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Abstract

Utilizing localized orbitals, local correlation theory can reduce the unphysically high system-

size scaling of post-Hartree-Fock (post-HF) methods to linear scaling in insulating molecules.

The sparsity of the 4-index electron repulsion integral (ERI) tensor is central to achieving

this reduction. For second-order Møller-Plesset theory (MP2), one of the simplest post-HF

methods, only the (ia|jb) ERIs are needed, coupling occupied orbitals i, j, and virtuals a, b.

In this paper, we compare the numerical sparsity (called the “ragged list”) and another two

approaches revealing the low-rank sparsity of the ERI. The ragged list requires only one set
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of (localized) virtual orbitals, and we find the orthogonal valence virtual-hard virtual (VV-

HV) set of virtuals originally proposed by Subotnik et al. gives the sparsest ERI tensor.

To further compress the ERI tensor, the pair natural orbital (PNO) type representation

uses different sets of virtual orbitals for different occupied orbital pairs, while the occupied-

specific virtual (OSV) approach uses different virtuals for each occupied orbital. Our results

indicate that while the low-rank PNO representation achieves significant rank reduction, it

also requires more memory than the ragged list. The OSV approach requires similar memory

to the ragged list, but involves greater algorithmic complexity. An approximation (called the

“fixed sparsity pattern”) for solving the local MP2 equations using the numerically sparse

ERI tensor is proposed and tested to be sufficiently accurate and to have highly controllable

error. A low-scaling local MP2 algorithm based on the ragged list and the fixed sparsity

pattern is therefore promising.

Keywords

local correlation theory, orbital localization, pair natural orbitals, linear scaling

1 Introduction

Much of modern quantum chemistry relates to solving the many-body problem accurately

to find the ground state wavefunction. The simplest quantum mechanical treatment of the

electron-electron interaction is the mean-field Hartree-Fock (HF) method,1 or the dressed

mean-field approach of Kohn-Sham density functional theory (DFT).2 The latter does a good

job of capturing weak (dynamic) electron correlation effects. Ab initio quantum chemistry

gives some hope of rigorously describing many-Slater determinants and approaching the exact

solution. Following this path, the quantity to approximate is the electron correlation energy,

defined formally as the difference between the exact and the Hartree-Fock limit energy of

the non-relativistic clamped-nuclei Schrodinger equation.3,4 However, ab initio methods are
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impeded by high polynomial scaling of computing costs with molecular size, N that prevents

their application to large, interesting chemical problems. For example, even second order

Møller-Plesset (MP2) theory,5 one of the simplest approximations to the correlation energy,

scales formally as O(N5), while MP3 and the simplest useful coupled cluster methods6 that

include double substitutions scale as O(N6). This has motivated lower-scaling methods that

rely on factorization approximations. For example, using auxiliary basis expansions,7 the

opposite spin MP2 energy can be evaluated with O(N4) computational effort,8 or, using

tensor hypercontraction,9–11 the scaling for the full MP2 energy can be reduced to O(N4).

Alternatively, it is valuable to exploit the near-sighted nature of electron-electron in-

teractions,12 which also applies to dynamic electron correlation. Rather than compressing

dense tensors, one can choose appropriate sparsity-revealing orbital representations and then

discard numerically insignificant contributions from the tensors of quantum chemistry. Most

modern work can be traced back to the pioneering studies of Pulay,13 and Saebø and Pu-

lay14 who introduced projected atomic orbitals (PAOs) to represent the virtual space, and

employed the Hylleraas functional15,16 to solve local approximations to MP2 and other more

advanced methods. By using PAOs, the electron repulsion integral (ERI) tensor becomes

sparse, in fact asymptotically linear with system size. Many have followed to work on local

correlation methods.17–37 At the local MP2 level, perhaps the most widely used linear scaling

methods today are the pair natural orbital approaches.32,34,35

Every local correlation method starts by choosing a representation for the occupied and

virtual (unoccupied) orbitals that makes the ERI tensor sparse. Spatially localized sets of or-

thogonal occupied orbitals are well-known, such as from Boys localization which rotates the

occupied space into a set of minimal spatial variance (vide infra).38 Other common examples

are Edmiston-Ruedenberg (ER) localization,39 and Pipek-Mezek (PM) localization.40 The

virtual space presents a much greater challenge. Perhaps the simplest local virtual represen-

tation is that of Pulay14,41 where the atomic orbitals (AOs) are simply projected onto the

virtual space. If the density matrix and the basis functions are localized then so too are the
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PAOs.20 The fact that PAOs are nonorthogonal and rank-deficient means that the overlap

matrix must be carried along, which has the potential to cause numerical instabilities, with

related challenges in implementing responses of the energy to applied perturbations.42

Alternatives to the PAOs to represent the virtual space via localized orbitals do exist.

