
UC Irvine
ICS Technical Reports

Title
Hypertext for heterogeneous software environments

Permalink
https://escholarship.org/uc/item/1xn0t8fn

Authors
Anderson, Kenneth M.
Taylor, Richard N.
Whitehead, E. James, Jr.

Publication Date
1993-09-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xn0t8fn
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Hypertext for Heterogeneous
Software Environments1

Kenneth M. Ánderson2, Richard N. Taylor3
, and E. James Wbitehead, Jr.4

Department of lnformation and Computer Science
University of California, Irvine
lrvine, California 92717-3425

FAX +1.714-856-4056

TR-93-49

September 6, 1993

Abstract

Emerging software development environments are characterized by heterogeneity:
they are composed of diverse object stores, user interfaces, and tools. This paper presents an
approach for providing hypertext services in this heterogenous setting. Central notions of the
approach include the following. Anchors are established with respect to interactive views of
objects, rather than as attributes of objects. Composable, n-ary links can be established between
anchors maintained by different viewers for objects stored in distinct object bases. Viewers (and
objects) may be implemented in different programming languages, as a client-server architecture
can be used to support the approach. Multiple, concurrently active viewers can be utilized. The
paper describes the approach and considers how interfaces to these hypertext services can be sup­
ported. Experience with a prototype implementation is described.

Keywords: heterogeneous hypertext, separation of concerns, software development environments

1. This material is based upon work sponsored by the Defense Advanced Research Projects Agency under
Grant Number MDA972-91-J-l 01 O. The content of the information does not necessarily reftect the position
or the policy of the Govemment and no official endorsement should be inferred.
2. E-mail: kanderso@ics.uci.edu. Tel. +1.714-725-2704
3. E-mail: taylor@ics.uci.edu. Tel. +l.714-856-6429
4. E-mail: ejw@ics.uci.edu. Tel. +1.714-856-5086

1 lntroduction

Software development environments (SDEs) are u sed to develop and maintain a di verse collec­
tion of highly interrelated software objects [Kad92, BGMT88, FN092, Tho89]. Large software
systems may, for example, consist of multiple versions of requirements specifications, designs,
prototypes, code, test cases, test results, test drivers, installation scripts, user's manuals, and so on.
The connections between these components are many and complex. Establishing and exploring
these connections are major tasks of development, program understanding, and maintenance. Pro­
viding hypertext capabilities in an SDE should allow an engineer to freely associate objects with­
out regard to the type of those objects or where they are stored. These relationships can then be
accessed ata later time through a convenient user interface which allows the engineer to easily
navigate them [SZ92]. Yet while sorne excellent work in this area has taken place [Con87, Nie90,
DS86, GS90, Pea89, SS91, SCG89, FHS+92, KL91, CFG91], it is clear that no single system to
date has effectively addressed all the technical challenges posed by this task.

We believe that the following technical features are among those which need to be
present in hypertext systems intended to support SDE activities:

Heterogeneous object editor & viewer support. SDEs contain a wide variety of tools for devel­
oping and manipulating objects. Different kinds of editors are used for different types of
objects. SDEs also increasingly include multiple viewers of single objects, where each
viewer presents different aspects of the object, perhaps using different depiction styles.
Ideally all editors and viewers in an environment should be able to use hypertext services
and respond to hypertext events. (From now on we will use the term "viewer" to denote
tools capable of visually depicting an object and which may include interactive editing
capabilities.)

Anchors specialized to particular views. Given that different viewers of a single object may
present strikingly different depictions, or that one viewer may present a depiction of infor­
mation synthesized from severa! separate objects, anchors seem more naturally- or nec­
essarily - associated with views, rather than objects.

Multiple-view, concurrent, and active displays. Since a software developer is typically engaged
in examining and changing many different related objects "at once" it is most supportive
to provide an interface which enables many views to be present simultaneously, where
several views may be of the same object, and where actions in views may be autonomous
and concurrent.

Links across heterogeneous object managers. SDEs manage such a wide variety of objects, of
diff erent legacies, types, and possessing different object management constraints, that
large scale SDEs are now beginning to support multiple, heterogeneous object managers.
It is nonetheless essential to be able to establish links between objects managed by differ­
ent repository systems.

Action specifications on both anchors and links. Given that many different users, of different
abilities and training, may be collaborating on a project using a SDE, it seems useful to
provide programmable actions on both anchors and links so that actions could, for exam­
ple, be determined as a function of who selected an anchor in a particular view, or how a
particular link traversa! was requested.

Scalable (composable) links. Hierarchy and abstraction are two of the key tools that engineers
employ in tackling large-scale problems. Hypertext support for SDEs must similarly pro­
vide such capabilities for dealing with large, complex, aggregations of information.

n-ary links. Software development often involves situations where severa! pieces of information
jointly representa single concept orare in sorne sense "grouped". We claim therefore that
hypertext support for SDE applications should provide such capabilities in the form of
n-ary links.

This paper describes a set of concepts which satisfy this set of requirements. The
notion of viewers of objects is at the heart of the conceptualization. We postulate an environment
of many types of objects; display or editing of an object requires use of a viewer. Not all viewers
are of the same type; how they manage their display is their decision. We have developed a set of
interfaces whereby a viewer announces to the hypertext system the anchors it defines for its view
of its object(s). These view-specific anchors can then participate in (many) links. Links may be
considered objects in their own right, and may thus have viewers associated with them which can
define yet additional anchors. These anchors can participate in other links, and in so doing pro­
vides hierarchical composition.

This approach brings along with it sorne limitations and requirements. In order for our
techniques and interfaces to be of value the viewers in the SDE must use the hypertext interfaces.
The viewers are also responsible for maintaining (over time) the associations they make between
the anchors they announce to the hypertext system and the objects for which they are a viewer.
There is nothing to prevent them from doing this, of course, by inserting anchor information into
the objects themselves, though that is a style which may well have the undesirable consequence of
making that (modified) object usable only by that viewer (i.e. change the object's type such that
other tools can no longer operate on it).

