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Privacy preservation in continuous-time average consensus algorithm

via deterministic additive perturbation signals

Navid Rezazadeh and Solmaz S. Kia

Abstract—This paper considers the problem of privacy preser-
vation against passive internal and external malicious agents
in the continuous-time Laplacian average consensus algorithm
over strongly connected and weight-balanced digraphs. For this
problem, we evaluate the effectiveness of use of additive perturba-
tion signals as a privacy preservation measure against malicious
agents that know the graph topology. Our results include (a)
identifying the necessary and sufficient conditions on admissible
additive perturbation signals that do not perturb the convergence
point of the algorithm from the average of initial values of the
agents; (b) obtaining the necessary and sufficient condition on
the knowledge set of a malicious agent that enables it to identify
the initial value of another agent; (c) designing observers that
internal and external malicious agents can use to identify the
initial conditions of another agent when their knowledge set on
that agent enables them to do so. We demonstrate our results
through a numerical example.

I. INTRODUCTION

Decentralized multi-agent cooperative operations have been

emerging as effective solutions for some of today’s important

socio-economical challenges. However, in some areas involv-

ing sensitive data, for example in smart grid, banking or health-

care applications, adaption of these solutions are hindered by

concerns regarding the privacy preservation guarantees of the

participating clients. Motivated by the demand for privacy

preservation evaluations and design of privacy preserving aug-

mentations for existing decentralized solutions, in this paper

we consider the privacy preservation problem in the distributed

static average consensus problem using additive perturba-

tion signals.

Static average consensus problem in a network of agents

each endowed with a local static reference value consists of

designing a distributed algorithm that enables each agent to

asymptotically obtain the average of the static reference values

across the network. The solutions to this problem has been

used in various distributed computing, synchronization and

estimation problems as well as control of multi-agent cyber

physical systems. Average consensus problem has been studied

extensively in the literature (see e.g., [1]–[3], [4]). The widely

adopted distributed solution for the static average consensus

problem is the simple first order Laplacian algorithm in which

each agent initializes its local dynamics with its local reference

value and transmits this local value to its neighboring agents.

Therefore, the reference value is readily revealed to outside

world, and thus the privacy of the agents implementing this

algorithm is trivially breached. This paper studies the multi-

agent static average consensus problem under the privacy
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preservation requirement against internal and external passive

malicious agents in the network. By passive, we mean agents

that only listen to the communication messages and want to

obtain the reference value of the other agents without interrupt-

ing the distributed operation. The solution we examine is to

induce privacy preservation property by adding perturbation

signals to the internal dynamics and the transmitted output

of the agents.

Literature review: Privacy preservation solutions for the aver-

age consensus problem have been investigated in the literature

mainly in the context of discrete-time consensus algorithms

over connected undirected graphs. The general idea is to add

perturbation signals to the transmitted out signal of the agents.

For example, in one of the early privacy preserving schemes,

Kefayati, Talebi and Khalaj [5] proposed that each agent adds

a random number generated by zero-mean Gaussian processes

to its initial condition. This way the reference value of the

agents is guaranteed to stay private but the algorithm does

not necessarily converge to the anticipated value. Similarly, in

recent years, Nozari, Tallapragada and Cortes [6] also relied on

adding zero mean noises to protect the privacy of the agents.

However, they develop their noises according to a framework

defined based on the concept of differential privacy, which is

initially developed in the data science literature [7]–[10]. In

this framework, [6] characterizes the convergence degradation

and proposes an optimal noise in order to keep a level of

privacy to the agents while minimizing the rate of convergence

deterioration. To eliminate deviation from desired convergence

point, Manitara and Hadjicostis [11] proposed to add a zero

sum finite sequence of noises to the transmitted signal of

each agent, and Mo and Murray [12] proposed to add a zero

sum infinite sequences. Because of the zero sum condition on

the perturbation signals, however [11] and [12] show that the

privacy of an agent can only be preserved when the malicious

agent does not have access to at least one of the signals

transmitted to that agent. Additive noises have also been used

as a privacy preservation mechanism in other distributed al-

gorithms such as distributed optimization [13] and distributed

estimation [14], [15]. A thorough review of these results can

be found in a recent tutorial paper [16]. For the discrete-

time average consensus, on a different approach, [17] uses a

cryptographic approach to preserve the privacy of the agents.

Statement of contributions: We consider the problem of pri-

vacy preservation of the continuous-time static Laplacian

average consensus algorithm over strongly connected and

weight-balanced digraphs using additive perturbation signals.

The previous work reviewed above considers discrete-time

algorithms over connected undirected graphs. Similar to the

reviewed literature, in our privacy preservation analysis, we

consider the extreme case that the malicious agents know the
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graph topology. But, instead of random noises, we use the set

of continuous-time integrable additive perturbation signals. In

addition to the commonly used additive perturbation signal to

the transmitted out signal of the agents, we also add another

perturbation signal to the agreement dynamics of the agents as

another source of obfuscation in the algorithm. Also, instead

of using the customary zero-sum vanishing additive signals,

we carefully examine the stability and convergence proprieties

of the static average consensus algorithm in the presence of

the perturbation signals to find the necessary and sufficient

conditions on the perturbation signals such that the integrity of

the algorithm is preserved, i.e., despite the perturbation signals

the agents still converge to the average of their reference

values. We refer to such signals as admissible perturbation

signals. An interesting finding, which has not been observed

in the literature, is that the perturbation signals do not have

to be vanishing. Understanding the nature of the admissible

perturbation signals is crucial in the privacy preservation

evaluations, as it is rational to assume that the malicious agents

are aware of the necessary conditions on such signals.

The necessary and sufficient conditions that specify the ad-

missible perturbation signals of the agents are highly coupled.

We discuss how the agents can choose their admissible per-

turbation signals locally with or without coordination among

themselves. The conditions we obtain to define the locally

chosen admissible perturbation signals are coupled through

a set of under-determined linear algebraic constraints with

constant scalar free variables. Then, we evaluate the privacy

preservation of the Laplacian average consensus algorithm

with additive locally chosen admissible perturbation signals

against internal and external malicious agents, depending on

whether the coupling variables of the necessary conditions

defining the locally chosen admissible perturbation signals are

known to the malicious agent or not. We show that when

the coupling variables are known to the malicious agents,

they can use this extra piece of information to enhance their

knowledge set to discover the private value of the other agents.

In this case, Our main result then states that the necessary

and sufficient condition for a malicious agent to be able to

identify the initial value of another agent is to have direct

access to all the signals transmitted to and out of the agent.

Our next contribution is to design asymptotic observers that

internal and external malicious agents can use to identify the

initial condition of another agent when their knowledge set

on that agent enables them to do so. We characterize also

the estimation error of these observers at each time. Our

results show that external malicious agents need to use an

observer with a higher numerical complexity to compensate for

the local state information that internal malicious agents can

use. As another contribution, we identify examples of graphs

topologies in which the privacy of all the agents are preserved

using additive admissible perturbation signals. On the other

hand, if the coupling variables of the necessary conditions

defining the locally chosen admissible perturbation signals are

unknown to the malicious agents, we show that the malicious

agents cannot reconstruct the private reference value of the

other agents even if they have full access to all the transmitted

input and output signals of an agent. We use input-to-state

stability (ISS) results (see [18], [19]) to perform our analysis.

We demonstrate our results through a numerical example with

non-vanishing perturbation signals. A preliminary version of

our work has appeared in [20]. In this paper the results are

extended in the following directions: (a) we derive the nec-

essary and sufficient conditions to characterize the admissible

signals; (b) we study privacy preservation also with respect

to external malicious agents; (c) we consider a general class

of set of measurable essentially bounded perturbation signals;

(d) we improve our main result from sufficient condition to

necessary and sufficient condition.

II. PRELIMINARIES

We denote the standard Euclidean norm of vector x ∈ R
n

by ‖x‖ =
√
x⊤x, and the (essential) supremum norm of a

signal f : R≥0 → R
n by ‖f‖ess = (ess) sup{‖f(t)‖, t ≥

0}. The set of measurable essentially bounded functions f :
R≥0 → R

n is denoted by L∞
n . The set of measurable functions

f : R≥0 → R
n that satisfy

∫ t

0
‖f(τ)‖dτ < ∞ is denoted by

L1
n. For a sets A and B, the relative complement of B in

A is A\B = {x ∈ A |x 6∈ B}. For a vector x ∈ R
n, the

sum of its elements is sum(x). In a network of N agents, to

emphasize that a variable is local to an agent i ∈ {1, . . . , N},

we use superscripts. Moreover, if pi ∈ R is a variable of

agent i ∈ {1, . . . , N}, the aggregated pi’s of the network is

the vector p = [{pi}Ni=1] = [p1, · · · , pN ]⊤ ∈ R
N .

