 3-1=2), and with the second term ranging from 

0 to 3, inclusive. Since the incorrect distractor response was always one higher or lower than 

the correct solution, we restricted the problems to those with correct solutions between 1 

and 8 so the distractor responses were also single digit numbers. This produced a list of 32 

problems, 16 each for addition and subtraction. Each of these problems then generated two 

items: one where the distractor response was higher than the correct solution, and another 

where it was lower. All told, therefore, there were 64 items, half of which involved addition, 

with addition and subtraction items matched for the first and second terms (see Appendix 

A).  
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3.2.3 Procedure  

The experiment consisted of two blocks of 128 trials presented in a random order. 

Each of the 64 items appeared twice during each block, each time with the correct answer in 

a different location. The trial structure is illustrated in Figure 3.1. Trials began by displaying 

the two response options in the top right and left corners of a computer monitor (474mm 

wide x 296mm high). These response options were displayed for 1000ms to allow 

participants sufficient time to familiarize themselves with the response locations. After this 

1000ms familiarization period, a button marked “START” appeared in the bottom center of 

the screen, which participants could then click to display the arithmetic problem. The 

arithmetic problem appeared sequentially in the center of the screen: the first term (e.g. “5”) 

appeared for 500ms, followed by the operation (e.g. “+”) for 500ms, followed by the second 

term (e.g. “2”) for 500ms (see Fig. 3.1). As soon as the second term appeared, the computer 

mouse became responsive to participants’ hand movements, allowing participants to begin 

moving the cursor toward the upper response buttons. In order to encourage hand 

movements during mental calculation, participants were instructed to begin moving the 

cursor as soon as the second term appeared, and received a warning message if it took them 

longer than 1000ms to initiate a response.  
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Figure 3.1. Timeline of each trial. Participants had 1000ms to familiarize themselves with 
the possible solutions (A), after which they could press the START button to begin the trial. 
They were then presented sequentially with the arithmetic problem (B, C, D), but only able 
to move the cursor toward their response after the onset of the second term (D). Reaction 
times were measured from the onset of the second term. 

 

3.2.4 Data collection and pre-processing 

We used Mousetracker software (Freeman & Ambady, 2010) to record the streaming 

x- and y-coordinates of the computer mouse-cursor, which served as an index of participants’ 

hand movements. The mouse was a Dell Optical USB Scroll Mouse (model XN966), and the 

cursor location was sampled at approximately 70Hz by Mousetracker. Before analysis, all 

trajectories are rescaled to a 1.5 x 2 standard coordinate space, with the top-left of the screen 
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at (-1, 1.5) and the bottom-right at (1,0), and remapped rightward. Trajectories were time-

normalized to 101 time-steps using linear interpolation, in order that we could average across 

the full length of trials that varied in duration. All statistical analyses were performed using R 

statistical software (R Development Core Team, 2008). 

3.3 Results 

Accuracy was quite high (M = 98.99%, SE = 0.18), and no participants were 

removed due to low accuracy. We first conducted a 2x2 repeated-measures ANOVA of 

mean accuracy, with SOAR-Congruency and Arithmetic Operation (addition, subtraction) as 

within-subjects factors. SOAR-Congruency was defined as the match between the arithmetic 

operation and the response direction: congruent addition trials were those where the correct 

answer was on the right; congruent subtraction trials where those were the correct solution 

was on the left. There were no significant effects on accuracy (all ps > .3). Incorrect trials 

(n=114) were removed for all further analyses.  

We used two measures to characterize the curvature of these hand trajectories: 

Maximum Deviation (MD) and Area Under the Curve (AUC) (Freeman & Ambady, 2010). 

A trajectory’s Maximum Deviation is the maximum distance it reaches from a hypothetical 

“perfect” trajectory, that is, a straight line from the start button to the correct response. Area 

Under the Curve is the area bordered by the actual trajectory and this perfect, straight 

trajectory. These two measures were highly correlated (r=.89) but reflect slightly different 

spatial properties of a trajectory: MD captures the extremes of deflection but is blind to the 

trajectory as a whole; AUC captures average deflection over the course of the entire 

trajectory but is less sensitive to sudden, acute deviations. We therefore report analyses of 
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both measures, even though in this study they produced nearly identical results (with slightly 

larger effect sizes for MD).  

While computer-mouse trajectories are typically fluid, they sometimes involve highly 

aberrant or discontinuous movements due to hardware error (e.g. mouse-sticking), initial 

errors that are corrected mid-response, or other anomalies. To exclude these highly aberrant 

hand trajectories in an objective manner, we removed trials where the initiation time, 

reaction time, Maximum Deviation, or Area Under the Curve (AUC) was more than 3 

standard deviations away from each subject’s mean (4.4% of trials). No other trials were 

removed.  

3.3.1 Spatial deflection 

To investigate the spatial deflection of hand trajectories, we analyzed MD and AUC 

using 2x2 repeated-measures ANOVAs, by subjects and by items. SOAR-Congruency was a 

within-subjects and within-items factor, while Arithmetic Operation (addition, subtraction) 

was within-subjects but between-items.  

The only significant effect was the main effect of SOAR-Congruency (see Fig. 3.2). 

Hand trajectories on incongruent trials had a significantly larger Maximum Deviation than 

on congruent trials (M=0.202, SE=0.02; M=.178, SE=0.02), both by subjects (F(1,43)=8.01, 

p=0.007, η!! !=0.16) and by items (F(1, 62)=10.7, p=0.002, η!! !=0.15). Similarly, incongruent 

trials had a significantly larger Area Under the Curve than congruent trials (M=0.345, 

SE=0.04; M=.309, SE=0.04), by subjects (F(1,43)=4.61, p=0.038, η!! !=0.10) and items 

(F(1,62)=5.92, p=0.002, η!! !=0.09). Thus, hand trajectories were reliably deflected in the 

predicted direction: to the right for addition, and to the left for subtraction.  
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3.3.2 Relation between spatial biases for magnitude and arithmetic operation 

Since addition and subtraction of the same terms will produce results that are on 

average higher and lower, respectively, we conducted additional analyses to tease apart the 

observed spatial-arithmetical biases from possible spatial biases associated with the 

magnitude of the problems’ solutions. Did spatial-arithmetical biases (i.e. the SOAR effect) 

make a contribution above and beyond any effect of the solution’s magnitude—that is, a 

SNARC effect driven by the solution? To answer this question, we modeled MD and AUC 

as functions of both SNARC- and SOAR-congruency. Since all numbers were between 1 

and 9, we assumed that any spontaneous SNARC effect would associate solutions less than 5 

with left space, and solutions greater than 5 with right space (Dehaene et al, 1993). We thus 

began by removing trials where the solution was 5, since 5 was the midpoint of the range of 

numbers used in the experiment (1-9) and thus associated with neither left nor right space. 

Next, we constructed mixed-effects models of MD and AUC with SNARC-Congruency and 

SOAR-Congruency as fixed effects, Subject and Solution as random effects, and by-Subject 

and by-Solution random slopes for SNARC-congruency and SOAR-Congruency (Barr et al, 

2013). Visual inspection of residual plots did not reveal any obvious deviations from 

homoscedasticity or normality. To test the influence of SOAR-Congruency, these full 

models were then compared to reduced models that were identical except they lacked a 

fixed-effect of SOAR-congruency (i.e. with only the fixed effect of SNARC-congruency).  

Even after controlling for the congruency between the solution’s magnitude and its 

location, there was a significant effect of SOAR-congruency on hand movements. The full 

models with SOAR-congruency fit the data significantly better than the reduced models, 

(MD: χ2(1) = 5.12, p = .02; AUC: χ2(1) = 4.06, p = .04), demonstrating that SOAR-
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incongruent trials were significantly deflected compared to SOAR-congruent trials, above 

and beyond any deflection due to final solution magnitude. According to the full model, a 

mismatch between arithmetic operation and response direction increased MD by 0.028 +/- 

0.012 (standard errors) and AUC by 0.040 +/- 0.020 (standard errors). Therefore, the 

incongruency of arithmetic operation and response direction produced a reliable deflection 

of hand trajectories, and this deflection was in addition to any spatial deflection associated 

with the solution (i.e. a SNARC effect of the solution).  

Next, we asked whether individuals’ spatial-arithmetical biases were related to the 

size of their SNARC effects. To measure the size of each participant’s SNARC effect, we 

adapted the regression method of Fias et al (1996). We first calculated “dMD” and “dAUC,” 

the difference in mean MD and AUC between left and right responses for each possible 

numerical solution1. These are thus measures of the left-side advantage for each solution 

magnitude: positive values of dMD and dAUC indicate that responses for that numerical 

solution were deflected leftward, while negative values indicate that responses for that 

numerical solution were deflected rightward. Next, for each participant, we regressed both 

dMD and dAUC onto solution magnitude. The slope of this regression line is an index of 

participants’ SNARC effect: more negative values of β are evidence of a larger SNARC 

effect, since they indicate that rightward responses are increasingly favored as magnitude 

                                                

1 To illustrate: If an individual’s mean MD for calculations with a solution of 3 was 

0.35 for rightward responses and 0.3 for leftward responses, then their dMD for 3 would 

be .05, the difference of 0.35 and 0.3. 
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increases. To measure the size of each individual’s SOAR effect, we computed the 

Standardized Mean Difference (SMD) between mean MD and AUC on SOAR-Congruent 

and SOAR-Incongruent trials. A negative SMD, therefore, indicates the presence of a SOAR 

effect: increased deflection on SOAR-Incongruent trials compared to SOAR-Congruent 

trials. For both measures, therefore, more negative values indicate a larger canonical effect 

(following Fias et al, 1996). 

First, we checked that these measures did, indeed, capture reliable spatial biases 

associated with the solution’s numerical magnitude and the arithmetic operation. Overall, the 

slopes of the SNARC linear regressions were significantly less than zero (MD: Mβ = -0.015, 

t(43) = -3.05, p = 0.004; AUC: Mβ = -0.027, t(43) = -2.92, p = 0.005), confirming the 

presence of a SNARC effect associated with the solutions. Moreover, whether calculated 

with MD or AUC, thirty out of 44 participants (68%) had negative regression slopes, 

evidence of a canonical SNARC, in line with previous studies that find a canonical SNARC 

effect in ~70% of participants (e.g. Cipora and Nuerk, 2013). This is a significantly higher 

proportion than expected by chance (p = 0.01, one-tailed binomial test). Similarly, individuals’ 

SMDs differed significantly from zero (MD: MSMD = -0.074, t(43) = -3.27, p = 0.002; AUC: 

MSMD = -0.063, t(43) = -2.88, p = 0.006), and 28 out of 44 participants had negative values of 

SMD when calculated with MD, evidence of a canonical SOAR effect (p = 0.04, one-tailed 

binomial test; for AUC: 27/44, p=0.09). These measures thus successfully indexed 

individuals’ SNARC (β) and SOAR (SMD). 

Next, we looked at individual differences in the relation between the SNARC and 

SOAR effects (see Fig. 3.3). As predicted, a linear regression analysis found that the size of 

an individual’s SNARC effect was significantly predictive of their SOAR effect (MD: β = 
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3.22, t(42) = 6.33, p < 0.001; AUC: β = 1.54, t(42) = 5.37, p < 0.001), and that the SNARC 

effect explained a significant amount of the variance in the SOAR effect (MD: r2 = 0.49, 

F(1,42) = 40.05, p < 0.001; AUC: r2 = 0.41, F(1,42) = 28.82, p < 0.001). To further confirm 

this coupling of numerical and arithmetical spatial biases, we used two separate k-means 

cluster analyses to sort individuals into three groups based on the size of their SOAR and 

SNARC effects, corresponding roughly to standard, reversed, and no effect (cf. Beecham, 

Reeve, & Wilson, 2009). We then looked at whether these clusters were independent. They 

were not: The presence or absence of a SOAR effect differed by the presence or absence of 

a SNARC effect (p < 0.001 for both AUC and MD, Fisher’s Exact Test). Inspection of these 

clusters revealed that a majority of participants (MD: 30 out of 44; AUC: 25 out of 44) were 

in corresponding clusters for SNARC and SOAR: either showing a standard effect for both 

SNARC and SOAR, a reversed effect for both, or no effect for both.  
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Figure 3.3. Relations between SNARC and SOAR. Individuals’ SNARC effect (horizontal 
axis) and SOAR effect (vertical axis), calculated on the basis of MD. For both axes, negative 
values indicate larger canonical effects (following Fias et al, 1996). The size of an individual’s 
SNARC effect was significantly predictive of their SOAR effect. The solid line shows the 
least squares regression of SOAR onto SNARC. Points below the horizontal doted line 
indicate participants with a canonical SOAR effect; those to the left of the vertical doted line 
indicate a canonical SNARC effect.  

 

In sum, an individual’s sensitivity to the congruency between the location of a 

response button and the magnitude of the response (i.e. SNARC effect) was coupled to their 

sensitivity to the congruency between arithmetic operation and the direction of motion (i.e. 

SOAR effect). This was true despite the fact that the SOAR effect was distinct from the 

SNARC-like effect of the final solution’s magnitude. The spatial deflection of hand 
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trajectories due to the arithmetic operation was therefore distinct from, but related to, any 

spatial deflection due to numerical magnitude.  

3.3.3 Timecourse of spatial processing 

Tracking the real-time trajectory of the hand in motion allows us to evaluate not only 

the global properties of the response, but also the dynamic timecourse of spatial deflection. 

To do so, we conducted a series of pairwise t-tests of the mean x-coordinates of SOAR-

Congruent and SOAR-Incongruent trajectories at each normalized time-step, using an α-

level of .05. To correct for multiple comparisons, we conducted a bootstrap simulation 

(n=1000) to estimate the number of significant t-tests that would be expected by chance 

alone (Dale, Kehoe, and Spivey, 2007). This simulation revealed that random variability 

alone should have produced significant differences at 11 or more consecutive time-steps 

only 1.6% of the time; and at 12 or more consecutive time-steps, only 0.7% of the time. We 

therefore settled on eleven consecutive significant time-steps as a threshold for statistical 

significance, assuring a false positive rate of p < 0.05.  

Pairwise t-tests comparing the horizontal deflection of SOAR-Incongruent to 

SOAR-Congruent trajectories first reached statistical significance halfway through the trial—

on average, 734ms after the onset of the second term—and remained significant until 75% 

through the trajectory (Fig. 3.4A). Congruent and incongruent trajectories, therefore, 

differed significantly at 25 consecutive time-steps, a highly significant divergence (p < 0.001).  
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Figure 3.4. Timecourse of spatial perturbations. (A) Timecourse of the spatial attraction due 
to arithmetic operation. Normalized time is plotted along the horizontal axis, from start (0%) 
to end (100%) of the trial. The horizontal distance between congruent and incongruent 
trajectories is plotted on the vertical axis. The grey area indicates the period during which 
this spatial deflection reached significance. (B) Hand trajectories revealed a cascade of 
distinct spatial influences. Color indicates the statistical significance of each problem 
component at each time-point; corresponding p-values are indicated in the legend at right. 
There was an early influence of the first number, deflecting hand trajectories toward the 
canonical side of egocentric space (left for small, right for large numbers). Halfway through 
the trajectory, the arithmetic operation began to affect concurrent manual action. The final 
solution had a marginal influence toward the end of the trial. 

 

As an exploratory analysis, we next looked at the timecourse of spatial deflections 

due to various sub-parts of the arithmetic problems: the magnitude of the first number, the 

arithmetic operation, and the magnitude of the final solution. When calculating “6 - 2 = 4,” 
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for instance, at what point is motor activity influenced by the facts that the first term is 

greater than 5, that the operation is subtraction, or that the final solution is less than 5? To 

answer this, we analyzed the mean horizontal position (x-coordinate) at each time-point 

using a repeated measures ANOVA with the following three factors: SNARC-congruency 

associated with the first term; SOAR-Congruency associated with the arithmetic operation; 

and SNARC-congruency associated with the final solution2.  

In accord with the Spatial Account, we found a cascade of spatial perturbations (Fig. 

3.4B). Recall that participants were able to begin moving the cursor as soon as the second 

term appeared on the screen. By the time participants could start moving, therefore, they had 

already seen the first term for a full second. In line with this, there was a very early effect of 

the relative magnitude of the first term, deflecting the trajectory toward the corner that was 

congruent with the term’s magnitude (left for numbers less than 5, right for numbers greater 

than 5). This influence was already marginally significant at the first time point, and lasted 

for the first 13% of the trajectory. Next, halfway through the trajectory, the effect of SOAR-

congruency kicked in, deflecting the trajectory in the direction congruent with the arithmetic 

operation. This influence of arithmetic operation lasted from 47% to 74% of the trajectory. 

For the last part of this period, there was again a marginal influence of the first term’s 

magnitude. Finally, towards the very end of the trajectory, there was a marginal influence of 

the final solution’s magnitude, from 79% to 87% of the trajectory. Participants’ hand 

trajectories, therefore, revealed a cascade of distinct, sequential spatial influences: starting 

                                                

2 We did not include a factor for the second term because it only ranged from 0 to 3.  
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with the first term, an anchor of sorts for the calculation; followed by the arithmetic 

operation; and finally, the solution (Fig. 3.4B). Although these analyses, unlike the previous 

timecourse analyses, are not corrected for multiple comparisons, they may capture subtle 

contributions of early and late spatial-numerical associations, in coordination with spatial-

arithmetic associations. Since the current experiment used a design in which the first 

operand, the arithmetic operation, and the second operand were presented in order, it 

remains to be seen whether the same cascade of spatial influences appears when the entire 

problem is presented simultaneously rather than sequentially.  

3.4 Discussion 

During mental addition and subtraction, participants’ hand movements were 

deflected dynamically to the right and left (Fig. 3.2, 3.4B), respectively, suggesting that both 

mental arithmetic and motor control rely on shared resources for controlling spatial 

attention. This was true despite the fact that the calculation was exact and symbolic, rather 

than approximate or non-symbolic. While these results do not contradict the Compression 

or Heuristic accounts of Operational Momentum (e.g. McCrink and Wynn, 2009; Chen and 

Verguts, 2012), the observed spatial-arithmetical biases are neither explained nor predicted 

by these non-spatial alternatives. Correct responses were controlled for location (left, right) 

and relative magnitude (greater or lesser of the responses), so spatial biases were not due to 

initial over- or under-estimation. Spatial-arithmetical biases, moreover, contributed above 

and beyond biases associated with the final solution, reinforcing their distinctly arithmetical 

character. We thus observed for the first time that calculation—even when exact and 

symbolic—is associated unequivocally with systematic spatial biases. 
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3.4.1 Could exact calculation rely on an integrated system of spatial resources?  

