UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Architecture-Directed Processing

Permalink
https://escholarship.org/uc/item/1xm1z8f]]
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Author
Young, Richard M.

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1xm1z8f1
https://escholarship.org
http://www.cdlib.org/

ARCHITECTURE-DIRECTED PROCESSING

Richard M. Young

MRC Applied Psychology Unit, Cambridge, England

Abstract. Certain general characteristics of human
cognition may be due to properties of the functioo-
al architecture of the cognitive processor. While
proposed cognitive architectures are almost always
"universal" and can be forced to execute arbitrari-
ly chosen computations, nonetheless it is possible
to delineate a class of "compliant" processes that
allow the architecture of the processor to influ-
ence the course of processing. A speculative case
is made that such compliant processing is responsi-
ble for invariants of human cognition, such as that
problem solving occurs as heuristic search im a
problem space, that long-term memory search takes
place in cycles of retrieval and re-description,
and that uncertain information is dealt with by
prominence heuristics.

Compliant processes

A central theme in Cognitive Science is the
explanation of features of human cognition in terms
of properties of the programs that generate and
regulate behaviour. The paradigm is to account for
the empirical phenomena observed in some domain,
e.g. the time takem to decide the truth or falsity
of simple propositions, by showing that they
derive from properties of the processes responsible
for the behaviour. For all its undoubted merits,
there is a gap at the heart of this approach.
Alcthough such computational explanations have
genuine scientific value, for example by offering a
single coherent account for a range of apparently
diverse phenomena, there is a need also to try to
understand why those particular programs are found
but not conceivable ochers.

The idea explored in this paper is that the
funcrtional architecture of the processor itself
influences and constrains the kind of programs it
can execute, and hence leads to invariamts in the
resulting behaviour. There is little novelty in
this idea: all I hope to do here is to draw
together a number of threads from various places.
The idea derives mainly from the work of Pylyshym
(1980) and especially Newell (1973, 1980).
Pylyshyn (1980) discusses the norion of the func-
tional cognitive architecture, i.e. the fixed
structural properties of the human cognitive sys-
tem. Building on that notion, we extend it to the
properties of the processes that the architecture
supports. The argument is inspired by, and is
closely similar to, that of Moore & Newell (1974).
In describing a system called Merlin built round a
single processing mechanism, that of assimilation
by analogy, they suggest that certain general prob-
lem solving methods (Generate and Test, Heuristic
Search, etc.) arise within Merlin as "natural
methods”. In other words, Merlin exhibits these
methods not because it runs a program directing it
to do so, but because they arise as consequences of
its single processing technique. In a similar way,
this paper is proposing that certain general char-
acteristics of human cognition arise as "natural
methods'" from the functional architecture of the
cognitive processor.

It may be helpful to consider anm analogy, both
to understand the idea bectter and also to highlight
its idiosyncracies. Most of us are familiar with
the idea that different programming languages lend
themselves selectively to different sorts of pro=-

164

grams for different sorts of tasks. It is possible
in principle to use LISP for commercial programming
and COBOL for list processing, but in practice
certain kinds of program fit "naturally” into
certain languages and only with difficulty into
others. MNote, however, that this "naturalness"

is extremely hard to pin down in a formal defini-
tion.

The notion of architecture-directed processing
is somewhat similar. It centres on the idea that
for a given architecture certain programs will rum
"naturally", while others can only be coaxed on
with a sledgehammer. However, architecture-direct-
ed processing goes beyond the idea of naturalness,
since it allows the architecture to influence the
actual selection and sequencing of the steps to
be taken. To some extent this is also true of
programming languages. With ordinary sequential
flow languages, such as FORTRAN and PASCAL, there
is a kind of "default" control structure (i.e.
execute the next statement) which the programmer
can override when she wants to (by iterationms,
jumps, subroutines, and so on). However, in normal
practice programmers use this sequential control in
order deliberately to specify the order of execu-
tion, so to regard it as a default is a little
misleading. With architecture-directed processing
the influence is more pervasive, since at least for
certain production system architectures (PSAs)
(Newell, 1973, 1980; Anderson, 1976; Waterman &
Hayes-Roth, 1978) the program does not have to
specify an order of executionm at all. Once the
repertoire of possible steps has been supplied, the
selection and sequencing can be left to the
architecrture, which appropriate PSAs can perform
in a highly flexible manner respomnsive to the par-
ticulars of the task (Young, 1977, 1979). The
program can still, of course, specify the control
structure where it needs to. This freedom leads to
the idea that responsibility for the flow of con=
trol has been split between the program and the
architecture. It follows that programs will differ
in the extent to which they insist upon a particu=-
lar comtrol regime. Programs that allow the archi-
tecture to have largely its own way we will call
compliant. Not to be taken too seriously, but as
a starting point, we can offer a tentative

Definition. A program is "compliant" to

the extent that it allows the selection

and sequencing of steps to be determined

by the architecture it rums om.