Graph theory: in the following, we review some basic con-

cepts from algebraic graph theory following [21]. A weighted

directed graph (digraph) is a triplet G = (V , E ,A), where

V = {1, . . . , N} is the node set, E ⊆ V × V is the edge

set and A = [aij ] ∈ R
N×N is a weighted adjacency matrix

with the property that aij > 0 if (i, j) ∈ E and aij = 0,

otherwise. A weighted digraph is undirected if aij = aji

for all i, j ∈ V . An edge from i to j, denoted by (i, j),
means that agent j can send information to agent i. For an

edge (i, j) ∈ E , i is called an in-neighbor of j and j is

called an out-neighbor of i. We denote the set of the out-

neighbors of an agent i ∈ V by N i
out. We define N i

out+i =
N i

out ∪ {i}. A directed path is a sequence of nodes connected

by edges. A digraph is called strongly connected if for every

pair of vertices there is a directed path connecting them.

We refer to a strongly connected and undirected graph as

a connected graph. The weighted out-degree and weighted

in-degree of a node i, are respectively, d
i
in =

∑N
j=1 aji

and d
i
out =

∑N

j=1 aij . A digraph is weight-balanced if at

each node i ∈ V , the weighted out-degree and weighted

in-degree coincide (although they might be different across

different nodes). The (out-) Laplacian matrix is L = [ℓij ] is

L = D
out − A, where D

out = Diag(d1out, · · · , dNout) ∈ R
N×N .

Note that L1N = 0. A digraph is weight-balanced if and only

if 1⊤
NL = 0. For a strongly connected and weight-balanced

digraph, rank(L) = N−1, rank(L+L
⊤) = N −1, and L has

one zero eigenvalue λ1 = 0 and the rest of its eigenvalues have

positive real parts. We let R ∈ R
N×(N−1) be a matrix whose

columns are normalized orthogonal complement of 1N . Then

T⊤
LT=

[
0 0

0 L
+

]

, T=
[

1√
N
1N R

]

, L
+=R

⊤
LR. (1)



{yj(t)}j∈N i
out −∑N

j=1 aij (x
i(t)− yj(t)) +

f i(t)

∫
+

gi(t)

yi(t)
xi(t)

Fig. 1: Graphical representation of algorithm 3.

For a strongly connected and weight-balanced digraph, −L
+

is a Hurwitz matrix.

III. PROBLEM FORMULATION

Consider the static average consensus algorithm

ẋi(t) = −
∑N

j=1
aij (x

i(t)− xj(t)), xi(0) = r
i, (2)

over a strongly connected and weight-balanced digraph

G(V , E ,A). For such an interaction typology, xi of each agent

i ∈ V converges to 1
N

∑N

j=1 r
j as t → ∞ [4]. In this algo-

rithm, ri, represents a reference value of agent i ∈ V . Because

in (2), the reference value r
i of each agent i ∈ V is transmitted

to its in-neighbors, this algorithm trivially reveals the reference

value r
i of each agent i ∈ V to all its in-neighbors and any

external agent that is listening to the communication messages.

In this paper, we investigate whether in a network of N ≥ 3
agents, the reference value of the agents can be concealed

from the malicious agents by adding the perturbation signals

f i ∈ L∞
1 and gi ∈ L∞

1 to, respectively, the internal dynamics

and the transmitted signal of each agent i ∈ V (see Fig. 1),

i.e.,

ẋi(t) = −
∑N

j=1
aij (x

i(t)− yj(t)) + f i(t), (3a)

yi(t) = xi(t) + gi(t), (3b)

xi(0) = r
i, (3c)

while still guaranteeing that xi converges to 1
N

∑N

j=1 r
j as

t → ∞. We define the malicious agents formally as follows.

Definition 1 (malicious agent): A malicious agent is an agent

inside (internal agent) or outside (external agent) the network

that stores and processes the transmitted inter-agent commu-

nication messages that it can access so that it can obtain the

private reference value of the other agents in the network,

without interfering with the execution of algorithm (3). That

is, the malicious agents are passive attackers. �

We refer to the set of perturbation signals {f j, gj}Nj=1

for which each agent i ∈ V still converges to the exact

average of the reference values across the network, i.e.,

limt→∞ xi(t) = 1
N

∑N

j=1 x
j(0) = 1

N

∑N

j=1 r
j , as the admis-

sible perturbation signals.

Theorem 3.1 (The set of necessary and sufficient conditions

on the admissible perturbation signals): Consider algorithm (3)

over a strongly connected and weight-balanced digraph with

perturbation signals f i, gi ∈ L∞
1 , i ∈ V . Then, the trajectory

t 7→ xi(t), of all agents i ∈ V converges to 1
N

∑N

j=1 x
j(0) =

1
N

∑N

j=1 r
j as t → ∞ if and only if

lim
t→∞

∫ t

0

∑N

k=1
(fk(τ)+d

k
out g

k(τ)) dτ = 0, (4a)

lim
t→∞

∫ t

0

e−L
+(t−τ)

R
⊤(f (τ) + Ag(τ)) dτ = 0, (4b)

where L
+ and R are defined in (1). �

The proof of Theorem 3.1 is given in the appendix. The

necessary and sufficient conditions in (4) that specify the

admissible signals of the agents are highly coupled. The

following result gives a representation that the coupling is in

the form of a set of linear algebraic constraints.

Theorem 3.2 (Locally chosen admissible signals): Consider

algorithm (3) over a strongly connected and weight-balanced

digraph. Let each agent i ∈ V choose its local perturbation

signals f i, gi ∈ L∞
1 such that

lim
t→∞

∫ t

0

(f i(τ)+d
i
out g

i(τ)) dτ = βi, (5)

where βi ∈ R. Then, the necessary and sufficient conditions

to satisfy (4) are

∑N

k=1
βk = 0, (6a)

lim
t→∞

∫ t

0

e−(t−τ)gi(τ)dτ = α ∈ R, i ∈ V . (6b)

�

The proof of Theorem 3.2 is given in the appendix. We refer

to the admissible signals chosen according to (5) and (6) as the

locally chosen admissible signals. For a given set of {βi}Ni=1

and α, Theorem 3.2 enables the agents to choose their admis-

sible perturbation signals locally with guaranteed convergence

to the exact average consensus. Choosing signals that satisfy

condition (5) is rather easy. However, condition (6b) appears to

be more complex. The result below, whose proof is given in the

appendix, identifies three classes of signals that are guaranteed

to satisfy condition (6b).

Lemma 3.1 (Signals that satisfy (6b) ): For a given α ∈
R, let g = g1 + g2 ∈ L∞

1 satisfy one of the condi-

tions (a) limt→∞ g(t) = α (b) limt→∞ g1(t) = α and

limt→∞
∫ t

0 g2(τ)dτ = ḡ < ∞ (c) limt→∞ g1(t) = α and
∫ t

0 σ(|g2(τ)|)dτ < ∞ for t ∈ R≥0, where σ is any class

K∞ function. Then, limt→∞
∫ t

0
e−(t−τ)g(τ)dτ = α. �

An interesting fact that Lemma 3.1 reveals is that the ad-

missible perturbation signals {f j, gj}Nj=1, unlike the existing

results for the discrete-time average consensus algorithm, e.g.,

in [12], do not necessarily need to be vanishing signals even

for α = 0 and βi = 0, i ∈ V . For example, in the

numerical example in Section V where α = 0 and βi = 0,

i ∈ V , we use gi(t) = sin(i t2), i ∈ V , which is a non-

vanishing signal that satisfies condition (b) of Lemma 3.1

(limt→∞
∫ t

0 sin(iτ2)=
√

π
8i ).



We examine the privacy preservation properties of algo-

rithm (3) against non-collaborative malicious agents. The

malicious agents are non-collaborative if they do not share

their knowledge sets with each other. The knowledge set of a

malicious agent is the information that it can use to infer the

private reference value of the other agents. The extension of

our results to collaborative agents is rather straightforward and

is omitted for brevity. Without loss of generality, we assume

that agent 1 is the malicious internal agent that wants to obtain

reference value of other agents in the network. At each time

t ∈ R≥0, the signals that are available to agent 1 are

Y1(t) = {x1(τ), y1(τ), {yi(τ)}i∈N 1
out

}tτ=0.

For an external malicious agent, the available signals depend

on what channels it intercepts. We assume that the external

malicious agent can associate the intercepted signals to the

corresponding agents. We represent the set of these signals

with Yext(t). We assume that the malicious agent knows the

graph topology. It is also rational to assume that the malicious

agents are aware of the form of the necessary conditions on

the admissible perturbation signals.

Remark 3.1 (Locally chosen admissible signals): If there

exists an ultimately secure and trusted authority that over-

sees the operation, this authority can assign to each agent

its admissible private perturbation signals that collectively

satisfy (4). However, in what follows, we consider a scenario

where such an authority does not exist, and each agent

i ∈ V , to increase its privacy protection level, wants to

choose its own admissible signals (f i, gi) privately without

revealing them explicitly to the other agents. In this setting,

the agents do not know if others are using perturbation signals

or not. The only information available to the agents is that

their collective choices should satisfy (4). Then, in light of

Theorem 3.2, to ensure (4a) each agent i∈V chooses its local

admissible perturbation signals according to (5) with βi =0.