We turn now to an outstanding question: What might this spatial processing actually 

do during calculation? After all, spatial-arithmetical and spatial-numerical associations may be 

epiphenomenal; spatial processing could be entirely downstream from the cognitive work of 

calculation. This is a general concern about research conducted under the umbrella of 

Grounded Cognition. If thinking about dogs, for instance, prompts visual imagery of dogs, 

this might be due to spreading activation from abstract “dog” concepts to associated visual 

percepts, without visual processing contributing to conceptual representation (Mahon and 

Caramazza, 2008). Both spatial-arithmetical and spatial-numerical biases, similarly, could 

reflect simple associations between distinct neural circuits responsible for calculation and for 

spatial attention. 

What, then, are some plausible contributions to mental calculation of systematic 

spatial processing? We briefly consider three: computing the exact or approximate solution; 

supplying intuitions that complement and possibly constrain rote, algorithmic strategies; and 

scaffolding the learning of arithmetic.  

First, spatial processing may help determine the solution of a calculation. This is the 

heart of the Spatial Account: numbers are mapped to locations along a mental number-line, 

and then arithmetic is computed by simulating movement along that number-line. Biases in 

spatial processing would thus produce the systematic over- and under-estimation that 

characterizes Operational Momentum (McCrink et al, 2007). But to make this functional 

contribution, diverse spatial resources need to be integrated appropriately. Recall that spatial 

processing during arithmetic is thought to rely on the posterior superior parietal lobule 

(PSPL; Knops et al, 2009a); interactions between number and space, by contrast, are thought 
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to occur within the intraparietal sulcus (IPS; Dehaene et al, 2003; Hubbard et al, 2005). 

These neural circuits need to be coordinated in at least two ways: in the way they recruit 

space and in their timecourse. First, they need to recruit space in a coordinated fashion, with 

arithmetic-related shifts in spatial attention aligned with spatial representations of number 

(e.g. associating right-space with both large numbers and addition). Given that nearly a third 

of participants typically show no or reversed SNARC effects (e.g. Cipora and Nuerk, 2013), 

these spatial associations should sometimes be reversed (i.e. associating right-space with 

both small numbers and subtraction). Second, these spatial resources must coordinate 

temporally: first associating the initial operand with a location and then deploying more 

posterior neural resources to shift attention. In short, the neural resources responsible for 

spatial-arithmetic and spatial-numerical associations must form an integrated system, 

coordinated both in the way they recruit space and in their timecourse.  

There were hints that these spatial-arithmetic biases were, indeed, part of an 

integrated spatial system for processing both numerical magnitude and arithmetic. For 

starters, we found evidence that calculation was accompanied by a cascade of spatial 

perturbations (Fig. 3.4B), due initially to the first term, then to the arithmetic operation, and 

finally to the solution—although this may have been a product of the experiment’s 

sequential design. Spatial biases associated with numerical magnitude and arithmetic, 

moreover, were distinct but coupled: individuals’ spatial-numerical biases reliably predicted 

the size and direction of their spatial-arithmetical biases, and more than two-thirds of 

participants exhibited spatial-arithmetical biases that were coordinated with their spatial-

numerical biases (e.g. they associated both subtraction and smaller numbers with the left; Fig. 

3.3). If this coordination is necessary for the spatial system to play a functional role in 
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calculation, then we should see improved performance among individuals with coordinated 

spatial-arithmetical and spatial-numerical biases—that is, individuals should perform better 

on calculation tasks if they have the same spatial association (either left or right) for both 

larger numbers and addition. Suggestively, there was a trend toward better performance 

among such participants. They made fewer errors (M=2.3 vs. M=3.2), responded faster 

(M=1454ms vs. M=1494ms), and produced trajectories with less deflection (MD=0.18 vs. 

MD=0.21), although none of these differences were statistically significant (all ps > .2). In 

short, mental arithmetic prompted a series of coordinated but distinct spatial deflections, 

unfolding over time throughout the process of calculation. The origin of this coordination is 

an open question. Spatial-numerical and spatial-arithmetical biases may have a common 

origin—perhaps a general predilection to associate abstract notions with space, or experience 

with cultural artifacts that associate both numbers and arithmetic with space (e.g. number-

lines). Alternatively, one spatial association may build on the other, so that, for instance, 

spatial-arithmetical biases may derive from pre-existing, culturally-shaped spatial-numerical 

biases. The coordination of SOAR and SNARC—its source and implications—is ripe for 

investigation.  

A second potential functional role for spatial processing is to supply intuitions that 

complement rote, algorithmic calculation. To re-purpose a military aphorism, “quantity has a 

quality all its own.” Correct calculations often just feel right—and spatial intuitions are a good 

candidate for the source of this quality of quantity. In the case of incorrectly recalled 

arithmetic facts or algorithmic errors (e.g. “operation errors” like 20 x 3 = 23, where 

multiplication is confused for addition; Campbell, 1994), the subjective “quality of quantity” 

can flag these errors if the solution violates our spatial intuitions (i.e. 20 x 3 should be 
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considerably greater than 23!). In this way, spatial processing may provide an intuitive check 

on rote or algorithmic calculation, supplying a rough sense of expected magnitude against 

which the algorithmically-derived solution can be compared. Individuals who deploy spatial 

processing during symbolic calculation should thus be insulated against gross errors due to 

the misapplication of an algorithm. 

Third and finally, spatial processing may support initial learning during development, 

supplying a spatial scaffold for the acquisition of abstract arithmetical concepts and 

procedures (Núñez and Marghetis, in press). Early spatial skills are highly predictive of long-

term mathematical success (for review, see Mix and Cheng, 2012). This correlation, 

moreover, is mediated by the ability to map numbers to a physical number-line in a linear 

fashion (Gunderson et al, 2012), and game-based intervention studies with children have 

found that training this linear number-space mapping improves number estimation and 

calculation (Siegler and Ramani, 2009). Conversely, a failure to deploy spatial resources may 

contribute to Mathematics Learning Disability (e.g. Geary, 1993). Additionally, spatial 

processing may give meaning and value to otherwise meaningless calculations, improving 

children’s affective relation to mathematics and increasing the likelihood they’ll gravitate 

towards Science, Technology, Engineering, and Mathematics (STEM) fields.  

3.4.2 Beyond simple calculation 

An integrated spatial system, therefore, may contribute in a variety of ways to 

calculation. But as mathematical expertise develops, this system may be re-tooled for new 

purposes. Goldstone, Landy, and Son (2010) argued that solving equations relies on 

perceptual systems “rigged up” for symbol manipulation (see also Schneider et al, 2012). On 

their proposal, solving equations involves a visuospatial simulation of moving terms from 
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one side of the equation to the other. In support of this, they report that the ability to solve 

equations was selectively impaired when concurrently viewing incongruent motion (e.g. 

rightward motion when a term is to be “moved” leftward). What’s more, this effect was 

strongest in participants with more mathematical training; mathematical expertise was 

associated with more, not less, use of a visuospatial strategy. This suggests one reason why 

Cipora and Nuerk (2013) failed to find a relation between the SNARC effect and 

performance on an equation verification task: Verifying equations might require the use of 

the spatial system to simulate the motion of the equation’s terms (as proposed by Goldstone 

et al, 2010) rather than to represent numerical magnitude and arithmetic, as manifest in 

SNARC and SOAR effects3. Furthermore, when mathematics PhD students collaborate on 

proofs, they complement their technical, non-spatial language with gestures that express 

dynamic, spatial reasoning (Marghetis and Núñez, 2013), confirming Hadamard’s classic 

claim that expert mathematicians rely on spatial or sensorimotor intuitions (1954). This 

suggests a productive way to think about the relation between space and mathematics: 

different mathematical activities (e.g. calculation vs. equation verification) may require 

distinct assemblies of spatial resources, recruited and coordinated by cultural practices. 

Calculation may rely on spatial-numerical representations coupled with shifts in attention; 

                                                

3 Giaquinto (2007) distinguishes between syntactic and semantic manipulation of symbols, 

which may relate to the use of space to simulate movement of the terms rather than to ground 

the calculation in meaningful spatial intuitions.  



100 

algebra may use similar resources, rigged up differently to support the internal manipulation 

of external inscriptions.   

More generally, the present study contributes to a growing body of evidence that 

abstract thought in general—and mathematical cognition in particular—is tightly and 

dynamically coupled to perception and action (Barsalou, 2008; Lakoff and Núñez, 2000; 

Spivey, 2007). This entangling of body and mind is often manifest in the hands. We have 

shown here, for instance, that hand movements reflect the spatial character of addition and 

subtraction, adding to the literature on how hand trajectories can reveal the dynamics of 

thought (Freeman et al, 2011). But the hands take place of prominence even when they are 

not directly called upon by the task. Situated mathematical practice requires the hands to 

interact with external artifacts—equations, diagrams, computers. And during communication, 

manual gestures reflect speakers’ sensorimotor or spatial simulations (e.g. Hostetter & Alibali, 

2008) and also shape the simulations of both listener and speaker (e.g. Wu and Coulson, 

2007; Alibali et al, 2011; for review, see Marghetis and Bergen, in press). This is particularly 

true in mathematics, where gesture reveals spatial conceptualizations of abstract concepts in 

calculus (Marghetis and Núñez, 2013; Núñez, 2006; Marghetis, Edwards, and Núñez, in 

press) and arithmetic (Marghetis, in preparation; Núñez and Marghetis, in press) and can 

even give the gesturer entirely new ideas (Goldin-Meadow et al, 2009). One possible account 

of these varied online interactions between body and mind is that evolutionarily-older neural 

resources (Anderson, 2010; Dehaene and Cohen, 2007), recruited and regimented by cultural 

practices and artifacts (Hutchins, 2008; Núñez, 2011), are redeployed during advanced 

cognitive activities like mathematics, thus grounding abstract thought in action and space.  
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3.5 Conclusions 

Converging evidence suggests that mathematics builds upon a foundation of spatial 

skills (Mix and Cheng, 2012; Núñez and Marghetis, in press). Here we demonstrated, for the 

first time, that exact, symbolic calculation is accompanied by systematic spatial processing. The 

arithmetic operation influenced the spatio-temporal dynamics of participants’ concurrent 

motor activity while they were engaged in exact arithmetic. We argued that this reflected the 

deployment of a coordinated system of spatial resources, co-opted to run a mental 

simulation of abstract motion along a spatial representation of number. Spatial processing 

may play a number of roles, from helping compute the outcome of a calculation, to 

supplying meaning during mathematical development. This spatial processing during 

arithmetic, moreover, is an instance of a more general strategy in which we associate abstract 

objects with spatial locations and then take advantage of our evolved spatial skills to support 

reasoning. Learning and doing mathematics may involve navigating metaphorical spaces. 
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Appendix: List of arithmetic problems 

First number Operation Second Number Solution  

(addition / subtraction) 

3 +/- 0 3 / 3 

3 +/- 1 4 / 2 

3 +/- 2 5 / 1 

4 +/- 0 4 / 4 

4 +/- 1 5 / 3 

4 +/- 2 6 / 2 

4 +/- 3 7 / 1 

5 +/- 0 5 / 5 

5 +/- 1 6 / 4 

5 +/- 2 7 / 3 

5 +/- 3 8 / 2 

6 +/- 0 6 / 6 

6 +/- 1 7 / 5 

6 +/- 2 8 / 4 

7 +/- 0 7 / 7 

7 +/- 1 8 / 6 
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Chapter 4 

Does abstract mathematical reasoning involve spatial metaphors?  

 

ABSTRACT 

We often rely on analogies or metaphors to ground our reasoning about one domain 

in our understanding of another, but little is known about the role of metaphorical thought 

in a paragon of abstract thought: mathematics. There are hints, however, that our 

understanding of arithmetic may rely on spatial metaphors: in speech, descriptions of 

number often rely on spatial constructions (e.g., “bigger” or “higher” numbers); during rapid 

comparison, numerical magnitude induces biases to respond spatially. But mathematics is 

more than naming numbers and making approximate comparisons. Does careful, reflexive 

mathematical reasoning involve spatial metaphors? To address this question, we combined 

observation and experiment to analyze spontaneous co-speech gesture, which served as a 

window on real-time, dynamic reasoning. Gestures produced during mathematical reasoning 

revealed two complementary gestural systems: Path gestures in which arithmetic was 

construed metaphorically as motion along a path; Collection gestures in which it was construed as 

the manipulation of collections of objects (Studies 1-2). Performing path- or collection-related 

mental imagery primed the production of one gesture system over the other (Study 2), 

suggesting that metaphorical gestures are not merely conventionalized ways of 

communicating but reflect the real-time deployment of spatial models. We conclude that 

metaphorical gestures are both private and public: private, since they reflect speakers’ 

internal spatial simulation; public, as a shared semiotic resource.  
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4.1. Introduction 

Humans have a singular ability to reason about the absent and the abstract: far-flung 

friends and possible worlds, futures and pasts, fractions and prime numbers. While these 

concepts denote entities that are inaccessible to our perceptual apparatus—either in practice 

or in principle—they are grounded nevertheless in rich, layered dispositions to move, act, 

feel, and think about the concrete (Bourdieu, 1977; Lakoff and Johnson, 1980). Mathematics 

is exemplary in this regard. Numbers and simple calculations induce systematic dispositions 

to react spatially: larger numbers and addition induce rightward shifts in attention, while 

smaller numbers and subtraction prompt leftward shifts (Dehaene et al, 1993; McCrink et al, 

2007; Knops et al, 2009; Marghetis et al, 2014). Spatial biases for number and arithmetic 

have been localized to posterior regions of parietal cortex that control manual grasping and 

spatial attention (Hubbard et al, 2005; Knops et al, 2009). These findings suggest that the 

neural processing of number and arithmetic recycles more “embodied” neural resources that 

are specialized for processing action and space (Anderson, 2010; Barsalou, 1999; Dehaene 

and Cohen, 2007; Walsh, 2003; Winter, Marghetis, and Matlock, 2015). 

But our mathematical competence outstrips simple skills like rote numerical 

comparison or calculation. Not only can we do arithmetic, but we can think about arithmetic, 

reflecting on numbers as abstract entities and reasoning about their abstract properties and 

relations. This reflexive capacity may distinguish human mathematical competence from the 

simple numerical capacities we share with non-human animals. Human infants and non-

human primates can perform simple approximate “addition,” predicting the approximate 

numerosity of a collection of objects formed by combining two other collections (Barth et al, 

2006; Flombaum, Junge, and Hauser, 2005). But for babies and macaques, mathematics ends 
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with such reckoning or numerical estimation. By contrast, mature human practices of 

counting, adding, and subtracting are imbued with meaning and interpreted in virtue of rich, 

structured conceptual systems (Sfard, 2009; Lakoff and Núñez, 2000). We calculate, but we 

also conceptualize; we reckon, but we also reason. Human mathematical reasoning is complex 

and meaningful, a far cry from rote calculation or meaningless symbol manipulation.  

Does precise, reflexive mathematical reasoning rely on space? There are hints that it 

may, most obviously in linguistic and graphical practice. Many languages, English included, 

use spatial language to describe numerical properties and relations (Lakoff and Núñez, 

2000). These linguistic metaphors for number are systematic, productive, and old. Numbers 

are “higher” in the absence of literal height, “bigger” in the absence of literal size. We might 

describe a utility bill as “sky high” if it were greater than expected, creatively using height to 

describe numerical magnitude. And the Oxford English Dictionary dates the non-spatial 

sense of “higher” to the 13th century, if not earlier, quoting an Old English homily in which a 

greater reward was described as a heahere mede, a “higher reward” (Higher, 2015). Judging 

from conventional language, at least, number and space are tightly coupled. 

The contribution of space is also apparent in graphical representations, such as 

Cartesian graphs, in which strict norms dictate how number should be spatialized. 

Mathematical concepts are thus spatialized in notations and diagrams, both by educators in 

teaching but also by experts in practice (Giaquinto, 2007). These contemporary artifacts and 

practices, however, are the residues of a long history of conceptual innovation, and their use 

today requires no more than a superficial appreciation for the coupling of space and number. 

Similarly, conventional language can be an unreliable index of individual thought, suggesting 

conceptual structure that does not exist, hiding structure that does (Casasanto, 2009).  
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More compelling evidence comes from observational and historical case studies of 

expert scientists and mathematicians, where metaphor and analogy appear to have played a 

key role in major discoveries and debates. The venerable physicist James Clerk Maxwell, for 

instance, relied on a physical analogy to derive his electromagnetic field equations 

(Nersessian, 1992, 2008). Similarly, the historical acceptance of imaginary numbers by 

mathematicians may have depended on integrating conceptions of space and number into a 

more complex, blended conceptualization (Fauconnier and Turner, 1998). Today, 

mathematical experts—graduate students in a mathematics department—spontaneously 

make use of implicit spatial models when confronted with a novel, non-trivial proof 

(Marghetis and Núñez, 2013). Spatial construals have sometimes led to discord rather than 

discovery. For decades, the mathematician Augustin Cauchy defended his “proof” of a 

theorem about continuous functions (1821, 1853), despite unanimous agreement among his 

colleagues that the theorem was false (Lakatos, 1978; Kitcher, 1984). We have argued that 

the locus of their disagreement was the implicit conceptualization of number on which either 

camp relied, with Cauchy deploying an idiosyncratic spatial construal that differed from his 

colleagues’ (Marghetis and Núñez, 2013). Throughout history and today, therefore, expert 

discovery and disagreement have been driven by spatial metaphors and analogies, which 

supply intuitions to help make sense of the complex or the abstract (Gentner, 2002; 

Fauconnier and Turner, 2002; Nersessian, 2008). 

Besides these case studies of exceptional insight, however, there is little empirical 

evidence that everyday mathematical reasoning and understanding involve spatial metaphors 

or analogies (Núñez and Marghetis, in press). Perhaps this is unsurprising: in the canonical 

mathematical encounter, a solitary individual manipulates symbolic equations—hardly 
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evocative of metaphorical or analogical thought. How, indeed, might space contribute to 

mature conceptualizations of notions as abstract as the integers and arithmetic?  

