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ABSTRACT OF THE DISSERTATION

Generalized Autocontour: Evaluation of the Density Model
in Stable and Unstable Environments

by

Yingying Sun

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2013

Dr. Gloria González-Rivera , Chairperson

In Chapter 1, we propose a generalized version of the autocontour-based methodology

for dynamic specification testing (in-sample and out-of-sample) proposed in González-

Rivera et al. (2011) (GR2011). The autocontour (ACR) proposed is the basis to con-

struct very powerful tests to detect misspecification in the dynamics of the model and

departures from the assumed conditional density but still has some limitations. To

overcome these limitations, we propose a generalized autocontour (G-ACR) based on

the probability integral transforms (PIT) of the assumed density model. The specifica-

tion tests will be based now on the G-ACR device. We should also mention that be-

cause of the simplicity of G-ACR, the analytical expressions of the asymptotic variance-

covariance matrices of the tests have a closed formulation and they depend only the a

priori probability level associated with the G-ACR. In addition, they will be instances,

e.g. multistep predictive densities in nonlinear models, in which the predictive density

does not have a closed form solution and we need to resort to simulation or nonpara-

metric methods, but yet we could obtain the PIT process from the simulated density.

Once the PITs are in place, our methodology will be able to evaluate the multistep

density forecast. In Chapter 2, we extend the G-ACR methodology to the multivariate
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case and to random processes that are discrete. Our interest lies on the multivariate

process of a vector of counts for which we specify the dynamics of the marginal densities

of each process and a copula function that ties up the marginal to produce their mul-

tivariate distribution. As an illustration of the G-ACR methodology, we have analyzed

a high frequency trivariate system of the number of trades in three US large banking

institutions: Bank of America, JP Morgan Chase, and Wells Fargo. In Chapter 3, we

propose a robust out-of-sample density forecasting evaluation method in the presence of

the instabilities based on Generalized Autocontour . We construct Sup and Avg types

of statistics to explore the behavior of the model in unstable environments. We have

applied our tests to evaluate the density forecast performance of U.S. inflation produced

by linear and Markov-switching Philips Curve.

vii



Contents

List of Figures x

List of Tables xi

1 Generalized Autocontour 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Generalized Autocontour and Test Statistics . . . . . . . . . . . . . . . . 3

1.2.1 Generalized Autocontour: G-ACR . . . . . . . . . . . . . . . . . 3
1.2.2 Test Statistics for Continuous Distribution Functions . . . . . . . 5

1.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Size for Bivariate Normal and Student T Distributions . . . . . . 10
1.3.2 Power of Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Evaluation of Multistep Density forecast . . . . . . . . . . . . . . 12

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 21

2 Evaluation of Multivariate Counts Models. An Application to Trading
Activity in U.S. Large Banks 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Extension of G-ACR to Discrete Stochastic Processes . . . . . . . . . . 25

2.2.1 Test Statistics for Discrete Multivariate Distribution Functions . 25
2.2.1.1 Multivariate Distribution of a Vector of Counts with

Gaussian Copula . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1.2 Multivariate Distribution of a Vector of Counts with

Clayton Copula . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Size of the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Power of the tests . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Empirical Illustration: Trading Activity in Large Banks . . . . . . . . . 38
2.4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Dynamic Models and Evaluation . . . . . . . . . . . . . . . . . . 39

2.4.2.1 Models with no contemporaneous correlation . . . . . . 40
2.4.2.2 Models with contemporaneous correlation . . . . . . . . 42

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 52

viii



3 Density Forecast Evaluation in Unstable Environment 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Statistics and asymptotic distribution . . . . . . . . . . . . . . . . . . . 63

3.2.1 Definition of Statistics . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Asymptotic Properties of statistics . . . . . . . . . . . . . . . . . 65

3.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Critical Values for Asymptotic Distributions . . . . . . . . . . . . 72
3.3.2 Size of the statistics . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.3 Power of the statistics . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.4 Detection of break location . . . . . . . . . . . . . . . . . . . . . 100

3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.1 Evaluation of Linear Phillips Curve . . . . . . . . . . . . . . . . . 110
3.4.2 Evaluation of Markov-switching Phillips Curve . . . . . . . . . . 114

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 124

A Mathematical Proofs 127

B Procedures to Take PIT for Bivariate Student-t Distribution 134

C Mixture Inverse Gumbel/Clayton 140

ix



List of Figures

1.1 Autocontours for the Uniform Density . . . . . . . . . . . . . . . . . . . 19
1.2 Univariate Contour Plots for Normal Distribution:Multistep . . . . . . . 19
1.3 Univariate Contour Plots for Exponential Distribution:Multistep . . . . 20

2.1 Histograms of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Contemporaneous PITs: . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Contours of Copulas with Negative Binomial Marginal Densities . . . . 51
2.4 Contemporaneous PITs: Negative Binomial Model with Copula Depen-

dence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Histogram of At with m = 0.1, 0.5 and 0.9 . . . . . . . . . . . . . . . . . 74
3.3 Histogram of SC with m = 0.1, 0.5 and 0.9 . . . . . . . . . . . . . . . . . 75
3.4 Histogram of AC with m = 0.1, 0.5 and 0.9 . . . . . . . . . . . . . . . . 76
3.5 Histogram of SL with m = 0.1, 0.5 and 0.9 . . . . . . . . . . . . . . . . . 77
3.6 Histogram of AL with m = 0.1, 0.5 and 0.9 . . . . . . . . . . . . . . . . . 78
3.1 Histogram of St with m = 0.1, 0.5 and 0.9 . . . . . . . . . . . . . . . . . 79
3.7 Plots of t and C Statistics under Rolling Scheme: DGP1 . . . . . . . . 101
3.8 Plots of t and C Statistics under Recursive Scheme: DGP1 . . . . . . . 102
3.9 Plots of t and C Statistics under Fixed Scheme: DGP1 . . . . . . . . . 104
3.10 Plots of t and C Statistics under Rolling Scheme: DGP2 . . . . . . . . 106
3.11 Plots of t and C Statistics under Recursive Scheme: DGP2 . . . . . . . 107
3.12 Plots of t and C Statistics under Fixed Scheme: DGP2 . . . . . . . . . 108

x



List of Tables

1.1 Size for Bivariate Normal Distribution . . . . . . . . . . . . . . . . . . . 11
1.2 Size for Bivariate Student t Distribution . . . . . . . . . . . . . . . . . . 11
1.3 Power for Misspecification of Correlation . . . . . . . . . . . . . . . . . . 12
1.4 Power for Misspecification of Density Functional Form . . . . . . . . . . 12

2.1 Size of tk,αi-statistics for 13 autocontours (Nominal size 5% and
k = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Size of tk,αi , Lαi, Ck statistics (Nominal size 5%) . . . . . . . . . 35
2.3 Power of tk,αi-statistics for 13 autocontours (Nominal size 5%

and k = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Power of tk,αi, Lαi, Ck statistics (Nominal size 5%) . . . . . . . . 48
2.5 Estimation Results. Maximum Likelihood Estimates . . . . . . . . . . . 49
2.6 Autocontour-based Tests: . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Copula-based Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Autocontour-based t-tests: . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Critical Values for St Statistics . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Critical Values for At Statistics . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Critical Values for SC Statistics . . . . . . . . . . . . . . . . . . . . . . . 76
3.4 Critical Values for AC Statistics . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Critical Values for SL Statistics . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 Critical Values for AL Statistics . . . . . . . . . . . . . . . . . . . . . . . 80
3.7 Size of the statistics:T=150 R=90 P=T-R=60 m = 1/3 (nominal size 5%) 82
3.8 Size of the statistics:T=375 R=225 P=T-R=150 m = 1/3 (nominal size

5%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.9 Size of the statistics:T=750 R=450 P=T-R=300 m = 1/3 (nominal size

5%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.10 Size of the statistics:T=150 R=90 P=T-R=60 m = 2/3 (nominal size 5%) 83
3.11 Size of the statistics:T=375 R=225 P=T-R=150 m = 2/3 (nominal size

5%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.12 Size of the statistics:T=750 R=450 P=T-R=350 m = 2/3 (nominal size

5%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.13 Size of the statistics:T=150 R=90 P=T-R=60 m = 1/2 (nominal size 5%) 84
3.14 Size of the statistics:T=375 R=225 P=T-R=150 m = 1/2 (nominal size

5%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xi



3.15 Size of the statistics:T=750 R=450 P=T-R=300 m = 1/2 (nominal size
5%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.16 Power for DGP1: Fixed Scheme . . . . . . . . . . . . . . . . . . . . . . . 88
3.17 Power for DGP2: Fixed Scheme . . . . . . . . . . . . . . . . . . . . . . . 89
3.18 Power for DGP3: Fixed Scheme . . . . . . . . . . . . . . . . . . . . . . . 90
3.19 Power for DGP4: Fixed Scheme . . . . . . . . . . . . . . . . . . . . . . . 91
3.20 Power for DGP1: Rolling Scheme . . . . . . . . . . . . . . . . . . . . . . 92
3.21 Power for DGP2: Rolling Scheme . . . . . . . . . . . . . . . . . . . . . . 93
3.22 Power for DGP3: Rolling Scheme . . . . . . . . . . . . . . . . . . . . . . 94
3.23 Power for DGP4: Rolling Scheme . . . . . . . . . . . . . . . . . . . . . . 95
3.24 Power for DGP1: Recursive Scheme . . . . . . . . . . . . . . . . . . . . 96
3.25 Power for DGP2: Recursive Scheme . . . . . . . . . . . . . . . . . . . . 97
3.26 Power for DGP3: Recursive Scheme . . . . . . . . . . . . . . . . . . . . 98
3.27 Power for DGP4: Recursive Scheme . . . . . . . . . . . . . . . . . . . . 99
3.28 P-value for linear PC: Fixed Scheme . . . . . . . . . . . . . . . . . . . . 111
3.29 P-value for linear PC: Rolling Scheme . . . . . . . . . . . . . . . . . . . 112
3.30 P-value for linear PC: Recursive Scheme . . . . . . . . . . . . . . . . . . 113
3.31 P Value of The Statistics:M1 . . . . . . . . . . . . . . . . . . . . . . . . 116
3.32 P Value of The Statistics:M2 . . . . . . . . . . . . . . . . . . . . . . . . 118
3.33 P Value of The Statistics:M3 . . . . . . . . . . . . . . . . . . . . . . . . 120
3.34 P Value of The Statistics:M4 . . . . . . . . . . . . . . . . . . . . . . . . 122

C.1 Autocontour-based t-tests: . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xii



Chapter 1

Generalized Autocontour

1.1 Introduction

We propose a generalized version of the autocontour-based methodology for dy-

namic specification testing (in-sample and out-of-sample) proposed in Gonzlez-Rivera

et al. (2011) (GR2011). For a stochastic process {Yt}, we would like to test the joint

hypothesis of a correct density model, which includes the dynamics of the appropriate

conditional moments and the functional form of the assumed conditional density. In

GR2011, this hypothesis is equivalent to test the iid-ness of the generalized innovations

of the model, say {εt} jointly with the functional form of their density. Under this null

hypothesis, the autocontour (ACR) is a powerful analytical set of points(εt, εt−k) that,

for a priori probability level α and by projecting the bivariate density of vectors such

as (εt, εt−k) in a two-dimensional space, must contain α% of the observations. ACR is

the basis to construct very powerful tests to detect misspecification in the dynamics of

the model and departures from the assumed conditional density. However, the original

methodology in GR2011 has some limitations. First, when the density of interest de-

parts from standard densities used in time series econometrics, e.g. Normal, Student-t,
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exponential, etc. the analytical expressions of the ACRs for (εt, εt−k) may be mathe-

matically cumbersome to obtain and we need to resort to numerical methods. Secondly,

the asymptotic variance-covariance matrices of the specifications tests in GR2011 do

not have all closed-form solutions, some combining parametric with nonparametric ex-

pressions. Thirdly, GR2011 considers only continuous random processes with dynamics

on the conditional mean and conditional variance and a time-invariant functional form

of the density of the standardized innovations {εt}. To overcome these limitations, we

propose a generalized autocontour (G-ACR). Instead of working with the innovations

{εt}, , we work with the probability integral transforms (PIT) of the assumed den-

sity model. Under correct specification, the PITs, say {ut} should be an i.i.d. process

uniformly distributed on [0,1]. Implementing the original ACR in GR2011 will not be

helpful because, for any vector (ut, ut−k) the ACR obtained by projecting the bivariate

uniform density on the plane (ut, ut−k) will always be a square of area one. We propose

a generalized autocontour (G-ACR) based on cutting the domain (instead of the range)

of the bivariate uniform density. Under the true density model, the G-ACR is a set of

point in the plane (ut, ut−k) such that any square with
√
α side must contain α% of

the observations. The specification tests will be based now on the G-ACR device. We

should also mention that because of the simplicity of G-ACR, the analytical expressions

of the asymptotic variance-covariance matrices of the tests have a closed formulation

and they depend only on the parameter -level probability associated with the G-ACR.

In addition, they will be instances, e.g. multistep predictive densities in nonlinear mod-

els, in which the predictive density does not have a closed form solution and we need to

resort to simulation or nonparametric methods, but yet we could obtain the PIT process

from the simulated density. Once the PITs are in place, our methodology will be able

to evaluate the multistep density forecast.

2



1.2 Generalized Autocontour and Test Statistics

In this section, we introduce a device -the generalized autocontour- that is the

basis to construct statistical tests for the null hypothesis of a well-specified conditional

density model. We consider univariate and multivariate models with continuous and

discrete stochastic processes.

1.2.1 Generalized Autocontour: G-ACR

Following Diebold, Gunther, and Tay (1998) among others, if the proposed

predictive density model for Yt, i.e. {f∗t (yt|Ωt−1)}Tt=1 coincides with the true condi-

tional density {ft(yt|Ωt−1)}Tt=1, then the sequence of probability integral transforms

(PIT) of {Yt}Tt=1 w.r.t {f∗t (yt|Ωt−1)}Tt=1 i.e. {ut}Tt=1 must be i.i.d U(0, 1)where ut =∫ yt
−∞ f

∗
t (vt|Ωt−1)dvt. Thus, the null hypothesis H0 : f∗t (yt|Ωt−1) = ft(yt|Ωt−1) is equiva-

lent to the null hypothesis H
′
0 : {ut}Tt=1 is i.i.d U(0, 1).

We construct the G-ACR under i.i.d. uniformity for univariate and multivariate

predictive densities. We start with the univariate case. Within the process {ut}Tt=1, we

choose any vector (ut,ut−k) ⊂ R2. Under H
′
0 : {ut}Tt=1 i.i.d U(0, 1), the G-ACRαi,k is

defined as the set of points in the plane (ut, ut−k) such that the square with
√
αi side

contains αi% of observations, i.e.,

G−ACRαi,k

= {B(ut, ut−k) ⊂ <2|0 ≤ ut ≤
√
αiand 0 ≤ ut−k ≤

√
αi, s.t.ut × ut−k ≤ αi}

We will call the proposed cutting of the domain ‘symmetric’ as we impose the

same upper bound
√
αi for each u in the vector (ut, ut−k) . However, it is possible to cut

the domain in many different ways. The symmetric cutting will be very advantageous

on computing the variance-covariance matrix of the test statistics that we present in

3



the forthcoming sections, and it will also facilitate the construction of the uniform

autocontours in the multivariate case, as we explain shortly.

The original autocontour proposed in González-Rivera et. al. (2011) was

constructed for the process of (standardized) innovations of a dynamic model, say

{εt}Tt=1, with assumed conditional density f(.). Under the null hypothesis of i.i.d.

random variables, the bivariate density function of any vector, say (εt,εt−k) ⊂ R2 is

f(εt,εt−k)=f(εt)f(εt−k), and the autocontour ACRα was defined as the set of points in

the plane (εt,εt−k) ⊂ R2 that will contain α% of observations when we horizontally slice

the bivariate density function at a fixed value fα. Mathematically,

ACRα = {B(εt,εt−k) ⊂ R2|
∫ u

l

∫ uk

lk

f(εt)f(εt−k)dεtdεt−k ≤ α}

Observe that if were to implement the same approach for the process of PITs

{ut}Tt=1, under the i.i.d null hypothesis, the joint probability density function of this

vector is always a constant, i.e. f(ut,ut−k) = f(ut)f(ut−k) = 1 × 1 = 1 and, unlike

the original ACR, we cannot construct the autocontour by horizontally slicing the joint

density. If we horizontally slice f(ut,ut−k) at any level, and project down the resulting

segment on the plane (ut,ut−k) we always obtain a square of area one. For this reason,

the proposed G-ACR ’cuts’ instead the domain of the bivariate uniform density function

that is a square with unit side.

In the multivariate case, our interest is the modeling of an m × 1 random

vector Yt = (y1,t, y2,t,......ym,t)
′, with a joint probability density ft(Yt|Ωt−1). Let us call

{f∗t (Yt|Ωt−1)}Tt=1 the sequence of predicted densities. For each t, the joint density can

be factorized as the product of the conditional densities and the marginal density, i.e.

f∗(Yt|Ωt−1) = f∗(y1,t, y2,t,......ym,t|Ωt−1)

= f∗(ym,t|y1,t, y2,t,......ym−1,t)× ....× f∗(y2,t|y1,t)× f∗(y1,t|Ωt−1)

4



For each element in the factorization we obtain the sequence of PITs:

{u1,t, u2|1,t, ..., um|1,2...m−1,t}Tt=1 such that u1,t =
∫ y1,t
−∞ f∗t (vt|Ωt−1)dvt, u2|1,t =∫ y2,t

−∞ f∗y2|y1,t
(vt|Ωt−1)dvt, ...... , and um|1,2...m−1,t =

∫ ym,t
−∞ f∗ym|y1,y2...ym,t

(vt|Ωt−1)dvt.

Under the null hypothesis of a correct density model, the multivariate sequence

{u1,t, u2|1,t, ..., um|1,2...m−1,t}Tt=1 is i.i.d U(0, 1) (Diebold, Hahn, and Tay, 1999); thus the

null hypothesis H0 : f∗t (Yt|Ωt−1) = ft(Yt|Ωt−1) is equivalent to:

H
′
0 : {u1,t, u2|1,t, ..., um|1,2...m−1,t}Tt=1 is i.i.d U(0, 1).

Under this null, we construct the autocontour G-ACRαi,k by choosing any two

m-dimensional vectors in the sequence of multivariate PITs that are k periods apart.

Thus, G-ACRαi,k is now the set of points defined in R2m such that the hyper-cube with

α
1/2m
i side contains αi% of observations:

G-ACRαi,k = {B(u1,t, u2|1,t, .., um|1,2...m−1,t;u1,t−k, u2|1,t−k, ..., um|1,2...m−1,t−k) ⊂ <2m

‖ 0 ≤ u1,t ≤ α1/2m
i , 0 ≤ u2|1,t ≤ α

1/2m
i , · · · , 0 ≤ um|1,2...m−1,t ≤ α

1/2m
i

0 ≤ u1,t−k ≤ α
1/2m
i , 0 ≤ u2|1,t−k ≤ α

1/2m
i , · · · , 0 ≤ um|1,2...m−1,t−k ≤ α

1/2m
i

s.t. : u1,t × u2|1,t × · · · × um|1,2...m−1,t × u1,t−k × u2|1,t−k × · · · × um|1,2...m−1,t−k ≤ αi}

In Figure 1, we present 2-dimensional αi-autocontours for the univariate case:

B(ut, ut−k) ⊂ <2 (left panel) and 3-dimensional autocontours for a bivariate case (right

panel). In the latter, the autocontour is a 4-dimensional hypercube

B(u1,t, u2|1,t, u1,t−k, u2|1,t−k) ⊂ <4,

of which we can only plot obviously three dimensions.

1.2.2 Test Statistics for Continuous Distribution Functions

We start by defining an indicator function in the univariate as well as in the

multivariate case.
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In the univariate case, the indicator will take the value one whenever the ob-

servation (ut, ut−k) falls within the area defined by the ACRαi,k and zero otherwise,

i.e.

Ik,αit = 1((ut, ut−k) ⊂ ACRαi,k) = 1(0 ≤ ut ≤
√
αi, 0 ≤ ut−k ≤

√
αi)

In the multivariate case, the indicator will be defined similarly as follows

Ik,αit = 1((u1,t, u2|1,t, .., um|1,2...m−1,t, u1,t−k, u2|1,t−k, ..., um|1,2...m−1,t−k) ⊂ ACRαi,k)

= 1(0 ≤ u1,t ≤ α1/2m
i , 0 ≤ u2|1,t ≤ α

1/2m
i , .., 0 ≤ um|1,2...m−1,t ≤ α

1/2m
i ,

0 ≤ u1,t−k ≤ α
1/2m
i , 0 ≤ u2|1,t−k ≤ α

1/2m
i , ..., 0 ≤ um|1,2...m−1,t−k ≤ α

1/2m
i )

In both cases, Ik,αit are Bernoulli random variables for which αi% of the obser-

vations will fall inside the ACRαi,k and (1−αi)% observations will fall outside ACRαi,k.

Note that the indicator is also autocorrelated; it follows a MA process whose order will

depend on k. Consequently, the moments of Ik,αit are

E(Ik,αit ) = αi

V ar(Ik,αit ) = αi(1− αi)

rαih = cov(Ik,αit , Ik,αit−h ) =


0 if h 6= k

α
3/2
i (1− α1/2

i ) if h = k

The indicator Ik,αit forms the basis of the following test statistics, which are applica-

ble in the univariate as well as in the multivariate case. The next three propositions

follow closely the tests derived in González-Rivera et. al. (2011). However, the forth-

coming tests offer a great advantage over the previous ones because their asymptotic

variance-covariance matrices have closed-form formulations which depend exclusively on

the theoretical probability αi of the autocontour specified under the null. The proofs of

the following propositions are all relegated to the Appendix.
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Proposition 1

Let α̂i =
∑T
t=k+1 I

k,αi
t

T−k be the sample proportion. Under the null hypothesis of

i.i.d U(0, 1) PITs, the sample proportion α̂i is asymptotically normally distributed, i.e.,

√
T − k(α̂i − αi)

σk,i
→ N(0, 1)

where

σ2
k,αi

= αi(1− αi) + 2α
3/2
i (1− α1/2

i )

In Proposition 1, the lag k and the autocontour αi are fixed. By letting k

and i run through many values, we can construct portmanteau statistics as those in the

following propositions.

Proposition 2

For a given contour αi, let `k,αi =
√
T − k(α̂i − αi) and stack `k,αi for k =

1, ....K. Let Lαi = (`1,αi , ...`K,αi)
′
be the K×1 stacked vector. Under the null hypothesis

of i.i.d U(0, 1) PITs, the asymptotic distribution of the vector Lαi is multivariate normal,

i.e., Lαi → N(0,Λαi) and the following quadratic form follows asymptotically a chi-

square with K degrees of freedom, i.e.,

L′αiΛ
−1
αi Lαi → χ2

K

where a typical element of the asymptotic covariance matrix Λαi , say λj,k is as follows

λj,k =


αi(1− αi) + 2α

3/2
i (1− α1/2

i ) if j = k

4α
3/2
i (1− α1/2

i ) if j 6= k

Proposition 3

For a given lag k, let ck,i =
√
T − k(α̂i−αi) and stack ck,i for different contours

levels i = 1, 2, ...C. Let Ck = (ck,1, ...ck,C)
′

be the C × 1 stacked vector. Under the

null hypothesis of i.i.d U(0, 1) PITs, the asymptotic distribution of the vector Ck is
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multivariate normal, i.e., Ck → N(0,Ωk) and consequently, the following quadratic

form asymptotically follows a chi-square with C degrees of freedom, i.e.,

C′kΩ
−1
k Ck → χ2

C

where a typical element of the asymptotic covariance matrix Ωk, say ωi,j is as follows

ωi,j =



αi(1− αi) + 2α
3/2
i (1− α1/2

i ) if i = j

αi(1− αj) + 2αiα
1/2
j (1− α1/2

j ) if i < j

αj(1− αi) + 2αjα
1/2
i (1− α1/2

i ) if i > j

Statistics under parameter uncertainty: Univariate Case

Although we assume that the true parameters for distributions are known in

previous sections, in reality, forecasting is done with estimated parameters and we will

deal with ut(θ̂), which will bring uncertainty into our statistics. This part will discuss

the asymptotic distributions of statistics if there exists parameter uncertainty. Rigorous

mathematical proofs can show that the asymptotic normality for our statistics still holds

under general assumptions.

Now, we are considering about location scale model: yt = µ+ σεt, εt is i.i.d

Assumption 1:

√
T (θ̂T − θ0)→ N(0, A−1BA−1) (1.1)

A = −E(H(θ0)), H(θ0) =
1√
T

T∑
t=1

Ht(θ0) is the Hessian (1.2)

B = E(S(θ0)S(θ0)), S(θ0) =
1√
T

T∑
t=1

Htst(θ0) is the score vector (1.3)

Assumption 2:

P = lim
T→∞

E(
∂α̂i(θ)

∂θ
|θ=θ0) = lim

T→∞
E(
∂(α̂i(εt(θ)))

∂ut
.
∂ut
∂εt

.
∂εt
∂θ
|θ=θ0) (1.4)
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P is bounded for all its elements.

Assumption 3:

cov(Ik,αit , st(θ0)) <∞, cov(Ik,αit , st−k(θ0)) <∞ (1.5)

Proposition 4: under assumption 1 to 3:

√
T (α̂i(θ̂T )− αi)→ N(0, ξ2

k,i) (1.6)

ξ2
k,i = σ2

k,i + PA−1BA−1P + 2E[
√
T (α̂i(θ0)− αi)S

′
(θ0)]A−1P (1.7)

The first assumption is a general assumption for consistency of QLME estima-

tors. The second assumption ensures a bound gradient for the statistic, which can be

relaxed. Assumption 3 states that the correlation is bounded. The proof of this propo-

sition can follow the similar method used to prove proposition 4 in GSY’s paper(2010).

Proposition 5: for Gaussian location –scale model: yt = µ0 + σ0εt,where

εt ∼ i.i.d N(0, 1)

P = [
2f(z√αi)

√
αi

σ0
,
f(z√αi)z

√
αi

√
αi

σ2
0

]
′

(1.8)

E[
√
T (α̂i(θ0)− αi)S

′
(θ0)] = E


I
k.αi
t εt
σ0

I
k.αi
t (ε2t−1)

σ2
0


′

+ E


I
k.αi
t εt−k
σ0

I
k.αi
t (ε2t−k−1)

σ2
0


′

(1.9)

E[Ik.αit εt] = −
√
αif(F−1(

√
αi)) (1.10)

Similarly:

E[Ik.αit εt−k] = −
√
αif(F−1(

√
αi)) (1.11)
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E[Ik.αit ε2
t ] =

∫ F−1(
√
αi)

−∞
f(εt−k)dεt−k

∫ F−1(
√
αi)

−∞
ε2
t f(εt)dεt. (1.12)

E[Ik.αit ε2
t−k]] =

∫ F−1(
√
αi)

−∞
f(εt)dεt

∫ F−1(
√
αi)

−∞
ε2
t−kf(εt−k)dεt−k. (1.13)

Note: Here F denotes the CDF of standard normal distribution and f denotes

the PDF of the standard normal distribution.

1.3 Monte Carlo Simulation

1.3.1 Size for Bivariate Normal and Student T Distributions

We evaluate the size properties for the G-ACR statistics under bivariate normal

and student-t distributions. The sample size is 200,500,1000. The number of monte carlo

simulation is 1000 and of bootstrapping is 500. 13 different contour coverage levels(%)

considered are:

C = [0.01; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.95; 0.99] and the nominal

size is 5

(1) Bivariate Normal: yt = µ+ Σ−1/2εt, εt ∼ i.i.d N(0, 1)

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2



µ =

µ1

µ2

 σ1 = σ2 = 1, µ = 0.5, ρ = 0.4

(2) Bivariate Student-t Distributions yt = µ+Σ−1/2εt, εt ∼ i.i.d t(0, I2, v), v =

5

Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


10



µ =

µ1

µ2


σ1 = σ2 = 1, µ = 0.5,ρ = 0.4

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

200 0.043 0.038 0.042 0.0627 0.063 0.053 0.053 0.077 0.088 0.055 0.06 0.065 0.055
500 0.047 0.053 0.052 0.063 0.072 0.053 0.06 0.067 0.07 0.056 0.062 0.05 0.037

1000 0.038 0.053 0.053 0.057 0.07 0.065 0.063 0.065 0.063 0.063 0.062 0.05 0.041

t2,7 t3,7 t4,7 t5,7 L2,7 L3,7 L4,7 L5,7 C1,13

200 0.054 0.068 0.06 0.07 0.056 0.058 0.06 0.05 0.07
500 0.037 0.065 0.055 0.066 0.065 0.051 0.053 0.048 0.062

1000 0.051 0.062 0.062 0.063 0.041 0.052 0.058 0.069 0.061

Notes: tk,7 for k = 1, 2, ...5, and 7 refers to the 50% autocontour.
Lk,7 for k = 2, ....5 stacking lags up to k and considering the 50% autocontour.
C1,13 stacking all 13 autocontours for lag k = 1.
1000 Monte Carlo replications and 500 bootstrap samples.