The discussion of our approach is in three parts. We first describe the concepts upon
which the approach is based. A generic, conceptual architecture is then presented which indicates
an effective strategy for implementing the concepts. Third, we describe our particular (subset)
implementation and the experiences we have had with it.

Since heterogeneous environments are most often multilingual and distributed, the
generic architecture and our implementation is serverized anda multilingual RPC mechanism (Q
[MHL092]) is utilized. Our prototype implementation, Chimera1, utilizes the Pleiades object
management system from the University of Massachusetts [TC93] for persistence of the server's
data structures. To illustrate the concepts and the Chimera system, we discuss an application in

2

which graphical views of a ftight simulator's instrument panel are hyperlinked to statements in a
requirements document maintained by FrameMaker®2. The serverized Chiron user interface
development and management system from UCI [TJ93, KCTT91] is used as the graphical viewer
of the instrument panel.

The remainder of the paper is organized as follows. The next three sections present the
basic concepts, the conceptual architecture, and the prototype. Open design issues are discussed in
Section 5. A comparison between the approach we offer and other systems can be found in Sec­
tion 6. Finally, we con elude with Section 7.

2 Hypertext Concepts

This section describes the hypertext concepts we feel are necessary to support hypertext in a het­
erogeneous SDE. Our concepts include objects, viewers, views, anchors, and links. We provide
examples of each concept. We then discuss the semantics that can be associated with anchors and
links.

2.1 Basic Concepts

Objects. Objects are named, persistent entities whose interna! structure and behavior (if any) is
unknown and irrelevant to the hypertext system. An object's name <loes not change during its life­
time even if its contents or state <loes.

Example objects in a SDE include module interface definitions, source files, data ftow
diagrams, documents, process models, and shell scripts.

Viewers. Viewers are active entities that display objects. The operations provided by a viewer are
specific to the viewer and the type of objects it displays. Typically they provide browsing, cre­
ation, and editing functionality on objects within their domain.

To participate in the hypertext system, a viewer must provide features for the creation
and display of anchors (actually, anchor-view-events, described below) pertinent to the objects
that it is displaying. A viewer is responsible for the specific, and potentially non-uniform, ways in
which it supports this3.

l. According to Merriam-Webster's 9th Collegiate Dictionary, "an individual, organ, or part consisting of
tissues of diverse genetic constitution ... "
2. FrameMaker is a registered trademark of Frame Technology Corporation.
3. This is potentially troublesome since the user has to remember how this hypertext functionality is invoked
for each viewer [FHS+92]. This is a design trade-off involving ease-of-use, open systems, and customized
interfaces. We believe requiring a single, standard style to be too restrictive: that would prevent many exist­
ing editors from participating in the environment's hypertext system. On the other hand, it is possible to pro­
vide a set of capabilities that viewer creators can utilize which simultaneously simplifies the task of writing
viewers and promotes uniform authoring, display, and interaction styles.

3

Views. The term view denotes a pair (v, o) where vis a viewer for an objecto. Note that an object
may be displayed by more than one viewer, and thus participate in multiple views.

Example. To illustrate these definitions, consider the specification, development, and testing
within an SDE of a flight simulator which has graphical, simulated cockpit displays. The displays
are to be driven off of a model of the aircraft's state, where that state is encapsulated in a variety
of abstract data types (modules). Among the modules are altitude, pitch, roll, and throttle-setting.
Requirements for the system are to be specified in English, and maintained in a FrameMaker doc­
ument.

A module design editor (MDE) is used in the SDE to identify the modules, specify
their interfaces and interconnections, and manipulate them graphically (at software design time)4.

The design editor maintains a hierarchy of module specifications. At simulator run-time the
instrument panel, throttle, joystick, and artificial horizon displays are to be created and managed
by multiple Chiron viewers (artists in Chiron terminology). For instance, one Chiron viewer will
display the altitude of the plane digitally; another will display the same altitude information vía an
analog gauge. Both viewers will utilize information obtained from the altitude-module. The artifi­
cial horizon viewer will present a synthesis of information from both the attitude-module and the
roll-module.

Objects in this example include the altitude-module and the module hierarchy. Viewers
in the example include FrameMaker, the MDE, and the Chiron artists used to drive the flight sim­
ulator 's display. The MDE and the module hierarchy together define one view. Other views
include (FrameMaker, requirements document), (digital-altitude-artist, altitude-module), and
(artificial-horizon-artist, (attitude-module, roll-module)).

Anchors. Anchors are defined and managed by viewers. A viewer can tailor the notion of an
anchor to the particular object that it is displaying. A special type of anchor is a view event: any
effect (such as receipt of an audio signal or visual blinking) which acts like an anchor. When the
effect occurs it is as if a traditional anchor had been highlighted. Since conceptually anchors and
view events are equivalent, we refer to both with the term anchor-view-event or A VE. When an
AVE is created, it is always created in the context of a view. Thus for each view defined in the sys­
tem there is an associated collection of AVEs. Note that the hypertext system knows only of an
AVE's existence; it does not know what the AVE actually refers to in the viewer.

Example. To continue with the example, the flight simulator's display artists could allow anchors
to be defined on the analog altitude display (e.g. to allow linking to a statement of the require­
ments on the display). The MDE could allow the user to define an anchor which refers to the
entire module hierarchy, or anchors which refer to specific modules within the hierarchy, but per­
haps not on module interconnections. The MDE could also define view events for zooming in
upon modules in its display, wherein the "anchor" is "highlighted" by the verbal command "pick
zoom" and "traversed" by the verbal command "zoom". Traversa! to that "anchor" from else­
where would cause the viewer's display to be zoomed. This action could be linked, e.g., to

4. For an example of such an editor see [WP86].

4

requirements documents which state the requirements for that particular module.

Links. A link is a set of AVEs. The AVEs in a link can be members of any view.

The hypertext system is in charge of all aspects of link management. This includes cre­
ating and deleting links, and controlling all aspects of link semantics (discussed below). Viewers
are responsible for informing the hypertext system of events upon AVEs (which may be members
of links and which therefore could initiate link semantics). Similarly viewers are responsible for
receiving "traversa}" events from the hypertext system.