4.1.1. Spatial metaphors for abstract arithmetic 

The most extensive proposal for the role of spatial models in the conceptualization 

of mathematics is due to Lakoff and Núñez (2000). On their account, which builds on 

Conceptual Metaphor Theory (Lakoff and Johnson, 1980), much of mathematical reasoning 

is metaphoric, in the sense that the inferential structure of mathematics is imported from the 

inferential structure of concrete “source” domains. They argue that our conceptualization of 

the integers and arithmetic, for instance, is built metaphorically out of recurring, shared 

patterns of embodied activity like collecting objects and moving along a path. Critically, these 

concrete source domains are highly spatial and embodied, and thus depend on the kinds of 

reasoning at which we excel: spatial reasoning and predicting the outcome of embodied 

interaction with the world. By conceptualizing the “target” domain of arithmetic in terms of 

these source domains, we are able to draw on a shared set of embodied, spatial intuitions.  

For instance, they propose that arithmetic is conceptualized metaphorically as object 

collection, mapping entities and inferences from the activity of collecting objects to the domain 

of arithmetic (Lakoff and Núñez, 2000, p. 55; see Table 4.1). Conceptualizing arithmetic as 

object collection allows us to understand numbers as collections, numerical magnitude as 

collection size, addition as the combination of collections. The domain of arithmetic also 

inherits the inferential relations of the source domain. The fact that addition is commutative 

(e.g., 3 + 5 = 5 + 3), for instance, is guaranteed by the fact that the outcome of combining 

multiple collections is the same regardless of the order in which they are combined. 



114 

Lakoff and Núñez (2000) argue that the inferential structure of arithmetic is the 

outcome of not one but multiple, complementary metaphors. They suggest that arithmetic may 

be conceptualized as motion along a path (p. 72; see Table 4.1). By mapping the inferential 

structure of linear motion onto the domain of number, we can understand numbers as 

locations or displacements along that path, numerical magnitude as distance from the origin, 

and arithmetic as motion away from or toward an origin. And since transitivity holds for 

locations along a linear path, it holds for relative numerical magnitude:  

Locations: if B is farther than A, and C is farther than B, then C is farther than A  

Integers: if B > A, and C > B, then C > A  

On their proposal, this conceptual metaphor motivates the linear spatial representations that 

are ubiquitous in contemporary Western visual culture: rulers, graphs, physical number-lines 

on the walls of classrooms. 

The deployment of these conceptual metaphors need not manifest itself as the 

conscious invocation of a concrete analogy (“well, if you imagine numbers as collections…”) 

or the physical creation of a model (e.g., drawing a visual number-line). Rather, metaphorical 

reasoning likely involves implicit, embodied simulations of the source domain (Gibbs, 2006). 

Reasoning about arithmetic might rely on mentally simulating actions and elements within 

the source domain—implicitly simulating the combination of distinct collections, for 

instance, and the resulting collection. Indeed, reasoning about concrete actions and objects is 

known to activate neural systems specialized for processing perception, action, and space 

(Barsalou, 1999, 2008; Gallese & Lakoff, 2005), systems that may contain predictive models 

that can not only recapitulate but actively predict the sensorimotor effects of hypothetical 



115 

actions and events (cf., Grush, 2007). Conceptual mappings between source and target 

domains may yoke abstract reasoning to spatial or sensorimotor simulation.  

A proof of a theorem in elementary number theory, therefore, could draw on either 

of these complementary conceptual metaphors in order to ground inferences to more basic, 

shared intuitions of space and action. Consider the following claim: The sum of an odd and an 

even number is always odd. A typical proof might start by breaking down the even and odd 

number into smaller components, and then recombining them in such a way that the result is 

demonstrably odd. But depending on how arithmetic is conceptualized, this process of 

numerical decomposition and recombination can be understood quite differently. If one 

were to conceptualize arithmetic as object collection, one might reason about an even number 

by simulating the separation of one collection into two collections of equal size. If, on the 

other hand, one were to conceptualize arithmetic as motion along a path, one might simulate 

a location along a path, a location reached by making two equal displacements from the 

origin. These spatial or embodied simulations could then generate insights into the integers.  

4.1.2. Internal simulation, external gesture 

There is relatively little evidence, however, that basic arithmetic is indeed 

conceptualized metaphorically, let alone that reasoning about arithmetic and the integers 

involves simulating the elements and relations in the relevant source domain. One way to 

gain insight into real-time, dynamic reasoning is to look at spontaneous gesture, meaningful 

movements of the body—especially the hands—produced while thinking or talking 

(Kendon, 2004; Goldin-Meadow, 2005; McNeill, 1992).  
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Table 4.1. Complementary conceptual metaphors for arithmetic: Object Collection and 
Motion Along a Path (adapted from Lakoff and Núñez, 2000) 

 

Source:� 
Object Collection 

 
 

Target: 
Arithmetic 

 Source: 
�Motion Along a Path 

 
 

Target: 
Arithmetic 

collection of objects ! number   location on path ! number 

collection size ! numerical 
magnitude 

 distance from origin ! numerical 
magnitude 

bigger [/smaller] ! greater 
[/lesser] 

 further from  
[/closer to] origin 

! greater 
[/lesser] 

combining collections ! addition  motion away from 
origin 

! addition 
 

removing a collection 
from larger collection 

! subtraction  motion toward 
origin 

! subtraction 
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According to a number of processing models of gesture production, representational 

gestures are the outward manifestation of internal imagistic representations (e.g., embodied 

simulation) generated while formulating the message to be communicated (Hostetter and 

Alibali, 2008; Kita and Özyürek, 2003; McNeill 1992). For instance, according to the Gesture 

as Simulated Action framework (hereafter GSA; Hostetter and Alibali, 2008), the production 

of representational gestures is driven, in part, by embodied simulation in sensorimotor brain 

areas. Their proposal is especially clear for concrete referents. When speakers are 

formulating a message about a concrete action or event, they rely on sensorimotor brain 

areas to simulate spatial, perceptual, and motoric features (Barsalou, 1999, 2007; Gallese & 

Lakoff, 2005). If neural activity in sensorimotor brain areas—especially areas responsible for 

action—surpasses a threshold, then internal simulation spills out as external gesture. 

Thinking about hammering a nail, for instance, might involve a visuospatial simulation of the 

hammer’s trajectory or motor simulation of the manual action of swinging the hammer. 

According to GSA, were this internal simulation to surpass a threshold of activation, then 

the internal neural activity might spill out as one-handed “hammering” gesture. This is 

precisely what recent studies have reported. For example, people produce more 

representational gestures during tasks that require more spatial simulation (Sassenberg & 

Van Der Meer, 2010) or when recollecting past events that involved manual action 

(Hostetter and Alibali, 2010). At least for reasoning about concrete actions or events, 

external gestures are closely coupled to internal mental simulations (for review, see Marghetis 

and Bergen, 2014).  

But what about metaphorical gestures? The GSA framework makes a clear 

prediction: “We contend that metaphoric gestures arise from perceptual and motor 
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simulations of spatial image schemas on which metaphors are based” (Hostetter and Alibali, 

2008, p. 504). On this account, therefore, pointing rightward when talking about the future 

(Cooperrider and Núñez, 2009; Casasanto and Jasmin, 2012) is not merely a 

conventionalized communicative strategy, but the outward manifestation of the internal 

simulation of a schematic, spatial representation of time, in which the past is to the left and 

the future to the right along a lateral timeline. If the conceptualization of arithmetic is 

similarly metaphorical, then this should be reflected in spontaneous gestures produced 

during mathematical reasoning.  

Unlike the established and growing literature on metaphorical gestures for time (e.g. 

Núñez and Sweetser, 2006; Cooperrider and Núñez, 2009; Núñez et al, 2012; Casasanto and 

Jasmin, 2012; among others), there are few studies of how basic concepts of number and 

arithmetic become spatialized in gesture (but see Núñez and Marghetis, in press; Winter, 

Perlman, and Matlock, 2013). The work of Goldin-Meadow and colleagues on children’s 

algebra solutions, for instance, deals primarily with children’s procedural strategies, not their 

conceptualization of algebra and arithmetic (cf., Goldin-Meadow and Wagner, 2005; Goldin-

Meadow, 2005). We know of no studies, moreover, that have investigated whether 

metaphorical gestures—like concrete representational gestures—reflect embodied 

simulation.  

4.1.3. Current Studies 

We combined observation and experimentation to investigate the spatialization of 

arithmetic in thought and gesture. The goal of Study 1 was to document and describe the 

metaphorical representation of number and arithmetic in spontaneous co-speech gesture. 

Using a semi-controlled interview, we elicited spontaneous gestures while participants 
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reasoned about arithmetic. This leaves open the question of whether these gestures merely 

reflect conventionalized ways of communicating with the hands, or—as proposed by the 

GSA framework—they reflect gesturers’ real-time, dynamic simulations of motion and 

action. Study 2 thus investigated the proximal cause of these metaphorical gestures for 

arithmetic, using a priming paradigm that manipulated participants’ spatial imagery.  

We reasoned as follows. If participants were deploying spatial models to support 

their mathematical reasoning, then this should be reflected systematically in their 

spontaneous gesture—even if there was no sign of metaphorical thought in their speech. 

Specifically, if Lakoff and Núñez (2000) are correct, then we should be able to identify two 

recurring, complementary gestural systems, corresponding to the Path and Object Collection 

metaphors. Moreover, if these gestures are the outward manifestation of the “perceptual and 

motor simulations of spatial image schemas on which metaphors are based” (Hostetter and 

Alibali, 2008, p. 504), then priming the spatial simulation of one source-domain or the other 

should encourage the deployment of the associated conceptual metaphor and thus increase 

the prevalence of associated gestures. Specifically, simulating motion along a path should 

prime path-based metaphorical gestures, while simulating the combination of collections of 

concrete objects should prime collection-based metaphorical gestures. Alternatively, if these 

gestures are merely a conventionalized communicative strategy, more akin to gestural 

emblems like the “ok” sign, then mental simulation should have no effect on subsequent 

metaphorical gestures. 
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4.2. Study 1: Does reasoning about arithmetic involve spatial metaphors? 

4.2.1. Participants 

Volunteers (n = 14) from the UCSD subject pool participated in return for partial 

course credit. All procedures were approved by the university’s Institutional Review Board. 

4.2.2. Design 

In order to facilitate mathematical reasoning, participants first read the proof of a 

simple mathematical theorem: The sum of an odd number and an even number is always odd 

(Appendix A). For instance, 5 is odd, 2 is even, 5 + 2 = 7, and 7 is odd. Before and after 

reading this proof, participants completed a brief mental imagery task, intended to 

discourage participants from merely memorizing the proof’s text and later repeating it 

verbatim. In this mental imagery task, participants were shown an image of four animals, 

told to memorize the animals and their location, and then, after a brief delay, asked to recall 

the identity of an animal in a particular location (e.g. “Was there a pig in the top right?”). 

Participants were then brought to a different room and asked to reason aloud while 

they responded to a series of questions about arithmetic. Responses were audio- and video-

recorded. Throughout this stage, the experimenter followed a structured script and never 

gestured. Participants were first asked to explain why this theorem is always true, in their own 

words. If participants hesitated, the experimenter gave them scripted encouragement (e.g. 

“Do you remember the proof you just read? It was related to this. Does that help?”). 

Participants were then asked to explain a related theorem: The sum of two odd numbers is always 

even. This second theorem can be proved using an argument similar to the one used to prove 

the first theorem, but requires some novel insights.  
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4.2.3. Results 

Participants did not use explicit analogies between numbers and concrete objects. 

Nobody said, for instance, “Well, if you think of numbers as collections of beads…,” or, 

“Imagine a left-to-right number-line.” By contrast, participants’ gestures used space in 

systematic and recurring ways to represent number and arithmetic. To foreshadow our 

results, in one system of gestures, arithmetic was construed as a process of object collection, of 

grouping, combining, and otherwise manipulating discrete entities. In the other, arithmetic 

was construed as motion along a path, typically along a horizontal axis.  

4.2.3.1. Collection Gestures 

The Collection system of gestures made systematic use of spatial extent to represent 

numerical magnitude—either the size of a single grasping handshape or the volume bounded 

by a bimanual gesture—and combination and separation to represent arithmetic. In its 

canonical form, when expressing addition, the Collection gesture consisted of both hands 

moving inward toward the center of gesture space, with the hands shaped as if grasping, 

pinching, or holding. The impression was of two objects or collections, held within the 

hands, being brought together and combined. The Collection system of gestures thus 

involves mappings between arithmetic and space that parallel those that constitute the 

conceptual metaphor in which arithmetic is conceptualized as object collection (Lakoff and 

Núñez, 2000). 

Figure 4.1 illustrates a sequence of typical Collection gestures. The speaker is 

describing a series of calculations: first adding one plus one to get two, and then adding that 

even result to another even number. Both calculations are accompanied by a similar gesture. 

She begins by shaping her hands as if each is grasping or holding some imagined object, held 
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apart to represent the two numbers being added. As she describes adding those addends, she 

rapidly moves both hands inward toward each other (a to b; c to d), thus using inward 

motion to represent the process of addition. To represent the product of the addition—the sum 

itself—she maintains a post-stroke hold in which both hands are held slightly apart, 

demarcating a region of space that stands in for the sum (b, d). The outcome of the second 

addition is larger than the outcome of the first, and, accordingly, her hands carve up a larger 

volume of space during the post-stroke hold after the second Collection gesture (compare b 

to d).  

This use of relative volume to represent relative magnitude is illustrated nicely in 

Figure 4.2. The speaker is describing a sequence of three calculations: first, adding two 

indeterminate even numbers; second, adding one and one; third, adding these first two sums. 

She accompanies each of these calculations with a bimanual gesture in which the hands 

begin by demarcating separate spatial regions and then come together to indicate a larger, 

combined space. Thus, once again, the process of addition is represented by an inward-

directed motion enacting the combination of two objects or collections, while the product of 

addition is represented by a post-stroke hold that demarcates a region of space. We can 

determine the relative magnitude of these three sums from the speaker’s speech: the first is 

an indeterminate even number; the second is two (1 + 1), the smallest even positive integer, 

and thus less than or equal to the first sum; the third, final number is larger than either of the 

first two, since it is their sum. And, as we might expect if relative volume stands in for 

relative magnitude, the volumes demarcated by the three post-stroke holds respect this 

relative ordering of the three numerical magnitudes (b, d, f).  
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Within the Collection system, gestures recruit extent, not location, to represent 

numerical magnitude. As a result, the exact same number can be in different locations. This 

was true in the first stroke of the gesture phrase depicted in Figure 4.1 (a, b), and again in the 

second gesture from Figure 4.2 (c, d). In both cases, the two hands represent the same 

number (i.e., one). Another example is illustrated in Figure 4.3. The speaker states explicitly 

that she is adding a number to itself (“same numbers added up”). To represent these equal 

addends, she pulls her hands apart to form two equal grasping handshapes (a, b), using 

volume rather than location to express numerical magnitude and thus representing the same 

number in different locations. She completes the gesture phrase by bringing her hands 

together, representing the addition of the equal addends (b, c). Looking over the entire 

gesture phrase, the equal addends were located to the left and right, while their larger sum 

was located between the addends. Within the Collection gesture, therefore, there is no 

systematic relation between location and numerical magnitude.   
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Figure 4.1. A gesture unit consisting of canonical Collection gestures, each representing the 
sum of two numbers. The speaker first adds 1 + 1, accompanying her speech with a 
bimanual inward gesture (a-b) to represent the process of addition. She uses the post-stroke 
hold to represent the sum—an even number—keeping her hands slightly apart to demarcate 
a small volume. She next adds this number to yet another even number (c-d), again 
representing the addition process with an inward directed movement and using the post-
stroke hold to represent the sum. The second sum is greater than the first, and, 
correspondingly, the volume contained by the co-produced gesture is larger in (d) than in (b). 
Speech accompanying a gesture is enclosed in [square brackets], with the gesture stroke in 
bold and any holds underlined (McNeill, 1992).  

!
!
!
!
(1) You have one from each number 
left over and [adding that together] 
is an even number.!
!
!
!
!
!
!
!
!
(2) So an even number [plus an 
even number] is an even number.

a b

c d
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Figure 4.2. A sequence of Collection gestures, with handshapes marking relative magnitude. 
The first gesture (a-b) represents each number with “pincer” handshape, with thumb and 
forefinger extended to demarcate a region of space. To represent the addition of these two 
numbers, the hands are brought together and fingers overlaid. The second gesture (c-d) uses 
extended fingers to indicate punctate locations, and then brings the fingertips together to 
represent the addition of one and one. The final gesture (e-f) represents the addition of the 
two preceding sums. The handshape indicating this final sum demarcates a larger space than 
in either (b) or (d). Relative volume thus represents the relative magnitude of all three sums.   

!
!
(1) You have [the two even 
numbers that go together to  
make another even number]!
!
!
!
!
 
(2) And then [the two ones that go 
together to make an even number]!
!
!
!
!
(3) And then you add [your new 
two even numbers] to make 
another even number

a

c

e

b

d

f
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Figure 4.3. Within the Collection system, equal numbers can be in two places at once. Both 
hands began by pulling back from rest (a-b), with matched grasping handshapes representing 
equal addends. These handshapes were maintained during the post-stroke hold, as she 
explicitly stated she was summing the “same numbers.” Both hands were then brought 
together (b-c) to represent their addition. Even though the addends were identical, they were 
located in different locations; numerical magnitude was expressed by volume, not location.  
  

!
!
!
!
!
!
!
!
(1) [Same numbers]  

!
!
!
!
 
(2) [added up equals even]

a

b

c
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4.2.3.2. Path Gestures 

The Path system of gestures represented numerical magnitude by location along the 

left-to-right transversal axis, and represented arithmetic by movement along that axis. In its 

canonical form, when expressing addition, the Path gesture consisted of a single hand, with 

index finger extended, tracing a rightward path from one location (the first addend) to 

another (the sum), with distance traveled representing the magnitude of the second addend. 

This system of Path gestures thus appears to be a gestural analog of the Motion Along a 

Path conceptual metaphor (Lakoff and Núñez, 2000).  