Table 1.1: Size for Bivariate Normal Distribution

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

200 0.062 0.044 0.07 0.048 0.07 0.072 0.062 0.05 0.076 0.082 0.078 0.073 0.074
500 0.058 0.049 0.068 0.048 0.061 0.063 0.058 0.047 0.065 0.069 0.065 0.051 0.064

1000 0.058 0.062 0.062 0.051 0.061 0.068 0.045 0.038 0.067 0.062 0.061 0.055 0.069

t2,7 t3,7 t4,7 t5,7 L2,7 L3,7 L4,7 L5,7 C1,13

200 0.065 0.065 0.063 0.068 0.073 0.068 0.063 0.076 0.073
500 0.063 0.058 0.067 0.062 0.06 0.062 0.045 0.045 0.0583

1000 0.053 0.052 0.068 0.051 0.068 0.059 0.062 0.058 0.061

Notes: tk,7 for k = 1, 2, ...5, and 7 refers to the 50% autocontour.
Lk,7 for k = 2, ....5 stacking lags up to k and considering the 50% autocontour.
C1,13 stacking all 13 autocontours for lag k = 1.
1000 Monte Carlo replications and 500 bootstrap samples.

Table 1.2: Size for Bivariate Student t Distribution

1.3.2 Power of Statistics

Model under the null:

yt = µ+ Σ−1/2εt, εt ∼ i.i.d N(0, 1), εt ∼ i.i.d N(0, I2)

(1) Power of the misspecification of correlation

The true DGP is the bivariate normal distribution with ρ = 0.4
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t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

200 0.22 0.43 0.455 0.41 0.405 0.33 0.28 0.13 0.135 0.095 0.04 0.02 0.03
500 0.905 0.99 0.995 0.995 0.985 0.98 0.945 0.82 0.725 0.42 0.12 0.06 0.04

1000 0.93 1 1 1 1 0.982 0.96 0.89 0.73 0.43 0.18 0.061 0.053

L2,7 L3,7 L4,7 L5,7 C1,13 C2,13 C3,13 C4,13 C5,13

200 0.36 0.33 0.31 0.45 0.43 0.475 0.52 0.465 0.455
500 0.99 0.99 0.98 0.975 1 1 1 1 1

1000 1 1 0.99 0.99 1 1 1 1 1

Notes: tk,7 for k = 1, and 7 refers to the 50% autocontour.
Lk7 for k = 2, ....5 stacking lags up to lag k and considering the 50% autocontour.
C13
k stacking all 13 autocontours for lags k = 1, ...5.

1000 Monte Carlo replications and 500 bootstrap samples.

Table 1.3: Power for Misspecification of Correlation

(2) Power of the misspecification of density function

The true DGP is the bivariate student t distribution in which εt ∼ i.i.d t(0, I2, 15)

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

200 0.01 0.033 0.0533 0.047 0.14 0.35 0.56 0.66 0.67 0.61 0.46 0.197 0.043
500 0.03 0.037 0.09 0.097 0.17 0.7 0.89 0.96 0.98 0.96 0.81 0.39 0.25

1000 0.073 0.103 0.157 0.12 0.25 0.93 1 1 1 0.997 0.99 0.71 0.37

L2,7 L3,7 L4,7 L5,7 C1,13 C2,13 C3,13 C4,13 C5,13

200 0.39 0.44 0.4 0.49 0.54 0.55 0.57 0.58 0.54
500 0.75 0.68 0.75 0.72 0.94 0.89 0.93 0.913 0.92

1000 0.88 0.89 0.9 0.85 1 1 1 1 1

Notes: tk,7 for k = 1, and 7 refers to the 50% autocontour.
Lk7 for k = 2, ....5 stacking lags up to lag k and considering the 50% autocontour.
C13
k stacking all 13 autocontours for lags k = 1, ...5.

1000 Monte Carlo replications and 500 bootstrap samples.

Table 1.4: Power for Misspecification of Density Functional Form

1.3.3 Evaluation of Multistep Density forecast

The optimal multi-step density forecast will produce serially correlated PITs

: ut =
∫ yt
−∞ f(yt|Ωt−h)dyt with uniform distribution. It is different from the PITs of

realizations for the one-step ahead density forecast which is i.i.d U [0, 1]. If a h-step-

ahead density forecast is correct, then its PITs of realizations at time t are independent

of the PITs at time t ± (h + i), i.e., for 2-step ahead density forecast {u1, u3, u5, · · · }

and {u2, u4, u6, · · · } are two random series from i.i.d U [0, 1].
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To show the MA(h− 1) structure of PITs of the h-step-ahead density forecast:

∀Yt is a stationary process with mean zero. The Wold representation of Yt is Yt =∑∞
i=0 θiεt−i, εt is WN(0, σ2). Under the null hypothesis that f(yt|Ωt−h) is the correct

h-step density forecast for Yt, where f(yt|Ωt−h) = g(yt −
∑∞

i=h θiεt−i) = g(ξt), where

ξt = yt −
∑∞

i=h θiεt−i =
∑h−1

i=0 θiεt−i is the error term. Then,

ut =

∫ yt

−∞
f(yt|Ωt−h)dyt

=

∫ yt

−∞
g(yt −

∞∑
i=h

θiεt−i)dyt =

∫ ξt

−∞
g(v)dv

=

∫ ∑h−1
i=0 θiεt−i

−∞
g(v)dv

= G(
h−1∑
i=0

θiεt−1).

From the above expression for ut, we can find that ut follows the MA(h− 1) structure.

Therefore, since ut series is (h−1) dependent, each of the following all h sub-sequences of

{ut} will be i.i.d U [0, 1] distributed, such as {u1, u1+h, ut+2h, · · · }, {u2, u2+h, u2+2h, · · · },· · · ,

{uh, u2h, u3h, · · · }. As the result of that, we can use Bonferroni method to test the null

hypothesis if i.i.d. uniformity.

To be specific: suppose that we are interested in the h step ahead density

forecast and according to the above arguments, we can create h sub samples from the

original sample, each of which exhibits independence. The Bonferroni approach tells

us that a test with bound of the size α can be evaluated by performing h tests with

size α/h on each of the sub sample of {ut}. If the null hypothesis of i.i.d uniformity is

rejected by any of the sub sample, we should reject this null that the proposed h step

ahead density forecast is correct.

Let Ei represent the event that the i-th sub-series does not reject the null of

i.i.d. U [0, 1], i = 1, 2, · · · , h. The null hypothesis that the proposed h step head density
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forecast is correct is equivalent to the null the any of the sub series does not reject the

null of i.i.d uniformity, which is the event (
⋂h
i=1Ei) and thus the rejection of the joint

hypothesis is
⋂h
i=1Ei.

From the Boole’s inequality that

P (i = 1hEi) = P (

h⋃
i=1

Ei) ≤
h∑
i=1

P (Ei) = hα

where α represents the size of the test based on the i-th subsample. Then the test with

size bounded by α is constructed to test the correctness of the proposed h step ahead

density forecast.

We can use the simplest AR(1) model to illustrate the above argument. yt =

αyt−1 + σεt, εt ∼ N(0, 1), σ = 2

The 2-step ahead density forecast is easily calculated

f(yt+2|Ft) =
1√

2πσ2(1 + α2)
exp

(
−(yt+2 − α2yt)

2

2σ2(1 + α2)

)

and the PIT of the realizations based on this density function is

ut+2 =

∫ yt+2

−∞
f(yt+2|Ft)dyt+2

. From Diebold, Gunther and Tay (1998), we knwo that the series {ut+2}t=1,··· ,T is

uniformly distributed with serial correlation of MA(h − 1) structure. However, since

h = 2, the following two sub-sequence {u1, u3, u5, · · · } and {u2, u4, u6, · · · } and i.i.d.

uniformity.

The contour graphs for {ut}Tt=1 and the two sub-sequences: {u1, u3, u5, · · · }

and {u2, u4, u6, · · · } can be used to demonstrate the above argument (T = 2000, the

size for two sequences is 999).

Model two: yt = αyt−1 + εt, εt ∼ exp(λ), λ = 1
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The 2-step ahead density forecast with exponential error term can be calculated

with the convolution method,

f(yt+2|Ft) =

∫ ∞
−∞

f(yt+2|Ft+1)f(yt+1|Ft)dyt+1

=

∫ yt+2
α

αyt

e−(yt+2−αyt+1)e−(yt+1−αyt)dyt+1

=
1

1− α
(e−(yt+2−α2yt) − e

1
α

(yt+2−α2yt))

The PIT of the realization based on this density function is

ut+2 =

∫ yt+2

−∞
f(yt+2|Ft)dyt+2

. Similarly, the {ut+2}Tt=1 is uniformly distributed with serial correlation of MA(h− 1)

structure whereas the two seb-sequences {u1, u3, u5, · · · } and {u2, u4, u6, · · · } are i.i.d.

uniformity. (T = 2000, the size for two sequences is 999).

Propose steps to evaluate the multi-step density forecast

Step 1): Based on the proposed DGP of Yt, we can derive the h-step ahead

density forecast recursively as follows,

f(yt+h|Ωt) =

∫
· · ·
∫
f(yt+h, yt+h−1, · · · , yt+1|Ωt)dyt+h−1 · · · dyt+1

=

∫
· · ·
∫
f(yt+h|Ωt+h−1)f(yt+h−1|Ωt+h−2) · · · f(yt+1|Ωt)dyt+h−1 · · · dyt+1

Step 2): Perform PIT of yt+h over f(yt+h|Ωt) and obtain {ut+h}Tt=1

Step 3): Select all h sub-sequences of {ut+h}Tt=1:

{u1, u1+h, ut+2h, · · · }, {u2, u2+h, u2+2h, · · · },· · · , {uh, u2h, u3h, · · · }.

Apply our test statistics to all h subsequences. If all of these sequences are i.i.d.

uniformity,the null that the proposed density is correct, and cannot be rejected while if

any of these h sequences is not i.i.d. uniformity, the null will be rejected. Since we need

to check all h subsequences jointly, we can use Bonferroni method which gives us a test
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with the size bounded by α obtained by performing h tests, each of size α/h, on each

of the h subsequences of {ut}. However, when the analytical expression for the multi

period predictive density is not available in the closed form for all distributions, We

need to refer to some numerical techniques. We drao the univariate contour for normal

and exponential distributions in Figure 1.2 and 1.3, which can graphically illustrate the

idea for multistep density forecast with G-ACR methodology.

1.4 Conclusion

The Generalized Autocontour (G-ACR) is a generalized version of the auto-

contour methodology proposed by González-Rivera et al. (2011) (GR2011) to detect

misspecification in the dynamics of a time series model and departures from the assumed

conditional density model. The G-ACR will overcome some important limitations of the

original methodology in GR2011. First, when the conditional density of interest departs

from standard densities in financial econometrics, e.g. Normal, Student-t, Exponential,

etc., the analytical expressions of the autocontours may be mathematically cumbersome

to obtain and we need to resort to numerical methods to compute their density mass.

The difficulty is compounded when the system is multivariate. In contrast, the G-ACR

is very easy to obtain for any density because it is based on the probability integral

transforms (PIT) instead of standardized innovations, which are the basis of the origi-

nal ACR. Second, GR2011 considers only continuous stochastic processes with dynamics

restricted to the conditional mean and conditional variance, and a time-invariant func-

tional form of the density of the standardized innovations of the model. The advantage

of G-ACR is that it is applicable to continuous or discrete random processes, either uni-
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variate or multivariate. In a multivariate framework, the dimensionality of the system

is not a constraint because the information contained in the vector of PITs is condensed

into an indicator, which constitutes the basis of the proposed tests. Furthermore, the

components of the multivariate system may have different marginal densities, which

could be individually tested, but more importantly, the multivariate density, obtained

as a copula function linking the marginals, can also be jointly tested. As a result,

out statistics based on G-ACR are also useful diagnostics for correct copula specifica-

tion. G-ACR does not restrict the dynamics of the model to any particular moment(s)

and it is also applicable to cases when the predictive density does not have a closed

form solution, e.g. a multistep predictive densities in nonlinear models, and we have to

resort to simulation or nonparametric methods, but yet we could obtain the PIT pro-

cess from the simulated density. Third, the tests proposed in GR2011 have asymptotic

variance-covariance matrices that do not all enjoy closed-form solutions, some combining

parametric and nonparametric expressions. In contrast and because of the simplicity

of G-ACR, the asymptotic variances of the tests have all closed formulations that de-

pend on only one parameter, the a priori specified probability level associated with the

G-ACR.

As a brief introduction to G-ACR, which will be explained in detail in the

forthcoming sections, suffices to say that the basis of our testing techniques is the con-

struction of hyper-cubes of different sizes within the maximum hyper-cube formed by a

multidimensional uniform density [0, 1]n. We assess the location of the empirical PITs

(duplex, triplex, n-plex of observations ) within the corresponding population hyper-

cubes. If the multivariate model is correct, the volumes of the population hyper-cubes

must be the same as those in their empirical counterparts. Our tests will evaluate these

differences statistically to either reject or fail to reject the proposed density model. This
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approach will also permit to focus on different areas of the conditional density model

to assess those regions of interest. There is also a graphical visualization aspect of our

approach that will be very helpful on guiding the modeling process.
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Figure 1.1: Autocontours for the Uniform Density
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Figure 1.2: Univariate Contour Plots for Normal Distribution:Multistep
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Chapter 2

Evaluation of Multivariate

Counts Models. An Application

to Trading Activity in U.S. Large

Banks

2.1 Introduction

A point process {ti}i=1,2.. is a sequence of non-negative random variables as-

sociated with random arrival times 0 ≤ ti ≤ ti+1. Intensity models, duration models,

count models are alternative approaches to model a point process. From an informa-

tion perspective, the three approaches are equivalent as a process with high intensity

will have short durations and a high number of counts, and vice versa a low number of

counts is associated with long durations and low intensity. In the financial econometrics

literature, duration models have been very popular, and since the introduction of the
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autoregressive conditional duration (ACD) model by Engle and Russell (1998), we have

witnessed an explosion of alternative specifications to accommodate the characteristics

of duration data. Extensive surveys are provided by Pacurar (2008) and Hautsch (2004).

While univariate duration models have attracted much interest, research on multivariate

models is much thinner. The difficulty arises from the nature of duration data. Given

that durations are observations irregularly spaced in time, the components of a vector of

durations will not be synchronized and it will be difficult to model their dependence as

well as to incorporate information that arrives during the duration spells. For these rea-

sons, multivariate modeling has either shifted to a continuous-time framework focusing

on the dynamics of intensity functions, which are defined at any point in time (Bauwens

and Hautsch, 2006) or, on keeping the discrete-time framework, the analysis has moved

from durations to counts to facilitate the synchronization of multiple series, see Heinen

and Rengifo (2007), Quoreshi (2008), and Jung, Lisenfeld and Richard (2011).

If dynamic multivariate specifications are few, specification testing and forecast

evaluation techniques, either in-sample or out-of-sample, are fewer. In general, testing

is limited to partial aspects of the model and there is not a global assessment of the

multivariate system. Motivated by this state of affairs, we propose a new tool, the Gen-

eralized Autocontour (G-ACR), as the basis of in-sample or out-of-sample specification

testing techniques, which will allow for the evaluation of the adequacy of the full mul-

tivariate system regardless of its dimension. Specifically, we will focus on multivariate

counts models to avoid the asynchronization of information. The problem that we are

facing is the evaluation of a vector of discrete stochastic processes, whose individual

components could follow well-known discrete marginal density functions, such as Pois-

son, Negative Binomial, etc. but when analyzed jointly, we confront an open question

regarding the specification of their multivariate density function. As an illustration of
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the proposed G-ACR methodology, we will specify a multivariate counts model for the

number of stock trades of three large U.S. banking institutions: Bank of America, JP

Morgan Chase, and Wells Fargo. Dynamic trading is important because reflects arrival

of news and it is intimately related to issues of liquidity risk and market microstructure,

see O’Hara (1995) and Madhavan (2000) among others. We proceed by specifying an

autoregressive system for the number of trades of each bank. We will entertain dif-

ferent distributional assumptions for the marginal densities of each component of the

system but, most importantly, we are interested in the modeling of contemporaneous

correlations of the trades as those may have implications for the risk that these large

institutions pose to the banking system and beyond. We use a copula function to un-

derstand the contemporaneous correlation among the three banks. Heinen and Rengifo

(2007) also implemented a copula approach but they restrict themselves to a normal

copula where the dependence is contained in a correlation coefficient. As the recent

financial crisis has shown, the correlation among institutions varies during episodes of

low or high liquidity. We explore the possibility of asymmetric contemporaneous corre-

lation such that the correlation may be different when the number of trades is large (the

market is very active) or when the number is small (the market is slow). This modeling

exercise will allow us to showcase the proposed specification testing methodology and,

in particular, the use of visualization techniques to drive the specification process.

2.2 Extension of G-ACR to Discrete Stochastic Processes

2.2.1 Test Statistics for Discrete Multivariate Distribution Functions

In this section, we extend our methodology to assess the multivariate modeling

of a vector of discrete random variables. For instance, in our empirical illustration we
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are interested in modeling a vector of counts, in particular the number of trades in a day

for several stocks. For each component of the vector, e.g. daily trades for each stock,

we will assume a marginal density function, for instance, a Poisson distribution. In

order to assess the multivariate model with the proposed generalized autocontour-based

tests, we need the multivariate density of the vector process when its components are

contemporaneously correlated. We will choose a copula function to tie up the assumed

marginal densities of each component of the vector so that the multivariate distribution

will be fully specified. However, on implementing this approach we encounter two prob-

lems. The first deals with the uniqueness of the copula function for discrete marginal

densities (Marshall, 1996). The copula function is unique only for continuous densities.

The second problem is that for the implementation of the autocontour-based tests we

need uniformly distributed PITs associated with the conditional and marginal densities,

but when the data is discrete the uniformity of the PITs does not hold. The solution to

both problems is to find a continuous extension of the discrete random variables, which

is achieved by adding an independent perturbation taking values in [0,1] to the discrete

random variables (Denuit and Lambert, 2005).

Suppose that Y is a discrete random variable with PDF fy = Pr(Y = y). We

associate Y with a continuous random variable Y ∗, such that Y ∗ = Y +(U−1), where U

is a continuous random variable in (0,1), independent of Y , with strictly increasing CDF

and no sharing any parameter with the CDF of Y . Assuming a uniformly distributed

random variable U will satisfy all these conditions. Then, it is said that Y is continued

by U , if for any y ∈ N , N being the set of non-negative integers, F (y) = F ∗(y) and

fy =
∫ y
y−1 f

∗(s)ds. To see that this is the case, let [s] be the integer part of s ∈ <.

For U uniformly distributed and independent of Y , we can write F ∗(s) = Pr(Y ∗ ≤
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s) = Pr(Y + (U − 1) ≤ s) =
∑

y≤[s] Pr(Y = y) + Pr(Y = [s] + 1) × Pr(U ≤ s − [s]) =

= F ([s])+Pr(Y = [s]+1)×(s− [s]), so that for any y ∈ N , it follows that F (y) = F ∗(y).

As we mention above, we specify the multivariate model of a vector of counts by

choosing a copula function that ties up the marginal distribution of each component in

the vector. Next, we explain how to implement the proposed generalized autocontour-

based tests under Gaussian and Clayton copulas. In the empirical sections, we also

entertain the Gumbel copula.

2.2.1.1 Multivariate Distribution of a Vector of Counts with Gaussian Cop-

ula

Let (N1, ...Nn) be a discrete random vector, with marginal distributions Fi(Ni).

We specify the joint distribution H(N1,t, ...Nn,t) of the vector by choosing a copula

function C such that H(N1,t, ...Nn,t) = C(F1(N1,t), ..., Fn(Nn,t)). For a Gaussian copula,

the multivariate distribution is

H(N1,t, ...Nn,t) = Φn(Φ−1(F1(N1,t)), ...,Φ
−1(Fn(Nn,t)); Σ)

with Φn as the n-dimensional multivariate standard normal with correlation matrix Σ.

Let us call qi,t = Φ−1(Fi(Ni,t)), where Φ is the univariate standard normal

distribution. Then H(N1,t, ...Nn,t) = Φn(q1,t, ..., qn,t; Σ) with corresponding density

f(q1,t, ..., qn,t) = φn(q1,t, ..., qn,t; Σ), which is a multivariate standard normal density

with correlation matrix Σ.

Suppose that we wish to evaluate a proposed predictive density h∗t (Nt|Ωt−1)}Tt=1,

generated by a Gaussian copula, for the discrete random vector (N1,t, ...Nn,t). To test

the null hypothesis that h∗t (Nt|Ωt−1)}Tt=1 is the correct density model for (N1,t, ...Nn,t)
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is equivalent to test that the correct density for (q1,t, ..., qn,t) is multivariate normal, i.e.,

H0 : {f∗t (q1,t, ..., qn,t|Ωt−1) = φn(q1,t, ..., qn,t|Ωt−1; Σ)}Tt=1

Therefore, we will proceed as follows,

1. Obtain the continued variable for each element of the random vector

(N1,t, ...Nn,t), i.e., N∗i,t = Ni,t + (Ui − 1), where Ui is a draw from the uniform U[0,1]

density.

2. Obtain the continued PIT for each element of the random vector (N1,t, ...Nn,t),

i.e., u∗1,t = F ∗1 (N∗1,t), ...., u
∗
n,t = F ∗n(N∗n,t), where F ∗i is the marginal CDF of the continued

random variable associated with Ni,t.

3. Obtain qi,t for each Ni,t by transforming the continued PITs as qi,t =

Φ−1(F ∗i (N∗i,t)) where Φ is the univariate standard normal distribution.

4. Factorize the multivariate density of the random vector Qt = (q1,t, ..., qn,t)

as the product of conditional and marginal densities as

f∗(q1,t, q2,t,......qn,t|Ωt−1) = f∗(qn,t|q1,t, q2,t,......qn−1,t)× ....× f∗(q2,t|q1,t)× f∗(q1,t|Ωt−1)

For a Gaussian copula, f∗t (q1,t, ..., qn,t|Ωt−1) = φn(q1,t, ..., qn,t|Ωt−1; Σ), the

marginal and conditional densities are also normal. Thus, we can now easily ob-

tain the corresponding PITs, i.e., u1,t =
∫ q1,t
−∞ f∗q1,t(vt|Ωt−1)dvt, ....., um|1,2...m−1,t =∫ qm,t

−∞ f∗qm|q1,...qm−1,t
(vt|Ωt−1)dvt, ...., which under the null hypothesis of a correctly spec-

ified density model, must be i.i.d. U[0,1] random variables.
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2.2.1.2 Multivariate Distribution of a Vector of Counts with Clayton Cop-

ula

For the Clayton copula, the multivariate distribution of the vector (N1, ...Nn)

is given by

H(N1,t, ...Nn,t) = C(F1(N1,t), ..., Fn(Nn,t)) = (1− n+
n∑
i=1

(Fi(Ni,t))
−θ)−1/θ

= (1− n+
n∑
i=1

(qi,t)
−θ)−1/θ

where qi,t = Fi(Ni,t), and the corresponding density is given by

c(q1,t, ...qn,t) = (1− n+

n∑
i=1

q−θi,t )−n−
1
θ

∏n

i=1
(q−θ−1
i,t {(i− 1)θ + 1})

To obtain the PITs under the null hypothesis of a correct model under Clayton, proceed

as follows

1. Obtain the continued variable for each element of the random vector

(N1,t, ...Nn,t), i.e., N∗i,t = Ni,t + (Ui − 1), where Ui is a draw from the uniform U[0,1]

density.

2. Obtain the continued PIT for each element of the random vector (N1,t, ...Nn,t),

i.e., q1,t = F ∗1 (N∗1,t), ...., qn,t = F ∗n(N∗n,t), where F ∗i is the marginal CDF of the continued

random variable associated with Ni,t.

3. Factorize the multivariate density of the random vector Qt = (q1,t, ..., qn,t)

as the product of conditional and marginal densities as

c∗(q1,t, q2,t,......qn,t|Ωt−1) = c∗(qn,t|q1,t, q2,t,......qn−1,t)× ....× c∗(q2,t|q1,t)× c∗(q1,t|Ωt−1)

In order to calculate the conditional densities, we exploit the property that all
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n-marginal distributions of a Clayton copula are identical, i.e.,

C(F1(N1.t), ..., Fn(Nn−1,t), 1) = (1− (n− 1) +

n−1∑
i=1

(qi,t)
−θ)−1/θ.

With the marginal and conditional distributions in place, we obtain the PITs as previ-

ously described, i.e.,

u1,t =

∫ q1,t

−∞
c∗q1,t(vt|Ωt−1)dvt · · · dum|1,2...m−1,t =

∫ qm,t

−∞
c∗qm|q1···qm−1,t

(vt|Ωt−1)dvt,

and proceed with the implementation of the autocontour-based tests.

2.3 Monte Carlo Simulations

In this section we perform extensive Monte Carlo simulations to assess the

finite sample properties of the tests proposed in Propositions 1 to 3 when the data is

discrete and our interest is to model a vector of counts Nt = (N1,t, N2,t)
′ under different

multivariate distributions functions.

2.3.1 Size of the tests

We consider five models for which the conditional mean of counts, µi,t ≡

E[Ni,t|Ωt−1] for i = 1, 2, obeys dynamics of order one, i.e.,

E(Nt|Ωt−1) = W +A×Nt−1 +B × µt−1 (2.1)

where Ωt−1 is the information set, and W is a vector and A and B are matrices of param-

eters with the following values: W =

5

5

, A =

 0.4 0

0.15 0.45

, B =

0.5 0

0 0.45


The difference among the following five models lies on the assumed marginal

densities and whether the elements of the vector are contemporaneously correlated or

not. We entertain the following density specifications:
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Model S1: Bivariate Conditional Autoregressive Poisson (P ) Model

Ni,t|Ωt−1 ∼ P (µi,t), for i = 1, 2

f(nt,i|Ωt−1) =
e−µi,tµ

nt,i
i,t

nt,i!

E[Ni,t|Ωt−1] = µi,t

V ar[Ni,t|Ωt−1] = µi,t

In empirical financial applications, we observe overdispersion in the data very

frequently. A Poisson model does not allow for overdispersion because the mean and the

variance are the same. For this reason, we consider next Negative Binomial marginal

densities.

Model S2: Bivariate Conditional Autoregressive Negative Binomial (NB)

Model (κi = 4)

Ni,t|Ωt−1 ∼ NB(µi,t), for i = 1, 2

f(nt,i|Ωt−1) =
Γ(nt,i + κi)

Γ(κi)Γ(nt,i + 1)

(
κi

κi + µi,t

)κi ( µi,t
µi,t + κi

)nt,i
E[Ni,t|Ωt−1] = µi,t

V ar[Ni,t|Ωt−1] = µi,t(1 +
µi,t
κi

)

Because κi > 0 and µi,t > 0, the conditional variance is greater than the

conditional mean, thus the model generates overdispersion in the data (Cameron and

Trivedi, 1986). When 1/κi → 0, the Negative Binomial converges to the Poisson density.

The three following models allow for contemporaneous dependence among the

elements of the vector. The dependence is modeled by a copula function. We consider

three one-parameter Archimedean copulas (Nelsen, 2005): a Normal copula for which the

dependence is summarized by the correlation coefficient, and the Clayton and Gumbel

copulas that allow for asymmetric dependence among the elements of the vector.
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Model S3: Bivariate Conditional Autoregressive Negative Binomial with Gaus-

sian Copula Model (correlation coefficient ρ=0.8).

This model has the same marginal distributions as in Model S2 but the con-

temporaneous cross-correlation between the vector components is generated by using

the Gaussian copula, which functional form is described in section 2.3.1.

Model S4: Bivariate Conditional Autoregressive Negative Binomial with Clay-

ton Copula Model (copula parameter θ = 2).

This model has the same marginal distributions as in Model S2 but the con-

temporaneous cross-correlation between the vector components is generated by using

the Clayton copula, which allows for stronger correlation at low values than at high

values of the data. The functional form of the Clayton copula is described in section

2.3.2.

Model S5: Bivariate Conditional Autoregressive Negative Binomial with Gum-

bel Copula Model (copula parameter θ = 2).

