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Abstract. We present exact analytical calculations of scanning tunneling
currents in locally disordered graphene using a multimode description of the
microscope tip. Analytical expressions for the local density of states (LDOS)
are given for energies beyond the Dirac cone approximation. We show that the
LDOS at the A and B sublattices of graphene are out of phase by π implying
that the averaged LDOS, as one moves away from the impurity, shows no trace
of the 2qF (with qF the Fermi momentum) Friedel modulation. This means that
a scanning tunneling microscopy (STM) experiment lacking atomic resolution
at the sublattice level will not be able to detect the presence of the Friedel
oscillations (this seems to be the case in the experiments reported in Brihuega
et al 2008 Phys. Rev. Lett. 101 206802). The momentum maps of the LDOS
for different types of impurities are given. In the case of the vacancy, 2qF

features are seen in these maps. In all momentum space maps, K and K + K ′

features are seen. The K + K ′ features are different from what is seen around
zero momentum. An interpretation for these features is given. The calculations
reported here are valid for chemical substitution impurities, such as boron and
nitrogen atoms, as well as for vacancies. It is shown that the density of states
close to the impurity is very sensitive to the type of disorder: diagonal, non-
diagonal, or vacancies. In the case of weakly coupled (to the carbon atoms)
impurities, the LDOS presents strong resonances at finite energies, which leads
to steps in the scanning tunneling currents and to suppression of the Fano factor.
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1. Introduction

Graphene [1, 2] consists of a monolayer of covalently bonded carbon atoms forming a two-
dimensional honeycomb lattice [3, 4]. Low-energy electronic excitations in graphene are well
described as massless Dirac fermions with an additional pseudospin degree of freedom. Because
of the Dirac spectrum, impurities can have a strong effect on the local electronic structure
of graphene when the Fermi energy is near the Dirac point [5]–[11]. Impurities in graphene
can be in the substrate, in the form of adatoms, or as imperfections in the lattice itself. On
the one hand, there has been very significant progress in decreasing the amount of disorder
introduced in graphene, for example by fabrication of suspended samples [12]. On the other
hand, impurity effects have been explored to modify and tailor the electronic, thermal and
chemical properties of graphene. Examples of the latter include experiments with graphene [13],
chemical substitution of some of graphene’s carbon atoms by boron and nitrogen atoms [14, 15]
and doping of graphene with metals on top [16, 17].

Since graphene is an atomically thin membrane, it can be easily accessed with scanning
tunneling microscopy (STM) measurements. Impurity effects can be studied with atomic
resolution and the local spectrum can be obtained by STM spectroscopy. In addition, atomic
manipulation can also be performed with STM. There have been several STM studies of
graphene grown epitaxially on SiC [19]–[21], mechanically exfoliated graphene on SiO2 [18],
[22]–[25] and graphene flakes on graphite [26]. In fact, STM experiments have proved
instrumental in mapping the topography of corrugated graphene and determining the existence
of charge puddles [27]. Additionally, STM experiments are also able to probe the chiral nature
of the electrons in graphene when they scatter from impurities [28]. This experimental work
showed that intravalley backscattering is virtually absent in graphene. In particular, the STM
experiment showed the lack of the 2qF (qF is the Fermi momentum) Friedel modulation on the
local density of states (LDOS) of graphene. As we show explicitly below, this lack of modulation
can be traced to the fact that the LDOS at the A and B sublattices are out of phase by π , an aspect
already noted in passing previously [29, 30]. Therefore, the LDOS, when averaged over the unit
cell, shows no trace of the 2qF oscillation. Additionally, as we show below, at distances d close
to the impurity, d � 1/qF, there is a strong departure from the 1/r 2 spatial dependence [8, 31]
of the LDOS. Moreover, the form of the density of states close to the impurity is very sensitive
to the type of disorder: diagonal, non-diagonal, or vacancies.
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In this work, we present calculations of STM currents in locally disordered graphene.
We focus on the case of chemical substitution (by boron or nitrogen atoms, for example) and
use a multimode description for the STM tip. We obtain exact analytical expressions for the
LDOS and also present results for energies beyond the Dirac cone approximation. We model
the substitutional impurity by both an on-site impurity potential and local hopping disorder. We
find that inclusion of the hopping disorder term leads to additional higher harmonics oscillations
in real space for the density of states for the sublattice that does not contain the impurity. The
main oscillations in the two sublattices are out-of-phase away from the impurity. For the regime
in which the electronic hopping between the impurity and the nearest neighbor carbon atoms
is decreased in relation to the hopping between carbon atoms in the clean system, the LDOS
presents strong resonances. A vacancy is an extreme case of this regime. These resonances
lead to the appearance of steps in the STM current, a signature that should be observable
experimentally. These resonances also lead to open channels for tunneling between the STM
tip and graphene, and lead to a decrease in the Fano factor.

Another issue addressed in this paper relates to the effect of the tip on the measured STM
currents. In the usual analysis, the electrons in the tip are represented by a jellium model with
constant density of states. In this type of model, neither the real part of the self-energy due to
the tip–system coupling nor the variation of the density of states with energy is included (wide
band limit). The tip, however, is not an infinite metal. In fact it has a structure where the number
of atoms in the atomic planes reduces as we approach the tip. In a previous publication [32],
we have modeled the tip as a one-dimensional model (in that work, we have also considered the
simplification of zero on-site energy at the impurity), which corresponds essentially to the case
of a constant density of states to a good approximation. In that case, we found the STM current
to be symmetric around zero energy. When we generalize to the case of a multimode tip this
symmetry is lost, as we show in this work. Comparing the results of [32] with those given here
it is possible to disentangle the effects due to graphene and to the impurities from those due to
the tip. This work shows that some care has to be taken when interpreting the STM currents
directly.