One prominent example was due to Kapuy et al. who developed a localized many-body

perturbation theory where virtual orbitals were also localized.43,44 More recently, Subotnik

et al. proposed localizing the valence virtuals via Boys localization separate from the “hard”

virtuals which belong to higher-than-valence principal quantum numbers, and can be or-

thogonalized without losing their AO character.45 The resulting virtual orbitals, which we

refer to as ”valence virtual-hard virtual” (VV-HV) orbitals were then employed in local MP2

and CCSD methods that yielded smooth potential energy surfaces.26,46,47 Aquilante et al.

proposed Cholesky decomposing the density matrix or its orthogonal complement to produce

a set of orthogonal orbitals,48 and the Cholesky virtuals have then been used for efficient

implementations.49 These methods and others have been proposed in the literature50–53 and

there is also a major recent review available.54 The condition number of the atomic orbital

(AO) representation as well as the locality of the occupied orbitals influences the extent of

localization possible in the virtual space.55

In recent years, there has been a renaissance in local correlation due to the very successful

revival27 of the pair natural orbitals (PNO) approach where the pseudo-CI coefficients are

diagonalized for each electron pair.56 Later those were extended to domain-based local PNO

(DLPNOs) where the canonical virtuals are replaced by domains of PAOs to accelerate the

construction.32 Chan and co-workers introduced orbital-specific virtuals, finding the most

important virtuals that correspond to a given occupied orbital.30 Werner and co-workers

demonstrated linear-scaling for PAOs, OSVs, and PNOs.21,23,57 These methods offer the

advantage of reducing the rank of the ERI tensor but suffer from requiring saving the different

sets of orbitals. Yet, the question remains as to which methods of localizing the occupied and

virtual orbitals reach linear scaling faster and whether sacrificing the orbital orthogonality
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is a price worth paying to hold fewer ERIs in memory.

In this paper, we chose to analyze the sparsity of the ERI tensor using an array of meth-

ods including Cholesky, PNO, and PAO. Then we lay out the ragged-list approach where we

store the ERIs only above a certain threshold, applying it to evaluate the MP2 energy in a

range of alkanes, alkenes, silanes, and other systems of interest. We choose MP2 as the sim-

plest useful correlation method to test the different localization and memory requirements.

Previous research suggests this will also serve as a reliable proxy for higher accuracy meth-

ods such as coupled cluster theory with singles and doubles (CCSD). Triples may require

a separate assessment. The MP2 form of the correlation energy has itself become far more

used recently because of its deployment as part of double-hybrid density functional theory

approximations.58–63 Additionally, there has been an exciting improvement in the accuracy

of MP2 theory,64 when the amplitude equations are modified with an energy-dependent reg-

ularization.65 Large MP2 errors for dispersion-dominated intermolecular interactions,66 as

well as transition metal binding energies64 can be reduced by factors of 3-5 in the regularized

κ-MP2 method at negligible additional compute cost.

2 Theory

We use i, j, k, · · · as the notation for occupied orbitals and a, b, c, · · · for virtual orbitals.

nocc and nvirt are the number of occupied and virtual orbitals, respectively. N stands for the

size of the system. For simplicity, only spin-restricted systems are considered in this paper.

2.1 Local MP2 Equations

The closed shell RMP2 energy is the dot product of the ERI tensor and the amplitude tensor

Ecorr = −
∑
iajb

J ij
abτ

ij
ab, (1)
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where J ij
ab = (ia|jb) in a notation where the first two indices refer to electron 1, and the last

two indices refer to electron 2. The τ tensor satisfies a linear system of equations