This model has the same marginal distributions as in Model S2 but the contem-

poraneous cross-correlation between the vector components is generated by the Gumbel

copula, which allows for stronger correlation at high values than at low values of the

data. Gumbel functional form is

C(u1, u2, ..., un) = exp(−
[
(− lnu1)θ + (− lnu2)θ + ...+ (− lnun)θ

]1/θ
), θ > 0

We have estimated the five models S1 to S5 by maximum likelihood. The log-

likelihood function is constructed according to the distributional assumptions specified

in each model. For models with a copula function we follow a two-stage estimation

procedure as in Patton (2006) by first estimating the parameters in the marginal model,

and secondly using these estimates to estimate the copula parameter. Since parameter
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uncertainty is more important in-sample testing, we conduct the experiments in sample.

We obtain the PITs associated with the one-step-ahead conditional expectation of the

count vector following the procedures explained in section 2.3, and proceed to imple-

ment the tests described in Propositions 1 to 3. We have implemented a parametric

bootstrap procedure to approximate the asymptotic variance of the tests. 1 We obtain

bootstrap samples for each model by replacing the true value θ0 with the the estimate

θ̂T , computing the conditional mean µi,t, and making draws Ni,t from the specified

parametric distributions. This is a standard procedure to overcome the difficulties of

estimating asymptotic variances when parameter uncertainty is relevant. The following

experiments will show that bootstrapping the variance of the tests and using standard

asymptotic critical values provides statistics with the right size.

In Tables 1 and 2, we show the size of the tests for different sample sizes

T = 250, 500 and 1000 observations. The overall performance of the tests is very good.

Across models and across sample sizes, the average empirical size is 5%. We do not

observe any instance in which the tests are grossly over- or undersized. In Table 1, we

also include the size of the test for model S1 without bootstrapping the variance of the

test. As we expected, the size is very distorted and the tests are all uniformly under-

sized so that the tests do not reject the null hypothesis as much as they should. These

results support the practice of implementing a bootstrap procedure when parameter

uncertainty is a concern.

1When testing in-sample specification, ignoring parameter uncertainty may cause severe distortions in
the size of the tests. When testing out-of-sample specification, the importance of parameter uncertainty
will depend on the forecasting scheme and on the size of the estimation sample (R) relative to the
prediction sample (P ). Under the assumption of

√
R-consistent estimators, if R → ∞, P → ∞, and

P/R → 0 as T → ∞, parameter uncertainty is asymptotically negligible and no adjustment is needed
in the tests provided in Propositions 1 to 3.
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Table 2.1: Size of tk,αi-statistics for 13 autocontours (Nominal size 5% and

k = 1)

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

T Model S1

250 0.051 0.044 0.066 0.054 0.061 0.062 0.046 0.044 0.045 0.045 0.046 0.056 0.050
500 0.058 0.042 0.064 0.058 0.052 0.057 0.052 0.048 0.042 0.048 0.045 0.050 0.046
1000 0.045 0.053 0.047 0.044 0.054 0.052 0.054 0.056 0.057 0.056 0.054 0.050 0.045

T Model S1 (no bootstrap variance)

250 0.037 0.015 0.016 0.005 0.002 0.004 0.008 0.014 0.012 0.013 0.021 0.030 0.028
500 0.040 0.024 0.018 0.008 0.004 0.008 0.009 0.016 0.013 0.015 0.030 0.033 0.034
1000 0.032 0.031 0.017 0.011 0.006 0.006 0.007 0.012 0.017 0.018 0.027 0.041 0.034

T Model S2

250 0.045 0.038 0.039 0.042 0.042 0.046 0.043 0.04 0.052 0.048 0.052 0.047 0.053
500 0.055 0.039 0.051 0.052 0.054 0.055 0.051 0.057 0.05 0.045 0.043 0.052 0.047
1000 0.062 0.051 0.048 0.054 0.045 0.044 0.042 0.04 0.058 0.049 0.048 0.056 0.052

T Model S3

250 0.053 0.043 0.047 0.051 0.050 0.049 0.060 0.046 0.046 0.056 0.052 0.058 0.043
500 0.048 0.041 0.048 0.062 0.065 0.059 0.053 0.065 0.056 0.043 0.043 0.043 0.041
1000 0.05 0.051 0.042 0.047 0.055 0.054 0.050 0.048 0.062 0.067 0.053 0.048 0.048

T Model S4

250 0.034 0.047 0.047 0.049 0.050 0.050 0.060 0.064 0.057 0.049 0.049 0.038 0.060
500 0.036 0.049 0.05 0.047 0.055 0.055 0.063 0.057 0.058 0.048 0.052 0.044 0.049
1000 0.047 0.056 0.046 0.047 0.054 0.052 0.053 0.05 0.048 0.055 0.045 0.046 0.042

T Model S5

250 0.049 0.043 0.042 0.047 0.041 0.042 0.043 0.039 0.051 0.043 0.036 0.056 0.043
500 0.067 0.033 0.051 0.053 0.058 0.053 0.047 0.049 0.044 0.039 0.045 0.043 0.053
1000 0.052 0.062 0.049 0.062 0.060 0.056 0.052 0.048 0.053 0.051 0.041 0.050 0.046

Notes: The 13 autocontours are C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.0.9, 0.95, 0.99].
1000 Monte Carlo replications and 500 bootstrap samples.

34



Table 2.2: Size of tk,αi , Lαi, Ck statistics (Nominal size 5%)

t1,7 t2,7 t3,7 t4,7 t5,7 L2,7 L3,7 L4,7 L5,7 C1,13

T Model S1

250 0.046 0.049 0.046 0.043 0.051 0.053 0.047 0.062 0.061 0.050
500 0.052 0.046 0.048 0.053 0.056 0.056 0.055 0.055 0.052 0.045
1000 0.054 0.05 0.048 0.055 0.055 0.047 0.052 0.054 0.056 0.058

T Model S2

250 0.043 0.036 0.045 0.04 0.039 0.037 0.044 0.048 0.052 0.047
500 0.051 0.057 0.064 0.058 0.044 0.057 0.055 0.043 0.053 0.054
1000 0.042 0.047 0.047 0.04 0.045 0.043 0.051 0.053 0.052 0.049

T Model S3

250 0.060 0.046 0.043 0.049 0.045 0.055 0.051 0.057 0.055 0.055
500 0.053 0.055 0.054 0.061 0.056 0.058 0.065 0.06 0.058 0.040
1000 0.05 0.052 0.048 0.053 0.054 0.044 0.048 0.058 0.053 0.054

T Model S4

250 0.06 0.06 0.059 0.063 0.066 0.069 0.057 0.065 0.059 0.064
500 0.063 0.053 0.057 0.062 0.065 0.067 0.047 0.060 0.052 0.063
1000 0.053 0.045 0.049 0.043 0.041 0.053 0.052 0.056 0.054 0.053

T Model S5

250 0.043 0.039 0.04 0.037 0.04 0.04 0.06 0.053 0.049 0.066
500 0.047 0.048 0.051 0.047 0.042 0.041 0.045 0.049 0.052 0.042
1000 0.052 0.046 0.047 0.058 0.049 0.055 0.052 0.048 0.052 0.056

Notes: tk,7 for k = 1, 2, ...5, and 7 refers to the 50% autocontour.
Lk,7 for k = 2, ....5 stacking lags up to k and considering the 50% autocontour.
C1,13 stacking all 13 autocontours for lag k = 1.
1000 Monte Carlo replications and 500 bootstrap samples.
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2.3.2 Power of the tests

To study the power properties of the tests we consider as a null hypothesis

Model S3: a bivariate autoregressive model of order one as in (2.1) for the vector of

conditional means, with negative binomial marginal densities (κi = 4) and a normal

copula function with contemporaneous correlation ρ = 0.8. We consider four data

generating mechanisms:

Model P1: Conditional Autoregressive Poisson Model with Normal Copula (

ρ = 0.8). In this case, we maintain the same dynamic structure and the same copula

characteristics and we study departures from the hypothesized marginal densities.

Model P2: Conditional Autoregressive Negative Binomial Model with a Clay-

ton copula (θ = 2). We maintain the same dynamics and marginal densities and study

departures from the hypothesized copula, and in particular, detecting asymmetric con-

temporaneous dependence.

Model P3: Conditional Autoregressive Negative Binomial Model with a Gum-

bel copula (θ = 2). This case is similar to the previous one but the contemporaneous

asymmetric dependence in Gumbel runs in opposite direction to that of Clayton.

Model P4: Conditional Autoregressive Negative Model with Normal Copula

(ρ = 0.8) with high order dynamics in the conditional means, i.e.,

E(Nt|Ωt−1) = D +A1 ×Nt−1 +A2 ×Nt−2 +A3 ×Nt−3 +A4 ×Nt−4 +B × µt−1

where D =

0.8

0.7

, A1 =

 0.3 0

0.25 0.28

 , A2 =

0.09 0

0.05 0.06

 , A3 =

0.005 0

0.003 0.008

,

A4 =

0.003 0

0.001 0.002

, and B =

0.3 0

0 0.35

. We study departures from the hypothe-

sized dynamics and maintain the distributional assumptions on the marginal densities

36



and the copula.

We present the power results in Tables 3 and 4. In Table 3, we analyze the

behavior of the t-statistics, tk,αi for a fixed lag k = 1 and 13 autocontours that span the

entire uniform density. The Poisson case, model P1, is very easy to detect because of

the property of overdispersion generated by the Negative Binomial densities. The power

is one regardless of sample size not only for the t-statistics but also for the portmanteau

tests Lαi and Ck reported in Table 4. In general, the tests are more powerful at detecting

departures from distributional assumptions than at detecting misspecified dynamics. In

models P2 and P3, we find very high power even with small sample sizes. In model

P4 we need a large sample (above 500 observations) to find power above 50%. At the

lowest autocontours, i.e. 1, 5, or 10 %, and the highest autocontour 99%, and mainly

for small samples (T = 250), the power is lower because there are only a few (or a lot)

observations within each autocontour and, consequently there is not much variability

in the indicator function, which is at the core of the tests. The power for model P2

(Clayton) is lower than that for model P3 (Gumbel) for the intermediate autocontours

around the 10- 40% level, which is expected as the correlation of the observations in

this range for a Clayton copula is closer to that of the hypothesized Normal than the

correlation of those observations generated by Gumbel copula. The opposite happens

when we examine the high autocontours 50-99% precisely because of the opposite reason,

the Gumbel correlation for observations in the upper contours is closer to the Normal

correlation than that generated by the Clayton.

In Table 4, we present the power of the t-statistics, tk,7 , and of the portman-

teau statistics Lk7 and C13
k for several values of k. In general, the power is excellent

across models and sample sizes. The overall findings are similar to those from Table
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3. Examining the t-statistics for different lags helps to detect dynamic misspecification.

In model P4 the highest power happens for t1,7 and for k > 1, the power stabilizes

indicating that lag 1 is more problematic than the rest. The tests C13
k are obviously

the most powerful as they collect information for all the autocontours. However, if the

researcher is interested in partial aspects of the densities, such as a quantile or a collec-

tion of quantiles, it would be more informative examining the Lkαi statistics, where we

fix the level of the quantile αi, and the individual t-statistics that provide information

about the quantile desired.

2.4 Empirical Illustration: Trading Activity in Large Banks

In this section, we will iilustrate how to use the proposed testing method-

ology and, in particular, the use of visualization techniques to drive the specification

process. We estimate a multivariate counts model for the trades of three large U.S.

banking institutions: Bank of America, JP Morgan Chase, and Wells Fargo. We are

interested in exploring models that produce asymmetric contemporaneous correlation

among institutions in times of intense versus low trading activity.

2.4.1 Data Description

We collect transaction data from the TAQ database for three U.S. large com-

mercial banks: Bank of America (BOA), JP Morgan Chase (JPM), and Wells Fargo

(WF), trading in the New York Stock Exchange, from January 3rd to June 30th, 2011

for a total of 125 trading days. We record the number of trades at the 5-minute fre-

quency and remove any trades before 9:30 am (opening time) and after 4:00 pm (closing

time) for a total of 9,750 observations per bank. In Figure 2, we plot the histograms
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of the number of trades; they show evidence for overdispersion as there is a large tail

to the right with most of the observations concentrated around the mean. The range

in the number of trades is very wide, from minima in the 100s trades to maxima in the

20,000s.

Figure 2.1: Histograms of the data
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It is very common to find intra-day seasonality in high frequency data. Trading

activity is intense at the the beginning and towards the end of the trading day and

substantially lighter during the mid-day hours, which gives rise to a U-shaped curve of

diurnal effects. We take care of these effects by estimating a set of half-hour dummies.

2.4.2 Dynamic Models and Evaluation

We estimate several dynamic models for the conditional mean µi,t ≡ E[Ni,t|Ωt−1]

for i = 1(BAC), 2(WFC), 3(JPM) under different distributional assumptions. To il-

lustrate how our methodology works, we will present our results in a sequential fashion.

First, we will show the results of the Poisson model and the Negative Binomial Model

ignoring contemporaneous correlation. Though a priori we know that the Poisson model

will not fit our data because of overdispersion, it is interesting to contrast the estimation

results with those of a Negative Binomial model and observe the behavior of the corre-

sponding PITs and the generalized autocontour-based specification tests. Secondly, we
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will introduce contemporaneous correlation by estimating the dependence parameters

under Gaussian, Clayton, and Gumbel copulas, and we will show the specification im-

provements by analyzing the autocontour-based specification tests and the responses of

the corresponding PITs.

2.4.2.1 Models with no contemporaneous correlation

In Table 5, we present maximum likelihood estimates for the parameters of

the best dynamic model for the conditional mean of trade counts with Poisson and

Negative Binomial marginal densities and without contemporaneous correlation. We

have experimented with different lag structures and, through standard specification

tests on the Pearson residuals, we finally settled in a low order model such as µt ≡

E(Nt|Ωt−1) = w + A ×Nt−1 + B × µt−1 where Nt is a 3 × 1 vector of trade counts, A

is a 3× 3 matrix, not necessarily symmetric, with typical element {ai,j}, and B is 3× 3

diagonal matrix with typical element {bi,i}.

For each equation in the system, the trading dynamics for each bank are mainly

driven by the most recent activity of the bank itself as we can see in the magnitude of the

estimates of ai,i and bi,i. The effect of trading in the other institutions, i.e. estimates of

ai,j , are much smaller in magnitude although statistically significant at the conventional

levels. The overall system is stationary as the eigenvalues of the matrix A+B are inside

the unit circle. The overdispersion parameter 1/κi is evidently different from zero, as we

expected. The last panel of Table 6 provides some descriptive statistics of the Pearson

residuals, i.e. (Ni,t − µi,t)/σi,t. If the model is well specified, the residuals should have

mean zero and variance one. This is not the case for the Poisson model because of

the overdispersion in the data. The Q-statistics are two orders of magnitude smaller

than the raw Q-statistics, indicating that the estimated dynamics are adequate. Some
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Q-statistics are statistically significant but the residual autocorrelation that they are

picking up is extremely low, for instance correlations as low as 0.007, 0.02, 0.05, etc.,

so that such magnitude is not economically meaningful. As expected, we find enough

evidence to reject the Poisson model in favor of the Negative Binomial.

We proceed to implement the generalized autocontour-based specification tests

proposed in section 2 for the Negative Binomial model with no contemporaneous corre-

lation. In Table 6, we present the values of the t-tests for 5 lags and 13 autocontours,

the Lαi tests stacking up to 2, 3, 4, and 5 lags for a given autocontour αi, and the

Ck tests stacking the 13 autocontours for a given lag k = 1, · · · , 5. The t-tests reject

very strongly the model at the lower and middle (1 to 60% ) and upper (95 and 99%)

autocontour levels. At the lower levels, the test indicate that the number of observa-

tions within the autocontours is much larger than what we should expect given the

assumed dynamics and contemporaneously independent Negative Binomial marginals.

At the upper levels, the opposite happens, there are fewer observations than expected.

However, since the t-tests show similar values across lags, the rejection of the model is

not due to misspecified dynamics but to the assumed distributional assumptions. The

umbrella tests Lαi and Ck, which aggregate over lags or over contours, strongly confirm

the message delivered by the t-tests.

The graphs in Figure 3 reveal why the rejection of the Negative Binomial model

is so strong. We plot the 3-dimensional vector of contemporaneous continued PITs {ut,i}

for the Poisson model (left panel) and for the Negative Binomial model (right panel)

for three autocontours, the 10% level (red dots), the 10-80% levels (blue dots), and the

80-100% levels (green dots). The rejection of Poisson is very evident because most of

the points are distributed along the boundaries of the contour levels, whose location is
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very far from where we expect the i.i.d. uniform observations to fall. The unmodeled

overdispersion drives the location of the observations towards the boundaries of the

cube. The Negative Binomial model corrects this problem as the observations are more

evenly distributed within the cubes associated with the levels considered. Nevertheless,

we observe an elliptic concentration of the observations towards the diagonals of the

cubes, which is the reason why the autocontour-based tests reject this model and, more

importantly, it points out the need to model the contemporaneous dependence among

the components of the vector.

Figure 2.2: Contemporaneous PITs:

Poisson model (left), Negative Binomial with No Contemporaneous Correlation (right)
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2.4.2.2 Models with contemporaneous correlation

We model the contemporaneous dependence of trade counts by using copula

functions, which offer great flexibility to account for the dependence structure among
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several series regardless of the specification of the their marginal distributions. We

have selected three copula functions: Gaussian, Gumbel, and Clayton. These functions

summarize the dependence of the data with one parameter. The Gaussian copula char-

acterizes dependence through the correlation coefficients and, as such, they provide a

global measure of dependence for the entire collection of observations. On the contrary,

the dependence parameters in the Gumbel and Clayton copulas allow for stronger or

weaker dependence in different regions of the observations. Clayton (Gumbel) produces

stronger (weaker) dependence for low values and weaker (stronger) dependence for high

values of the observations. We also consider the inverse Gumbel copula, which by in-

verting its shape, delivers an asymmetric dependence similar to that from Clayton. 2

The maximum likelihood estimates of the correlation matrix for the Gaussian

copula are presented in Table 7. The pairwise contemporaneous correlation is significant

and it runs between 0.40 and 0.50. The maximum likelihood estimates of the dependence

parameter for the inverse Gumbel copula is θ = 1.37 with a t-ratio of 163.70, and for

the Clayton copula θ = 0.65 with a t-ratio of 47.18. These values suggest very strongly

that the dependence is asymmetric.

In Table 8, we present the results of the autocontour-based t-tests for the Neg-

ative Binomial model with contemporaneous correlation modeled by Gaussian, inverse

Gumbel, Clayton, and a mixture of Gaussian/Clayton copulas. By comparing these re-

sults with those in Table 6, we observe the substantial overall reduction in the values of

the t-tests, which indicates the need to model the contemporaneous dependence among

the series. Focusing on the results from the Gaussian copula, the tests fail to reject the

model in the lowest (1% and 5%) and central autocontours (40% to 70% levels). At

2We are grateful to Andrew Patton for suggesting the inverse Gumbel copula to us. If {ut} are the
PITs from Gumbel, {1− ut} will be the corresponding PITs in the inverse Gumbel copula.
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the upper autocontours 80% to 99%, however, there is a strong rejection as the model

imposes more dependence between large counts than what is granted in the data. For

the upper autocontours, the Clayton copula is more responsive to the needs of the data

and the values of the tests are significantly lower than those in the Gaussian case. How-

ever, the Clayton copula imposes too much dependence in the observations in the lower

autocontours so that the model is also rejected. In between the Gaussian and Clayton

results, we have those from an inverse Gumbel copula model. In this case, the values of

the tests at the low and central autocontours are smaller than those from Clayton and

larger than those from Gaussian; at the upper autocontours, the opposite happens, the

tests are smaller than those from Gaussian and slightly larger than those from Clayton.

The inverse Gumbel copula straddles between the dependence provided by the Gaussian

copula and that provided by the Clayton copula.

In Figure 4, we plot 2-dimensional contours of several copula functions with

Negative Binomial marginal densities with 1/κi = 0.2 and dependence parameters simi-

lar to the estimates obtained for this data set. Observe the characteristics that prompt

the rejection that we have discussed above. The contours of the Gaussian copula exhibit

the most elliptical shapes compared to those from the remaining copulas. The rejec-

tion of this copula is mainly due to too much correlation imposed by the model on the

observations in the upper north-east corner; the inverse Gumbel and Clayton relax the

dependence in this area at the expense of imposing stronger dependence in the lower

south-west region.

Given these results, it seems sensible to think about a model that combines the

properties of different copulas. The most natural mixtures are Gaussian with Clayton

copulas or inverse Gumbel with Clayton. In the last three columns of Table 8, we report
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the results for the t-tests for the Gaussian/Clayton mixture. We estimated by maximum

likelihood the weights of the mixture and the estimate is 0.534 on the Gaussian and 0.466

on Clayton. In addition, the estimates of the copula-based correlations are larger (from

0.5 to 0.7) than those from the pure Gaussian model, and the estimate of the Clayton

dependence parameter θ is 0.45, which is smaller than that from the pure Clayton model.

This mixture provides a remarkable improvement in the t-tests for all autocontours from

1% to 70% with values that fail to reject the model at conventional significance levels,

while for the high autocontours 80% to 99%, the t-tests are substantially lower than

those from Gaussian but still larger than those from Clayton. We should also note that

the mixture inverse Gumbel/Clayton produces improvements in these high autocontours

but at the expense of some rejections in the central autocontours. We report the t-tests

of this mixture in the Appendix. In Figure 4, we can see why the mixture model

performs better than the other models for this data set. The contours of the mixture

Gaussian/Clayton show that the correlation in the observations in the south-west corner

is higher than in the Gaussian case but lower than in Clayton or inverse Gumbel cases,

and though this behavior is favored by this data set, we still need further independence

among the observations in the north-east corner.

In summary, the combination of statistical tests and graphical devices offers

plenty of evidence on the highly asymmetric dependence structure among trades of these

three banking institutions. When the number of trades is a few, the dependence is high,

and when the number of trades is very large, the dependence is low or non-existent.

This finding is analogous to the empirical Epps effect (Epps, 1979) in high frequency

returns, which shows that the sample correlation among stock returns goes to zero as

the sampling interval shrinks. If we translate trade counts into durations, our findings

can be interpreted as an Epps-like effect: when the durations become shorter (number
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of trade counts is large), the correlation among trades goes to zero, and vice versa, for

long durations (number of trade counts is low), the correlation is strong. This empirical

effect is relevant for measurement of liquidity risk because when liquidity drains (lack

of trading) , we should expect a concurrent effect among similar institutions.

In Figure 5, we plot the 3-dimensional vector of contemporaneous PITs for the

Negative Binomial model with Gaussian, inverse Gumbel, Clayton, and mixture Gaus-

sian/Clayton. It is evident that the four models have captured the contemporaneous

dependence among the three series observed in Figure 3 (right panel). Now the obser-

vations are more evenly distributed within the cubes considered, as it is expected from

i.i.d. data. With the Gaussian copula, observe the uneven location of the observations in

the contours 80%-99% (green dots), which is the reason why the tests strongly reject this

model for the higher contours. Inverse Gumbel and Clayton models correct substantially

the distribution of the observations in the upper contours but at the expense of mis-

placing observations in the 10%-80% levels (blue dots). The mixture Gaussian/Clayton

model offers the best fit as it is able to produce the right distribution of observations in

the 10%-80% levels with no so large distortions in the very upper 80%-99% levels.

2.5 Conclusion

We have proposed a new tool, the Generalized Autocontour (G-ACR) as the

basis for a battery of dynamic specification tests. G-ACR overcomes some important

limitations of the autocontour methodology proposed in González-Rivera et. al. (2011),

and in doing so, G-ACR tests are useful diagnostics to assess the conditional density

model of either discrete or continuous random processes in a univariate or multivari-

ate model, either in-sample or out-of-sample. The tests enjoy standard distributions
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and have outstanding finite sample properties, they are correctly sized and are very

powerful to detect departures from the assumed conditional density. In addition, the

G-ACR methodology brings a visual aspect to the modeling exercise that is helpful on

driving the specification process. To illustrate the usefulness of our approach we have

focused on the modeling of a trivariate system of counts. The literature on evaluation

of multivariate counts model is rather thin, so that our approach will also fill a void in

this area of statistics and econometrics. We have analyzed a high frequency trivariate

system of the number of trades in three US large banking institutions. We have shown

the need to specify not only the correct dynamics and the individual marginal densities

of trade counts but also the contemporaneous dependence of the three banks. We have

modeled such dependence with copula functions and we have found that there is a highly

asymmetric response depending on whether trading activity is dense or thin. When the

number of trades is low, the contemporaneous dependence is stronger than when the

number is high, so that when liquidity dries out in one institution, we should expect

similar behavior in the rest.
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Table 2.3: Power of tk,αi-statistics for 13 autocontours (Nominal size 5% and

k = 1)

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

T Model P1 (Poisson/Normal)

250 0.498 1.0 0.26 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 0.88 1.0 0.37 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 1.0 1.0 0.517 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T Model P2 (Negative Bin/Clayton)

250 0.055 0.065 0.055 0.145 0.195 0.290 0.48 0.59 0.77 0.81 0.825 0.89 0.87
500 0.07 0.08 0.07 0.165 0.235 0.52 0.78 0.89 0.915 0.99 0.985 0.985 0.98
1000 0.182 0.384 0.240 0.427 0.510 0.68 0.94 1.0 1.0 1.00 1.00 1.00 1.00

T Model P3 (Negative Bin/Gumbel)

250 0.005 0.14 0.195 0.255 0.255 0.37 0.435 0.47 0.47 0.495 0.405 0.445 0.34
500 0.01 0.185 0.35 0.43 0.505 0.60 0.58 0.64 0.67 0.645 0.70 0.675 0.60
1000 0.05 0.26 0.48 0.59 0.68 0.81 0.72 0.85 0.842 0.862 0.95 0.90 0.83

T Model P4 (Dynamic Misspecification)

250 0.035 0.055 0.07 0.12 0.165 0.215 0.30 0.305 0.30 0.335 0.335 0.26 0.19
500 0.05 0.07 0.115 0.27 0.32 0.375 0.435 0.49 0.475 0.51 0.445 0.44 0.32
1000 0.075 0.115 0.255 0.415 0.49 0.60 0.665 0.675 0.70 0.745 0.69 0.60 0.505

Notes: The 13 autocontours are C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.0.9, 0.95, 0.99].
1000 Monte Carlo replications and 500 bootstrap samples.
The null hypothesis is a bivariate conditional autoregressive model with Negative Binomial marginal
densities and a Normal copula function.

Table 2.4: Power of tk,αi, Lαi, Ck statistics (Nominal size 5%)

t2,7 t3,7 t4,7 t5,7 L2
7 L3

7 L4
7 L5

7 C13
1 C13

2 C13
3 C13

4 C13
5

T Model P1 (Poisson/Normal)

250 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T Model P2 (Negative Bin/Clayton)

250 0.465 0.44 0.485 0.495 0.445 0.42 0.395 0.385 0.965 0.975 0.98 0.985 0.97
500 0.755 0.765 0.77 0.71 0.705 0.665 0.65 0.625 1.0 1.0 1.0 0.995 0.99
1000 0.921 0.930 0.935 0.932 0.927 0.873 0.854 0.839 1.0 1.0 1.0 1.0 1.0

T Model P3 (Negative Bin/Gumbel)

250 0.415 0.455 0.45 0.42 0.39 0.387 0.385 0.38 0.825 0.785 0.84 0.805 0.8
500 0.58 0.56 0.61 0.555 0.53 0.505 0.505 0.505 0.97 0.965 0.955 0.955 0.96
1000 0.723 0.719 0.723 0.708 0.705 0.701 0.704 0.702 1.0 1.0 0.994 0.992 1.0

T Model P4 (Dynamic Misspecification)

250 0.235 0.27 0.28 0.26 0.245 0.235 0.24 0.25 0.52 0.515 0.455 0.525 0.48
500 0.415 0.41 0.425 0.47 0.42 0.395 0.36 0.335 0.775 0.72 0.745 0.73 0.775
1000 0.585 0.605 0.59 0.60 0.585 0.57 0.56 0.52 0.935 0.875 0.91 0.93 0.95

Notes: tk,7 for k = 2, ...5, and 7 refers to the 50% autocontour.
Lk7 for k = 2, ....5 stacking lags up to lag k and considering the 50% autocontour.
C13
k stacking all 13 autocontours for lags k = 1, ...5.