The present manuscript is organized in the following way. In section 2, the Green’s function
formalism is presented, with analytical results for the Green’s function for graphene with a
substitutional impurity, and for the STM tip modeled by a multimode system. LDOS results are
presented in section 3, and results for the STM current are presented in section 4. Section 5
contains final discussions and conclusions.

2. Graphene and STM tip Green’s functions

2.1. Graphene

The honeycomb lattice has two carbon atoms per unit cell, one from sublattice A and one from
sublattice B, as depicted in figure 1. The unit cell vectors are a1 and a2, with magnitudes |a1| =

|a2| = a, where a =
√

3a0 ' 2.461 Å and a0 is the carbon–carbon distance. Any lattice vector r
can be represented in this basis as r = na1 + ma2, with n,m integers. In Cartesian coordinates,
a1 = a0(3,

√
3, 0)/2 and a2 = a0(3,−

√
3, 0)/2, and the reciprocal lattice vectors are given by:

b1 = 2π(1,
√

3, 0)/(3a0) and b2 = 2π(1,−
√

3, 0)/(3a0). The vectors connecting any A atom
to its nearest neighbors are: δ1 = (a1 − 2a2)/3, δ2 = (a2 − 2a1)/3 and δ3 = (a1 +a2)/3.

New Journal of Physics 11 (2009) 095007 (http://www.njp.org/)
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a

a

1

2

δ1

δ2 δ3

A B

Figure 1. Honeycomb lattice of graphene, with an substituting impurity at the A
sublattice (the square). The unit cell vector a1 and a2 as well as the next nearest
neighbors vectors δi (i = 1, 2, 3) are also represented.

We consider here the case where a substituting atom replaces a carbon atom in the A
sublattice, say. When this happens two effects take place: (i) the on-site energy εi at the
impurity site is different from that at the carbon atoms; (ii) the hopping from and to the
impurity atom, ti, changes relative to that of pristine graphene. In the latter case, we model
the change in the hopping by introducing an additional non-diagonal term to the Hamiltonian,
such that ti = −t + t0 (see below). Using these definitions the Hamiltonian can be written as:
H = H0 + Vt + Vi , where

H0 = −t
∑
r

[b†(r)a(r)+ b†(r−a2)a(r)+ b†(r−a1)a(r)+ h.c.] (1)

is the kinetic energy operator and a†, a (b†, b) are fermion creation and annihilation operators
in the A (B) sites. The spin index is omitted for simplicity. We consider an isolated impurity
located at r = (0, 0, 0), on sublattice A, so that its contribution to the Hamiltonian has two terms:

Vt = t0[b†(0)a(0)+ b†(−a2)a(0)+ b†(−a1)a(0)+ h.c.] (2)

and

Vi = εia
†(0)a(0), (3)

for hopping and potential disorder, respectively. In the case of zero chemical potential, when the
Fermi level crosses the Dirac point, the system is most susceptible to the presence of impurities.
In the particular case t0 = t , hopping to the impurity site is completely suppressed, and the
scattering term Vt represents a vacancy. It is well known [34] that the formation of a vacancy will
lead to some local distortion of the carbon–carbon bonds. This effect is not incorporated in our
Hamiltonian, which in that case would not be exactly solvable. The substitution of carbon atoms
by boron or nitrogen has the main consequence of changing the local hopping and the onsite
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energy; both effects are included in our description. The particular choice for boron or nitrogen
is due to size restrictions imposed by the unit cell of graphene. We note here that replacement
of carbon atoms by boron and nitrogen has already been experimentally achieved [15].

We first calculate the single particle Green’s functions for the system comprised of
graphene and a single impurity, described by the Hamiltonian H above. The single particle
Green’s functions carry sublattice indices and are defined as

Gaa(k, q, τ )= −
〈
T
[
ak(τ ) a†

q(0)
]〉
, (4)

Gbb(k, q, τ )= −
〈
T
[
bk(τ ) b†

q(0)
]〉
, (5)

Gab(k, q, τ )= −
〈
T
[
ak(τ ) b†

q(0)
]〉
, (6)

Gba(k, q, τ )= −
〈
T
[
bk(τ ) a†

q(0)
]〉
. (7)

The equations of motion for the Green’s functions are given by

iωnGaa(ωn,k,p)= δk,p +
∑
q

[
λk,qGba(ωn, q,p)+

εi

Nc
Gaa(ωn, q,p)

]
, (8)

iωnGba(ωn,k,p)=

∑
q

λ∗

q,kGaa(ωn, q,p), (9)

iωnGab(ωn,k,p)=

∑
q

[
λk,qGbb(ωn, q,p)+

εi

Nc
Gab(ωn, q,p)

]
, (10)

iωnGbb(ωn,k,p)= δk,p +
∑
q

λ∗

q,kGab(ωn, q,p), (11)

where

λk,p = −tφp

(
δk,p−

t0

Nct

)
, (12)