The examples given below will try to demonstrate
that, given an architecture, compliancy leads to
the appearance of certain invariants in the genera-
ted behaviour.

It's hard to be precise...

In one important respect this notion of "compli-
ancy" is very similar to che idea of "naturalness"
in programming languages, and that is in the diffi-
culty of making it more precise. Despite our
recognition of the selective suitabilities of
different languages for different kinds of pro-
grams, it remains the case that the languages are
almost always computatiomally "universal", and
therefore formally equivalent in power. It
follows that any program cam, in principle, be
written in any of the languages, and that it is



hard or impossible to capture the idea of
"naturalness" in a formally precise way. So far
as I know, even the recent progress in computa-
tional complexity has nothing to say about this
important practical problem. The story is similar
for compliancy. Proposed cognitive architectures
are almost always universal, and thus it is possi-
ble in principle to run any program on any archi-
tecture. In most cases, of course, this will
require a non-compliant program which imposes an
alien control structure. Our interest is in the
cases where this kind of brute force is not needed.

The following examples will make clear that
further progress depends unon being able to speci-
fy what is meant by compliancy in more precise
terms. I am not totally optimistic that we will
succeed in this, but I can see two avenues worth
exploring. The first is to take advantage of the
fact that compliancy has to do specifically with
flow of control. There is a sense in which the
steps of compliant programs execute at 'base
level", whereas non-compliant programs require an
extra level of interpretation. If this difference
can be captured reasonably precisely, there is
some hope of deriving the consequences of complian-
cy in a more rigorous way. The second possibility
depends on achieving some understanding of the
mechanisms by which new programs are acquired.
This might provide a much stronger basis for plac-
ing constraints on the kinds of program the cogni-
tive processor will run: not that non-compliant
programs are "umnatural", but by showing that only
compliant programs could ever be learned.

Examples

There follow three examples to illustrate how
compliant programs lead to the appearance in
behaviour of certain invariants dictated by the
underlining architecture. Two warnings need to be
given. One is that the difficulty of making the
notion of compliancy even moderately rigorous makes
it impossible in any strict sense to derive the
invariants from the architecture. The arguments
given, though intended to be plausible, have to be
regarded as hand-waving. The other is that these
examples are speculative. I would not wish to
give the impression that the arguments are summa-
ries of a more complete story already worked out.
Rather they should be regarded as the goals for
a programme of work still to be undertaken.

Ex.l: Problem solving is carried out by heuristic
search in a problem space. That assertion can
reasonably be taken as the one-sentence conclu-
sion of Newell & Simon's (1972) study of human
problem solving. It arises as a consequence of
compliant programs running on PSAs of certain
types. This is the clearest of the three examples,
and the argument is essentially due to Newell
(personal communication).

Consider a PSA which is like OPS (Forgy &
McDermott, 1977) in the following respect. When-
ever more than ome production rule is applicable,
the one to fire ig determined by the following
principles ("conflict resolution"). (1) Recency:
rules whose conditions are sensitive to more
recent information take priority over those match-
ing only older information. (2) Special case:
rules which are special cases of other rules take
priority over them. (For further details see
McDermott & Forgy, 1978; Forgy & McDermott, 1977).
Suppose that knowledge of the problem domain is

coded by specifying the possible moves that can
be taken in circumstances C as rules like:
Rule 1l: C & <? side conditions> = <actionl>
Rule 2: C & <? side conditions> = <action2>,
etc.
Note that such rules provide a highly compliant
representation. They impose only local constraints
on how they are used, and thus have individually,
as it were, no opinion about the more global flow
of control. Suppose that C is known. Then one
of the rules shown will fire, Rulel say. If the
action taken leads to some new information and
there exist rules responsive to that information,
then by the recency principle it will be one of
those rules that fires next. And so it continues,
as long as there is new information and rules to
respond to it. Once that is no longer so, proces-
sing falls back, say to the rules shown, and one of
the alternative rules at that level will fire; in
this case, Rule2. In other words, a depth-first
search is performed. On the other hand, if at any
time a rule which is sensitive to a particular
configuration of information becomes satisfied,
then by special case it will be the one to fire.
In other words, specific knowledge is brought to
bear when appropriate. The upshot of all this is
that the principle of recency generates depth-first
search, while special case adds heuristic guidance.

It is worth emphasising the contrast between
this explanation and virtually all earlier accounts
in the cognitive modelling literature (including,
for example, Newell & Simon, 1972). We have just
argued that people solve problems by heuristic
search, not because they run a "heuristic search
program", but because, in the absence of guidance
to the contrary -- i.e. with a compliant program
— heuristic search is the natural thing for the
PSA to do.

Ex.2: Indirect recall from long term memory. When
the cues presented are insufficient to elicit some

target information from long term memory directly,

both theory (Norman & Bobrow, 1979) and the experi-
ment (Williams & Hollan, 1981) suggest that recall

occurs in a series of cycles of alternmating retrie-
val and re-description.