1000 Monte Carlo replications and 500 bootstrap samples.
The null hypothesis is a bivariate conditional autoregressive model with Negative Binomial marginal
densities and a Normal copula function.
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Table 2.5: Estimation Results. Maximum Likelihood Estimates

Poisson Model Negative Binomial Model

Parameter BAC WFC JPM BAC WFC JPM

w 157.08 139.48 185.72 170.68 156.55 106.32
(12.42) (13.44) (12.22) (29.63) (22.32) (15.48)

a1,1 0.418 0.466
(41.51) (43.07)

a1,2 0.027 0.0279
(2.47) (3.72)

a1,3 0.0743 0.129
(5.88) (3.29)

a2,1 0.0063 0.0287
(2.09) (3.93)

a2,2 0.461 0.4557
(26.56) (30.13)

a2,3 0.0296 0.029
(3.41) (4.11)

a3,1 0.032 0.0258
(6.36) (6.53)

a3,2 0.040 0.038
(3.24) (5.10)

a3,3 0.482 0.433
(23.98) (24.72)

b1,1 0.431 0.321
(32.26) (31.13)

b2,2 0.394 0.310
(19.13) (24.73)

b3,3 0.310 0.406
(10.12) (18.76)

Dispersion

1/κ1 0 0.196
(55.45)

1/κ2 0 0.186
(53.06)

1/κ3 0 0.141
(39.03)

Pearson Residuals

mean -0.15 -0.63 1.09 0.01 0.09 -0.01
variance 436.28 256.58 313.91 1.23 1.10 1.36
Q(10) 15.19 76.89 147.97 84.47 90.00 73.81
Q(20) 60.79 112.61 212.73 154.64 219.25 126.13

Note: t-statistics in parenthesis. The models also include five dummies to take
care of diurnal effects. The Pearson residual is defined as (Ni,t − µi,t)/σi,t.
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Table 2.6: Autocontour-based Tests:

Negative Binomial Model with no Contemporaneous Correlation
t-tests Lαi

αi lag 1 lag 2 lag 3 lag 4 lag 5 lag 2 lag 3 lag 4 lag 5

1% 28.57 28.17 29.15 29.83 26.70 1235.36 1527.06 1673.36 1748.38
5% 28.81 27.78 30.08 29.19 27.58 1072.97 1259.76 1357.17 1382.56
10% 25.80 23.43 24.72 25.72 24.16 751.97 839.72 886.40 894.86
20% 20.42 19.54 20.61 20.27 19.69 452.32 496.74 504.11 505.65
30% 17.66 17.30 17.59 17.74 17.26 338.05 348.40 354.56 354.93
40% 13.80 13.60 13.30 13.74 13.25 200.80 201.69 204.83 204.83
50% 10.08 10.14 9.63 10.44 10.04 107.15 107.17 112.07 112.48
60% 7.61 7.28 7.47 8.36 7.71 58.06 58.78 72.31 72.61
70% 4.15 3.84 3.88 4.21 4.38 17.41 17.42 18.98 21.74
80% 0.15 -0.19 -0.13 -0.15 0.17 2.36 2.51 2.99 4.52
90% -5.38 -5.72 -5.59 -5.76 -5.42 35.37 35.73 38.66 40.50
95% -9.36 -9.70 -9.34 -9.56 -9.46 99.84 102.90 104.30 104.32
99% -16.70 -16.95 -16.93 -16.81 -16.94 304.00 309.90 311.60 315.97

Ck

1688.21 1612.38 1758.39 1772.77 1546.43

Notes: t-tests critical values: ± 1.96 (5% level), ± 2.58 (1%), ± 3.5 (0.05%).
Lαi stacks lags up to 2, 3,4,5 for αi autocontour. Critical values at 5% level:
5.99 (2 lags), 7.81 (3 lags), 9.49 (4 lags) and 11.1 (5 lags).
Ck stacks all 13 autocontours for lag k. Critical values: 22.4 (5% level), 27.7 (1%), 34.5 (0.1%).

Table 2.7: Copula-based Correlation Matrix

BAC WFC JPM

BAC 1.00 0.38 0.39
WFC 0.38 1.00 0.48
JPM 0.39 0.48 1.00

Table 2.8: Autocontour-based t-tests:

Negative Binomial Model with Contemporaneous Correlation
Gaussian Copula Inv. Gumbel Copula Clayton Copula Gaussian/Clayton

αi lag 1 lag 2 lag 3 lag 1 lag 2 lag 3 lag 1 lag 2 lag 3 lag 1 lag 2 lag 3

1% -0.72 0.33 0.52 -1.00 -0.94 -1.28 1.47 3.46 0.71 -0.77 -0.82 -0.60
5% 1.20 1.86 3.27 3.38 2.54 2.38 9.12 6.71 6.59 0.62 0.21 0.50
10% 3.43 3.52 4.10 3.25 2.44 3.02 10.89 8.58 9.98 1.75 1.74 1.41
20% 3.95 4.00 5.23 4.43 3.54 4.48 10.59 9.02 9.71 1.81 1.93 1.83
30% 3.70 3.56 4.73 4.53 3.29 4.13 10.16 8.78 9.19 2.82 2.63 3.31
40% 2.05 1.89 2.75 3.96 2.73 3.17 9.06 8.29 8.35 1.51 1.43 1.92
50% 0.78 0.57 1.51 3.42 2.61 2.86 7.61 6.80 7.11 0.22 0.16 0.32
60% -0.74 -0.36 -0.23 1.39 1.27 1.60 5.97 5.59 6.06 -0.52 -0.23 -0.44
70% -2.58 -2.54 -2.42 0.22 -0.14 0.28 3.78 3.54 3.71 -2.16 -2.22 -2.46
80% -5.45 -5.41 -5.29 -3.19 -3.53 -3.40 -0.12 -0.13 -0.10 -4.19 -4.31 -4.21
90% -9.70 -10.31 -10.24 -6.33 -6.68 -6.52 -4.88 -5.19 -5.04 -7.70 -8.26 -8.04
95% -12.58 -13.05 -12.86 -10.41 -10.98 -10.69 -9.24 -9.61 -9.29 -10.51 -10.87 -10.54
99% -20.60 -20.76 -20.87 -16.07 -16.25 -16.14 -15.06 -15.33 -15.29 -18.16 -18.25 -18.15

Notes: t-tests critical values: ± 1.96 (5% level), ± 2.58 (1%), ± 3.5 (0.05%).
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Figure 2.3: Contours of Copulas with Negative Binomial Marginal Densities
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Figure 2.4: Contemporaneous PITs: Negative Binomial Model with Copula Dependence
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[10] González-Rivera, G., Senyuz,Z., and Yoldas, E. (2011), “Autocontours: Dynamic
Specification Testing”, Journal of Business and Economic Statistics, vol. 29, 1,
pp. 186-200.

[11] Hautsch, N. (2004), Modelling Irregularly Spaced Financial Data, Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, Berlin.

[12] Heinen, A., and Rengifo, E. (2007), “Multivariate Autoregressive Modeling of Time
Series Count Data Using Copulas”, Journal of Empirical Finance, Vol. 14, pp. 564-
583.

52



[13] Jung, R., Lisenfeld, R. and Richard, J. (2011), “Dynamic Factor Models for Mul-
tivariate Count data: An Application to Stock-Market Trading Activity”, Journal
of Business and Economic Statistics, vol. 29, 1, pp. 72-85.

[14] Marshall, A. (1996), “Copulas, Marginals, and Joint Distributions”, Lecture Notes-
Monograph Series. Vol. 28, 1, pp. 213-222.

[15] Madhavan, A. (2000), “Market Microstructure: A Survey”, Journal of Financial
Markets, vol. 3, pp. 205-258.

[16] Nelsen, R. (2005). An Introduction to Copulas. Second Edition, Springer.

[17] O’Hara, M. (1995). Market Microstructure Theory. Blackswell.

[18] Pacurar, M. (2008), “Autoregressive Conditional Duration Models in Finance: A
Survey of The Theoretical and Empirical Literature”, Journal of Economic Surveys,
vol. 22, 4, pp. 711-751.

[19] Patton, A.J. (2006), “Estimation of Multivariate Models for Time Series of Possibly
Different Lengths”, Journal of Applied Econometrics, vol. 21, 4, pp. 147-173.

[20] Quoreshi, A.M.M.S. (2008), “A Vector Integer-Valued Moving Average Model for
High Frequency Financial Count Data”, Economics Letters, vol. 101, 3, pp. 258-261.

53



Chapter 3

Density Forecast Evaluation in

Unstable Environment

3.1 Introduction

This paper proposes new methodologies for evaluating the out-of-sample den-

sity forecast performance of models in the presence of instabilities. The definition of

instabilities may vary from different papers. In most of the literature, people specifi-

cally refer to the conditional mean parameter instabilities. It can be illustrated with

the following simple model, where the data are generated by: yt+h = βtxt + εt+h, where

εt+h ∼ i.i.d.(0, σ2). The parameter instability means that βt is time-varying, which can

have one break, multiple breaks in the history or even be different at each time point.

However, in addition to the parameter instabilities, in some paper, (Giacomini, R. and

B. Rossi (2010b)), the instabilities also contain the structural break to the model’s vari-

ance. Therefore, in this paper, the instabilities are defined as time variation in the

density function of a stochastic process. These variations include changes of mean, vari-

ance and/or the functional form of the underlying density function. The definition is
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general enough to contain most of the important types of instabilities discussed widely

in current literature.

There are a lot of works about detecting the parameter instability such as Chow

(1960), Andrews (1993), Andrews and Ploberger (1994),Elliott and Mller (2003) etc.

Beside those tests, instabilities are also a significant and practical concern for forecast-

ers interested in evaluating predictive ability. Since the traditional forecast evaluation

methods are invalid in the presence of instabilities, there are several robust evaluation

methods proposed by researchers. In fact, a predictive content is reliable in one period

is no necessary useful in the subsequent periods. The existence of unstable time series

predictors over time have been documented in massive empirical studies in macroeco-

nomics, finance and international finance. In the presence of instabilities, Rossi (2005)

shows that the traditional Granger-causality test of a potential predictor on an economic

variable of interests is invalid. Therefore, she constructs a robust Granger-causality test,

which has been used by Rossi(2006) to show the existence of time-varying relationship

between exchange rate and the fundamentals, used by Giacomini and Rossi (2006) to

demonstrate that the term structure Granger-causes future output growth, used by

Rapach and Wohar (2006) to provide empirical evidence on predictive ability of asset

returns, and used by Chen, Rogoff and Rossi (2010) to provide empirical evidence that

exchange rates Granger-causes commodity prices.

The estimation of models in the presence of instabilities is another major con-

cern for researchers. There are several ways to estimate model with structural breaks.

Andrew’s (1993) and Andrew and Ploberger’s (1994) tests are typically used to esti-

mate one time discrete breaks. Pesaran and Timmermann (2002) proposed a Reversed

Ordered Cusum (ROC) test to estimate the latest break for forecasting. There are

also several works about estimating models with multiple discrete breaks (Pesaran, Pet-
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tenuzzo and Timmermann, 2006, and Koop and Potter, 2007). Stock and Watson (2007)

proposed a Unobserved Components Stochastic Volatility model, which allows the pa-

rameters to vary at each time point. They estimate this model with Markov Chain

Monte Carlo and show that this model can successfully forecast inflation in U.S. In

addtion, intercept corrections is another alternative approach to estimate models with

parameter instabilities proposed by Clemens and Hendry (1996). With instabilities,

to perform inference robust to the choice of the estimation window size to is another

important topic. Pesaran and Timmermann (2002, 2005 and 2007) compared the per-

formance between rolling and recursive estimation schemes in the presence of structural

break in the parameters and discussed how to chose the optimal window size. Inoue and

Rossi (2010) prosed a new method to evaluate out-of-sample forecasting performance

that are robust to the choice of the estimation window size. Furthermore, in order to

improve forecasting, researchers have suggested to use forecast combination with equal,

time-varying weights (Stock and Watson (2003, 2004), Aiol and Timmermann(2006),

Pesaran and Timmermann (2007), Clark and McCarken (2008), Timmermann (2009),

etc.) or Bayesian model averaging method (Kozicki and Tinskey (2001), Cogley and

Sargent (2005), Wright (2008), Clark and McCracken (2010), Inoue and Rossi (2011),

etc.). More details about those methods can be found in Rossi (2011), which provide a

thorough review about current researches about forecasting under instabilities.

When there exist instabilities of the predictive relationship, practitioners will

concern more about the evaluation of the out-of-sample forecasts in the presence of

instabilities. The impact of structural instability for forecast evaluation has not been

formally investigated until very recently. The traditional forecast evaluation based on

the assessment of the expectation of the difference of the loss from some proposed fore-

cast models to the that of a benchmark model. It assumes the existence of a forecast
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whose performance is superior to its competitors in every period. Typically, the re-

searchers are looking by the average out-of-sample forecast error loss difference to find

the best model forecast such as the works by Diebold and Mariano (1995) and West

(1996). However, the averaging loss method has been in applied literature (e.g. Stock

and Watson (2003)) which found that the models’ performance varies across subsample.

The tests of out-of-sample forecasting comparisons and evaluation have no power in

the presence of instabilities. There are several important tools to compare the forecast

model with instable predictive relationships. Rossi (2005) proposed a optimal test for

nested model selection with parameter instabilities, which allows the parameters to be

time varying or is unknown vector. The optimal tests jointly test for both parameter

instability and a null hypothesis on a subset of parameters. This method can be applied

to test whether the variables of interests in some proposed economic model are statis-

tically signicant and to test whether this relationship between variables is stable over

time. Along this paper, she (2006) used this optimal tests to test whether exchange

rates are random walk and provided empirical evidence on parameter instability of the

out-sample forecast performance in models used to determine nominal exchange rate.

Giacomini and Rossi (2009, 2010a and 2010b) have recently introduced formal methods

for forecast evaluation in the presence of instability. Giacomini and Rossi (2009) focused

on “absolute measures” of accuracy, wheareas Giacomini and Rossi (2010a and 2010b)

considered“relative measures”.

In Giacomini and Rossi (2009), they proposed a method for detecting and pre-

dicting forecast breakdowns, which is defined as a situation in which the out-of-sample

performance of a forecast model is significantly worse than its in-sample performance.

They defined a surprise loss at time t+τ as the difference between the out-of-sample loss

at time t + τ and the average in-sample loss. They then considered the out-of-sample
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mean of the surprise losses and proposed a test based on the idea that, if a forecast

is reliable, this mean should be close to zero. This test focused on absolute measure

of forecast accuracy. They analyzed the possible causes of forecast break down and

thus relate their test to structural break tests and showed that Forecast Breakdowns

may happen because of instabilities and over-fitting. However, while their test detects

both instabilities and over-fitting, in practice it cannot identify the exact source of the

breakdown. Rossi and Sekhposyan (2011a) follow the same decomposition framework

of Giacomini and Rossi (2010a) to measure time variation in models relative forecast-

ing performance by averaging relative predictive ability over rolling windows. They

decompose the out-of-sample loss function differences calculated in rolling windows of

size m into following three components: the difference relative to the average loss, an

average forecast error loss expected on the basis of the in-sample performance,and an

average unexpected forecast error loss. This decomposition is helpful to identify three

possible sources of models forecasting performance: time-varying forecasting ability due

to parameter instabilities or unmodeled changes of the stochastic process, predictive

content and over-fitting. They implemented the test in fixed rolling window as well as

recursive window environments to study the performance of models of exchange rate

determination in out-of-sample forecast environment.

Giacomini and Rossi (2010a) investigated the related problem of estimating and

testing the time variation in the out-of-sample relative performance of models. They

said that in the presence of structural change, the relative performance of two models

may be time-varying and thus chose model which merely perform best on average will

result in a loss of information. Similarly, they proposed the Fluctuation test and the

One-Time Reversal test in the out-of-sample context to analyze and then compare the

out-of-sample forecast performance of two competing models to understand which model
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performs better at each point in time. The researchers have divided the sample of size T

into an in-sample portion of size R and an out-of-sample portion of size P , and obtained

two competing sequences of h-step ahead out-of-sample forecasts. For a general loss

function L, there is a sequence of P out-of-sample forecast loss differences.

{4Lt(θ̂t−h,R, γ̂t−h,R)}TR+h ≡ {L1(yt, θ̂t−h,R)− L2(yt, γ̂t−h,R)}Tt=R+h

which depend on the realizations of the variables and on the in-sample parameter es-

timates for each model,θ̂t−h,R and γ̂t−h,R. These parameters are estimated under fixed

and rolling scheme. They define the local relative loss for the two models as the sequence

of out-of-sample loss differences computed over centered rolling windows of size m (over

the evaluation sample P ) and thus the fluctuation test is constructed as follows:

FOOSt,m = σ̂−1m−1

t+m
2
−1∑

j=t−m
2

4Lt(θ̂j−h,R, γ̂j−h,R), τ ∈ [0, 1], t = R+ h+
m

2
, ..., T − m

2
+ 1

where σ̂2 is a HAC estimator of σ2

H0 : E(4Lt(θ̂j−h,R, γ̂j−h,R)) = 0

for all t = R + h, ..., T . The null is rejected when maxt|FOOSt,m | > kα, where kα is the

significance level. The asymptotic distribution of FOOSt,m will be a functional of Brownian

motion and the FOOSt,m statistic is equivalent to Diebold and Mariano’s (1995) and Giaco-

mini and White’s (2006) unconditional predictive test statistic, which is computed over

rolling out-of-sample window of size m. (In Giacomini and White’s (2006), they devel-

oped a framework for out-of-sample conditional predictive ability testing and forecast

selection when there are model misspecification due to inadequately modeled dynamics,

inadequately modeled heterogeneity, incorrect functional form, or any combination of

these). The Fluctuation test can reveal the existence of break but the Fluctuation test

may sacrifice its power to be a robust test. The One-Time Reversal test can be used to
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estimate the timing of the break at which the reversal of relative models’ performance

may be observed. However, it is impossible for this test to detect the unique source of

rejection if the test are rejected for both of its two components: the instabilities in the

relative performance and a model being constantly better than its competitor. Their

tests are only about the point forecast comparison between two competitive models,

which can not be extended to the density forecast evaluation area.

In their companion paper, Giacomini, R. and B. Rossi (2010b) analyzed the

relative in-sample performance of two competing, misspecified non-nested models in

unstable environment. The unstable environment in their paper can be illustrated with

the following design: yt = βtxt+γtzt+εt, εt ∼ i.i.d.N(0, 1), where xt ∼ N(0, σ2
x,t), zt ∼

N(0, σ2
z,t). In addition to allow the conditional mean parameters (βt or γt) to change

over time, they showed that the relative model’s performance will change when one of

the variances is time-varying (σ2
x,t), even if the parameters in the conditional mean (βt

or γt) are constant. Therefore, in this paper, the unstable environment is not necessarily

related to the instability of model’s parameters but also related to the structural break to

the model’s variance. To detect the change of competing models’ relative performance

in the presence of structural change, they proposed a nonparametirc local Kullback-

Leibler information criterion (KILC), based on which they constructed two in-sample

tests (the Fluctuation test and the One-Time Reversal test). Similarly, the in-sample

Fluctuation test and the One-Time Reversal test will suffer the same problems as their

out-of-sample version mentioned in Giacomini and Rossi (2009). They claimed that in

the presence of structural change, the model’s performance may itself be changing over

time, which is necessarily related to the presence of instability in the models parameters.

That is to say that when the parameters of the competing models are stable, the model’s

relative performance may vary over time. However, it is also possible that the relative
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performance of the models is constant with the time-varying parameters. Therefore,

in this paper, the unstable environment is not defined merely by parameter instability

but is more closely related to structural break to the distribution of error term. This

paper focused on in-sample point forecast and their method is not applicable to nested

competing model which is the common limitation to KILC method.

Rossi and Sekhposyan (2011b) proposed forecast rationality and optimality

tests that are robust to the presence of instabilities. They proposed a “fluctuation

optimality” test which estimates and tests for forecast optimality in rolling windows

over the out-of-sample forecast portion of the data. This test is applied to the absolute

predictive ability and forecast optimality. They tested whether the h-step ahead out-

of-sample direct forecasts for the variable are optimal in the presence of instabilities

by performing the forecast unbiasedness, forecast efficiency, forecast encompassing and

serial uncorrelated tests. The parameter estimates computed over rolling window size

m. They consider estimating regression using data of the evaluation sample with rolling

regression from t−m + 1 up to t, for t = m, ..., P , to avoid averaging out instabilities.

Their tests are based on the framework developed by West and McCracken (“Regression

based tests of predictive ability” IER 1998): vt+h is the forecast error associated to the

h-steps ahead forecast made at time t and in the case of a simple linear regression model

with h-period lagged regressors xt, the forecast error is vt+h = yt+h − γ̂t,Rxt. γ̂t,R is

the in-sample estimates, which can be obtained under fixed scheme, rolling scheme and

recursive scheme.

Consider the general regression:

vt+h = g
′
tθ + ηt+h, t = R, ..., T (3.1)

where vt+h is the forecast error associated to the h-steps ahead forecast made at time t,
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θ is a parameter vector and gt is a vector of variable known at time t such that E(gtg
′
t)

has full rank.

West and McCracken (1998) consider the following leading cases:

• forecast unbiasedness test, where gt = 1

• forecast efficiency, where gt = yt+h|t

• forecast encompassing tests, where gt is the forecast of the encompassed model

• serial uncorrelation tests, where gt = vt

West and McCracken’s forecast rationality tests focus on testing the null hy-

pothesis:

H0 : θ = θ0, HA : θ 6= θ0

Wald test:

Wp = (θ̂P − θ0)′V̂ −1
θ,P (θ̂P − θ0)

θ̂P denote the estimate of θ in the general regression 3.1, V̂θ,P is a consistent

estimate of the long run variance of θ̂P .

The main interest in this paper is testing forecast optimality in the presence

of instabilities and they considered the rolling regression in 3.1 to avoid averaging out

instabilities. Let θ̂t,R be the parameter estimate in regression 3.1 computed over rolling

window of size m. They consider estimating regression 3.1 using data (the evaluation

sample) from t−m+1 up to t, for t = m, ..., P , then the Wald test in the corresponding

regressions is defined as:

Wt,m = (θ̂t − θ0)
′
V̂ −1
θ,t (θ̂t − θ0)

for t = m, ..., P , where Wt,m is referred as the Fluctuation Optimality test. Under the

assumptions given in this paper, Wt,m will obey the Functional Central Limit Theorem
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and its limiting distribution can be expressed as the function of standard Brownian

motion. In order to construct the statistics robust to the instabilities, that is, to reject

the null hypothesis:

H0 : E(θ̂t) = θ0

for all t = m, ..., P , they construct the statistic of the maximum of Wt,m i.e maxtWt,m.

If maxtWt,m > κα,q, where κα,q are the critical values at the 100α% significance level.

They showed that while the traditional tests are more powerful when the data are sta-

tionary, the Fluctuation-type tests are more powerful in presence of instabilities. The

above paper is closely related to Giacomini and Rossi (2010), in which a similar Fluctua-

tion test is proposed to compare model’s relative forecasting performance. However, the

above robust procedures are all about in-sample or out-sample point forecasting evalua-

tion or model selection. Existing econometric techniques are inadequate for conducting

density forecast evaluation in an unstable environment. In this paper, we try to fill the

gap by proposing the robust density forecasting evaluation method in the presence of

instabilities.

3.2 Statistics and asymptotic distribution

3.2.1 Definition of Statistics

Our main interest is the evaluation of density forecast in the presence of insta-

bilities. We propose a robust out-of-sample density forecasting evaluation method in the

presence of the instabilities based on G-ACR. The tests are constructed with the follow-

ing rolling evaluation scheme. Let Yt denote the random process of interest with condi-

tional density function f(yt|Ωt−1), where Ωt−1 is the information set available at time t-1.

if the proposed predictive density model for Yt, i.e. {f∗t (yt|Ωt−1)}Tt=1 coincides with the
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true conditional density {ft(yt|Ωt−1)}Tt=1, then the sequence of probability integral trans-

forms (PIT) of {Yt}Tt=1 w.r.t {f∗t (yt|Ωt−1)}Tt=1 i.e. {ut}Tt=1 must be i.i.d U(0, 1)where

ut =
∫ yt
−∞ f

∗
t (vt|Ωt−1)dvt. Thus, the null hypothesis H0 : f∗t (yt|Ωt−1) = ft(yt|Ωt−1)

is equivalent to the null hypothesis H
′
0 : {ut}Tt=1 is i.i.d U(0, 1). In this section we

construct the generalized autocontours under i.i.d. uniformity for predictive densities.

Under H
′
0 : {ut}Tt=1 i.i.d U(0, 1), the generalized autocontour GACRαi,k is defined as

the set of points in the plane (ut, ut−k) such that the square with
√
αi side contains αi%

of observations, i.e.,

G-ACRαi,k

= {B(ut, ut−k) ⊂ <2‖ 0 ≤ ut ≤
√
αi and 0 ≤ ut−k ≤

√
αi, s.t. : ut × ut−k ≤ αi}

(3.2)

The indicator series constructed under the G-ACR is as follows

Ik,αit = 1((ut, ut−k) ⊂ G−ACRαi,k) = 1(0 ≤ ut ≤
√
αi, 0 ≤ ut−k ≤

√
αi)

The total sample size T is divided into in-sample portion (R) and out-of-sample

portion (P). First, we evaluate one subsample (with size rol) of the evaluation sample,

using data from t−rol+1 up to t, where t = R+rol, · · · , T , to evaluate the assumed pre-

dictive density. According to G-ACR, for one subsample, we can obtain three different

types of statistics: t, C and L. Second, we roll one observation ahead, with fixed subsam-

ple size rol, until the last observation in the evaluation sample. For t = R+ rol, · · · , T ,

we obtain a collection of T − rol − R + 1 statistics of for t, C and L statistics, respec-

tively, i.e., {ti}T−s−R+1
i=1 , {Ci}T−s−R+1

i=1 and {Li}T−s−R+1
i=1 . Third, to take care of the

instabilities, we construct the Sup-type statistic by taking supreme over the absolute

value of {|ti|}T−s−R+1
i=1 , {Ci}T−s−R+1

i=1 and{Li}T−s−R+1
i=1 respectively to obtain supreme
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of these statistics respectively: St, SC and SL; the Avg-type statistic is constructed

by taking average over collections of statistics, i.e.,At, AC and AL, which explore the

average behavior of the environmental instabilities.

3.2.2 Asymptotic Properties of statistics

• Assumption 1: T → ∞, R → ∞, P → ∞, limT→∞
P
R = 0, limT→∞

rol
P = m,as

rol, P → ∞. Where, rol is the size of rolling window in the evaluation sample,

m ∈ (0,∞), k is the lag.

• Assumption 2: {yt, xt} are mixing with either φ of size −r/2(r − 1) or α of size

−r/2(r − 1)

Proposition 1

Let α̂i(J) =
∑R+J
t=R+1+J−rol+k I

k,αi
t

rol−k , where J = [Ps], s ∈ [m, 1].

St = sup
J

∣∣∣∣√rol − k(α̂i(J)− αi)
σk,αi

∣∣∣∣
At =

1

P − rol + 1

J̄∑
J

∣∣∣∣√rol − k(α̂i(J)− αi)
σk,αi

∣∣∣∣

Where σ2
k,αi

= αi(1− αi) + 2α
3/2
i (1− α1/2

i )

Under the null hypothesis of i.i.d U(0, 1) PITs, given assumption 1,2 and 5:

St −−−−→
P→∞

sup
s∈[m,1]

|W (s)−W (s−m)|√
m

(3.3)

At −−−−→
P→∞

∫ s̄

s

|W (s)−W (s−m)|√
m

ds (3.4)

Where J = [Ps], rol − k = [Pm] and W (.) is a standard univariate Brownian motion.
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Proposition 2 For a given lag k, let ck,i(J) =
√
rol − k(α̂i − αi) and stack

ck,i(J) for different contours levels i = 1, 2, ...C. Let Ck(J) = (ck,1(J), ...ck,C(J))
′

be

the C × 1 stacked vector.

SC = sup
J
|Ck(J)′Ω−1

k Ck(J)|

AC =
1

P − rol + 1

J̄∑
J

|Ck(J)′Ω−1
k Ck(J)|

Where Ωk is the asymptotic variance and covariance matrix for the random vector Ck(J)

Under the null hypothesis of i.i.d U(0, 1) PITs, given the assumption 1,3 and

5:

SC −−−−→
P→∞

sup
s∈[m,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

AC −−−−→
P→∞

∫ s̄

s

(W(s)−W(s−m))′(W(s)−W(s−m))

m
ds (3.5)

Where J = [Ps], rol − k = [Pm] and W(.) is a standard C-variate Brownian motion.

Proposition 3

For a given contour αi, let `k,αi(J) =
√
rol − k(α̂i(J)− αi) and stack `k,αi for

k = 1, ....K. Let Lαi = (`1,αi(J), ...`K,αi(J))
′

be the K × 1 stacked vector.

SL = sup
J
|Lαi(J)′Λ−1

αi Lαi(J)|

AL =
1

P − rol + 1

J̄∑
J

|Lαi(J)′Λ−1
αi Lαi(J)|

Where Λαi is the asymptotic variance and covariance matrix for the random vector Lαi .