φp = 1 + e−ip·a1 + e−ip·a2, (13)

and Nc is the total number of unit cells in the lattice, and ωn are fermionic Matsubara
frequencies. Note that λ pq 6= λq p. This is a consequence of the impurity hopping term Vt , which
breaks sublattice symmetry. The impurity potential term Vi also breaks sublattice symmetry,
and therefore εi appears in an asymmetric way in the equations above. The set of equations of
motions can be solved exactly. The presence of the scattering term Vt leads to the appearance of
the phases φk and a more complex form for the T -matrix than usual. The exact solution for the
Green’s functions can be written, after a lengthy calculation, in the form [10]:

Gaa(k,p)= δk,pG
0
k + g + h

[
G0
k + G0

p

]
+ G0

kT G0
p, (14)

Gbb(k,p)= δk,pG
0
k +

tφ∗

k

iωn
G0
kT G0

p

tφp
iωn

, (15)

where all the terms (G, G0, g, h and T ) also depend on ωn (omitted here for brevity). The terms
g, h and T correspond to sums over infinite series of Feynman diagrams for impurity scattering,
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and are given by

g(ωn)=
t2
0 Ḡ0(ωn)

[Nc D(ωn)]
, (16)

h(ωn)=
t0(t − t0)

[Nc D(ωn)]
(17)

and

T (ωn)= −
iωnt0(2t − t0)− εit2

Nc D(ωn)
, (18)

where the denominator D(ωn) is defined as

D(ωn)= (t − t0)
2 +
[
iωnt0(2t − t0)− εit

2
]

Ḡ0(ωn) (19)

and

Ḡ0(ωn)=
1

Nc

∑
k

G0(ωn,k), (20)

with the diagonal component of the Green’s function for the clean system given by (h̄ = 1)

G0
k = G0(ωn,k)=

iωn

(iωn)2 − t2|φk|2
, (21)

which is translationally invariant. The expressions for the Green’s functions, equations
(14)–(19), are exact analytic solutions for graphene with one isolated substitutional impurity,
including contributions from both the on-site energy εi and the hopping parameter t0. Inclusion
of the off-diagonal disorder t0 leads to additional terms, and additional ω-dependence of the
graphene Green’s function. Since single particle properties, such as local electronic spectra,
can be obtained directly from the Green’s functions, this ω-dependence has direct experimental
consequences, such as for STM spectroscopy measurements. These results for the graphene
Green’s functions have been obtained in [10], where LDOS maps, electronic spectra and
Friedel oscillations have been calculated for the cases of boron and nitrogen substitution.
We include here a brief derivation of the analytical expressions for the Green’s functions,
equations (14)–(21), for completeness. Upon closer inspection, the physical meaning of the
extra terms in Gaa becomes clear. The significance of the term g(ωn) in (14), which only
appears in Gaa, is more easily interpreted if we do a double Fourier transform to real space.
This term corresponds to the return amplitude to the impurity site for an electron starting at
the impurity site. The factor 1/D(ωn) contains a sum over an infinite series of intermediate
scattering events, but the overall process is bounded and the t2

0 factor denotes hopping from the
impurity to the nearest neighbor B-sites and back to the impurity site. Likewise, an interpretation
can be given to the other term that only appears in Gaa, namely, h(ωn)G0

k(ωn). A double
Fourier transform shows that this term contributes to Gaa(r, 0) and describes the amplitude
of propagation between the impurity site and another A site, again with an infinite series of
intermediate scatterings. Similarly, the h(ωn)G0

p(ωn) term contributes to Gaa(0, r). No such
terms can, of course, appear in Gbb when the impurity is at an A site. And no such term can be
present when there is only the impurity potential term εi. The G0

k(ωn)T (ωn)G0
p(ωn) term, which

appears in both Gaa and Gbb, is the usual term also present in simple on-site impurity potential
problems, but in this case the T -matrix contains contributions from both t0 and εi.
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V

−V W1

Figure 2. Representation of the STM tip.

2.2. STM tip

Let us consider a model for the STM tip represented by a multimode system. The bulk of the
tip is modeled by a square lattice with two atoms in the transverse direction. The end of the tip
is represented by a single atom. This choice renders the system multimode, with two transverse
modes. It is as simple to include a truly three-dimensional tip, but the current will not be much
affected by it. The schematic atomic structure of the tip is represented in figure 2.

The Hamiltonian for the tip can be written as Ht = Hb + H0, where Hb represents the bulk
of the tip and H0 the tip’s last atom. These two parts of the Hamiltonian are defined as

Hb = −V
−1∑

n=−∞

∑
m=1,2

[c†(n,m)c(n − 1,m)+ c(n − 1,m)c†(n,m)] (22)

−V⊥

−1∑
n=−∞

[c†(n, 1)c(n, 2)+ c(n, 2)c†(n, 1)] (23)

and

H0 = ε0c†(0)c(0)− W1

∑
m=1,2

[c†(0)c(−1,m)+ c(−1,m)c†(0)] , (24)

where c† (c) are creation (annihilation) operators for fermions in the tip. Let us now consider the
case of the bulk part of the Hamiltonian’s tip, Hb. In the case of a square lattice, the wavefunction
is separable and can be written as |ψl,t〉 = |φl〉|φt〉, with the longitudinal part of the wavefunction
|φl〉 given by

|φl〉 = lim
N→∞

−N∑
n=−1

√
2

N + 1
sin(nθl)|n〉, (25)

and the transverse part |φt〉 given by

|φt〉 =

∑
m=1,2

√
2

3
sin(mαt)|m〉. (26)