∑
i′j′a′b′

∆iji′j′

aba′b′τ
ij
ab = 2J ij

ab −Kij
ab. (2)

where Kij
ab = J ij

ba and the 8th rank tensor, ∆, is

∆iji′j′

aba′b′ = Sii′Saa′Sjj′Fbb′ − Sii′Saa′Fjj′Sbb′ + Sii′Faa′Sjj′Sbb′ − Fii′Saa′Sjj′Sbb′ ; (3)

here S is the overlap matrix and F is the Fock matrix. Notice that if orbitals are canonical

and orthogonal, then S = I and F is diagonal, reducing Eq. 2 to a diagonal system and also

leaving Eq. 1 in the familiar spin restricted form:

Ecorr = −
∑
iajb

(
2J ij

ab −Kij
ab

)
J ij
ab

Fbb + Faa − Fii − Fjj

. (4)

In this case, the J tensor, having n2
occn

2
virt elements in total, is dense as the canonical orbitals

are well-known to be delocalized. An O(N5) scaling of compute time is needed to build the

dense J tensor, and that becomes the bottleneck for canonical MP2.

Under a localized orbital representation, however, the J tensor becomes numerically

sparse, and therefore lower scaling algorithms are possible. Most local MP2 formalisms can

be summarized into the following four steps:

1. Localize occupied and virtual orbitals

2. Build tensors J,K

3. Solve Eq. 2: ∆τ = 2J−K

4. Calculate the MP2 correlation energy

It should be noted that the bottleneck of local MP2 is not necessarily Step 2 as in the
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canonical case. Step 1 and Step 3 can potentially cost more than building the J,K tensors,

so all steps need to be considered carefully. In this paper, we are going to discuss the

performance of different choices of Step 1 as well as a new way to do Step 3. We are actively

working on the efficient implementation of Step 2, for which many approaches have been

proposed.21,23,34,67 Since the wall time of our method cannot be properly compared without

an efficient implementation of Step 2, we neglect any compute time consideration in this

work.

2.2 Representations of Localized Virtual Orbitals

From the local MP2 equation, it is clear that the sparsity of the ERI tensor J is central to the

problem, and the sparsity of J is dependent on the choice of local orbitals. In this section,

we will describe a variety of ways to localize molecular orbitals. Boys (B),38 Pipek-Mezey

(PM),40 and Edmiston-Ruedenberg (ER)39 defined functionals that measure the extent of

localization for an orthonormal orbital set {ϕi}:

fB =
∑
i

|⟨ϕi|r|ϕi⟩|2 (5)

fPM =
∑
i

∑
A

|⟨ϕi|PA|ϕi⟩|2 (6)

fER =
∑
i

(ϕiϕi|ϕiϕi) (7)

In fPM, A is an atom and PA is the projection operator mapping the orbital onto the basis

set space of atom A. Boys orbitals minimize the sum of the second central moment of

the orbitals; Pipek-Mezey maximizes the locality of Mulliken populations; and Edmiston-

Ruedenberg maximizes the self-repulsion of the orbitals. Given the initial orbital space, it is

possible to solve for an orthonormal basis that maximizes one of these functional values, and

by the construction of these functionals, those orbitals are localized. An iterative method

(Jacobi sweep) is usually used to obtain such extrema, yet some other algorithms have also
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been developed.68–71 Edmiston-Ruedenberg normally requires an iterative O(N5) scaling

because of the integral transformation, which is prohibitive in large molecules. But even

though Boys and Pipek-Mezey only cost as iterative O(N3), a very large number of iterations

are needed for localizing virtual orbitals, meaning that only occupied Boys and Pipek-Mezey

orbitals are suitable for a local MP2 formalism. Throughout this paper, we will use Boys

occupied orbitals (as commonly used already in local MP214) to facilitate the comparison of

different virtual representations, which is still a relatively open question in our view.

Pivoted Cholesky48 and pivoted QR72 utilize numerical sparsity of the density matrix. A

pivoted Cholesky decomposition or pivoted QR decomposition of the density matrix would

yield localized orbitals. It can be proved that the resulting orbitals are orthonormal,48 and

the locality results from the elements of the density matrix decaying exponentially as73,74

Po

(
r, r

′) ∼ e
−
√
G
∣∣∣r−r

′ ∣∣∣
, where G is the HOMO-LUMO gap. The density-like matrix, Pv

formed by the set of virtual orbital is

Pv = S−1 −Po, (8)

where S is the (sparse) overlap matrix of the basis functions, and Po is the usual density

matrix formed from the occupied orbitals. S and Po are sparse, but S−1 is typically not

a sparse matrix (at least in extended basis sets),75 so Pv does not have the nice sparsity

that Po does, and therefore we expect that pivoted Cholesky and pivoted QR could behave

poorly in the virtual space without further refinement. This will be tested later.