Link Composition. In our approach to hypertext for SDEs, links are first-class objects, just as
well as a design diagram or a piece of source code. Consequently we can construct viewers for
these objects, viz. link viewers. A link viewer paired with a link (object) forms a view. A link
viewer can thus create anchors upon this view, and these anchors can be included in other links. If ·
links are created between the anchors of two link viewers' views, this can be seen as composing
the two links. We see this as a technique for the creation of arbitrarily large hyperwebs.

2.2 Semantics

Anchor semantics. Anchor semantics refers to the run-time behavior of an anchor. Viewers could
provide a wide range of behavior for their anchors since they are first-class executing programs.
Anchor behavior can include what user interactions with the viewer cause an anchor to highlight
or initiate link traversa!. An anchor could even perform calculations like keeping track of the
number of times it has been selected. Anchor semantics could also specify what an anchor can do
when it is the destination of a link traversa!. When a user creates a link to a particular anchor, a
good link creation protocol would display the list of actions the anchor can perform, enabling the
u ser to select the desired behavior of the anchor5.

Example. The MDE may decide to specify the semantics for an anchor on a module such that a
single click causes the anchor to highlight anda double click causes the anchor to senda hyper­
text event to the hypertext system. When the user reaches a module via link traversa} the MDE
could highlight it or center it within the display, or both. "Highlight" and "Center" are examples
of possible anchor commands defined by the MDE.

Link Semantics. Link semantic specifications provide information about a link and define its run­
time behavior. The standard hypertext notion of link traversa! is one kind of behavior that may be
specified, but it is not required; the choice is fully up to the hypertext author.

Example. One motivation for a flexible way of specifying link behavior comes from consider­
ation of what traversal means for an n-ary link. Consider the action that should take place in
response to a user clicking on an anchor in the artificial horizon indicator in the flight simulator,

5. This is only possible, however, if the viewer decides to provide this functionality. The hypertext system
can not require this behavior as a viewer's anchors are not under its direct control.

5

U ser
Externa! Tool Interface

n ¡ ,,
Viewer 1 Viewer 1

..................................
• • • • • • • • •

Viewer N Viewer N
~ Chimera Chimera

Client Client
Chimera Chimera - -Packages - - Packages

,, ,, t
Chimera Process -Server - Invoker

CJ Unix Process

._ .., Inter-Process Communication

·------. Invokes

Figure 1: Example Configuration of Chimera Architecture

where that anchor is linked to anchors in three MDE depictions of modules in the module design.
Perhaps the MDE should be invoked three times, each window highlighting and centering one of
the three modules. Or perhaps the MDE should be invoked only once, with all three modules
highlighted within the resulting display. Alternatively a menu could appear, showing the three
associated anchors and allowing the user to select the desired module, at which time the MDE is
invoked and displays the appropriate module.

3 A Conceptual Architecture

The preceding section outlined the key concepts of a hypertext system for SDEs. This section
sketches a conceptual architecture which supports these concepts. This architecture adopts a serv­
erized approach to providing hypertext functionality. We term this the Chimera architecture (Fig­
ure 1).

6

The key component of the architecture is the Chimera server which provides support
for managing AVE and link definitions, tracking of active views, event routing, and persistence of
hypertext entities. Viewers are clients of the Chimera server.

A serverized approach is adopted to help meet the challenges of a heterogeneous SDE
in which there are many users. (This approach is in keeping with the experience of the Arcadia
software environment project [Kad92].) With a serverized implementation, multiple users on dif­
ferent machines can access a hyperweb from a dynamically changing set of viewers; hypertext
events originate in one process and travel to (potentially many) others. The use of a server sup­
ports a multilingual approach where tools written in one language can work with other tools, each
of which may be written in different languages. The use of a server also keeps process sizes down,
since code to manage hyperwebs is centralized in the server. (The Chimera server could be repli­
cated to meet the needs of distributed environments, but we do not here show the additional com­
ponents or discuss the additional issues thus raised.)

Chimera Server. The primary responsibilities of the Chimera server are as follows.

• Track all views, active or inactive, in the system. An active view is one in which the
viewer is currently running and is displaying the specified object on the screen of a user's
workstation. lnactive views are views that were active sometime in the past but were made
inactive by the user quitting the viewer or by system shutdown. Inactive views are impor­
tant because they may have AVEs defined for them. The server uses the Process Invoker to
actívate an inactive view.

• Manage the AVEs associated with each view in the system. This includes assigning AVEs
a system-wide unique identifier that can be used by both the Chimera server and viewers.

• Manage the creation, manipulation, and traversa! of links in the system. This includes exe­
cuting link semantics in response to hypertext events.

• Receive and route hypertext events. A viewer will send a hypertext event to the Chimera
server when a user has performed the actions required by an AVE's semantics to activate
it. The Chimera server is responsible for retrieving all links that contain that AVE and exe­
cuting the semantics associated with those links for that particular AVE.

• Manage the persistence of hyperwebs. Through the use of an object manager, the Chimera
server must make persistent the information that it has about the entities that make up a
hyperweb.

Process Invoker. The Process Invoker is used by the Chimera Server to invoke clients needed as
the result of a link traversa!.

Chimera Client. The key component of the client is the viewers which were described in the pre-

7

vious section. It should be noted that the concepts and architecture of Chimera place a significant
burden upon the viewers. This burden is a result of the issues facing designers of open hypertext
systems [Pea89, CFG9 l].

To summarize, a viewer is responsible for:

• definitions of the concepts "object" and "view". Por instance, a word processor (viewer)
might decide that each of its documents is a distinct object and a new view occurs when
the word processor displays a new document. A gauge of a flight simulator, however, may
only have one object, the value that it is displaying, and thus only have one view.

• a definition of the concept "anchor" (AVE). This includes identifying what elements of a
view can have anchors created on them, how anchor creation occurs, how the presence of
an anchor is indicated, what semantics can be assigned toan anchor, and how a user acti­
vates link semantics from an anchor.

• a mapping function from an AVE id (received from the Chimera server at the time the
AVE is created) into a specific region or object of its display ora view-event that it can
perform. This mapping may be simple and ali the information needed could be stored with
Chimera, or it may be complex and require (e.g.) the viewer to associate with each object
a file that helps reconstruct and maintain the mapping each time the object is displayed.