In equations (25) and (26), the states |n,m〉 = |n〉|m〉 are position states and the numbers θl and
αt are given by

θl =
πl

N + 1
, l = 1, 2, . . . , N (27)

and

αt =
π t

3
, t = 1, 2. (28)

New Journal of Physics 11 (2009) 095007 (http://www.njp.org/)
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The resolvent for the Hamiltonian Hb is defined as Ĝ+
b = (E + i0+

− Hb)
−1, where the +

superscript denotes the retarded function. In the eigenstate basis, it has the form

Ĝ+
b =

∑
l,t

|ψl,t〉〈ψl,t|

E − El,t
, (29)

where El,t are the eigenvalues of Hb, with Hb|ψl,t〉 = El,t|ψl,t〉, given by

El,t = −2V cos θl − 2V⊥ cosαt . (30)

For the calculation of the STM current, we will need the surface Green’s functions defined as

Gdiag(E)= 〈m,−1|G+
b| − 1,m〉, (31)

Goffd(E)= 〈1,−1|G+
b| − 1, 2〉. (32)

The calculation of (31) and (32) requires the evaluation of the integral

I =
1

2π

∫ 2π

0

d θ sin2 θ

E + 2V cos θ + j V⊥

, j = ±1, (33)

which is easily done by contour integration methods [33]. The final results are

Gdiag(E)=

∑
j=±1

β j

2V
− sgn(β j)

1

2V

√
β2

j − 1, (34)

Goffd(E)=

∑
j=±1

jβ j

2V
− sgn(β j) j

1

2V

√
β2

j − 1, (35)

for β2
j > 1, with β j = (E + j V⊥)/(2V ). In the case β2

j<1, the Green’s functions are obtained
from (34) and (35) by removing the factor sgn(β j) and choosing the positive sign for the square
root of the negative argument:

Gdiag(E)=

∑
j=±1

β j

2V
− i

1

2V

√
1 −β2

j , (36)

Goffd(E)=

∑
j=±1

jβ j

2V
− j i

1

2V

√
1 −β2

j . (37)

Using equation (34), the LDOS at the sites n = −1,m = 1, 2 given as usual by ρb(E)=

−
1
π
=Gdiag(E), is depicted in figure 3. The multimode nature of the tip is clearly seen in the

form of the density of states.

3. Graphene’s LDOS

The properties of the STM current depend on the LDOS below the tip of the microscope. In
this section, we compute the Green’s function of graphene in real space, from which the LDOS
can be obtained. In section 2.1, the position vector r denotes the position of the unit cell, which
contains two atoms. The LDOS (per spin) at the sublattice A and sublattice B atoms of the unit
cell localized in the position r is defined as

ρx(r, ω)= −
1

πNc
ImGxx(r, r, ω), (38)
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Figure 3. LDOS, ρb(E), at the atoms of the tip given by n = −1,m = 1, 2. Left:
V = 2 eV, V⊥ = 2 eV. Right: V = 2 eV, V⊥ = 1 eV. The multi-mode nature of
the tip is clearly seen.

where x = a, b, and Gxx(r, r, ω) is obtained from

Gxx(r, r, ωn)=

∑
k,p

ei(k−p)·rGxx(k,p, ωn), (39)

after the usual analytical continuation ωn → ω + i0+ of the Matsubara Green’s function. In the
unit cell r = 0, which contains the impurity in its A site, we have simple expressions for the
Green’s functions for the A and B sites. These read

Gaa(ωn)= Ḡ0(ωn)+ g(ωn)+ 2h(ωn)Ḡ
0(ωn)+ [Ḡ0(ωn)]

2T (ωn), (40)

Gbb(ωn)= Ḡ0(ωn)+
t2

9(iωn)2
[G̃0(ωn)]

2T (ωn), (41)

where G̃0(ωn) is given by

G̃0(ωn)= −iωnt−2 + (iωn)
2t−2Ḡ0(ωn) (42)

and Ḡ0(ωn) is defined in equation (20). As is clear from the above equations, the central quantity
that needs to be calculated is the integrated Green’s function Ḡ0(ωn). Since we want to compute
the density of states for energies beyond the Dirac cone approximation, we need to include in
the density of states powers of the energy beyond the usual linear term. In a previous work [35],
we have derived an expansion for the density of states (per unit cell, per spin) valid for energies
up to ∼2.5 eV, reading (E = h̄ω)

ρ(E)'
2E

√
3π t2

+
2E3

3
√

3π t4
+

10E5

27
√

3π t6
. (43)
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Using this expression for the density of states, a close form for the retarded function Ḡ0(ωn →

ω + i0+) can be derived. The imaginary part of Ḡ0(ω) reads

=Ḡ0(ω)= −
π

2
ρ(h̄ω) (44)

and the real part has the form

<Ḡ0(ω)= P1(h̄ω)+ P2(h̄ω) ln
(h̄ω)2

D2
c − (h̄ω)2

, (45)

where P1(x) and P2(x) are polynomial functions given by

P1(x)= −
x

3t2
−

5

27t4

(x

2
D2

c + x3
)
, (46)

P2(x)=
x

D2
c

+
x3

3t2 D2
c

+
5

27D2
c t4

x5. (47)

The energy Dc is a cut-off energy chosen as D2
c =

√
3π t2. It is possible to derive simple

analytical expressions for the LDOS at the unit cell r = 0, where the impurity is located, using
the Dirac cone approximation. If the full forms, equations (44) and (45), of the Green’s function
are used, an analytic close form is still possible, but is somewhat cumbersome.