A natural choice for the virtual space that is most widely used in both legacy and and

current local correlation methods are the projected atomic orbitals (PAOs), which retain

as much locality of the AOs as possible. PAOs are obtained by directly projecting out the

occupied space from each AO (and thus the AO basis set), resulting in a redundant and

non-orthogonal set:

CPAO = I−PoS. (9)
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It is possible to truncate and orthogonalize this set without losing too much of its locality,20

but in this paper, we will stick to the standard definition of PAOs, via Eq. 9.

Subotnik et al. combined the PAO concept with the idea of Boys or Pipek-Mezey lo-

calized orbitals and proposed an efficient scheme to localize the virtual space with a set of

orthonormal localized virtual orbitals.45 Firstly, it partitions the entire AO basis set space

(A) into a minimal basis space (E) and an extra-valence hard virtual space (H):

A = E ⊕H. (10)

The minimal basis is taken as STO-3G projected into the target basis. Other alternatives

include quasi-atomic minimal basis orbitals (QUAMBOs)76 and intrinsic atomic orbitals

(IAOs).77 E is then further sub-divided into the occupied space (O) and a valence virtual

space (L)

A = O ⊕ L⊕H. (11)

Notice that this splitting requires that the large basis set space contains the minimal basis

space (i.e. E ⊂ A) and that the minimal basis space is sufficient to describe most of the

occupied space (i.e. O ⊂ E), both of which are normally satisfied. Orbitals in L and H are

virtual orbitals, and as the L space is small and chemically meaningful (it typically consists

of antibonding orbitals78), it can be efficiently localized by either Boys or Pipek-Mezey. Hard

virtuals are, however, in principle similar to PAOs and are quite local but not orthogonal

to each other. Instead of orthogonalizing the hard virtuals by a somewhat complicated

algorithm based on “important classes” as in Ref. 45, we will do a weighted symmetrical

orthogonalization79 using the inverse of their spatial variance. In the rest of this paper,

we will refer to these localized virtuals as ”valence virtual-hard virtual” (VV-HV) orbitals.

Except for Boys, Pipek-Mezey, and Edmiston-Ruedenberg orbitals, all other components

described above do not require an initial guess. While the procedure formally scales as

O(N3), this will not be a computational bottleneck as evaluation of these orthogonal virtuals
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requires far less effort than is needed for the Hartree-Fock mean field reference calculation.

It is also possible to use more than one set of virtual orbitals. Pair natural orbitals

(PNO) have a set of virtual orbitals specific for each different pair of occupied orbitals,28

and orbital-specific virtuals (OSV) has one set of virtuals created for each individual occupied

orbital.29 PNOs can be obtained by performing a singular value decomposition (SVD) on

the approximated MP2 pair density matrices (in the virtual space)

Dij =
1

1 + δij

(
tij†τ ij + tijτ ij†) . (12)

Here we have introduced the opposite spin amplitudes:

tijab = 2τ ijab − τ ijba (13)

If only singular values above a threshold are retained, the result is a set of orbitals that

span the part of the virtual space relevant to the i, j pair. The resulting a, b come from two

sets of localized virtual orbitals, normally PAOs, that are close to orbitals i, j, respectively.

To facilitate comparison with other localization techniques above that make the J tensor

numerically sparse, we define PNO-like orbitals utilizing the low-rank sparsity of J as the

result of doing SVD on Jij

Jij = UijΣijVij†. (14)

We then truncate Σij to (Σij)
′
such that

max
a,b

∣∣∣Uij
(
Σij

)′
Vij† − Jij

∣∣∣ < ϵ, (15)

where ϵ is a pre-set threshold.

On the other hand, OSVs (for orbital i) can be obtained by doing SVD on tii and

truncating. A set of OSV-like orbitals (for orbital i) can likewise be defined by diagonalizing
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the Jii block

Jii = WiiDiiWii†, (16)

and keeping the virtuals with eigenvalues larger than a threshold. After that, we compute

the elements in off-diagonal blocks of the J tensor Jij
aibj

, where ai, bj are the OSV-like orbitals

for i, j, respectively. We then select significant elements to retain, i.e.,

∣∣∣Jij
aibj

∣∣∣ > ϵ, (17)

and their corresponding exchange integrals Kij
aibj

. This approach can be thought of as a

hybrid between low-rank sparsity and numerical thresholding. The PNO-like scheme and

the OSV-like scheme both utilize the low-rank sparsity of the local MP2 problem.