• communicating with the Chimera server at run-time. This is accomplished by the viewer
linking in the Chimera Packages, which hide from the viewers ali of the details concerning
connecting, sending messages, and receiving messages from the Chimera server.

Externa) Tools/UIMSs. Viewers in a Chimera client may directly interface with the user, may
require the use of externa} tools, or may use a user-interface management system (UIMS) to
present their interface. Chimera <loes not dictate how viewers actually communicate with humans.

4 An Implementation Architecture and Demonstration

We have constructed a prototype to help validate the concepts presented in Section 2 and the con­
ceptual architecture presented in Section 3. It has been applied in a demonstration situation based
on the running example of Section 2.

4.1 Overview

The architecture of the demonstration is presented in Figure 2. It consists of a Chimera server, a
Process Invoker, three Chimera clients, and one externa} tool, running in their own processes and
communicating via RPC mechanisms. The clients are a flight simulator, a link control panel, and
FrameMaker. The flight simulator and the link control panel make use of the Chiron UIMS to
present their interfaces to the user. FrameMaker provides its own user-interface directly to the

8

engineer.

Artificial
Horizon
Viewer

• • •
Altitude
Viewer

Chimera
Packages

i To/From User

Chiron
UIMS

Link
Control Panel

Chimera
Packages

Chimera
Server

FrameMaker

FrameMaker
Wrapper

Chimera
Packages

Unix Process

... Q
..__ _________ _... RPC

Figure 2: A specific Chimera Architecture

4.2 Chimera Server

The Chimera server coordinates access to a set of abstract data types (ADTs) that implement Chi­
mera's primitive hypertext concepts. The ADTs provide creation, maintenance, and query opera­
tions on hyperwebs. Thus, viewers which make use of these ADTs via the Chimera server can
create a hyperweb, populate it with views and links, and save it for later use. Existing hyperwebs
can be opened and modified.

In order to use Chimera, a user must invoke the server and pass it the name of a hyper­
web. lf the hyperweb <loes not exist the server creates a new one, assigning it the specified name,
otherwise the server calls the ADTs to read in the persistent data for that hyperweb restoring its
state from a previous invocation. The server then creates a file containing the name of the machine

9

that it is running on and its process id. At this point the server is ready to accept client connec­
tions.

A Chimera client, upon start-up, reads the file that the Chimera server created and uses
the information contained within to establish a connection. We use the Q multilingual interprocess
communications package to pass messages between the server and its clients. Once a connection
has been established clients can query and modify the state of the hyperweb by making calls on
the server. The server responds to such calls by decoding the message that it receives, calling the
appropriate ADT, and passing any retum values back to the client. The server always sends at
least one retum value back to the client for each call, and this value is an indication of whether the
ADT call completed successfully.

In addition to coordinating access to the ADTs, the Chimera server also sends mes­
sages to its connected clients. Currently it can send two types of messages. The first is notification
of a link traversal. When a link 's semantics dictate that traversa! to a set of anchors is required, the
server finds all links which contain the specified anchors and sends notifications to all clients con­
taining viewers that can display views which contain the destination anchors of the link traversal.
If a destination anchor resides in a view requiring an inactive viewer, the server calls the Process
Invoker requesting activation of a client containing the required viewer. The second type of mes­
sage deals with link creation. It is used to coordinate a protocol which allows a user to add multi­
ple AVEs to a new link.

4.3 Chimera Client

A Chimera client consists of four major components: one or more viewers, a hypertext interface
package, a callback package, and a client configuration and registration package. Viewers were ·
discussed in detail in the previous section. We now present details about the remaining compo­
nents.

Hypertext Interface Package. The hypertext interface package provides an interface which
allows viewers to register themselves and their objects, views, and anchors with the server. There
are also routines which allow viewers to open and close hyperwebs, query for information about a
hyperweb, begin and end link creation, modify a hyperweb, and instigate link traversals. Viewers
can access these routines in response to user actions or the viewer may be a tool which is automat­
ically creating views, anchors, and links on objects within its domain in fulfillment of sorne arti­
fact construction task. The interface package accepts calls from viewers and then packs the
information passed in as parameters into a message which is shipped via Q to the server. It then
waits for a retum message from the server, unpacks the status of the ADT call invoked and if suc­
cess is indicated passes any retum values back to the viewer. If the status indicates failure, the
interface package raises an exception which the viewer can handle in a variety of ways.

Callback Package. The callback package is used to notify viewers of messages sent from the
Chimera server. The callback package accepts messages from the server and forwards them to the
appropriate viewer instance in the client. This package also handles the details of invoking new

10

viewer instances within the client as needed by link traversa! events.

Client Configuration and Registration Package. The client configuration and registration
package allows clients to connect and disconnect from the server, request the server to shutdown,
and track viewer instances in a client.

4.4 FrameMaker

Since a major goal of Chimera is to support hypertext in a heterogeneous environment, it is
important to demonstrate that Chimera can support third-party software. We chose to integrate the
word processor FrameMaker6 [Fra90, Fra91] into Chimera due to its built-in hypertext support
and RPC interface. FrameMaker is also, at present, one of the most frequently integrated tools in a
software environment; integrating Chimera with it therefore constitutes a minimal test of integra­
tion with non "Chimera-friendly" applications.

Within the Chimera architecture, FrameMaker is a viewer of document objects. As
such, FrameMaker itself is only one half of a Chimera client, the other half being the three Chi­
mera packages, contained within the FrameMaker Wrapper (described below). The combination
of FrameMaker and the FrameMaker Wrapper is a complete Chimera client.