Under the null hypothesis of i.i.d U(0, 1) PITs, given the assumption 1, 4 and

5:
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SL −−−−→
P→∞

sup
s∈[m,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

AL −−−−→
P→∞

∫ s̄

s

(W(s)−W(s−m))′(W(s)−W(s−m))

m
ds (3.6)

Where J = [Ps], rol − k = [Pm] and W(.) is a standard L-variate Brownian motion.

Proof of the Proposition 1:

The indicator function Ik,αit is a Bernoulli random variable with the following

moments: E(Ik,αit ) = αi, V ar(I
k,αi
t ) = αi(1− αi) and covariance

rαih ≡ cov(Ik,αit , Ik,αit−h ) =


0 if h 6= k

α
3/2
i (1− α1/2

i ) if h = k

Given the assumption 1, 2 and 5, according to Theorem 7.16 in (“Asymptotic

theory for Econometricians :Halber White (Revised Edition)”), we need to prove that

:Zk,it is globally stationary. That is to show:

σ2
k,αi
≡ lim

rol→∞
var((rol − k)−

1
2

R+J∑
t=R+1+J−rol+k

Zk,it ) > 0

σ2
k,αi

= lim
rol→∞

var((rol − k)−
1
2

R+J∑
t=R+1+J−rol+k

(Ik,αit − αi))

= lim
rol→∞

var((rol − k)−
1
2

R+J∑
t=R+1+J−rol+k

Zk,it )

= αi(1− αi) + 2α
3/2
i (1− α1/2

i )

It shows that Zk,it is globally covariance stationary process.

α̂i(J) =

∑R+J
t=R+1+J−rol+k I

k,αi
t

rol − k
=

∑R+Ps
t=R+[P (s−m)]+1 I

k,αi
t

[Pm]

WP (s) =

√
[Pm](α̂i(J)− αi)

σk,i
=

∑R+Ps
t=R+[P (s−m)]+1(Ik,αit − αi)√

[Pm]σk,i
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Where J = [Ps], J = [Ps], J̄ = [P s̄], s ∈ [m∗, 1], rol − k = [Pm]

WP (s) =

√
[Pm](α̂i − αi)

σk,i
=

∑R+Ps
t=R+[P (s−m)]+1(Ik,αit − αi)√

[Pm]σk,i

=

∑R+Ps
t=R+1(Ik,αit − αi)√

[Pm]σk,i
−
∑R+[P (s−m)]

t=R+1 (Ik,αit − αi)√
[Pm]σk,i

=

√
P√

[Pm]

∑R+Ps
t=R+1(Ik,αit − αi)√

Pσk,i
−
√
P√

[Pm]

∑R+[P (s−m)]
t=R+1 (Ik,αit − αi)√

Pσk,i

=

√
P√

[Pm]

∑R+Ps
t=R+1 Z

k,i
t√

Pσk,i
−
√
P√

[Pm]

∑R+[P (s−m)]
t=R+1 Zk,it√

Pσk,i

Since Zk,it is globally stationary and E(Zk,it ) = E(Ik,αit − αi) = 0, according

to Theorem 7.17 in (“Asymptotic theory for Econometricians :Halber White (Revised

Edition)”):

W 1
P (s) =

√
P√

[Pm]

∑R+Ps
t=R+1 Z

k,i
t√

Pσk,i
−−−−→
P→∞

1√
m
W (s)

W 2
P (s) =

√
P√

[Pm]

∑R+[P (s−m)]
t=R+1 Zk,it√

Pσk,i
−−−−→
P→∞

1√
m
W (s−m)

Where W (.) is the standard Brownian motion.

WP (s) = W 1
P (s)−W 2

P (s)

−−−−→
P→∞

1√
m

(W (s)−W (s−m)) (3.7)

By continuous mapping theorem and (3.7) we can find that:

St = sup
J
|
√
rol − kα̂i(J)

σk,αi
| −−−−→
P→∞

sup
|W (s)−W (s−m)|√

m

At =
1

P − rol + 1

J̄∑
J

|
√
rol − kα̂i(J)

σk,αi
| −−−−→
P→∞

∫ s̄

s

|W (s)−W (s−m)|√
m

Proof of Proposition 2
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Given assumption 1, 3 and 5, according to Theorem 7.30 in (“Asymptotic

theory for Econometricians :Halber White (Revised Edition)”), we need to prove random

vector ZCt is global covariance stationary, where ZCt = (Zk,1t , ..., Zk,Ct ) and Zk,it = Ik,αit −

αi.

First, we show ZCt is globally covariance stationery, that is to show

Ωk = lim
rol→∞

var((rol − k)−1/2Σrol
t=k+1Z

C
t )

, where Ωk is nonsingular global covariance matrix of {ZCt }

The elements ωi,j of the asymptotic variance-covariance Ωk are obtained as

follows. We need to calculate

cov(ck,i , ck,j ) = cov(Ik,αit , I
k,αj
t ) + cov(Ik,αit , I

k,αj
t−k ) + cov(Ik,αit−k , I

k,αj
t ) + o(1)

If i = j, by Proposition 1, ωi,i = var(
√
T − k(α̂i − αi)) = αi(1− αi) + 2α

3/2
i (1− α1/2

i ).

If i < j (and similarly for i > j), αi ⊂ αj . Then, we have that

cov(Ik,αit , I
k,αj
t ) = E(Ik,αit × Ik,αjt )− αi × αj = αi(1− αj)

cov(Ik,αit , I
k,αj
t−k ) = E(Ik,αit × Ik,αjt−k )− αi × αj = αi × α1/2

j − αi × αj

cov(Ik,αit−k , I
k,αj
t ) = E(Ik,αit−k × I

k,αj
t )− αi × αj = αi × α1/2

j − αi × αj

Therefore, Ωk is the nonsingular global covariance matrix of ZCt and thus {ZCt }is global

covariance stationary.

WP (s) ≡ Ω
−1/2
k [Pm]−1/2

R+Ps∑
t=R+[P (s−m)]+1

ZCt

≡ Ω
−1/2
k [Pm]−1/2

R+Ps∑
t=R+1

ZCt − Ω
−1/2
k [Pm]−1/2

R+P (s−m)∑
t=R+1

ZCt
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Since ZCt is global covariance stationary, E(Zk,it ) = E(Ik,αit −αi) = 0, according

to Theorem 7.30 in (“Asymptotic theory for Econometricians :Halber White (Revised

Edition)”), we can show that:

W1
P (s) = Ω

−1/2
k [Pm]−1/2

R+Ps∑
t=R+1

ZCt −−−−→
P→∞

1√
m
W(s)

W2
P (s) = Ω

−1/2
k [Pm]−1/2

R+P (s−m)∑
t=R+1

ZCt −−−−→
P→∞

1√
m
W(s−m)

Where W(s) is a C-variate Brownian process.

WP (s) ≡ W1
P (s)−W2

P (s) −−−−→
P→∞

1√
m

(W(s)−W(s−m)) (3.8)

From continuous mapping theorem and 3.8

SC = sup
J
|Rk(J)′Ω−1

k Rk(J)|

−−−−→
P→∞

sup
s∈[m∗,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

AC =
1

P − rol + 1

J̄∑
J

|Rk(J)′Ω−1
k Rk(J)|

−−−−→
P→∞

∫ s̄

s

(W(r)−W(r −m))′(W(r)−W(r −m))

m

Proof of Proposition 3:

Given assumption 1, 4 and 5, according to Theorem 7.30 in (“Asymptotic

theory for Econometricians :Halber White (Revised Edition)”), we need to prove random

vector ZLt is global covariance stationary. where ZLt = (Z1,c
t , ..., ZL,ct ) and Zk,it = Ik,αit −

αi.
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That is to show:

Λk = lim
rol→∞

var((rol − k)−1/2Σrol
t=k+1Z

L
t )

, where Λk is nonsingular global covariance matrix of {ZLt }

λj,k = cov(`j,αi , `k,αi) = var(
√
T − k(α̂i − αi)) = αi(1− αi) + 2α

3/2
i (1− α1/2

i )

The elements λj,k of the asymptotic variance-covariance Λαi are obtained as

follows. When j = k, we have

λj,k = cov(`j,αi , `k,αi) = var(
√
T − k(α̂i − αi)) = αi(1− αi) + 2α

3/2
i (1− α1/2

i )

When j > k (and similarly for j < k),

cov(`k,αi , `j,αi)

= cov(Ik,αit , Ij,αit ) + cov(Ik,αit , Ij,αit−k ) + cov(Ik,αit−j , I
j,αi
t ) + cov(Ij,αit , Ik,αit−j+k) + o(1)

from which each covariance term is

cov(Ik,αit , Ij,αit ) = E(Ik,αit × Ij,αit )− α2
i = α

3/2
i − α2

i = α
3/2
i (1− α1/2

i )

and taking into account that cov(Ik,αit , Ij,αit ) = cov(Ik,αit , Ij,αit−k ) = cov(Ik,αit−j , I
j,αi
t ) =

cov(Ik,αit−j+k, I
j,αi
t ), Therefore, Λk is the nonsingular global covariance matrix of {ZLt }

and thus {ZLt }is global covariance stationary.

WP (s) ≡ Ω
−1/2
k [Pm]−1/2

R+Ps∑
t=R+[P (s−m)]+1

ZCt

≡ Ω
−1/2
k [Pm]−1/2

R+Ps∑
t=R+1

ZCt − Ω
−1/2
k [Pm]−1/2

R+P (s−m)∑
t=R+1

ZCt

Since ZLt is global covariance stationary, E(Zk,it ) = E(Ik,αit −αi) = 0, according

to Theorem 7.30 in (“Asymptotic theory for Econometricians :Halber White (Revised

Edition)”), we can show that:
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W1
P (s) = Ω

−1/2
k [Pm]−1/2

R+Ps∑
t=R+1

ZCt −−−−→
P→∞

1√
m
W(s)

W2
P (s) = Ω

−1/2
k [Pm]−1/2

R+P (s−m)∑
t=R+1

ZCt −−−−→
P→∞

1√
m
W(s−m)

Where W(s) is a L-variate Brownian process.

WP (s) ≡ W1
P (s)−W2

P (s) −−−−→
P→∞

1√
m

(W(s)−W(s−m)) (3.9)

From continuous mapping theorem and 3.9

SL = sup
J
|Rl(J)′Λ−1

l Rl(J)|

−−−−→
P→∞

sup
s∈[m∗,1]

(W(s)−W(s−m))′(W(s)−W(s−m))

m

AL =
1

P − rol + 1

J̄∑
J

|Rl(J)′Λ−1
l Rl(J)|

−−−−→
P→∞

∫ s̄

s

(W(s)−W(s−m))′(W(s)−W(s−m))

m

3.3 Monte Carlo Simulation

3.3.1 Critical Values for Asymptotic Distributions

In this session, we calculated the theoretical critical values for the asymptotic

distributions of our statistics. The number of Monte Carlo replication is 2000. Since

the asymptotic distributions for the statistics depend on m, which is proportion of the

rolling window size to the whole evaluation sample, we consider all the critical values

for the asymptotic distribution with m ∈ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Table
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3.1 and Table 3.2 report the critical values for St and At statistics. Table 3.3 and Table

3.4 report the critical values for SC and AC statistics of 13 contour levels. Table 3.5 and

Table 3.6 report the critical values for SL and AL of 5 lags. With m = 0.1, 0.5 and 0.9,

the histograms for St are plotted in Figure 3.1, for At in Figure 3.2, for SC in Figure

3.3, for AC in Figure 3.4, for SL in Figure 3.5, for AL in Figure 3.6.
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(c) Histogram of At with m = 0.9

Figure 3.2: Histogram of At with m = 0.1, 0.5 and 0.9

m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

99% 3.950 3.713 3.510 3.396 3.428 3.213 3.089 3.112 2.951
95% 3.502 3.267 3.066 2.926 2.866 2.679 2.537 2.439 2.406
90% 3.292 2.987 2.845 2.642 2.571 2.361 2.240 2.121 2.015
80% 3.020 2.684 2.522 2.372 2.217 2.053 1.935 1.849 1.655
70% 2.843 2.489 2.315 2.156 1.999 1.834 1.697 1.582 1.392
60% 2.702 2.343 2.145 1.983 1.819 1.653 1.529 1.383 1.197
50% 2.569 2.203 2.015 1.830 1.664 1.515 1.365 1.221 1.021
40% 2.457 2.090 1.884 1.684 1.515 1.373 1.212 1.066 0.867
30% 2.339 1.975 1.747 1.540 1.379 1.228 1.071 0.915 0.730
20% 2.201 1.822 1.586 1.384 1.226 1.074 0.923 0.791 0.606
10% 2.033 1.629 1.420 1.199 1.055 0.901 0.761 0.631 0.479
5% 1.922 1.492 1.290 1.065 0.943 0.813 0.663 0.535 0.394
1% 1.730 1.265 1.072 0.829 0.739 0.631 0.498 0.409 0.287

Table 3.1: Critical Values for St Statistics
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Figure 3.3: Histogram of SC with m = 0.1, 0.5 and 0.9

m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

99% 1.241 1.435 1.656 1.824 2.204 2.181 2.360 2.542 2.583
95% 1.078 1.199 1.355 1.487 1.697 1.694 1.774 1.854 1.998
90% 1.004 1.088 1.206 1.300 1.418 1.406 1.490 1.586 1.666
80% 0.918 0.970 1.035 1.101 1.115 1.128 1.183 1.264 1.256
70% 0.870 0.891 0.922 0.948 0.939 0.928 0.966 1.017 1.019
60% 0.825 0.825 0.827 0.837 0.818 0.796 0.807 0.824 0.825
50% 0.789 0.760 0.760 0.741 0.710 0.685 0.682 0.675 0.661
40% 0.752 0.706 0.690 0.653 0.615 0.581 0.551 0.534 0.507
30% 0.711 0.649 0.617 0.568 0.524 0.487 0.453 0.417 0.378
20% 0.673 0.589 0.544 0.497 0.451 0.409 0.358 0.320 0.274
10% 0.608 0.517 0.465 0.409 0.359 0.319 0.269 0.234 0.186
5% 0.567 0.458 0.413 0.342 0.310 0.260 0.219 0.188 0.140
1% 0.478 0.381 0.325 0.251 0.235 0.200 0.152 0.135 0.096

Table 3.2: Critical Values for At Statistics
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Figure 3.4: Histogram of AC with m = 0.1, 0.5 and 0.9

m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

99% 42.488 39.592 38.534 37.694 37.361 35.925 36.051 34.591 31.804
95% 37.159 34.956 32.983 32.277 30.902 29.597 29.008 27.773 25.962
90% 35.155 32.562 30.722 29.378 28.069 27.176 26.181 24.685 23.356
80% 32.624 29.964 28.071 26.673 25.329 24.182 22.935 21.621 20.175
70% 30.932 28.330 26.359 24.906 23.421 22.132 20.932 19.423 18.125
60% 29.689 26.991 24.908 23.416 21.858 20.579 19.179 17.901 16.550
50% 28.540 25.798 23.648 22.111 20.626 19.136 17.708 16.501 15.241
40% 27.482 24.522 22.468 20.900 19.254 17.672 16.440 15.111 13.829
30% 26.508 23.385 21.197 19.510 17.873 16.413 15.058 13.685 12.477
20% 25.351 22.174 19.836 18.193 16.514 14.927 13.582 12.250 10.898
10% 23.731 20.400 18.067 16.333 14.568 13.061 11.741 10.480 8.987
5% 22.376 18.902 16.821 14.879 13.338 11.876 10.383 9.037 7.852
1% 20.394 16.833 14.737 12.807 11.208 9.884 8.275 6.929 5.905

Table 3.3: Critical Values for SC Statistics
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Figure 3.5: Histogram of SL with m = 0.1, 0.5 and 0.9

m

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

99% 16.342 18.610 20.265 22.301 24.658 26.534 27.422 28.202 27.987
95% 15.298 16.576 17.794 18.927 19.924 20.838 21.866 22.084 22.533
90% 14.762 15.734 16.456 17.287 18.022 18.629 18.996 19.612 19.965
80% 14.099 14.648 15.143 15.477 16.014 16.449 16.761 16.975 17.096
70% 13.672 14.029 14.209 14.439 14.705 14.937 15.107 15.111 15.290
60% 13.295 13.393 13.478 13.566 13.597 13.552 13.629 13.790 13.772
50% 12.955 12.873 12.847 12.820 12.666 12.591 12.534 12.514 12.547
40% 12.623 12.388 12.178 12.014 11.722 11.471 11.290 11.362 11.311
30% 12.262 11.851 11.535 11.227 10.909 10.576 10.364 10.166 10.073
20% 11.828 11.264 10.837 10.423 9.991 9.555 9.288 8.965 8.786
10% 11.298 10.483 9.871 9.330 8.746 8.297 7.860 7.558 7.143
5% 10.840 9.895 9.120 8.436 7.849 7.358 6.750 6.380 5.967
1% 10.030 8.791 7.993 7.279 6.363 5.659 5.069 4.629 4.382

Table 3.4: Critical Values for AC Statistics
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Figure 3.6: Histogram of AL with m = 0.1, 0.5 and 0.9

m

percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 26.825 25.069 23.492 23.010 22.057 20.621 19.801 19.370 17.756
95% 22.719 21.121 19.941 18.372 17.199 16.042 15.645 14.470 13.631
90% 20.867 19.109 17.489 16.318 15.203 14.241 13.301 12.552 11.636
80% 18.859 16.979 15.273 14.045 12.859 11.973 11.213 10.267 9.325
70% 17.452 15.505 13.917 12.671 11.665 10.585 9.708 8.788 7.949
60% 16.389 14.279 12.920 11.587 10.492 9.537 8.610 7.765 6.927
50% 14.810 12.425 11.052 9.796 8.827 7.916 6.830 6.071 5.192
40% 15.534 13.300 11.910 10.616 9.576 8.678 7.698 6.917 6.068
30% 13.970 11.675 10.164 8.891 7.999 6.948 6.048 5.213 4.423
20% 13.066 10.697 9.249 8.023 7.039 6.054 5.113 4.388 3.646
10% 11.896 9.535 8.158 7.011 5.863 4.966 4.213 3.484 2.743
5% 11.145 8.544 7.070 6.093 5.099 4.286 3.492 2.786 2.187
1% 9.583 7.267 5.857 4.821 3.950 3.173 2.585 1.907 1.510

Table 3.5: Critical Values for SL Statistics
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Figure 3.1: Histogram of St with m = 0.1, 0.5 and 0.9
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m

percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
99% 7.260 8.419 9.620 10.837 12.021 12.943 13.509 14.458 14.629
95% 6.507 7.336 7.948 8.396 9.045 9.636 10.116 10.569 10.913
90% 6.122 6.673 7.034 7.503 7.961 8.313 8.562 8.929 9.220
80% 5.705 6.038 6.259 6.452 6.643 6.822 6.995 7.104 7.309
70% 5.383 5.583 5.669 5.733 5.820 5.868 5.929 5.977 6.040
60% 5.164 5.208 5.200 5.198 5.212 5.158 5.191 5.122 5.128
50% 4.742 4.604 4.468 4.361 4.224 4.021 3.885 3.817 3.767
40% 4.951 4.890 4.831 4.770 4.663 4.570 4.506 4.452 4.438
30% 4.535 4.316 4.123 3.922 3.717 3.476 3.324 3.174 3.088
20% 4.294 3.988 3.712 3.418 3.174 2.973 2.715 2.584 2.480
10% 4.017 3.539 3.189 2.922 2.602 2.320 2.086 1.927 1.746
5% 3.752 3.237 2.867 2.508 2.246 1.921 1.695 1.459 1.292
1% 3.337 2.681 2.222 1.875 1.621 1.388 1.150 0.960 0.777

Table 3.6: Critical Values for AL Statistics

3.3.2 Size of the statistics

In this paper, the tests are implemented in out-of-sample context, the impor-

tance of parameter uncertainty will depend on the forecasting scheme and on the size

of the estimation sample (R) relative to the prediction sample (P ). By taking a mean

value expansion of the test around the true value, we have

√
P (α̂i(θ̂, J)−αi) =

√
P (α̂i(θ0, J)−αi)+

√
P√
R

√
R(θ̂−θ0)′ lim

T→∞
E(
∂α̂i(θ, J)

∂θ
|θ = θ0)+op(1)

We assume the parameter estimator are
√
R-consistent estimators, i.e. (θ̂ −

θ0) = Op(R
−1/2) with a well-defined asymptotic distribution. In general, this condition

will be easily satisfied such as the quasi maximum-likelihood (QML) estimator. Under

assumption 1, R → ∞, P → ∞, and P/R → 0 as T → ∞, parameter uncertainty is

asymptotically negligible. Therefore, as long as the ratio of the prediction sample to

the estimation sample tends to zero as the total sample size grows to infinity, the test

statistics can be applied based on estimated parameters, for which the critical values

calculated above can be used directly. In situations where the condition P/R → 0
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is violated, we can bootstrap the tests to approximate their asymptotic distribution.

The theoretical analysis are same for the fixed, recursive and rolling schemes. In this

section, we perform the extensive Monte Carlo simulations to assess the finite sample

properties of the tests proposed in this paper and the following Mote Carlos simulation

results show that the parametric bootstrap of the asymptotic variance together with

standard asymptotic critical values delivers test statistics with very good size and power

properties. This is a sensible approach because the null hypothesis fully specifies the

parametric data generating process. Specifically, we generate B samples of size T from

f∗t (yt|θ̂; Ωt−1), which is the predictive density function specified for the random process

of interest. Let θ̂b denote the estimator under the fixed, rolling or recursive scheme

from the bth bootstrap sample, then the statistics are calculated from f∗t (yt|θ̂b; Ωt−1)

and for each statistic, we can bootstrap the distribution. For example, the bootstrap

approximation to the p-value for the S
αi,k
t (b) for b = 1, ..., B , is given by

p̂(S
αi,k
t ) =

1

B

B∑
b=1

1
(
S
αi,k
t (b) > S

αi,k
t

)
We consider the following data-generating process (DPG), which does not have

the structural break. yt = α1 + β1yt−1 + β2xt−1 + σεt and xt = φ1 + φ2xt−1 + εt,

εt ∼ N(0, 1), where φ1 = 1.38, φ2 = 0.77, α1 = 1.5, β1 = 0.5, β2 = 0.6, σ = 1. The

information contained in {xt} is known in advance. We evaluate the size of the statistics

with different proportion of rol in the whole evaluation sample, where the proportion

is defined as m and m = 1/3, m = 1/2 and m = 2/3. The simulations are performed

in the fixed, rolling and recursive context respectively. The number of Monte Carlo

replications is 1000. We set T to be 150, 375 and 750 and consider P as 90, 225 and

450 respectively. The nominal size level is 5%. The set of autocontour coverage levels is

given by C = (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99). Finally, we set
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the number of bootstrap replications equal to 500. In Table 3.7, 3.8 and 3.9, we show

the size of the test for different sample sizes T = 150, 375 and 750, with m = 1/3. We

can see that the overall performance of the tests is very good. When the sample size is

small as 150, the size of the statistics at some extreme contour levels (1% or 99%) are

distorted slightly. However, the slight size distortion can be corrected as we increase

the sample size. We can observe the similar pattern for m = 1/2 from Table 3.13, Table

3.14 and Table 3.15; and m = 2/3 from Table 3.10, Table 3.11 and Table 3.12.

T=150, R=90,P=60 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.042 0.037 0.033 0.046 0.049 0.037 0.04 0.051 0.045 0.045 0.048 0.036 0.039
rolling 0.028 0.04 0.041 0.041 0.38 0.042 0.04 0.04 0.041 0.046 0.044 0.036 0.038

recursive 0.029 0.041 0.042 0.04 0.039 0.039 0.038 0.039 0.044 0.042 0.039 0.035 0.032

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.047 0.048 0.049 0.056 0.055 0.058 0.049 0.059 0.049 0.057 0.052 0.055 0.057
rolling 0.032 0.038 0.048 0.043 0.041 0.046 0.046 0.045 0.04 0.046 0.048 0.046 0.031

recursive 0.024 0.037 0.037 0.043 0.043 0.038 0.043 0.052 0.043 0.044 0.042 0.035 0.033

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.059 0.051 0.06 0.06 0.052 0.045 0.063 0.063 0.058 0.055
rolling 0.038 0.043 0.045 0.052 0.042 0.042 0.051 0.05 0.045 0.045

recursive 0.033 0.043 0.044 0.055 0.053 0.052 0.052 0.058 0.039 0.033

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.04 0.038 0.042 0.04 0.038 0.049 0.053 0.054 0.051 0.039
rolling 0.04 0.033 0.032 0.033 0.034 0.036 0.038 0.039 0.04 0.032

recursive 0.038 0.037 0.031 0.035 0.034 0.043 0.039 0.04 0.05 0.037

Table 3.7: Size of the statistics:T=150 R=90 P=T-R=60 m = 1/3 (nominal size 5%)

T=375, R=225,P=150 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.04 0.04 0.05 0.042 0.048 0.038 0.041 0.05 0.048 0.046 0.055 0.033 0.044
rolling 0.03 0.044 0.042 0.041 0.042 0.044 0.042 0.04 0.041 0.039 0.046 0.031 0.036

recursive 0.031 0.042 0.04 0.04 0.041 0.037 0.042 0.033 0.036 0.042 0.039 0.033 0.046

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.055 0.054 0.069 0.049 0.046 0.047 0.053 0.062 0.043 0.047 0.05 0.051 0.05
rolling 0.052 0.056 0.063 0.041 0.043 0.047 0.057 0.061 0.051 0.051 0.047 0.054 0.044

recursive 0.043 0.044 0.04 0.044 0.044 0.048 0.043 0.046 0.039 0.038 0.035 0.042 0.049

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.046 0.041 0.049 0.047 0.04 0.046 0.054 0.048 0.045 0.051
rolling 0.05 0.046 0.058 0.054 0.06 0.047 0.058 0.063 0.063 0.06

recursive 0.06 0.053 0.06 0.056 0.043 0.057 0.055 0.052 0.042 0.048

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.041 0.043 0.033 0.036 0.042 0.053 0.06 0.052 0.052 0.061
rolling 0.042 0.04 0.039 0.039 0.048 0.057 0.062 0.066 0.067 0.46

recursive 0.042 0.038 0.044 0.04 0.036 0.043 0.048 0.052 0.045 0.039

Table 3.8: Size of the statistics:T=375 R=225 P=T-R=150 m = 1/3 (nominal size 5%)
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T=750, R=450,P=300 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.048 0.043 0.057 0.043 0.048 0.057 0.052 0.05 0.047 0.054 0.042 0.051 0.049
rolling 0.042 0.046 0.047 0.05 0.04 0.048 0.046 0.04 0.044 0.04 0.049 0.04 0.041

recursive 0.044 0.048 0.053 0.046 0.043 0.054 0.052 0.04 0.04 0.046 0.048 0.042 0.044

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.055 0.042 0.05 0.05 0.061 0.058 0.062 0.046 0.049 0.061 0.057 0.052 0.047
rolling 0.048 0.04 0.043 0.058 0.043 0.047 0.041 0.056 0.049 0.049 0.043 0.04 0.045

recursive 0.041 0.043 0.049 0.051 0.053 0.054 0.051 0.048 0.047 0.048 0.047 0.043 0.055

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.044 0.045 0.043 0.044 0.05 0.045 0.051 0.044 0.043 0.045
rolling 0.041 0.045 0.047 0.043 0.046 0.047 0.047 0.044 0.049 0.046

recursive 0.042 0.049 0.04 0.048 0.046 0.04 0.044 0.04 0.048 0.042

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.052 0.049 0.05 0.058 0.055 0.062 0.056 0.056 0.057 0.068
rolling 0.046 0.045 0.041 0.047 0.046 0.041 0.052 0.047 0.04 0.049

recursive 0.052 0.047 0.04 0.044 0.043 0.051 0.055 0.046 0.041 0.045

Table 3.9: Size of the statistics:T=750 R=450 P=T-R=300 m = 1/3 (nominal size 5%)

T=150, R=90,P=60 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.032 0.032 0.039 0.03 0.043 0.039 0.04 0.043 0.039 0.035 0.032 0.041 0.03
rolling 0.023 0.025 0.042 0.046 0.048 0.044 0.042 0.042 0.044 0.039 0.035 0.03 0.026

recursive 0.021 0.027 0.041 0.046 0.047 0.042 0.43 0.047 0.039 0.42 0.044 0.026 0.27

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.042 0.04 0.042 0.041 0.042 0.041 0.048 0.043 0.053 0.042 0.043 0.046 0.049
rolling 0.032 0.043 0.032 0.03 0.04 0.035 0.036 0.032 0.034 0.046 0.043 0.045 0.038

recursive 0.031 0.034 0.043 0.031 0.04 0.04 0.044 0.053 0.04 0.048 0.041 0.034 0.038