For the calculation of the LDOS, the case of a vacancy and the case where εi 6= 0 and t0 = t
have to be treated separately. For the vacancy, the density of states at the neighboring B atom is

ρB(0, ω)=
2

√
3π t

∣∣∣∣ h̄ωt
∣∣∣∣
(

1 −
1

9

∣∣∣∣ h̄ωt
∣∣∣∣2 +

1

3

∣∣∣∣ t

h̄ω

∣∣∣∣2L(ω)

)
, (48)

with

L(ω)=

[
1 +

1

π 2
ln2

(
1

√
3π

∣∣∣∣ h̄ωt
∣∣∣∣2
)]−1

. (49)

For the case of a general substituting atom, the LDOS at the impurity atom ρa(0, ω) is obtained
from the imaginary part of the Green’s function that reads

=Gaa(ω)= =Ḡ0(ω)

{
1 +

t0(2t − t0)(t − t0)
2

Nc|D(ω)|2

−
2(t−t0)

2[ωt0(2t−t0)−εit2]

Nc|D(ω)|2
<Ḡ0(ω) −

[ωt0(2t−t0)−εit2]

Nc|D(ω)|2
[=Ḡ0(ω)]2

}
. (50)

The imaginary part of the Green’s function at the B site, next nearest neighbor to the impurity,
reads

=Gbb(ω)= =Ḡ0(ω)

{
1 −

t2[ωt0(2t − t0)− εit2]

9Nc|D(ω)|2

(
1 −

εi

ω

)}
. (51)

If in equations (50) and (51) one uses the full result for Ḡ0(ω), given by equations (44) and (45),
the resulting expressions are valid for energies up to 2.5 eV. The LDOS ρx(r = 0, ω), x = a, b,
are depicted in figure 4, for different choices of t0 and εi.
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Figure 4. LDOS, ρx(E), for x = a, b at the graphene’s unit cell r = 0. We have
used t = 3 eV. Upper left: density of states of pristine graphene and at the B site
close to a vacancy. All other panels: LDOS at A (impurity) and B (next to the
impurity) sites for different values of the parameters t0 and εi. The values of t0

and εi correspond to different types of impurities.

It is well known that the density of states due to a vacancy has a strong departure from
the pristine value close to the Dirac point. This is due to the logarithmic singularity seen in
equation (48). In the case where there is an enhancement of the hopping amplitude between the
impurity and the neighboring atoms (negative t0) the LDOS retains its linear behavior close to
the Dirac point, but its values at the A and B sublattices are different, as expected (figure 4, upper
right panel). This case would mimic a boron impurity atom. Boron has a larger atomic radius
(R ' 0.85 Å) than carbon (R ' 0.7 Å), and there should be an increase in the absolute value
of the hopping amplitude when it substitutes a carbon in graphene. In the case of a decreasing of
the electron hopping between the impurity and the carbon atoms (positive t0), the behavior of
the density of states is more interesting since resonances start to develop around the Dirac point
(figure 4, two lower panels). Note that the density of states still goes to zero at the Dirac point.
This behavior is reminiscent of the vacancy, since we can picture the two resonances developed
in both sides of the Dirac point as a splitting of the divergent peak for the vacancy due to the
departure of t0 from its vacancy value t0 = t . This case would mimic a nitrogen atom, which has
a smaller atomic radius (R ' 0.65 Å) than carbon.

The calculation of the LDOS for finite r requires the calculation of the Fourier transform
entering the definition in equation (39). For Gbb(r, r, ω), we use an approximation for φ(k),
which reads φ(k)' 3a0(ky − ikx)/2. Carrying out the Fourier transform we obtain

Gaa(r, r, ω)= Ḡ0(ω)+ T (ω)[F0(ω, r)]
2, (52)
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Figure 5. LDOS in sublattices A and B as a function of r > 0. The dashed–dotted
line is the density of states of pristine graphene at the energy h̄ω = 0.5 eV. The
point r = 0 is excluded. The small wavelength oscillations are due to the cut-off
momentum kc and the large ones are the 2qF Friedel oscillations.

Gbb(r, r, ω)= Ḡ0(ω)+
t2

ω2
T (ω)[F1(ω, r)]

2 , (53)

where Fn(ω, r) (n = 0, 1) is defined as

Fn(ω, r)=
(2n + 1)Acan

0

2n+1πv2
F

[
2ω

r n
−

∫ kcr

0
dx

xn+1 Jn(x)

α2 − x2
− i

π

vn
F

Jn(α)|ω|
n+1

]
, (54)

with Jn(x) the Bessel function of integer order n; and kc = 2
√
π/(

√
3
√

3a0), α = |ω|r/vF,
Ac = 3

√
3a2

0/2 and vF = 3ta0/2. The Cauchy principal value of the integral in equation (54)
is computed using numerical methods.