For instance, in the gesture phrase depicted on the right of Figure 4.4, the speaker’s 

index finger traces a path from left to right as he describes the addition of three numbers, 

pausing for a brief pre- or post-stroke hold to indicate each stage of the calculation. His first 

gesture associates the first addend, the variable b, with a location near his left leg, thus 

anchoring the rest of the gestures in the sequence (a). As numbers are added, he slides his 

finger along a transversal path, with each new addition accompanied by a rightward stroke 

(b, c). These Path gestures were sometimes enacted on a small scale, barely noticeable to the 

interlocutor, as in the second gesture phrase depicted in Figure 4.5. As the speaker says 

“three,” she points to a location to the left of her midline, anchoring the number to that 

location. As she adds, twice, to this initial addend, she produces two rapid rightward strokes, 

each co-timed with the word “plus” and the addend (“three,” “one”).  

Path gestures used the precise direction of motion to distinguish between addition and 

subtraction, or between increase and decrease more generally. In Figure 4.5, for example, the 

speaker is observing that an even number will always be one greater than and one less than 

an odd number. As she notes that it will be one greater than an odd number (“it would 
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either be one up”), she moves her left hand, with all fingers extended, in a smooth trajectory 

rightward, from slightly left to slightly right of her midline. She then notes that it could be 

one less than an odd number, co-produced with a leftward sweep of her hand. Notably, this 

was one of the few times that a participant used spatial language to describe numerical 

relations (“one up”), though this speech used a different axis—the vertical axis—than the 

transversal axis deployed in gesture. Path gestures thus locate larger numbers to the right, 

lesser numbers to the left. 

While the first example in Figure 4.4 uses locations to indicate the relative magnitude 

of variables (b vs. b+b+1), the gestures in the second example map specific numbers to 

particular locations. Thus, while the Path gesture system recruits spatial locations to 

individuate numbers, this is relative to the particular numbers being discussed and the 

specific locations indicated in the rest of that particular gesture excursion. One speaker’s 

location for “twelve” might be another’s “twelve billion.” These gestures, therefore, are a 

species of abstract deixis (McNeill et al, 1993). Abstract deixis refers to the phenomenon 

where speakers point to empty space in order to refer to an absent referent or discourse 

element that was introduced earlier and associated with that space. For instance, a speaker 

might point to the left when introducing a character into her narrative, and then point back 

to that location to refer to that character throughout the rest of her narrative. Unlike abstract 

deixis to concrete discourse elements—in which a concrete referent is associated 

idiosyncratically and transiently with a particular location—Path gestures anchor an entire 

domain to the speaker’s gesture space. Thus, in deploying a Path gesture, the speaker 

overlays the numerical continuum on an imaged left-to-right spatial path—laminating the 

local gesture space with the abstract space of numbers (cf., Haviland, 1996). The speaker can 
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then refer to other locations along that imagined path to invoke numbers greater or lesser 

than the initial number. 

Both Path and Collection gestures can individuate numbers, distinguishing between 

those that are equal and those that are not, but they differ in how they recruit space to do so.  

A Collection gesture might use both hands to represent two equal addends by using identical 

handshapes, thus associating identical numbers with different locations but equal volumes. 

By contrast, Path gestures individuate numbers by their location, so the same number cannot 

be in two locations; if the hand moves to a new location, then it represents a new number.  
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Figure 4.4. Canonical Path gestures produced by two different participants in Study 1: 
unimanual, pointing handshape, rightward strokes for addition. Each sum is accompanied by 
a rightward displacement, so the finger points to more rightward locations for larger 
numbers. In the gesture phrase on the left, the speaker begins by indexing a location near his 
left thigh for the variable b, then a location more rightward for b+b, and more rightward 
again for b+b+1. In the gesture phrase on the right, the speaker begins by indexing a 
location to the left for 3 (d), then more rightward for 3+3(e), and more rightward again for 
3+3+1 (f). 
  

(1) And then bee !
!
!
!
!
!
(2) [plus bee]!
!
!
!
!
(3) [plus one],  
! which is odd.

a

b

c

!
(4) This is the case  
! because seven  
! is [three]!
!
!
!
(5) [plus three]!
!
!
!
!
(6) [plus one].

d

e

f
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Figure 4.5. Path gestures use direction of motion to indicate the orientation of change or 
relative magnitude. Here, the speaker gestures rightward to indicate a larger number (“one 
up”), and leftward to indicate a smaller number (“one below”). While language relies on the 
vertical axis (“up,” “below”), Path gestures rely primarily on the horizontal axis—never used 
in speech to describe numerical relations, in neither English nor any attested spoken 
language.   

!
!
!
(1) If you have an  
! ! even number  

!
!
!
!
!
(2) it would [either  
! ! ! be one up] !
!
!
!
!
!
!
(3) [or one below].

a

b

c
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4.2.4. Discussion 

Participants’ spontaneous gestures spatialized arithmetic in two complementary ways. 

One system of gestures represented numbers with spatial volume and expressed addition as 

the combination of objects. The other represented numbers with lateral location and 

expressed addition as rightward motion along the transversal axis. These two gesture systems 

mirrored conceptual metaphors that have been proposed to structure our conceptualization 

of arithmetic (Lakoff and Núñez, 2000), namely, conceptualizing arithmetic as object 

collection or as motion along a path. Participants’ gesture production, therefore, suggests 

that these spatial construals of arithmetic have cognitive reality, deployed spontaneously by 

participants as they make sense of abstract mathematical relations.  

Critically, Path and Collection gestures were not isolated gestures with idiosyncratic, 

conventionalized meanings—like the “ok” sign, or an extended index finger to represent 

“one”—but holistic gesture systems. Meaningless in isolation, numerical gestures were 

meaningful in virtue of their relation to other elements, potential and actualized, of the 

gestural system. Adapting a distinction from Saussure (1917/1986), we can say that a 

particular gesture acquired meaning in relation to two dimensions of contrast: the alternative 

gestures that could have been produced in its stead (paradigm), and the preceding and 

following gestures (syntagm). Recall the Collection gestures depicted in Figure 4.2. The 

handshapes in (f) represent larger quantity only because they carve out a larger space than 

the handshapes in (d) or (b), not because of a stable mapping between those specific 

handshapes and particular quantities. The particular location indexed by the Path gesture in 

Figure 4.4-e, similarly, represents the number six because of its placement relative to the 

other gestures in that particular sequence of gestures—right of a gesture used to represent 
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three, left of a gesture used to represent seven. These gestures are part of a system that 

allows for the productive and flexible representation of number and arithmetic.  

Both systems—Path and Collection—spatialized number and arithmetic in ways that 

are either absent entirely from speech or appear only in an impoverished, limited fashion. 

Take Collection gestures. While participants could have referred to numbers as “bigger” or 

“smaller,” in actual fact they seldom accompanied their Collection gestures with such spatial 

language. Moreover, Collection gestures often represented simultaneously different facets of 

a calculation, impossible in the linearized speech stream. The first gesture of Figure 4.2 

simultaneously represents the magnitude of the addends (using the two handshapes), the 

type of arithmetic operation (using inward-directed motion), and the larger magnitude of the 

sum (using the volume demarcated by both hands in the post-stroke hold). Speech, by 

contrast, needs to separate these facets in order to encode them in a linear stream. The 

contrast with speech is even more stark for Path gestures. While English does allow 

numerical magnitude to be described along the vertical axis (“higher or lower numbers”), 

Path gestures rely primarily on the horizontal axis—never used in speech to describe 

numerical relations, in neither English nor any attested spoken language. Indeed, both Path 

and Collection gestures offer holistic representations of complex arithmetic relations—the 

magnitude of multiple addends, the operation used to combine them, etc.. Speech, by 

contrast, typically makes only targeted use of space to describe a single number1 (e.g., “tiny 

number”). The spatial representation of arithmetic in gesture, therefore, is distinct from and 

autonomous of spatialization in language. 
                                                

1 These targeted uses of spatial language are often accompanied by “quotable” gestures, such as a 

“tiny” gesture with index and thumb extended and touching (Winter, Perlman, and Matlock, 2013).  
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The system of Path gestures, in particular, is reminiscent of the system of transversal 

temporal gestures, which represent temporal order along the transversal axis (cf. Cooperrider 

and Núñez, 2009), or the multiple timelines that are grammaticalized in some sign languages, 

including American Sign Language (Winston, 1989; Emmorey, 2001) and Danish Sign 

Language (Engberg-Pedersen, 1993). These gestural and sign language timelines express 

relative temporal order by pointing to locations along a left-to-right transversal axis, with 

earlier events located to the left, and later events to the right. Within a particular gesture 

excursion, therefore, specific times or temporal periods are individuated by their locations in 

transversal space. Similarly, within a particular excursion of the hands, Path gestures 

individuate numbers by pointing to locations along a left-to-right transversal axis.  

While the systematicity, productiveness, and autonomy of these two gestural systems 

suggests that mathematical reasoning involves complementary conceptual metaphors, an 

observational study cannot tell us about the proximal mechanisms driving their production. 

It is entirely plausible that these metaphorical gestures are merely acquired, conventionalized 

ways of representing arithmetic concepts during conversation— static mappings between 

abstract concepts (e.g., addition) and specific gestures (e.g., bimanual Collection gesture). 

These gestures could be the sedimentation of conceptual practice—learned in school or 

acquired from others—and not actually reflect real-time processes of conceptualization. In 

fact, humans are known to acquire gestures through social learning, picking up the gestures 

by observing the gestures of others in their community (Halina, Rossano, and Tomasello, 

2013).  

Study 2, therefore, used a priming paradigm to test the claim of the GSA framework, 

that metaphoric gestures reflect internal sensorimotor and spatial simulation of the 
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metaphoric source domain. If co-speech metaphoric gesture does, in fact, reflect a spatial 

conceptualization of arithmetic, then spatial simulation should affect subsequent metaphoric 

gesture: simulating motion along a transversal path should prime Path gestures; simulating 

the manipulation of collections of concrete objects should prime Collection gestures. If, on 

the other hand, these gestures are merely acquired conventions, then mental imagery should 

have no systematic effect on subsequent metaphorical gesture. 

4.3. Study 2: Do metaphorical gestures reflect internal mental simulation? 

4.3.1. Participants 

Volunteers (n = 18) from the UCSD undergraduate subject pool participated in 

return for partial course credit. All procedures were approved by the university’s Institutional 

Review Board.  

4.3.2. Design and Procedure 

In a between-subjects design, participants completed a mental imagery activity in one 

of two conditions, followed by a mathematical reasoning task. They were told the study was 

investigating the relation between concentration and abstract reasoning.  

4.3.2.1. Mental Imagery 

One group of participants had to memorize a picture of a horizontal wire, with 

locations along the wire distinguished by color (Path-based Imagery condition). The other 

group of participants memorized a picture of three colored plates, each containing a small 

collection of beads (Collection-based Imagery condition). Once they had memorized the picture, 

participants were given written instructions to imagine moving the beads from one location 

to another, without visual access to the picture (Appendix B). In the Collection-based 
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Imagery condition, participants were asked to imagine moving all the beads from one plate 

to another (e.g. “Imagine moving the beads around between the plates, described by their 

color […]: From red to blue.”). Instructions in the Path-based Imagery condition were 

identical, except the word “plate” was replaced with “wire location,” so participants were 

instructed to imagine sliding a bead between colored locations along a horizontal path. To 

encourage compliance, participants then answered a simple comprehension question: “After 

all your imagined manipulations, are there any beads in the green plate [/wire location]?” 

In order to facilitate their subsequent mathematical reasoning, participants then read 

the same theorem from Study 1 (“The sum of an odd number and an even number is always odd.”) 

and two proofs of the theorem (Appendix A). Two proofs were mathematically equivalent 

but used slightly different phrasing to avoid biasing path-based or collection-based 

construals of arithmetic. For instance, whereas one proof described an arithmetic sum as 

“combining three and three together,” the other described the sum as “starting at three and 

then adding three more.” These proofs were matched in number of words (283 vs. 302), 

number of lines (17), and logical organization. Each participant read both proofs; order of 

presentation was counterbalanced to eliminate order effects or any potential bias. Between 

reading the proofs, participants performed a second round of mental imagery, in the same 

condition. Thus, the only difference between conditions was the type of mental imagery: 

either path-related (bead on a wire) or collection-related (collections of beads).  

4.3.2.2. Mathematical Reasoning 

Participants were then led to another room, where they were asked to explain in their 

own words why the sum of an odd number and an even number is always odd—that is, 

explain the mathematical theorem for which they had just read a proof. To encourage 
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expressiveness, they were asked to phrase their explanation as if they were speaking to “an 

intelligent high school student.” Their speech and gesture were video-recorded. 

4.3.3. Speech and Gesture Coding 

Coders were blind to participants’ mental imagery condition. Participants’ speech 

was transcribed verbatim, including pauses and disfluencies. Gesture was coded using a 

three-step process. First, participants’ speech was searched for talk about arithmetic— 

operationalized as any mention of numbers, addition, subtraction, multiplication, or 

division—and, if accompanied by gesture, the video was segmented by gesture stroke. This 

produced a corpus of gestures co-produced with talk of number or arithmetic. Second, each 

stroke in this gesture corpus was coded for handedness, morphology (i.e., handshape), and 

kinematics (i.e., motion trajectory of the stroke) (see Table 4.2). Handedness was coded as 

one- or two-handed, depending on whether one or both hands were involved in the stroke. 

Morphology was coded as pointing (e.g., extended index finger), grasping (e.g., pinching or 

holding), or other if the handshape fell into neither category. Kinematics was coded as inward 

(e.g. both hands moving toward each other), transversal (e.g., left-to-right), or other if the 

gesture stroke’s motion fell into neither category.  

Third, annotations for all three features (handedness, handshape, morphology) were 

converted to numerical scores. A feature was converted to -1 if it was path-like (i.e., one-

handed, pointing handshape, inward-directed motion), to +1 if it was collection-like (e.g., 

two-handed, grasping handshape, transversal motion), and to 0 otherwise. For each gesture, 

these three scores were then summed to generate a composite score that indexed how 

closely the gesture resembled a canonical Path or Collection gesture. On this scale, canonical 

Collection gestures received a score of +3 and canonical Path gestures received a score of -3, 
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while gestures with a mix of features (e.g., a two-handed, grasping gesture with left-to-right 

transversal kinematics) received scores ranging from -2 to +2.  

To assess reliability, a second coder independently coded each gesture’s morphology 

and kinematics. There was good agreement: Coders’ composite gesture scores were highly 

correlated (r = .84, t104 = 15.7, p << .001), as were individual scores for morphology (r = .70, 

t104 = 10.1, p << .001) and kinematics (r = .44, t104 = 5.0, p << .001). We used the first 

coder’s annotations for all subsequent analyses, though the results were unchanged—and in 

some cases more significant—with the second coder’s.  

 

Table 4.2. Features coded in Study 2. Collection-like features contributed one point to each 
gesture’s composite score; path-like features subtracted one point. 

 

Feature: Handedness Morphology Kinematics 

Collection 
gesture two-handed grasping inward-directed 

Path  
gesture one-handed pointing along traversal axis 

 

4.3.4. Results and Discussion 

We begin with quantitative and qualitative descriptions of participants’ mathematical 

gestures, replicating and extending the findings of Study 1. We then answer the critical 

question, Does mental imagery have a causal impact on subsequent metaphorical gesture? All statistical 

analyses were performed in R (R Development Core Team, 2010). Three participants gestured 

very little overall and never while discussing arithmetic; they were removed from further 

analysis. 
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4.3.4.1. How did participants gesture about arithmetic? 

Participants produced gestures with a range of features (Figure 4.6, top panel), but 

these were clustered nevertheless around two distinct types: one involving two-handed 

collecting motions, the other involving one-handed pointing along a transversal path. The 

majority of one-handed gestures had pointing morphology (57%), while the majority of two-

handed gestures had grasping morphology (59%), as we would predict if participants were 

producing Path or Collection gestures, respectively (χ2 test of independence, χ2
(2) = 30.2, p 

<< .001). Moreover, morphology and handedness combined with kinematics in reliable, 

meaningful clusters. Using k-means, an unsupervised machine learning algorithm for 

clustering multidimensional data, we categorized gestures into two maximally distinct 

clusters on the basis of morphology, handedness, and kinematics. Recall that more negative 

scores indicate more path-like features, while more positive scores indicate more collection-

like features. One cluster of gestures consisted of one-handed gestures with pointing 

morphology (Mmorphology = -0.34) and mostly transversal motion (Mkinematics = -0.53), all typical 

of Path gestures. By contrast, the other cluster consisted of two-handed gestures that were 

more collection-like in morphology (Mmorphology = 0.5) and motion (Mkinematics = -0.22), all ts > 

-2.2, ps < .03. Therefore, while handedness, morphology, and kinematics are, in principle, 

independent dimensions along which gestures could vary, they patterned in predictable ways, 

clustering in line with the gesture systems identified in Study 1. Path and Collection gestures 

carve the world of spontaneous numerical gestures at its natural joints.  

For instance, Figure 4.7 shows a gesture in the first cluster, with all the features of a 

canonical Collection gesture: bimanual, grasping morphology, inward-directed motion. The 

participant’s hands are shaped as if grasping or holding some imagined object or collection. 
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Maintaining this handshape, she produces a downward stroke with each hand, indicating the 

numbers to be added (a-b). She then brings her hands together to indicate their addition, 

saying, “You can combine the one from the even number and the one from the odd number 

to create one [number].” Note that this gesture, as an exemplary Collection gesture, 

illustrates the recruitment of the transverse axis to distinguish terms in an arithmetic 

operation—not to represent their magnitude, like we see in the Path system. 

Or consider Figure 4.7. The participant is explaining that an odd number can always 

be decomposed into two equal numbers, with one left over. She begins by describing the 

addition of the two equal numbers (a-c), rapidly bringing her hands together. Both hands 

begin in an open grasping handshape, and close into a pinching shape as they approach each 

other (b). The gestural result of this addition is a brief hold, indicating the sum of the two 

numbers (c). Next she states that, “you just add one” to this partial sum, while 

simultaneously opening up and displacing her hands slightly to the right (d). Notice that two 

equal addends (“the same numbers”) are enacted by nearly identical handshapes, while the 

addition of one more (“add one”) is accompanied by an expansion in the volume of her grip. 