Consequently, according to Theorem 3.2 again, each agent

i ∈ V needs to choose its respective gi according to (6b)

with α = 0. Any other choice of {βi}Ni=1 and α needs an

inter-agent coordination/agreement procedure. In case of the

locally chosen admissible perturbation signals without inter-

agent coordination, since the agents need to satisfy (5) and (6)

with α = βi = 0, i ∈ V , these values will be known to the

malicious agents. In case that the agents coordinate to choose

non-zero values for α and {β}Ni=1 such that (5) and (6) are

satisfied, it is likely that these choices to be known to the

malicious agents. In our privacy preservation analysis below,

we consider both cases when the choices of α and {β}Ni=1 are

either known or unknown to the malicious agents. �

Definition 2 (Knowledge set of a malicious agent): The

knowledge set of the malicious internal agent 1 and external

agent ext is assumed to be one of the cases below,

• Case 1:

Ka= {Ya(∞),G(V , E ,A),
form of conditions (5) and (6), α, {βi}Ni=1

}
, (7)

• Case 2:

K1=
{
Y1(∞),G(V , E ,A),

form of conditions (5) and (6), α}, (8)

Kext=
{
Yext(∞),G(V , E ,A),

form of conditions (5) and (6)}, (9)

where a ∈ {1, ext}. �

Our objective in this paper is to determine the effectiveness

of use of additive perturbation signals, as introduced in (3),

as a privacy preserving measure for the Laplacian average

consensus algorithm against internal or external malicious

agents with a knowledge set belonging to one of the cases

in Definition 2. Our study intends to determine: (a) whether

the malicious agents inside or outside the network can ob-

tain the reference value of the other agents by storing and

processing the transmitted messages; (b) more specifically,

what knowledge set enables an agent inside or outside the

network to discover the reference value of the other agents in

the network; (c) what observers such agents can employ to

obtain the reference value of the other agents in the network.

IV. PRIVACY PRESERVATION EVALUATION

In this section, we evaluate the privacy preservation proper-

ties of the modified average consensus algorithm (3) against

malicious internal agent 1 and a malicious external agent

whose knowledge sets are either of the two cases given

in Definition 2. From the perspective of a malicious agent

interested in private reference value of another agent i ∈ V ,

the dynamical system to observe is (3) with xi as the internal

state, (f i, gi, {yj}j∈N i
out

) as the inputs and yi as the measured

output. When inputs and measured outputs over some finite

time interval (resp. infinite time) are known, the traditional

observability (resp. detectability) tests (see [22], [23]) can

determine whether the initial conditions of the system can be

identified. However, here the inputs f i and gi : R≥0 → R

of agent i ∈ V are not available to the malicious agent.

All is known is the conditions (5) and (6) that specify the

perturbation signals. With regard to inputs {yj}j∈N i
out

and

output yi, an external agent should intercept these signals

while the internal malicious agent 1 has only access to these

inputs if it is an in-neighbor of agent i and all the out-

neighbors of agent i (e.g., in Fig. 2, agent 1 is an in-neighbor

of agent 2 and all the out-neighbors of agent 2).

A. Case 1 knowledge set

The following results show that in a scenario that the malicious

agent with the knowledge set (7) has access to all the transmit-

ted input and output signals of another agent i, it can identify

the reference value of agent i despite the perturbation signals.

Theorem 4.1 (Observer design for an internal malicious

agent with the knowledge set (7)): Consider the modified

static average consensus algorithm (3) with a set of locally

chosen admissible perturbation signals {f j, gj}Nj=1 over a



strongly connected and weight-balanced digraph G. Let agent

1 be the in-neighbor of agent i ∈ V and all the out-neighbors

of agent i, i.e., agent 1 knows {yj(t)}j∈N i
out+i

, t ∈ R≥0. Let

the knowledge set of agent 1 be (7). Then, agent 1 can employ

the observer

ζ̇ =
∑N

j=1
aij(y

i − yj), ζ(0) = −βi, (10a)

ν(t) = ζ(t) + x1(t), (10b)

to asymptotically obtain r
i, i.e., ν → r

i as t → ∞. More-

over, at any time t ∈ R≥0, the estimation error of the observer

satisfies

ν(t)− r
i = x1(t)−xi(t) +

∫ t

0

(f i(τ) + d
i
out g

i(τ))dτ − βi.

(11)

Proof 1: Given (3) and (10) we can write

ζ̇ + ẋi = f i + d
i
out g

i

which, because of xi(0) = r
i and ζ(0) = −βi, gives

ζ(t) = −xi(t) + r
i +

∫ t

0

(f i(τ) + d
i
out g

i(τ))dτ − βi, t ∈ R≥0.

Then, using (10b) and (3b) we obtain (11) as the estimation

error. Subsequently, because of (5) and since limt→∞(x1(t)−
xi(t)) = 0, from (11) we obtain limt→∞ ν(t) = r

i.

To construct the observer (10), the internal malicious agent

used its own local state. The following result shows that

an external malicious agent can compensate for the lack of

this internal state information by employing a higher order

observer and also invoking condition (6b), which the internal

malicious agent does not need. This means that an external

malicious agent incurs a higher computational cost.

Theorem 4.2 (Observer design for an external malicious

agent with the knowledge set (7)): Consider the modified static

average consensus algorithm (3) with a set of locally chosen

admissible perturbation signals {f j, gj}Nj=1 over a strongly

connected and weight-balanced digraph G. Consider an ex-

ternal malicious agent that has access to the output signals

of agent i ∈ V and all its out-neighbors, i.e., {yj(t)}j∈N i
out+i

,

t ∈ R≥0. Let the knowledge set of this agent be (7). Then, this

external malicious agent can employ the observer

ζ̇ =
∑N

j=1
aij(y

i − yj), ζ(0) = −βi − α, (12a)

η̇ = −η + yi, η(0) ∈ R, (12b)

ν(t) = ζ(t) + η(t), (12c)

to asymptotically obtain r
i, i ∈ V , i.e., ν → r

i as t → ∞.

Moreover, at any time t ∈ R≥0, the estimation error of the

observer satisfies

ν(t)−r
i= η(t)−xi(t) +

∫ t

0

(f i(τ) + d
i
out g

i(τ))dτ − βi − α,

(13)

where

η(t) = e−tη0+

∫ t

0

e−(t−τ)xi(τ)dτ+

∫ t

0

e−(t−τ)gi(τ)dτ. (14)
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Fig. 2: A strongly connected and weight-balanced digraph G in

which node 1 is an articulation point of the undirected representation

of G. G
1

1
, G

1

2
and G

1

3
are the islands of agent 1.

Proof 2: Given (3) and (12a), we can write

ζ̇ + ẋi = f i + d
i
out g

i,

which given xi(0)= r
i and ζ(0)=−βi−α, for t ∈ R≥0 gives

ζ(t)=−xi(t) + r
i+

∫ t

0

(f i(τ) + d
i
out g

i(τ))dτ − βi − α.

(15)

On the other hand, using (3b), t 7→ η(t) is obtained from (14).

Then, tracking error (13) is readily deduced from (12c)

and (15). Next, given (5) and (6b) and also limt→∞ e−tη0 =
0, we obtain limt→∞ ν(t) = r

i + limt→∞(−xi(t) +
∫ t

0
e−(t−τ)xi(τ)dτ). Subsequently, since limt→∞ xi(t) =

1
N

∑N

j=1 r
j , we can conclude our proof by invoking

Lemma 7.2 that guarantees limt→∞
∫ t

0
e−(t−τ)xi(τ)dτ =

limt→∞ xi(t) = 1
N

∑N
j=1 r

j .

When a malicious agent does not have direct access to all

the signals in {yj(t)}j∈N i
out+i

, a rational strategy appears to

be that the malicious agent estimates the signals it does not

have access to. If those agents also have out-neighbors that

their output signals are not available to the malicious agent,

then the malicious agent should estimate the state of those

agents as well, until the only inputs to the dynamics that it

observes are the additive admissible perturbation signals. For

example, in Fig. 2, to obtain the reference value of agent 6,

agent 1 compensates for the lack of direct access to y7(t),
which enter the dynamics of agent 6, by estimating the state

of all the agents in subgraph G1
3 . Our results below however

show that this strategy is not effective. In fact, we show that

a malicious agent (internal or external) is able to uniquely

identify the reference value of an agent i ∈ V if and only if

it has direct access to {yj(t)}j∈N i
out+i

for all t ∈ R≥0.

To present our results, we first introduce some notations. Let

V̄1
k , k ∈ {1, . . . , n̄1} be the set of the agents in the kth induced

disjoint subgraph obtained from removal of agent 1 and its

incident edges.

Recall that if 1 is an articulation point1 of the undirected

representation of digraph G, then n̄1 > 1, otherwise n̄1 = 1.