2.3 An approach to solve the local MP2 equation

Figure 1: An approximation to simplify the local MP2 equation, which we refer to as the
“fixed sparsity pattern” approximation. Stars stand for known elements and dots for un-
knowns.

To make use of the numerical sparsity of J in Eq. 2, we will use an approximation that

we refer to as the “fixed sparsity pattern”. Instead of solving the full set of equations

∆τ = 2J−K, we set all elements of t that correspond to a below-threshold element in

2J−K to be zero (Figure 1). With this approximation, we can then neglect the rows

and columns corresponding to elements of the right-hand side that are below the threshold.

As we will see later, the number of significant elements in 2J−K scales as O(N), and

that suggests a linear-scaling algorithm is possible if the truncated coefficient matrix still
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possesses some sparsity. One must immediately recognize that this fixed sparsity model

is not at all mathematically rigorous, in the sense that there is no guarantee of a strict

connection between the threshold (ϵ) used for sparsifying J and the resulting errors in either

t or Ecorr. However, we report tests of the fixed sparsity technique in Section 3.3 on a variety

of molecules, and it turns out that the error caused by the fixed sparsity pattern is highly

controllable.

When the iterations to solve the linear system converge to a residual error δ, yielding τδ,

we have τδ = τ + O(δ). If we calculate Ecorr(τδ) by Eq. 1, the error will be O(δ), and we

will then have to converge the linear system to a very tight threshold (i.e. very small δ) in

order to get an accurate Ecorr, which requires many iterations. In order to improve this, we

can employ t defined in Eq. 13 and calculate Ecorr by the Hylleraas functional:15,16

Lcorr = −2t · (2J−K) + t · (∆τ ). (18)

It can be proved that the error, Lcorr(τδ) − Ecorr(τ ), is now O(δ2), and thus only a small

number of iterations are needed.

However, under the fixed sparsity pattern with threshold ϵ, with exact solution of the

linear equations (δ = 0), Lcorr ̸= Ecorr unless we truncate J symmetrically. Specifically, we

need to keep J ij
ab if ∣∣J ij

ab

∣∣ > ϵ or
∣∣Kij

ab

∣∣ = ∣∣J ij
ba

∣∣ > ϵ. (19)

Since this expands the list of retained elements, the symmetrically truncated J still satisfies

max
a,b

∣∣(Jij)′ − Jij
∣∣ < ϵ ∀ i, j. (20)

As we are keeping a truncated list of elements, we will call the resulting tensor (J′) the

“ragged list” representation of J. The term ”ragged list” (and its synonym ”jagged array”)

has been widely used in computer science.80
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3 Results and discussion

3.1 The numerical sparsity of the J tensor

Figure 2: The fraction of significant elements in the J tensor of (a) def2-TZVP and (b) cc-
pVTZ linear C20H42 with different numerical zero thresholds and different virtual orbitals.
Occupied orbitals are Boys localized, and core orbitals are frozen. The geometry chosen is
distorted slightly from symmetric, as given in the Supporting Information.

As is known from previous investigations,20,45,81 different choices of virtual orbitals affect

the magnitude of elements in J. As an example, we have plotted (Figure 2) the fraction

of significant elements for the J tensor of def2-TZVP and cc-pVTZ C20H42 as a function of

truncation threshold (ϵ) for 6 different choices of the virtual orbitals. The ideal extended

conformation of C20H42 has C2h point group symmetry, which leads to significant sparsity (∼

25% significant elements) in canonical J tensor. Since this is artificial (most large molecules

have no symmetry), we have distorted the geometry slightly to break the symmetry. In

addition, for the data shown in Figure 2, core orbitals are frozen, and the valence-occupied

orbitals are Boys-localized.