Morphology mirrors magnitude. Furthermore, since the same number was represented by 

different hands, and therefore anchored to different locations, we see again that Collection 

gestures divorce magnitude from location, instead representing numerical magnitude with 

spatial extent—paralleling the conceptual mapping between magnitude and volume 

proposed by Lakoff and Núñez (2000).  
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Figure 4.6. Distribution of gesture features (Study 2). Gesture score along the x-axis 
indicates whether gestures were more “path-” (negative) or “collection-like” (positive), 
combining morphology, handedness, and kinematics. (A) Overall, gestures had both path- 
and collection-like features. (B) The distribution of gesture features, however, differed by 
imagery condition. Gestures were primarily path-like after path-based imagery (red), and 
primarily collection-like after collection-based imagery (blue). Plots show Gaussian kernel 
density estimates (Silverman, 1986).  
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Figure 4.7. Collection gesture produced after collection-based imagery (Study 2). Instead of 
representing relative magnitude, horizontal location distinguishes terms (a, b). The sum (c, d) 
is located between the two addends, rather than farther to the right, where it would be in the 
Path gesture system.  

 

 

(1) You can combine [the one from the 
even number]

(2) and [the one from the odd number]

(3) to [create one]

a

b

c

d
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Figure 4.8. Collection gesture recruiting volume to represent numerical magnitude (Study 2). 
The first stroke (a-c) is prototypical: bimanual grasping handshapes, inward movement to 
represent arithmetic. The second (d) represents addition by expanding the volume between 
the hands, as if numerical magnitude were volume. 
 

 

(1)[Because you add] [the same numbers,]

(2)[And you just add an,] 
[you just add one /.]

a

b

c

d
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Figure 4.9. A canonical Path gesture after path-based imagery. Describing the sum of four 
terms (a+a+b+b), he produces rightward strokes for each partial sum. He represents the first 
sum with a large displacement (a, b), and the second two equal sums with smaller but equal 
displacements (c, d).  
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By contrast, the gesture in Figure 4.9, from the second cluster, has all the features of 

a canonical Path gesture: single-handed, pointing morphology, transversal motion. The 

participant traces his hand along the transversal axis in a canonical pointing handshape, 

coupled to speech about the addition of five terms. The addition of each term is 

accompanied by a rightward stroke. The participant begins by adding “a plus a,” 

accompanied by a large diagonal displacement. He next adds a constant b, and then adds b 

again. Each addition of b is accompanied by a small rightward displacement of his hand, 

again with canonical pointing morphology. These two displacements are nearly identical in 

length, evoking the common magnitude of both operations. Linear displacement represents 

relative magnitude.  

What of gestures that lay between the poles of canonical Path and Collection 

gestures? These were often hybrid gestures, combining features of both gestural systems. It 

is here that participants performed some of the most creative gestural enactments of their 

abstract mathematical reasoning. Consider the gesture phrase in Figure 4.10, produced by a 

speaker who is explaining why a sum of the form “a + a + b + b + 1” is always odd. The 

speaker begins with a series of standard Path gestures, producing a short rightward stroke 

for every partial sum (e.g., “a + a”). But when it comes to adding the final term—adding 

one—he rapidly changes both handshape and trajectory. From a typical pointing handshape 

with extended index and middle fingers, indexing the even sum of the first four terms, he 

retracts his hand briefly while extending his thumb to create a grasping handshape. As he 

talks of adding one (“And then you have the one left over.”), he gestures as if adding a small 

object to the location of the even sum. Note that, in the Path system, numerical magnitude is 

represented by spatial location; addition is a displacement rightward along the number line, 
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not an operation performed in a single location. In the Collection system, by contrast, 

numbers are collections of objects, not locations; moving a collection from one location to 

another does nothing to change its cardinality. This gesture violates the internal logic of 

either system. And yet, by selectively projecting elements from both systems and composing 

them together in a new blended system (Fauconnier and Turner, 2002; Parrill and Sweetser, 

2004), the speaker is able to represent numbers as both locations and collections 

simultaneously, within a single stroke.  

4.3.4.2. Did mental imagery shape subsequent metaphorical gestures? 

In the face of this diversity of gestures, the critical question is whether participants’ 

metaphorical gestures for arithmetic were shaped by the content of their mental simulation 

of space and action. As predicted, mental imagery had a reliable and systematic influence on 

subsequent gesture (Figure 4.6, bottom panel). Recall that negative gesture scores indicate 

more path-like gestures, while positive scores indicate more collection-like gestures. Overall, 

participants who had performed path-based mental imagery produced gestures that were 

more path-like (composite score, M = -0.68, SE = 0.47), while those who had performed 

collection-based imagery produced gestures that were more collection-like (M = 0.67, SE = 

0.39), a significant influence of mental imagery on metaphorical gesture (t12.954 = 2.21, p = 

.045; Figure 4.11, left panel).  

To further investigate this effect of mental imagery, we modeled each gesture’s 

composite score using a linear mixed-effects model, with Mental Imagery as a fixed effect, 

and random intercepts and slopes by Participant. Here and in all subsequent models, we 

dummy-coded Mental Imagery (i.e., path-based imagery = 0; collection-based imagery = 1) 

to facilitate interpretation of the model coefficients, and we always used the maximal 
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converging random effects structure2 (Barr et al, 2013), with random intercepts and slopes 

for Mental Imagery condition. As predicted, there was a significant effect of mental imagery 

(β = 1.5, t8.1 = 2.5, p = .039), such that collection-based mental imagery prompted gestures 

that were more Collection-like. This full model, moreover, was significantly better than a 

reduced model without mental imagery condition, χ(1) = 5.5489, p = .018, confirming the 

causal influence of mental imagery on gesture.  

As a further check, we looked at whether mental imagery also influenced whether 

subsequent gestures were classified as path-like or collection-like, according to the 

unsupervised k-means algorithm described above (see Figure 4.11, right panel). A mixed-

logit model (Jaeger, 2008) with Mental Imagery as a fixed effect and Participant as a random 

effect found that, as predicted, participants were far more likely to produce collection-like 

gestures after collection-based imagery, compared to path-based imagery (β = 9.98, z = 2.4, p 

= .025). Path-based imagery prompted gestures that were highly likely to be categorized as 

path-like (predicted probability: 64%), while those produced after collection-based imagery 

were almost always categorized as collection-like (predicted probability: 99%). Thus, 

simulating space and action had a systematic influence on subsequent metaphorical gestures 

about arithmetic. 

  

                                                

2 For both morphology and handedness, the model with a fully maximal random effects structure 

converged, with correlated intercepts and slopes. A model with this random effects structure did not 

converge for kinematics, so, following the recommendations of Barr et al (2013), we used a random 

effects structure with uncorrelated intercepts and slopes.  
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Figure 4.10. A hybrid gesture phrase that blends Path and Collection construals. The 
speaker is describing a complex sum (a + a + b + b + 1). He begins with a series of standard 
Path gestures (a-d): one-handed, with canonical pointing handshapes, and each rightward 
stroke corresponding to a sum. However, when the speaker describes adding one (e-g), he 
adopts the grasping handshape and inward-directed movement of a Collection gesture, 
“placing” the unit (g) at the location where he had placed the outcome of the first three 
operations (e).   

(1) [Or aye plus bee /]
               a                b

(2) [plus / aye] [plus bee / ]
                     c                         d

(3) [has to be an even number /]
                                                e

(4) [And then / you have the 
                     f

                         one left over / ]
                                             g

(5) [So it’s an odd number.]
                              h          i

a

b

c

d

e

f

g

h

i
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Figure 4.11. Effect of mental imagery on metaphorical gesture (Study 2). (A) The horizontal 
axis indicates whether gestures were more “path-like” or “collection-like,” a composite score 
that combines morphology, handedness, and kinematics. After path- or collection-related 
mental imagery, participants produced metaphorical gestures that were more Path- and 
Collection-like, respectively. Error lines = SEM. (B) Based on morphology, handedness, and 
kinematics, gestures were clustered into two categories using k-means, an unsupervised 
machine learning technique for partitioning multidimensional data. After path-based imagery, 
most gestures were in the Path cluster (light red); after collection-based imagery, most were 
in the Collection cluster (dark blue). 
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Finally, we performed a series of follow-up analyses to determine the influence of 

mental imagery on each individual feature: handedness, morphology, and kinematics. We 

modeled each gesture feature using a mixed-logit model with Mental Imagery condition as a 

fixed effect and Participant as a random effect, allowing us to model each feature as a 

categorical variable (e.g., grasping vs. pointing morphology). A model of gestures with grasping 

or pointing morphology revealed a significant influence of mental imagery on gesture 

morphology (β = 13.3, z = 2.5, p = .012). Path-based imagery prompted gestures that were 

highly likely to have congruent pointing morphology (predicted probability: 63%), while those 

produced after collection-based imagery almost always had congruent grasping morphology 

(predicted probability: 99%). This full model of morphology was significantly better than a 

reduced model without mental imagery (χ(1) = 5.3, p = .021), confirming the causal influence 

of spatial imagery on gesture morphology. Similarly, the model of handedness found that 

performing collection-based rather than path-based imagery significantly increased the 

probability of producing two-handed gestures (β = 10.0, z = 2.2, p = .025). After path-based 

imagery, most gestures were one-handed (predicted probability: 64%), congruent with a 

canonical Path gesture; after collection-based imagery, most gestures were two-handed 

(predicted probability: 99%), congruent with a canonical Collection gesture. This full model 

of handedness was significantly better than a reduced model without mental imagery (χ(1) = 

5.3, p = .021), confirming the causal influence of spatial imagery on gesture handedness. By 

contrast, although gestures were more likely to involve transversal motion after path-based 

imagery (predicted probability: 85%) than after collection-based imagery (predicted 

probability: 72%), there was no evidence that this was due to anything other than chance (β 

= 0.8, z = 0.8, p > .35; χ(1) = 62, p > .4). Inspection of a few gestures from the Collection 
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cluster suggested an explanation: Many involved “collecting” movements that occurred 

primarily along the transversal axis, such as the gesture depicted in Figure 4.7-c. Thus, the 

influence of imagery on subsequent metaphorical gesture seems to have been driven 

primarily by form—the number and shape of the hands—rather than the precise motion 

through space.  

4.3.4.3. Is the influence of imagery on gesture mediated by speech? 

Is the influence of imagery on gesture the result of a direct influence of internal 

simulation on external metaphorical gesture, or is the link between simulation and gesture 

mediated by speech? Indeed, on a deflationary account, mental imagery may have changed 

the semantic content of speech, and this change in speech might have been responsible for 

the change in gesture. For instance, simulating the manipulation of collections could have 

primed participants to talk about numbers as if they were collections; or perhaps simulating 

sliding a bead along a wire primed participants to describe arithmetic, explicitly, in terms of 

spatial paths. To investigate this deflationary account, we analyzed the transcripts of 

participants’ speech for systematic differences between mental imagery conditions. We 

searched the transcripts for any explicit spatial language, used metaphorically or otherwise. 

There was no evidence that participants used spatial language at all, whether literally or 

metaphorically, despite the ubiquity of metaphorical gestures that used space to represent 

number and arithmetic. The words “collect,” “path,” “move,” “slide,” “high,” “low,” “big,” 

or their derivatives were never used. The words “smaller” and “combine”—possibly related 

to a Collection construal—were each used by a lone participant, but both had performed 

path- rather than collection-based imagery. And while the word “together” was used by a 

few participants (e.g., “adding even numbers together”), it was used by participants in both 
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imagery conditions—and in fact was used by more participants in the path-based imagery 

condition, but only a collection-based construal of addition involves bringing numbers 

“together.” We thus found no evidence that differences in metaphorical gesture were the 

product of systematic differences in explicit uses of spatial language.  

Perhaps the influence of mental imagery on speech is more subtle, involving nuanced 

shifts in semantic content rather than differences in explicit spatial language. To test this 

possibility, we used an unsupervised machine learning technique, Latent Dirichlet Allocation 

(LDA), to categorize participants’ speech on the basis of their latent semantic content 

(Griffiths, Steyvers, and Tenenbaum, 2007). On the basis of the “bag of words” in a series of 

texts—in this case, the participants’ transcribed speech—LDA creates a generative model of 

the latent semantic topics in the corpus and calculates the probability that each text is 

discussing a particular topic. We decided a priori to fit the model to two topics, since 

participants were exposed to one of two mental imagery conditions. After removing 

punctuation, disfluencies, and standard stop words (e.g. “the,” “is,” “which”), we ran 1000 

iterations of LDA and selected the model with the lowest perplexity, a measure of model fit. 

LDA thus assigned to each text (i.e., speech transcript) a posterior probability that it 

discussed one of the semantic topics rather than the other, an index of the semantic content 

of each participant’s speech. 

Did the latent semantic content of participants’ speech differ systematically by 

imagery condition? No. The best LDA model assigned participants’ speech to topics in a 

way that did not differ by imagery condition (t10.43 = 0.5, p > .6). On average, the posterior 

probability of discussing the first latent topic after collection-based imagery was 66%, while 

the posterior probability of discussing that topic after path-based imagery was 52%. In 
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addition, we added these posterior probabilities as a fixed effect to the mixed-effects model 

of composite gesture scores, thus accounting for subtle differences in the semantic content 

of speech. This model was still significantly better than a reduced model without Mental 

Imagery, χ(1) = 4.71, p = .03, confirming the direct influence of mental simulation on 

metaphorical gesture, unmediated by the content of accompanying speech.  

In sum, Study 2 found that the internal simulation of action and space has a 

systematic influence on subsequent metaphorical gesture, as predicted by the GSA 

framework (Hostetter and Alibali, 2008). Imagining the combination of concrete collections 

of objects led participants to gesture metaphorically as if arithmetic were a form of abstract 

object collection; imagining a concrete object sliding along a path led participants to gesture 

metaphorically as if arithmetic were motion along a path. This was true despite the absence 

of metaphorical speech; indeed, participants’ speech did not differ systematically as a 

function of mental imagery, nor did the semantic content of speech mediate the effect of 

spatial imagery on metaphorical gesture. Not only do people gesture spontaneously as if 

arithmetic is object collection or, alternatively, motion along a path, but this external 

spatialization is shaped by the internal mental simulation of action and space.  

4.4. General Discussion 

Our goal was to determine whether mathematical reasoning—a paragon of 

abstraction—deploys spatial metaphors to make sense of number and arithmetic. We used 

spontaneous co-speech gesture as an index of real-time, dynamic reasoning. We reasoned 

that, if the conceptualization of arithmetic involves mental simulating the metaphorical 

source domain (e.g., motion along a path), then this should manifest itself externally as 

metaphorical gesture (Hostetter and Alibali, 2008). This is, indeed, what we found. In each 
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study, participants deployed two systems of metaphorical gesture that recruited space in 

systematic and complementary ways: Path gestures represented numbers as locations and 

arithmetic as motion along a path. Collection gestures represented numerical magnitude as 

spatial volume and arithmetic as the manipulation of collections of objects.  

The results of Study 2, moreover, shed light on why people gesture metaphorically—

that is, on the proximal causes of metaphorical gesture. While a number of studies suggest 

that internal simulation drives the production of concrete representational gestures 

(Marghetis and Bergen, 2014), we do not know of any that have tested this proposal for 

metaphorical gestures. In Study 2, imagining collections of concrete objects primed the 

production of Collection gestures, while imagining motion along a path primed Path 

gestures. This link between simulation and gesture, moreover, was not mediated by speech, 

which was unaffected by the mental imagery manipulation. These results suggest that the 

production of metaphorical gestures is driven, in part, by implicit simulation of source 

domains (cf., Hostetter and Alibali, 2008)—in this case, object collection or linear motion. 

Thus, like gestures with concrete referents, metaphorical gestures are doubly spatial: they use 

external space to represent abstract entities and relations among them; and they reflect 

internal spatial processing, the activation of source domains and their constitutive images 

schemas. 

4.4.1. Flexible, dynamic, and hybrid thought 

One striking feature of the spatial construal of arithmetic was its flexibility and 

creativity. Participants did not necessarily stick to a single gestural system, with some 

producing both Path and Collection gestures over the course of their explanations. The 

finding, moreover, that metaphorical gesture was shaped by mental imagery (Study 2) further 
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suggests that participants were able to adopt either construal. The availability of both 

metaphors created the opportunity to creatively integrate both construals into a new, 

blended conceptualization (Coulson, 2001; Fauconnier and Turner, 1998, 2002; Parrill and 

Sweetser, 2004). The hybrid gesture depicted in Figure 4.10, for instance, is meaningless in 

either gesture system alone, since it combines both location- and collection-based 

representations of numerical magnitude within a single gesture. The gesture’s semantics 

requires the conceptual integration of both metaphors into a novel, blended construal in 

which numbers are simultaneously locations and collections.  

Hybrid gestures of this sort are reminiscent of three other gestural phenomena in 

which multiple spaces or concepts are combined. First, in laminated gestures, multiple spaces 

are brought into alignment in order to communicate about spatial relations that are displaced 

or operate on different scales (Haviland, 1996). When describing at noon the first time you 

saw a sunrise, for instance, you might point eastward, thus “laminating” an allocentric spatial 

relation from the past onto the gesture space of the current communicative encounter. 

Second, speech-gesture mismatches communicate different but related information in speech and 

gesture (Goldin-Meadow, 2005). When children explain how they solved a mathematics 

problem, they sometimes express one problem solving strategy in speech and an entirely 

different one in gesture (Goldin-Meadow and Wagner, 2005). And third, in mixed 

metaphorical gestures, a single gesture reflects the concurrent activation of multiple 

metaphors, such as when temporal gestures combine the left-right transversal axis with the 

back-to-front sagittal axis to produce a diagonal trajectory (Walker and Cooperrider, in press). 

In all three cases, however, the coordinated spaces or concepts remain distinct; the elements 

are overlaid or juxtaposed but not integrated into a structure. Hybrid gestures, on the other 
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hand, reflect the selective projection of elements from both conceptualizations, blended 

together to create a novel but coherent construal. The semantics of these hybrid gestures is 

thus more complex than the mere co-activation of two construals. Indeed, hybrid gestures 

are thus an opportunity to study processes of conceptual blending (Coulson, 2001; 

Fauconnier and Turner, 2002), though a full analysis must await another venue.  