Again, this behaviour is a consequence of the
conflict resolution principles of a PSA. Suppose
that the target information is on the action side
of a rule. Then by supposition, not all the infor-
mation on its condition side is yet present (the
point is to gather it so that the rule does fire).
Whatever information is present, constituting a
partial description of the item being sought, will
trigger some rule or other. This in turn will add
to the description. Special case ensures that each
item retrieved is relevant to the current descrip-
tion; if there is no relevant information, then
general procedural heuristics will fire. As in
problem solving, the recency principle ensures that
newly retrieved information is followed up first.

Ex.3: Uncertain information is dealt with by

"prominence" heuristics (Fox, 1980a), such as
representativeness and availability (Tversky &
Kahneman, 1974). The implied contrast is with
rational, non-heuristic techniques such as the

use of Bayes' theorem and the maximisation of
expected value. For this example we have to move
beyond the OPS architecture, to a PSA which assigns
different strengths to different items, and there-
by recognises a degree of match between the data
and a rule. Examples are HPSA (Newell, 1980) and
the PSYCO architecture used for simulating medical

165



diagnosis (Fox, 1979, 1980b). The argument essen-
tially follows those two authors.

The key issue is the representation of the
degree of certainty. If it is coded explictly as
simply another component of the data,

e.g. (DISEASE-IS GASTRIC-ULCER CF = 0.7),
then it will be treated as part of the information
content by whatever rules happen to process it,
and no consequences follow from the architecture.
If, on the other hand, certainty is coded as the
strength of the item,

(DISEASE-IS GASTRIC-ULCER) [0.7],
then the certainty has effects at the level of the
architecture (i.e. it appears as an aspect of the
form rather than the content of the item), and
influences processing at this level. What happens
of course is that certainty enters as a factor in
conflict resolution, with stronger items, other
things being equal, being processed before weaker
ones. The outcome is that processing of uncertain
information is dominated by the data that for what-
ever reason are more "prominent” in memory (Fox,
1980a). Items which are highly familiar, already
in working memory, or more closely linked to other
relevant items will be the first to come to mind
and will carry more than their fair share of
responsibility for guiding behaviour.

References

Anderson, J. R. (1976) Language, Memory and
Thought. Erlbaum.

Forgy, C. L. & McDermott, J. (1977a) OPS, a
domain-independent production system language.
Proceedings of the 5th International Joint Con—

ference on Artificial Intelligence, 933-939.

Forgy, C. L. & McDermott, J. (1977b) The OPS2
reference manual. Technical Report, Department
of Computer Science, Carnegie-Mellon University.

Fox, J. (1979) Medical diagnosis: Inference,
recall and a theory of skill. Unpublished ms.

Fox, J. (1980a) Making decisions under the influ-

ence of memory. Psychological Review, 87, 190-
21Y.

Fox, J. (1980b) The PSYCO manual. MRC Social and

Applied Psychology Unit, University of
Sheffield,, England.

166

McDermott, J. & Forgy, L. (1978) Production system
conflict resolution strategies. In Waterman and
Hayes-Roth (1978), 177-179.

Moore, J. & Newell, A. (1974) How can Merlin
understand? In L. W. Gregg (Ed.), Knowledge
and Cognitiom, 201-252. Erlbaum. '

Newell, A, (1973) You can't play 20 questions with
Nacure and win: Projective comments on the
papers of this symposium. In W. G. Chase (Ed.),

Visual Information Processing, 283-308.
Academic Press.

Newell, A. (1980) HARPY, production systems and
human cognition. In R. Cole (Ed.), Perceptiom

and Production of Fluent Speech. Erlbaum.

Newell, A. & Simon, H. A. (1972) Human Problem
Solving. Prentice-Hall.

Norman D. A. & Bobrow, D. G. (1979) Descriptions:
An intermediate stage in memory retrieval.
Cognitive Psychology, 11, 107-123.

Pylyshyn, Z. (1980) Computation and cognition:
Issues in the foundation of cognitive science.
Behavioural and Brain Sciences, 3, 111-169.

Tversky, A. & Kahneman D, (1974) Judgement under
uncertainty: heuristics and biases. Science,
185, 1124-1131.

Wacerman, D. A. & Hayes-Roth, F. (1978) Pattern—
Directed Inference Systems. Academic Press.

Williams, M. D. & Hollan, J. D. (1981) The process
of retrieval from very long-term memory. Cogni-
tive Science, 5, 87-119.

Young, R. M. (1977) Mixtures of strategies in
atructurally adaptive production systems:
Examples from seriation and subtractiom.
Proceedings of workshop om pattern—directed
inference gystems. SIGART Newsletter No. 63,
June, 65-71.

Young, R. M. (1979) Production systems for model-
ling human cognition. In D. Michie (Ed.),

Expert Systems in the Microelectronic Age,
35-45. Edinburgh University Press.



	cogsci_1982_164-166