From Figure 2, it is clear that any choice of localized virtual orbitals will provide a J that

is much more numerically sparse than the canonical virtuals. All localized virtuals behave

rather similarly, with the VV-HV orbitals winning by a few percentage points. Cholesky
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is indeed one of the worst ones because the virtual density matrix Pv is not as sparse as

the occupied one Po. To further confirm this, we have also plotted the numerical sparsity

pattern of Po and Pv of this system in Figure 3. Notice that although three methods (Boys,

Pipek-Mezey, and VV-HV) all yield sparse J tensors for a large enough system, obtaining

VV-HVs takes a much shorter time than getting Boys or Pipek-Mezey virtuals. Algorithms

for the Boys and Pipek-Mezey localized virtuals may also not converge to a true maximum,

or may yield a local maximum.68,69 Therefore, we will be using the Boys occupied orbitals

and VV-HV orbitals for the ragged list representation in the rest of this paper.

Figure 3: The fraction of significant elements in the occupied and virtual density matrix of
cc-pVTZ linear C20H42 in the atomic orbital basis as a function of the threshold for defining
a numerical zero.

3.2 Comparison of numerical and low-rank representations of J

At the end of Section 2.2, we reviewed how to generate sets of PNO-like and OSV-like

virtual orbitals to make use of the low-rank sparsity of J. To compare the effectiveness of

using numerical sparsity (the ragged list approach, introduced at the end of Section 2.3) and

a low-rank sparse structure (either the PNO-like or the OSV-like approach) to store and

manipulate the J tensor, we have computed the total rank and total memory requirement
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for these two data structures for a variety of systems.

The total rank of the PNO-like representation, Eq. 14, is the number of the singular

values selected that satisfy Eq. 15, and the memory requirement is the total number of

elements of vectors picked in the Uij and Vij matrices. The number of rows and columns of

the Jij block is the number of important virtual orbitals for i and j, respectively. A virtual

orbital a is considered important to i when the two-electron integral

(ia|ia) > ϵ2, (21)

where ϵ is the same truncation threshold as in Eqs. 19 and 20. Notice that if (ia|ia) < ϵ2,

since normally (jb|jb) < 1, ∀j, b, we have

(ia|jb) ≤
√

(ia|ia) (jb|jb) < ϵ (22)

by the Schwarz inequality, so we can neglect this i, a pair.

This same argument could also be applied to the OSV-like scheme (Eqs. 16 and 17). In

this scheme, we keep all eigenvectors (OSV-like orbitals) whose corresponding eigenvalues

are greater than ϵ2 and also significant elements in J and K. The total memory requirement

for the numerical sparsity structure (the ragged list) is the number of (ia|jb) elements kept

according to Eq. 19. The total rank for the OSV-like scheme and the raggist list is the

number of unique a and b in block (J′)ij (and also block (K′)ij for the OSV-style) that

correspond to a large (ia|jb) integral value, summed over all i, j, and divided by 2.

Figure 4 plots the total rank and total memory requirement for the low-rank (using

PNO-like or OSV-like virtuals) and the ragged list (using VV-HVs) representations for lin-

ear alkane chains of different lengths. Figure 5 shows the fraction of the memory requirement

compared to storing the non-sparse J of the PNO- and OSV-style low-rank representations

and the ragged list representation in def2-TZVP C20H42 as a function of truncation threshold

(ϵ). The PNO-like virtual orbital representation has a smaller total rank by more than a
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Figure 4: The (a) total rank and (b) total memory requirement in gigabytes for low-rank
(using PNO-like and OSV-like virtual orbitals) and ragged list (i.e., numerical, using VV-HV
orbitals) representations of the J tensor of def2-SV(P) CnH2n+2 linear alkane chains. Core
orbitals are frozen, and ϵ = 10−7. The geometries are provided in the Supporting Information
and correspond to extended structures that have been slightly distorted to break point group
symmetry.
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Figure 5: The fraction of the total memory requirement for storing the non-sparse J using
low-rank (using PNO-like or OSV-like virtual orbitals) and ragged list (i.e., numerical, using
VV-HV orbitals) representations in def2-TZVP C20H42 with different ϵ. Occupied orbitals
are Boys localized, and core orbitals are frozen. The geometry chosen is distorted slightly
from symmetric, as given in the Supporting Information.

factor of 4, indicating that a roughly 4-fold compression is possible relative to rectangular

storage of each (J′)ij sub-block, in the space of significant row and column virtuals. Per-

haps surprisingly, the ragged list structure uses a significantly smaller amount of memory

than the PNO-like structure. This means that in the sense of computer memory demands,

which may set the upper limit of feasible calculations, using PNO might not be superior

to simply storing significant elements of the J tensor. The idea of the OSV-like structure

is somewhere between the PNO-like and the ragged list representations as we compress the

diagonal blocks of J but store significant elements of the off-diagonal blocks. As we have

to store elements in both J,K, the OSV-style structure is not quite rank efficient (Figure