In figure 5, we plot the LDOS at both sublattices A and B. The typical oscillations due to
the presence of the impurity are present. Note that close to the impurity the B sublattice density
of states presents higher harmonics as a function of r ; these are due to the cut-off momentum
kc. On the one hand, the large wavelength oscillations are the 2qF Friedel oscillations: from
figure 5 the wavelength is about λ' 28a0; on the other hand, for the energy h̄ω = 0.5 eV the
Fermi momentum is qF = 1/(9a0), implying λ' π/qF ' 28a0. At large values of r the two
densities of states are out of phase by a factor of π . Therefore, when we average over the unit
cell the result is essentially the pristine density of states. This result has strong consequences
for STM experiments. If the STM experiment lacks atomic resolution at the A and B sublattices
level, the experimental data will show a very faint trace of the 2qF Friedel oscillations. This
seems to be the case in the experiments reported in [28]. Closer to the impurity there is a strong
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departure from the asymptotic behavior [9]

ρ(r)∝
1

r 2
sin(2rω/vF) (55)

and the A and B LDOS behave quite differently.
STM measurements of a material surface are ideal for studying real-space local features

with atomic resolution. In particular, real-space modulations of the STM intensity can be
observed when impurities are present at the surface of a given material. In general, the impurities
lead to elastic scattering between the momentum qF and −qF, which is the most efficient process
due to phase space restrictions, leading to 2qF Friedel oscillations. In the case of graphene, the
chiral nature of its electronic spectrum changes this general behavior. The Fermi surface has
disconnected pieces at different points of the Brillouin zone—the K and K ′ points. The Fermi
surface consists of circumferences of radius qF around each K and K ′ point. The scattering
process is then characterized by two channels: an intra-cone scattering (within the same K
or K ′ points) of momentum change 2qF, and an inter-cone scattering (between the K and K ′

points).
A Fourier transform of the real-space STM-intensity currents, proportional to the LDOS,

will produce bright spots at the momentum values seen in the real space modulations of
the LDOS. When impurities are present, the momentum values characterizing the real space
modulation are related to the momentum change associated with a given scattering process.
In [28], it was found that the intra-cone scattering, which would give rise to a bright spot of
radius 2qF, was absent in the momentum map of the density of states obtained by a Fourier
transform of their STM data.

In what follows, we give Fourier transforms of the LDOS of graphene for the different
types of impurities discussed previously in the text. We note that our derivation of the Fourier
transform of LDOS uses the full Green’s functions for the calculation of the LDOS, and
therefore no approximation has been made in the calculation. The full real-space map of the
density of states can be obtained numerically from equations (38) and (39), using the exact
expressions, equations (14)–(21), as was done in [10]. We now perform a Fourier transform of
the density of states,

ρx(k, ω)=

∑
r

e−ik·rρx(r, ω), (56)

for each sublattice x = a, b. The results are shown in figure 6, where the three rows correspond
to ρa(k, ω), ρb(k, ω) and the sum ρa(k, ω)+ ρb(k, ω), from top to bottom; and the four columns
correspond to four types of impurities discussed in figure 4. We recall that positive t0 reduces
the hopping from the impurity site to its nearest neighbor carbon atoms—the particular case
of t0 = t represents a vacancy—and negative t0 increases the hopping of the electrons from the
carbon atoms to the impurity site. This latter case would correspond to an atom with a radius
larger than carbon, such as boron, leading to an increase of the hopping relative to the hopping
t between nearest neighbor carbons. The column (a) of figure 6 refers to a vacancy. In this
case, it is clear that a 2qF circumference is seen around the k = (0, 0) point for the ρa and
ρb plots, consistent with the modulations shown in figure 5. However, the intensity at the 2qF

circle around k = (0, 0) is suppressed when looking at the ρa + ρb plot. Features of six spots at
a distance |K | around k = (0, 0) are also seen, these correspond to the K and K ′ points at the
corners of the first Brillouin zone and represent inter-cone scattering. Additionally, six bright
spots at distance |K + K ′

| are also present. These vectors with modulus |K + K ′
| are reciprocal
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(a) (b) (c) (d)

Figure 6. Fourier transform of the LDOS. The first row is the density of states in
sublattice A (ρa), the second row is the density of states in sublattice B (ρb) and
the third row is the sum of the two, ρa + ρb. Column (a) is for the case of a vacancy
and ω = 0.3 eV. Column (b): t0 = −1 eV, εi = 1 eV and ω = 0.3 eV. Column (c):
t0 = 1 eV, εi = −1 eV and ω = −1.5 eV. Column (d): t0 = 2 eV, εi = −1 eV and
ω = −0.3 eV. The scales for the intensity plots have been normalized separately
so that the lowest value in each plot corresponds to 0 and the highest value
corresponds to 1.

lattice vectors G. For a pristine material, the LDOS has the periodicity of the underlying lattice,
that is, ρ(r)= ρ(r + R), and therefore, the Fourier transform of ρ(r) must show the same
intensity at k = (0, 0) and k = G. While the presence of an impurity breaks the periodicity
of the real-space lattice, the reason for k = (0, 0) and k = G being different is the fact that the
impurity considered here is not on a whole unit cell, but on only one of the sites of the unit cell.
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If there were only one site per unit cell and a single short-range impurity, then the periodicity
in k-space would be maintained. In the extreme case, if there was a line of impurities of the
vacancy type, this would correspond to cutting the system in half, and k = (0, 0) and k = G
would still be the same. Note that in all our cases ρA is still periodic in k-space. The impurity
on a site A that we consider here, introduces structure within the R = 0 unit cell, therefore, in
k-space there is information going beyond the first Brillouin zone. Mathematically this appears
because the B site is located at R + δ3, where R denotes the position of the A sites, and δ3 is not
a lattice vector of a triangular Bravais lattice (see figure 1). When we take the Fourier transform,
the periodicity in k-space does no longer happens at k = G, but at larger k (this is a hallmark
of a process which involves a path from A to B [30]). All figures show this signature, which is
rather clear in column (c) of figure 6, since the Fermi surface energy has been chosen as large
as ω = −1.5 eV.