Since FrameMaker implements hypertext unusually as compared to the typical system
described in [Con87], we give an overview of FrameMaker hypertext. Creating hypertext anchors
in FrameMaker is accomplished by inserting a marker into the document. Each marker is a tuple
containing its location, marker type, and a text field; with these elements, markers can be used for
index entries, glossary entries, and general comments. When a marker is used as a hypertext
anchor, the type is set to 'hypertext', and the text field is filled with FrameMaker hypertext com­
mands. Sorne of FrameMaker's hypertext commands allow for the creation of an alert box, for
jumping to another anchor, for creating a popup menu, or for sending a message out of Frame­
Maker via RPC. FrameMaker's hypertext commands are only executed when a user traverses a
FrameMaker link. The advantage of using markers for hypertext is that hypertext features are
included within FrameMaker 's existing architecture. The disadvantage is that anchors and Frame­
Maker links are not separated. Por example, anchors cannot be given a label except by using the
'newlink' command (a misnomer), and FrameMaker links cannot be traversed except after plac­
ing the document in 'read-only' mode (through the intuitive key sequence 'ctrl-r F 1 k').

Despite its drawbacks, FrameMaker does have a vital component necessary for inte­
gration with Chimera, the 'message' command. When a 'message' command is executed, it sends
an RPC message to the RPC server specified within the command.

While the 'message' command is sufficient for links that be gin in a FrameMaker doc­
ument, it is not sufficient for links that termínate there. In this case, the page of the FrameMaker
document containing the link terminus must be displayed. This can only be achieved by issuing

6. We integrated Chimera with FrameMaker version 3.IX.

11

the FM_RPC_GOTO_LINK command via RPC from the FrameMaker Wrapper. Unfortunately,
FM_RPC_GOTO_LINK cannot jump to anchors with the 'message' command, as they are unlabeled
according to FrameMaker. Since the only way to label an anchor is via the 'newlink' command,
and since an anchor cannot have a label anda 'message' command simultaneously, a 'newlink'
labeled anchor must be created at the same location as the marker containing the 'message' com­
mand.

Given these mechanisms, integrating FrameMaker with Chimera required two sepa­
rate programming steps. The first step was the development of a FrameMaker macro which cre­
ates an anchor within a FrameMaker document such that it contains a unique Chimera anchor
identifier. This macro provides the viewer-required functionality of anchor creation. The second
step was the creation of a FrameMaker Wrapper which translates between Chimera and Frame­
Maker hypertext idioms. These steps are described in detail below.

4.4.1 FrameMaker Anchor/Link Creation

There are three requirements on the creation of a Chimera hypertext anchor within FrameMaker:

• A marker with a command of 'message' must be created. This requires importing a unique
Chimera anchor identifier into FrameMaker, a non-trivial task.

• At the same text location, another marker with a command of 'newlink' must be created.
This requires the same Chimera anchor identifier.

• The creation of these markers must occur quickly, in a way transparent to a FrameMaker
u ser.

The 'message' marker is needed to inform the FrameMaker Wrapper when an anchor
has been selected. We use a 'message' command of the following format:

message FM_ Wrapper [chimera_anchor_id]

When the anchor is selected from within FrameMaker, the FrameMaker Wrapper
(known as the RPC server 'FM_ Wrapper ') receives the file name of the FrameMaker document,
and the [chimera_anchor_id]. This is then passed along to the Chimera server.

The 'newlink' marker is needed to label the anchor. We use a 'newlink' command of
the following format:

newlink [chimera_anchor_id]

When a Chimera link is traversed which contains this anchor in its set of AVEs, the
FrameMaker Wrapper is informed of the traversa!. The FrameMaker Wrapper then sends an

12

FM_GO_TO_LINK command to FrameMaker causing the page containing the anchor to be dis­
played.

To make the links transparently, two FrameMaker macros were employed. The first
macro contacts the FrameMaker Wrapper which contacts Chimera for the unique anchor identi­
fier. U sing this identifier, the FrameMaker Wrapper generates a second macro in to a file. The first
macro finishes by reading in the second macro and then executing it. This second macro then cre­
ates the two hypertext markers containing the 'message' and 'newlink' commands.

Since there is no standard method for transferring control to an outside program during
macro execution, the first macro employed FrameMaker's output filter feature. When the first
macro needed to transfer control to an outside program, it instead wrote the current file to a tem­
porary file with a special extension. The output filter file (a shell script) picks up this extension
and executes another program instead of an output filter. This new program contacts the Frame­
Maker Wrapper via RPC which in response contacts Chimera for the unique anchor identifier, and
then writes the second stage macro to a file. While it sounds like anchor creation using these mac­
ros is slow, in reality creating anchors takes approximately 5 seconds. This is much faster than a
person could accomplish when creating the link manually (10-15 seconds), the standard altema­
tive in FrameMaker.

This description is not meant to be an example of the right way to program; the authors
are fully aware it is a hack. Soberingly, this appears to be the state-of-the-practice in integration
with many commercial tools. Excruciatingly missing are a command to send an arbitrary message
outside of FrameMaker from within a macro, and a command to start a separate process from
within a macro. These two features would have dramatically eased the difficulty of integrating
Chimera with FrameMaker.

4.4.2 FrameMaker Wrapper

There are three main services that must be provided between FrameMaker and Chimera, these
being:

. •. RPC messages originating in FrameMaker must be translated and forwarded to the Chi­
mera server.

• Q messages originating in the Chimera server must be translated into appropriate Frame­
Maker actions.

• When requested, a FrameMaker macro must be created using a unique anchor identifier
requested from the Chimera server. This macro (described above) creates the 'message'
and 'newlink' markers.

These services are provided by the FrameMaker Wrapper program.

13

At start-up, the FrameMaker Wrapper establishes a communications link to Frame­
Maker using RPC, anda communications link to Chimera using Q. After start-up, the Frame­
Maker Wrapper waits for messages from either FrameMaker or Chimera. When a FrameMaker
message is received (it will always be a FM_RPC_MESSAGE), indicating the user wants to traverse
a Chimera link associated with the selected anchor, the FrameMaker Wrapper receives the unique
anchor identifier labeling the anchor within Chimera. The FrameMaker Wrapper forwards the
anchor identifier along to the Chimera server.