1An articulation point of an undirected connected graph is a node whose
removal along with its incident edges disconnects the graph [24].



1

V1

k,2

V1

k,3

V1

k,4

V\V1
k

rest of network

Fig. 3: The k
th induced island of malicious agent 1. The super node

V
1

k,2 in G
1

k is the set of the out-neighbors of agent 1 that each of them

has at least one out-neighbor that is not an out-neighbor of agent 1.

The super node V
1

k,4 is the set of the out-neighbors of agent 1 whose

out-neighbors are all also out-neighbors of agent 1. Finally, the super

node V
1

k,3 is the set of the agents in G
1

k that are not an out-neighbor

of agent 1. An arrow from each node a (agent 1 or each super node)

to another node b (agent 1 or each super node) indicates that at least

one agent in a can obtain information from at least one agent in b.

The thin connection lines may or may not exist in a network.

We refer to every induced subgraph G1
k = (V1

k , E
1
k ) ⊂ G(V , E),

k ∈ {1, . . . , n̄1}, where V1
k = V̄1

k ∪ {1} and E1
k = {(l, j) ∈

E| l ∈ V1
k , j ∈ V1

k}, as the kth island of agent 1. Note

that every island of agent 1 is connected to the rest of the

digraph G only through agent 1 (see Fig. 2 for an example).

Let G1
1 = (V1

1 , E
1
1 ) be the island of agent 1 that includes agent

2, the out-neighbor of agent 1 that agent 1 wants to obtain its

reference value r
2. Because every agent in G1

1 is connected to

the rest of the agents in digraph G only through agent 1, all

the out-neighbors and in-neighbors of agent 2 are necessarily

in G1
1 . Based on how each agent interacts with agent 1, we

divide the agents of island G1
1 into three groups as described

below (see Fig. 3)

• V1
1,2 =

{
i ∈ V1

1

∣
∣ i ∈ N 1

out, N i
out 6⊂ N 1

out+1

}
,

• V1
1,3 =

{
i ∈ V1

1

∣
∣ i /∈ N 1

out

}
.

• V1
1,4 =

{
i ∈ V1

1

∣
∣ i ∈ N 1

out, N i
out ⊆ N 1

out+1

}
,

Without loss of generality, in what follows we assume that the

agents in the network are labeled according to the ordered set

(1,V1
1,2,V

1
1,3,V

1
1,4,V\V

1
1 ). We let the aggregated states and

perturbation signals of the agents in V1
1,l, l ∈ {2, 3, 4}, be

xl = [xi]
i∈V1

1,l

, gl = [gi]
i∈V1

1,l

and f l = [f i]
i∈V1

1,l

. Similarly,

we let the aggregated states and perturbation signals of the

agents in V\V1
1 be x5 = [xi]

i∈V\V1

1

, g5 = [gi]
i∈V\V1

1

and

f5 = [f i]
i∈V\V1

1

. We partition L, A and D
out, respectively,

to subblock matrices Lij ’s, Aij ’s and D
out
ij ’s in a comparable

manner to the partitioned aggregated state (x1,x2,x3,x4,x5)
(see (44)). By definition Lij = −Aij , i, j ∈ {1, · · · , 5}, i 6= j.

Lemma 4.1 (A case of indistinguishable admissible initial

conditions for an internal malicious agent): Consider the

modified static average consensus algorithm (3) with a set

of locally chosen admissible perturbation signals {f j, gj}Nj=1

over a strongly connected and weight-balanced digraph G.

Let t 7→ yi(t) be the transmitted signal from agent i ∈ V
for t ∈ R≥0. Let G1

1 = (V1
1 , E

1
1 ) be an island of agent

1 that satisfies V1
1,2 6= {}. Now consider an alternative

implementation of algorithm (3a)-(3b) with initial condition

xi′(0) = xi(0) = r
i, i ∈ V\(V1

1,2 ∪ V1
1,3),

xi′(0) ∈ R, i ∈ (V1
1,2 ∪ V1

1,3), s.t. (16)

x′
2(0)− x2(0) = −A23L

−1
33 (x

′
3(0)− x3(0)),

and perturbation signals

gi
′
(t) = gi(t), f i′(t) = f i(t), i ∈ V\V1

1,2,

gi
′
(t) = gi(t) + e−d

i
outt(xi′(0)− xi(0)), i ∈ V1

1,2,
(17)

f i′(t) = f i(t)−
[

A23e−L33t(x′
3(0)−x3(0))

]

i−1
, i ∈ V1

1,2.

Let t 7→ xi′(t) and t 7→ yi
′
(t), t ∈ R≥0, respectively, be the

state and the transmitted signal of agent i ∈ V in this case.

Then,
∑N

j=1
xj ′(0) =

∑N

j=1
xj(0) =

∑N

j=1
r
j , (18)

lim
t→∞

xi′(t) =
1

N

∑N

j=1
r
j , i ∈ V . (19)

Moreover,

yj(t) = yj
′
(t), t ∈ R≥0, j ∈ V\V1

1,3. (20)

�

The proof of Lemma 4.1 is given in the Appendix.

Lemma 4.1 states that there exists infinite number of admis-

sible initial conditions and admissible perturbation signals for

an agent i ∈ N 1
out and any agent j ∈ N i

out\N 1
out+1 6= {} that

agent 1 cannot distinguish between, because for all of these

cases, the signals transmitted from any out-neighbor of agent

1 are identical. We can develop similar results, as stated in

the corollary below, for an external malicious agent that does

not have direct access to the output signal of some of the

out-neighbors of agent i ∈ V . The proof of this corollary is

omitted for brevity.

Corollary 4.1 (A case of indistinguishable admissible initial

conditions for an external malicious agent): Consider the

modified static average consensus algorithm (3) with a set

of locally chosen admissible perturbation signals {f j, gj}Nj=1

over a strongly connected and weight-balanced digraph G.

Let t 7→ yi(t) be the transmitted signal from agent i ∈ V
for t ∈ R≥0. Consider an external malicious agent that has

direct access to the output signal of agent 2 ∈ V but not

that of the agent 3 ∈ N 2
out. Now consider an alternative

implementation of algorithm (3a)-(3b) with initial condition

xi′(0) = xi(0) = r
i for i ∈ V\{2, 3}, and x2′(0), x3′(0) ∈ R

such that x2′(0) − x2(0) = − a23

ℓ33
(x3′(0) − x3(0)), and

perturbation signals gi′(t) = gi(t), f i′(t) = f i(t), for

i ∈ V{2}, and g2′(t) = g2(t) + e−d
2
outt(x2′(0) − x2(0)) and

f2′(t) = f2(t) − a23e−ℓ33t(x3′(0) − x3(0)). Let t 7→ xi′(t)
and t 7→ yi′(t), t ∈ R≥0, respectively, be the state and the

transmitted signal of agent i ∈ V in this case. Then, the

equations (18) and (19) hold. Moreover,

yj(t) = yj
′
(t), t ∈ R≥0, j ∈ V\{3}.



�

Building on our results so far, we are now ready to state the

necessary and sufficient condition under which a malicious

agent with knowledge set (7) can discover the reference value

of an agent i ∈ V .

Theorem 4.3 (Privacy preservation using the modified aver-

age consensus algorithm (3) when the knowledge set of the

malicious agents is given by Case 1 in Definition 2): Consider

the modified static average consensus algorithm (3) with a set

of locally chosen admissible perturbation signals {f i, gi}Ni=1

over a strongly connected and weight-balanced digraph G.

Let the knowledge set of the internal malicious agent 1 and

external agent ext be (7). Then, (a) agent 1 can reconstruct

the exact initial value of agent i ∈ V\{1} if and only if

i ∈ N 1
out and N i

out ⊆ N 1
out+1; (b) the external agent ext can

reconstruct the exact initial value of agent i ∈ V if and only

if {{yj(τ)}j∈N i
out+i

}∞τ=0 ⊆ Yext(∞).

Proof 3: Proof of statement (a): If i ∈ N 1
out and N i

out ⊆
N 1

out+1, Theorem (4.1) guarantees that agent 1 can employ an

observer to obtain the reference value of agent i. Next, we

show that if i 6∈ N 1
out or N i

out 6⊂ N 1
out+1, then agent 1 cannot

uniquely identify the reference value r
i of agent i. Suppose

agent i ∈ V\{1} satisfies i 6∈ N 1
out (resp. i ∈ N 1

out and N i
out 6⊂

N 1
out+1). Without loss of generality let V1

1 be the island of

agent 1 that contains this agent i. Consequently, i ∈ V1
1,3

(resp. i ∈ V1
1,2). Then, by virtue of Lemma 4.1, we know that

there exists infinite number of alternative admissible initial

conditions and corresponding admissible perturbation signals

for any agents in V1
1,3∪V

1
1,2 for which the time histories of each

signal transmitted to agent 1 are identical. Therefore, agent 1
cannot uniquely identify the initial condition of any agents in

V1
1,3 ∪ V1

1,2. In light of Theorem 4.2 and Corollary 4.1, the

proof of statement (b) is similar to that of statement (a) and

is omitted for brevity.