Inter-cone scatterings, represented by the region around the K and K ′ points, are highly
angular-dependent [29, 30], as can be seen particularly in the ρB plots. While the scattering
around the G vectors does not have such a strong angular dependence, some trigonal warping
is observed in ρB. The scatterings around k = (0, 0) are rotationally symmetric. Figure 7
corresponds to the case t0 = 2 eV and εi = −1 eV (case (c) of figure 6), showing how the
k-space LDOS map evolves with increasing energy.

One should note that in an STM experiment with atomic resolution one should interpret
the data using the results given in figures 6 and 7 for the separated cases of the sublattices A
and B, and not the last row of those figures, which represents the combined results for the two
sublattices.

4. STM current

In this section, we present calculations of the tunneling current between the STM tip and
graphene, when the tip is close to an impurity atom. We model the tip by the multimode
tight-binding model, as described in section 2.2. This choice departs from the more simplified
approach where the tip is modeled by a one-dimensional system [36, 37].

There are a number of ways one can describe the tunneling of the electrons between
the STM tip and graphene. Here we assume that the coupling is made directly either to the
impurity atom or to the next neighbor carbon atom. This choice corresponds to probing the
local electronic properties at or around the impurity. More general types of coupling are easily
included in the formalism. We write this coupling as

HT = −W2[c†(0)d(0)+ d†(0)c(0)] , (57)

where the operator d(0) can represent either an electron at the impurity atom in the A sublattice
or at the carbon atom in the B sublattice.

Since the Hamiltonian of the problem is bilinear, we can write it in the matrix form as

H =

Hb VL 0
V †

L H0 V †
R

0 VR Hg

 (58)

where the matrices VL and VR represent the coupling of the last atom in the tip of the STM
microscope to the bulk of the tip and to graphene, respectively, and Hb and Hg stand for the
bulk Hamiltonians of the tip and of graphene, respectively. Hg also includes the impurity terms,
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(a) (b) (c) (d)

Figure 7. Fourier transform of the LDOS for t0 = 2 eV and εi = −1 eV. The
first row is the density of states in sublattice A (ρa), the second row is the
density of states in sublattice B (ρb) and the third row is the sum of the two,
ρa + ρb. Column (a) is for ω = 0.05 eV. Column (b): ω = 0.15 eV. Column (c):
ω = 0.3 eV. Column (d): ω = 0.5 eV. The scales for the intensity plots have been
normalized separately so that the lowest value in each plot corresponds to 0 and
the highest value corresponds to 1.

equations (2) and (3). The matrix H is of infinite dimension due to Hb and Hg. The matrices V †
L

and V †
R have the explicit form

V †
L = [0,−W1,−W1] , V †

R = [−W2, 0], (59)

where 0 represents an infinite-dimensional null row vector.
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The tunneling is a local property, controlled by the coupling of the last atom of the tip to the
bulk atoms and to graphene. Since we want to compute local quantities, this is best accomplished
using Green’s functions in real space. The full Green’s function of the system is defined by

(1E + i0+
− H)G+

= 1, (60)

where 1 is the identity matrix. The matrix form of the Green’s function is

G+
=

Gbb Gb0 Gbg

G0b G00 G0g

Ggb Gg0 Ggg

 . (61)

The quantity of interest is G00, which can be shown to have the form

G+
00 = (E + i0+

− ε0 −6+
L −6+

R), (62)

where the matrices 6+
L and 6+

R are the self-energies and have the form

6+
L = 2W 2

1 (Gdiag + Goffd), 6+
R = W 2

2 G+
xx , (63)

where G+
xx is the surface Green’s function of the Hamiltonian Hg at the impurity unit cell

(x = a, b), respectively. Note that the quantity G+
xx is computed using equation (39) and setting

r = 0.
The study of non-equilibrium transport is done using the non-equilibrium Green’s function

method, or Keldysh formalism. This method is particularly suited to study the regime where the
system has a strong departure from equilibrium, such as when the bias potential on the STM tip,
Vb, is large. In this work, we consider, however, that the system is in the steady state. Since the
seminal paper of Caroli et al on non-equilibrium quantum transport [38], the method of non-
equilibrium Green’s functions started to be generalized to the calculation of transport quantities
of nanostructures. There are many places where one can find a description of the method [39, 40]
but a recent and elegant one was introduced in the context of transport through systems having
bound states, showing that the problem can be reduced to the solution of an equation similar to
a quantum Langevin equation [41]. The general idea of this method is that two perfect leads are
coupled to the system, which is usually called the device. In our case the device is defined by the
last atom of the tip of the microscope. The Green’s function of the device has to be computed
in the presence of the bulk of the tip and of graphene. This corresponds to our G+

00 Green’s
function. Besides the Green’s function, we need the effective coupling between the last atom of
the tip and the bulk atoms as well as that to the graphene atoms, which are determined in terms
of the self-energies

0L/R =
i

2π
(6+

L/R −6−

L/R). (64)