When events are received from the Chimera server, they are translated into appropriate
FrameMaker commands. For the link traversa! event, the FrameMaker Wrapper receives the
anchor identifier for the destination anchor. The FrameMaker wrapper contacts the Chimera
server for the view associated with this anchor. With this view information, the FrameMaker
Wrapper next requests the object name associated with the view. This is the FrameMaker docu­
ment file name. The FrameMaker Wrapper now sends FrameMaker the FM_RPC_GO_TO_LINK

command with the anchor identifier and document file name. For the link creation event, the
FrameMaker Wrapper places all open FrameMaker documents into read-only mode so their
anchors may be selected. When link creation is finished, the documents are retumed to their orig­
inal editable or read-only state.

Despite the difficulties encountered, Chimera was able to integrate FrameMaker
within its architecture. It thus provides one important data point in demonstrating the ability of the
Chimera architecture to support hypertext within a heterogeneous environment.

4.5 Undemonstrated Features

There are two straightforward aspects of the hypertext concepts which are not demonstrated in the
current system: links between hyperwebs and link viewers.

Link Viewers. Links are first class objects in the conceptual architecture. As such a viewer could
be built to display them, and thus produce a view upon which anchors can be created. These
anchors could then be linked together forming a hierarchical structure of links. We see this as an
important technique in facilitating the construction of large hyperwebs. Such viewers can also
function as browsers so often employed as navigational aids in other hypertext systems [CFG91,
SS91, DS86]. We have not yet built such viewers due to resource constraints.

Links between hyperwebs. Our demonstration system does not allow links between hyperwebs
because our server can only open one hyperweb ata time (dueto a restriction in its underlying
object management system). We see such links as a useful extension since we could then investi­
gate topics such as integrating hyperwebs built by different individuals, reusing partial hyper­
webs, and distributed hyperweb implementation architectures.

14

5 Open Design Choices

5.1 Anchor and Link semantics

Currently our demonstration system has no notion of anchor or link semantics beyond selection
and traversa!. We defined anchor and link semantics to be declarative and procedural information
that is associated with an anchor or link. The declarative inforrnation provides information about
the link or anchor (e.g. keywords to facilitate browsing and navigation) while the procedural
inforrnation defines the link or anchor's run-time behavior. The majority of hypertext systems
allow only declarative inforrnation about links to be defined. They provide this functionality using
attribute-value pairs. [DS86, FH·s+92] These systems usually define a set of standard attribute­
value pairs that the system uses for its own interna} purposes, but in addition allow the user to
define additional pairs that can be added to the standard set or used by extemal tools. Procedural
inforrnation is usually not stored 7. If a system stores procedural inforrnation it is usually via an
attribute-value pair which holds the name of a shell script to execute upon link traversal.

Anchor semantics are usually not implemented. For most systems, this is an artifact of
their intemal hypertext model, that is, anchors are viewed as attributes of a link rather than a first
class object with a wide range of attributes and behaviors8.

We have not included semantics into our prototype as yet because we are still investi­
gating techniques to best implement/represent them. Attribute-value pairs have been successful in
other systems but we question whether they provide a wide enough range of behaviors to support
a heterogeneous SDE. Hyperweb uses an interpreted scripting language to provide powerful and
flexible link semantics, but we question whether a full blown language is necessary or most effec­
tive for web authors. PROXHY provides yet another altemative by placing this inforrnation into
object-oriented classes but this raises issues of how much inforrnation should be placed in the
class as opposed to the application using that class.

5.2 Process Invoker lmprovements

Amy Pearl does an excellent job of presenting issues facing designers of open hypertext systems
[Pea89]. She mentions the policy decisions that must be made when invoking new viewers at run­
time. Assuming a networked computing environment, upon what machine should new processes
be invoked? Do you always invoke a viewer when it is needed or do you notify the user that the
requested link traversa! will be expensive in terrns of time and memory and query whether to pro­
ceed? Currently our Process Invoker invokes a new process on the machine that it is running on
and it does so without notifying/querying the user. We plan to augment it to be more intelligent
about where it runs a new process. For instance, we could Jet the user specify amachine by an
environment variable or we could sean for amachine with a low load average. We also plan to
implementa query/notification mechanism to bring the user into the loop. Here is a potential use

7. Hyperweb (see below) is an exception with its interpreted scripting language.
8. PROXHY (see below) with its anchor class is an important exception.

15

for link semantics, when a link is created the user could specify how to handle traversals of this
kind.

6 Related Work

There has been substantial evolution of hypertext functionality during the last decade and several
significant efforts to apply hypertext to the software development problem (or similar). The sys­
tems described below are discussed in chronological order of appearance and were chosen either
for their historical importance or because of their close relation to and impact upon the design of
Chimera.

6.1 Neptune

Neptune [DS86] is an early, layered hypertext system developed at Tektronix Laboratories, built
to support engineering information systems. The bottom layer is a transaction-based server called
the Hypertext Abstract Machine (HAM) which provides persistent storage for binary objects.
Above HAM are the application layers; these consist of programs that manipulate and interpret
the hypertext data stored in the HAM. Binary links, created by application layers, are attached as
off sets in to the binary data. HAM supports the versioning of both nodes and links. The user inter­
face is on top; it is used to browse hypertext data or control programs in the application layers.
While the differences between Neptune and Chimera are many and obvious, Neptune is notable
for being one of the earliest systems which attempted to bring the power of hypertext to the prob­
lems of engineering development environments.

6.2 VNS

The Virtual Notebook System (VNS) was built at the Baylor College of Medicine to support col­
laborative biomedical research via distributed hypertext services in a heterogeneous computing
environment [SCG89]. The VNS is realized by a set of work group servers (WGSs) distributed
throughout a network. Each WGS contains a Sybase relational database which is used to store
text, graphics, and link information. U sers typically store all their data with the WGS on their
local machine but can also access information stored on a WGS on another machine. The VNS
Gatekeeper is used to integrate externa! tools with VNS, whereby information from these tools is
copied and stored in a WGS. One interesting aspect of VNS is that while users may share data,
they do not share links. Thus two users can see the same page but view different links. Link infor­
mation for each user is stored separately from the data that makes up a page. After a page is con­
structed dynamically, a user's link inforrnation for that page is retrieved and displayed.