Remark 4.1 (Examples of privacy preserving graph topolo-

gies): Cyclic bipartite undirected graphs, 4-regular ring lattice

undirected graphs with N > 5, planar stacked prism graphs,

directed ring graphs, and any biconnected undirected graph

that does not contain a cycle with 3 edges are examples

of graph topologies for which the privacy of every agent is

preserved with respect to any internal malicious agent (see [25]

for the formal definition of these graph topologies). This is

because for every malicious agent i in the network, every

j ∈ N i
out has a neighbor k ∈ N j

out such that k 6∈ N i
out (recall

Theorem 4.3). Some examples of these privacy preserving

topologies is shown in Fig. 4. �

Next, we show that even though agent 1 cannot obtain the

initial condition of the individual agents in V1
k,2 6= {} and

V1
k,3, k ∈ {1, · · · n̄1}, it can obtain the average of the initial

conditions of those agents. Without loss of generality, we

demonstrate our results for k = 1.

Proposition 4.1 (Island anonymity): Consider the dynamic

consensus algorithm (3) over a strongly connected and weight-

1

2

3

4

5

6

(a) A cyclic bipartite undirected
connected graph.
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2

3

4

56

7

8

9

(b) A 4-regular ring lattice
undirected connected graph
on 9 vertices.

1

23

4

56

7

89

(c) A triangular stacked prism
graph.
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12

13

14

15

16

(d) A lattice graph with 16 ver-
tices (a biconnected graph that
contains no cycle with 3 edges).

Fig. 4: Examples of privacy preserving graph topologies.

balanced digraph G in which V1
1,2 6= {}. Let n2,3 = |V1

1,2 ∪
V1
1,3| and d

1,1
out =

∑

j∈(V1
1,2∪V1

1,4)

a1j be the out-degree of agent 1 in

subgraph G1
1 . Then, the malicious agent 1 with the knowledge

set (7) can employ the observer

ζ̇i =
∑N

j=1
aij(y

i − yj), ζi(0) = −βi, i ∈ V1
1,4,

η̇ = −
∑

j∈(V1

1,2∪V1

1,4)

a1j(y
1 − yj), η(0) = −

∑

j∈V1

1
\{1}

βi,

µ(t) =
η(t)−∑

i∈V1

1,4
ζi

n2,3
+ x1(t).

to have limt→∞ µ(t) = 1
n2,3

∑

j∈(V1

1,2∪V1

1,3)

r
j .

Proof 4: Consider the aggregate dynamics of η and xi, i ∈
{2, 3, 4}, which reads as







η̇
ẋ2

ẋ3

ẋ4






=−







d
1,1
out −A12 0 −A14

−A21 D
out
22 −A23 −A24

−A31 −A32 D
out
33 0

−A41 −A42 0 D
out
44







︸ ︷︷ ︸

L
1

1







y1

y2

y3

y4






+







0
f2 +D

out
22 g2

f3 +D
out
33 g3

f4 +D
out
44 g4






.

Notice that L
1
1 is the Laplacian matrix of graph G1

1 . By Virtue

of Lemma 7.3 in the appendix we know that G1
1 is a strongly

connected and weight-balanced digraph. Consequently, left

multiplying both sides of equation above with 1⊤
|V1

1
| gives

η̇+
∑

j∈V1

1
\{1}

xi =
∑

j∈V1

1
\{1}

(f j(t) + d
j
out g

j(t)).



Thereby, given η(0) = − ∑

j∈V1

1
\{1}
βi and xi(0) = r

i, we obtain

η(t) =
∑

j∈V1

1
\{1}

r
j −

∑

j∈V1

1
\{1}

xj(t) +
∑

j∈V1

1
\{1}

∫ t

0

(f j(τ) + d
j
out g

j(τ))dτ

−
∑

j∈V1

1
\{1}

βi.

On the other hand, following the proof of Theorem 4.1, we

can conclude that

∑

i∈V1

1,4

ζi(t) =
∑

i∈V1

1,4

r
i −

∑

i∈V1

1,4

xi(t) +
∑

i∈V1

1,4

∫ t

0

(f i(τ) + d
i
out g

i(τ))dτ

−
∑

i∈V1

1,4

βi.

Therefore, we can write

n2,3 µ(t) =
∑

j∈(V1

1,2∪V1

1,3)

r
i −

∑

j∈(V1

1,2∪V1

1,3)

xi(t) −
∑

j∈(V1

1,2∪V1

1,3)

βi

+
∑

j∈(V1

1,2∪V1

1,3)

∫ t

0

(f j(τ) + d
j
out g

j(τ))dτ + n2,3 x
1(t).

The proof then follows from the necessary condition (5) on

the perturbation signals, and the fact that limt→∞ n2,3 x
1(t)−

∑

j∈(V1

1,2∪V1

1,3)
xi(t) = 0 (recall that limt→∞ xi(t) =

limt→∞ xj(t), ∀i, j ∈ V).

B. Case 2 knowledge set

The first result below shows that if βi corresponding to the

locally chosen admissible perturbation signals of an agent i ∈
V is not known to the malicious agent, the privacy of the

agent i is preserved even if the malicious agent knows all

the transmitted input and output signals of agent i and the

parameter α. The proof of this lemma is given in the appendix.

Lemma 4.2 (Privacy preservation for i ∈ V via a concealed

βi): Consider the modified static average consensus algo-

rithm (3) with a set of locally chosen admissible perturbation

signals {f j, gj}Nj=1 over a strongly connected and weight-

balanced digraph G. Let the knowledge set of the malicious

agent 1 include the form of conditions (5) and (6), and also

the parameter α that the agents agreed to use. Let agent 1 be

the in-neighbor of agent i ∈ V and all the out-neighbors of

agent i, i.e., agent 1 knows {yj(t)}j∈N i
out+i

, t ∈ R≥0. Then,

the malicious agent 1 can obtain r
i of agent i if and only if it

knows βi.

A similar statement to that of Lemma 4.2 can be made about

an external malicious agent. In case of the external malicious

agent, it is very likely that the malicious agent does not know

α, as well. Building on the result of Lemma 4.2, we make our

final formal privacy preservation statement as follows.

Theorem 4.4 (Privacy preservation using the modified av-

erage consensus algorithm (3) when the knowledge set of

the malicious agents is given by Case 2 in Definition 2):

1r
1

2

r
2

3

r
3

4

r
4

5

r
5

1

1

1
1

1
1

G1
1G1

2

Fig. 5: A strongly connected and weight-balanced digraph G.

Consider the modified static average consensus algorithm (3)

with a set of locally chosen admissible perturbation signals

{f j, gj}Nj=1 over a strongly connected and weight-balanced

digraph G. Let the knowledge set of the internal malicious

agent 1 and the external malicious agent ext be given by Case

2 in Definition 2. Then, the malicious agent 1 (resp. agent

ext) cannot reconstruct the reference value r
i of any agent

i ∈ V\{1} (resp. i ∈ V).

Proof 5: Any agent i ∈ V\{1} satisfies either N i
out+i ⊂ N 1

out+1

or N i
out+i 6⊂ N 1

out+1. Since the malicious agent 1 does not

know {βi}Nj=2, if N i
out+i ⊂ N 1

out+1, i ∈ V\{1}, (agent 1
has access to all the transmitted input and output signals of

agent i), it follows from Lemma 4.2 that it cannot reconstruct

r
i. Consequently, if N i

out+i 6⊂ N 1
out+1, i ∈ V\{1}, since the

malicious agent 1 lacks more information (it does not have

access to some or all of the transmitted input and output signals

of agent i), we conclude that the malicious agent 1 cannot

reconstruct r
i. The proof of the statement for the external

malicious agent is similar to that of the internal malicious

agent 1, and is omitted for brevity (note here that the malicious

external agent ext lacks the knowledge of α, as well).

Remark 4.2 (Guaranteed privacy preservation when an ulti-

mately secure authority assigns the admissible perturbation

signals): If there exists an ultimately secure and trusted au-

thority that assigns the agents’ admissible private perturbation

signals in a way that they collectively satisfy (4), the privacy

of the agents is not trivially guaranteed. This is because, it is

rational to assume that the malicious agents know the neces-

sary condition (4) and may be able to exploit it to their benefit.

However, in light of Theorem 4.4, we are now confident to

offer the privacy preservation guarantee for such a case. This is

because, in this case the malicious agents’ knowledge set lacks

more information than Case 2 in Definition 2 (note that the

locally chosen admissible perturbation signals are a specially

structured subset of all the possible classes of the admissible

perturbation signals).

V. NUMERICAL EXAMPLE

We demonstrate our results using an execution of the modi-

fied static average consensus algorithm (3) over the strongly

connected and weight-balanced digraph in Fig. 5 where the

parameters specifying the admissible signals are set at α = 0
and βi = 0, i ∈ V and are known to the malicious agents.