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.044 0.048 0.053 0.044 0.049 0.05 0.05 0.044 0.046 0.05
rolling 0.038 0.041 0.039 0.045 0.044 0.053 0.049 0.047 0.033 0.039

recursive 0.039 0.037 0.05 0.053 0.049 0.047 0.048 0.059 0.039 0.042

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.04 0.043 0.052 0.048 0.042 0.048 0.046 0.043 0.056 0.041
rolling 0.02 0.028 0.054 0.055 0.045 0.046 0.048 0.038 0.035 0.035

recursive 0.03 0.032 0.029 0.033 0.028 0.044 0.046 0.045 0.049 0.047

Table 3.10: Size of the statistics:T=150 R=90 P=T-R=60 m = 2/3 (nominal size 5%)

T=375, R=225,P=150 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.058 0.064 0.042 0.063 0.044 0.041 0.042 0.052 0.041 0.039 0.067 0.043 0.051
rolling 0.036 0.055 0.064 0.059 0.062 0.05 0.047 0.044 0.044 0.065 0.048 0.044 0.038

recursive 0.035 0.04 0.043 0.049 0.047 0.046 0.04 0.043 0.047 0.042 0.039 0.04 0.042

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.052 0.044 0.046 0.041 0.043 0.042 0.045 0.045 0.04 0.051 0.049 0.047 0.044
rolling 0.039 0.041 0.049 0.048 0.039 0.047 0.043 0.044 0.046 0.044 0.039 0.032 0.04

recursive 0.035 0.038 0.052 0.058 0.044 0.041 0.047 0.048 0.058 0.043 0.036 0.34 0.04

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.047 0.05 0.062 0.055 0.052 0.048 0.055 0.054 0.064 0.047
rolling 0.04 0.038 0.06 0.057 0.044 0.036 0.056 0.053 0.051 0.042

recursive 0.047 0.043 0.068 0.054 0.045 0.04 0.067 0.065 0.062 0.048

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.042 0.045 0.049 0.041 0.049 0.045 0.043 0.045 0.052 0.054
rolling 0.037 0.044 0.042 0.039 0.036 0.037 0.043 0.048 0.042 0.037

recursive 0.04 0.049 0.038 0.038 0.036 0.047 0.054 0.043 0.05 0.051

Table 3.11: Size of the statistics:T=375 R=225 P=T-R=150 m = 2/3 (nominal size 5%)
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T=750, R=450,P=300 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.048 0.040 0.044 0.049 0.046 0.051 0.052 0.048 0.052 0.04 0.042 0.05 0.032
rolling 0.049 0.041 0.056 0.051 0.048 0.041 0.041 0.045 0.057 0.056 0.049 0.038 0.039

recursive 0.046 0.048 0.045 0.044 0.051 0.048 0.044 0.045 0.047 0.057 0.058 0.039 0.04

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.049 0.045 0.049 0.051 0.046 0.049 0.051 0.043 0.049 0.052 0.043 0.047 0.049
rolling 0.048 0.042 0.046 0.055 0.044 0.047 0.043 0.044 0.044 0.043 0.049 0.044 0.048

recursive 0.04 0.043 0.041 0.063 0.065 0.045 0.053 0.045 0.044 0.051 0.042 0.044 0.043

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.045 0.049 0.047 0.044 0.053 0.05 0.049 0.042 0.046 0.051
rolling 0.045 0.044 0.043 0.064 0.063 0.044 0.048 0.041 0.044 0.05

recursive 0.043 0.047 0.045 0.057 0.052 0.048 0.048 0.048 0.051 0.048

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.052 0.053 0.042 0.042 0.043 0.051 0.048 0.042 0.054 0.049
rolling 0.041 0.048 0.043 0.039 0.04 0.043 0.043 0.047 0.049 0.043

recursive 0.044 0.051 0.041 0.038 0.041 0.053 0.054 0.043 0.045 0.048

Table 3.12: Size of the statistics:T=750 R=450 P=T-R=350 m = 2/3 (nominal size 5%)

T=150, R=90,P=60 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.021 0.032 0.027 0.034 0.042 0.045 0.039 0.041 0.041 0.035 0.039 0.028 0.022
rolling 0.023 0.033 0.033 0.033 0.036 0.042 0.036 0.04 0.037 0.037 0.035 0.024 0.025

recursive 0.02 0.025 0.025 0.029 0.024 0.034 0.031 0.036 0.021 0.019 0.02 0.021 0.019

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.048 0.051 0.049 0.041 0.049 0.053 0.042 0.053 0.049 0.044 0.039 0.055 0.049
rolling 0.051 0.054 0.047 0.044 0.044 0.051 0.036 0.05 0.052 0.046 0.048 0.058 0.047

recursive 0.038 0.047 0.038 0.039 0.045 0.044 0.045 0.054 0.04 0.041 0.039 0.034 0.041

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.046 0.053 0.047 0.042 0.059 0.058 0.048 0.052 0.051 0.053
rolling 0.049 0.054 0.039 0.046 0.061 0.055 0.046 0.055 0.054 0.057

recursive 0.035 0.041 0.055 0.058 0.054 0.044 0.056 0.056 0.055 0.051

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.039 0.032 0.03 0.029 0.035 0.042 0.047 0.048 0.05 0.036
rolling 0.026 0.033 0.048 0.042 0.048 0.056 0.047 0.046 0.052 0.034

recursive 0.031 0.029 0.042 0.045 0.041 0.045 0.044 0.047 0.05 0.037

Table 3.13: Size of the statistics:T=150 R=90 P=T-R=60 m = 1/2 (nominal size 5%)

3.3.3 Power of the statistics

To study the power properties of the tests we consider the following model as

a null hypothesis model: yt = α1 + β1yt−1 + β2xt−1 + σεt and xt = φ1 + φ2xt−1 + εt,

εt ∼ N(0, 1), where φ1 = 1.38, φ2 = 0.77, α1 = 1.5, β1 = 0.5, β2 = 0.6, σ = 1. The

total sample size (T ) is 650, R = 350, m = 1/3. We consider the break point at R+ τP ,

where τ = 1/3. The nominal size is 5%. The number of Monte Carlo replication is 1000

and bootstrapping is 500.
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T=375, R=225,P=150 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.042 0.04 0.039 0.042 0.041 0.047 0.044 0.045 0.038 0.040 0.040 0.041 0.033
rolling 0.03 0.046 0.048 0.059 0.066 0.043 0.059 0.043 0.039 0.059 0.059 0.067 0.026

recursive 0.021 0.03 0.041 0.059 0.63 0.067 0.042 0.043 0.031 0.041 0.047 0.036 0.022

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.051 0.5 0.049 0.042 0.048 0.043 0.045 0.055 0.049 0.048 0.047 0.046 0.039
rolling 0.05 0.048 0.045 0.049 0.047 0.049 0.038 0.042 0.047 0.046 0.043 0.041 0.038

recursive 0.046 0.043 0.044 0.039 0.047 0.042 0.047 0.052 0.047 0.047 0.039 0.045 0.036

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.042 0.043 0.052 0.05 0.043 0.044 0.05 0.048 0.051 0.043
rolling 0.041 0.048 0.051 0.05 0.044 0.042 0.049 0.047 0.052 0.043

recursive 0.049 0.047 0.066 0.053 0.043 0.049 0.059 0.055 0.051 0.042

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.044 0.041 0.043 0.039 0.044 0.045 0.048 0.052 0.052 0.049
rolling 0.039 0.067 0.045 0.056 0.044 0.048 0.045 0.053 0.042 0.046

recursive 0.042 0.046 0.042 0.046 0.064 0.047 0.053 0.054 0.051 0.05

Table 3.14: Size of the statistics:T=375 R=225 P=T-R=150 m = 1/2 (nominal size 5%)

T=750, R=450,P=300 S1,1
t S1,2

t S1,3
t S1,4

t S1,5
t S1,6

t S1,7
t S1,8

t S1,9
t S1,10

t S1,11
t S1,12

t S1,13
t

fixed 0.045 0.047 0.041 0.045 0.045 0.041 0.048 0.047 0.043 0.045 0.042 0.043 0.048
rolling 0.045 0.047 0.048 0.049 0.043 0.047 0.04 0.043 0.04 0.041 0.042 0.048 0.048

recursive 0.045 0.044 0.049 0.046 0.04 0.052 0.044 0.041 0.046 0.046 0.043 0.057 0.045

A1,1
t A1,2

t A1,3
t A1,4

t A1,5
t A1,6

t A1,7
t A1,8

t A1,9
t A1,10

t A1,11
t A1,12

t A1,13
t

fixed 0.05 0.049 0.05 0.048 0.043 0.043 0.048 0.052 0.041 0.048 0.044 0.046 0.049
rolling 0.047 0.049 0.043 0.061 0.044 0.052 0.042 0.041 0.044 0.043 0.044 0.041 0.051

recursive 0.049 0.042 0.043 0.05 0.053 0.048 0.052 0.046 0.057 0.045 0.058 0.045 0.044

S1,13
C A1,13

C S2,7
L S3,7

L S4,7
L S5,7

L A2,7
C A3,7

L A4,7
L A5,7

L

fixed 0.052 0.047 0.05 0.049 0.048 0.046 0.05 0.049 0.048 0.047
rolling 0.046 0.047 0.053 0.062 0.05 0.043 0.046 0.043 0.045 0.045

recursive 0.043 0.047 0.049 0.052 0.057 0.044 0.047 0.046 0.045 0.046

S1,7
t S2,7

t S3,7
t S4,7

t S5,7
t A1,7

t A2,7
t A3,7

t A4,7
t A5,7

t

fixed 0.048 0.054 0.047 0.047 0.042 0.048 0.049 0.048 0.048 0.051
rolling 0.040 0.049 0.04 0.037 0.046 0.042 0.044 0.048 0.049 0.044

recursive 0.044 0.051 0.045 0.044 0.048 0.052 0.054 0.049 0.045 0.046

Table 3.15: Size of the statistics:T=750 R=450 P=T-R=300 m = 1/2 (nominal size 5%)

85



We consider following four data generating mechanisms:

DGP1: With pre-known structural break in intercept yt = αt + β1yt−1 +

β2xt−1 + σεt, εt ∼ N(0, 1)

αt =


α1 = 1.5 if t < break

α2 = 2 otherwise

β1 = 0.5, β2 = 0.6, σ = 1. In DGP1, we consider the structural break to the intercept

only.

DGP2: With pre-known structural break in variance

yt = α+ β1yt−1 + β2xt−1 + σtεt, εt ∼ N(0, 1)

σt =


σ1 = 1.5 if t < break

σ2 = 1.8 otherwise

α = 1.5, β1 = 0.5, β2 = 0.6. In DGP2, we consider the structural break to the variance

only.

DGP3: With pre-known structural break in slope coefficients

yt = α+ β1,tyt−1 + β2,txt−1 + σεt, εt ∼ N(0, 1)

β1,t =


β1,1 = 0.5 if t < break

β1,2 = 0.3 otherwise

β2,t =


β2,1 = 0.6 if t < break

β2,2 = 0.4 otherwise

α = 1.5, σ = 1. In DGP3, we consider the structural break to the coefficients only.

DGP4: With pre-known structural break in intercept, variance and slope co-

efficients

yt = αt + β1,tyt−1 + β2,txt−1 + σtεt, εt ∼ N(0, 1)

86



αt =


α1 = 1.5 if t < break

α2 = 2 otherwise

σt =


σ1 = 1.5 if t < break

σ2 = 1.8 otherwise

β1,t =


β1,1 = 0.5 if t < break

β1,2 = 0.3 otherwise

β2,t =


β2,1 = 0.6 if t < break

β2,2 = 0.4 otherwise

In DGP4, we consider the structural break to the intercept, coefficients and variance.

For all these four cases, we analyze the behavior of the St and At statistics for 13

autocontours that span the entire uniform density and lag l = 1, 2, 3, 4 and 5 respectively.

In addition, we present the power of the portmanteaus statistics Sl,13
C , Al,13

C , S7,l
L and

A7,l
L for several values of l. Table 3.16, Table 3.17, Table 3.18 and Table 3.19 report the

power of the statistics for the above four different breaks with fixed estimation scheme

respectively. We present the power of the statistics in Table 3.20, 3.21, 3.22, and 3.23. In

general, the power is excellent across model and sample size under these three estimation

schemes. The power of our statistics under DGP2 which specifies the break at variance

is comparatively lower than the other three cases. However, the break at variance is

very small and the power for the portmanteaus statistics are still substantial enough

for us to reject the null. For DGP4, our tests have the strongest power overall since it

accumulates all the four different types of breaks.
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Fixed Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.14 0.45 0.765 0.956 0.979 0.987 0.995 0.992 0.987 0.976 0.938 0.867 0.589
l = 2 0.14 0.464 0.789 0.955 0.981 0.99 0.993 0.993 0.988 0.974 0.943 0.864 0.593
l = 3 0.14 0.419 0.792 0.965 0.985 0.997 0.997 0.994 0.985 0.971 0.937 0.871 0.594
l = 4 0.11 0.439 0.797 0.953 0.986 0.993 0.994 0.994 0.99 0.979 0.938 0.866 0.595
l = 5 0.12 0.453 0.796 0.952 0.984 0.992 0.994 0.993 0.989 0.971 0.938 0.867 0.598

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.08 0.244 0.698 0.898 0.948 0.969 0.981 0.978 0.968 0.945 0.904 0.812 0.588
l = 2 0.09 0.277 0.741 0.896 0.952 0.965 0.979 0.983 0.972 0.947 0.898 0.815 0.585
l = 3 0.07 0.276 0.72 0.893 0.941 0.969 0.98 0.984 0.967 0.943 0.906 0.815 0.588
l = 4 0.07 0.319 0.702 0.887 0.957 0.971 0.979 0.981 0.971 0.944 0.904 0.817 0.586
l = 5 0.08 0.339 0.722 0.906 0.951 0.968 0.985 0.976 0.972 0.944 0.903 0.816 0.584

S13,l
C A13,1

C

l = 1 0.961 0.921
l = 2 0.965 0.924
l = 3 0.967 0.923
l = 4 0.963 0.921
l = 5 0.965 0.921

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.989 0.985 0.976 0.964 0.98 0.969 0.956 0.942

Table 3.16: Power for DGP1: Fixed Scheme
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Fixed Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.292 0.271 0.191 0.084 0.073 0.109 0.281 0.278 0.391 0.512 0.638 0.638 0.518
l = 2 0.26 0.239 0.171 0.079 0.075 0.106 0.282 0.292 0.418 0.518 0.637 0.639 0.52
l = 3 0.285 0.265 0.175 0.089 0.075 0.12 0.283 0.29 0.404 0.53 0.635 0.639 0.523
l = 4 0.311 0.26 0.162 0.088 0.063 0.096 0.282 0.284 0.399 0.512 0.624 0.636 0.526
l = 5 0.273 0.253 0.158 0.068 0.068 0.108 0.282 0.288 0.408 0.539 0.645 0.638 0.531

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.345 0.242 0.162 0.09 0.078 0.127 0.275 0.271 0.361 0.472 0.561 0.604 0.527
l = 2 0.327 0.225 0.16 0.081 0.077 0.12 0.269 0.277 0.377 0.467 0.56 0.606 0.522
l = 3 0.347 0.239 0.167 0.089 0.087 0.123 0.272 0.286 0.374 0.468 0.558 0.6 0.527
l = 4 0.368 0.246 0.159 0.09 0.069 0.111 0.272 0.277 0.345 0.455 0.55 0.592 0.523
l = 5 0.317 0.222 0.146 0.086 0.072 0.12 0.273 0.288 0.37 0.469 0.564 0.6 0.523

Sl,13
C A1,13

C

l = 1 0.659 0.595
l = 2 0.651 0.604
l = 3 0.666 0.625
l = 4 0.644 0.625
l = 5 0.652 0.611

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.286 0.285 0.281 0.285 0.271 0.273 0.276 0.275

Table 3.17: Power for DGP2: Fixed Scheme
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Fixed Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.95 0.998 0.999 0.999 0.999 1 0.97 0.985 0.961 0.849 0.449 0.33 0.29
l = 2 0.96 0.998 0.999 1 0.999 0.997 0.982 0.981 0.96 0.859 0.444 0.16 0.19
l = 3 0.97 0.997 0.998 1 0.999 0.998 0.979 0.982 0.956 0.85 0.436 0.35 0.31
l = 4 0.96 0.997 0.998 1 0.998 0.998 0.98 0.984 0.965 0.853 0.446 0.36 0.13
l = 5 0.96 0.997 1 0.999 1 0.999 0.982 0.983 0.96 0.854 0.447 0.2 0.23

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.93 0.951 1 0.999 0.999 0.995 0.95 0.973 0.914 0.475 0.38 0.25 0.16
l = 2 0.931 0.967 0.998 1 0.999 0.994 0.952 0.974 0.896 0.518 0.34 0.22 0.17
l = 3 0.937 0.98 0.998 0.999 0.997 0.995 0.95 0.973 0.883 0.555 0.36 0.24 0.19
l = 4 0.935 0.96 1 0.998 0.997 0.994 0.95 0.968 0.908 0.487 0.31 0.32 0.22
l = 5 0.939 0.95 0.999 0.998 0.997 0.995 0.95 0.962 0.875 0.545 0.31 0.12 0.23

Sl,13
C A1,13

C

l = 1 1 0.97
l = 2 1 0.98
l = 3 0.999 0.97
l = 4 1 0.999
l = 5 1 1

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.98 0.98 0.98 0.98 0.97 0.969 0.97 0.97

Table 3.18: Power for DGP3: Fixed Scheme
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Fixed Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 1 1 0.999 1 1 1 0.999 0.999 0.989 0.984 0.969 0.93 0.79
l = 2 0.999 1 0.999 0.996 1 1 1 1 0.98 0.983 0.967 0.901 0.78
l = 3 0.998 1 1 1 1 0.999 1 1 0.996 0.98 0.965 0.912 0.781
l = 4 1 0.999 1 1 0.998 1 0.999 1 0.99 0.98 0.962 0.923 0.744
l = 5 1 0.996 1 1 1 1 1 0.998 1 0.98 0.966 0.917 0.775

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.989 1 0.995 1 1 1 0.98 0.998 0.989 0.96 0.914 0.812 0.639
l = 2 0.989 1 0.995 0.995 0.997 1 0.988 0.989 0.986 0.967 0.934 0.815 0.633
l = 3 0.99 1 1 1 1 0.997 0.985 0.99 0.986 0.966 0.914 0.815 0.622
l = 4 1 0.996 1 1 0.996 0.. 0.989 0.991 0.986 0.967 0.954 0.817 0.644
l = 5 1 0.996 1 1 1 1 0.989 0.996 0.986 0.97 0.914 0.816 0.675

Sl,13
C A1,13

C

l = 1 1 1
l = 2 1 1
l = 3 1 1
l = 4 1 1
l = 5 1 1

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 1 1 1 1 1 1 1 1

Table 3.19: Power for DGP4: Fixed Scheme
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Rolling Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.18 0.12 0.308 0.416 0.459 0.394 0.42 0.264 0.21 0.08 0.119 0.092 0.08
l = 2 0.11 0.11 0.295 0.324 0.323 0.431 0.433 0.333 0.193 0.084 0.123 0.093 0.08
l = 3 0.11 0.11 0.258 0.402 0.386 0.39 0.472 0.325 0.207 0.096 0.123 0.094 0.09
l = 4 0.13 0.11 0.289 0.439 0.41 0.413 0.378 0.325 0.173 0.093 0.121 0.092 0.082
l = 5 0.16 0.11 0.262 0.445 0.418 0.423 0.438 0.318 0.171 0.091 0.121 0.092 0.083

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.25 0.318 0.559 0.783 0.738 0.710 0.534 0.634 0.418 0.18 0.21 0.102 0.091
l = 2 0.22 0.292 0.527 0.733 0.71 0.714 0.56 0.621 0.438 0.17 0.216 0.100 0.092
l = 3 0.24 0.275 0.521 0.768 0.756 0.744 0.499 0.638 0.442 0.155 0.224 0.103 0.092
l = 4 0.25 0.28 0.519 0.806 0.775 0.759 0.611 0.638 0.421 0.133 0.21 0.101 0.092
l = 5 0.25 0.305 0.516 0.797 0.781 0.769 0.533 0.626 0.392 0.121 0.24 0.101 0.093

Sl,13
C A1,13

C

l = 1 0.638 0.749
l = 2 0.521 0.733
l = 3 0.619 0.801
l = 4 0.641 0.822
l = 5 0.637 0.803

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.414 0.419 0.408 0.432 0.563 0.59 0.578 0.532

Table 3.20: Power for DGP1: Rolling Scheme
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Rolling Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.116 0.104 0.088 0.063 0.05 0.056 0.112 0.11 0.171 0.341 0.302 0.264 0.261
l = 2 0.114 0.09 0.086 0.063 0.054 0.051 0.118 0.113 0.172 0.318 0.296 0.264 0.262
l = 3 0.107 0.094 0.076 0.065 0.06 0.053 0.108 0.126 0.189 0.335 0.28 0.273 0.266
l = 4 0.113 0.104 0.072 0.054 0.058 0.049 0.175 0.114 0.167 0.329 0.287 0.266 0.267
l = 5 0.109 0.093 0.08 0.053 0.05 0.053 0.16 0.121 0.184 0.337 0.274 0.265 0.267

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.179 0.129 0.099 0.078 0.066 0.075 0.19 0.151 0.204 0.36 0.344 0.35 0.378
l = 2 0.169 0.112 0.082 0.075 0.066 0.076 0.18 0.145 0.205 0.386 0.345 0.343 0.379
l = 3 0.175 0.139 0.092 0.07 0.067 0.077 0.196 0.159 0.228 0.378 0.352 0.348 0.378
l = 4 0.183 0.143 0.083 0.063 0.066 0.077 0.192 0.144 0.201 0.358 0.342 0.352 0.375
l = 5 0.159 0.129 0.09 0.063 0.066 0.065 0.191 0.151 0.208 0.371 0.347 0.35 0.377

Sl,13
C A1,13

C

l = 1 0.409 0.414
l = 2 0.363 0.394
l = 3 0.381 0.427
l = 4 0.398 0.431
l = 5 0.306 0.318

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.168 0.115 0.113 0.112 0.129 0.189 0.191 0.182

Table 3.21: Power for DGP2: Rolling Scheme
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Rolling Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.46 0.461 0.395 0.184 0.26 0.329 0.396 0.457 0.401 0.134 0.212 0.092 0.08
l = 2 0.358 0.32 0.338 0.381 0.421 0.475 0.511 0.508 0.39 0.121 0.241 0.093 0.08
l = 3 0.437 0.398 0.389 0.442 0.465 0.524 0.524 0.518 0.385 0.099 0.223 0.094 0.09
l = 4 0.445 0.425 0.444 0.481 0.502 0.544 0.54 0.512 0.345 0.095 0.232 0.092 0.082
l = 5 0.448 0.409 0.425 0.468 0.511 0.54 0.546 0.506 0.361 0.075 0.232 0.092 0.083

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.189 0.219 0.332 0.473 0.584 0.678 0.726 0.739 0.706 0.395 0.163 0.082 0.06
l = 2 0.585 0.628 0.686 0.788 0.808 0.834 0.826 0.815 0.716 0.356 0.171 0.081 0.06
l = 3 0.68 0.711 0.728 0.796 0.832 0.839 0.832 0.811 0.7 0.334 0.163 0.081 0.07
l = 4 0.684 0.733 0.765 0.832 0.851 0.861 0.846 0.815 0.698 0.308 0.162 0.081 0.062
l = 5 0.674 0.717 0.762 0.82 0.846 0.86 0.848 0.814 0.669 0.291 0.161 0.081 0.063

Sl,13
C A1,13

C

l = 1 0.57 0.817
l = 2 0.539 0.845
l = 3 0.53 0.814
l = 4 0.532 0.78
l = 5 0.534 0.782

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

0.477 0.496 0.48 0.421 0.728 0.75 0.749 0.703

Table 3.22: Power for DGP3: Rolling Scheme
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Rolling Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.569 0.461 0.486 0.589 0.696 0.746 0.76 0.729 0.69 0.643 0.481 0.331 0.123
l = 2 0.44 0.387 0.358 0.577 0.664 0.73 0.744 0.733 0.703 0.629 0.464 0.332 0.12
l = 3 0.541 0.465 0.421 0.528 0.649 0.695 0.705 0.71 0.691 0.624 0.445 0.332 0.127
l = 4 0.586 0.514 0.48 0.525 0.639 0.698 0.703 0.694 0.663 0.618 0.447 0.319 0.131
l = 5 0.571 0.495 0.484 0.525 0.643 0.724 0.722 0.723 0.678 0.627 0.448 0.318 0.135

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.25 0.318 0.559 0.761 0.831 0.861 0.858 0.839 0.819 0.763 0.606 0.461 0.236
l = 2 0.22 0.292 0.527 0.739 0.794 0.835 0.857 0.852 0.82 0.767 0.601 0.46 0.242
l = 3 0.24 0.275 0.521 0.705 0.789 0.835 0.85 0.854 0.819 0.767 0.609 0.45 0.237
l = 4 0.25 0.28 0.519 0.699 0.795 0.833 0.86 0.842 0.8 0.736 0.606 0.443 0.24
l = 5 0.25 0.305 0.516 0.704 0.789 0.837 0.846 0.848 0.823 0.75 0.588 0.446 0.242

Sl,13
C A1,13

C

l = 1 0.75 0.85
l = 2 0.74 0.85
l = 3 0.76 0.87
l = 4 0.76 0.83
l = 5 0.771 0.81

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.656 0.558 0.558 0.56 0.801 0.724 0.656 0.605

Table 3.23: Power for DGP4: Rolling Scheme
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Recursive Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.071 0.211 0.368 0.711 0.827 0.881 0.895 0.87 0.854 0.807 0.676 0.497 0.203
l = 2 0.069 0.223 0.371 0.71 0.814 0.864 0.88 0.886 0.848 0.804 0.665 0.501 0.203
l = 3 0.071 0.211 0.351 0.673 0.785 0.844 0.872 0.881 0.863 0.804 0.651 0.498 0.209
l = 4 0.073 0.242 0.388 0.68 0.795 0.846 0.863 0.875 0.845 0.803 0.65 0.493 0.209
l = 5 0.074 0.201 0.369 0.662 0.787 0.854 0.884 0.872 0.833 0.799 0.647 0.495 0.206

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.06 0.367 0.642 0.817 0.894 0.921 0.923 0.914 0.904 0.874 0.725 0.585 0.305
l = 2 0.058 0.332 0.611 0.817 0.881 0.908 0.935 0.929 0.9 0.871 0.732 0.59 0.3
l = 3 0.062 0.315 0.596 0.789 0.877 0.906 0.926 0.93 0.915 0.882 0.737 0.597 0.306
l = 4 0.064 0.325 0.605 0.783 0.881 0.908 0.921 0.917 0.902 0.872 0.724 0.585 0.308
l = 5 0.062 0.348 0.601 0.781 0.883 0.909 0.929 0.925 0.908 0.871 0.727 0.587 0.3

Sl,13
C Al,13

C

l = 1 0.665 0.718
l = 2 0.657 0.722
l = 3 0.646 0.706
l = 4 0.657 0.72
l = 5 0.655 0.709

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.814 0.735 0.671 0.624 0.905 0.843 0.787 0.759

Table 3.24: Power for DGP1: Recursive Scheme
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Recursive Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.144 0.115 0.094 0.053 0.062 0.055 0.112 0.142 0.212 0.31 0.368 0.36 0.229
l = 2 0.122 0.118 0.09 0.053 0.061 0.061 0.105 0.135 0.223 0.29 0.362 0.357 0.229
l = 3 0.135 0.118 0.087 0.056 0.053 0.068 0.114 0.152 0.225 0.306 0.367 0.359 0.229
l = 4 0.152 0.142 0.081 0.054 0.54 0.056 0.105 0.152 0.214 0.292 0.366 0.364 0.228
l = 5 0.135 0.115 0.088 0.059 0.057 0.058 0.112 0.145 0.219 0.303 0.37 0.355 0.229

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.206 0.156 0.111 0.069 0.057 0.076 0.126 0.175 0.228 0.311 0.402 0.415 0.336
l = 2 0.192 0.126 0.094 0.064 0.06 0.081 0.116 0.17 0.247 0.318 0.407 0.418 0.332
l = 3 0.205 0.153 0.099 0.062 0.055 0.082 0.128 0.183 0.253 0.319 0.41 0.409 0.332
l = 4 0.221 0.164 0.098 0.054 0.051 0.067 0.123 0.164 0.222 0.318 0.41 0.42 0.333
l = 5 0.193 0.154 0.089 0.051 0.055 0.072 0.126 0.185 0.235 0.336 0.407 0.42 0.336

Sl,13
C A1,13

C

l = 1 0.395 0.401
l = 2 0.382 0.375
l = 3 0.4 0.39
l = 4 0.415 0.406
l = 5 0.401 0.371

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.109 0.108 0.105 0.106 0.124 0.126 0.129 0.127

Table 3.25: Power for DGP2: Recursive Scheme
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Recursive Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.352 0.472 0.591 0.752 0.817 0.851 0.901 0.897 0.765 0.211 0.096 0.09 0.08
l = 2 0.749 0.839 0.879 0.911 0.922 0.924 0.94 0.91 0.719 0.192 0.085 0.1 0.059
l = 3 0.834 0.872 0.907 0.934 0.929 0.929 0.946 0.915 0.716 0.129 0.078 0.09 0.08
l = 4 0.856 0.901 0.925 0.936 0.94 0.946 0.944 0.91 0.664 0.118 0.101 0.101 0.07
l = 5 0.844 0.907 0.926 0.938 0.951 0.939 0.946 0.901 0.651 0.09 0.112 0.092 0.07

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.769 0.885 0.936 0.972 0.982 0.983 0.987 0.984 0.952 0.599 0.191 0.13 0.098
l = 2 0.967 0.988 0.997 0.999 0.995 0.998 0.996 0.991 0.944 0.537 0.185 0.121 0.095
l = 3 0.977 0.996 0.994 0.999 0.997 0.997 0.997 0.989 0.937 0.481 0.173 0.108 0.088
l = 4 0.983 0.995 0.996 0.996 0.996 0.998 0.998 0.992 0.915 0.445 0.173 0.113 0.091
l = 5 0.986 0.996 0.996 0.998 0.996 0.997 0.997 0.987 0.904 0.414 0.21 0.122 0.092

Sl,13
C A1,13

C

l = 1 0.835 0.819
l = 2 0.834 0.979
l = 3 0.891 0.99
l = 4 0.918 0.989
l = 5 0.918 0.994

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.919 0.932 0.923 0.896 0.987 0.989 0.99 0.985

Table 3.26: Power for DGP3: Recursive Scheme
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Recursive Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.897 0.889 0.847 0.838 0.882 0.729 0.849 0.732 0.504 0.276 0.16 0.12 0.08
l = 2 0.867 0.875 0.88 0.852 0.84 0.848 0.828 0.777 0.473 0.269 0.15 0.1 0.059
l = 3 0.9 0.899 0.904 0.873 0.875 0.872 0.85 0.771 0.448 0.179 0.145 0.09 0.08
l = 4 0.924 0.927 0.927 0.902 0.882 0.882 0.853 0.771 0.397 0.179 0.171 0.11 0.07
l = 5 0.933 0.935 0.93 0.913 0.895 0.883 0.859 0.749 0.391 0.179 0.162 0.132 0.07

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.825 0.879 0.916 0.939 0.944 0.948 0.943 0.92 0.785 0.343 0.29 0.201 0.182
l = 2 0.987 0.993 0.99 0.99 0.988 0.981 0.978 0.955 0.789 0.304 0.27 0.201 0.172
l = 3 0.994 0.996 0.996 0.996 0.989 0.982 0.981 0.955 0.755 0.268 0.241 0.191 0.173
l = 4 0.994 0.997 0.994 0.993 0.991 0.988 0.985 0.951 0.745 0.234 0.224 0.181 0.166
l = 5 0.997 0.995 0.998 0.995 0.993 0.987 0.978 0.949 0.717 0.22 0.235 0.181 0.164

Sl,13
C A1,13

C

l = 1 0.958 0.982
l = 2 0.903 0.99
l = 3 0.94 0.995
l = 4 0.955 0.998
l = 5 0.965 0.997

S2,7
L S3,7

L S4,7
L S5,7

L A2,7
L A3,7

L A4,7
L A5,7

L

C = 7 0.897 0.804 0.785 0.781 0.947 0.951 0.936 0.912

Table 3.27: Power for DGP4: Recursive Scheme
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3.3.4 Detection of break location

In this session, we will show how to use our method to detect the location of the

structural break point under three estimation schemes (Rolling, Recursive and Fixed).