VNS and Chimera share the same goal, providing hypertext services to a heteroge­
neous environment, but they differ in approach. Despite the distribution of the hyperweb over the
various work group servers, VNS, in contrast to Chimera, still requires that all information be
stored in a Sybase database under its control. Integration in VNS is concerned with providing the
ability to copy information out of an externa! tool and into its database. At that point, the external

16

tool is taken out of the loop; VNS handles the display of the data from then on. Integration in Chi­
mera is concemed with getting a viewer to communicate with the Chimera server. Chimera makes
no attempt to display a viewer's objects.

6.3 Sun's Link Service

Sun's Link Service was a commercial product which defined a protocol for an extensible and
loosely coupled hypertext system [Pea89]. An application integrates with the Link Service (LS)
by loading in a link library which implements the protocol. This library allows communication
with the LS control process, which facilitates communication between applications which are
link-aware. Applications provide call-back procedures to the LS so that they can receive link­
related messages. Links are binary and are stored in a database managed by the LS control pro­
cess.

Chimera and the Link Service are similar in that integration is achieved by having
extemal tools use a library package to communicate with a hypertext server. They are also similar
in that links essentially relate unique identifiers that applications use to map to application specific
objects. Like the Link Service, Chimera stores its link information in a separate database which is
under its control. Finally Chimera and LS are alike in that they do not attempt to manage the dis­
play of objects in the hyperweb, leaving that function to the applications which own them.

Chimera and the Link Service differ in several aspects. The Link Service asks for an
identifier that refers directly toan application object. The identifiers which Chimera relates refer
to anchors created on a view of an object, not the object itself. This allows a Chimera viewer to
store anchor information separately from the object (or objects) to which it refers. Links are hid­
den in Link Service; that is, an application caQnot retrieve links and manipulate them. This is not
the case with Chimera, where links can be retrieved by an appropriate viewer and displayed in a
variety of ways. This allows anchors to be created on those views and for those links to then be
further linked or composed. No such functionality is present in LS. Lastly, Chimera's links are
n-ary.

6.4 DIF

DIF [GS90] is a hypertext system developed at USC for managing software lifecycle documents.
DIF supports the creation of binary hypertext links on textually-stored objects. The objects are
stored as Unix files under DIF-managed RCS control; links are stored as relations in the Ingres
relational database system. All objects are fully managed by DIF; in this sense it is a "classical"
hypertext system which employs its own database and requires all objects participating in the
hyperweb to use this one database. Similarly DIF controls the user interface, wherein links can be
created and traversed. Unix shell scripts can be associated with links to invoke actions associated
with traversing a particular link. DIF lets users associate keywords with nodes and links to facili­
tate browsing of the documents. It allows externa! tools to be integrated into the system, but the
tool appears in a window that DIF controls.

17

6.5 PROXHY

PROXHY [KL91], which stands for PRocess-oriented, Object-based, eXtensible, HYpertext sys­
tem, was developed at Texas A&M University. It defines a four-segment architecture: hypertext,
communications protocol, application, and back-end. The back-end, used to store objects and
hypertext information, can be implemented by an object server, database, or file-system. The
application segment consists of one or more programs which may be running on different
machines. An application is defined as one or more classes; each class sends and receives mes­
sages using the communications protocol. Each class can be implemented as a single process,
allowing an application to execute on several different machines concurrently. The communica­
tions protocol implements message passing via interprocess communication services. The hyper­
text segment consists of anchor and link classes (each of which may be implemented as separate
processes). PROXHY defines a simple hypertext model: anchors connect application objects to
links. Links connect two or more anchors together.

PROXHY compares with Chimera in that links are n-ary, data can be stored in hetero­
geneous databases if the back-end is appropriately implemented, and externa! tools can be inte­
grated into the system if they can be integrated via the communications protocol. One key
difference between Chimera and PROXHY is that Chimera associates anchors with views, while
PROXHY associates anchors with objects. This enables Chimera, when combined with a viewer
mechanism such as Chiron, to provide greater flexibility in displaying an anchor, supporting the
notion of several viewers (concurren ti y) providing different views of the same object, where the
anchors and their presentation are view-specific (and this all separated by Chiron from any appli­
cation code). This is similar, though, to PROXHY's notion of a context. In PROXHY, depending
on the context, different sets of anchors and links will be made available toan application display­
ing the object. Another key difference, of probably greater importance, is that it <loes not appear
that in PROXY links can be considered "ordinary" objects such that anchors can be defined upon
them and thereby participate in hierarchical webs. Thus Chimera appears to have a scalability
advantage.

6.6 Hyperweb

HyperWeb [FHS+92] was developed at Vista Technologies Inc. and is now known as PCTE
Workbench. It is a framework that accesses a PCTE-compliant database of software objects at the
back end, and coordinates a set of tools at the front end. It is built around an interpretive scripting
language (an object-oriented Lisp dialect), which implements hypermedia and is open and cus­
tomizable. Handlers can be associated with links and nodes which provide a way of specifying
anchor and link semantics. HyperWeb's links are binary and are stored invasively as attributes of
objects in the PCTE database, where all information must be stored. While the differences with
Chimera are clear, the interesting aspect of HyperWeb is that the relationship mechanism of an
SDE's object management system is used as the vehicle for supporting hyperlinks. This raises the
key question of what the relationship is, or should be, between an SDE object manager's relations
and the links supported by an SDE 's hypertext system. We briefly discuss this issue in the next
section.

18

--·1

7 Summary and Future Research

The essence of the approach we have presented is to allow viewers to determine the definition of
anchors and to put responsibility for the management of links on a hypertext server. Allowing
viewers to define anchors permits a variety of types of anchors to be defined, and they may be
implemented in non-invasive ways. The API (application program interface) of the server can be
accessed by multilingual RPC mechanisms. We believe that the set of concepts and architecture
described go a long way towards satisfying the hypertext needs of open, heterogeneous software
development environments. Our focus to date has been on achieving a feasibility demonstration
and proof-of-concept.