The local reference value of the agents as well the admissible

perturbations they each use are given by

r
1=3, r

2=2, r
3=5, r4=−3, r

5=−1,

f i(t) = d
i
out

√

(2 i)π

4i
e−t, gi(t) = sin(i t2), i ∈ V . (21)

The malicious agent here is agent 1. In regards to agents 4 and

5, despite use of non-vanishing perturbation signals g4 and g5,

as guaranteed in Theorem 4.2, agent 1 can employ observers

of the form (10) to obtain x4(0) = r
4 = −3 and x5(0) = r

5 =
−1 (see Fig. 6(c)). Agent 1 however, cannot uniquely identify

r
2 and r

3, since N 2
out = {3} 6⊆ N 1

out+1 = {1, 2, 4, 5}. To show

this, consider an alternative implementation of algorithm (3)

with initial conditions and admissible perturbation signals

x1′(0)=3, x2′(0)=1, x3′(0)=6, x4′(0)=−3, x5′(0)=−1,

f i′(t)=f i(t), gi
′
(t)=gi(t), i ∈ {1, 3, 4, 5},

f2′(t)=f2(t)− e−t, g2
′
(t)=g2(t) + e−t, (22)

where 1
5

∑5
i=1 x

i′(0) = 1
5

∑5
i=1 x

i(0) = 1
5

∑8
i=1 r

i = 1.2.

As Fig. 6(a) shows the execution of algorithm (3) using the

initial conditions and perturbation signals (21) (the actual

case) and those in (22) (an alternative case) converge to the

same final value of 1.2. Let δyi = yi − yi
′
, i ∈ {1, . . . , 5}

be the error between the output of the agents in the actual

and the alternative cases. As Fig. 6(b) shows δyi ≡ 0 for

all i ∈ N 1
out = {2, 4, 5}. This means that agent 1 cannot

distinguish between the actual and the alternative cases and

therefore, fails to identify uniquely the initial values of agent 2
and also agent 3. Figure 6(d) shows that an external malicious

agent that has access to the output signals of agents 2 and 3
can employ an observer of the form (12) to identify the initial

value of agent 2, i.e., r2 = 2.

VI. CONCLUSIONS

In this paper, we considered the problem of preserving the

privacy of the reference value of the agents in an average

consensus algorithm using additive perturbation signals. We

started our study by characterizing the set of the necessary and

sufficient conditions on the admissible perturbation signals,

which do not perturb the final convergence point of the

algorithm.

We assessed the privacy preservation property of the average

consensus algorithm with the additive perturbation signals

against internal and external malicious agents, depending on

how much knowledge the malicious agents have about the

necessary conditions that specify the class of the signals agents

choose their local admissible perturbation signals from. We

showed that if the necessary conditions are fully known to

the malicious agents, then a malicious internal or external

agent that have access to all the transmitted input and out

signals of an agent can employ an asymptotic observer to

obtain the reference value of that agent. Next, we showed

that indeed having access to all the transmitted input and

out signals of an agent at all t ∈ R≥0 is the necessary and

sufficient condition for a malicious agent to identify the initial

value of that particular agent. On the other hand, we showed
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(a) Trajectories of the state of the
agents under the actual initial condi-
tions and the perturbation signals (21)
as well as the alternative ones in (22).
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(b) Time history of the difference be-
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(c) Time history of the observers of
the form (10) that agent 1 with knowl-
edge set (7) uses to obtain r4 and r5.
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(d) Time history of the observer (12)
of an external malicious agent with
knowledge set (7) that wants to obtain
r
2 and has direct access to y2 and y3

for all t ∈ R≥0.

Fig. 6: Simulation results when agents implement the modified

average consensus algorithm (3) over the network in Fig. 5

that if the necessary conditions defining the locally chosen

admissible perturbation signals are not fully known to the

malicious agents, then the malicious agents cannot reconstruct

the reference value of any other agent in the network.

Our problem of interest, identifying the initial condition of

the agents in the presence of unknown additive perturbation

signals, appears to be related to the concept of strong ob-

servability/detectability [26], [27] in control theory. However,

our work is different from these classical results because a

malicious agent has extra information given in the form of the

necessary conditions on the unknown admissible perturbation

signals, which it can exploit to reconstruct the initial condition

of the other agents. Our future work includes extending

our results to other multi-agent distributed algorithms such

as dynamic average consensus and distributed optimization

algorithms.
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VII. APPENDIX

To provide proofs for our lemmas and theorems we rely on a

set of auxiliary results, which we state first.

Lemma 7.1 (Auxiliary result 1): Let L be the Laplacian

matrix of a strongly connected and weight-balanced digraph.

Recall L+ = R
⊤
LR from (1). Let g(t) = [g1(t), ..., gn(t)]

⊤ ∈
L∞
n . Then,

lim
t→∞

∫ t

0

e−L
+(t−τ)

R
⊤
Lg(τ)dτ = 0, (23)

is guaranteed to hold if and only if

lim
t→∞

∫ t

0

e−(t−τ)gi(τ) dτ = α ∈ R, i ∈ {1, . . . , N}. (24)

Proof 6: Let

ζ̇ = −L
+
ζ + R

⊤
Lg(t), ζ(0) ∈ R

N−1, (25)

η̇ = −η + R
⊤
Lg(t), η(0) ∈ R

N−1. (26)

The trajectories t 7→ ζ and t 7→ η of these two dynamics for

t ∈ R≥0 are given by

ζ(t) = e−L
+tζ(0) +

∫ t

0

e−L
+(t−τ)

R
⊤
Lg(τ)dτ, (27)

η(t) = e−tη(0) + R
⊤
L

∫ t

0

e−(t−τ) g(τ)dτ. (28)

Let e = ζ−η. Then, the error dynamics between (25) and (26)

is given by

ė = −e+ (I− L
+)ζ. (29)

or equivalently

ė = −L
+e+ (L+ + I)η. (30)

Let (23) hold. Since −L
+ is a Hurwitz matrix, we have

limt→∞ ζ(t) = 0. Moreover, since g is essentially bounded,

the trajectories of ζ are guaranteed to be bounded. Therefore,

considering error dynamics (29), by invoking the ISS stability

results [19], we have the guarantees that limt→∞ e(t) = 0,

and consequently limt→∞ η(t) = 0. As such, from (28) we

obtain

R
⊤
L lim

t→∞

∫ t

0

e−(t−τ)g(τ)dτ = 0. (31)

The nullspace of R
⊤
L ∈ R

(N−1)×N is spanned by 1N ,

therefore,

lim
t→∞

∫ t

0

e−(t−τ)g(τ)dτ = α1N , α ∈ R,

which validates (24). Now let (24) hold. Then, using (28),

we obtain limt→∞ η(t) = 0. Since g is essentially bounded,

the trajectories of ζ are guaranteed to be bounded. Thereby,

considering error dynamics (30), by invoking the ISS stability

results [19], we have the guarantees that limt→∞ e(t) = 0,

and consequently limt→∞ η(t) = 0. Since −L
+ is a Hurwitz

matrix, we obtain (23) from (27).

Lemma 7.2 (Auxiliary result 2): Let u : R≥0 → R
n be

an essentially bounded signal and E ∈ R
n×n be a Hurwitz

matrix.

(a) If limt→∞ u(t) = ū ∈ R
n, and E ∈ R

n×n, then

lim
t→∞

∫ t

0

eE (t−τ)u(τ)dτ = −E−1 ū. (32)

(b) If limt→∞
∫ t

0
u(τ)dτ = ū ∈ R

n, then

lim
t→∞

∫ t

0

eE (t−τ)u(τ)dτ = 0. (33)



Proof 7: To prove statement (a) we proceed as follows. Let

µ(t) = u(t) − ū. Next, consider ζ̇ = E ζ + µ, ζ(0) ∈ R
n,

which gives ζ(t) = eE tζ(0) +
∫ t

0 eE(t−τ)µ(τ)dτ , t ≥ 0.

Since E is Hurwitz and µ is an essentially bounded and

vanishing signal, by virtue of the ISS results for linear

systems [19] we have limt→∞ ζ(t) = 0. Consequently,

limt→∞
∫ t

0
eE (t−τ)µ(τ)dτ = 0, which guarantees (32).

To prove statement (b) we proceed as follows. Consider

ζ̇ = u, η̇ = Eη + u, ζ(0) = 0, η(0) ∈ R
n,

which result in ζ(t) =
∫ t

0 u(τ)dτ and

η(t) = eE tη(0) +

∫ t

0

eE (t−τ)u(τ)dτ. (34)

Given the conditions on u both ζ and η are essentially

bounded signals (recall that E is Hurwitz). Let e = η − ζ.

Therefore, we can write

ė = Ee+E ζ, e(0) = η(0) ∈ R
n.