4.4.2. An ecosystem of arithmetic 

The metaphorical gestures investigated in these studies are just a facet of the broader 

cognitive ecosystem of arithmetic (cf., Hutchins, 2010). As Wittgenstein put it, “Of course, 

in one sense, mathematics is a branch of knowledge, but still it is also an activity” 

(1953/2009, p. 227), and this activity depends on the skillful coordination of a distributed set 

of resources, from specialized neural systems (e.g., for spatial and sensorimotor simulation) 

to extracranial resources like notations, diagrams, and cultural practices. It is these resources 

and their interrelations which constitute the cognitive ecosystem of arithmetic. 

Within distributed mathematical activity, speech, body, and thought interact in a 

complex web of mutual causality, with each influencing and being influenced by the others. 

Priming a metaphorical source domain, for example, can trigger the subsequent production 

of related metaphorical language (Sato, Schafer, and Bergen, 2015); describing numbers as 

“bigger” or “higher” may thus reflect the activation of the source domains of size or vertical 

location. During mental calculation, internal processing spills out of the skull and into the 

body as subtle spatial biases (Knops et al, 2009; Marghetis et al, 2014). And gesture is 

coupled not only to transient internal processing (Study 2) but also to stable structure in the 

external cultural world: Interpreting and interacting with external artifacts like Cartesian 

graphs involves coupling spontaneous gesture to the material structure of the artifact (cf., 
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Goodwin, 2007). Tracing the graph of a function with one’s index finger, for instance, may 

yield gestures that resemble the Path gestures analyzed here. Understanding the larger 

ecosystem of arithmetic thought, therefore, will require tracing the relations of mutual 

causality between private conceptualization within individual brains and the public structures 

of gesture, speech, and material artifacts.  

In particular, the current results establish an influence of internal simulation on 

external metaphorical gesture. But little is known about the other direction of influence—of 

metaphorical gesture on individual, intracranial conceptualization. Indeed, if it had this 

effect, gesture would make an excellent candidate for a mechanism to align private 

understandings of individuals within a community of practice. Ongoing studies are 

investigating the possibility that metaphorical gestures shape the conceptualization of both 

the gesturers themselves and their observers. This process of “gestural contagion” may 

perpetuate and propagate abstract understandings within a community, contributing both to 

cross-cultural variability and to within-cultural agreement in abstract thought.  

While elements of the cognitive ecosystem shape each other through relations of 

mutual influence, they also maintain a degree of autonomy. Speech and gesture, for instance, 

deploy space in distinct but complementary ways, with gesture recruiting the transversal axis 

(e.g., rightward gesture for a larger number, Figure 4.5) and speech recruiting the vertical 

(e.g., “higher number”). While graphs that use the Cartesian coordinate system recruit 

location to represent numbers, they do not use motion to represent the processes of 

arithmetic; a standard graph, after all, is a static representation. These resources, moreover, 

are subject to constraints that operate over entirely different timescales. Metaphorical 

language is stable over centuries, with the numerical sense of “higher” emerging eight 
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hundred years ago (Higher, 2015); graphical norms are acquired in childhood and stable 

within a culture (Tversky, Kuglemass, and Winter, 1991), and new technologies are beholden 

to these norms; but gesture is highly sensitive to context, adaptable over the course of an 

explanation and even within a single utterance (e.g., Figure 4.10). A complete understanding 

of this mathematical activity requires accounting for the entangling of the diverse resources 

within this cognitive ecosystem, but also their relative autonomy. 

In conclusion, our results suggest that, despite its abstractness, mathematical 

reasoning recruits conceptual metaphors to ground understanding in concrete, embodied 

domains, and that the mental simulation of these source domains manifests itself external as 

metaphorical gesture. Collection gestures used bimanual grasping handshapes to associate 

numbers with bounded regions. Path gestures, by contrast, used a single hand to trace a path 

and place numbers along that path. We suspect it is these metaphors—with their rich 

structure and ties to action and experience—that guide reasoning during mathematical 

activity, rather than the formal axioms or definitions that have been invented by 

mathematicians to characterize arithmetic (e.g., Frege, 1884/1960; Dedekind, 1888/1996). In 

the words of American artist Richard Serra, “I consider space to be a material.” Serra was 

talking about art installations, but the same could be said about the human conceptual 

edifice. The capacity for reflexive, systematic, abstract reasoning may depend on our singular 

ability to build complex understandings on a foundation of space and action.  
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Appendix A: Generic proof that the sum of an even and an odd number is odd. 

A number is even whenever it is the result of adding two equal numbers. For 

example, 6 is even, and it is the result of adding 3 and 3, since 6=3+3. A number is odd 

whenever it is the result of adding two equal numbers, and then adding one more. For 

example, 9 is odd, and is the result of adding 4 and 4, and then adding one, since 9=4+4+1. 

We want to add an odd number to an even number. Now, the even number is the 

result of adding two equal numbers. Let’s call these numbers “a,” so the even number is: 

a+a. Also, the odd number is the result of adding two equal numbers, and then adding one. 

Let’s call these numbers “b,” so the odd number is: b+b+1.  

To add the even number to the odd number, we can split up the even and odd 

numbers into these smaller numbers. So add one “a” to one “b,” and then add the other “a” 

to the other “b.” We will still have one left over for the odd number, of course. This gives us 

a+b, and another a+b. Adding these two equal numbers will give us an even number: a+b + 

a+b. But we have one left over for the odd number – so we need to add that left-over one: 

a+b + a+b + 1. But now we’ve added the same number twice (a+b), and then added one 

more. So this is an odd number.  

Therefore, adding an even number to an odd number always gives an odd number.  
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Appendix B: Sample instructions for the Mental Imagery task 

Imagine the bead[s] [in their colored plates/ on the colored wire]. Following the 

instructions below, imagine moving the bead[s] around between the [plates/locations], 

described by their color. After each step, imagine the bead[s] in [their new plate/its new 

location].  

1. From blue to red. 

2. From red to green. 

3. From green to red. 

4. From red to blue. 
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Chapter 5 

The mental number-line spreads by gestural contagion 

 

ABSTRACT 

Mathematical expertise builds on a foundation of space—especially the ability to map 

exact numbers to linear space. This “mental number-line” is known to vary cross-culturally, 

but there is debate about the mechanisms responsible for its cultural elaboration. We 

investigated the role of co-speech gesture, a ubiquitous cultural activity, in stabilizing and 

entrenching the mental number-line within a community. Imitating culture-specific gestures 

systematically shaped gesturers’ mental number-line. Moreover, gestures were used 

spontaneously to infer speakers’ spatial understanding of number, and merely observing 

these gestures was sufficient to shape the observer’s own mental number-line. These 

findings establish co-speech gesture as one mechanism for propagating and perpetuating the 

number-line. 

5.1 Introduction 

From calculus to the complex plane, mathematics is rife with links between number 

and space. This is reflected in the human mind (Hubbard et al, 2005; Lakoff & Núñez, 2000; 

Winter, Marghetis, & Matlock, 2015). In many cultures, for instance, people can 

conceptualize exact numbers as locations along a horizontal path (Dehaene et al, 1993; 

Dehaene et al, 2008; Lakoff & Núñez, 2000), known as a mental number-line (MNL). The 

MNL has been argued to contribute to diverse mathematical abilities, including the mental 

representation of number (Zorzi, Priftis, and Umiltà, 2002; Opfer, Thompson, and Furlong, 

2010), arithmetic (Knops et al, 2009; Marghetis, Núñez, and Bergen, 2014), and 
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understanding complex concepts like imaginary numbers (Lakoff & Núñez, 2000; Marghetis 

and Youngstrom 2014; Núñez and Marghetis, in press). Moreover, it figures prominently in 

debates about the origin of abstract concepts in the human mind, since there is evidence that 

it emerges from a mix of innate biases and cultural influences (Dehaene et al, 20008; Shaki et 

al, 2009; de Hevia et al, 2014; Núñez, Cooperrider, and Wassman, 2012; Rugani et al, 2015). 

For instance, human neonates associate approximate numerical magnitude with spatial 

length (de Hevia et al, 2014), an early disposition that may support the acquisition of more 

precise mappings between exact numbers and spatial locations (i.e. the MNL). These early 

dispositions are elaborated considerably by cultural experience, with cross-cultural variability 

in the MNL’s orientation (Dehaene et al, 1993; Shaki et al, 2009), whether the number-space 

mapping is linear or logarithmic (Dehaene et al, 2008), and even whether the MNL exists at 

all (Núñez et al, 2012). For instance, while Western adults typically exhibit a left-to-right 

MNL, Arabic-speaking Palestinians exhibit a right-to-left MNL (Shaki et al, 2009).  

How culture-specific aspects of the MNL propagate and perpetuate within 

communities is poorly understood. Language is one possible mechanism. Many languages, 

like English, place numbers in vertical space (e.g. “high [/low] number”). But language can’t 

be the whole story. There are no known uses of horizontal spatial language or distinctively 

linear versus logarithmic language to refer to number. In neither English nor Arabic, for 

instance, are numbers described using the words for left and right. Other proposed 

mechanisms include writing direction (Dehaene et al, 1993; Shaki et al, 2009), finger-

counting routines (Beller and Bender, 2012; Fischer, 2008), experience with technical 

artifacts (Núñez et al, 2012; Siegler and Ramani, 2009), and formal education in topics like 

measurement (Dehaene et al, 2008; Núñez et al, 2012). There is correlational evidence in 
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favor of each proposed mechanism, but determining distinct causal contributions has proven 

challenging, in part because the mechanisms are correlated with one another and other 

cultural variables.  

One cultural activity that has not been considered in this debate is co-speech gesture, 

communicative bodily movements produced spontaneously by speakers in all cultures 

(McNeill, 1992). This may be because—compared to more stable aspects of culture like 

artifacts or writing—gesture is transient and thus less likely to be noticed or, when noticed, 

harder to measure. But there are reasons to suspect that gesture might play a critical role in 

propagating and perpetuating the MNL. Both novices and experts gesture when talking 

about mathematics, and these gestures can reveal spatial intuitions that are absent from 

speech (Goldin-Meadow and Beilock, 2010; Marghetis and Núñez, 2013). Moreover, culture-

specific associations between number and space emerge in children as young as four years 

old (Opfer et al, 2010; Hoffman et al, 2013), which means that cultural influences on the 

MNL begin before formal education, literacy, or mastery of artifacts like physical number-

lines. But not before gesture starts to shape development (Rowe and Goldin-Meadow, 2009). 

Gestures about number, in particular, appear early: Children as young as two-years-old and 

their caregivers produce numerical gestures spontaneously during play (Lee et al, in press).  

Critically, cross-cultural differences in the conceptualization of abstract concepts 

often covary with differences in gesture. Americans, for instance, think and talk about the 

future as ahead of them, and also point forward when talking about the future, while the 

Aymara people of the Andes place the future behind them in language, thought, and gesture 

(Núñez and Cooperrider, 2013). Numerical gestures similarly vary cross-culturally. The 

Oksapmin people of Papua New Guinea indicate exact numbers by pointing to locations 
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along a body-based path that runs hand-to-hand (e.g., right thumb for one, left ear for 

sixteen), though individuals differ in the orientation of this system (i.e., left-to-right or right-

to-left) (Saxe, 2014). By contrast, when Americans talk about arithmetic, they gesture 

spontaneously in ways that reflect complementary spatial conceptualizations of number: as if 

numbers are collections of objects or, alternatively, as if numbers are locations along a left-to-

right horizontal path (Fig. 5.1A) (Núñez and Marghetis, in press). Given the structural 

similarity between “Path” gestures and the MNL (e.g., both involve mapping numbers to 

locations along a path), these gestures may reflect gesturers’ path-based understanding of 

number, that is, their MNL.  

 

Figure 5.1. When Americans talk about number, they gesture spontaneously as if numbers 
are either locations along a path or collections of objects (Núñez and Marghetis, in press). 
We created pairs of videos (n = 8; see Movies S1-2) that had identical speech but different 
gestures: Path (top) or Collection (bottom). Gestures were modeled after naturally occurring 
co-speech numerical gestures. The same video stimuli were used in all experiments. Here, 
the speaker produces a gesture for each addend and their sum; boldface indicates lexical 
affiliates. 

 

Path 
gesture

Collection 
gesture

“Four plus five equals nine.”
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Could these Path gestures not only reflect but actively shape the MNL? Along with 

other primates, humans imitate and learn from others’ actions (Tomasello, 2014), but 

humans may be unique in acquiring gesture through social learning (Halina, Rossano, and 

Tomasello, 2013). Gesture systems are, among other things, repositories of culture-specific 

understandings of abstract concepts (Núñez and Cooperrider, 2013; Levinson, 2003). The 

spread of gestures and their associated meanings may thus disseminate abstract concepts 

within human communities (cf., Sperber, 1996), a process we call “gestural contagion.” In 

several experiments, we asked whether gestural contagion contributes to propagating and 

perpetuating the MNL.  

5.2 Results  

Reproducing gesture shapes the MNL: Since gestures, acquired through 

imitation, can shape the gesturer’s own mental representations (Goldin-Meadow and 

Beilock, 2010), Study 1 investigated whether imitating culture-specific gestures might shape 

one’s own MNL. Native-English-speaking adults viewed videos of a man stating 

mathematical facts (e.g., “four plus five is nine”) while he produced semantically-related 

numerical gestures. Critically, we manipulated the kind of gestures he produced—either Path 

or Collection (Fig. 5.1A), assigned randomly between subjects—while keeping speech 

identical. After each video, participants were required to reproduce the speaker’s speech and 

gesture. Following this gesture imitation task, participants completed a standard number 

comparison task designed to measure spontaneous associations between numbers and 

horizontal space, an implicit measure of the MNL. On each trial, participants indicated 

whether a number (1 to 9) was greater or less than 5 and responded by pressing a left or 

right button. A left-to-right MNL is indexed by faster responses to smaller numbers on the 
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left and faster responses to larger numbers on the right (the “SNARC” effect; Dehaene et al, 

1993). If observing and imitating numerical gestures shapes gesturers’ own conceptualization 

of number, then participants should exhibit a more pronounced left-to-right MNL after 

reproducing left-to-right Path gestures. 

 

Figure 5.2. Effect of gesture on the MNL, as indexed by the SNARC effect, in Studies 1 (n 
= 50, top) and 3 (n = 122, bottom). (A, C) In both studies, there was evidence overall of a 
left-to-right MNL (i.e. negative regression coefficient), but this was significantly more 
pronounced in the Path condition. Error lines and shaded regions indicate bootstrapped 
95% confidence intervals. (B, D) In both studies, participants’ MNL, as indexed by SNARC 
regression coefficients (± SEM), was more pronounced in the Path gesture condition. 
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Overall, participants exhibited a left-to-right MNL (F(3,138) = 7.4, P = 0.0001), but this 

was modulated, as predicted, by the type of gesture they had observed and reproduced 

(F(3,138) = 3.26, P = 0.023). To quantify this effect, we calculated, for each participant and 

each number, the difference between mean left- and right-sided reaction times (dRT), and 

then regressed dRT against numerical magnitude. The magnitude of the regression slope 

(“SNARC coefficient,” β) indicates the strength of the number-space association; the slope’s 

sign indicates the association’s orientation (negative slopes indicate a left-to-right MNL). 

Participants in both conditions showed evidence of a canonical left-to-right MNL (βpath = -

17.5, t190 = -6.0, P << 0.001; βcollection = -4.5, t190 = -2.5, P = 0.015; Fig. 5.2A), but, as 

predicted, the MNL was far more pronounced after observing and reproducing Path 

gestures (t46 = -1.9, P = 0.03, one-tailed; Fig. 5.2B). Imitating culture-specific gestures shaped 

gesturers’ MNL: Gesturing as though numbers were locations along a path caused 

participants to conceptualize numbers accordingly. 

Gesture shapes interpretations of the gesturers understanding: Study 2 

investigated whether merely observing gestures, rather than imitating them, could propagate 

spatial understandings of number within a community. Since humans excel at inferring 

conspecifics' intentional states (e.g., Tomasello, 2014), observers might use a speaker’s 

gestures to discern that speaker’s number understanding. We tested this possibility in an 

online experiment. Native English-speaking adults, recruited from across the United States, 

viewed the same videos from Study 1, with gesture type (Path vs. Collection) assigned 

randomly between-subjects. Without mentioning gesture, we then asked participants to 

describe the speaker’s number understanding. To determine the “gist” of these descriptions, 

we used an unsupervised machine learning technique—Latent Dirichlet Allocation (LDA)—
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to extract two latent topics from the words used in the descriptions (Griffiths, Steyvers, and 

Tenenbaum, 2007).  

This model extracted latent topics that reflected alternative spatial conceptualizations 

of number. One of the latent topics extracted by the model was associated with terms like 

“part,” “whole,” and “together,” and appeared to capture a collection-based understanding of 

number (e.g., “the sum […] as a whole and the numbers […] as parts of that whole,” 

“numbers as groups of things”). The other topic was associated with terms like “left” and 

“right,” and appeared to capture a path-based understanding (e.g. “he sees them going from 

left to right,” “an imaginary number line in his head”).  

Critically, even though gesture had not been mentioned in any instructions, the gist 

of participants’ descriptions was shaped by the speaker’s gesture (Fig. 5.3A). As a measure of 

gist, we used the mean-centered posterior probability that the description dealt with the 

path-based (vs. collection-based) topic. A positive value of this measure thus indicates that 

the description was more path-related than average, compared to the rest of the descriptions; 

a negative value indicates that the description was more collection-related than average.  
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Figure 5.3. Gesture shaped observers’ interpretation of speaker’s conceptualization of 
number (Study 2, n = 50). (A) Participants spontaneously incorporated information from the 
speaker’s gesture into their descriptions of his conceptualization (P < 0.01). Positive values 
of gist indicate more collection-based descriptions; negative values, more path-based 
descriptions. Error lines indicate SEM. (B) When forced to decide whether the speaker 
conceptualized numbers as “locations along a path” or “collections of objects,” most 
participants chose the conceptualization that aligned with his gesture (P < 0.001). 