Sorne open, and potentially troublesome, issues with this approach exist. Since view­
ers define anchors, and viewers may be heterogeneous, a lack of consistent user interface to the
hypertext is more likely to occur than not. More troublesome from the SDE point of view, how­
ever, is the observation that the relations indicated by the hypertext links are in addition to what­
ever relations are maintained by the environment's object managers. This may yield a number of
problems, including maintaining consistency in the face of change to the object stores. On the
other hand it <loes not seem realistic to assume the existence of a single object manager which is
responsible for maintaining all relations in an environment, whether they originate from quick,
dynamic, and user-discretionary hypertext link creation, or careful specification and design of a
complex project's master database of strongly-typed artifacts. The broad research issue, in a het­
erogeneous world, is therefore determining how to maintain consistency between various relation/
link managers. For a near-term partial solution, one approach we intend to pursue is the automatic
creation (and maintenance) of hyperlinksfrom object manager relations; in such a case hypertext
style navigation of an OM store would be enabled. It seems much more problematic to attempt to
go the other direction, however (from hyperlinks to OM relations), because of the limitations of
current OM systems. Additional key research activities include determining appropriate mecha­
nisms for supporting access controls (so, e.g., a project's on-line personnel records are not acces­
sible by those unauthorized) and personalized information filtering (whereby only certain links
are viewable or traversable based on user id and a preference specification or task description).

8 References

[BGMT88]

[CFG91]

[Con87]

[DS86]

Gerard Boudier, Ferdinando Gallo, Regis Minot, and lan Thomas. An overview of PCTE and PCTE+.
In Proceedings of ACM SIGSOFT 88: Third Symposium on Software Development Environments,
pages 248-257, Boston, November 1988. Appeared as SIGPLAN Notices 24/(2) and Software
Engineering Notes 13/(5).

Michael L. Creech, Dennis F. Freeze, and Martin L. Gris. Using Hypertext in Selecting Reusable
Software Components. In Proceedings of Hypertext' 91, San Antonio, Texas, December 1991.

Jeff Conklin. Hypertext: An introduction and survey. IEEE Computer, 20(9): 17-41, September 1987.

N. Delisle and M. Schwartz. Neptune: A hypertext system for CAD applications. In Proceedings of
the ACM S/GMOD' 86, pages 132-142, Washington, DC, May 1986.

James C. Ferrans, David W. Hurst, Michael A. Sennett, Burton M. Covnot, Wenguang Ji, Peter

19

[FN092]

[Fra90]

[Fra91]

[GS90]

[Kad92]

[KCTI91]

[KL91]

[MHL092]

[Nie90]

[Pea89]

[SCG89]

[SS91]

[SZ92]

[TC93]

[Tho89]

[TJ93]

[WP86]

Kajka, and Wei Ouyang. HyperWeb: A Framework for Hypermedia-Based Environments. In
Proceedings of ACM SIGSOFT92: Fifth Symposium on Software Development Environments,
Washington D.C., December 1992.

Christer Femstrom, Kjell-Haakan Narfelt, and Lennart Ohlsson. Software factory principies,
architecture, and experiments. IEEE Software, 9(2):36-44, March 1992.

Frame Technology Corporation, San Jose, California. FrameMaker Reference, September 1990.

Frame Technology Corporation, San Jose, California. Integrating Applications With FrameMaker,
June 1991.

Pankaj K. Garg and Walt Scacchi. A Hypertext System to Manage Software Life-Cycle Documents.
IEEE Software, 7(3):90-98, May 1990.

R. Kadia. Issues encountered in building a flexible software development environment: Lessons
leamed from the Arcadia project. In Proceedings of ACM SIGSOFT92: Fifth Symposium on Software
Development Environments, Tyson 's Comer, Virginia, December 1992.

Rudolf K. Keller, Mary Cameron, Richard N. Taylor, and Dennis B. Troup. U ser interface
development and software environments: The Chiron-1 system. In Proceedings of the Thirteenth
International Conference on Software Engineering, pages 208-218, Austin, TX, May 1991.

Charles J. Kacmar and John J. Leggett. PROXHY: A Process-Oriented Extensible Hypertext
Architecture. ACM Transactions on Information Systems, 9(4):399-419, October 1991.

Mark J. Maybee, Dennis H. Heimbinger, David L Levine, and Leon J. Osterweil. Q: A multi-lingual
interprocess communications system for software environment implementation. Submitted for
publication, 1992.

Jakob Nielsen. Hypertext and Hypermedia. Academic Press, Inc., San Diego, California, 1990.

Amy Pearl. Sun's Link Service: A Protocol for Open Linking. In Proceedings of Hypertext' 89,
Pittsburgh, Pennsylvania, November 1989.

Frank M. Shipman, III, R. Jesse Chaney, and G. Anthony Gorry. Distributed Hypertext for
Collaborative Research: The Virtual Notebook System. In Proceedings of Hypertext' 89, Pittsburgh,
Pennsylvania, November 1989.

John B. Smith and F. Donelson Smith. ABC: A Hypermedia System for Artifact-Based Collaboration.
In Proceedings of Hypertext'91, San Antonio, Texas, December 1991.

Dani Steinberg and Hadar Ziv. Software Visualization and Yosemite National Park. In Proceedings
of the Twenty-Fifth Annual Hawaii International Conference on System Sciences, January 1992.

Peri Tarr and Lori A. Clarke. Pleiades: An Object Management System for Software Engineering
Environments. InACM SIGSOFT93: Proceedings ofthe Symposium on the Foundations of Software
Engineering, Los Angeles, California, December 1993. To appear.

Ian Thomas. Tool Integration in the Pact Environment. In Proceedings of the Eleventh International
Conference on Software Engineering, Pittsburgh, PA, May 1989.

Richard N. Taylor and Gregory F. Johnson. Separations of concems in the Chiron-1 user interface
development and management system. In Proceedings of the Conference on Human Factors in
Computing Systems, Amsterdam, April 1993. Association for Computing Machinery.

Anthony I. Wasserman and Peter A. Pritcher. A graphical, extensible integrated environment for
software development. In Proceedings of the SecondACM S/GSOFT/S/GPLAN Software Engineering
Symposium on Practica/ Software Development Environments, pages 131-142, December 1986.
Appeared as SIGPLAN Notices/ 22(1), January 1987.

20