Since ζ is essentially bounded and satisfies limt→∞ Eζ(t) =
Eū, with an argument similar to that of the proof of statement

(a), we can conclude that limt→∞ e(t) = −ū. As a result

limt→∞ η(t) = 0. Consequently, from (34), we obtain (33).

Lemma 7.3 (Auxiliary result 3): Let G be a strongly con-

nected and weight-balanced digraph. Then, every island of

any agent i, is strongly connected and weight-balanced.

Proof 8: Without loss of generality, we prove our argument by

showing that the island G1
1 of agent 1 is strongly connected

and weight-balanced. By construction, we know that there is

a directed path from every agent to every other agent in G1
1 ,

therefore, G1
1 is strongly connected. Next we show that G1

1

is weight-balanced. Let V2 = V1
1\{1} and V3 = V\V2.Let

the nodes of G be labeled in accordance to (1,V2,V3),
respectively, and partition the graph Laplacian L accordingly

as

L =





d
1
out −A12 −A13

−A21 L22 0

−A31 0 L33



 .

Since G is strongly connected and weight-balanced, we have

L1N = 0 and 1⊤
NL = 0, which guarantee that

1⊤
|V1

1
|

[
−A12

L22

]

= 0,
[
−A21 L22

]
1|V1

1
| = 0. (35)

Therefore,

1⊤
|V1

1
|

[
−A12

L22

]

1|V1

1
| = 0, 1⊤

|V1

1
|
[
−A21 L22

]
1|V1

1
| = 0,

which we can use to conclude that sum(A⊤
12) = sum(A21).

Let the Laplacian matrix of G1
1 be L

1
1. Partitioning this matrix

according to order node set (1,V2), we obtain

L
1
1 =

[

d
1,1
out −A12

−A21 L22

]

,

where d
1,1
out =

∑

j∈V2
a1j = sum(A⊤

12). To establish G1
1 is

weight-balanced digraph, we show next that 1⊤
|V1

1
|L

1
1 = 0.

From 1⊤
NL = 0, it follows that 1⊤

|V1

1
|

[
−A12

L22

]

= 0. There-

fore, to prove G1
1 is weight-balanced, we need to show that

d
1,1
out + sum(−A21) = 0, which follows immediately from

d
1,1
out = sum(A⊤

12) and sum(A⊤
12) = sum(A21).

Next we present the proof of our main results.

Proof 9 (Proof of Theorem 3.1): To prove necessity, we

proceed as follows. We write the algorithm (3) in compact

form

ẋ = −Lx− Lg+ f +D
out

g = −Lx+ f +Ag. (36)

Left multiplying both sides of (36) by 1⊤
N gives

∑N

j=1
ẋj(t) =

∑N

j=1
(f i(t) + d

i
out g

i(t)),

which results in

∑N

j=1
xj(t)=

∑N

j=1
xj(0)+

∫ t

0

∑N

j=1
(f i(τ) + d

i
out g

i(τ)) dτ.

Because xi(0) = r
i, to ensure limt→∞ xi(t) = 1

N

∑N

j=1 r
j ,

i ∈ V , we necessarily need (4b).

Next, we apply the change of variable

p =

[
p1

p2:N

]

= Tx, (37)

where T is defined in (1), to write (36) in the equivalent form

ṗ1=
1√
N

∑N

i=1
(f i + d

i
out g

i), (38a)

ṗ2:N =−L
+ p2:N+ R

⊤(f +Ag). (38b)

The solution of (38) is

p1(t) =
1√
N

∑N

i=1
xi(0)+ (39a)

1√
N

∫ t

0

∑N

i=1
(f i(τ) + d

i
out g

i(τ))dτ,

p2:N (t) = e−L
+ t p2:N (0)+
∫ t

0

e−L
+(t−τ)

R
⊤(f (τ) +Ag(τ)) dτ. (39b)

Given (4a), (39a) results in limt→∞ p1(t) =
1√
N

∑N

i=1x
i(0) =

1
N

∑N
j=1 r

j . Consequently, given (37), to ensure

limt→∞ xi(t) = 1
N

∑N

j=1 r
j , i ∈ V , we need

lim
t→∞

p2:N(t) = 0. (40)

Because for a strongly connected and weight-balanced di-

graph, −L
+ is a Hurwitz matrix, limt→∞ e−L

+ tp2:N (0) = 0.

Then, the necessary condition for (40) is (4b).

The sufficiency proof follows from noting that under (4), the

trajectories of (39) satisfy limt→∞ p1(t) = 1√
N

∑N
i=1x

i(0)

and limt→∞ p2:N (t) = 0. Then, given (37) and xi(0) = r
i

we obtain limt→∞ xi(t) = 1
N

∑N
j=1r

j , i ∈ V .



Proof 10 (Proof of Theorem 3.2): Given (5), it is straight-

forward to see that (6a) is necessary and sufficient

for (4a). Next, we observe that using (5), we can write

limt→∞
∫ t

0R
⊤ (f(τ)+D

out g(τ))dτ = R
⊤ [

β1 · · · βN
]⊤

.

Then, it follows from the statement (b) of Lemma 7.2 that

limt→∞
∫ t

0e
−L

+(t−τ)
R

⊤ (f (τ) + D
out g(τ))dτ = 0. As a

result, given f +Ag = f +D
out g− Lg, we obtain

lim
t→∞

∫ t

0

e−L
+(t−τ)

R
⊤(f (τ) + Ag(τ)) dτ =

− lim
t→∞

∫ t

0

e−L
+(t−τ)

R
⊤
Lg(τ)dτ. (41)

Given (41), by virtue of Lemma 7.1, (4b) holds if and only

if (6b) holds.

Proof 11 (Proof of Lemma 3.1): When condition (a) holds,

the proof of the statement follows from statement (a) of

Lemma 7.2. When condition (b) is satisfied, the proof

follows from the statements (a) and (b) of Lemma 7.2

which, respectively, give limt→∞
∫ t

0
e−(t−τ)g1(τ)dτ = α and

limt→∞
∫ t

0 e−(t−τ)g2(τ)dτ = 0. When condition (c) is satis-

fied, the proof follows from the statement (a) of Lemma 7.2

which gives limt→∞
∫ t

0
e−(t−τ)g1(τ)dτ = α and noting

that
∫ t

0 e−(t−τ)g2(τ)dτ is the zero state response of system

ζ̇ = −ζ + g2. Since g2(t) is essentially bounded, this system

is ISS, and as a result it is also integral ISS [19]. Then,
∫ t

0
e−(t−τ)g2(τ)dτ = 0, follows from [19, Lemma 3.1].

Proof 12 (Proof of Lemma 4.1): Let the error variables of the

two execution of (3) described in the statement be δxi(t) =
xi′(t)−xi(t), δyi(t) = yi

′
(t)− yi(t), δgi(t) = gi

′
(t)− gi(t),

and δf i(t) = f i′(t)− f i(t), i ∈ V . Consequently,

δx1(0) = 0, δx4 = 0, δx5(0) = 0, (42a)

δxi(0) ∈ R, i ∈ (V1
1,2 ∪ V1

1,3), (42b)

δx2(0) = −A23L
−1
33 δx3(0), (42c)

and

δg1(t) ≡ 0, δf1(t) ≡ 0, (43a)

δgl(t) ≡ 0, δf l(t) ≡ 0, l ∈ {3, 4, 5}, (43b)

δg2(t)=−e−D
out
22 tδx2(0), δf2(t)=−A23e−L33tδx3(0).

(43c)

Given the inter-agent interactions across the network based on

agent grouping in accordance to the definition of the island

G1
1 (see Fig. 3), the error dynamics pertained to the modified

static average consensus algorithm (3) reads as









δẋ1

δẋ2

δẋ3

δẋ4

δẋ5









=−









d
1
out −A12 0 −A14 −A15

−A21 L22 −A23 −A24 0

−A31 −A32 L33 −A34 0

−A41 −A42 0 L44 0

−A51 0 0 0 L55









︸ ︷︷ ︸

L









δx1

δx2

δx3

δx4

δx5









+









0 A12 0 A14 A15

A21 A22 A23 A24 0

A31 A32 A33 A34 0

A41 A42 0 A44 0

A51 0 0 0 A55









︸ ︷︷ ︸

A









δg1

δg2

δg3

δg4

δg5









+









δf1

δf2
δf3
δf4
δf5









. (44)

Since for a strongly connected and weight-balanced digraph

we have rank(L) = N − 1 and −(L+L
⊤) ≤ 0, the sub-block

matrices −L33 and −L44 and −L55 satisfy −(Lii + L
⊤
ii) <

0, i ∈ {1, . . . , 5}. Thereby, they are invertible and Hurwitz

matrices.