4(a)). But from Figure 5, we can see that in the chemically interesting range of truncation

thresholds (ϵ = 10−7 ∼ 10−5), the memory requirement of the OSV-like scheme is close to

the ragged list representation. But as using multiple sets of mutually non-orthogonal virtual

orbitals significantly increases the complexity of building the J,K tensors and solving the

local MP2 equations, the advantage of using the OSV-like orbitals is likely to be small.
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Data for comparing the PNO style and the VV-HV style of representing J tensor on a

variety of 1-dimensional and 3-dimensional systems (Figure 6) at ϵ = 10−5 and ϵ = 10−7 are

listed in Table 1. We chose ϵ = 10−5 and ϵ = 10−7 as the thresholds because those numbers

correspond roughly to a loose accuracy (10−3 fractional error) and tight accuracy (10−5

fractional error) of local MP2 theory, as will be discussed in the next sub-section. Turning

to the results, the pattern is always the same – the PNO approach attains a smaller rank but

the ragged list has a smaller memory requirement. Furthermore, the memory saving for the

ragged list approach seems to increase for larger systems. This apparently universal pattern

suggests that, at a minimum, there is no necessity to use the conceptually and technically

more complicated PNO approach.

As an example of the distribution of significant elements in the ragged list, Figure 7

plots the fraction of elements stored in each Jij block using the ragged list representation of

def2-SV(P) vancomycin. Most blocks have either no or only a few nonzero elements when

ϵ = 10−5, and even the densest ones have only ∼ 3% significant elements. By contrast,

when ϵ = 10−7, the blocks become much denser, with almost no blocks being completely

zero. However, numerical sparsity is still significant as the densest blocks only have ∼ 24%

of their elements retained as the above threshold. This example illustrates the well-known

fact that the onset of linear scaling is earlier for looser thresholds, as well as the fact that

significant reductions in memory and/or computational requirements are possible even before

the linear scaling regime is reached.

3.3 The accuracy of the fixed sparsity pattern approximation

The fixed sparsity pattern approximation introduced in Section 2.3 allows us to utilize the

numerical sparsity of the J tensor in solving the local MP2 equations. To assess its accuracy,

we have calculated the error caused by this approximation as a function of the truncation

threshold ϵ, for a set of example molecules using the def2-SV(P) and def2-TZVP basis sets.

As the fixed sparsity pattern solution is slightly different from the true solution and the
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Figure 6: Example 1-D and 3-D systems: (a) C20H42, (b) C20H22, (c) (gly)6, (d) Si20H42, (e)
anthracene dimer, (f) ATP4−, (g) sildenafil, (h) fullerene, (i) vancomycin. Color codes for
atoms: black, C; white, H; red, O; blue, N; orange, P; yellow, S; green, Cl.

Figure 7: The fraction of elements stored in each block of Jij in def2-SV(P) vancomycin.
Core orbitals are frozen.
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Table 1: The fraction of the non-sparse total rank and non-sparse total memory requirement
for representing the J tensor using low-rank (PNO-style) or numerical sparsity (ragged list
approach) for the example systems shown in Figure 6. ϵ is the threshold in Eqs. 15 and
18. Core orbitals are frozen. The def2-TZVP basis set is used except for vancomycin and
fullerene, where def2-SV(P) is used.

ϵ = 10−5 ϵ = 10−7

rank % memory % rank % memory %

lo-rank num’l lo-rank num’l lo-rank num’l lo-rank num’l

C20H42 5.5 22.0 4.5 1.7 21.5 73.6 21.4 14.9

C20H22 32.0 11.1 10.7 2.9 36.8 85.4 36.8 22.5

(gly)6 5.9 21.3 4.6 1.5 22.1 70.5 21.8 13.4

Si20H42 4.0 16.8 3.3 1.1 18.3 66.4 18.2 12.1

anthracenes 12.9 61.6 12.9 4.5 55.0 99.5 55.0 52.9

ATP4− 6.6 31.3 6.3 1.9 33.1 89.2 33.1 24.1

sildenafil 6.0 29.3 5.8 1.6 30.0 89.4 30.0 21.0

fullerene 14.6 62.1 14.6 4.4 72.6 100.0 72.6 61.4

vancomycin 1.2 8.1 0.8 0.2 7.6 49.8 7.3 3.6
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Hylleraas functional is convex (Eq. 18), the fixed sparsity pattern will always underestimate

the correlation energy; i.e., it always overestimates its absolute value.