To illustrate the idea, we consider two different data generating processes (DGPs), which

have break in the intercept and the variance respectively. Given the rolling window size

of rol in the evaluation sample, in total, we can have T − rol + 1 statistics and each of

those statistics reflects the performance of the predictive models in corresponding periods

with rol observations. For every subsample in the evaluation sample, we assume that

it contains the break point. If the beak in contained in a specific period, the statistics

(single t or C) calculated using the observation in this period will be higher than the

critical values. With the information provided by our statistics , we can always find the

narrowest interval which contains the break point. In addition, when the interval for

which we calculated the t and C statistics delivers the St and SC simultaneously, we

can identify the position for the break point, which is the first observation contained in

this interval since when we move the window over this point, the value of the statistic

will be lower or at most equal to the maximum value. First, we consider how to detect

the break in the intercept and the DGP is specified as follows

DGP1: With pre-known structural break in intercept yt = αt + β1yt−1 +

β2xt−1 + σεt, εt ∼ N(0, 1)

αt =


α1 = 1.5 if t < break

α2 = 0.1 otherwise

Model under the null: yt = α + β1yt−1 + β2xt−1 + σεt, εt ∼ N(0, 1), where

β1 = 0.5, β2 = 0.6, σ = 1, T=600, R=350, P=250, break=480, rol=100.

Rolling scheme: The critical value at 5% for SC = 50.66 with lag=1 and
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for St = 3.047 with lag=1,contour level=50%. (Since the DGP1 does not have the

misspecification of dynamics, we can just choose lag=1 to show how to detect the break

point). Given the size of evaluation sample, we will have 151(T − rol + 1 − R) t and

C statistics in total. Each of the statistics can show performance of the model under

the null the at every single period with sample size 100. To detect the location of

the break points we might need to follow these procedures (1) With bootstrapping

the whole distribution, we can obtain the critical value for our statistics. We use the

critical values for Sup type statistics at 5% level as the threshold line to locate the first

significant interval that should contain the break point. (2) we need to check the points

that deliver the biggest values of the statistics because those points might be the break

points.
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Figure 3.7: Plots of t and C Statistics under Rolling Scheme: DGP1

From Figure 3.7, we can see that for the single t statistics, after the 105th

statistic, all the statistics are above the threshold line. Therefore from the t statistics,

we can infer that the break point must be contained in the time interval [455 554].
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As for the single C statistics, which accumulate the information of all contour

levels thus the can detect the break faster than t statistics do. All the statistics after

the 78th one are above the threshold. Therefore, from the C statistics, we can infer that

the break point must contained in the time interval [428 527]. Take the intersection of

these two intervals,we can narrow down the time intervals that contain the break point,

which is [455 527].

Furthermore, We can observe that for both t and C statistics, 130th statistics

have the highest value among all these 151 statistics. (151.36 and 4.98 )It indicates that

the location of the break point is at 480, which is corresponding to the 130th statistics.

When we keep rolling the evaluation sample over the 480th observation (or the 130th

statistics), which is indeed the break point designed in the DGP1, the value of the

statistics declines and thus indicates that the break happens at the 480th observation.

Recursive scheme: The critical value at 5% for SC = 44.24 with lag=1 and

for St = 3.05 with lag=1,contour level=50%.
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Figure 3.8: Plots of t and C Statistics under Recursive Scheme: DGP1
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From Figure 3.8, we can see that for the single t statistics, after the 77th

statistic, all the statistics are above the threshold line. Therefore from the t statistics,

we can infer that the break point must be contained in the time interval [427 526]. As

for the single C statistics, which accumulate the information of all contour levels thus

the can detect the break faster than t statistics do. All the statistics after the 56th one

are above the threshold. Therefore, from the C statistics, we can infer that the break

point must contained in the time interval [406 505]. Take the intersection of these two

intervals,we can narrow down the time intervals that contain the break point, which is

[427 505].

Furthermore, We can observe that for both t and C statistics, 130th statistics

have the highest value among all these 151 statistics (276.93 and 6.02). It indicates that

the location of the break point is at 480, which is corresponding to the 130th statistics.

When we keep rolling the evaluation sample over the 480th observation (or the 130th

statistics), which is indeed the break point designed in the DGP1, the value of the

statistics declines and thus indicates that the break happens at the 480th observation.

Fixed scheme: The critical value at 5% for SC = 32.7261 with lag=1 and for

St = 2.7501 with lag=1,contour level=50%.
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Figure 3.9: Plots of t and C Statistics under Fixed Scheme: DGP1

From Figure 3.9, we can see that for the single t statistics, after the 80th

statistic, all the statistics are above the threshold line. Therefore from the t statistics,

we can infer that the break point must be contained in the time interval [430 529]. As

for the single C statistics, which accumulate the information of all contour levels thus

the can detect the break faster than t statistics do. All the statistics after the 36th one

are above the threshold. Therefore, from the C statistics, we can infer that the break

point must contained in the time interval [386 485]. Take the intersection of these two

intervals,we can narrow down the time intervals that contain the break point, which is

[430 485]. Furthermore, We can observe that for both t and C statistics, 130th statistics

have the highest value among all these 151 statistics (923.23 and 6.47). It indicates that

the location of the break point is at 480, which is corresponding to the 130th statistics.

When we keep rolling the evaluation sample over the 480th observation (or the 130th

statistics), which is indeed the break point designed in the DGP1, the value of the

statistics declines and thus indicates that the break happens at the 480th observation.

Then, we investigate how to detect the break in the variance and the model is

specified as follows:
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DGP2: With pre-known structural break in variance yt = α+β1yt−1+β2xt−1+

σtεt, εt ∼ N(0, 1)

σt =


σ1 = 2 if t < break

σ2 = 0.5 otherwise

Model under the null: yt = α + β1yt−1 + β2xt−1 + σεt, εt ∼ N(0, 1) α = 1.5,

β1 = 0.5, β2 = 0.6, σ1 = 2, σ2 = 0.5 T=600, R=350, P=250, break=480, r=100

Rolling scheme: The critical value at 5% for SC = 32.088 with lag=1 and

for St = 2.6014 with lag=1,contour level=50%. (Since the DGP2 does not have the

misspecification of dynamics, we can just choose lag=1 to show how to detect the break

point). Given the size of evaluation sample, we will have 151(T − r + 1 − R) t and

C statistics in total. Each of the statistics can show performance of the model under

the null the at every single period with sample size 100. To detect the location of

the break points we might need to follow these procedures (1) With bootstrapping

the whole distribution, we can obtain the critical value for our statistics. We use the

critical values for Sup type statistics at 5% level as the threshold line to locate the first

significant interval that should contain the break point. (2) we need to check the points

that deliver the biggest values of the statistics because those points might be the break

points.

From Figure 3.10, we can see that for the single t statistics, after the 85th

statistic, all the statistics are above the threshold line. Therefore from the t statistics,

we can infer that the break point must be contained in the time interval [435 534].

As for the single C statistics, which accumulate the information of all contour levels

thus the can detect the break faster than t statistics do. All the statistics after the

79th one are above the threshold. Therefore, from the C statistics, we can infer that

the break point must contained in the time interval [429 528]. Take the intersection of
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Figure 3.10: Plots of t and C Statistics under Rolling Scheme: DGP2

these two intervals,we can narrow down the time intervals that contain the break point,

which is [435 528]. Furthermore, We can observe that for both t and C statistics, 130th

statistics have the highest value among all these 151 statistics. (143.91 and 7.0610 )It

indicates that the location of the break point is at 480, which is corresponding to the

130th statistics. When we keep rolling the evaluation sample over the 480th observation

(or the 130th statistics), which is indeed the break point designed in the DGP2, the

value of the statistics declines and thus indicates that the break happens at the 480th

observation.

Recursive scheme: The critical value at 5% for SC = 31.4583 with lag=1

and for St = 2.7501 with lag=1,contour level=50%.

From Figure 3.11, we can see that for the single t statistics, after the 73th

statistic, all the statistics are above the threshold line. Therefore from the t statistics,

we can infer that the break point must be contained in the time interval [423 522].

As for the single C statistics, which accumulate the information of all contour levels

thus the can detect the break faster than t statistics do. All the statistics after the

73th one are above the threshold. Therefore, from the C statistics, we can infer that
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Figure 3.11: Plots of t and C Statistics under Recursive Scheme: DGP2

the break point must contained in the time interval [423 522]. Take the intersection of

these two intervals,we can narrow down the time intervals that contain the break point,

which is [423 522]. Furthermore, We can observe that for both t and C statistics, 130th

statistics have the highest value among all these 151 statistics (110.19 and 7.0610). It

indicates that the location of the break point is at 480, which is corresponding to the

130th statistics. When we keep rolling the evaluation sample over the 480th observation

(or the 130th statistics), which is indeed the break point designed in the DGP2, the

value of the statistics declines and thus indicates that the break happens at the 480th

observation.

Fixed scheme: The critical value at 5% for SC = 34.6505 with lag=1 and for

St = 2.8987 with lag=1,contour level=50%.

From Figure 3.12, we can see that for the single t statistics, after the 61th

statistic, all the statistics are above the threshold line. Therefore from the t statistics,

we can infer that the break point must be contained in the time interval [411 520]. As

for the single C statistics, which accumulate the information of all contour levels thus

the can detect the break faster than t statistics do. All the statistics after the 74th one
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Figure 3.12: Plots of t and C Statistics under Fixed Scheme: DGP2

are above the threshold. Therefore, from the C statistics, we can infer that the break

point must contained in the time interval [424 523]. Take the intersection of these two

intervals,we can narrow down the time intervals that contain the break point, which is

[423 520]. Furthermore, We can observe that for t, the 129th statistics has the highest

value among all these 151 statistics (7.0610) and that for C statistic, the 143th statistic

has the highest value (148.67). In this case, with the fixed scheme, we cannot detect the

exact location for the break point, since the maximum values of t and C statistics do

not happen at the exact same point. However, we can conclude the break point must

be contained in the interval of [479 482], which is the narrowest interval containing the

break point (the 480th observation).

3.4 Application

The usefulness of Phillips curve (PC) at forecasting inflation is always a heated

debate among researchers. The essence of PC is to relate inflation to some measure of

the level of real activity, in most cases the unemployment rate. There is widespread

empirical evidence on the existence of parameter instability in forecasting inflation such
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as the works by Stock and Watson (2003), and Clark and McCracken (2005) etc. Thus,

researchers are interested in the evaluation of the absolute or the relative forecasting

performance of PC. Stock and Watson (1999) found some empirical evidence in favor

of the Phillips curve as a forecasting tool and demonstrated that inflation forecasts

produced by the Phillips curve generally are more accurate than forecasts based on sim-

ple autoregressive or multivariate models. They also found the existence of parameter

instabilities across different subsample. Stock and Watson (2007) have documented a

change in the forecast stability in output growth as well as inflation over time. Rossi

and Skehposyan (2010) adopted Giacomini and Rossi (2010a)’s Fluctuation test based

on the same model used by Stock and Watson (2003), and Clark and McCracken (2005)

to investigate the relative forecasting performance of inflation. They show that the

predictive power of the Phillips curve disappeared around the time of the Great Mod-

eration. Follow Stock and Watson (1999)’s work, Amisano annd Giacomini proposed a

test for comparing the out-of-sample density forecast accuracy of U.S inflation by linear

and Markov-switching Phillips curve models estimated by either maximum likelihood

or Bayesian methods and claimed that a Markov-switching Phillips curve estimated by

maximum likelihood produces the best density forecasts of inflation. Their tests are

based on scoring rules, which are loss functions defined over the density forecast and the

realizations of the variable. They restrict attention to the logarithmic scoring rule and

propose an out-of-sample weighted likelihood ratio test that compares weighted aver-

ages of the scores for the competing forecasts. Their comparison is based on the average

forecasting performance of competing models across time and thus can not take care of

the instabilities that widely documented in the literature. In our paper, we will also

evaluate the predictive density forecasting performance of linear and Markov-switching

Phillips curve models. We are focusing on the absolute density forecast performance in
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the presence of instability. Same as Amisano annd Giacomini (2012), we follow Stock

and Watson (1999)’s linear PC model, in which changes of inflation depend on their

lags and on lags of the unemployment rate. We take the model specification chosen in

Amisano annd Giacomini (2012):

∆πt = α1 + β1∆πt−1 + β2∆πt−2 + β12∆πt−12 + γut−1 + σεt

where εt ∼ N(0, 1), CPIt is the consumer price index and ut−1 is the unem-

ployment rate. This specification is consistent with the natural rate hypothesis, because

the natural rate of unemployment (NAIRU) is u∗ = −α
γ(1) . ∆πt and ut do not have a

unit root. πt = 100ln(CPIt/CPIt12). Our test is based on the above. We use the

monthly data spanning the period 1958M012012:M01 obtained from FRED. CPIt is

the Consumer Price Index for All Urban Consumers: All Items and ut−1 is the Civil-

ian Unemployment Rate. Both series are seasonally adjusted. The series runs from

1958M01-2012M01, which updated the data set (1958M01-2004M07) used in Amisano

annd Giacomini (2012). The estimation sample is from 1958M01 to 1988M12, which is

same estimation periods used in Amisano annd Giacomini (2012). The rest of the series

are used as evaluation sample. The subsample of the evaluation sample (rol) is 200.

3.4.1 Evaluation of Linear Phillips Curve

We present the evaluation results for linear Phillips Curve in Table 3.28, Table

3.29 and 3.30 under fixed, rolling and recursive schemes. The linear Phillips Curve has

been rejected under all of these three estimation scheme. The result is consistent with

the empirical evidence that the predictive forecasting performance of the Philip Curve

is time varying.
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Fixed Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.017 0.529 0.523 0.471 0.268 0.002 0.008 0.045 0.136 0.091 0.085 0.031 0.0001
l = 2 0.015 0.285 0.55 0.434 0.481 0.002 0.005 0.041 0.157 0.086 0.09 0.027 0.0001
l = 3 0.028 0.584 0.614 0.651 0.419 0.006 0.005 0.03 0.049 0.088 0.073 0.013 0.0001
l = 4 0.013 0.104 0.807 0.285 0.209 0.009 0.003 0.027 0.098 0.088 0.069 0.012 0.0001
l = 5 0.031 0.221 0.212 0.302 0.206 0.009 0.006 0.034 0.103 0.088 0.057 0.006 0.0001

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.342 0.671 0.759 0.405 0.163 0.042 0.013 0.248 0.243 0.243 0.412 0.199 0.042
l = 2 0.335 0.453 0.621 0.352 0.972 0.043 0.022 0.336 0.297 0.223 0.332 0.25 0.04
l = 3 0.494 0.579 0.316 0.567 0.309 0.041 0.016 0.216 0.225 0.235 0.359 0.197 0.049
l = 4 0.338 0.348 0.764 0.319 0.152 0.033 0.024 0.144 0.264 0.223 0.327 0.226 0.042
l = 5 0.138 0.595 0.637 0.238 0.142 0.032 0.024 0.218 0.273 0.222 0.308 0.184 0.042

S13,l
C A13,1

C

l = 1 0.004 0.022
l = 2 0.001 0.019
l = 3 0.003 0.016
l = 4 0.001 0.025
l = 5 0.001 0.025

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

0.006 0.009 0.012 0.01 0.027 0.018 0.027 0.029

Table 3.28: P-value for linear PC: Fixed Scheme
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Rolling Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.528 0.46 0.843 0.472 0.142 0.002 0.001 0.007 0.008 0.093 0.281 0.026 0.0002
l = 2 0.258 0.35 0.58 0.251 0.229 0.007 0.004 0.009 0.002 0.081 0.24 0.024 0.0003
l = 3 0.559 0.31 0.741 0.437 0.16 0.002 0.001 0.002 0.002 0.066 0.288 0.013 0.0003
l = 4 0.38 0.31 0.479 0.463 0.17 0.001 0.001 0.003 0.008 0.088 0.275 0.021 0.0002
l = 5 0.285 0.249 0.297 0.225 0.12 0.007 0.001 0.003 0.003 0.063 0.327 0.019 0.0002

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.789 0.801 0.853 0.656 0.143 0.001 0.023 0.033 0.032 0.145 0.297 0.271 0.024
l = 2 0.267 0.55 0.812 0.244 0.568 0.002 0.018 0.024 0.045 0.127 0.283 0.337 0.037
l = 3 0.751 0.918 0.923 0.723 0.144 0.007 0.015 0.032 0.047 0.114 0.288 0.24 0.023
l = 4 0.358 0.476 0.575 0.448 0.108 0.001 0.015 0.031 0.031 0.142 0.313 0.271 0.034
l = 5 0.305 0.655 0.576 0.251 0.129 0.009 0.018 0.031 0.039 0.13 0.286 0.288 0.033

S13,l
C A13,1

C

l = 1 0.001 0.009
l = 2 0.0003 0.004
l = 3 0.0003 0.01
l = 4 0.0003 0.005
l = 5 0.002 0.004

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

0.008 0.008 0.006 0.009 0.038 0.025 0.019 0.031

Table 3.29: P-value for linear PC: Rolling Scheme
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Recursive Scheme Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.08 0.171 0.571 0.555 0.254 0.003 0.001 0.019 0.038 0.132 0.184 0.001 0.0003
l = 2 0.038 0.133 0.646 0.406 0.416 0.007 0.005 0.015 0.021 0.113 0.185 0.008 0.0001
l = 3 0.042 0.168 0.926 0.589 0.544 0.001 0.006 0.012 0.017 0.094 0.105 0.005 0.0001
l = 4 0.023 0.103 0.683 0.272 0.46 0.003 0.003 0.009 0.035 0.119 0.098 0.008 0.0001
l = 5 0.045 0.158 0.489 0.233 0.64 0.009 0.004 0.016 0.023 0.095 0.093 0.007 0.0001

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.282 0.649 0.794 0.522 0.285 0.033 0.034 0.16 0.238 0.24 0.355 0.283 0.061
l = 2 0.287 0.65 0.79 0.259 0.849 0.032 0.037 0.242 0.219 0.21 0.296 0.356 0.059
l = 3 0.76 0.864 0.855 0.747 0.582 0.014 0.043 0.141 0.112 0.187 0.337 0.242 0.059
l = 4 0.45 0.58 0.775 0.249 0.121 0.012 0.037 0.139 0.163 0.209 0.282 0.25 0.056
l = 5 0.24 0.447 0.733 0.193 0.115 0.022 0.021 0.144 0.142 0.204 0.263 0.271 0.06

S13,l
C A13,1

C

l = 1 0.009 0.034
l = 2 0.009 0.034
l = 3 0.004 0.029
l = 4 0.003 0.05
l = 5 0.008 0.049

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

0.007 0.016 0.011 0.015 0.037 0.44 0.04 0.049

Table 3.30: P-value for linear PC: Recursive Scheme
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3.4.2 Evaluation of Markov-switching Phillips Curve

From the above session, we can observe that the simple linear Philips Curve

fails to provide a good predictive performance in the presence of instabilities. Then

we evaluate the performance of the Markov-Switching Philips Curve , which allows for

non-Gaussian density forecasts. We assume that some of the parameters of the linear

model vary depending on the value of an unobserved discrete variable st following a finite

Markov chain. To evaluate this mode, we use the fixed estimation scheme. We consider

the two-state Markov Switching model with εt follows a standard normal distribution

and

∆πt = α1 + β1∆πt−1 + β2∆πt−2 + β12∆πt−12 + γut−1 + σεt

.

st =


1

2

Pr(st = j|st−1 = i) = pij

First, we consider the model (Model 1) that all the model’s parameters depend

on the hidden state st. Table 3.31 presents the p-values of the statistics based on Model

1. Since the p-value of the statistics at every contour and the statistics accumulates all

contours or lags are very large, we fail to reject Model 1. It means that if the model

has high flexibility across time, we are tend to accept the model. To further investigate

the key factor which characterize the flexibility of the mode, we consider the second

model specification. The specification for the second model (Model 2) imposes that the

intercept of the model does not depend on st but allowing all the other parameters to

switch. In this specification, we are interested in investigating the role of the intercept

on the instability of the unconditional mean for the inflation. Table 3.32 present the

testing results for Model2 and the large p-value indicates that even if the intercept does

not depend on the state, the other parameters which are allowed to change across time
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can capture the instabilities of the model. Then, we follow the MS2 model specified in

Amisano annd Giacomini (2012) to impose the constraints that the intercept and the

coefficient on lagged unemployment are constant across states:γst = γ, αst = α. This

imposition induces constancy of the NAIRU across states (u∗ = −α
γ(1)). In Table 3.33,

we can observe that although we still fail to reject the model overall, since the p-values

for C13,l
max, C13,l

mean (stacking all contours) and C7,k
max, C7,k

mean (stacking 5 lags) are large.

However, for contour levels: 90%, 95%, 99% the p values are smaller than 5% and thus

we can reject the model at these contour levels. It indicates that the restriction on γ

will lower the model’s ability to fully capture the instability of Philips Curve. Finally,

we impose the constraints on the coefficients on lagged unemployment and allow αst ,

γst and σst to vary across time. From Table 3.34 we can find that the p-values at every

contour level are very big and thus we fail to reject Model 4. Therefore, the results

indicate that the predictive performance of the Philips Curve is unstable over time and

the traditional linear Philips Curve is unable to forecast the inflation in the presence

of instability. The introduction of Markov-Switching Philips Curve can deliver much

better performance than its linear competitor. In addition, it is more important to

characterize the instability of the effect of the lag on unemployment rate than the other

factor such as the lag of the inflation.