To establish (18), we show 1⊤
Nδx(0) = 0N . For this, note that

taking into account (42), we can write

δx(0) =









0 0 0 0 0

0 0 −A23 0 0

0 0 L33 0 0

0 0 0 0 0

0 0 0 0 0









︸ ︷︷ ︸

B









0

L
−1
33 δx3(0)

L
−1
33 δx3(0)

0

0









(45)

Comparing B with the block partitioned L in (44), it is evident

that 1⊤B = 0 follows from 1⊤
L = 0. Consequently, we

can deduce from (45) that 1⊤δx(0) = 0. Next, given (18),

we validate (19) by invoking Theorem 3.2 and showing that

the perturbation signals (f i′, gi
′
), i ∈ V , satisfy the sufficient

conditions in (6). For i ∈ V\V1
1,2, the sufficient conditions

in (6) are trivially satisfied. To show (6a) for i ∈ V1
1,2, we

proceed as follows. First note that since (f i, gi), i ∈ V1
1,2, are

admissible signals, they necessarily satisfy (6a). Next, note that

using (16) we can write

∫ t

0

(
− A23e−L33τ δx3(0) +D

out
22 e−D

out
22 τδx2(0)

)
dτ =

A23L
−1
33 e−L33tδx3(0)− e−D

out
22 τ δx2(0).

Let B2 = [{βi}
i∈V1

1,2
]. Then, in light of the aforementioned

observations and the fact that −L33 and −D
out
22 are Hurwitz

matrices we can write

lim
t→∞

∫ t

0

(
f ′2(τ) +D

out
22 g′

2(τ)
)
dτ =

B2 + lim
t→∞

(
A23L

−1
33 e−L33tδx3(0)− e−D

out
22 τ δx2(0)

)
= B2,

which shows (f i′, gi
′
), i ∈ V1

1,2 also satisfy the sufficient

condition (6a). Establishing that gi
′
, i ∈ V1

1,2, satisfies the

sufficient condition (6b) follows from admissibility of gi,



i ∈ V1
1,2, which ensures it satisfies (6b), and direct calculations

as show below,

lim
t→∞

∫ t

0

e−(t−τ)gi
′
(τ) dτ=

α+ lim
t→∞

∫ t

0

e−(t−τ)e−d
i
outτδxi(0) dτ=α.

Here we used the fact that for a strongly connected digraph

we have d
i
out ≥ 1.

To establish (20) we proceed as follows. We assume that (20)

or equivalently

δy1(t) = δx1(t) + δg1(t) ≡ 0, t ∈ R≥0, (46a)

δy2(t) = δx2(t) + δg2(t) ≡ 0, t ∈ R≥0, (46b)

δy4(t) = δx4(t) + δg4(t) ≡ 0, t ∈ R≥0, (46c)

δy5(t) = δx5(t) + δg5(t) ≡ 0, t ∈ R≥0. (46d)

hold. Then, for the given initial conditions (42), we identify the

perturbation signals that make the error dynamics (44) render

such an output. As we show below, these perturbation signals

are exactly the same as (43). Then, the proof is established

by the fact that given a set of initial conditions and integrable

external signals, the solution of any linear ordinary differential

equation is unique. That is, if we implement the identified

inputs, the error dynamics is guaranteed to satisfy (46). If (46)

holds, then the error dynamics (44) reads as

δẋ1 = −d
1
outδx

1 + δf1, (47a)

δẋ2 = −D
out
22 δx2 + A23δx3 + A23δg3 + δf2, (47b)

δẋ3 = −L33δx3 + A33δg3 + δf3, (47c)

δẋ4 = −D
out
44 δx4 + δf4, (47d)

δẋ5 = −D
out
55 δx5 + δf5, (47e)

Here, we used Lii = D
out
ii − Aii, i ∈ {1, 2, 4, 5}. Next, we

choose the perturbation signals according to (43). Then, for

the given initial conditions (42), we obtain from (47),

δẋ1 = −d
1
outδx

1, ⇒ δx1(t) = 0 ⇒ δy1(t) ≡ 0, (48a)

δẋ3 = −L33 δx3, ⇒ δx3(t) = e−L33tδx3(0), (48b)

δẋ4 = −D
out
44 δx4, ⇒ δx4(t) ≡ 0,⇒ δy4(t) ≡ 0, (48c)

δẋ5 = −D
out
55 δx5, ⇒ δx5(t) ≡ 0,⇒ δy5(t) ≡ 0, (48d)

for t ∈ R≥0. Substituting for x3 ans δf2 in (47b), we obtain

δẋ2 = −D
out
22 δx2 + A23e−L33tδx3(0)− A23e−L33tδx3(0)

= −D
out
22 δx2, ⇒ δx2(t) = e−D

out
22 tδx2(0), (49)

for t ∈ R≥0. Finally using δg2 in (43c), we

δy2(t) = δx2 + δg2

= e−D
out
22 tδx2(0)− e−D

out
22 tδx2(0) ≡ 0, (50)

for t ∈ R≥0.

Proof 13 (Proof of Lemma 4.2): If agent 1 knows βi, the

proof follows from Theorem 4.1. If agent 1 does not know

βi, since it knows (6a), there exists at least one other agent

k ∈ V\{1, i} whose βk is not known to agent 1. We note that at

the best case, βi+βk can be known to agent 1. Now consider

βik ∈ R\{0} and let βi′ = βi + βik and βk ′ = βk − βik,

and βl′ = βl for l ∈ V\{i, k}. Now consider an alternative

implementation of algorithm (3a)-(3b) with initial conditions

xl′(0) = xl(0) for l ∈ V\{i, k}, xi′(0) = xi(0) − βik and

xk′(0) = xk(0) + βik and perturbation signals f l′(t) =
f l(t), gl′(t) = gl(t) for l ∈ V\{i, k}, f i′(t) = f i(t) +
d βike−(diout+d)t, gi′(t) = gi(t) + βike−(diout+d)t and fk′(t) =
fk(t)−d βike−(dkout+d)t, gk′(t) = gk(t)−βike−(dkout+d)t, where

d ∈ R is chosen such that d > max{diout, dkout}. Let t 7→ xl′(t)
and t 7→ yl′(t), t ∈ R≥0, respectively, be the state and

the transmitted signal of agent l ∈ V in this alternative

case. We note that using limt→∞
∫ t

0
dβike−(diout+d)τdτ =

dβik

diout+d
and limt→∞

∫ t

0 dβike−(d
i
out+d)τdτ = 1

diout+d
we can

show limt→∞
∫ t

0 (f
l′(τ) + d

l
out g

l′(τ)) dτ = βl′ , and

limt→∞
∫ t

0
e−(t−τ)gl′(τ)dτ = α for l ∈ V . Therefore, since

∑N
l=j β

j ′ = 0, by virtue of Theorem 3.2 we get

lim
t→∞

xl′(t) =
1

N

∑N

j=1
xl′(0) =

1

N

∑N

j=1
r
l, l ∈ V . (51)

Next, let δxl(t) = xl(t) − xl′(t) and δyl(t) = yl(t) − yl′(t),
l ∈ V . Then,






δẋl(t) = −d
l
outδx

l(t) +
N∑

j=1

aljδy
j(t), l∈V\{i, k},

δẋl(t) = −d
l
outδx

l(t)+
N∑

j=1

aljδy
j(t)+f l−f l′, l∈{i, k},

(52a)
{

δyl(t)= δxl, l∈V\{i, k},
δyl(t)= δxl + gl−gl′, l∈{i, k}. (52b)

To complete our proof, we want to show that yl(t) = yl′(t)
(or equivalently δyl(t) ≡ 0), l ∈ V , for t ∈ R≥0, thus

agent 1 cannot distinguish between the initial conditions xi(0)
and xi′(0). Since, for a given initial condition and integrable

external inputs the solution of an ordinary differential equation

is unique, we achieve this goal by showing that if δyl(t) = 0,

l ∈ V applied in the state dynamics (52a), the resulted

output (52a) satisfy δyl(t) ≡ 0, l ∈ V , t ∈ R≥0. For this,

first note that since δxl(0) = 0 for l ∈ V\{i, k}, then it

follows from (52a) with δyl(t) = 0, l ∈ V , that δxl(t) ≡ 0.

Subsequently, from (52b), we get the desired δyl(t) ≡ 0,

t ∈ R≥0 for l ∈ V\{i, k}. Next, we note that, from (52a) with

δyl(t) = 0, l ∈ V , given δxi(0) = βik and δxk(0) = −βik

we obtain

δxi(t) =βike−d
i
outt − βike−d

i
outt + βike−(diout+d)t

=βike−(diout+d)t

δxk(t) =− βike−d
k
outt + βike−d

k
outt − βike−(dkout+d)t

=− βike−(dkout+d)t

Subsequently, since gi−gi′ = −βike−(diout+d)τ and gk−gk′ =
βike−(dkout+d)τ , from (52b), we get the desired δyl(t) ≡ 0,

t ∈ R≥0 for l ∈ {i, k}, which completes our proof.


	I Introduction
	II Preliminaries
	III Problem formulation
	IV Privacy preservation evaluation
	IV-A Case 1 knowledge set
	IV-B Case 2 knowledge set

	V Numerical example
	VI Conclusions
	References
	VII Appendix