Figure 8: The fractional error in the LMP2/def2-SV(P) correlation energy caused by using
the fixed sparsity pattern approximation for CnH2n+2 linear alkane chains as a function
of truncation threshold, ϵ. Core orbitals are frozen. The fixed sparsity pattern always
underestimates the correlation energy.

In Figure 8, one can see that the fractional error in the LMP2 correlation energy caused

by the fixed sparsity pattern is (i) roughly the same regardless of alkane size and (ii) ap-

proximately linear in ϵ over a very wide range of ϵ. C12H26 looks like an outlier because the

system is really small and thus is not in the linear scaling regime when ϵ ≤ 10−6. Similar

results for different 1-dimensional systems are plotted in Figure 9(a), and the same obser-

vation can be made. The reason that the fixed sparsity pattern behaves slightly differently

in Si20H42 might be attributed to the fact that silicon and carbon atoms have different basis

set compositions.

Figure 9(b) plots the error of the fixed sparsity pattern for some 3-dimensional examples.

It can be seen that the fixed sparsity pattern behaves quite well except for the anthracene
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Figure 9: The fractional error in the LMP2 correlation energy caused by using the fixed
sparsity pattern approximation for (a) a range of 1-dimensional extended molecules and (b)
an additional set of molecules with a range of compactness (see Figure 6). The def2-TZVP
basis set is used except for vancomycin and fullerene, where def2-SV(P) is used. All results
are shown as a function of truncation threshold ϵ. Core orbitals are frozen. The fixed sparsity
pattern always underestimates correlation energy.
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dimer and fullerene. Atoms in the anthracene dimer and fullerene are tightly packed (Figure

6). Also, both these systems are extensively conjugated molecules meaning the tails of the

localized orbitals are expected to be less well localized. Therefore, numerical sparsity in

those molecules is not significant, which is indeed reflected by the relatively large percentage

of retained elements in Table 1. When we truncate J, compared with other molecules, we

will discard a larger number of elements that are only slightly smaller than the threshold,

explaining the worse behavior of the fixed sparsity pattern in the two systems. In other

cases, the approximation works almost as well for 1-D systems, suggesting that the fixed

sparsity pattern approximation will typically be chemically useful.

4 Conclusion

In summary, we have compared two representations of the J tensor in the local MP2 prob-

lem: the low-rank representation using either PNO-like sets or OSV-like sets of orbitals, and

the numerically sparse (“ragged list”) representation using orthonormal localized VV-HV

orbitals with Boys occupied orbitals. Other sets of virtual orbitals, including PAO, Boys,

Pipek-Mezey, and Cholesky virtual orbitals are found to produce numerically denser J ten-

sors than the VV-HV one. Tested on a broad variety of molecules, the PNO-style low-rank

representation indeed uncovers a much smaller rank than the ragged list representation, but

the memory requirement is larger. The OSV-style low-rank representation, however, has a

quite similar memory requirement to the ragged list representation. Our results have two

interesting related implications. First, since there is no benefit from improved sparsity in

using the PAO representation of the virtual space, the complexity of handling the nonorthog-

onal redundant PAOs can be avoided using the VV-HV orbitals. Second, with orthonormal

virtuals, there is also no necessity to utilize PNOs or OSVs for pre-conditioning purposes,

and since the storage requirement can be reduced by avoiding their use, this is potentially

attractive.
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Our other main results consist of assessing an approximation for solving the local MP2

equation utilizing the numerical sparse representation of J, termed the “fixed sparsity pat-

tern”. This approximation truncates the amplitude tensor identically to the ERI tensor,

which is convenient for efficiency purposes, but cannot strictly be justified from a mathe-

matical viewpoint. Nonetheless, the results across a range of molecules indicate that the

error caused by this approximation is highly controllable, and therefore a low-scaling local

MP2 algorithm based on the ragged list and the fixed sparsity pattern is possible and promis-

ing. As the MP3 amplitude equations are very similar to the MP2 ones, we expect that our

findings are also applicable to local MP3 theory, and by extension may also apply to local

coupled cluster theory.
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