 

There was a significant effect of gesture on participants’ interpretation of the 

gesturer’s conceptualization (P < 0.01, Mann-Whitney). If the speaker used Path gestures, 

descriptions of his understanding were more path-based overall (M = -0.12) and most 

participants (74%) gave a path-based description; if he used Collection gestures, descriptions 

were more collection-based (M = 0.20) and most participants (58%) gave collection-based 

descriptions. Indeed, when we asked participants outright whether the speaker’s 

conceptualization was best characterized in terms of “locations along a path” or “collections 

of objects,” their responses were shaped by his gesture (P < 0.001, Fisher’s exact; Fig. 5.3B), 

with most participants (71%) responding that he understood numbers as “locations along a 
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path” if he had produced Path gestures (P = 0.03, binomial test), and most (80%) responding 

that he understood numbers as “collections of objects” if he had produced Collection gestures 

(P = 0.01). Numerical gestures were thus meaningful for naïve observers, who spontaneously 

relied on them to infer the speaker’s spatial conceptualization of number. 

Gesture observation shapes the observer’s MNL: Intersubjective coordination of 

thinking is a cornerstone of human culture. Study 3 thus investigated whether merely 

observing gestures not only sways observers’ inferences about the speaker’s understanding (as 

found in Study 2) but also shapes observers’ own MNL. As in Study 1, participants were 

exposed to the same prerecorded Path and Collection gestures, with one change: while half 

of participants had to reproduce both the speech and gesture of the videorecorded speaker, 

the other half reproduced his speech only and thus merely observed the speaker’s gestures. 

Participants’ subsequent behavior on the number comparison task revealed that the overall 

left-to-right MNL (F(3,339) = 12.5, P << 0.001) was once again influenced by whether 

participants were exposed to Path or Collection gestures (F(3,339) = 2.8, P = 0.038). Critically, 

this was unaffected by whether participants had reproduced rather than merely observed the 

gestures (all Fs < 1.72, all Ps > 0.19). Further regression analyses confirmed a left-to-right 

MNL in both gesture conditions (βpath = -10.2, t502 = -7.2, P << 0.001; βcollection = -4.0, t446 = -

3.0, P < 0.01; Fig. 5.2C), along with a significant impact of gesture, such that participants in 

the Path condition had a more pronounced left-to-right MNL than in the Collection 

condition (t115 = -1.8, P = 0.038, one-tailed; Fig. 5.2D). Moreover, a linear mixed-effects 

model across Studies 1 and 3 confirmed the causal influence of gesture on the MNL (P = 

0.016), unmodulated by whether gestures were reproduced or observed (P = 0.68; Table 5.1). 
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Table 5.1. Influences on the mental number-line in Studies 1 and 3. There was evidence 
overall of a left-to-right mental number-line (i.e. negative regression slope), but this was 
significantly more pronounced after exposure to Path gestures. 

 

Predictor of SNARC effect Coefficient SEM P(>|t|)  

Gesture (Path vs. Collection) –0.372 0.15 .02 

Reproduction (vs. Observation)   0.188 0.16 .24 

Gesture x Reproduction –0.134 0.32 .68 

Intercept   0.000 0.07 .99 

    

No. of observations (groups)      165 (2)   

Log-likelihood   –231.33   

 

5.3 Discussion 

Previous research has found considerable cross-cultural variability in the mental 

number-line, often attributed to differences in writing practices, finger-counting, or formal 

education. Our findings suggest that co-speech gestures also play a causal role in propagating 

and perpetuating the MNL. Imitating culture-specific numerical gestures impacted the 

gesturer’s MNL; observing those gestures helped the observer infer the speaker’s spatial 

understanding of number and influenced the observers’ own MNL, even when unmediated 

by gesture imitation. In humans, therefore, action imitation and interpretation appear to 

propagate not just culture-specific behaviors, as previously established by work on the social 

learning of action (e.g., Tomasello, 2014), but also culture-specific conceptualizations of 

abstract ideas (cf. Sperber, 1996).  
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By taking advantage of within-culture variability in the gestural representation of 

number (Fig. 5.1), we were able to experimentally manipulate one aspect of culture while 

controlling for others, such as literacy, language, or formal education. These other factors, 

however, may also shape the spatial conceptualization of number, with multiple mechanisms 

operating over disparate timescales to reproduce an interpersonally-shared MNL. Artifacts 

like graphs and practices like literacy, for instance, are enduring cultural influences that can 

stabilize the MNL on an historical timescale (Dehaene et al, 2008; Shaki et al, 2009). The 

specific contribution of gesture may derive from its combination of flexibility and 

conventionality. Spatial-numerical associations, while stable at the population-level, are 

highly flexible within individuals (Siegler and Ramani, 2009; Fischer, Mills, and Shaki, 2010). 

Gesture may regiment individuals’ flexible conceptualizations, aligning numerical intuitions 

within a community to maintain socially coordinated thinking. It remains to be seen whether 

gestural contagion could spread the MNL to communities that lack the concept entirely (e.g.,  

Núñez et al, 2012) or reverse the MNL in communities where it already exists (cf., Fischer, 

2008; Shaki et al, 2009).  

If non-human primates acquire complex behaviors but not gestures through social 

learning (Halina et al, 2013), gestural contagion may be a uniquely human mechanism for 

cultural transmission, particularly of space-related domains. Cultures differ in how they talk 

and think about abstract concepts like time, social relations, and even space itself, and these 

culture-specific understandings are often expressed in gesture (Enfield, 2005; Núñez and 

Cooperrider, 2013; Le Guen, 2011; Levinson, 2003). Thus, differences in multimodal 

communication may not only reflect but actively drive cross-cultural differences in abstract 

thought, including but not limited to the MNL (cf., Le Guen, 2011). Across a variety of 
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conceptual domains, cultural knowledge may be propagated and entrenched through gestural 

contagion.   

5.4 Methods 

We report how we determined all sample sizes, all data exclusions, all manipulations, 

and all measures (Simmons, Nelson, and Simonsohn, 2012) 

5.4.1 Participants 

In Studies 1 and 3, native-English-speaking adults from UC San Diego participated 

in exchange for partial course credit (Study 1: n = 50, Mage = 21 years, 37 women; Study 3: n 

= 122, Mage = 21 years, 91 women). In Study 2, native-English speaking adults located in the 

USA (n = 50), recruited from Amazon Mechanical Turk (AMT), participated in exchange for 

payment. All procedures were approved by UC San Diego’s Institutional Review Board.  

Sample sizes were determined in advance. In Study 1, sample size was determined on 

the basis of similar studies on the plasticity of the SNARC effect, e.g. n = 44 in Fischer et al 

(2010). In Study 2, sample size was determined on the basis of similar studies on the effect 

of gesture on comprehension, e.g. n = 44 in Exp. 2 of Kelly, Ozyurek, and Maris (2010). In 

Study 3, in which there was the additional factor of reproducing vs. observing gesture, an a 

priori power analysis found that 116 participants would have sufficient power (1-β > 0.95) to 

replicate an effect of similar size to the one found in Study 1; we therefore determined in 

advance to collect a sample size of 124 subjects, or as close as possible before the end of the 

academic year. 

No participants were removed from Study 2. In Studies 1 and 3, participants were 

removed for exceptionally poor performance (< 80% accuracy; n = 2 in Study 1; n = 4 in 
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Study 3). Accuracy was high among remaining participants (Study 1: M = 94.8%, 95% CI 

[93.6, 96.1]; Study 3: M = 94.3%, 95% CI [93.9, 94.6]).  

5.4.2 Materials  

We created sixteen brief video clips, two for each of eight mathematical facts (e.g. 4 

+ 3 = 7; see Table 5.S1). In each video clip, a man—depicted from the neck down—was 

heard stating a mathematical fact (e.g. “Four plus three equals seven.”) and accompanied his 

speech with gestures modeled after spontaneous gestures attested during mathematical 

discourse among American adults (Núñez & Marghetis, to appear).  Path gestures represent 

numbers by pointing to locations along a horizontal axis in front of the speaker—smaller 

numbers to the left, larger numbers to the right (Fig. 5.1A). Collection gestures represent 

numbers as volumes in space, using either single-handed grasping gestures or, for larger 

numbers, two-handed gestures that delimit relatively larger regions (Fig. 5.1B). These two 

kinds of gesture thus represent complementary ways of conceptualizing number spatially 

(Lakoff and Núñez, 2000; Núñez and Marghetis, in press). To create the videos, we first 

audio-recorded the man stating the eight mathematical facts. Then, for each recorded fact, 

we made two video-recordings: one in which the man produced naturalistic Path gestures in 

time with the pre-recorded speech, and another in which he produced naturalistic Collection 

gestures. These two video-recordings were then combined with the pre-recorded audio to 

create eight pairs of video files; paired videos thus had identical audio but contrasted in co-

speech gesture (i.e. Path vs. Collection).  
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5.4.3 Design of Study 1 and 3 

In a between-subjects design, participants completed two tasks: an initial Gesture 

Imitation task in which they were exposed to either Path or Collection gestures, followed by 

a standard Number Comparison task designed to measure associations between numbers 

and lateral space, i.e. the SNARC effect (Dehaene et al, 1993).  

Gesture Imitation task: Participants viewed either Path or Collection video clips 

(see Materials, above). The type of gesture (Path vs. Collection) was manipulated between-

subjects and assigned randomly. In each trial, the experimenter played a video clip once and 

then asked the participant to reproduce exactly the speech, or speech and gesture, depending 

on the study. In Study 1, participants had to reproduce the clips’ speech and gesture. In 

Study 3, they had to reproduce either both speech and gesture (Reproduce) or only speech 

(Observe), manipulated between-subjects and assigned randomly. Participants were given the 

opportunity to re-watch each video. One block consisted of viewing and reproducing all 

eight Path or Collection videos; participants completed four blocks, for a total of thirty-two 

trials.  

Number Comparison task: Participants judged whether positive integers—from 

one to nine, inclusive—were greater or less than 5. The task was implemented in E-Prime 

(Psychology Software Tools, Pittsburgh, PA, USA). Each trial began with a fixation cross in 

the center of a computer monitor, replaced after 1000ms by an Arabic numeral between 1 

and 9 (excluding 5). Participants then had up to 3000ms to respond by pressing one of two 

buttons on a serial response box: either the leftmost button with their left index finger, or 

the rightmost button with their right index finger. Participants completed two blocks, each 

of which began with eight practice trials (one for each numeral) followed by eighty 
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experimental trials (ten for each numeral); trial order was randomized within blocks. 

Critically, the stimulus-response mapping between numerical magnitude and spatial response 

changed between blocks (e.g. left-side response for numbers less than five); block order was 

counterbalanced between subjects. If a participant had a canonical left-to-right mental 

number-line, therefore, they would be faster to categorize smaller numbers when responding 

on the left, and larger numbers, on the right. We measured accuracy and reaction time; no 

other measures were recorded. 

5.4.4 Design of Study 2 

Participants began by viewing all eight video clips, with gesture (Path vs. Collection) 

assigned randomly between-subjects. They were told simply to view the videos and that they 

would be asked questions afterward. Participants then responded to two questions about the 

speaker’s understanding of number. First, they were asked to describe, in a few written 

sentences, the speaker’s “understanding of number and arithmetic.” Second, they were asked 

whether the speaker’s understanding was best described as “numbers are like locations along 

a path” or “numbers are like collections of objects.” Up to this point, gesture was never 

mentioned. Then, as a manipulation check, participants were asked whether they had paid 

attention to the speaker’s gestures (every participant responded at least “maybe a little”) and 

were played two video clips and asked whether or not they recognized them (every 

participant was correct on either one or both of these clips). They then supplied 

demographic information (gender, age, ZIP code, education, primary occupation, languages 

spoken). No other measures were collected. 
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5.4.5 Analyses of Study 1 and 3 

Before analyzing reaction times, we removed incorrect responses (Study 1: 5.2% of 

trials; Study 3: 5.7%), followed by responses that were either faster than 275ms or slower 

than three standard deviations above the participant’s condition mean (Study 1: 2.3% of 

trials; Study 3: 4.0%). To model individual SNARC regression coefficients across both 

experiments, we used a linear mixed-effects model with maximal converging random effects 

structure (Barr et al, 2013): uncorrelated random intercepts and slopes for both factors and 

their interaction. Models were fit using restricted maximum likelihood; p-values for 

parameter estimates were calculated using Satterthwate's approximations; model fit was 

evaluated using a Likelihood Ratio test. Before analysis, SNARC regression coefficients were 

standardized for each experiment to control for possible differences in the participant 

population.  

5.4.6 Analysis of Study 2 

We used a Latent Dirichlet Allocation (LDA) topic model to model the gist of 

participants’ descriptions. LDA is an unsupervised machine learning technique that models 

the words used in a set of documents (in this case, participants’ descriptions) using a 

generative model based on latent topics (Griffiths et al, 2007). We decided a priori to fit the 

model to two topics, since participants were exposed to two ways of gesturing about 

number. We first removed punctuation, numbers, and standard stop words (e.g. “the,” “is,” 

“which”), and then ran 1000 iterations of LDA and selected the model with the lowest 

perplexity, a measure of model fit. 
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5.7 Supplementary Information 

5.7.1 Mathematical facts stated in the Path and Collection videos 

Table 5.S1. Mathematical facts stated in the Path and Collection videos 

Operation Mathematical Fact 
Addition 

 
“Four plus five equals nine.” 
“Two plus four equals six.” 

Subtraction “Eight minus six equals two.” 
“Seven minus four equals three.” 
“Nine minus two equals seven.” 

Inequality “Seven is greater than three.” 
“Four is greater than one.” 
“Two is less than six.”  

 

5.7.2 Full analyses of reaction times in Studies 1 and 3 

In Study 1, we analyzed reaction times using 2 x 2 x 4 mixed-design ANOVAs, with 

Content (Path vs. Collection) as a between-subjects factor, and Response (left vs. right) and 

Numerical Magnitude (1-2, 3-4, 6-7, or 8-9) as within-subjects factors. We analyzed reaction 

times in Study 3 using the same mixed-design ANOVA, crossed with the additional 

between-subjects factor of Gesture Reproduction (Reproduce vs. Observe). Additional 

regression analyses in Studies 1 and 3 used a standard approach for analyzing number-space 

associations (Fias et al, 1996). 

In Study 1, there was a main effect of Numerical Magnitude, F3,138 = 24.0, P << 

0.0001, ηp
2 = 0.34, driven by the Distance Effect (Moyer and Landauer, 1967): reaction times 

for numbers closer to five (i.e. 3-4, 6-7) were significantly slower than for numbers farther 

from five (i.e. 1-2, 8-9), all ts ≥ 5, all Ps < 0.01. The only other significant effects were the 

interactions described in the main text: the SNARC effect, and its modulation by gesture. 
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Follow up analyses confirmed that the left-to-right MNL was highly pronounced after 

reproducing Path gestures (F(3,161) = 11.5, P << 0.0001), but only trending after reproducing 

Collection gestures (F(3,161) = 2.1, P = 0.11). Indeed, participants in the Path condition 

responded significantly faster on the left for numbers less than five (t(23) = 2.34, P = 0.028), 

and significantly faster on the right for numbers greater than five (t(23) = 2.98, P < 0.01). 

In Study 3, there was again a main effect of Numerical Magnitude, F3,339 = 63.1, P 

<< 0.0001, ηp
2 = 0.36, as well as a main effect of Response, F3,113 = 13.3, P < 0.0001, ηp

2 = 

0.11, with responses slightly faster on the right side (M = 445 vs. 453). The only other 

significant effects were the interactions described in the main text: the SNARC effect, and its 

modulation by gesture. Follow-up analyses revealed that participants in the Path condition 

showed a significant left-to-right MNL (F(3,183) = 14.0, P << 0.001), regardless of whether 

they had reproduced or observed the gestures (F(3,180) < 2.0, P > 0.10), while participants in 

the Collection condition showed only a marginal MNL (F(3,162) = 2.6, P = 0.06). 

5.7.3 Analysis of accuracy in Studies 1 and 3 

Before running any inferential statistical tests, we arcsine-square-root transformed all 

accuracy scores in order to account for heterogeneity of variance. The pattern of results was 

unchanged with untransformed values. For ease of interpretation, descriptive statistics report 

untransformed accuracy scores.  

To analyze accuracy in Study 1, we used a 2 x 2 x 4 mixed-design ANOVAs, with 

Gesture (Path vs. Collection) as a between-subjects factor, and Response (left vs. right) and 

Numerical Magnitude (1-2, 3-4. 6-7, or 8-9) as within-subjects factors. There was a highly 

significant main effect of Numerical Magnitude F3,144 = 15.3, P << 0.001, ηp
2 = 0.24, due to 

the Distance Effect (Moyer and Landauer, 1967): reaction times were significantly slower for 
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numbers closer to 5, the point of comparison, than for numbers farther away (1 or 2 vs 3 or 

4: 3.2 percentage points more accurate, t49 = 5.3, P << 0.001; 6 or 7 vs 8 or 9: 3.3 percentage 

points more accurate, t49 = 4.2, P = 0.0001). The only other effect that approached 

significance was a marginal interaction between Response and Numerical Magnitude, F3,144 = 

2.537, P = 0.059, ηp
2 = 0.052. The pattern of results suggested a canonical left-to-right 

mental number-line: For numbers less than 5, participants were more accurate when 

responding on the left than the right (M = 93.7 vs 93.0%), and, conversely, for numbers 

greater than 5, more accurate on the right than the left (M = 95.2 vs 94.0%)—although 

neither of these differences reached significance (both ts < 1.66, both Ps > 0.1).  

To analyze accuracy in Study 3, we performed the same 2 (Gesture) x 2 (Response) x 

4 (Numerical magnitude) mixed-design ANOVA, crossed with Gesture Reproduction 

(Reproduce vs. Observe) as an additional between-subjects factor. There was, once again, a 

highly significant main effect of Numerical Magnitude F3,345 = 46.6, P << o.001, ηp
2 = 0.29. 

There was also a difficult-to-interpret two-way interaction between Response and Gesture 

condition, F3,345 = 4.7, P = 0.03, ηp
2 = 0.04, with slightly more accurate left-hand responses 

in the Reproduce condition but slightly more accurate right-hand responses in the Observe 

condition, although neither of these differences approached statistical significance (both Ps 

> 0.25). The only other significant effects were a significant interaction between Response 

and Numerical Magnitude, F3,345 = 4.71, P = 0.003, ηp
2 = 0.04, complicated by a three-way 

interaction with the type of gesture (Path vs. Collection), F3,345 = 1.9, P = 0.02, ηp
2 = 0.03. 