Model 1: ∆πt = αst + βst1 ∆πt−1 + βst2 ∆πt−2 + βst12∆πt−12 + γstut−1 + σstεt,

εt ∼ N(0, 1).
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Model 1 Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.904 0.798 0.93 0.89 0.742 0.726 0.766 0.942 0.98 0.968 0.818 0.146 0.164
l = 2 0.902 0.76 0.834 0.914 0.946 0.914 0.864 0.938 0.934 0.936 0.822 0.142 0.134
l = 3 0.896 0.792 0.892 0.98 0.88 0.768 0.804 0.98 0.992 0.986 0.78 0.134 0.134
l = 4 0.972 0.788 0.924 0.882 0.67 0.654 0.762 0.952 0.998 0.954 0.79 0.142 0.158
l = 5 0.744 0.624 0.948 0.922 0.756 0.724 0.78 0.932 0.994 0.964 0.786 0.138 0.134

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.894 0.794 0.922 0.874 0.728 0.74 0.766 0.952 0.98 0.996 0.83 0.152 0.152
l = 2 0.89 0.748 0.824 0.908 0.94 0.926 0.874 0.958 0.946 0.946 0.828 0.152 0.132
l = 3 0.882 0.786 0.89 0.97 0.852 0.768 0.796 0.98 0.994 0.99 0.796 0.14 0.13
l = 4 0.972 0.81 0.926 0.886 0.67 0.658 0.748 0.954 0.998 0.946 0.79 0.142 0.15
l = 5 0.732 0.61 0.946 0.926 0.762 0.728 0.776 0.948 0.988 0.96 0.79 0.136 0.144

S13,l
C A13,1

C

l = 1 0.796 0.792
l = 2 0.798 0.792
l = 3 0.766 0.76
l = 4 0.728 0.722
l = 5 0.734 0.728

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

C = 7 0.768 0.824 0.778 0.796 0.772 0.812 0.772 0.79

Table 3.31: P Value of The Statistics:M1
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Model 2: ∆πt = α + βst1 ∆πt−1 + βst2 ∆πt−2 + βst12∆πt−12 + γstut−1 + σstεt,

εt ∼ N(0, 1). In this model, we assume that coefficients and conditional variance depend

on the hidden state st, but the intercept does not depend on the hidden state.
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Model 2 Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.816 0.754 0.634 0.652 0.606 0.58 0.52 0.612 0.614 0.62 0.436 0.224 0.132
l = 2 0.544 0.464 0.428 0.414 0.4 0.488 0.402 0.568 0.552 0.608 0.4 0.244 0.162
l = 3 0.962 0.602 0.514 0.592 0.57 0.578 0.498 0.584 0.584 0.614 0.43 0.264 0.134
l = 4 0.844 0.802 0.732 0.61 0.564 0.588 0.526 0.618 0.616 0.626 0.436 0.266 0.146
l = 5 0.862 0.634 0.62 0.488 0.534 0.554 0.5 0.608 0.614 0.642 0.426 0.254 0.152

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.8 0.742 0.626 0.644 0.634 0.62 0.54 0.638 0.636 0.638 0.452 0.252 0.154
l = 2 0.536 0.458 0.42 0.412 0.422 0.538 0.46 0.6 0.582 0.632 0.412 0.274 0.186
l = 3 0.962 0.592 0.562 0.588 0.576 0.61 0.52 0.622 0.588 0.62 0.44 0.278 0.152
l = 4 0.836 0.834 0.744 0.612 0.57 0.598 0.548 0.638 0.628 0.636 0.444 0.274 0.148
l = 5 0.85 0.622 0.614 0.484 0.538 0.572 0.524 0.634 0.616 0.658 0.432 0.272 0.152

S13,l
C A13,1

C

l = 1 0.36 0.384
l = 2 0.342 0.374
l = 3 0.362 0.382
l = 4 0.388 0.396
l = 5 0.36 0.362

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

C = 7 0.462 0.44 0.462 0.47 0.464 0.47 0.478 0.494

Table 3.32: P Value of The Statistics:M2

118



Model 3: ∆πt = α + βst1 ∆πt−1 + βst2 ∆πt−2 + βst12∆πt−12 + γut−1 + σεt, εt ∼

N(0, 1).
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Model 3 Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.542 0.682 0.306 0.254 0.18 0.196 0.178 0.26 0.4 0.188 0.044 0.026 0.036
l = 2 0.478 0.32 0.226 0.15 0.102 0.118 0.102 0.116 0.228 0.088 0.034 0.024 0.032
l = 3 0.802 0.394 0.188 0.236 0.172 0.176 0.146 0.234 0.274 0.192 0.038 0.024 0.032
l = 4 0.496 0.65 0.524 0.296 0.188 0.2 0.19 0.284 0.422 0.21 0.042 0.024 0.034
l = 5 0.794 0.19 0.286 0.186 0.136 0.148 0.164 0.296 0.386 0.166 0.032 0.024 0.032

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.496 0.628 0.296 0.264 0.176 0.198 0.178 0.288 0.424 0.256 0.046 0.028 0.036
l = 2 0.438 0.298 0.216 0.152 0.102 0.116 0.104 0.16 0.27 0.128 0.044 0.026 0.032
l = 3 0.372 0.374 0.298 0.24 0.168 0.17 0.148 0.246 0.288 0.22 0.046 0.026 0.032
l = 4 0.442 0.416 0.366 0.33 0.21 0.2 0.21 0.31 0.434 0.24 0.046 0.026 0.034
l = 5 0.362 0.22 0.332 0.192 0.138 0.15 0.17 0.32 0.402 0.232 0.036 0.024 0.032

S13,l
C A13,1

C

l = 1 0.328 0.332
l = 2 0.18 0.18
l = 3 0.284 0.272
l = 4 0.32 0.328
l = 5 0.266 0.268

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

C = 7 0.112 0.12 0.12 0.116 0.118 0.124 0.12 0.122

Table 3.33: P Value of The Statistics:M3
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Model 4: ∆πt = αst + β1∆πt−1 + β2∆πt−2 + β12∆πt−12 + γstut−1 + σstεt,

εt ∼ N(0, 1).
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Model 4 Sl,1t Sl,2t Sl,3t Sl,4t Sl,5t Sl,6t Sl,7t Sl,8t Sl,9t Sl,10
t Sl,11

t Sl,12
t Sl,13

t

l = 1 0.452 0.662 0.454 0.406 0.466 0.694 0.702 0.814 0.788 0.57 0.41 0.254 0.296
l = 2 0.428 0.552 0.218 0.464 0.436 0.678 0.652 0.816 0.684 0.55 0.41 0.276 0.296
l = 3 0.476 0.784 0.454 0.424 0.466 0.66 0.602 0.874 0.782 0.582 0.43 0.206 0.296
l = 4 0.656 0.738 0.676 0.55 0.584 0.72 0.807 0.884 0.82 0.584 0.386 0.224 0.296
l = 5 0.652 0.538 0.422 0.444 0.536 0.78 0.836 0.844 0.842 0.578 0.416 0.244 0.296

Al,1t Al,2t Al,3t Al,4t Al,5t Al,6t Al,7t Al,8t Al,9t Al,10
t Al,11

t Al,12
t Al,13

t

l = 1 0.442 0.644 0.43 0.39 0.568 0.682 0.856 0.822 0.818 0.596 0.45 0.278 0.294
l = 2 0.402 0.446 0.318 0.362 0.326 0.488 0.674 0.834 0.72 0.57 0.446 0.308 0.296
l = 3 0.606 0.748 0.446 0.388 0.454 0.558 0.804 0.868 0.79 0.606 0.434 0.23 0.294
l = 4 0.638 0.768 0.666 0.348 0.58 0.722 0.86 0.874 0.824 0.584 0.4 0.226 0.296
l = 5 0.632 0.514 0.404 0.432 0.522 0.722 0.83 0.852 0.86 0.582 0.412 0.246 0.39

S13,l
C A13,1

C

l = 1 0.614 0.596
l = 2 0.48 0.454
l = 3 0.494 0.482
l = 4 0.51 0.478
l = 5 0.488 0.472

S2,7
C S3,7

C S4,7
C S5,7

C A2,7
C A3,7

C A4,7
C A5,7

C

C = 7 0.518 0.566 0.548 0.598 0.534 0.578 0.564 0.618

Table 3.34: P Value of The Statistics:M4
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3.5 Conclusion

Evaluation of out-of-sample forecasting performance in the presence of insta-

bilities is major concern of researchers. The impact of structural instability for forecast

evaluation has not been formally investigated until very recently. However, in order

to fill the gap in the literature, most of the literatures are just focused on point fore-

cast evaluation. In this paper, we propose a robust out-of-sample density forecasting

evaluation method in the presence of the instabilities based on Generalized Autocon-

tour Method. We define the instabilities as as time variation in the density function

of a stochastic process. These variations include changes of mean, variance and/or

the functional form of the underlying density function. To take care of the instability,

we evaluate one subsample (with size rol) of the evaluation sample, using data from

t− rol+ 1 up to t, where t = R+ rol, · · · , T , to evaluate the assumed predictive density.

According to Generalized Autocontour, for one subsample, we can obtain three different

types of statistics: t, C and L. With the rolling window evaluation method, we can

obtain a collection of T − rol − R + 1 statistics of for t, C and L statistics based on

which Sup type and Avg type statistics are constructed. The asymptotic distributions

of the statistics constructed in this paper are functional of standard Brownian motions

and have very good finite sample properties. We have applied our tests to evaluate the

density forecast performance of U.S. inflation produced by linear and Markov-switching

Philips Curve. Our tests show that the linear Philips Curve can not deliver a good

density forecast in the presence of instabilities. However, the Marokv switching Philips

Curve can provide a good out-of-sample density forecast for U.S. inflation in the pres-

ence of instabilities as long as the model can characterize the instability relationship

between the unemployment rate and inflation.
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Appendix A

Mathematical Proofs

At the core of all proofs is the indicator function Ik,αit , which is a Bernoulli

random variable with the following moments: E(Ik,αit ) = αi, V ar(I
k,αi
t ) = αi(1 − αi)

and covariance

rαih ≡ cov(Ik,αit , Ik,αit−h ) =


0 if h 6= k

α
3/2
i (1− α1/2

i ) if h = k

When h 6= k there is not common information between the indicators Ik,αit and Ik,αit−h , and

since ut’s are i.i.d., their covariance is zero. When h = k, cov(Ik,αit , Ik,αit−k ) = E(Ik,αit ×

Ik,αit−k )− α2
i = α

3/2
i − α2

i .

Proof of Proposition 1:

var(α̂i) = var(
∑T
t=k+1 I

k,αi
t

T−k ) = 1
(T−k)(var(Ik,αit )+2rαik )+o(1). Since var(Ik,αit ) =

αi(1− αi) and rαik = α
3/2
i (1− α1/2

i )

Then:

σ2
k,αi

= var(Ik,αit ) + 2rαik = αi(1− αi) + 2α
3/2
i (1− α1/2

i )

Asymptotic normality of the test follows as in González-Rivera et al. (2011). The

asymptotic variance of the test follows directly from the first and second moments of
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the indicator function stated above.

Proof of Proposition 2:

For j = k,by proposition 1

λj,k = cov(`j,αi , `k,αi) = var(
√
T − k(α̂i − αi)) = αi(1− αi) + 2α

3/2
i (1− α1/2

i )

For j > k,

cov(`k,αi , `j,αi) = cov(Ik,αit , Ij,αit ) + cov(Ik,αit , Ij,αit−k ) (A.1)

+ cov(Ik,αit−j , I
j,αi
t ) + cov(Ij,αit , Ik,αit−j+k) + o(1) (A.2)

cov(Ik,αit , Ij,αit ) = E((Ik,αit − αi)(Ij,αit − αi)) (A.3)

= E(Ik,αit Ij,αit )− α2
i = α

3/2
i − α2

i = α
3/2
i (1− α1/2

i ) (A.4)

Similarly

cov(Ik,αit , Ij,αit−k ) = cov(Ik,αit−j , I
j,αi
t ) = cov(Ik,αit−j+k, I

j,αi
t ) = α

3/2
i (1− α1/2

i )

λj,k = cov(Ik,αit , Ij,αit ) + cov(Ik,αit , Ij,αit−k ) + cov(Ik,αit−j , I
j,αi
t ) + cov(Ij,αit , Ik,αit−j+k)

= 4α
3/2
i (1− α1/2

i )

Due to the symmetric of covariance matrix, when k > j, λj,k = 4α
3/2
i (1−α1/2

i ).

The proof of asymptotic normality follows the method provided in Gonzalez-

Rivera, et al.,’s paper (2011)

Proof of Proposition 3:

cov(ck,i , ck,j ) = cov(Ik,αit , I
k,αj
t ) + cov(Ik,αit , I

k,αj
t−k ) + cov(Ik,αit−k , I

k,αj
t ) + o(1)

If i = j, ωi,i = var(ck,i) = var(
√
T − k(α̂i−αi)) = αi(1−αi) + 2α

3/2
i (1−α1/2

i )

If i < j,

cov(Ik,αit , Ij,αit ) = E(Ik,αit I
k,αj
t )− αi ∗ αj = αi(1− αj)

cov(Ik,αit , Ik,αit−k ) = E(Ik,αit I
k,αj
t−k )− αi ∗ αj = αi ∗

√
αj − αi ∗ αj
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cov(Ik,αit−k , I
k,αi
t ) = E(Ik,αit−k I

k,αj
t )− αi ∗ αj = αi ∗

√
αj − αi ∗ αj

ωi,j = cov(Ik,αit , I
k,αj
t ) + cov(Ik,αit , I

k,αj
t−k ) + cov(Ik,αit−k , I

k,αj
t ) = αi(1−αj) + 2αi ∗

√
αj(1−

√
αj)

Similarly when i > j :

ωi,j = cov(ck,i , ck,j ) = αj(1− αi) + 2αj ∗
√
αi(1−

√
αi)

The proof of asymptotic normality follows the method provided in Gonzalez-

Rivera, et al.,’s paper (2011)

Proof of Proposition 5: Now, we are considering about location scale model:

yt = µ+ σεt, εt is i.i.d

Assumption 1:

√
T (θ̂T − θ0)→ N(0, A−1BA−1) (A.5)

A = −E(H(θ0)), H(θ0) =
1√
T

T∑
t=1

Ht(θ0) is the Hessian (A.6)

B = E(S(θ0)S(θ0)), S(θ0) =
1√
T

T∑
t=1

Htst(θ0) is the score vector (A.7)

Assumption 2:

P = lim
T→∞

E(
∂α̂i(θ)

∂θ
|θ=θ0) = lim

T→∞
E(
∂(α̂i(εt(θ)))

∂ut
.
∂ut
∂εt

.
∂εt
∂θ
|θ=θ0) (A.8)

P is bounded for all its elements.

Assumption 3:

cov(Ik,αit , st(θ0)) <∞, cov(Ik,αit , st−k(θ0)) <∞ (A.9)

Proposition 4: under assumption 1 to 3:
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√
T (α̂i(θ̂T )− αi)→ N(0, ξ2

k,i) (A.10)

ξ2
k,i = σ2

k,i + PA−1BA−1P + 2E[
√
T (α̂i(θ0)− αi)S

′
(θ0)]A−1P (A.11)

The first assumption is a general assumption for consistency of QLME estima-

tors. The second assumption ensures a bound gradient for the statistic, which can be

relaxed. Assumption 3 states that the correlation is bounded. The proof of this propo-

sition can follow the similar method used to prove proposition 4 in GSY’s paper(2010).

Proposition 5: for Gaussian location –scale model: yt = µ0 + σ0εt,where εt ∼

i.i.d N(0, 1)

P = [
2f(z√αi)

√
αi

σ0
,
f(z√αi)z

√
αi

√
αi

σ2
0

]
′

(A.12)

E[
√
T (α̂i(θ0)− αi)S

′
(θ0)] = E


I
k.αi
t εt
σ0

I
k.αi
t (ε2t−1)

σ2
0


′

+ E


I
k.αi
t εt−k
σ0

I
k.αi
t (ε2t−k−1)

σ2
0


′

(A.13)

E[Ik.αit εt] = −
√
αif(F−1(

√
αi)) (A.14)

Similarly:

E[Ik.αit εt−k] = −
√
αif(F−1(

√
αi)) (A.15)

E[Ik.αit ε2
t ] =

∫ F−1(
√
αi)

−∞
f(εt−k)dεt−k

∫ F−1(
√
αi)

−∞
ε2
t f(εt)dεt. (A.16)

E[Ik.αit ε2
t−k]] =

∫ F−1(
√
αi)

−∞
f(εt)dεt

∫ F−1(
√
αi)

−∞
ε2
t−kf(εt−k)dεt−k. (A.17)
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Note: Here F denotes the CDF of standard normal distribution and f denotes

the PDF of the standard normal distribution. Step 1

E[
√
T (α̂i(θ0)− αi)S

′
(θ0)))] = lim

T→0
E[

1

T

T∑
t=1

(Ik.αit − αi)
T∑
t=1

s
′
t(θ0)

= E(Ik.αit s
′
t(θ0)) + E[Ik.αit s

′
t−k(θ0)] + o(1)

= E


I
k.αi
t εt
σ0

I
k.αi
t (ε2t−1)

σ2
0


′

+ E


I
k.αi
t εt−k
σ0

I
k.αi
t (ε2t−k−1)

σ2
0


′

+ o(1)

E[Ik.αit εt] = E[1(0 ≤ ut ≤
√
αi, 0 ≤ ut−k ≤

√
αi)εt] (A.18)

=

∫∫
0≤ut≤

√
αi,0≤ut≤

√
αi

εtf(εt)f(εt−k)dεtdεt−k (A.19)

=

∫ F−1(
√
αi)

−∞
f(εt−k)dεt−k

∫ F−1(
√
αi)

−∞
εtf(εt)dεt (A.20)

= −
√
αif(F−1(

√
αi)) (A.21)

E[Ik.αit εt−k] = −√αif(F−1(
√
αi))

E[Ik.αit ε2
t ] = E[1(0 ≤ ut ≤

√
αi, 0 ≤ ut−k ≤

√
αi)ε

2
t ] (A.22)

=

∫ F−1(
√
αi)

−∞
f(εt−k)dεt−k

∫ F−1(
√
αi)

−∞
ε2
t f(εt)dεt. (A.23)

E[Ik.αit ε2
t−k] =

∫ F−1(
√
αi)

−∞ f(εt)dεt
∫ F−1(

√
αi)

−∞ ε2
t−kf(εt−k)dεt−k.

Step 2

Properties of dirac delta function: δ(x)

∫ +∞

−∞
δ(x)g(x)dx = g(0) (A.24)
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∫ +∞

−∞
δ(x− a)g(x)dx = g(a) (A.25)

H
′
a(x) = δ(x− a) (A.26)

Where Ha(x) is the Heaviside function s.t:

Ha(x) = {
0 if x ≤ a

1 if x ≥ a

Define χ[0,a]∗[0,a] to be a binary indication function s.t.:

χ[0,a]∗[0,a](x, y) = {
1 if 0 ≤ x ≤ a and 0 ≤ y ≤ a

0 otherwise

The partial derivative of χ[0,a]∗[0,a](x, y) are:

∂χ[0,a]∗[0,a](x, y)

∂x
=
∂χ[0,a](x)

∂x
∗ χ[0,a](y) = (δ(x)− δ(x− a)) ∗ χ[0,a](y) (A.27)

∂χ[0,a]∗[0,a](x, y)

∂y
=
∂χ[0,a](y)

∂y
∗ χ[0,a](x) = (δ(y)− δ(y − a)) ∗ χ[0,a](x) (A.28)

P = limT→∞E(∂α̂i(θ)∂θ |θ=θ0) = limT→∞E[

∂α̂i(θ)
∂µ0

∂α̂i(θ)
∂σ2

0

] =

 P1

P2



P1 = lim
T→∞

E[
1

T

∑T
t=1 ∂I

k.αi
t (θ)

∂µ0
]

= lim
T→∞

E[
1

T

∑T
t=1 ∂{1 · (0 ≤ ut ≤

√
αi, 0 ≤ ut−k ≤

√
αi)}

∂µ0
]
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By (30) and (31)

∂Ik.αit (θ)

∂µ0
=
∂Ik.αit (θ)

∂ut
· ∂ut
∂µ0

+
∂Ik.αit (θ)

∂ut
· ∂ut
∂µ0

= (− 1

σ0
){[δ(ut)− δ(ut −

√
αi)]χ

ut−k
[0,
√
αi]
f(εt)

+[δ(ut−k)− δ(ut−k −
√
αi)]χ

ut
[0,
√
αi]
f(εt−k)}

Use (27) and (28),

P1 = E[
∂I
k.αi
t (θ)
∂µ0

] = 2
σ0

√
αif(z√αi), z

√
αi is quantile of the standard normal

distribution

P2 = limT→∞E[ 1
T

∑T
t=1 ∂I

k.αi
t (θ)

∂σ0
] = limT→∞E[ 1

T

∑T
t=1 ∂{1·(0≤ut≤

√
αi,0≤ut≤

√
αi)}

∂σ2
0

·

1
2σ0

]

By (30) and (31)

∂Ik.αit

∂σ2
0

=
1

2σ0
[
∂Ik.αit

∂ut
· ∂ut
∂σ0

+
∂Ik.αit

∂ut
· ∂ut
∂σ0

] (A.29)

= − 1

2σ2
0

{[δ(ut)− δ(ut −
√
αi)]χ

ut−k
[0,
√
αi]
f(εt)εt (A.30)

+ [δ(ut−k)− δ(ut−k −
√
αi)]χ

ut
[0,
√
αi]

)f(εt−k)εt−k} (A.31)

Use (27) ,(28) and the fact the εt(ut) = F−1(ut), P2 = E[
I
k.αi
t

∂σ2
0

] = 1
σ2

0

√
αif(z√αi)z

√
αi

P =

 P1

P2

 =


2f(z√αi )

√
αi

σ0

f(z√αi )z
√
αi

√
αi

σ2
0


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Appendix B

Procedures to Take PIT for

Bivariate Student-t Distribution

Bivariate Student-t Distributions:

f(x) =
Γ( v+2

2
)

Γ( v
2

)(vπ) |Σ|
− 1

2 [1 + 1
vx

tΣ−1x]−
v+2

2

Σ =

 1 ρ

ρ 1


|Σ| = 1− ρ2

Σ−1 =

 1 ρ

ρ 1

 1
1−ρ2

f(x1) =
Γ( v+1

2
)

Γ( v
2

)
√
vπ

[1 +
x2

1
v ]−

v+1
2

f(x2|x1) =
Γ( v+2

2
)

Γ( v+1
2

)
√
vπ

1

|Σ|
1
2

[1+
x2
1
v

]
v+1

2

[1+ 1
v
xtΣ−1x]

v+2
2

In order to simplify the formula, we can decompose xtΣ−1x first in following

way:

xtΣ−1x =

(
x1 x2

) 1
1−ρ2 − ρ

1−ρ2

− ρ
1−ρ2

1
1−ρ2

 ∗
 x1

x2


=

x2
1

1−ρ2 − 2ρ
1−ρ2x1x2 +

x2
2

1−ρ2
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= x2
1 + 1

1−ρ2 (x2 − ρx1)2

Then f(x2|x1) can be rewritten into following format:

f(x2|x1) =
Γ(v+2

2 )

Γ(v+1
2 )
√
vπ

1√
1− ρ2

[(1 + 1
vx

2
1) + 1

v
1

1−ρ2 (x2 − ρx1)2]−
v+2

2

[1 +
x2

1
v ]−

v+1
2

=
Γ(v+2

v )

Γ(v+1
2 )
√
vπ

1√
1− ρ2

[
[(1 + 1

vx
2
1) + 1

v
1

1−ρ2 (x2 − ρx1)2]

(1 +
x2

1
v )

]− v+2
2

1

[1 +
x2

1
v ]

1
2

= =
Γ(v+2

2 )

Γ(v+1
2 )
√

(v + x2
1)π
√

1− ρ2

[
1 +

1

1− ρ2

(x2 − ρx1)2]

(v + x2
1)

)

]− v+2
2

If f(x2|x1) is student-t distribution, the condition:v+x2
1 = v+1 should be hold,

i.e. x1 = 1. If ρ 6= 0, |x1| = 1, f(x2|x1) =
Γ( v+2

2
)

Γ( v+1
2

)
√

(v+1)π
√

1−ρ2

[
1 + 1

1−ρ2
(x2−ρx1)2]

(v+1) )
]− v+2

2
,

which is univariate student-t distribution with degree freedom v+1 and correlation 1−ρ2.

If ρ = 0, |x1| = 1, f(x2|x1) =
Γ( v+2

2
)

Γ( v+1
2

)
√

(v+1)π

[
1 + (x2)2

(v+1))
]− v+2

2
,which is univari-

ate student-t distribution with degree freedom v + 1.

In addition, we can observe that by using change of variables, i.e:

ω = 1√
1−ρ2

(x2−ρx1)√
1+ 1

v
x1

2

√
v+1
v ,we can obtain a variable, say, ω with univariate

student-t distribution with degree of freedom(v + 1)

f(x2|x1) =
Γ( v+2

2
)

Γ( v+1
2

)
√

(v+x2
1)π
√

1−ρ2

[
1 + 1

1−ρ2
(x2−ρx1)2]

(v+x2
1)

)
]− v+2

2

ω = 1√
1−ρ2

(x2−ρx1)√
1+ 1

v
x1

2

√
v+1
v .

f(ω) =
Γ( v+2

2
)

Γ( v+1
2

)
√

(v+1)π

[
1 + ω2

(v+1)

]− v+2
2

Methods to generate bivariate Student-t distribution and PIT based on it:

Method 1: Since the bivariate Student-t distribution is characterized by its

correlation matrix, we can generate bivariate student t distribuion directly using its

correlation matrix. Example one:

Given Σ =

 1 ρ

ρ 1

 , ρ = 0.4; we can generate a random vector Y with bivari-

ate student-t(v) distribution and Σ as its correlation matrix.
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Step one: we can generate two independent random variables w1 and w2 with

univariate student-t(5) respectively.

Let A = chol(Σ), and Y =A

 w1

w2

, which follows a bivariate student-t dis-

tribution, with correlation matrix Σ.

The reference can be found in:

Sameul Kotz and Saralees Nadarajah:” Multiavariate t distributions and
their application” 1.9 Distribution of a linear function P15

i.e :

f(y) =
Γ(v+2

2 )

Γ(v2 )(vπ)
|Σ|−

1
2 [1 +

1

v
ytΣ−1y]−

v+2
2 ,Σ =

 1 0.4

0.4 1



Then the marginal distribution is

f(y1) =
Γ( v+1

2
)

Γ( v
2

)
√
vπ

[1 +
y2
1
v ]−

v+1
2

Conditional distribution for y2 given y1 is

f(y2|y1) =
Γ( v+2

2
)

Γ( v+1
2

)
√
vπ

1

|Σ|
1
2

[1+
y2
1
v

]
v+1

2

[1+ 1
v
ytΣ−1y]

v+2
2

We can apply PIT with respect to f(y1) and f(y2|y1) respectively to obtain

um and uc :

um =
∫ y1

−∞ f(ϕ)dϕ

uc =
∫ y2

−∞ f(ϕ)dϕ

Method two:

We can generate random vector Y, with a bivairate Student-t distribution by

specifying its covariance matrix. As result of that, to obtain the correct distribution

function for Y we need to tranform its covarince matrix into the correlation matirx.
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Example two:

Given Ω =

 0.64 0.4

0.4 0.64

 , we can generate a random vector Y with bivariate

student-t(v) distribution and Ω as its covariance matrix.

Step one: we can generate two independent random variables w1 and w2 with

univariate student-t(5) respectively.

Let A = chol(Ω), and Y =A


√

v−2
v w1√
v−2
v w2

, which follows a bivariate student-t

distribution, with covariance matix Ω.

We still use Σ to denote the correlation matrix of Y and Ω = v
v−2 ∗ Σ,

Then the distribution function for Y is :

f(y) =
Γ(v+2

2 )

Γ(v2 )(vπ)
|Σ|−

1
2 [1 +

1

v
ytΣ−1y]−

v+2
2 , Σ =

v

v − 2
∗

 0.64 0.4

0.4 0.64



Then the marginal and conditional distribution are slightly different from that

in example one:

f(y1) =
Γ( v+1

2
)

Γ( v
2

)
√

Σ1,1
√
vπ

[1 +
y2
1

v∗Σ1,1
]−

v+1
2

f(y2|y1) =
Γ( v+2

2
)

Γ( v+1
2

)
√
vπ

√
Σ1,1

|Σ|
1
2

[1+
y2
1

v∗Σ1,1
]
v+1

2

[1+ 1
v
ytΣ−1y]

v+2
2
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Note: Σ is not the same as the true correlation matrix with all diagnoal ele-

ments equal to one. It should be viewed as a scale parameter in the bivariate student-t

distribution.

We can apply PIT with respect to f(y1) and f(y2|y1) respectively to obtain

um and uc :

um =
∫ y1

−∞ f(ϕ)dϕ

uc =
∫ y2

−∞ f(ϕ)dϕ

Method three: Using change of variables to obtain two random variables with

univariate student t distribution and then perform PIT

Suppose we have generated a random vector Y following exactly the same

procedures in method two.

i.e

f(y) =
Γ(v+2

2 )

Γ(v2 )(vπ)
|Σ|−

1
2 [1 +

1

v
ytΣ−1y]−

v+2
2 , Σ =

v

v − 2
∗

 0.64 0.4

0.4 0.64



The marginal distribution keeps the same:

f(y1) =
Γ( v+1

2
)

Γ( v
2

)
√

Σ1,1
√
vπ

[1 +
y2
1

v∗Σ1,1
]−

v+1
2

Then we apply changes of variables with respect to the conditional distribution:
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Let ξ = 1√
Σ2,2−

Σ2
2,1

Σ1,1

(y2−
Σ2,1
Σ1,1
∗y1)√

1+ 1
v∗Σ1,1

y1
2

√
v+1
v , then y1 and ξ are independent, ξ has

the univariate student-t distribution with degree of freedom v + 1.

f(ξ) =
Γ( v+2

2
)

Γ( v+1
2

)
√

(v+1)π

[
1 + ξ2

(v+1)

]− v+2
2

Then we can apply PIT to y1 and ξ respectively to otain um and uc :

um =
∫ y1

−∞ f(ϕ)dϕ =
∫ y1

−∞
Γ( v+1

2
)

Γ( v
2

)
√

Σ1,1
√
vπ

[1 + ϕ2

v∗Σ1,1
]−

v+1
2 dϕ1

uc =
∫ ξ
−∞ f(ϕ)dϕ =

∫ ξ
−∞

Γ( v+2
2

)

Γ( v+1
2

)
√

(v+1)π

[
1 + ϕ2

(v+1)

]− v+2
2
dϕ

I use first two methods to generate bivariate Student-t distribution, whereas in

the paper ”Autocontour-based Evaluation of Multivariate Predictive Densities”. (Gloria

Gonz alez-Rivera and Emre Yoldas 2010), method three is used to generate bivariate

Student-t distribuion. Actually, method two and method three are equivalent to each

other
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Appendix C

Mixture Inverse Gumbel/Clayton

The estimated weight for the mixture is p = 0.333 on the inverse Gumbel, and

1 − p = 0.667 on Clayton. The estimated dependence is θ̂ = 1.936 for inverse Gumbel,

and θ̂ = 0.444 for Clayton.
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Table C.1: Autocontour-based t-tests:

Negative Binomial Model with Contemporaneous Correlation

Inverse Gumbel/Clayton

αi lag 1 lag 2 lag 3

1% -1.42 -1.15 -1.78
5% 1.23 1.53 1.66
10% 3.26 2.55 3.13
20% 3.95 3.65 4.07
30% 4.60 4.01 4.68
40% 4.23 3.98 4.23
50% 3.72 3.78 3.94
60% 2.48 2.83 2.32
70% 1.34 1.01 1.39
80% -0.95 -1.26 -1.04
90% -3.42 -3.78 -3.57
95% -8.95 -8.32 -8.03
99% -14.24 -14.47 -14.36

t-tests critical values:
± 1.96 (5% level),
± 2.58 (1%), ± 3.5 (0.05%).
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