Therefore the effective coupling 0L/R depends on the surface Green’s function of the tip and of
graphene. According to the general theory, the two systems (bulk of the tip and graphene) are in
thermal equilibrium at temperatures TL/R and chemical potential µL/R and are connected to the
system at some time t0. The total current through the device is then given by

J =
2e

h

∫
∞

−∞

dET (E)[ f (E, µL, TL)− f (E, µR, TR)], (65)

where the factor of 2 is due to the spin degrees of freedom, f (x) is the Fermi–Dirac distribution
and the transmission T (E) is given by

T (E)= 4π20L|G
+
00|

20R. (66)
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Figure 8. Transmission probability T (E). The parameters used are (all in elec-
tron volts): V = 2, V⊥ = 1, W1 = 0.9, W2 = 0.2 and ε0 = 0.2. The resonances
seen in the LDOS in figure 4 show up in the transmission function. The values
of t0 and εi are the same as used in figure 4 and the four panels here correspond
to the same ones in that figure.

In figure 8, we depict T (E) in different cases. Note the asymmetry of the density of states,
which is exhibited even by the pristine case (figure 8, upper left panel). This asymmetry has a
two-fold nature: (i) it comes from the fact the bulk of the tip has two transverse atoms but the
tip has only one; (ii) the fact that the atom at the tip has a different local energy from those in
the bulk. This asymmetry carries on to the disordered cases. Additionally, for the disordered
cases the resonances seen in the LDOS have a strong impact on the transition probability T (E),
leading to open transport channels with large values of T (E). This is especially true for the
vacancy and for the weakly coupled impurity case, that is, when hopping between impurity and
carbon atoms is suppressed in relation to the hopping between carbon atoms, as expected for
nitrogen substitution.

Since we want to probe the properties of the STM current at zero doping we choose
µL = eV /2 and µR = −eV /2. Also TL = TR = 0. This renders the calculation of the current
to a simple one-dimensional integral of T (E) over the energy. The form of the current will
reflect the properties of T (E) as a function of energy, and, as we have seen, these are markedly
different for the different cases, depending strongly on the value and sign of t0. The presence of
resonances in T (E) leads to steps in the STM current. This is seen in figure 9 for the case of a
vacancy and the case of weak coupling (positive t0) between the impurity and the neighboring
carbon atoms.

To fully characterize the STM current, another important quantity is the shot noise [42].
For interacting systems, this quantity contains information on the nature of the quasi-particles,
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Figure 9. STM current J . The parameters used are (all in electron volts): V = 2,
V⊥ = 1, W1 = 0.9, W2 = 0.2 and ε0 = 0.2. The values of t0 and εi are the same as
used in figure 4. The transmission function was computed at finite bias; the zero
bias case is given in figure 8. The four panels here correspond to the same ones
in figure 8.

including for example the possible existence of quasi-particles with fractional charge. In
disordered systems with no interactions, information on transport through open channels can
be obtained. For non-interacting electrons at zero temperature, the shot noise is defined as [43]

S =
2e2

h̄

∫ µL

µR

dE T (E)[1 − T (E)]. (67)

The relevant quantity is not S directly but the Fano factor [42] defined as F = S/eJ . When the
transmission T (E) is strongly reduced we have F → 1, and the noise is said to be Poissonian.
On the other hand, if the system has a finite density of open channels, T (E)→ 1, we have F < 1
due to [1 − T (E)] � 1. The resonances that we obtain in T (E) play a role in the resulting form
of F . They lead to an enhancement of the current and to a significant decrease of the Fano factor
due to the opening of a transport channel (see figure 10). Note that the opening of the channels
is a consequence of the local disorder induced by the impurity.

5. Conclusions

In this paper, we have studied the STM currents through locally disordered graphene. We have
considered a tip with transverse modes. Although the tip is strictly quasi-one-dimensional it still
departs from the widely used model of a strictly one-dimensional model. Generalizing now the
calculations to a truly three-dimensional tip is reasonably straightforward. The modifications
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used in figure 4. The four panels here correspond to the four panels of the current
given in figure 9.

would require introducing a three-dimensional square lattice for describing the bulk of the tip,
and a decreasing number of atoms for each transverse plane to describe the part of the tip in
contact with graphene. This last part would lead to the most significant change in the calculation,
since the device would not be a single atom as in our calculations here, but would be represented
by a finite number of them, and therefore the Green’s function for the device would be a matrix
instead of a c-number. Nevertheless, as long as we take the dispersion of the electrons in the tip
to have large bandwidth, the current should not depend much on the LDOS of the tip, since this
would be essentially constant. This corresponds to the usual wide band limit.

We have also seen that tunneling through either impurity atoms, or their neighboring carbon
atoms, depends on the LDOS of graphene. For certain circumstances—vacancy or weakly
coupled impurities—there is a development of resonances at or close to the Dirac point. These
resonances lead to a strong enhancement of the tunneling probability that appear as steps in
the tunneling current. It is conceivable that graphene could be locally modified in order to take
advantage of these strong resonances developed close to the Dirac point. Clearly the substituting
atoms would also locally distort the graphene lattice, an effect not included in our description.
How much the STM current would depart from the values computed here would depend on
the change in the values of the hopping parameter, and on additional features of the density of
states due to the disorder. If future research pursues the route of modifying graphene locally,
our results will be important for the characterization of the surface. Even in the present state of
affairs, our results could be used to interpret STM current due to local impurities.
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