Participants in the Path condition showed a highly significant interaction between Numerical 

Magnitude and Response, evidence of a canonical left-to-right mental number-line, F3,186 = 

6.7, P < 0.001, ηp
2 = 0.10, with more accurate responses for smaller numbers on the left, and 
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more accurate responses for larger numbers on the right. For participants in the Collection 

condition, by contrast, there was no hint of an interaction between Numerical Magnitude 

and Response, F3,165 = 1.3, P > 0.27, ηp
2 = 0.02.  

Thus, while accuracy is not typically used to measure the SNARC effect, analyses of 

accuracy in Studies 1 and 3 ruled out the presence of a speed-accuracy trade-off, confirmed 

the presence of an overall SNARC effect (Study 1 and 3), and confirmed the central finding 

that gesture shapes the SNARC effect (Study 3).  

5.7.4 Latent Dirichlet Allocation topic model of Study 2 

To get an intuitive sense of the latent topics extracted by the LDA model, we 

determined the twenty most likely words for each topic, and examined those words that 

were unique to each topic (Table 5.S2). 

  



190 

Table 5.S2. Twenty most likely unique terms for latent topics in LDA model from Study 2 

Topic Most likely unique terms 
Path-based arithmetic, basic, right, left, math, think,  simple, terms, using, 

understands, less 
 

Collection-based hands, adding, subtracting, one, two, together, another, part, video, 
whole, like  

 

5.7.5 Is the effect of gesture due to associations between spoken numerals and visual 

locations? 

Could the effect of gesture of the MNL be explained by perceived associations 

between spoken numerals (e.g. “four”) and the visual location on the computer monitor of 

the accompanying gesture? On this deflationary account, the amplification of the MNL is 

due not to meaningful gesture per se, but to low-level number-space associations in visual 

experience (i.e. on the computer monitor). We can rule out this alternative, however, by 

considering the visual perspective of the video clips. In every video, the speaker was 

recorded from the front and slightly to his left (see Fig. 5.1A in the main text). As a result, 

when the speaker produced gestures that were oriented left-to-right from his perspective, the 

gesture’s trajectory across the screen was actually reversed, right-to-left. Thus, when the 

video-recorded Path gestures represented numbers on a left-to-right axis from the speaker’s 

perspective, participants actually saw a reversed pattern of associations between spoken numbers 

and movement. Similarly, whenever one gesture was to the left of another from the speaker’s 

perspective, the first gesture was actually right of the second from the observer’s perspective. 

In the Path videos, as a result, the visual association between number and spatial location 

was actually reversed from the observer’s perspective—exactly as it would be in a canonical 

communicative encounter. Simple visual associations between spoken numbers and space, 
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therefore, cannot account for the amplification of the left-to-right MNL in the Path 

condition (compared to the Collection condition). Instead, we think the main finding of 

Study 2—that these gestures are meaningful for naïve observers, who make use 

spontaneously of Path gestures to infer a path-like understanding of number—suggests that 

participants in Studies 1 and 3 were influenced by the inferred meaning of the Path and 

Collection gestures.  

5.7.6 Is the effect of gesture due to a suppressed or reversed MNL in the Collection 

condition? 

If, as we claim, the MNL spreads by gestural contagion, then the effect of gesture on 

the MNL should be driven primarily by an amplification of the canonical left-to-right MNL 

by Path gestures. An alternative, however, is that the observed difference between Path and 

Collection conditions was due to extinguished or even reversed number-space associations 

among some participants in the Collection condition, rather than a selective impact of left-

to-right Path gestures on the left-to-right MNL. To adjudicate between these possibilities, we 

conducted supplementary analyses of individual differences in Studies 1 and 3.  

If Collection gestures reverse the MNL, then there should be a greater proportion of 

participants with a reversed right-to-left MNL in the Collection condition. However, gesture 

did not have a significant effect on the proportion of participants who exhibited a left-to-

right rather than right-to-left MNL, as indexed by the sign of their SNARC coefficients (P > 

0.3, Fisher’s exact test; Fig. 5.S1A). Thus, there is no evidence that the effect of gesture was 

due to a reversal of the MNL in the Collection condition.  

If Collection gestures extinguish participants’ number-space associations, then the 

absolute value of SNARC coefficients should be smaller in the Collection condition—or, 
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stated otherwise, both negative and positive SNARC coefficients in the Collection condition 

should be closer to zero. If, on the other hand, the effect of gesture is the result of Path 

gestures amplifying the canonical left-to-right MNL, as we have argued, then SNARC 

coefficients should be systematically more negative in the Path condition, especially among 

participants with a canonical left-to-right MNL. We thus examined separately the effect of 

gesture on the MNL among participants who had a canonical or a reversed MNL (i.e. 

SNARC coefficients less than vs. greater than zero). Among participants who had a reversed 

MNL, there was no difference between gesture conditions (MPath = 8.2, MCollection = 11.7, t(114) = 

1.1, P = 0.29). By contrast, among participants with a canonical left-to-right MNL, SNARC 

coefficients were significantly more negative in the Path condition (MPath = -19.6, MCollection = -

12.2, t(114) = 2.1, P = 0.035; Fig. 5.S1B). Thus, the effect of gesture (Path vs. Collection) on 

the MNL appears to have been driven, as predicted, by a systematic amplification of the left-

to-right MNL by Path gestures. 
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Figure 5.S1. (A) Orientation of participants’ MNL in Studies 1 and 3, as indexed by the sign 
of SNARC coefficients (left-to-right = negative coefficient; right-to-left = positive 
coefficient). Gesture had no effect on the proportion of participants with a left-to-right 
rather than right-to-left MNL (P > 0.3). (B) Density plot of SNARC coefficients from 
Studies 1 and 3. Negative values indicate a canonical left-to-right MNL. The effect of gesture 
on the MNL was driven by participants who exhibited a canonical MNL (i.e. negative 
SNARC coefficients), whose SNARC coefficients were significantly more negative in the 
Path condition (P = 0.035). By contrast, among participants with a reversed MNL (i.e. 
positive SNARC coefficients), SNARC coefficients did not differ between conditions (P > 
0.3)  

 

5.7.7 Supplementary References 
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Chapter 6 

Conclusion: Autonomy, entwining, and self-reproducing systems 

Here, then, is the central claim of this essay: Abstract thinking is constituted, in part, 

by the situated activity of assemblages of spatialization. These assemblages consist of the 

more-or-less stable coordination of diverse sites of spatialization. These sites are 

autonomous of each other, both mechanistically and semiotically. These assemblages, 

moreover, are not pre-given, but dynamically produced and reproduced. This is true even for 

mathematics. Mathematics is marked by certainty, stability, interpersonal alignment, and 

precision; in a sense, it is “perfect” abstraction. And yet even this is the accomplishment of 

an assemblage of spatialization. In short, it is this distributed practice that makes perfect. 

6.1. Autonomy of spatialization 

We began this essay, in Chapter 1, by suggesting that the entwined sites in which 

number and arithmetic are spatialized retain a degree of autonomy. But in what ways can 

coordinated sites remain autonomous? In two ways: in their mechanism and in the features 

of space with which they associate number. Let’s call these “Simon” and “semiotic” 

autonomy, respectively.  

A site of spatialization is Simon autonomous whenever its mechanisms are unchanged 

by the activity of the sites with which it is coordinated (cf. Simon, 1965). For this to be true, 

a site need not be entirely insulated from the activity of other sites. Quite the contrary. The 

most Simon-autonomous site may be acutely sensitive to the activities of surrounding sites 

without changing the nature of its mechanistic underpinnings. The mechanisms responsible 

for speech production, for instance, are sensitive to but not transformed by the material 

context. Indeed, it’s an open question—an empirical question—whether people are more 
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likely to describe a greater number as “higher” when interacting with an artifact which 

adopts a more-is-up graphical convention. But certainly the basic computational processes 

involved in speech production are not changed, qualitatively, by their coupling with a 

material artifact. Speech production and graphical conventions, therefore, are Simon 

autonomous, at least on the timescales involved in situated mathematical activity. 

A site is semiotically autonomous whenever its spatialization—the way it reliably 

associates features of space with features of other domains (e.g., number)—dissociates from 

the spatialization accomplished by the domains with which it is coupled. Again, a site might 

be tightly coupled with others while retaining semiotic autonomy. In speech, for instance, 

you might describe a number as being “higher” or “bigger” than another, while 

simultaneously spatializing the number in gesture as more rightwards. Thus, while speech and 

gesture interact during the production of multimodal utterances (McNeill, 1992), the 

particular spatialization that is accomplished in these sites is often distinct—that is, speech 

and gesture often exhibit semiotic autonomy. Whether speech and gesture are entirely 

autonomous rather than just autonomous in principle, of course, is an empirical question—

and an open one, at that. Or, prompted by a graphical representation of two numerical 

intervals, in which the trace corresponding to one interval is to the left of the trace 

corresponding to the other, you might describe one interval as “lower” than the other. Here, 

the content of the graph has a causal impact on the content of speech—you are talking 

about the numbers because you saw how they were graphed—and yet graph and speech are 

semiotically autonomous because their spatialization of these intervals deploys distinct 

aspects of space. In this case, the speaker bound by the conventions of English is prohibited, 

in principle, from describing numbers in a way that aligns with the graphical spatialization; in 
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English, a greater number can be bigger or higher, but never rightward. Other sites, however, 

may exhibit a degree of semiotic dependence. Producing and reproducing metaphorical 

gestures, for instance, shapes the brain-internal spatialization of arithmetic (Ch. 5). 

Therefore, an assemblage may include sites that, despite each being coupled causally to each 

other, nevertheless persist in deploying distinct aspects of space, while other sites within the 

same assemblage are mutually dependent in their semiotic properties. 

6.2. Circulation of spatialization 

Assemblages of spatialization can be ad-hoc and idiosyncratic, put together in the 

moment in response to the particular demands and affordances of the situation. But they are 

also bound by convention, which sometimes become normative and thus binding. In 

English, greater numbers are larger or higher, never rightward; in a graph, greater numbers 

are higher or rightward, never bigger. But assemblages are marked by their entwining—the 

coordination between diverse sites that may be subject to different conventions. And 

communities of practice exhibit regularities in the assemblages of spatialization they contain.   

This raises questions of how these constraints on spatialization propagate and 

perpetuate, both within an assemblage but also between assemblages, individuals, and 

communities. A set of spatial dispositions will remain forever idiosyncractic and isolated if it 

is restricted to an organism ensconced within their lifeworld. The flexible conceptualization 

of an individual are a shadow of a shared, normative conceptual system. In contrast, a 

conceptual system is distributed across time and space, produced and reproduced by 

relations of power (Giddens, 1984). These three kinds of relations —space, time, power—

require ongoing maintenance.  
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To establish and maintain a norm of spatialization, spatial strategies must propagate 

between agents and assemblages. One way in which this can happen is when a particular site 

of spatialization is shared among disparate assemblages. If a site of spatialization contributes 

to multiple assemblages—sometimes entangled with one assemblage, other times entangled 

with another—then it can discipline and be disciplined by those disconnected sites. In this 

way, a strategy of spatialization can spread between assemblages, shaping individuals 

throughout a community. Cartesian graphs, for instance, are created and shared, thus serving 

as “immutable mobiles” (Latour, 1996) that can travel throughout a community, 

incorporated into distant and distinct assemblages and thus shaping the spatialization of 

other sites (gestural, neural) in those assemblages. Likewise, humans reproduce the gesture 

forms of their interlocutors via processes of social transmission (Sperber, 1996; Tomasello, 

2014) and gestural alignment (Kimbara, 2005) 

The spatiotemporal distribution of conceptualization is inflected by relations of 

power that determine which sites become regimented when. The conventions that govern 

practices of literacy, for instance, are contingent upon larger sociopolitical systems that 

maintain and constrain those practices. It is no accident that literate adults in Gaza have 

internalized spatial-numerical dispositions that reverse those of their neighbors, mere miles 

away, in Israel. State borders often limit the circulation of practices and artifacts, or they 

mark an inflection between areas in which a practice or artifact is ubiquitous and those in 

which it is sparse.  

What about the emergence of entirely new strategies of spatialization, or strategies 

that subvert the existing conventions of spatialization? The studies of gestural contagion 

reported in Chapter 5 dealt with spatializations that were already prevalent with the 
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community: a left-to-right mental number-line, and the system of left-to-right Path gestures. 

I suspect that similar mechanisms of gestural influence could, for instance, reverse the 

mental number-line or induce a vertical mental timeline.  

6.3. Assemblages of spatialization 

This approach resonates with a number of similar proposals. Building on 

Conversation Analysis, Goodwin (2000, 2013) argues that successful meaning-making and 

situated action are accomplished by and within contextual configurations, which consist of 

laminated and interrelated semiotic fields. A semiotic field is a cohesive set of sign 

phenomena in a particular medium: the constructional units of speech; meaningful 

movements of the hands; artifacts that are meaningful in virtue of their embedding within 

particular cultural practices and a nexus of other artifacts. Within talk-in-interaction, we 

deploy these semiotic fields in concert as contextual configurations in order to produce and 

interpret meaningful communication and action (Goodwin, 2000). In so doing, these 

semiotic fields are laminated, that is, brought into coordination during situated activity 

(Goodwin, 2013). Contextual configurations of semiotic fields, therefore, share many 

features with the assemblages of spatialization described in this essay. Indeed, Goodwin’s 

analytic framework could be productive deployed to analyze the segment of situated activity 

with which we started this essay in Chapter 1.  

The approach adopted here departs from Goodwin in two critical ways. The first is 

the focus on the precise mechanisms responsible for producing and reproducing the 

coordination of diverse sites of spatialization. Instead of taking for granted that actors are 

able to laminate semiotic fields into contextual configurations, the assemblage approach 

zooms in on processes of lamination and delamination to identify the mechanisms by which 
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coordination is produced and reproduced. Second, the assemblage approach is tied less to 

interactional encounters between multiple agents in a public setting, and interested more in 

the accomplishment of abstraction more generally, whether performed alone or with others.  

Two other approaches shift the focus from individual brains to the larger systems in 

which they are situated. Within the philosophy of mind, Clark has argued that the vehicles of 

mental content and the locus of mental activity is often the “ecological assembly” put 

together by a “canny cognizer” who “tends to recruit, on the spot, whatever mix of 

problem-solving resources will yield an acceptable result with a minimum of effort" (2006, p. 

13). How this process of recruitment actually happens, however, is largely left unspecified. 

Like Goodwin, Clark (2000) has little to say about the details of how the resources are 

actually assembled; indeed, “accounting for the organization of ecological assemblies is the 

central and unsolved problem in the book” (Hutchins, 2011, p. 438).  Hutchins (1995, 2010) 

responds to this by decentralizing the system even further, arguing that the functional 

systems responsible for cognitive activity are typically assembled by cultural practices, which 

recruit individual brains alongside a motley mix of other resources. Insofar as assemblages of 

spatialization are regimented by spatial practices and conventions of spatialization, one 

contribution of this essay is to spell out how, exactly, this process of cultural recruitment 

plays out during situated mathematical activity.  

Neither Clark nor Hutchins, however, have much to say about how, when it comes 

to the assemblages that accomplish cognition, the parts and the whole are co-constitutive 

and mutually transforming. When diverse sites of spatialization are brought into 

coordination, they shape and transform each other in ways that are not accounted for by the 

metaphors of “recruitment.” And if cultural practices are ways of seeing and doing that are 
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constrained by the activities of others, then the putative mechanism of recruitment—the 

cultural practice—is going to be transformed as diverse sites are brought into coordination. 

Our ways of seeing and doing change as we engage in them, as the tension between 

entwining and autonomy creates new structure and destroys old, as the assemblage 

transforms as a whole and in its parts.  

6.4. Last words 

This was an essay on the regimentation of thought: the disciplining of insight, the 

development of dispositions, the structuring of reason. Nowhere is this more stark than in 

mathematics. The claims of mathematics impress themselves upon the individual as truths at 

once inherited and intuitive, received and discovered anew. For the contemporary student of 

Euclid, the experience is not one of authoritarian transmission of ancient dogma but of a 

gentle coaxing toward self-evident truths—at least, self-evident in hindsight. Having arrived 

at an insight, the mathematician finds herself part of a community of believers, a community 

that transcends gender, race, class, language, culture. We are compelled to believe the truths 

of mathematics, both individually and as a community, both now and, it seems, always.  

Or so the story goes. I’m not so sure.  

After all, mathematics is a messy, situated human practice, one kind of manual labor 

among many. It is this mundane, material character that nominates mathematics as a critical 

case study in the regimentation of thought. The foregoing chapters were written in this spirit. 

Each was a study in the contribution of space to the regimentation of mathematical thinking, 

intentionally cutting across timescales, from the microdynamics of individual reckoning to 

the propagation and perpetuation of understanding within communities of practice. We saw 

in Chapters 2 and 3 that mathematical reckoning on the timescale of milliseconds is 
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regimented by systemic spatialization during numerical comparison and calculation. In 

Chapter 4, we considered activity on the timescale of seconds, analyzing reflexive, precise 

mathematical reasoning as enacted in multimodal utterances. We then turned, in Chapter 5, 

from the regimentation of the individual to the propagation and perpetuation of 

regimentation, between individuals and across time. Taken together, these four projects trace 

the outlines of an assemblage of autonomous but entwined mechanisms, responsible for 

spatializing—and thus regimenting—not only the simple whole numbers but also the 

negative integers, exact calculation, and reflexive reasoning. If mathematics is in some sense 

“perfect” knowledge, then it is this kind of distributed practice that makes perfect. 

Despite the focus on number and arithmetic, the morals of this essay may apply 

widely. Given any abstract domain, I predict we’ll find a cognitive ecosystem rife with 

spatialization, in which situated activity requires the production and reproduction of 

coordinated assemblages. Capitalist ideology may propagate via gestural contagion. 

Metaphorical gestures for social inequality may reflect the simulation of balance and motion. 

Careful, reflexive reasoning about structural racism may co-opt neural systems specialized 

for space and action. Intervening on these systems will require attention to the distributed 

assemblages in which they occur.  

L’Homo Vista, Los Angeles, April 2015 
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